linux/mm/shmem.c
<<
>>
Prefs
   1/*
   2 * Resizable virtual memory filesystem for Linux.
   3 *
   4 * Copyright (C) 2000 Linus Torvalds.
   5 *               2000 Transmeta Corp.
   6 *               2000-2001 Christoph Rohland
   7 *               2000-2001 SAP AG
   8 *               2002 Red Hat Inc.
   9 * Copyright (C) 2002-2011 Hugh Dickins.
  10 * Copyright (C) 2011 Google Inc.
  11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
  12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
  13 *
  14 * Extended attribute support for tmpfs:
  15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
  16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
  17 *
  18 * tiny-shmem:
  19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
  20 *
  21 * This file is released under the GPL.
  22 */
  23
  24#include <linux/fs.h>
  25#include <linux/init.h>
  26#include <linux/vfs.h>
  27#include <linux/mount.h>
  28#include <linux/ramfs.h>
  29#include <linux/pagemap.h>
  30#include <linux/file.h>
  31#include <linux/mm.h>
  32#include <linux/export.h>
  33#include <linux/swap.h>
  34#include <linux/aio.h>
  35
  36static struct vfsmount *shm_mnt;
  37
  38#ifdef CONFIG_SHMEM
  39/*
  40 * This virtual memory filesystem is heavily based on the ramfs. It
  41 * extends ramfs by the ability to use swap and honor resource limits
  42 * which makes it a completely usable filesystem.
  43 */
  44
  45#include <linux/xattr.h>
  46#include <linux/exportfs.h>
  47#include <linux/posix_acl.h>
  48#include <linux/posix_acl_xattr.h>
  49#include <linux/mman.h>
  50#include <linux/string.h>
  51#include <linux/slab.h>
  52#include <linux/backing-dev.h>
  53#include <linux/shmem_fs.h>
  54#include <linux/writeback.h>
  55#include <linux/blkdev.h>
  56#include <linux/pagevec.h>
  57#include <linux/percpu_counter.h>
  58#include <linux/falloc.h>
  59#include <linux/splice.h>
  60#include <linux/security.h>
  61#include <linux/swapops.h>
  62#include <linux/mempolicy.h>
  63#include <linux/namei.h>
  64#include <linux/ctype.h>
  65#include <linux/migrate.h>
  66#include <linux/highmem.h>
  67#include <linux/seq_file.h>
  68#include <linux/magic.h>
  69
  70#include <asm/uaccess.h>
  71#include <asm/pgtable.h>
  72
  73#define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
  74#define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
  75
  76/* Pretend that each entry is of this size in directory's i_size */
  77#define BOGO_DIRENT_SIZE 20
  78
  79/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
  80#define SHORT_SYMLINK_LEN 128
  81
  82/*
  83 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
  84 * inode->i_private (with i_mutex making sure that it has only one user at
  85 * a time): we would prefer not to enlarge the shmem inode just for that.
  86 */
  87struct shmem_falloc {
  88        wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
  89        pgoff_t start;          /* start of range currently being fallocated */
  90        pgoff_t next;           /* the next page offset to be fallocated */
  91        pgoff_t nr_falloced;    /* how many new pages have been fallocated */
  92        pgoff_t nr_unswapped;   /* how often writepage refused to swap out */
  93};
  94
  95/* Flag allocation requirements to shmem_getpage */
  96enum sgp_type {
  97        SGP_READ,       /* don't exceed i_size, don't allocate page */
  98        SGP_CACHE,      /* don't exceed i_size, may allocate page */
  99        SGP_DIRTY,      /* like SGP_CACHE, but set new page dirty */
 100        SGP_WRITE,      /* may exceed i_size, may allocate !Uptodate page */
 101        SGP_FALLOC,     /* like SGP_WRITE, but make existing page Uptodate */
 102};
 103
 104#ifdef CONFIG_TMPFS
 105static unsigned long shmem_default_max_blocks(void)
 106{
 107        return totalram_pages / 2;
 108}
 109
 110static unsigned long shmem_default_max_inodes(void)
 111{
 112        return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
 113}
 114#endif
 115
 116static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
 117static int shmem_replace_page(struct page **pagep, gfp_t gfp,
 118                                struct shmem_inode_info *info, pgoff_t index);
 119static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
 120        struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
 121
 122static inline int shmem_getpage(struct inode *inode, pgoff_t index,
 123        struct page **pagep, enum sgp_type sgp, int *fault_type)
 124{
 125        return shmem_getpage_gfp(inode, index, pagep, sgp,
 126                        mapping_gfp_mask(inode->i_mapping), fault_type);
 127}
 128
 129static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
 130{
 131        return sb->s_fs_info;
 132}
 133
 134/*
 135 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
 136 * for shared memory and for shared anonymous (/dev/zero) mappings
 137 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
 138 * consistent with the pre-accounting of private mappings ...
 139 */
 140static inline int shmem_acct_size(unsigned long flags, loff_t size)
 141{
 142        return (flags & VM_NORESERVE) ?
 143                0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
 144}
 145
 146static inline void shmem_unacct_size(unsigned long flags, loff_t size)
 147{
 148        if (!(flags & VM_NORESERVE))
 149                vm_unacct_memory(VM_ACCT(size));
 150}
 151
 152/*
 153 * ... whereas tmpfs objects are accounted incrementally as
 154 * pages are allocated, in order to allow huge sparse files.
 155 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
 156 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
 157 */
 158static inline int shmem_acct_block(unsigned long flags)
 159{
 160        return (flags & VM_NORESERVE) ?
 161                security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
 162}
 163
 164static inline void shmem_unacct_blocks(unsigned long flags, long pages)
 165{
 166        if (flags & VM_NORESERVE)
 167                vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
 168}
 169
 170static const struct super_operations shmem_ops;
 171static const struct address_space_operations shmem_aops;
 172static const struct file_operations shmem_file_operations;
 173static const struct inode_operations shmem_inode_operations;
 174static const struct inode_operations shmem_dir_inode_operations;
 175static const struct inode_operations shmem_special_inode_operations;
 176static const struct vm_operations_struct shmem_vm_ops;
 177
 178static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
 179        .ra_pages       = 0,    /* No readahead */
 180        .capabilities   = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
 181};
 182
 183static LIST_HEAD(shmem_swaplist);
 184static DEFINE_MUTEX(shmem_swaplist_mutex);
 185
 186static int shmem_reserve_inode(struct super_block *sb)
 187{
 188        struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 189        if (sbinfo->max_inodes) {
 190                spin_lock(&sbinfo->stat_lock);
 191                if (!sbinfo->free_inodes) {
 192                        spin_unlock(&sbinfo->stat_lock);
 193                        return -ENOSPC;
 194                }
 195                sbinfo->free_inodes--;
 196                spin_unlock(&sbinfo->stat_lock);
 197        }
 198        return 0;
 199}
 200
 201static void shmem_free_inode(struct super_block *sb)
 202{
 203        struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 204        if (sbinfo->max_inodes) {
 205                spin_lock(&sbinfo->stat_lock);
 206                sbinfo->free_inodes++;
 207                spin_unlock(&sbinfo->stat_lock);
 208        }
 209}
 210
 211/**
 212 * shmem_recalc_inode - recalculate the block usage of an inode
 213 * @inode: inode to recalc
 214 *
 215 * We have to calculate the free blocks since the mm can drop
 216 * undirtied hole pages behind our back.
 217 *
 218 * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
 219 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
 220 *
 221 * It has to be called with the spinlock held.
 222 */
 223static void shmem_recalc_inode(struct inode *inode)
 224{
 225        struct shmem_inode_info *info = SHMEM_I(inode);
 226        long freed;
 227
 228        freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
 229        if (freed > 0) {
 230                struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
 231                if (sbinfo->max_blocks)
 232                        percpu_counter_add(&sbinfo->used_blocks, -freed);
 233                info->alloced -= freed;
 234                inode->i_blocks -= freed * BLOCKS_PER_PAGE;
 235                shmem_unacct_blocks(info->flags, freed);
 236        }
 237}
 238
 239/*
 240 * Replace item expected in radix tree by a new item, while holding tree lock.
 241 */
 242static int shmem_radix_tree_replace(struct address_space *mapping,
 243                        pgoff_t index, void *expected, void *replacement)
 244{
 245        void **pslot;
 246        void *item;
 247
 248        VM_BUG_ON(!expected);
 249        VM_BUG_ON(!replacement);
 250        pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
 251        if (!pslot)
 252                return -ENOENT;
 253        item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
 254        if (item != expected)
 255                return -ENOENT;
 256        radix_tree_replace_slot(pslot, replacement);
 257        return 0;
 258}
 259
 260/*
 261 * Sometimes, before we decide whether to proceed or to fail, we must check
 262 * that an entry was not already brought back from swap by a racing thread.
 263 *
 264 * Checking page is not enough: by the time a SwapCache page is locked, it
 265 * might be reused, and again be SwapCache, using the same swap as before.
 266 */
 267static bool shmem_confirm_swap(struct address_space *mapping,
 268                               pgoff_t index, swp_entry_t swap)
 269{
 270        void *item;
 271
 272        rcu_read_lock();
 273        item = radix_tree_lookup(&mapping->page_tree, index);
 274        rcu_read_unlock();
 275        return item == swp_to_radix_entry(swap);
 276}
 277
 278/*
 279 * Like add_to_page_cache_locked, but error if expected item has gone.
 280 */
 281static int shmem_add_to_page_cache(struct page *page,
 282                                   struct address_space *mapping,
 283                                   pgoff_t index, gfp_t gfp, void *expected)
 284{
 285        int error;
 286
 287        VM_BUG_ON_PAGE(!PageLocked(page), page);
 288        VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
 289
 290        page_cache_get(page);
 291        page->mapping = mapping;
 292        page->index = index;
 293
 294        spin_lock_irq(&mapping->tree_lock);
 295        if (!expected)
 296                error = radix_tree_insert(&mapping->page_tree, index, page);
 297        else
 298                error = shmem_radix_tree_replace(mapping, index, expected,
 299                                                                 page);
 300        if (!error) {
 301                mapping->nrpages++;
 302                __inc_zone_page_state(page, NR_FILE_PAGES);
 303                __inc_zone_page_state(page, NR_SHMEM);
 304                spin_unlock_irq(&mapping->tree_lock);
 305        } else {
 306                page->mapping = NULL;
 307                spin_unlock_irq(&mapping->tree_lock);
 308                page_cache_release(page);
 309        }
 310        return error;
 311}
 312
 313/*
 314 * Like delete_from_page_cache, but substitutes swap for page.
 315 */
 316static void shmem_delete_from_page_cache(struct page *page, void *radswap)
 317{
 318        struct address_space *mapping = page->mapping;
 319        int error;
 320
 321        spin_lock_irq(&mapping->tree_lock);
 322        error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
 323        page->mapping = NULL;
 324        mapping->nrpages--;
 325        __dec_zone_page_state(page, NR_FILE_PAGES);
 326        __dec_zone_page_state(page, NR_SHMEM);
 327        spin_unlock_irq(&mapping->tree_lock);
 328        page_cache_release(page);
 329        BUG_ON(error);
 330}
 331
 332/*
 333 * Remove swap entry from radix tree, free the swap and its page cache.
