linux/lib/radix-tree.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2001 Momchil Velikov
   3 * Portions Copyright (C) 2001 Christoph Hellwig
   4 * Copyright (C) 2005 SGI, Christoph Lameter
   5 * Copyright (C) 2006 Nick Piggin
   6 * Copyright (C) 2012 Konstantin Khlebnikov
   7 *
   8 * This program is free software; you can redistribute it and/or
   9 * modify it under the terms of the GNU General Public License as
  10 * published by the Free Software Foundation; either version 2, or (at
  11 * your option) any later version.
  12 *
  13 * This program is distributed in the hope that it will be useful, but
  14 * WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  16 * General Public License for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software
  20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21 */
  22
  23#include <linux/errno.h>
  24#include <linux/init.h>
  25#include <linux/kernel.h>
  26#include <linux/export.h>
  27#include <linux/radix-tree.h>
  28#include <linux/percpu.h>
  29#include <linux/slab.h>
  30#include <linux/kmemleak.h>
  31#include <linux/notifier.h>
  32#include <linux/cpu.h>
  33#include <linux/string.h>
  34#include <linux/bitops.h>
  35#include <linux/rcupdate.h>
  36#include <linux/hardirq.h>              /* in_interrupt() */
  37
  38
  39/*
  40 * The height_to_maxindex array needs to be one deeper than the maximum
  41 * path as height 0 holds only 1 entry.
  42 */
  43static unsigned long height_to_maxindex[RADIX_TREE_MAX_PATH + 1] __read_mostly;
  44
  45/*
  46 * Radix tree node cache.
  47 */
  48static struct kmem_cache *radix_tree_node_cachep;
  49
  50/*
  51 * The radix tree is variable-height, so an insert operation not only has
  52 * to build the branch to its corresponding item, it also has to build the
  53 * branch to existing items if the size has to be increased (by
  54 * radix_tree_extend).
  55 *
  56 * The worst case is a zero height tree with just a single item at index 0,
  57 * and then inserting an item at index ULONG_MAX. This requires 2 new branches
  58 * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared.
  59 * Hence:
  60 */
  61#define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1)
  62
  63/*
  64 * Per-cpu pool of preloaded nodes
  65 */
  66struct radix_tree_preload {
  67        int nr;
  68        struct radix_tree_node *nodes[RADIX_TREE_PRELOAD_SIZE];
  69};
  70static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, };
  71
  72static inline void *ptr_to_indirect(void *ptr)
  73{
  74        return (void *)((unsigned long)ptr | RADIX_TREE_INDIRECT_PTR);
  75}
  76
  77static inline void *indirect_to_ptr(void *ptr)
  78{
  79        return (void *)((unsigned long)ptr & ~RADIX_TREE_INDIRECT_PTR);
  80}
  81
  82static inline gfp_t root_gfp_mask(struct radix_tree_root *root)
  83{
  84        return root->gfp_mask & __GFP_BITS_MASK;
  85}
  86
  87static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
  88                int offset)
  89{
  90        __set_bit(offset, node->tags[tag]);
  91}
  92
  93static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
  94                int offset)
  95{
  96        __clear_bit(offset, node->tags[tag]);
  97}
  98
  99static inline int tag_get(struct radix_tree_node *node, unsigned int tag,
 100                int offset)
 101{
 102        return test_bit(offset, node->tags[tag]);
 103}
 104
 105static inline void root_tag_set(struct radix_tree_root *root, unsigned int tag)
 106{
 107        root->gfp_mask |= (__force gfp_t)(1 << (tag + __GFP_BITS_SHIFT));
 108}
 109
 110static inline void root_tag_clear(struct radix_tree_root *root, unsigned int tag)
 111{
 112        root->gfp_mask &= (__force gfp_t)~(1 << (tag + __GFP_BITS_SHIFT));
 113}
 114
 115static inline void root_tag_clear_all(struct radix_tree_root *root)
 116{
 117        root->gfp_mask &= __GFP_BITS_MASK;
 118}
 119
 120static inline int root_tag_get(struct radix_tree_root *root, unsigned int tag)
 121{
 122        return (__force unsigned)root->gfp_mask & (1 << (tag + __GFP_BITS_SHIFT));
 123}
 124
 125/*
 126 * Returns 1 if any slot in the node has this tag set.
 127 * Otherwise returns 0.
 128 */
 129static inline int any_tag_set(struct radix_tree_node *node, unsigned int tag)
 130{
 131        int idx;
 132        for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
 133                if (node->tags[tag][idx])
 134                        return 1;
 135        }
 136        return 0;
 137}
 138
 139/**
 140 * radix_tree_find_next_bit - find the next set bit in a memory region
 141 *
 142 * @addr: The address to base the search on
 143 * @size: The bitmap size in bits
 144 * @offset: The bitnumber to start searching at
 145 *
 146 * Unrollable variant of find_next_bit() for constant size arrays.
 147 * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
 148 * Returns next bit offset, or size if nothing found.
 149 */
 150static __always_inline unsigned long
 151radix_tree_find_next_bit(const unsigned long *addr,
 152                         unsigned long size, unsigned long offset)
 153{
 154        if (!__builtin_constant_p(size))
 155                return find_next_bit(addr, size, offset);
 156
 157        if (offset < size) {
 158                unsigned long tmp;
 159
 160                addr += offset / BITS_PER_LONG;
 161                tmp = *addr >> (offset % BITS_PER_LONG);
 162                if (tmp)
 163                        return __ffs(tmp) + offset;
 164                offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1);
 165                while (offset < size) {
 166                        tmp = *++addr;
 167                        if (tmp)
 168                                return __ffs(tmp) + offset;
 169                        offset += BITS_PER_LONG;
 170                }
 171        }
 172        return size;
 173}
 174
 175/*
 176 * This assumes that the caller has performed appropriate preallocation, and
 177 * that the caller has pinned this thread of control to the current CPU.
 178 */
 179static struct radix_tree_node *
 180radix_tree_node_alloc(struct radix_tree_root *root)
 181{
 182        struct radix_tree_node *ret = NULL;
 183        gfp_t gfp_mask = root_gfp_mask(root);
 184
 185        /*
 186         * Preload code isn't irq safe and it doesn't make sence to use
 187         * preloading in the interrupt anyway as all the allocations have to
 188         * be atomic. So just do normal allocation when in interrupt.