 334 */
 335static int shmem_free_swap(struct address_space *mapping,
 336                           pgoff_t index, void *radswap)
 337{
 338        void *old;
 339
 340        spin_lock_irq(&mapping->tree_lock);
 341        old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
 342        spin_unlock_irq(&mapping->tree_lock);
 343        if (old != radswap)
 344                return -ENOENT;
 345        free_swap_and_cache(radix_to_swp_entry(radswap));
 346        return 0;
 347}
 348
 349/*
 350 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
 351 */
 352void shmem_unlock_mapping(struct address_space *mapping)
 353{
 354        struct pagevec pvec;
 355        pgoff_t indices[PAGEVEC_SIZE];
 356        pgoff_t index = 0;
 357
 358        pagevec_init(&pvec, 0);
 359        /*
 360         * Minor point, but we might as well stop if someone else SHM_LOCKs it.
 361         */
 362        while (!mapping_unevictable(mapping)) {
 363                /*
 364                 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
 365                 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
 366                 */
 367                pvec.nr = find_get_entries(mapping, index,
 368                                           PAGEVEC_SIZE, pvec.pages, indices);
 369                if (!pvec.nr)
 370                        break;
 371                index = indices[pvec.nr - 1] + 1;
 372                pagevec_remove_exceptionals(&pvec);
 373                check_move_unevictable_pages(pvec.pages, pvec.nr);
 374                pagevec_release(&pvec);
 375                cond_resched();
 376        }
 377}
 378
 379/*
 380 * Remove range of pages and swap entries from radix tree, and free them.
 381 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
 382 */
 383static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
 384                                                                 bool unfalloc)
 385{
 386        struct address_space *mapping = inode->i_mapping;
 387        struct shmem_inode_info *info = SHMEM_I(inode);
 388        pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
 389        pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
 390        unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
 391        unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
 392        struct pagevec pvec;
 393        pgoff_t indices[PAGEVEC_SIZE];
 394        long nr_swaps_freed = 0;
 395        pgoff_t index;
 396        int i;
 397
 398        if (lend == -1)
 399                end = -1;       /* unsigned, so actually very big */
 400
 401        pagevec_init(&pvec, 0);
 402        index = start;
 403        while (index < end) {
 404                pvec.nr = find_get_entries(mapping, index,
 405                        min(end - index, (pgoff_t)PAGEVEC_SIZE),
 406                        pvec.pages, indices);
 407                if (!pvec.nr)
 408                        break;
 409                mem_cgroup_uncharge_start();
 410                for (i = 0; i < pagevec_count(&pvec); i++) {
 411                        struct page *page = pvec.pages[i];
 412
 413                        index = indices[i];
 414                        if (index >= end)
 415                                break;
 416
 417                        if (radix_tree_exceptional_entry(page)) {
 418                                if (unfalloc)
 419                                        continue;
 420                                nr_swaps_freed += !shmem_free_swap(mapping,
 421                                                                index, page);
 422                                continue;
 423                        }
 424
 425                        if (!trylock_page(page))
 426                                continue;
 427                        if (!unfalloc || !PageUptodate(page)) {
 428                                if (page->mapping == mapping) {
 429                                        VM_BUG_ON_PAGE(PageWriteback(page), page);
 430                                        truncate_inode_page(mapping, page);
 431                                }
 432                        }
 433                        unlock_page(page);
 434                }
 435                pagevec_remove_exceptionals(&pvec);
 436                pagevec_release(&pvec);
 437                mem_cgroup_uncharge_end();
 438                cond_resched();
 439                index++;
 440        }
 441
 442        if (partial_start) {
 443                struct page *page = NULL;
 444                shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
 445                if (page) {
 446                        unsigned int top = PAGE_CACHE_SIZE;
 447                        if (start > end) {
 448                                top = partial_end;
 449                                partial_end = 0;
 450                        }
 451                        zero_user_segment(page, partial_start, top);
 452                        set_page_dirty(page);
 453                        unlock_page(page);
 454                        page_cache_release(page);
 455                }
 456        }
 457        if (partial_end) {
 458                struct page *page = NULL;
 459                shmem_getpage(inode, end, &page, SGP_READ, NULL);
 460                if (page) {
 461                        zero_user_segment(page, 0, partial_end);
 462                        set_page_dirty(page);
 463                        unlock_page(page);
 464                        page_cache_release(page);
 465                }
 466        }
 467        if (start >= end)
 468                return;
 469
 470        index = start;
 471        while (index < end) {
 472                cond_resched();
 473
 474                pvec.nr = find_get_entries(mapping, index,
 475                                min(end - index, (pgoff_t)PAGEVEC_SIZE),
 476                                pvec.pages, indices);
 477                if (!pvec.nr) {
 478                        /* If all gone or hole-punch or unfalloc, we're done */
 479                        if (index == start || end != -1)
 480                                break;
 481                        /* But if truncating, restart to make sure all gone */
 482                        index = start;
 483                        continue;
 484                }
 485                mem_cgroup_uncharge_start();
 486                for (i = 0; i < pagevec_count(&pvec); i++) {
 487                        struct page *page = pvec.pages[i];
 488
 489                        index = indices[i];
 490                        if (index >= end)
 491                                break;
 492
 493                        if (radix_tree_exceptional_entry(page)) {
 494                                if (unfalloc)
 495                                        continue;
 496                                if (shmem_free_swap(mapping, index, page)) {
 497                                        /* Swap was replaced by page: retry */
 498                                        index--;
 499                                        break;
 500                                }
 501                                nr_swaps_freed++;
 502                                continue;
 503                        }
 504
 505                        lock_page(page);
 506                        if (!unfalloc || !PageUptodate(page)) {
 507                                if (page->mapping == mapping) {
 508                                        VM_BUG_ON_PAGE(PageWriteback(page), page);
 509                                        truncate_inode_page(mapping, page);
 510                                } else {
 511                                        /* Page was replaced by swap: retry */
 512                                        unlock_page(page);
 513                                        index--;
 514                                        break;
 515                                }
 516                        }
 517                        unlock_page(page);
 518                }
 519                pagevec_remove_exceptionals(&pvec);
 520                pagevec_release(&pvec);
 521                mem_cgroup_uncharge_end();
 522                index++;
 523        }
 524
 525        spin_lock(&info->lock);
 526        info->swapped -= nr_swaps_freed;
 527        shmem_recalc_inode(inode);
 528        spin_unlock(&info->lock);
 529}
 530
 531void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
 532{
 533        shmem_undo_range(inode, lstart, lend, false);
 534        inode->i_ctime = inode->i_mtime = CURRENT_TIME;
 535}
 536EXPORT_SYMBOL_GPL(shmem_truncate_range);
 537
 538static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
 539{
 540        struct inode *inode = dentry->d_inode;
 541        int error;
 542
 543        error = inode_change_ok(inode, attr);
 544        if (error)
 545                return error;
 546
 547        if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
 548                loff_t oldsize = inode->i_size;
 549                loff_t newsize = attr->ia_size;
 550
 551                if (newsize != oldsize) {
 552                        i_size_write(inode, newsize);
 553                        inode->i_ctime = inode->i_mtime = CURRENT_TIME;
 554                }
 555                if (newsize < oldsize) {
 556                        loff_t holebegin = round_up(newsize, PAGE_SIZE);
 557                        unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
 558                        shmem_truncate_range(inode, newsize, (loff_t)-1);
 559                        /* unmap again to remove racily COWed private pages */
 560                        unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
 561                }
 562        }
 563
 564        setattr_copy(inode, attr);
 565        if (attr->ia_valid & ATTR_MODE)
 566                error = posix_acl_chmod(inode, inode->i_mode);
 567        return error;
 568}
 569
 570static void shmem_evict_inode(struct inode *inode)
 571{
 572        struct shmem_inode_info *info = SHMEM_I(inode);
 573
 574        if (inode->i_mapping->a_ops == &shmem_aops) {
 575                shmem_unacct_size(info->flags, inode->i_size);
 576                inode->i_size = 0;
 577                shmem_truncate_range(inode, 0, (loff_t)-1);
 578                if (!list_empty(&info->swaplist)) {
 579                        mutex_lock(&shmem_swaplist_mutex);
 580                        list_del_init(&info->swaplist);
 581                        mutex_unlock(&shmem_swaplist_mutex);
 582                }
 583        } else
 584                kfree(info->symlink);
 585
 586        simple_xattrs_free(&info->xattrs);
 587        WARN_ON(inode->i_blocks);
 588        shmem_free_inode(inode->i_sb);
 589        clear_inode(inode);
 590}
 591
 592/*
 593 * If swap found in inode, free it and move page from swapcache to filecache.
 594 */
 595static int shmem_unuse_inode(struct shmem_inode_info *info,
 596                             swp_entry_t swap, struct page **pagep)
 597{
 598        struct address_space *mapping = info->vfs_inode.i_mapping;
 599        void *radswap;
 600        pgoff_t index;
 601        gfp_t gfp;
 602        int error = 0;
 603
 604        radswap = swp_to_radix_entry(swap);
 605        index = radix_tree_locate_item(&mapping->page_tree, radswap);
 606        if (index == -1)
 607                return 0;
 608
 609        /*
 610         * Move _head_ to start search for next from here.
 611         * But be careful: shmem_evict_inode checks list_empty without taking
 612         * mutex, and there's an instant in list_move_tail when info->swaplist
 613         * would appear empty, if it were the only one on shmem_swaplist.
 614         */
 615        if (shmem_swaplist.next != &info->swaplist)
 616                list_move_tail(&shmem_swaplist, &info->swaplist);
 617
 618        gfp = mapping_gfp_mask(mapping);
 619        if (shmem_should_replace_page(*pagep, gfp)) {
 620                mutex_unlock(&shmem_swaplist_mutex);
 621                error = shmem_replace_page(pagep, gfp, info, index);
 622                mutex_lock(&shmem_swaplist_mutex);
 623                /*
 624                 * We needed to drop mutex to make that restrictive page
 625                 * allocation, but the inode might have been freed while we
 626                 * dropped it: although a racing shmem_evict_inode() cannot
 627                 * complete without emptying the radix_tree, our page lock
 628                 * on this swapcache page is not enough to prevent that -
 629                 * free_swap_and_cache() of our swap entry will only
 630                 * trylock_page(), removing swap from radix_tree whatever.
 631                 *
 632                 * We must not proceed to shmem_add_to_page_cache() if the
 633                 * inode has been freed, but of course we cannot rely on
 634                 * inode or mapping or info to check that.  However, we can
 635                 * safely check if our swap entry is still in use (and here
 636                 * it can't have got reused for another page): if it's still
 637                 * in use, then the inode cannot have been freed yet, and we
 638                 * can safely proceed (if it's no longer in use, that tells
 639                 * nothing about the inode, but we don't need to unuse swap).
 640                 */
 641                if (!page_swapcount(*pagep))
 642                        error = -ENOENT;
 643        }
 644
 645        /*
 646         * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
 647         * but also to hold up shmem_evict_inode(): so inode cannot be freed
 648         * beneath us (pagelock doesn't help until the page is in pagecache).
 649         */
 650        if (!error)
 651                error = shmem_add_to_page_cache(*pagep, mapping, index,
 652                                                GFP_NOWAIT, radswap);
 653        if (error != -ENOMEM) {
 654                /*
 655                 * Truncation and eviction use free_swap_and_cache(), which
 656                 * only does trylock page: if we raced, best clean up here.
 657                 */
 658                delete_from_swap_cache(*pagep);
 659                set_page_dirty(*pagep);
 660                if (!error) {
 661                        spin_lock(&info->lock);
 662                        info->swapped--;
 663                        spin_unlock(&info->lock);
 664                        swap_free(swap);
 665                }
 666                error = 1;      /* not an error, but entry was found */
 667        }
 668        return error;
 669}
 670
 671/*
 672 * Search through swapped inodes to find and replace swap by page.