 189         */
 190        if (!(gfp_mask & __GFP_WAIT) && !in_interrupt()) {
 191                struct radix_tree_preload *rtp;
 192
 193                /*
 194                 * Provided the caller has preloaded here, we will always
 195                 * succeed in getting a node here (and never reach
 196                 * kmem_cache_alloc)
 197                 */
 198                rtp = this_cpu_ptr(&radix_tree_preloads);
 199                if (rtp->nr) {
 200                        ret = rtp->nodes[rtp->nr - 1];
 201                        rtp->nodes[rtp->nr - 1] = NULL;
 202                        rtp->nr--;
 203                }
 204                /*
 205                 * Update the allocation stack trace as this is more useful
 206                 * for debugging.
 207                 */
 208                kmemleak_update_trace(ret);
 209        }
 210        if (ret == NULL)
 211                ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
 212
 213        BUG_ON(radix_tree_is_indirect_ptr(ret));
 214        return ret;
 215}
 216
 217static void radix_tree_node_rcu_free(struct rcu_head *head)
 218{
 219        struct radix_tree_node *node =
 220                        container_of(head, struct radix_tree_node, rcu_head);
 221        int i;
 222
 223        /*
 224         * must only free zeroed nodes into the slab. radix_tree_shrink
 225         * can leave us with a non-NULL entry in the first slot, so clear
 226         * that here to make sure.
 227         */
 228        for (i = 0; i < RADIX_TREE_MAX_TAGS; i++)
 229                tag_clear(node, i, 0);
 230
 231        node->slots[0] = NULL;
 232        node->count = 0;
 233
 234        kmem_cache_free(radix_tree_node_cachep, node);
 235}
 236
 237static inline void
 238radix_tree_node_free(struct radix_tree_node *node)
 239{
 240        call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
 241}
 242
 243/*
 244 * Load up this CPU's radix_tree_node buffer with sufficient objects to
 245 * ensure that the addition of a single element in the tree cannot fail.  On
 246 * success, return zero, with preemption disabled.  On error, return -ENOMEM
 247 * with preemption not disabled.
 248 *
 249 * To make use of this facility, the radix tree must be initialised without
 250 * __GFP_WAIT being passed to INIT_RADIX_TREE().
 251 */
 252static int __radix_tree_preload(gfp_t gfp_mask)
 253{
 254        struct radix_tree_preload *rtp;
 255        struct radix_tree_node *node;
 256        int ret = -ENOMEM;
 257
 258        preempt_disable();
 259        rtp = this_cpu_ptr(&radix_tree_preloads);
 260        while (rtp->nr < ARRAY_SIZE(rtp->nodes)) {
 261                preempt_enable();
 262                node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
 263                if (node == NULL)
 264                        goto out;
 265                preempt_disable();
 266                rtp = this_cpu_ptr(&radix_tree_preloads);
 267                if (rtp->nr < ARRAY_SIZE(rtp->nodes))
 268                        rtp->nodes[rtp->nr++] = node;
 269                else
 270                        kmem_cache_free(radix_tree_node_cachep, node);
 271        }
 272        ret = 0;
 273out:
 274        return ret;
 275}
 276
 277/*
 278 * Load up this CPU's radix_tree_node buffer with sufficient objects to
 279 * ensure that the addition of a single element in the tree cannot fail.  On
 280 * success, return zero, with preemption disabled.  On error, return -ENOMEM
 281 * with preemption not disabled.
 282 *
 283 * To make use of this facility, the radix tree must be initialised without
 284 * __GFP_WAIT being passed to INIT_RADIX_TREE().
 285 */
 286int radix_tree_preload(gfp_t gfp_mask)
 287{
 288        /* Warn on non-sensical use... */
 289        WARN_ON_ONCE(!(gfp_mask & __GFP_WAIT));
 290        return __radix_tree_preload(gfp_mask);
 291}
 292EXPORT_SYMBOL(radix_tree_preload);
 293
 294/*
 295 * The same as above function, except we don't guarantee preloading happens.
 296 * We do it, if we decide it helps. On success, return zero with preemption
 297 * disabled. On error, return -ENOMEM with preemption not disabled.
 298 */
 299int radix_tree_maybe_preload(gfp_t gfp_mask)
 300{
 301        if (gfp_mask & __GFP_WAIT)
 302                return __radix_tree_preload(gfp_mask);
 303        /* Preloading doesn't help anything with this gfp mask, skip it */
 304        preempt_disable();
 305        return 0;
 306}
 307EXPORT_SYMBOL(radix_tree_maybe_preload);
 308
 309/*
 310 *      Return the maximum key which can be store into a
 311 *      radix tree with height HEIGHT.
 312 */
 313static inline unsigned long radix_tree_maxindex(unsigned int height)
 314{
 315        return height_to_maxindex[height];
 316}
 317
 318/*
 319 *      Extend a radix tree so it can store key @index.
 320 */
 321static int radix_tree_extend(struct radix_tree_root *root, unsigned long index)
 322{
 323        struct radix_tree_node *node;
 324        struct radix_tree_node *slot;
 325        unsigned int height;
 326        int tag;
 327
 328        /* Figure out what the height should be.  */
 329        height = root->height + 1;
 330        while (index > radix_tree_maxindex(height))
 331                height++;
 332
 333        if (root->rnode == NULL) {
 334                root->height = height;
 335                goto out;
 336        }
 337
 338        do {
 339                unsigned int newheight;
 340                if (!(node = radix_tree_node_alloc(root)))
 341                        return -ENOMEM;
 342
 343                /* Propagate the aggregated tag info into the new root */
 344                for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
 345                        if (root_tag_get(root, tag))
 346                                tag_set(node, tag, 0);
 347                }
 348
 349                /* Increase the height.  */
 350                newheight = root->height+1;
 351                BUG_ON(newheight & ~RADIX_TREE_HEIGHT_MASK);
 352                node->path = newheight;
 353                node->count = 1;
 354                node->parent = NULL;
 355                slot = root->rnode;
 356                if (newheight > 1) {
 357                        slot = indirect_to_ptr(slot);
 358                        slot->parent = node;
 359                }
 360                node->slots[0] = slot;
 361                node = ptr_to_indirect(node);
 362                rcu_assign_pointer(root->rnode, node);
 363                root->height = newheight;
 364        } while (height > root->height);
 365out:
 366        return 0;
 367}
 368
 369/**
 370 *      __radix_tree_create     -       create a slot in a radix tree
 371 *      @root:          radix tree root
 372 *      @index:         index key
 373 *      @nodep:         returns node
 374 *      @slotp:         returns slot
 375 *
 376 *      Create, if necessary, and return the node and slot for an item
 377 *      at position @index in the radix tree @root.