 673 */
 674int shmem_unuse(swp_entry_t swap, struct page *page)
 675{
 676        struct list_head *this, *next;
 677        struct shmem_inode_info *info;
 678        int found = 0;
 679        int error = 0;
 680
 681        /*
 682         * There's a faint possibility that swap page was replaced before
 683         * caller locked it: caller will come back later with the right page.
 684         */
 685        if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
 686                goto out;
 687
 688        /*
 689         * Charge page using GFP_KERNEL while we can wait, before taking
 690         * the shmem_swaplist_mutex which might hold up shmem_writepage().
 691         * Charged back to the user (not to caller) when swap account is used.
 692         */
 693        error = mem_cgroup_charge_file(page, current->mm, GFP_KERNEL);
 694        if (error)
 695                goto out;
 696        /* No radix_tree_preload: swap entry keeps a place for page in tree */
 697
 698        mutex_lock(&shmem_swaplist_mutex);
 699        list_for_each_safe(this, next, &shmem_swaplist) {
 700                info = list_entry(this, struct shmem_inode_info, swaplist);
 701                if (info->swapped)
 702                        found = shmem_unuse_inode(info, swap, &page);
 703                else
 704                        list_del_init(&info->swaplist);
 705                cond_resched();
 706                if (found)
 707                        break;
 708        }
 709        mutex_unlock(&shmem_swaplist_mutex);
 710
 711        if (found < 0)
 712                error = found;
 713out:
 714        unlock_page(page);
 715        page_cache_release(page);
 716        return error;
 717}
 718
 719/*
 720 * Move the page from the page cache to the swap cache.
 721 */
 722static int shmem_writepage(struct page *page, struct writeback_control *wbc)
 723{
 724        struct shmem_inode_info *info;
 725        struct address_space *mapping;
 726        struct inode *inode;
 727        swp_entry_t swap;
 728        pgoff_t index;
 729
 730        BUG_ON(!PageLocked(page));
 731        mapping = page->mapping;
 732        index = page->index;
 733        inode = mapping->host;
 734        info = SHMEM_I(inode);
 735        if (info->flags & VM_LOCKED)
 736                goto redirty;
 737        if (!total_swap_pages)
 738                goto redirty;
 739
 740        /*
 741         * shmem_backing_dev_info's capabilities prevent regular writeback or
 742         * sync from ever calling shmem_writepage; but a stacking filesystem
 743         * might use ->writepage of its underlying filesystem, in which case
 744         * tmpfs should write out to swap only in response to memory pressure,
 745         * and not for the writeback threads or sync.
 746         */
 747        if (!wbc->for_reclaim) {
 748                WARN_ON_ONCE(1);        /* Still happens? Tell us about it! */
 749                goto redirty;
 750        }
 751
 752        /*
 753         * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
 754         * value into swapfile.c, the only way we can correctly account for a
 755         * fallocated page arriving here is now to initialize it and write it.
 756         *
 757         * That's okay for a page already fallocated earlier, but if we have
 758         * not yet completed the fallocation, then (a) we want to keep track
 759         * of this page in case we have to undo it, and (b) it may not be a
 760         * good idea to continue anyway, once we're pushing into swap.  So
 761         * reactivate the page, and let shmem_fallocate() quit when too many.
 762         */
 763        if (!PageUptodate(page)) {
 764                if (inode->i_private) {
 765                        struct shmem_falloc *shmem_falloc;
 766                        spin_lock(&inode->i_lock);
 767                        shmem_falloc = inode->i_private;
 768                        if (shmem_falloc &&
 769                            !shmem_falloc->waitq &&
 770                            index >= shmem_falloc->start &&
 771                            index < shmem_falloc->next)
 772                                shmem_falloc->nr_unswapped++;
 773                        else
 774                                shmem_falloc = NULL;
 775                        spin_unlock(&inode->i_lock);
 776                        if (shmem_falloc)
 777                                goto redirty;
 778                }
 779                clear_highpage(page);
 780                flush_dcache_page(page);
 781                SetPageUptodate(page);
 782        }
 783
 784        swap = get_swap_page();
 785        if (!swap.val)
 786                goto redirty;
 787
 788        /*
 789         * Add inode to shmem_unuse()'s list of swapped-out inodes,
 790         * if it's not already there.  Do it now before the page is
 791         * moved to swap cache, when its pagelock no longer protects
 792         * the inode from eviction.  But don't unlock the mutex until
 793         * we've incremented swapped, because shmem_unuse_inode() will
 794         * prune a !swapped inode from the swaplist under this mutex.
 795         */
 796        mutex_lock(&shmem_swaplist_mutex);
 797        if (list_empty(&info->swaplist))
 798                list_add_tail(&info->swaplist, &shmem_swaplist);
 799
 800        if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
 801                swap_shmem_alloc(swap);
 802                shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
 803
 804                spin_lock(&info->lock);
 805                info->swapped++;
 806                shmem_recalc_inode(inode);
 807                spin_unlock(&info->lock);
 808
 809                mutex_unlock(&shmem_swaplist_mutex);
 810                BUG_ON(page_mapped(page));
 811                swap_writepage(page, wbc);
 812                return 0;
 813        }
 814
 815        mutex_unlock(&shmem_swaplist_mutex);
 816        swapcache_free(swap, NULL);
 817redirty:
 818        set_page_dirty(page);
 819        if (wbc->for_reclaim)
 820                return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
 821        unlock_page(page);
 822        return 0;
 823}
 824
 825#ifdef CONFIG_NUMA
 826#ifdef CONFIG_TMPFS
 827static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
 828{
 829        char buffer[64];
 830
 831        if (!mpol || mpol->mode == MPOL_DEFAULT)
 832                return;         /* show nothing */
 833
 834        mpol_to_str(buffer, sizeof(buffer), mpol);
 835
 836        seq_printf(seq, ",mpol=%s", buffer);
 837}
 838
 839static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
 840{
 841        struct mempolicy *mpol = NULL;
 842        if (sbinfo->mpol) {
 843                spin_lock(&sbinfo->stat_lock);  /* prevent replace/use races */
 844                mpol = sbinfo->mpol;
 845                mpol_get(mpol);
 846                spin_unlock(&sbinfo->stat_lock);
 847        }
 848        return mpol;
 849}
 850#endif /* CONFIG_TMPFS */
 851
 852static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
 853                        struct shmem_inode_info *info, pgoff_t index)
 854{
 855        struct vm_area_struct pvma;
 856        struct page *page;
 857
 858        /* Create a pseudo vma that just contains the policy */
 859        pvma.vm_start = 0;
 860        /* Bias interleave by inode number to distribute better across nodes */
 861        pvma.vm_pgoff = index + info->vfs_inode.i_ino;
 862        pvma.vm_ops = NULL;
 863        pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
 864
 865        page = swapin_readahead(swap, gfp, &pvma, 0);
 866
 867        /* Drop reference taken by mpol_shared_policy_lookup() */
 868        mpol_cond_put(pvma.vm_policy);
 869
 870        return page;
 871}
 872
 873static struct page *shmem_alloc_page(gfp_t gfp,
 874                        struct shmem_inode_info *info, pgoff_t index)
 875{
 876        struct vm_area_struct pvma;
 877        struct page *page;
 878
 879        /* Create a pseudo vma that just contains the policy */
 880        pvma.vm_start = 0;
 881        /* Bias interleave by inode number to distribute better across nodes */
 882        pvma.vm_pgoff = index + info->vfs_inode.i_ino;
 883        pvma.vm_ops = NULL;
 884        pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
 885
 886        page = alloc_page_vma(gfp, &pvma, 0);
 887
 888        /* Drop reference taken by mpol_shared_policy_lookup() */
 889        mpol_cond_put(pvma.vm_policy);
 890
 891        return page;
 892}
 893#else /* !CONFIG_NUMA */
 894#ifdef CONFIG_TMPFS
 895static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
 896{
 897}
 898#endif /* CONFIG_TMPFS */
 899
 900static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
 901                        struct shmem_inode_info *info, pgoff_t index)
 902{
 903        return swapin_readahead(swap, gfp, NULL, 0);
 904}
 905
 906static inline struct page *shmem_alloc_page(gfp_t gfp,
 907                        struct shmem_inode_info *info, pgoff_t index)
 908{
 909        return alloc_page(gfp);
 910}
 911#endif /* CONFIG_NUMA */
 912
 913#if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
 914static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
 915{
 916        return NULL;
 917}
 918#endif
 919
 920/*
 921 * When a page is moved from swapcache to shmem filecache (either by the
 922 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
 923 * shmem_unuse_inode()), it may have been read in earlier from swap, in
 924 * ignorance of the mapping it belongs to.  If that mapping has special
 925 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
 926 * we may need to copy to a suitable page before moving to filecache.
 927 *
 928 * In a future release, this may well be extended to respect cpuset and
 929 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
 930 * but for now it is a simple matter of zone.
 931 */
 932static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
 933{
 934        return page_zonenum(page) > gfp_zone(gfp);
 935}
 936
 937static int shmem_replace_page(struct page **pagep, gfp_t gfp,
 938                                struct shmem_inode_info *info, pgoff_t index)
 939{
 940        struct page *oldpage, *newpage;
 941        struct address_space *swap_mapping;
 942        pgoff_t swap_index;
 943        int error;
 944
 945        oldpage = *pagep;
 946        swap_index = page_private(oldpage);
 947        swap_mapping = page_mapping(oldpage);
 948
 949        /*
 950         * We have arrived here because our zones are constrained, so don't
 951         * limit chance of success by further cpuset and node constraints.
 952         */
 953        gfp &= ~GFP_CONSTRAINT_MASK;
 954        newpage = shmem_alloc_page(gfp, info, index);
 955        if (!newpage)
 956                return -ENOMEM;
 957
 958        page_cache_get(newpage);
 959        copy_highpage(newpage, oldpage);
 960        flush_dcache_page(newpage);
 961
 962        __set_page_locked(newpage);
 963        SetPageUptodate(newpage);
 964        SetPageSwapBacked(newpage);
 965        set_page_private(newpage, swap_index);
 966        SetPageSwapCache(newpage);
 967
 968        /*
 969         * Our caller will very soon move newpage out of swapcache, but it's
 970         * a nice clean interface for us to replace oldpage by newpage there.
 971         */
 972        spin_lock_irq(&swap_mapping->tree_lock);
 973        error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
 974                                                                   newpage);
 975        if (!error) {
 976                __inc_zone_page_state(newpage, NR_FILE_PAGES);
 977                __dec_zone_page_state(oldpage, NR_FILE_PAGES);
 978        }
 979        spin_unlock_irq(&swap_mapping->tree_lock);
 980
 981        if (unlikely(error)) {
 982                /*
 983                 * Is this possible?  I think not, now that our callers check
 984                 * both PageSwapCache and page_private after getting page lock;
 985                 * but be defensive.  Reverse old to newpage for clear and free.