 378 *
 379 *      Until there is more than one item in the tree, no nodes are
 380 *      allocated and @root->rnode is used as a direct slot instead of
 381 *      pointing to a node, in which case *@nodep will be NULL.
 382 *
 383 *      Returns -ENOMEM, or 0 for success.
 384 */
 385int __radix_tree_create(struct radix_tree_root *root, unsigned long index,
 386                        struct radix_tree_node **nodep, void ***slotp)
 387{
 388        struct radix_tree_node *node = NULL, *slot;
 389        unsigned int height, shift, offset;
 390        int error;
 391
 392        /* Make sure the tree is high enough.  */
 393        if (index > radix_tree_maxindex(root->height)) {
 394                error = radix_tree_extend(root, index);
 395                if (error)
 396                        return error;
 397        }
 398
 399        slot = indirect_to_ptr(root->rnode);
 400
 401        height = root->height;
 402        shift = (height-1) * RADIX_TREE_MAP_SHIFT;
 403
 404        offset = 0;                     /* uninitialised var warning */
 405        while (height > 0) {
 406                if (slot == NULL) {
 407                        /* Have to add a child node.  */
 408                        if (!(slot = radix_tree_node_alloc(root)))
 409                                return -ENOMEM;
 410                        slot->path = height;
 411                        slot->parent = node;
 412                        if (node) {
 413                                rcu_assign_pointer(node->slots[offset], slot);
 414                                node->count++;
 415                                slot->path |= offset << RADIX_TREE_HEIGHT_SHIFT;
 416                        } else
 417                                rcu_assign_pointer(root->rnode, ptr_to_indirect(slot));
 418                }
 419
 420                /* Go a level down */
 421                offset = (index >> shift) & RADIX_TREE_MAP_MASK;
 422                node = slot;
 423                slot = node->slots[offset];
 424                shift -= RADIX_TREE_MAP_SHIFT;
 425                height--;
 426        }
 427
 428        if (nodep)
 429                *nodep = node;
 430        if (slotp)
 431                *slotp = node ? node->slots + offset : (void **)&root->rnode;
 432        return 0;
 433}
 434
 435/**
 436 *      radix_tree_insert    -    insert into a radix tree
 437 *      @root:          radix tree root
 438 *      @index:         index key
 439 *      @item:          item to insert
 440 *
 441 *      Insert an item into the radix tree at position @index.
 442 */
 443int radix_tree_insert(struct radix_tree_root *root,
 444                        unsigned long index, void *item)
 445{
 446        struct radix_tree_node *node;
 447        void **slot;
 448        int error;
 449
 450        BUG_ON(radix_tree_is_indirect_ptr(item));
 451
 452        error = __radix_tree_create(root, index, &node, &slot);
 453        if (error)
 454                return error;
 455        if (*slot != NULL)
 456                return -EEXIST;
 457        rcu_assign_pointer(*slot, item);
 458
 459        if (node) {
 460                node->count++;
 461                BUG_ON(tag_get(node, 0, index & RADIX_TREE_MAP_MASK));
 462                BUG_ON(tag_get(node, 1, index & RADIX_TREE_MAP_MASK));
 463        } else {
 464                BUG_ON(root_tag_get(root, 0));
 465                BUG_ON(root_tag_get(root, 1));
 466        }
 467
 468        return 0;
 469}
 470EXPORT_SYMBOL(radix_tree_insert);
 471
 472/**
 473 *      __radix_tree_lookup     -       lookup an item in a radix tree
 474 *      @root:          radix tree root
 475 *      @index:         index key
 476 *      @nodep:         returns node
 477 *      @slotp:         returns slot
 478 *
 479 *      Lookup and return the item at position @index in the radix
 480 *      tree @root.
 481 *
 482 *      Until there is more than one item in the tree, no nodes are
 483 *      allocated and @root->rnode is used as a direct slot instead of
 484 *      pointing to a node, in which case *@nodep will be NULL.
 485 */
 486void *__radix_tree_lookup(struct radix_tree_root *root, unsigned long index,
 487                          struct radix_tree_node **nodep, void ***slotp)
 488{
 489        struct radix_tree_node *node, *parent;
 490        unsigned int height, shift;
 491        void **slot;
 492
 493        node = rcu_dereference_raw(root->rnode);
 494        if (node == NULL)
 495                return NULL;
 496
 497        if (!radix_tree_is_indirect_ptr(node)) {
 498                if (index > 0)
 499                        return NULL;
 500
 501                if (nodep)
 502                        *nodep = NULL;
 503                if (slotp)
 504                        *slotp = (void **)&root->rnode;
 505                return node;
 506        }
 507        node = indirect_to_ptr(node);
 508
 509        height = node->path & RADIX_TREE_HEIGHT_MASK;
 510        if (index > radix_tree_maxindex(height))
 511                return NULL;
 512
 513        shift = (height-1) * RADIX_TREE_MAP_SHIFT;
 514
 515        do {
 516                parent = node;
 517                slot = node->slots + ((index >> shift) & RADIX_TREE_MAP_MASK);
 518                node = rcu_dereference_raw(*slot);
 519                if (node == NULL)
 520                        return NULL;
 521
 522                shift -= RADIX_TREE_MAP_SHIFT;
 523                height--;
 524        } while (height > 0);
 525
 526        if (nodep)
 527                *nodep = parent;
 528        if (slotp)
 529                *slotp = slot;
 530        return node;
 531}
 532
 533/**
 534 *      radix_tree_lookup_slot    -    lookup a slot in a radix tree
 535 *      @root:          radix tree root
 536 *      @index:         index key
 537 *
 538 *      Returns:  the slot corresponding to the position @index in the
 539 *      radix tree @root. This is useful for update-if-exists operations.
 540 *
 541 *      This function can be called under rcu_read_lock iff the slot is not
 542 *      modified by radix_tree_replace_slot, otherwise it must be called
 543 *      exclusive from other writers. Any dereference of the slot must be done
 544 *      using radix_tree_deref_slot.
 545 */
 546void **radix_tree_lookup_slot(struct radix_tree_root *root, unsigned long index)
 547{
 548        void **slot;
 549
 550        if (!__radix_tree_lookup(root, index, NULL, &slot))
 551                return NULL;
 552        return slot;
 553}
 554EXPORT_SYMBOL(radix_tree_lookup_slot);
 555
 556/**
 557 *      radix_tree_lookup    -    perform lookup operation on a radix tree
 558 *      @root:          radix tree root
 559 *      @index:         index key
 560 *
 561 *      Lookup the item at the position @index in the radix tree @root.