 986                 */
 987                oldpage = newpage;
 988        } else {
 989                mem_cgroup_replace_page_cache(oldpage, newpage);
 990                lru_cache_add_anon(newpage);
 991                *pagep = newpage;
 992        }
 993
 994        ClearPageSwapCache(oldpage);
 995        set_page_private(oldpage, 0);
 996
 997        unlock_page(oldpage);
 998        page_cache_release(oldpage);
 999        page_cache_release(oldpage);
1000        return error;
1001}
1002
1003/*
1004 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1005 *
1006 * If we allocate a new one we do not mark it dirty. That's up to the
1007 * vm. If we swap it in we mark it dirty since we also free the swap
1008 * entry since a page cannot live in both the swap and page cache
1009 */
1010static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1011        struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1012{
1013        struct address_space *mapping = inode->i_mapping;
1014        struct shmem_inode_info *info;
1015        struct shmem_sb_info *sbinfo;
1016        struct page *page;
1017        swp_entry_t swap;
1018        int error;
1019        int once = 0;
1020        int alloced = 0;
1021
1022        if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1023                return -EFBIG;
1024repeat:
1025        swap.val = 0;
1026        page = find_lock_entry(mapping, index);
1027        if (radix_tree_exceptional_entry(page)) {
1028                swap = radix_to_swp_entry(page);
1029                page = NULL;
1030        }
1031
1032        if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1033            ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1034                error = -EINVAL;
1035                goto failed;
1036        }
1037
1038        if (page && sgp == SGP_WRITE)
1039                mark_page_accessed(page);
1040
1041        /* fallocated page? */
1042        if (page && !PageUptodate(page)) {
1043                if (sgp != SGP_READ)
1044                        goto clear;
1045                unlock_page(page);
1046                page_cache_release(page);
1047                page = NULL;
1048        }
1049        if (page || (sgp == SGP_READ && !swap.val)) {
1050                *pagep = page;
1051                return 0;
1052        }
1053
1054        /*
1055         * Fast cache lookup did not find it:
1056         * bring it back from swap or allocate.
1057         */
1058        info = SHMEM_I(inode);
1059        sbinfo = SHMEM_SB(inode->i_sb);
1060
1061        if (swap.val) {
1062                /* Look it up and read it in.. */
1063                page = lookup_swap_cache(swap);
1064                if (!page) {
1065                        /* here we actually do the io */
1066                        if (fault_type)
1067                                *fault_type |= VM_FAULT_MAJOR;
1068                        page = shmem_swapin(swap, gfp, info, index);
1069                        if (!page) {
1070                                error = -ENOMEM;
1071                                goto failed;
1072                        }
1073                }
1074
1075                /* We have to do this with page locked to prevent races */
1076                lock_page(page);
1077                if (!PageSwapCache(page) || page_private(page) != swap.val ||
1078                    !shmem_confirm_swap(mapping, index, swap)) {
1079                        error = -EEXIST;        /* try again */
1080                        goto unlock;
1081                }
1082                if (!PageUptodate(page)) {
1083                        error = -EIO;
1084                        goto failed;
1085                }
1086                wait_on_page_writeback(page);
1087
1088                if (shmem_should_replace_page(page, gfp)) {
1089                        error = shmem_replace_page(&page, gfp, info, index);
1090                        if (error)
1091                                goto failed;
1092                }
1093
1094                error = mem_cgroup_charge_file(page, current->mm,
1095                                                gfp & GFP_RECLAIM_MASK);
1096                if (!error) {
1097                        error = shmem_add_to_page_cache(page, mapping, index,
1098                                                gfp, swp_to_radix_entry(swap));
1099                        /*
1100                         * We already confirmed swap under page lock, and make
1101                         * no memory allocation here, so usually no possibility
1102                         * of error; but free_swap_and_cache() only trylocks a
1103                         * page, so it is just possible that the entry has been
1104                         * truncated or holepunched since swap was confirmed.
1105                         * shmem_undo_range() will have done some of the
1106                         * unaccounting, now delete_from_swap_cache() will do
1107                         * the rest (including mem_cgroup_uncharge_swapcache).
1108                         * Reset swap.val? No, leave it so "failed" goes back to
1109                         * "repeat": reading a hole and writing should succeed.
1110                         */
1111                        if (error)
1112                                delete_from_swap_cache(page);
1113                }
1114                if (error)
1115                        goto failed;
1116
1117                spin_lock(&info->lock);
1118                info->swapped--;
1119                shmem_recalc_inode(inode);
1120                spin_unlock(&info->lock);
1121
1122                if (sgp == SGP_WRITE)
1123                        mark_page_accessed(page);
1124
1125                delete_from_swap_cache(page);
1126                set_page_dirty(page);
1127                swap_free(swap);
1128
1129        } else {
1130                if (shmem_acct_block(info->flags)) {
1131                        error = -ENOSPC;
1132                        goto failed;
1133                }
1134                if (sbinfo->max_blocks) {
1135                        if (percpu_counter_compare(&sbinfo->used_blocks,
1136                                                sbinfo->max_blocks) >= 0) {
1137                                error = -ENOSPC;
1138                                goto unacct;
1139                        }
1140                        percpu_counter_inc(&sbinfo->used_blocks);
1141                }
1142
1143                page = shmem_alloc_page(gfp, info, index);
1144                if (!page) {
1145                        error = -ENOMEM;
1146                        goto decused;
1147                }
1148
1149                __SetPageSwapBacked(page);
1150                __set_page_locked(page);
1151                if (sgp == SGP_WRITE)
1152                        init_page_accessed(page);
1153
1154                error = mem_cgroup_charge_file(page, current->mm,
1155                                                gfp & GFP_RECLAIM_MASK);
1156                if (error)
1157                        goto decused;
1158                error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
1159                if (!error) {
1160                        error = shmem_add_to_page_cache(page, mapping, index,
1161                                                        gfp, NULL);
1162                        radix_tree_preload_end();
1163                }
1164                if (error) {
1165                        mem_cgroup_uncharge_cache_page(page);
1166                        goto decused;
1167                }
1168                lru_cache_add_anon(page);
1169
1170                spin_lock(&info->lock);
1171                info->alloced++;
1172                inode->i_blocks += BLOCKS_PER_PAGE;
1173                shmem_recalc_inode(inode);
1174                spin_unlock(&info->lock);
1175                alloced = true;
1176
1177                /*
1178                 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1179                 */
1180                if (sgp == SGP_FALLOC)
1181                        sgp = SGP_WRITE;
1182clear:
1183                /*
1184                 * Let SGP_WRITE caller clear ends if write does not fill page;
1185                 * but SGP_FALLOC on a page fallocated earlier must initialize
1186                 * it now, lest undo on failure cancel our earlier guarantee.
1187                 */
1188                if (sgp != SGP_WRITE) {
1189                        clear_highpage(page);
1190                        flush_dcache_page(page);
1191                        SetPageUptodate(page);
1192                }
1193                if (sgp == SGP_DIRTY)
1194                        set_page_dirty(page);
1195        }
1196
1197        /* Perhaps the file has been truncated since we checked */
1198        if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1199            ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1200                error = -EINVAL;
1201                if (alloced)
1202                        goto trunc;
1203                else
1204                        goto failed;
1205        }
1206        *pagep = page;
1207        return 0;
1208
1209        /*
1210         * Error recovery.
1211         */
1212trunc:
1213        info = SHMEM_I(inode);
1214        ClearPageDirty(page);
1215        delete_from_page_cache(page);
1216        spin_lock(&info->lock);
1217        info->alloced--;
1218        inode->i_blocks -= BLOCKS_PER_PAGE;
1219        spin_unlock(&info->lock);
1220decused:
1221        sbinfo = SHMEM_SB(inode->i_sb);
1222        if (sbinfo->max_blocks)
1223                percpu_counter_add(&sbinfo->used_blocks, -1);
1224unacct:
1225        shmem_unacct_blocks(info->flags, 1);
1226failed:
1227        if (swap.val && error != -EINVAL &&
1228            !shmem_confirm_swap(mapping, index, swap))
1229                error = -EEXIST;
1230unlock:
1231        if (page) {
1232                unlock_page(page);
1233                page_cache_release(page);
1234        }
1235        if (error == -ENOSPC && !once++) {
1236                info = SHMEM_I(inode);
1237                spin_lock(&info->lock);
1238                shmem_recalc_inode(inode);
1239                spin_unlock(&info->lock);
1240                goto repeat;
1241        }
1242        if (error == -EEXIST)   /* from above or from radix_tree_insert */
1243                goto repeat;
1244        return error;
1245}
1246
1247static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1248{
1249        struct inode *inode = file_inode(vma->vm_file);
1250        int error;
1251        int ret = VM_FAULT_LOCKED;
1252
1253        /*
1254         * Trinity finds that probing a hole which tmpfs is punching can
1255         * prevent the hole-punch from ever completing: which in turn
1256         * locks writers out with its hold on i_mutex.  So refrain from
1257         * faulting pages into the hole while it's being punched.  Although
1258         * shmem_undo_range() does remove the additions, it may be unable to
1259         * keep up, as each new page needs its own unmap_mapping_range() call,
1260         * and the i_mmap tree grows ever slower to scan if new vmas are added.
1261         *
1262         * It does not matter if we sometimes reach this check just before the
1263         * hole-punch begins, so that one fault then races with the punch:
1264         * we just need to make racing faults a rare case.
1265         *
1266         * The implementation below would be much simpler if we just used a
1267         * standard mutex or completion: but we cannot take i_mutex in fault,
1268         * and bloating every shmem inode for this unlikely case would be sad.
1269         */
1270        if (unlikely(inode->i_private)) {
1271                struct shmem_falloc *shmem_falloc;
1272
1273                spin_lock(&inode->i_lock);
1274                shmem_falloc = inode->i_private;
1275                if (shmem_falloc &&
1276                    shmem_falloc->waitq &&
1277                    vmf->pgoff >= shmem_falloc->start &&
1278                    vmf->pgoff < shmem_falloc->next) {
1279                        wait_queue_head_t *shmem_falloc_waitq;
1280                        DEFINE_WAIT(shmem_fault_wait);
1281
1282                        ret = VM_FAULT_NOPAGE;
1283                        if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1284                           !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1285                                /* It's polite to up mmap_sem if we can */
1286                                up_read(&vma->vm_mm->mmap_sem);
1287                                ret = VM_FAULT_RETRY;
1288                        }
1289
1290                        shmem_falloc_waitq = shmem_falloc->waitq;
1291                        prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1292                                        TASK_UNINTERRUPTIBLE);
1293                        spin_unlock(&inode->i_lock);
1294                        schedule();
1295
1296                        /*
1297                         * shmem_falloc_waitq points into the shmem_fallocate()
1298                         * stack of the hole-punching task: shmem_falloc_waitq
1299                         * is usually invalid by the time we reach here, but
1300                         * finish_wait() does not dereference it in that case;
1301                         * though i_lock needed lest racing with wake_up_all().
1302                         */
1303                        spin_lock(&inode->i_lock);
1304                        finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1305                        spin_unlock(&inode->i_lock);
1306                        return ret;
1307                }
1308                spin_unlock(&inode->i_lock);
1309        }
1310
1311        error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1312        if (error)
1313                return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1314
1315        if (ret & VM_FAULT_MAJOR) {
1316                count_vm_event(PGMAJFAULT);
1317                mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1318        }
1319        return ret;
1320}
1321
1322#ifdef CONFIG_NUMA
1323static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1324{
1325        struct inode *inode = file_inode(vma->vm_file);
1326        return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1327}
1328
1329static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1330                                          unsigned long addr)
1331{
1332        struct inode *inode = file_inode(vma->vm_file);
1333        pgoff_t index;
1334
1335        index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1336        return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1337}
1338#endif
1339
1340int shmem_lock(struct file *file, int lock, struct user_struct *user)
1341{
1342        struct inode *inode = file_inode(file);
1343        struct shmem_inode_info *info = SHMEM_I(inode);
1344        int retval = -ENOMEM;
1345
1346        spin_lock(&info->lock);
1347        if (lock && !(info->flags & VM_LOCKED)) {
1348                if (!user_shm_lock(inode->i_size, user))
1349                        goto out_nomem;
1350                info->flags |= VM_LOCKED;
1351                mapping_set_unevictable(file->f_mapping);
1352        }
1353        if (!lock && (info->flags & VM_LOCKED) && user) {
1354                user_shm_unlock(inode->i_size, user);
1355                info->flags &= ~VM_LOCKED;
1356                mapping_clear_unevictable(file->f_mapping);
1357        }
1358        retval = 0;
1359
1360out_nomem:
1361        spin_unlock(&info->lock);
1362        return retval;
1363}
1364
1365static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1366{
1367        file_accessed(file);
1368        vma->vm_ops = &shmem_vm_ops;
1369        return 0;
1370}
1371
1372static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1373                                     umode_t mode, dev_t dev, unsigned long flags)
1374{
1375        struct inode *inode;
1376        struct shmem_inode_info *info;
1377        struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1378
1379        if (shmem_reserve_inode(sb))
1380                return NULL;
1381
1382        inode = new_inode(sb);
1383        if (inode) {
1384                inode->i_ino = get_next_ino();
1385                inode_init_owner(inode, dir, mode);
1386                inode->i_blocks = 0;
1387                inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1388                inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1389                inode->i_generation = get_seconds();
1390                info = SHMEM_I(inode);
1391                memset(info, 0, (char *)inode - (char *)info);
1392                spin_lock_init(&info->lock);
1393                info->flags = flags & VM_NORESERVE;
1394                INIT_LIST_HEAD(&info->swaplist);
1395                simple_xattrs_init(&info->xattrs);
1396                cache_no_acl(inode);
1397
1398                switch (mode & S_IFMT) {
1399                default:
1400                        inode->i_op = &shmem_special_inode_operations;
1401                        init_special_inode(inode, mode, dev);
1402                        break;
1403                case S_IFREG:
1404                        inode->i_mapping->a_ops = &shmem_aops;
1405                        inode->i_op = &shmem_inode_operations;
1406                        inode->i_fop = &shmem_file_operations;
1407                        mpol_shared_policy_init(&info->policy,
1408                                                 shmem_get_sbmpol(sbinfo));
1409                        break;
1410                case S_IFDIR:
1411                        inc_nlink(inode);
1412                        /* Some things misbehave if size == 0 on a directory */
1413                        inode->i_size = 2 * BOGO_DIRENT_SIZE;
1414                        inode->i_op = &shmem_dir_inode_operations;
1415                        inode->i_fop = &simple_dir_operations;
1416                        break;
1417                case S_IFLNK:
1418                        /*
1419                         * Must not load anything in the rbtree,
1420                         * mpol_free_shared_policy will not be called.
1421                         */
1422                        mpol_shared_policy_init(&info->policy, NULL);
1423                        break;
1424                }
1425        } else
1426                shmem_free_inode(sb);
1427        return inode;
1428}
1429
1430bool shmem_mapping(struct address_space *mapping)
1431{
1432        return mapping->backing_dev_info == &shmem_backing_dev_info;
1433}
1434
1435#ifdef CONFIG_TMPFS
1436static const struct inode_operations shmem_symlink_inode_operations;
1437static const struct inode_operations shmem_short_symlink_operations;
1438
1439#ifdef CONFIG_TMPFS_XATTR
1440static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1441#else
1442#define shmem_initxattrs NULL
1443#endif
1444
1445static int
1446shmem_write_begin(struct file *file, struct address_space *mapping,
1447                        loff_t pos, unsigned len, unsigned flags,
1448                        struct page **pagep, void **fsdata)
1449{
1450        struct inode *inode = mapping->host;
1451        pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1452        return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1453}
1454
1455static int
1456shmem_write_end(struct file *file, struct address_space *mapping,
1457                        loff_t pos, unsigned len, unsigned copied,
1458                        struct page *page, void *fsdata)
1459{
1460        struct inode *inode = mapping->host;
1461
1462        if (pos + copied > inode->i_size)
1463                i_size_write(inode, pos + copied);
1464
1465        if (!PageUptodate(page)) {
1466                if (copied < PAGE_CACHE_SIZE) {
1467                        unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1468                        zero_user_segments(page, 0, from,
1469                                        from + copied, PAGE_CACHE_SIZE);
1470                }
1471                SetPageUptodate(page);
1472        }
1473        set_page_dirty(page);
1474        unlock_page(page);
1475        page_cache_release(page);
1476
1477        return copied;
1478}
1479
1480static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1481{
1482        struct file *file = iocb->ki_filp;
1483        struct inode *inode = file_inode(file);
1484        struct address_space *mapping = inode->i_mapping;
1485        pgoff_t index;
1486        unsigned long offset;
1487        enum sgp_type sgp = SGP_READ;
1488        int error = 0;
1489        ssize_t retval = 0;
1490        loff_t *ppos = &iocb->ki_pos;
1491
1492        /*
1493         * Might this read be for a stacking filesystem?  Then when reading
1494         * holes of a sparse file, we actually need to allocate those pages,
1495         * and even mark them dirty, so it cannot exceed the max_blocks limit.
1496         */
1497        if (segment_eq(get_fs(), KERNEL_DS))
1498                sgp = SGP_DIRTY;
1499
1500        index = *ppos >> PAGE_CACHE_SHIFT;
1501        offset = *ppos & ~PAGE_CACHE_MASK;
1502
1503        for (;;) {
1504                struct page *page = NULL;
1505                pgoff_t end_index;
1506                unsigned long nr, ret;
1507                loff_t i_size = i_size_read(inode);
1508
1509                end_index = i_size >> PAGE_CACHE_SHIFT;
1510                if (index > end_index)
1511                        break;
1512                if (index == end_index) {
1513                        nr = i_size & ~PAGE_CACHE_MASK;
1514                        if (nr <= offset)
1515                                break;
1516                }
1517
1518                error = shmem_getpage(inode, index, &page, sgp, NULL);
1519                if (error) {
1520                        if (error == -EINVAL)
1521                                error = 0;
1522                        break;
1523                }
1524                if (page)
1525                        unlock_page(page);
1526
1527                /*
1528                 * We must evaluate after, since reads (unlike writes)
1529                 * are called without i_mutex protection against truncate
1530                 */
1531                nr = PAGE_CACHE_SIZE;
1532                i_size = i_size_read(inode);
1533                end_index = i_size >> PAGE_CACHE_SHIFT;
1534                if (index == end_index) {
1535                        nr = i_size & ~PAGE_CACHE_MASK;
1536                        if (nr <= offset) {
1537                                if (page)
1538                                        page_cache_release(page);
1539                                break;
1540                        }
1541                }
1542                nr -= offset;
1543
1544                if (page) {
1545                        /*
1546                         * If users can be writing to this page using arbitrary
1547                         * virtual addresses, take care about potential aliasing
1548                         * before reading the page on the kernel side.
1549                         */
1550                        if (mapping_writably_mapped(mapping))
1551                                flush_dcache_page(page);
1552                        /*
1553                         * Mark the page accessed if we read the beginning.
1554                         */
1555                        if (!offset)
1556                                mark_page_accessed(page);
1557                } else {
1558                        page = ZERO_PAGE(0);
1559                        page_cache_get(page);
1560                }
1561
1562                /*
1563                 * Ok, we have the page, and it's up-to-date, so
1564                 * now we can copy it to user space...
1565                 */
1566                ret = copy_page_to_iter(page, offset, nr, to);
1567                retval += ret;
1568                offset += ret;
1569                index += offset >> PAGE_CACHE_SHIFT;
1570                offset &= ~PAGE_CACHE_MASK;
1571
1572                page_cache_release(page);
1573                if (!iov_iter_count(to))
1574                        break;
1575                if (ret < nr) {
1576                        error = -EFAULT;
1577                        break;
1578                }
1579                cond_resched();
1580        }
1581
1582        *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1583        file_accessed(file);
1584        return retval ? retval : error;
1585}
1586
1587static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1588                                struct pipe_inode_info *pipe, size_t len,
1589                                unsigned int flags)
1590{
1591        struct address_space *mapping = in->f_mapping;
1592        struct inode *inode = mapping->host;
1593        unsigned int loff, nr_pages, req_pages;
1594        struct page *pages[PIPE_DEF_BUFFERS];
1595        struct partial_page partial[PIPE_DEF_BUFFERS];
1596        struct page *page;
1597        pgoff_t index, end_index;
1598        loff_t isize, left;
1599        int error, page_nr;
1600        struct splice_pipe_desc spd = {
1601                .pages = pages,
1602                .partial = partial,
1603                .nr_pages_max = PIPE_DEF_BUFFERS,
1604                .flags = flags,
1605                .ops = &page_cache_pipe_buf_ops,
1606                .spd_release = spd_release_page,
1607        };
1608
1609        isize = i_size_read(inode);
1610        if (unlikely(*ppos >= isize))
1611                return 0;
1612
1613        left = isize - *ppos;
1614        if (unlikely(left < len))
1615                len = left;
1616
1617        if (splice_grow_spd(pipe, &spd))
1618                return -ENOMEM;
1619
1620        index = *ppos >> PAGE_CACHE_SHIFT;
1621        loff = *ppos & ~PAGE_CACHE_MASK;
1622        req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1623        nr_pages = min(req_pages, spd.nr_pages_max);
1624
1625        spd.nr_pages = find_get_pages_contig(mapping, index,
1626                                                nr_pages, spd.pages);
1627        index += spd.nr_pages;
1628        error = 0;
1629
1630        while (spd.nr_pages < nr_pages) {
1631                error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1632                if (error)
1633                        break;
1634                unlock_page(page);
1635                spd.pages[spd.nr_pages++] = page;
1636                index++;
1637        }
1638
1639        index = *ppos >> PAGE_CACHE_SHIFT;
1640        nr_pages = spd.nr_pages;
1641        spd.nr_pages = 0;
1642
1643        for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1644                unsigned int this_len;
1645
1646                if (!len)
1647                        break;
1648
1649                this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1650                page = spd.pages[page_nr];
1651
1652                if (!PageUptodate(page) || page->mapping != mapping) {
1653                        error = shmem_getpage(inode, index, &page,
1654                                                        SGP_CACHE, NULL);
1655                        if (error)
1656                                break;
1657                        unlock_page(page);
1658                        page_cache_release(spd.pages[page_nr]);
1659                        spd.pages[page_nr] = page;
1660                }
1661
1662                isize = i_size_read(inode);
1663                end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1664                if (unlikely(!isize || index > end_index))
1665                        break;
1666
1667                if (end_index == index) {
1668                        unsigned int plen;
1669
1670                        plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1671                        if (plen <= loff)
1672                                break;
1673
1674                        this_len = min(this_len, plen - loff);