 562 *
 563 *      This function can be called under rcu_read_lock, however the caller
 564 *      must manage lifetimes of leaf nodes (eg. RCU may also be used to free
 565 *      them safely). No RCU barriers are required to access or modify the
 566 *      returned item, however.
 567 */
 568void *radix_tree_lookup(struct radix_tree_root *root, unsigned long index)
 569{
 570        return __radix_tree_lookup(root, index, NULL, NULL);
 571}
 572EXPORT_SYMBOL(radix_tree_lookup);
 573
 574/**
 575 *      radix_tree_tag_set - set a tag on a radix tree node
 576 *      @root:          radix tree root
 577 *      @index:         index key
 578 *      @tag:           tag index
 579 *
 580 *      Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
 581 *      corresponding to @index in the radix tree.  From
 582 *      the root all the way down to the leaf node.
 583 *
 584 *      Returns the address of the tagged item.   Setting a tag on a not-present
 585 *      item is a bug.
 586 */
 587void *radix_tree_tag_set(struct radix_tree_root *root,
 588                        unsigned long index, unsigned int tag)
 589{
 590        unsigned int height, shift;
 591        struct radix_tree_node *slot;
 592
 593        height = root->height;
 594        BUG_ON(index > radix_tree_maxindex(height));
 595
 596        slot = indirect_to_ptr(root->rnode);
 597        shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
 598
 599        while (height > 0) {
 600                int offset;
 601
 602                offset = (index >> shift) & RADIX_TREE_MAP_MASK;
 603                if (!tag_get(slot, tag, offset))
 604                        tag_set(slot, tag, offset);
 605                slot = slot->slots[offset];
 606                BUG_ON(slot == NULL);
 607                shift -= RADIX_TREE_MAP_SHIFT;
 608                height--;
 609        }
 610
 611        /* set the root's tag bit */
 612        if (slot && !root_tag_get(root, tag))
 613                root_tag_set(root, tag);
 614
 615        return slot;
 616}
 617EXPORT_SYMBOL(radix_tree_tag_set);
 618
 619/**
 620 *      radix_tree_tag_clear - clear a tag on a radix tree node
 621 *      @root:          radix tree root
 622 *      @index:         index key
 623 *      @tag:           tag index
 624 *
 625 *      Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
 626 *      corresponding to @index in the radix tree.  If
 627 *      this causes the leaf node to have no tags set then clear the tag in the
 628 *      next-to-leaf node, etc.
 629 *
 630 *      Returns the address of the tagged item on success, else NULL.  ie:
 631 *      has the same return value and semantics as radix_tree_lookup().
 632 */
 633void *radix_tree_tag_clear(struct radix_tree_root *root,
 634                        unsigned long index, unsigned int tag)
 635{
 636        struct radix_tree_node *node = NULL;
 637        struct radix_tree_node *slot = NULL;
 638        unsigned int height, shift;
 639        int uninitialized_var(offset);
 640
 641        height = root->height;
 642        if (index > radix_tree_maxindex(height))
 643                goto out;
 644
 645        shift = height * RADIX_TREE_MAP_SHIFT;
 646        slot = indirect_to_ptr(root->rnode);
 647
 648        while (shift) {
 649                if (slot == NULL)
 650                        goto out;
 651
 652                shift -= RADIX_TREE_MAP_SHIFT;
 653                offset = (index >> shift) & RADIX_TREE_MAP_MASK;
 654                node = slot;
 655                slot = slot->slots[offset];
 656        }
 657
 658        if (slot == NULL)
 659                goto out;
 660
 661        while (node) {
 662                if (!tag_get(node, tag, offset))
 663                        goto out;
 664                tag_clear(node, tag, offset);
 665                if (any_tag_set(node, tag))
 666                        goto out;
 667
 668                index >>= RADIX_TREE_MAP_SHIFT;
 669                offset = index & RADIX_TREE_MAP_MASK;
 670                node = node->parent;
 671        }
 672
 673        /* clear the root's tag bit */
 674        if (root_tag_get(root, tag))
 675                root_tag_clear(root, tag);
 676
 677out:
 678        return slot;
 679}
 680EXPORT_SYMBOL(radix_tree_tag_clear);
 681
 682/**
 683 * radix_tree_tag_get - get a tag on a radix tree node
 684 * @root:               radix tree root
 685 * @index:              index key
 686 * @tag:                tag index (< RADIX_TREE_MAX_TAGS)
 687 *
 688 * Return values:
 689 *
 690 *  0: tag not present or not set
 691 *  1: tag set
 692 *
 693 * Note that the return value of this function may not be relied on, even if
 694 * the RCU lock is held, unless tag modification and node deletion are excluded
 695 * from concurrency.
 696 */
 697int radix_tree_tag_get(struct radix_tree_root *root,
 698                        unsigned long index, unsigned int tag)
 699{
 700        unsigned int height, shift;
 701        struct radix_tree_node *node;
 702
 703        /* check the root's tag bit */
 704        if (!root_tag_get(root, tag))
 705                return 0;
 706
 707        node = rcu_dereference_raw(root->rnode);
 708        if (node == NULL)
 709                return 0;
 710
 711        if (!radix_tree_is_indirect_ptr(node))
 712                return (index == 0);
 713        node = indirect_to_ptr(node);
 714
 715        height = node->path & RADIX_TREE_HEIGHT_MASK;
 716        if (index > radix_tree_maxindex(height))
 717                return 0;
 718
 719        shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
 720
 721        for ( ; ; ) {
 722                int offset;
 723
 724                if (node == NULL)
 725                        return 0;
 726
 727                offset = (index >> shift) & RADIX_TREE_MAP_MASK;
 728                if (!tag_get(node, tag, offset))
 729                        return 0;
 730                if (height == 1)
 731                        return 1;
 732                node = rcu_dereference_raw(node->slots[offset]);
 733                shift -= RADIX_TREE_MAP_SHIFT;
 734                height--;
 735        }
 736}
 737EXPORT_SYMBOL(radix_tree_tag_get);
 738
 739/**
 740 * radix_tree_next_chunk - find next chunk of slots for iteration
 741 *
 742 * @root:       radix tree root
 743 * @iter:       iterator state
 744 * @flags:      RADIX_TREE_ITER_* flags and tag index
 745 * Returns:     pointer to chunk first slot, or NULL if iteration is over
 746 */
 747void **radix_tree_next_chunk(struct radix_tree_root *root,
 748                             struct radix_tree_iter *iter, unsigned flags)
 749{
 750        unsigned shift, tag = flags & RADIX_TREE_ITER_TAG_MASK;
 751        struct radix_tree_node *rnode, *node;
 752        unsigned long index, offset, height;
 753
 754        if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag))
 755                return NULL;
 756
 757        /*
 758         * Catch next_index overflow after ~0UL. iter->index never overflows
 759         * during iterating; it can be zero only at the beginning.