1675                        len = this_len;
1676                }
1677
1678                spd.partial[page_nr].offset = loff;
1679                spd.partial[page_nr].len = this_len;
1680                len -= this_len;
1681                loff = 0;
1682                spd.nr_pages++;
1683                index++;
1684        }
1685
1686        while (page_nr < nr_pages)
1687                page_cache_release(spd.pages[page_nr++]);
1688
1689        if (spd.nr_pages)
1690                error = splice_to_pipe(pipe, &spd);
1691
1692        splice_shrink_spd(&spd);
1693
1694        if (error > 0) {
1695                *ppos += error;
1696                file_accessed(in);
1697        }
1698        return error;
1699}
1700
1701/*
1702 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1703 */
1704static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1705                                    pgoff_t index, pgoff_t end, int whence)
1706{
1707        struct page *page;
1708        struct pagevec pvec;
1709        pgoff_t indices[PAGEVEC_SIZE];
1710        bool done = false;
1711        int i;
1712
1713        pagevec_init(&pvec, 0);
1714        pvec.nr = 1;            /* start small: we may be there already */
1715        while (!done) {
1716                pvec.nr = find_get_entries(mapping, index,
1717                                        pvec.nr, pvec.pages, indices);
1718                if (!pvec.nr) {
1719                        if (whence == SEEK_DATA)
1720                                index = end;
1721                        break;
1722                }
1723                for (i = 0; i < pvec.nr; i++, index++) {
1724                        if (index < indices[i]) {
1725                                if (whence == SEEK_HOLE) {
1726                                        done = true;
1727                                        break;
1728                                }
1729                                index = indices[i];
1730                        }
1731                        page = pvec.pages[i];
1732                        if (page && !radix_tree_exceptional_entry(page)) {
1733                                if (!PageUptodate(page))
1734                                        page = NULL;
1735                        }
1736                        if (index >= end ||
1737                            (page && whence == SEEK_DATA) ||
1738                            (!page && whence == SEEK_HOLE)) {
1739                                done = true;
1740                                break;
1741                        }
1742                }
1743                pagevec_remove_exceptionals(&pvec);
1744                pagevec_release(&pvec);
1745                pvec.nr = PAGEVEC_SIZE;
1746                cond_resched();
1747        }
1748        return index;
1749}
1750
1751static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1752{
1753        struct address_space *mapping = file->f_mapping;
1754        struct inode *inode = mapping->host;
1755        pgoff_t start, end;
1756        loff_t new_offset;
1757
1758        if (whence != SEEK_DATA && whence != SEEK_HOLE)
1759                return generic_file_llseek_size(file, offset, whence,
1760                                        MAX_LFS_FILESIZE, i_size_read(inode));
1761        mutex_lock(&inode->i_mutex);
1762        /* We're holding i_mutex so we can access i_size directly */
1763
1764        if (offset < 0)
1765                offset = -EINVAL;
1766        else if (offset >= inode->i_size)
1767                offset = -ENXIO;
1768        else {
1769                start = offset >> PAGE_CACHE_SHIFT;
1770                end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1771                new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1772                new_offset <<= PAGE_CACHE_SHIFT;
1773                if (new_offset > offset) {
1774                        if (new_offset < inode->i_size)
1775                                offset = new_offset;
1776                        else if (whence == SEEK_DATA)
1777                                offset = -ENXIO;
1778                        else
1779                                offset = inode->i_size;
1780                }
1781        }
1782
1783        if (offset >= 0)
1784                offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
1785        mutex_unlock(&inode->i_mutex);
1786        return offset;
1787}
1788
1789static long shmem_fallocate(struct file *file, int mode, loff_t offset,
1790                                                         loff_t len)
1791{
1792        struct inode *inode = file_inode(file);
1793        struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1794        struct shmem_falloc shmem_falloc;
1795        pgoff_t start, index, end;
1796        int error;
1797
1798        if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
1799                return -EOPNOTSUPP;
1800
1801        mutex_lock(&inode->i_mutex);
1802
1803        if (mode & FALLOC_FL_PUNCH_HOLE) {
1804                struct address_space *mapping = file->f_mapping;
1805                loff_t unmap_start = round_up(offset, PAGE_SIZE);
1806                loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
1807                DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
1808
1809                shmem_falloc.waitq = &shmem_falloc_waitq;
1810                shmem_falloc.start = unmap_start >> PAGE_SHIFT;
1811                shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
1812                spin_lock(&inode->i_lock);
1813                inode->i_private = &shmem_falloc;
1814                spin_unlock(&inode->i_lock);
1815
1816                if ((u64)unmap_end > (u64)unmap_start)
1817                        unmap_mapping_range(mapping, unmap_start,
1818                                            1 + unmap_end - unmap_start, 0);
1819                shmem_truncate_range(inode, offset, offset + len - 1);
1820                /* No need to unmap again: hole-punching leaves COWed pages */
1821
1822                spin_lock(&inode->i_lock);
1823                inode->i_private = NULL;
1824                wake_up_all(&shmem_falloc_waitq);
1825                spin_unlock(&inode->i_lock);
1826                error = 0;
1827                goto out;
1828        }
1829
1830        /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
1831        error = inode_newsize_ok(inode, offset + len);
1832        if (error)
1833                goto out;
1834
1835        start = offset >> PAGE_CACHE_SHIFT;
1836        end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1837        /* Try to avoid a swapstorm if len is impossible to satisfy */
1838        if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
1839                error = -ENOSPC;
1840                goto out;
1841        }
1842
1843        shmem_falloc.waitq = NULL;
1844        shmem_falloc.start = start;
1845        shmem_falloc.next  = start;
1846        shmem_falloc.nr_falloced = 0;
1847        shmem_falloc.nr_unswapped = 0;
1848        spin_lock(&inode->i_lock);
1849        inode->i_private = &shmem_falloc;
1850        spin_unlock(&inode->i_lock);
1851
1852        for (index = start; index < end; index++) {
1853                struct page *page;
1854
1855                /*
1856                 * Good, the fallocate(2) manpage permits EINTR: we may have
1857                 * been interrupted because we are using up too much memory.
1858                 */
1859                if (signal_pending(current))
1860                        error = -EINTR;
1861                else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
1862                        error = -ENOMEM;
1863                else
1864                        error = shmem_getpage(inode, index, &page, SGP_FALLOC,
1865                                                                        NULL);
1866                if (error) {
1867                        /* Remove the !PageUptodate pages we added */
1868                        shmem_undo_range(inode,
1869                                (loff_t)start << PAGE_CACHE_SHIFT,
1870                                (loff_t)index << PAGE_CACHE_SHIFT, true);
1871                        goto undone;
1872                }
1873
1874                /*
1875                 * Inform shmem_writepage() how far we have reached.
1876                 * No need for lock or barrier: we have the page lock.
1877                 */
1878                shmem_falloc.next++;
1879                if (!PageUptodate(page))
1880                        shmem_falloc.nr_falloced++;
1881
1882                /*
1883                 * If !PageUptodate, leave it that way so that freeable pages
1884                 * can be recognized if we need to rollback on error later.
1885                 * But set_page_dirty so that memory pressure will swap rather
1886                 * than free the pages we are allocating (and SGP_CACHE pages
1887                 * might still be clean: we now need to mark those dirty too).
1888                 */
1889                set_page_dirty(page);
1890                unlock_page(page);
1891                page_cache_release(page);
1892                cond_resched();
1893        }
1894
1895        if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
1896                i_size_write(inode, offset + len);
1897        inode->i_ctime = CURRENT_TIME;
1898undone:
1899        spin_lock(&inode->i_lock);
1900        inode->i_private = NULL;
1901        spin_unlock(&inode->i_lock);
1902out:
1903        mutex_unlock(&inode->i_mutex);
1904        return error;
1905}
1906
1907static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1908{
1909        struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1910
1911        buf->f_type = TMPFS_MAGIC;
1912        buf->f_bsize = PAGE_CACHE_SIZE;
1913        buf->f_namelen = NAME_MAX;
1914        if (sbinfo->max_blocks) {
1915                buf->f_blocks = sbinfo->max_blocks;
1916                buf->f_bavail =
1917                buf->f_bfree  = sbinfo->max_blocks -
1918                                percpu_counter_sum(&sbinfo->used_blocks);
1919        }
1920        if (sbinfo->max_inodes) {
1921                buf->f_files = sbinfo->max_inodes;
1922                buf->f_ffree = sbinfo->free_inodes;
1923        }
1924        /* else leave those fields 0 like simple_statfs */
1925        return 0;
1926}
1927
1928/*
1929 * File creation. Allocate an inode, and we're done..
1930 */
1931static int
1932shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1933{
1934        struct inode *inode;
1935        int error = -ENOSPC;
1936
1937        inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1938        if (inode) {
1939                error = simple_acl_create(dir, inode);
1940                if (error)
1941                        goto out_iput;
1942                error = security_inode_init_security(inode, dir,
1943                                                     &dentry->d_name,
1944                                                     shmem_initxattrs, NULL);
1945                if (error && error != -EOPNOTSUPP)
1946                        goto out_iput;
1947
1948                error = 0;
1949                dir->i_size += BOGO_DIRENT_SIZE;
1950                dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1951                d_instantiate(dentry, inode);
1952                dget(dentry); /* Extra count - pin the dentry in core */
1953        }
1954        return error;
1955out_iput:
1956        iput(inode);
1957        return error;
1958}
1959
1960static int
1961shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
1962{
1963        struct inode *inode;
1964        int error = -ENOSPC;
1965
1966        inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
1967        if (inode) {
1968                error = security_inode_init_security(inode, dir,
1969                                                     NULL,
1970                                                     shmem_initxattrs, NULL);
1971                if (error && error != -EOPNOTSUPP)
1972                        goto out_iput;
1973                error = simple_acl_create(dir, inode);
1974                if (error)
1975                        goto out_iput;
1976                d_tmpfile(dentry, inode);
1977        }
1978        return error;
1979out_iput:
1980        iput(inode);
1981        return error;
1982}
1983
1984static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1985{
1986        int error;
1987
1988        if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1989                return error;
1990        inc_nlink(dir);
1991        return 0;
1992}
1993
1994static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
1995                bool excl)
1996{
1997        return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1998}
1999
2000/*
2001 * Link a file..
2002 */
2003static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2004{
2005        struct inode *inode = old_dentry->d_inode;
2006        int ret;
2007
2008        /*
2009         * No ordinary (disk based) filesystem counts links as inodes;
2010         * but each new link needs a new dentry, pinning lowmem, and
2011         * tmpfs dentries cannot be pruned until they are unlinked.
2012         */
2013        ret = shmem_reserve_inode(inode->i_sb);
2014        if (ret)
2015                goto out;
2016
2017        dir->i_size += BOGO_DIRENT_SIZE;
2018        inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2019        inc_nlink(inode);
2020        ihold(inode);   /* New dentry reference */
2021        dget(dentry);           /* Extra pinning count for the created dentry */
2022        d_instantiate(dentry, inode);
2023out:
2024        return ret;
2025}
2026
2027static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2028{
2029        struct inode *inode = dentry->d_inode;
2030
2031        if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2032                shmem_free_inode(inode->i_sb);
2033
2034        dir->i_size -= BOGO_DIRENT_SIZE;
2035        inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2036        drop_nlink(inode);
2037        dput(dentry);   /* Undo the count from "create" - this does all the work */
2038        return 0;
2039}
2040
2041static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2042{
2043        if (!simple_empty(dentry))
2044                return -ENOTEMPTY;
2045
2046        drop_nlink(dentry->d_inode);
2047        drop_nlink(dir);
2048        return shmem_unlink(dir, dentry);
2049}
2050
2051/*
2052 * The VFS layer already does all the dentry stuff for rename,
2053 * we just have to decrement the usage count for the target if
2054 * it exists so that the VFS layer correctly free's it when it
2055 * gets overwritten.