 760         * And we cannot overflow iter->next_index in a single step,
 761         * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
 762         *
 763         * This condition also used by radix_tree_next_slot() to stop
 764         * contiguous iterating, and forbid swithing to the next chunk.
 765         */
 766        index = iter->next_index;
 767        if (!index && iter->index)
 768                return NULL;
 769
 770        rnode = rcu_dereference_raw(root->rnode);
 771        if (radix_tree_is_indirect_ptr(rnode)) {
 772                rnode = indirect_to_ptr(rnode);
 773        } else if (rnode && !index) {
 774                /* Single-slot tree */
 775                iter->index = 0;
 776                iter->next_index = 1;
 777                iter->tags = 1;
 778                return (void **)&root->rnode;
 779        } else
 780                return NULL;
 781
 782restart:
 783        height = rnode->path & RADIX_TREE_HEIGHT_MASK;
 784        shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
 785        offset = index >> shift;
 786
 787        /* Index outside of the tree */
 788        if (offset >= RADIX_TREE_MAP_SIZE)
 789                return NULL;
 790
 791        node = rnode;
 792        while (1) {
 793                if ((flags & RADIX_TREE_ITER_TAGGED) ?
 794                                !test_bit(offset, node->tags[tag]) :
 795                                !node->slots[offset]) {
 796                        /* Hole detected */
 797                        if (flags & RADIX_TREE_ITER_CONTIG)
 798                                return NULL;
 799
 800                        if (flags & RADIX_TREE_ITER_TAGGED)
 801                                offset = radix_tree_find_next_bit(
 802                                                node->tags[tag],
 803                                                RADIX_TREE_MAP_SIZE,
 804                                                offset + 1);
 805                        else
 806                                while (++offset < RADIX_TREE_MAP_SIZE) {
 807                                        if (node->slots[offset])
 808                                                break;
 809                                }
 810                        index &= ~((RADIX_TREE_MAP_SIZE << shift) - 1);
 811                        index += offset << shift;
 812                        /* Overflow after ~0UL */
 813                        if (!index)
 814                                return NULL;
 815                        if (offset == RADIX_TREE_MAP_SIZE)
 816                                goto restart;
 817                }
 818
 819                /* This is leaf-node */
 820                if (!shift)
 821                        break;
 822
 823                node = rcu_dereference_raw(node->slots[offset]);
 824                if (node == NULL)
 825                        goto restart;
 826                shift -= RADIX_TREE_MAP_SHIFT;
 827                offset = (index >> shift) & RADIX_TREE_MAP_MASK;
 828        }
 829
 830        /* Update the iterator state */
 831        iter->index = index;
 832        iter->next_index = (index | RADIX_TREE_MAP_MASK) + 1;
 833
 834        /* Construct iter->tags bit-mask from node->tags[tag] array */
 835        if (flags & RADIX_TREE_ITER_TAGGED) {
 836                unsigned tag_long, tag_bit;
 837
 838                tag_long = offset / BITS_PER_LONG;
 839                tag_bit  = offset % BITS_PER_LONG;
 840                iter->tags = node->tags[tag][tag_long] >> tag_bit;
 841                /* This never happens if RADIX_TREE_TAG_LONGS == 1 */
 842                if (tag_long < RADIX_TREE_TAG_LONGS - 1) {
 843                        /* Pick tags from next element */
 844                        if (tag_bit)
 845                                iter->tags |= node->tags[tag][tag_long + 1] <<
 846                                                (BITS_PER_LONG - tag_bit);
 847                        /* Clip chunk size, here only BITS_PER_LONG tags */
 848                        iter->next_index = index + BITS_PER_LONG;
 849                }
 850        }
 851
 852        return node->slots + offset;
 853}
 854EXPORT_SYMBOL(radix_tree_next_chunk);
 855
 856/**
 857 * radix_tree_range_tag_if_tagged - for each item in given range set given
 858 *                                 tag if item has another tag set
 859 * @root:               radix tree root
 860 * @first_indexp:       pointer to a starting index of a range to scan
 861 * @last_index:         last index of a range to scan
 862 * @nr_to_tag:          maximum number items to tag
 863 * @iftag:              tag index to test
 864 * @settag:             tag index to set if tested tag is set
 865 *
 866 * This function scans range of radix tree from first_index to last_index
 867 * (inclusive).  For each item in the range if iftag is set, the function sets
 868 * also settag. The function stops either after tagging nr_to_tag items or
 869 * after reaching last_index.
 870 *
 871 * The tags must be set from the leaf level only and propagated back up the
 872 * path to the root. We must do this so that we resolve the full path before
 873 * setting any tags on intermediate nodes. If we set tags as we descend, then
 874 * we can get to the leaf node and find that the index that has the iftag
 875 * set is outside the range we are scanning. This reults in dangling tags and
 876 * can lead to problems with later tag operations (e.g. livelocks on lookups).
 877 *
 878 * The function returns number of leaves where the tag was set and sets
 879 * *first_indexp to the first unscanned index.
 880 * WARNING! *first_indexp can wrap if last_index is ULONG_MAX. Caller must
 881 * be prepared to handle that.
 882 */
 883unsigned long radix_tree_range_tag_if_tagged(struct radix_tree_root *root,
 884                unsigned long *first_indexp, unsigned long last_index,
 885                unsigned long nr_to_tag,
 886                unsigned int iftag, unsigned int settag)
 887{
 888        unsigned int height = root->height;
 889        struct radix_tree_node *node = NULL;
 890        struct radix_tree_node *slot;
 891        unsigned int shift;
 892        unsigned long tagged = 0;
 893        unsigned long index = *first_indexp;
 894
 895        last_index = min(last_index, radix_tree_maxindex(height));
 896        if (index > last_index)
 897                return 0;
 898        if (!nr_to_tag)
 899                return 0;
 900        if (!root_tag_get(root, iftag)) {
 901                *first_indexp = last_index + 1;
 902                return 0;
 903        }
 904        if (height == 0) {
 905                *first_indexp = last_index + 1;
 906                root_tag_set(root, settag);
 907                return 1;
 908        }
 909
 910        shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
 911        slot = indirect_to_ptr(root->rnode);
 912
 913        for (;;) {
 914                unsigned long upindex;
 915                int offset;
 916
 917                offset = (index >> shift) & RADIX_TREE_MAP_MASK;
 918                if (!slot->slots[offset])
 919                        goto next;
 920                if (!tag_get(slot, iftag, offset))
 921                        goto next;
 922                if (shift) {
 923                        /* Go down one level */
 924                        shift -= RADIX_TREE_MAP_SHIFT;
 925                        node = slot;
 926                        slot = slot->slots[offset];
 927                        continue;
 928                }
 929
 930                /* tag the leaf */
 931                tagged++;
 932                tag_set(slot, settag, offset);
 933
 934                /* walk back up the path tagging interior nodes */
 935                upindex = index;
 936                while (node) {
 937                        upindex >>= RADIX_TREE_MAP_SHIFT;
 938                        offset = upindex & RADIX_TREE_MAP_MASK;
 939
 940                        /* stop if we find a node with the tag already set */
 941                        if (tag_get(node, settag, offset))
 942                                break;
 943                        tag_set(node, settag, offset);
 944                        node = node->parent;
 945                }
 946
 947                /*
 948                 * Small optimization: now clear that node pointer.
 949                 * Since all of this slot's ancestors now have the tag set
 950                 * from setting it above, we have no further need to walk
 951                 * back up the tree setting tags, until we update slot to
 952                 * point to another radix_tree_node.
 953                 */
 954                node = NULL;
 955
 956next:
 957                /* Go to next item at level determined by 'shift' */
 958                index = ((index >> shift) + 1) << shift;
 959                /* Overflow can happen when last_index is ~0UL... */
 960                if (index > last_index || !index)
 961                        break;
 962                if (tagged >= nr_to_tag)
 963                        break;
 964                while (((index >> shift) & RADIX_TREE_MAP_MASK) == 0) {
 965                        /*
 966                         * We've fully scanned this node. Go up. Because
 967                         * last_index is guaranteed to be in the tree, what
 968                         * we do below cannot wander astray.
 969                         */
 970                        slot = slot->parent;
 971                        shift += RADIX_TREE_MAP_SHIFT;
 972                }
 973        }
 974        /*
 975         * We need not to tag the root tag if there is no tag which is set with
 976         * settag within the range from *first_indexp to last_index.
 977         */
 978        if (tagged > 0)
 979                root_tag_set(root, settag);
 980        *first_indexp = index;
 981
 982        return tagged;
 983}
 984EXPORT_SYMBOL(radix_tree_range_tag_if_tagged);
 985
 986/**
 987 *      radix_tree_gang_lookup - perform multiple lookup on a radix tree
 988 *      @root:          radix tree root
 989 *      @results:       where the results of the lookup are placed
 990 *      @first_index:   start the lookup from this key
 991 *      @max_items:     place up to this many items at *results
 992 *
 993 *      Performs an index-ascending scan of the tree for present items.  Places
 994 *      them at *@results and returns the number of items which were placed at
 995 *      *@results.
 996 *
 997 *      The implementation is naive.
 998 *
 999 *      Like radix_tree_lookup, radix_tree_gang_lookup may be called under
1000 *      rcu_read_lock. In this case, rather than the returned results being
1001 *      an atomic snapshot of the tree at a single point in time, the semantics
1002 *      of an RCU protected gang lookup are as though multiple radix_tree_lookups
1003 *      have been issued in individual locks, and results stored in 'results'.
1004 */
1005unsigned int
1006radix_tree_gang_lookup(struct radix_tree_root *root, void **results,
1007                        unsigned long first_index, unsigned int max_items)
1008{
1009        struct radix_tree_iter iter;
1010        void **slot;
1011        unsigned int ret = 0;
1012
1013        if (unlikely(!max_items))
1014                return 0;
1015
1016        radix_tree_for_each_slot(slot, root, &iter, first_index) {
1017                results[ret] = indirect_to_ptr(rcu_dereference_raw(*slot));
1018                if (!results[ret])
1019                        continue;
1020                if (++ret == max_items)
1021                        break;
1022        }
1023
1024        return ret;
1025}
1026EXPORT_SYMBOL(radix_tree_gang_lookup);
1027
1028/**
1029 *      radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree
1030 *      @root:          radix tree root
1031 *      @results:       where the results of the lookup are placed
1032 *      @indices:       where their indices should be placed (but usually NULL)
1033 *      @first_index:   start the lookup from this key
1034 *      @max_items:     place up to this many items at *results
1035 *
1036 *      Performs an index-ascending scan of the tree for present items.  Places
1037 *      their slots at *@results and returns the number of items which were
1038 *      placed at *@results.
1039 *
1040 *      The implementation is naive.
1041 *
1042 *      Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must
1043 *      be dereferenced with radix_tree_deref_slot, and if using only RCU
1044 *      protection, radix_tree_deref_slot may fail requiring a retry.
1045 */
1046unsigned int
1047radix_tree_gang_lookup_slot(struct radix_tree_root *root,
1048                        void ***results, unsigned long *indices,
1049                        unsigned long first_index, unsigned int max_items)
1050{
1051        struct radix_tree_iter iter;
1052        void **slot;
1053        unsigned int ret = 0;
1054
1055        if (unlikely(!max_items))
1056                return 0;
1057
1058        radix_tree_for_each_slot(slot, root, &iter, first_index) {
1059                results[ret] = slot;
1060                if (indices)
1061                        indices[ret] = iter.index;
1062                if (++ret == max_items)
1063                        break;
1064        }
1065
1066        return ret;
1067}
1068EXPORT_SYMBOL(radix_tree_gang_lookup_slot);
1069
1070/**
1071 *      radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1072 *                                   based on a tag
1073 *      @root:          radix tree root
1074 *      @results:       where the results of the lookup are placed
1075 *      @first_index:   start the lookup from this key
1076 *      @max_items:     place up to this many items at *results
1077 *      @tag:           the tag index (< RADIX_TREE_MAX_TAGS)
1078 *
1079 *      Performs an index-ascending scan of the tree for present items which
1080 *      have the tag indexed by @tag set.  Places the items at *@results and
1081 *      returns the number of items which were placed at *@results.