2056 */
2057static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2058{
2059        struct inode *inode = old_dentry->d_inode;
2060        int they_are_dirs = S_ISDIR(inode->i_mode);
2061
2062        if (!simple_empty(new_dentry))
2063                return -ENOTEMPTY;
2064
2065        if (new_dentry->d_inode) {
2066                (void) shmem_unlink(new_dir, new_dentry);
2067                if (they_are_dirs)
2068                        drop_nlink(old_dir);
2069        } else if (they_are_dirs) {
2070                drop_nlink(old_dir);
2071                inc_nlink(new_dir);
2072        }
2073
2074        old_dir->i_size -= BOGO_DIRENT_SIZE;
2075        new_dir->i_size += BOGO_DIRENT_SIZE;
2076        old_dir->i_ctime = old_dir->i_mtime =
2077        new_dir->i_ctime = new_dir->i_mtime =
2078        inode->i_ctime = CURRENT_TIME;
2079        return 0;
2080}
2081
2082static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2083{
2084        int error;
2085        int len;
2086        struct inode *inode;
2087        struct page *page;
2088        char *kaddr;
2089        struct shmem_inode_info *info;
2090
2091        len = strlen(symname) + 1;
2092        if (len > PAGE_CACHE_SIZE)
2093                return -ENAMETOOLONG;
2094
2095        inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2096        if (!inode)
2097                return -ENOSPC;
2098
2099        error = security_inode_init_security(inode, dir, &dentry->d_name,
2100                                             shmem_initxattrs, NULL);
2101        if (error) {
2102                if (error != -EOPNOTSUPP) {
2103                        iput(inode);
2104                        return error;
2105                }
2106                error = 0;
2107        }
2108
2109        info = SHMEM_I(inode);
2110        inode->i_size = len-1;
2111        if (len <= SHORT_SYMLINK_LEN) {
2112                info->symlink = kmemdup(symname, len, GFP_KERNEL);
2113                if (!info->symlink) {
2114                        iput(inode);
2115                        return -ENOMEM;
2116                }
2117                inode->i_op = &shmem_short_symlink_operations;
2118        } else {
2119                error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2120                if (error) {
2121                        iput(inode);
2122                        return error;
2123                }
2124                inode->i_mapping->a_ops = &shmem_aops;
2125                inode->i_op = &shmem_symlink_inode_operations;
2126                kaddr = kmap_atomic(page);
2127                memcpy(kaddr, symname, len);
2128                kunmap_atomic(kaddr);
2129                SetPageUptodate(page);
2130                set_page_dirty(page);
2131                unlock_page(page);
2132                page_cache_release(page);
2133        }
2134        dir->i_size += BOGO_DIRENT_SIZE;
2135        dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2136        d_instantiate(dentry, inode);
2137        dget(dentry);
2138        return 0;
2139}
2140
2141static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
2142{
2143        nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
2144        return NULL;
2145}
2146
2147static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2148{
2149        struct page *page = NULL;
2150        int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2151        nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
2152        if (page)
2153                unlock_page(page);
2154        return page;
2155}
2156
2157static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2158{
2159        if (!IS_ERR(nd_get_link(nd))) {
2160                struct page *page = cookie;
2161                kunmap(page);
2162                mark_page_accessed(page);
2163                page_cache_release(page);
2164        }
2165}
2166
2167#ifdef CONFIG_TMPFS_XATTR
2168/*
2169 * Superblocks without xattr inode operations may get some security.* xattr
2170 * support from the LSM "for free". As soon as we have any other xattrs
2171 * like ACLs, we also need to implement the security.* handlers at
2172 * filesystem level, though.
2173 */
2174
2175/*
2176 * Callback for security_inode_init_security() for acquiring xattrs.
2177 */
2178static int shmem_initxattrs(struct inode *inode,
2179                            const struct xattr *xattr_array,
2180                            void *fs_info)
2181{
2182        struct shmem_inode_info *info = SHMEM_I(inode);
2183        const struct xattr *xattr;
2184        struct simple_xattr *new_xattr;
2185        size_t len;
2186
2187        for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2188                new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2189                if (!new_xattr)
2190                        return -ENOMEM;
2191
2192                len = strlen(xattr->name) + 1;
2193                new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2194                                          GFP_KERNEL);
2195                if (!new_xattr->name) {
2196                        kfree(new_xattr);
2197                        return -ENOMEM;
2198                }
2199
2200                memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2201                       XATTR_SECURITY_PREFIX_LEN);
2202                memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2203                       xattr->name, len);
2204
2205                simple_xattr_list_add(&info->xattrs, new_xattr);
2206        }
2207
2208        return 0;
2209}
2210
2211static const struct xattr_handler *shmem_xattr_handlers[] = {
2212#ifdef CONFIG_TMPFS_POSIX_ACL
2213        &posix_acl_access_xattr_handler,
2214        &posix_acl_default_xattr_handler,
2215#endif
2216        NULL
2217};
2218
2219static int shmem_xattr_validate(const char *name)
2220{
2221        struct { const char *prefix; size_t len; } arr[] = {
2222                { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2223                { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2224        };
2225        int i;
2226
2227        for (i = 0; i < ARRAY_SIZE(arr); i++) {
2228                size_t preflen = arr[i].len;
2229                if (strncmp(name, arr[i].prefix, preflen) == 0) {
2230                        if (!name[preflen])
2231                                return -EINVAL;
2232                        return 0;
2233                }
2234        }
2235        return -EOPNOTSUPP;
2236}
2237
2238static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2239                              void *buffer, size_t size)
2240{
2241        struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2242        int err;
2243
2244        /*
2245         * If this is a request for a synthetic attribute in the system.*
2246         * namespace use the generic infrastructure to resolve a handler
2247         * for it via sb->s_xattr.
2248         */
2249        if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2250                return generic_getxattr(dentry, name, buffer, size);
2251
2252        err = shmem_xattr_validate(name);
2253        if (err)
2254                return err;
2255
2256        return simple_xattr_get(&info->xattrs, name, buffer, size);
2257}
2258
2259static int shmem_setxattr(struct dentry *dentry, const char *name,
2260                          const void *value, size_t size, int flags)
2261{
2262        struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2263        int err;
2264
2265        /*
2266         * If this is a request for a synthetic attribute in the system.*
2267         * namespace use the generic infrastructure to resolve a handler
2268         * for it via sb->s_xattr.
2269         */
2270        if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2271                return generic_setxattr(dentry, name, value, size, flags);
2272
2273        err = shmem_xattr_validate(name);
2274        if (err)
2275                return err;
2276
2277        return simple_xattr_set(&info->xattrs, name, value, size, flags);
2278}
2279
2280static int shmem_removexattr(struct dentry *dentry, const char *name)
2281{
2282        struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2283        int err;
2284
2285        /*
2286         * If this is a request for a synthetic attribute in the system.*
2287         * namespace use the generic infrastructure to resolve a handler
2288         * for it via sb->s_xattr.
2289         */
2290        if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2291                return generic_removexattr(dentry, name);
2292
2293        err = shmem_xattr_validate(name);
2294        if (err)
2295                return err;
2296
2297        return simple_xattr_remove(&info->xattrs, name);
2298}
2299
2300static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2301{
2302        struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2303        return simple_xattr_list(&info->xattrs, buffer, size);
2304}
2305#endif /* CONFIG_TMPFS_XATTR */
2306
2307static const struct inode_operations shmem_short_symlink_operations = {
2308        .readlink       = generic_readlink,
2309        .follow_link    = shmem_follow_short_symlink,
2310#ifdef CONFIG_TMPFS_XATTR
2311        .setxattr       = shmem_setxattr,
2312        .getxattr       = shmem_getxattr,
2313        .listxattr      = shmem_listxattr,
2314        .removexattr    = shmem_removexattr,
2315#endif
2316};
2317
2318static const struct inode_operations shmem_symlink_inode_operations = {
2319        .readlink       = generic_readlink,
2320        .follow_link    = shmem_follow_link,
2321        .put_link       = shmem_put_link,
2322#ifdef CONFIG_TMPFS_XATTR
2323        .setxattr       = shmem_setxattr,
2324        .getxattr       = shmem_getxattr,
2325        .listxattr      = shmem_listxattr,
2326        .removexattr    = shmem_removexattr,
2327#endif
2328};
2329
2330static struct dentry *shmem_get_parent(struct dentry *child)
2331{
2332        return ERR_PTR(-ESTALE);
2333}
2334
2335static int shmem_match(struct inode *ino, void *vfh)
2336{
2337        __u32 *fh = vfh;
2338        __u64 inum = fh[2];
2339        inum = (inum << 32) | fh[1];
2340        return ino->i_ino == inum && fh[0] == ino->i_generation;
2341}
2342
2343static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2344                struct fid *fid, int fh_len, int fh_type)
2345{
2346        struct inode *inode;
2347        struct dentry *dentry = NULL;
2348        u64 inum;
2349
2350        if (fh_len < 3)
2351                return NULL;
2352
2353        inum = fid->raw[2];
2354        inum = (inum << 32) | fid->raw[1];
2355
2356        inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2357                        shmem_match, fid->raw);
2358        if (inode) {
2359                dentry = d_find_alias(inode);
2360                iput(inode);
2361        }
2362
2363        return dentry;
2364}
2365
2366static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2367                                struct inode *parent)
2368{
2369        if (*len < 3) {
2370                *len = 3;
2371                return FILEID_INVALID;
2372        }
2373
2374        if (inode_unhashed(inode)) {
2375                /* Unfortunately insert_inode_hash is not idempotent,
2376                 * so as we hash inodes here rather than at creation
2377                 * time, we need a lock to ensure we only try
2378                 * to do it once
2379                 */
2380                static DEFINE_SPINLOCK(lock);
2381                spin_lock(&lock);
2382                if (inode_unhashed(inode))
2383                        __insert_inode_hash(inode,
2384                                            inode->i_ino + inode->i_generation);
2385                spin_unlock(&lock);
2386        }
2387
2388        fh[0] = inode->i_generation;
2389        fh[1] = inode->i_ino;
2390        fh[2] = ((__u64)inode->i_ino) >> 32;
2391
2392        *len = 3;
2393        return 1;
2394}
2395
2396static const struct export_operations shmem_export_ops = {
2397        .get_parent     = shmem_get_parent,
2398        .encode_fh      = shmem_encode_fh,
2399        .fh_to_dentry   = shmem_fh_to_dentry,
2400};
2401
2402static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2403                               bool remount)
2404{
2405        char *this_char, *value, *rest;
2406        struct mempolicy *mpol = NULL;
2407        uid_t uid;
2408        gid_t gid;
2409
2410        while (options != NULL) {
2411                this_char = options;
2412                for (;;) {
2413                        /*
2414                         * NUL-terminate this option: unfortunately,
2415                         * mount options form a comma-separated list,
2416                         * but mpol's nodelist may also contain commas.
2417                         */
2418                        options = strchr(options, ',');
2419                        if (options == NULL)
2420                                break;
2421                        options++;
2422                        if (!isdigit(*options)) {
2423                                options[-1] = '\0';
2424                                break;
2425                        }
2426                }
2427                if (!*this_char)
2428                        continue;
2429                if ((value = strchr(this_char,'=')) != NULL) {
2430                        *value++ = 0;
2431                } else {
2432                        printk(KERN_ERR
2433                            "tmpfs: No value for mount option '%s'\n",
2434                            this_char);
2435                        goto error;
2436                }
2437
2438                if (!strcmp(this_char,"size")) {
2439                        unsigned long long size;
2440                        size = memparse(value,&rest);
2441                        if (*rest == '%') {
2442                                size <<= PAGE_SHIFT;
2443                                size *= totalram_pages;
2444                                do_div(size, 100);
2445                                rest++;
2446                        }
2447                        if (*rest)
2448                                goto bad_val;
2449                        sbinfo->max_blocks =
2450                                DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2451                } else if (!strcmp(this_char,"nr_blocks")) {
2452                        sbinfo->max_blocks = memparse(value, &rest);
2453                        if (*rest)
2454                                goto bad_val;
2455                } else if (!strcmp(this_char,"nr_inodes")) {
2456                        sbinfo->max_inodes = memparse(value, &rest);
2457                        if (*rest)
2458                                goto bad_val;
2459                } else if (!strcmp(this_char,"mode")) {
2460                        if (remount)
2461                                continue;
2462                        sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2463                        if (*rest)
2464                                goto bad_val;
2465                } else if (!strcmp(this_char,"uid")) {
2466                        if (remount)
2467                                continue;
2468                        uid = simple_strtoul(value, &rest, 0);
2469                        if (*rest)
2470                                goto bad_val;
2471                        sbinfo->uid = make_kuid(current_user_ns(), uid);
2472                        if (!uid_valid(sbinfo->uid))
2473                                goto bad_val;
2474                } else if (!strcmp(this_char,"gid")) {
2475                        if (remount)
2476                                continue;
2477                        gid = simple_strtoul(value, &rest, 0);
2478                        if (*rest)
2479                                goto bad_val;
2480                        sbinfo->gid = make_kgid(current_user_ns(), gid);
2481                        if (!gid_valid(sbinfo->gid))
2482                                goto bad_val;
2483                } else if (!strcmp(this_char,"mpol")) {
2484                        mpol_put(mpol);
2485                        mpol = NULL;
2486                        if (mpol_parse_str(value, &mpol))
2487                                goto bad_val;
2488                } else {
2489                        printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2490                               this_char);
2491                        goto error;
2492                }
2493        }
2494        sbinfo->mpol = mpol;
2495        return 0;
2496
2497bad_val:
2498        printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2499               value, this_char);
2500error:
2501        mpol_put(mpol);
2502        return 1;
2503
2504}
2505
2506static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2507{
2508        struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2509        struct shmem_sb_info config = *sbinfo;
2510        unsigned long inodes;
2511        int error = -EINVAL;
2512
2513        config.mpol = NULL;
2514        if (shmem_parse_options(data, &config, true))
2515                return error;
2516
2517        spin_lock(&sbinfo->stat_lock);
2518        inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2519        if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2520                goto out;
2521        if (config.max_inodes < inodes)
2522                goto out;
2523        /*
2524         * Those tests disallow limited->unlimited while any are in use;
2525         * but we must separately disallow unlimited->limited, because
2526         * in that case we have no record of how much is already in use.