1082 */
1083unsigned int
1084radix_tree_gang_lookup_tag(struct radix_tree_root *root, void **results,
1085                unsigned long first_index, unsigned int max_items,
1086                unsigned int tag)
1087{
1088        struct radix_tree_iter iter;
1089        void **slot;
1090        unsigned int ret = 0;
1091
1092        if (unlikely(!max_items))
1093                return 0;
1094
1095        radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1096                results[ret] = indirect_to_ptr(rcu_dereference_raw(*slot));
1097                if (!results[ret])
1098                        continue;
1099                if (++ret == max_items)
1100                        break;
1101        }
1102
1103        return ret;
1104}
1105EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
1106
1107/**
1108 *      radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1109 *                                        radix tree based on a tag
1110 *      @root:          radix tree root
1111 *      @results:       where the results of the lookup are placed
1112 *      @first_index:   start the lookup from this key
1113 *      @max_items:     place up to this many items at *results
1114 *      @tag:           the tag index (< RADIX_TREE_MAX_TAGS)
1115 *
1116 *      Performs an index-ascending scan of the tree for present items which
1117 *      have the tag indexed by @tag set.  Places the slots at *@results and
1118 *      returns the number of slots which were placed at *@results.
1119 */
1120unsigned int
1121radix_tree_gang_lookup_tag_slot(struct radix_tree_root *root, void ***results,
1122                unsigned long first_index, unsigned int max_items,
1123                unsigned int tag)
1124{
1125        struct radix_tree_iter iter;
1126        void **slot;
1127        unsigned int ret = 0;
1128
1129        if (unlikely(!max_items))
1130                return 0;
1131
1132        radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1133                results[ret] = slot;
1134                if (++ret == max_items)
1135                        break;
1136        }
1137
1138        return ret;
1139}
1140EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
1141
1142#if defined(CONFIG_SHMEM) && defined(CONFIG_SWAP)
1143#include <linux/sched.h> /* for cond_resched() */
1144
1145/*
1146 * This linear search is at present only useful to shmem_unuse_inode().
1147 */
1148static unsigned long __locate(struct radix_tree_node *slot, void *item,
1149                              unsigned long index, unsigned long *found_index)
1150{
1151        unsigned int shift, height;
1152        unsigned long i;
1153
1154        height = slot->path & RADIX_TREE_HEIGHT_MASK;
1155        shift = (height-1) * RADIX_TREE_MAP_SHIFT;
1156
1157        for ( ; height > 1; height--) {
1158                i = (index >> shift) & RADIX_TREE_MAP_MASK;
1159                for (;;) {
1160                        if (slot->slots[i] != NULL)
1161                                break;
1162                        index &= ~((1UL << shift) - 1);
1163                        index += 1UL << shift;
1164                        if (index == 0)
1165                                goto out;       /* 32-bit wraparound */
1166                        i++;
1167                        if (i == RADIX_TREE_MAP_SIZE)
1168                                goto out;
1169                }
1170
1171                shift -= RADIX_TREE_MAP_SHIFT;
1172                slot = rcu_dereference_raw(slot->slots[i]);
1173                if (slot == NULL)
1174                        goto out;
1175        }
1176
1177        /* Bottom level: check items */
1178        for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) {
1179                if (slot->slots[i] == item) {
1180                        *found_index = index + i;
1181                        index = 0;
1182                        goto out;
1183                }
1184        }
1185        index += RADIX_TREE_MAP_SIZE;
1186out:
1187        return index;
1188}
1189
1190/**
1191 *      radix_tree_locate_item - search through radix tree for item
1192 *      @root:          radix tree root
1193 *      @item:          item to be found
1194 *
1195 *      Returns index where item was found, or -1 if not found.
1196 *      Caller must hold no lock (since this time-consuming function needs
1197 *      to be preemptible), and must check afterwards if item is still there.
1198 */
1199unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item)
1200{
1201        struct radix_tree_node *node;
1202        unsigned long max_index;
1203        unsigned long cur_index = 0;
1204        unsigned long found_index = -1;
1205
1206        do {
1207                rcu_read_lock();
1208                node = rcu_dereference_raw(root->rnode);
1209                if (!radix_tree_is_indirect_ptr(node)) {
1210                        rcu_read_unlock();
1211                        if (node == item)
1212                                found_index = 0;
1213                        break;
1214                }
1215
1216                node = indirect_to_ptr(node);
1217                max_index = radix_tree_maxindex(node->path &
1218                                                RADIX_TREE_HEIGHT_MASK);
1219                if (cur_index > max_index) {
1220                        rcu_read_unlock();
1221                        break;
1222                }
1223
1224                cur_index = __locate(node, item, cur_index, &found_index);
1225                rcu_read_unlock();
1226                cond_resched();
1227        } while (cur_index != 0 && cur_index <= max_index);
1228
1229        return found_index;
1230}
1231#else
1232unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item)
1233{
1234        return -1;
1235}
1236#endif /* CONFIG_SHMEM && CONFIG_SWAP */
1237
1238/**
1239 *      radix_tree_shrink    -    shrink height of a radix tree to minimal
1240 *      @root           radix tree root
1241 */
1242static inline void radix_tree_shrink(struct radix_tree_root *root)
1243{
1244        /* try to shrink tree height */
1245        while (root->height > 0) {
1246                struct radix_tree_node *to_free = root->rnode;
1247                struct radix_tree_node *slot;
1248
1249                BUG_ON(!radix_tree_is_indirect_ptr(to_free));
1250                to_free = indirect_to_ptr(to_free);
1251
1252                /*
1253                 * The candidate node has more than one child, or its child
1254                 * is not at the leftmost slot, we cannot shrink.
1255                 */
1256                if (to_free->count != 1)
1257                        break;
1258                if (!to_free->slots[0])
1259                        break;
1260
1261                /*
1262                 * We don't need rcu_assign_pointer(), since we are simply
1263                 * moving the node from one part of the tree to another: if it
1264                 * was safe to dereference the old pointer to it
1265                 * (to_free->slots[0]), it will be safe to dereference the new
1266                 * one (root->rnode) as far as dependent read barriers go.
1267                 */
1268                slot = to_free->slots[0];
1269                if (root->height > 1) {
1270                        slot->parent = NULL;
1271                        slot = ptr_to_indirect(slot);
1272                }
1273                root->rnode = slot;
1274                root->height--;
1275
1276                /*
1277                 * We have a dilemma here. The node's slot[0] must not be
1278                 * NULLed in case there are concurrent lookups expecting to
1279                 * find the item. However if this was a bottom-level node,
1280                 * then it may be subject to the slot pointer being visible
1281                 * to callers dereferencing it. If item corresponding to
1282                 * slot[0] is subsequently deleted, these callers would expect
1283                 * their slot to become empty sooner or later.
1284                 *
1285                 * For example, lockless pagecache will look up a slot, deref
1286                 * the page pointer, and if the page is 0 refcount it means it
1287                 * was concurrently deleted from pagecache so try the deref
1288                 * again. Fortunately there is already a requirement for logic
1289                 * to retry the entire slot lookup -- the indirect pointer
1290                 * problem (replacing direct root node with an indirect pointer
1291                 * also results in a stale slot). So tag the slot as indirect
1292                 * to force callers to retry.
1293                 */
1294                if (root->height == 0)
1295                        *((unsigned long *)&to_free->slots[0]) |=
1296                                                RADIX_TREE_INDIRECT_PTR;
1297
1298                radix_tree_node_free(to_free);
1299        }
1300}
1301
1302/**
1303 *      __radix_tree_delete_node    -    try to free node after clearing a slot
1304 *      @root:          radix tree root
1305 *      @node:          node containing @index
1306 *
1307 *      After clearing the slot at @index in @node from radix tree
1308 *      rooted at @root, call this function to attempt freeing the
1309 *      node and shrinking the tree.
1310 *
1311 *      Returns %true if @node was freed, %false otherwise.
1312 */
1313bool __radix_tree_delete_node(struct radix_tree_root *root,
1314                              struct radix_tree_node *node)
1315{
1316        bool deleted = false;
1317
1318        do {
1319                struct radix_tree_node *parent;
1320
1321                if (node->count) {
1322                        if (node == indirect_to_ptr(root->rnode)) {
1323                                radix_tree_shrink(root);
1324                                if (root->height == 0)
1325                                        deleted = true;
1326                        }
1327                        return deleted;
1328                }
1329
1330                parent = node->parent;
1331                if (parent) {
1332                        unsigned int offset;
1333
1334                        offset = node->path >> RADIX_TREE_HEIGHT_SHIFT;
1335                        parent->slots[offset] = NULL;
1336                        parent->count--;
1337                } else {
1338                        root_tag_clear_all(root);
1339                        root->height = 0;
1340                        root->rnode = NULL;
1341                }
1342
1343                radix_tree_node_free(node);
1344                deleted = true;
1345
1346                node = parent;
1347        } while (node);
1348
1349        return deleted;
1350}
1351
1352/**
1353 *      radix_tree_delete_item    -    delete an item from a radix tree
1354 *      @root:          radix tree root
1355 *      @index:         index key
1356 *      @item:          expected item
1357 *
1358 *      Remove @item at @index from the radix tree rooted at @root.
1359 *
1360 *      Returns the address of the deleted item, or NULL if it was not present
1361 *      or the entry at the given @index was not @item.
1362 */
1363void *radix_tree_delete_item(struct radix_tree_root *root,
1364                             unsigned long index, void *item)
1365{
1366        struct radix_tree_node *node;
1367        unsigned int offset;
1368        void **slot;
1369        void *entry;
1370        int tag;
1371
1372        entry = __radix_tree_lookup(root, index, &node, &slot);
1373        if (!entry)
1374                return NULL;
1375
1376        if (item && entry != item)
1377                return NULL;
1378
1379        if (!node) {
1380                root_tag_clear_all(root);
1381                root->rnode = NULL;
1382                return entry;
1383        }
1384
1385        offset = index & RADIX_TREE_MAP_MASK;
1386
1387        /*
1388         * Clear all tags associated with the item to be deleted.
1389         * This way of doing it would be inefficient, but seldom is any set.
1390         */
1391        for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
1392                if (tag_get(node, tag, offset))
1393                        radix_tree_tag_clear(root, index, tag);
1394        }
1395
1396        node->slots[offset] = NULL;
1397        node->count--;
1398
1399        __radix_tree_delete_node(root, node);
1400
1401        return entry;
1402}
1403EXPORT_SYMBOL(radix_tree_delete_item);
1404
1405/**
1406 *      radix_tree_delete    -    delete an item from a radix tree
1407 *      @root:          radix tree root
1408 *      @index:         index key
1409 *
1410 *      Remove the item at @index from the radix tree rooted at @root.
1411 *
1412 *      Returns the address of the deleted item, or NULL if it was not present.
1413 */
1414void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
1415{
1416        return radix_tree_delete_item(root, index, NULL);
1417}
1418EXPORT_SYMBOL(radix_tree_delete);
1419
1420/**
1421 *      radix_tree_tagged - test whether any items in the tree are tagged
1422 *      @root:          radix tree root
1423 *      @tag:           tag to test
1424 */
1425int radix_tree_tagged(struct radix_tree_root *root, unsigned int tag)
1426{
1427        return root_tag_get(root, tag);
1428}
1429EXPORT_SYMBOL(radix_tree_tagged);
1430
1431static void
1432radix_tree_node_ctor(void *arg)
1433{
1434        struct radix_tree_node *node = arg;
1435
1436        memset(node, 0, sizeof(*node));
1437        INIT_LIST_HEAD(&node->private_list);
1438}
1439
1440static __init unsigned long __maxindex(unsigned int height)
1441{
1442        unsigned int width = height * RADIX_TREE_MAP_SHIFT;
1443        int shift = RADIX_TREE_INDEX_BITS - width;
1444
1445        if (shift < 0)
1446                return ~0UL;
1447        if (shift >= BITS_PER_LONG)
1448                return 0UL;
1449        return ~0UL >> shift;
1450}
1451
1452static __init void radix_tree_init_maxindex(void)
1453{
1454        unsigned int i;
1455
1456        for (i = 0; i < ARRAY_SIZE(height_to_maxindex); i++)
1457                height_to_maxindex[i] = __maxindex(i);
1458}
1459
1460static int radix_tree_callback(struct notifier_block *nfb,
1461                            unsigned long action,
1462                            void *hcpu)
1463{
1464       int cpu = (long)hcpu;
1465       struct radix_tree_preload *rtp;
1466
1467       /* Free per-cpu pool of perloaded nodes */
1468       if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
1469               rtp = &per_cpu(radix_tree_preloads, cpu);
1470               while (rtp->nr) {
1471                       kmem_cache_free(radix_tree_node_cachep,
1472                                       rtp->nodes[rtp->nr-1]);
1473                       rtp->nodes[rtp->nr-1] = NULL;
1474                       rtp->nr--;
1475               }
1476       }
1477       return NOTIFY_OK;
1478}
1479
1480void __init radix_tree_init(void)
1481{
1482        radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
1483                        sizeof(struct radix_tree_node), 0,
1484                        SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
1485                        radix_tree_node_ctor);
1486        radix_tree_init_maxindex();
1487        hotcpu_notifier(radix_tree_callback, 0);
1488}
1489