2527         */
2528        if (config.max_blocks && !sbinfo->max_blocks)
2529                goto out;
2530        if (config.max_inodes && !sbinfo->max_inodes)
2531                goto out;
2532
2533        error = 0;
2534        sbinfo->max_blocks  = config.max_blocks;
2535        sbinfo->max_inodes  = config.max_inodes;
2536        sbinfo->free_inodes = config.max_inodes - inodes;
2537
2538        /*
2539         * Preserve previous mempolicy unless mpol remount option was specified.
2540         */
2541        if (config.mpol) {
2542                mpol_put(sbinfo->mpol);
2543                sbinfo->mpol = config.mpol;     /* transfers initial ref */
2544        }
2545out:
2546        spin_unlock(&sbinfo->stat_lock);
2547        return error;
2548}
2549
2550static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2551{
2552        struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2553
2554        if (sbinfo->max_blocks != shmem_default_max_blocks())
2555                seq_printf(seq, ",size=%luk",
2556                        sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2557        if (sbinfo->max_inodes != shmem_default_max_inodes())
2558                seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2559        if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2560                seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2561        if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2562                seq_printf(seq, ",uid=%u",
2563                                from_kuid_munged(&init_user_ns, sbinfo->uid));
2564        if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2565                seq_printf(seq, ",gid=%u",
2566                                from_kgid_munged(&init_user_ns, sbinfo->gid));
2567        shmem_show_mpol(seq, sbinfo->mpol);
2568        return 0;
2569}
2570#endif /* CONFIG_TMPFS */
2571
2572static void shmem_put_super(struct super_block *sb)
2573{
2574        struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2575
2576        percpu_counter_destroy(&sbinfo->used_blocks);
2577        mpol_put(sbinfo->mpol);
2578        kfree(sbinfo);
2579        sb->s_fs_info = NULL;
2580}
2581
2582int shmem_fill_super(struct super_block *sb, void *data, int silent)
2583{
2584        struct inode *inode;
2585        struct shmem_sb_info *sbinfo;
2586        int err = -ENOMEM;
2587
2588        /* Round up to L1_CACHE_BYTES to resist false sharing */
2589        sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2590                                L1_CACHE_BYTES), GFP_KERNEL);
2591        if (!sbinfo)
2592                return -ENOMEM;
2593
2594        sbinfo->mode = S_IRWXUGO | S_ISVTX;
2595        sbinfo->uid = current_fsuid();
2596        sbinfo->gid = current_fsgid();
2597        sb->s_fs_info = sbinfo;
2598
2599#ifdef CONFIG_TMPFS
2600        /*
2601         * Per default we only allow half of the physical ram per
2602         * tmpfs instance, limiting inodes to one per page of lowmem;
2603         * but the internal instance is left unlimited.
2604         */
2605        if (!(sb->s_flags & MS_KERNMOUNT)) {
2606                sbinfo->max_blocks = shmem_default_max_blocks();
2607                sbinfo->max_inodes = shmem_default_max_inodes();
2608                if (shmem_parse_options(data, sbinfo, false)) {
2609                        err = -EINVAL;
2610                        goto failed;
2611                }
2612        } else {
2613                sb->s_flags |= MS_NOUSER;
2614        }
2615        sb->s_export_op = &shmem_export_ops;
2616        sb->s_flags |= MS_NOSEC;
2617#else
2618        sb->s_flags |= MS_NOUSER;
2619#endif
2620
2621        spin_lock_init(&sbinfo->stat_lock);
2622        if (percpu_counter_init(&sbinfo->used_blocks, 0))
2623                goto failed;
2624        sbinfo->free_inodes = sbinfo->max_inodes;
2625
2626        sb->s_maxbytes = MAX_LFS_FILESIZE;
2627        sb->s_blocksize = PAGE_CACHE_SIZE;
2628        sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2629        sb->s_magic = TMPFS_MAGIC;
2630        sb->s_op = &shmem_ops;
2631        sb->s_time_gran = 1;
2632#ifdef CONFIG_TMPFS_XATTR
2633        sb->s_xattr = shmem_xattr_handlers;
2634#endif
2635#ifdef CONFIG_TMPFS_POSIX_ACL
2636        sb->s_flags |= MS_POSIXACL;
2637#endif
2638
2639        inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2640        if (!inode)
2641                goto failed;
2642        inode->i_uid = sbinfo->uid;
2643        inode->i_gid = sbinfo->gid;
2644        sb->s_root = d_make_root(inode);
2645        if (!sb->s_root)
2646                goto failed;
2647        return 0;
2648
2649failed:
2650        shmem_put_super(sb);
2651        return err;
2652}
2653
2654static struct kmem_cache *shmem_inode_cachep;
2655
2656static struct inode *shmem_alloc_inode(struct super_block *sb)
2657{
2658        struct shmem_inode_info *info;
2659        info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2660        if (!info)
2661                return NULL;
2662        return &info->vfs_inode;
2663}
2664
2665static void shmem_destroy_callback(struct rcu_head *head)
2666{
2667        struct inode *inode = container_of(head, struct inode, i_rcu);
2668        kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2669}
2670
2671static void shmem_destroy_inode(struct inode *inode)
2672{
2673        if (S_ISREG(inode->i_mode))
2674                mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2675        call_rcu(&inode->i_rcu, shmem_destroy_callback);
2676}
2677
2678static void shmem_init_inode(void *foo)
2679{
2680        struct shmem_inode_info *info = foo;
2681        inode_init_once(&info->vfs_inode);
2682}
2683
2684static int shmem_init_inodecache(void)
2685{
2686        shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2687                                sizeof(struct shmem_inode_info),
2688                                0, SLAB_PANIC, shmem_init_inode);
2689        return 0;
2690}
2691
2692static void shmem_destroy_inodecache(void)
2693{
2694        kmem_cache_destroy(shmem_inode_cachep);
2695}
2696
2697static const struct address_space_operations shmem_aops = {
2698        .writepage      = shmem_writepage,
2699        .set_page_dirty = __set_page_dirty_no_writeback,
2700#ifdef CONFIG_TMPFS
2701        .write_begin    = shmem_write_begin,
2702        .write_end      = shmem_write_end,
2703#endif
2704        .migratepage    = migrate_page,
2705        .error_remove_page = generic_error_remove_page,
2706};
2707
2708static const struct file_operations shmem_file_operations = {
2709        .mmap           = shmem_mmap,
2710#ifdef CONFIG_TMPFS
2711        .llseek         = shmem_file_llseek,
2712        .read           = new_sync_read,
2713        .write          = new_sync_write,
2714        .read_iter      = shmem_file_read_iter,
2715        .write_iter     = generic_file_write_iter,
2716        .fsync          = noop_fsync,
2717        .splice_read    = shmem_file_splice_read,
2718        .splice_write   = iter_file_splice_write,
2719        .fallocate      = shmem_fallocate,
2720#endif
2721};
2722
2723static const struct inode_operations shmem_inode_operations = {
2724        .setattr        = shmem_setattr,
2725#ifdef CONFIG_TMPFS_XATTR
2726        .setxattr       = shmem_setxattr,
2727        .getxattr       = shmem_getxattr,
2728        .listxattr      = shmem_listxattr,
2729        .removexattr    = shmem_removexattr,
2730        .set_acl        = simple_set_acl,
2731#endif
2732};
2733
2734static const struct inode_operations shmem_dir_inode_operations = {
2735#ifdef CONFIG_TMPFS
2736        .create         = shmem_create,
2737        .lookup         = simple_lookup,
2738        .link           = shmem_link,
2739        .unlink         = shmem_unlink,
2740        .symlink        = shmem_symlink,
2741        .mkdir          = shmem_mkdir,
2742        .rmdir          = shmem_rmdir,
2743        .mknod          = shmem_mknod,
2744        .rename         = shmem_rename,
2745        .tmpfile        = shmem_tmpfile,
2746#endif
2747#ifdef CONFIG_TMPFS_XATTR
2748        .setxattr       = shmem_setxattr,
2749        .getxattr       = shmem_getxattr,
2750        .listxattr      = shmem_listxattr,
2751        .removexattr    = shmem_removexattr,
2752#endif
2753#ifdef CONFIG_TMPFS_POSIX_ACL
2754        .setattr        = shmem_setattr,
2755        .set_acl        = simple_set_acl,
2756#endif
2757};
2758
2759static const struct inode_operations shmem_special_inode_operations = {
2760#ifdef CONFIG_TMPFS_XATTR
2761        .setxattr       = shmem_setxattr,
2762        .getxattr       = shmem_getxattr,
2763        .listxattr      = shmem_listxattr,
2764        .removexattr    = shmem_removexattr,
2765#endif
2766#ifdef CONFIG_TMPFS_POSIX_ACL
2767        .setattr        = shmem_setattr,
2768        .set_acl        = simple_set_acl,
2769#endif
2770};
2771
2772static const struct super_operations shmem_ops = {
2773        .alloc_inode    = shmem_alloc_inode,
2774        .destroy_inode  = shmem_destroy_inode,
2775#ifdef CONFIG_TMPFS
2776        .statfs         = shmem_statfs,
2777        .remount_fs     = shmem_remount_fs,
2778        .show_options   = shmem_show_options,
2779#endif
2780        .evict_inode    = shmem_evict_inode,
2781        .drop_inode     = generic_delete_inode,
2782        .put_super      = shmem_put_super,
2783};
2784
2785static const struct vm_operations_struct shmem_vm_ops = {
2786        .fault          = shmem_fault,
2787        .map_pages      = filemap_map_pages,
2788#ifdef CONFIG_NUMA
2789        .set_policy     = shmem_set_policy,
2790        .get_policy     = shmem_get_policy,
2791#endif
2792        .remap_pages    = generic_file_remap_pages,
2793};
2794
2795static struct dentry *shmem_mount(struct file_system_type *fs_type,
2796        int flags, const char *dev_name, void *data)
2797{
2798        return mount_nodev(fs_type, flags, data, shmem_fill_super);
2799}
2800
2801static struct file_system_type shmem_fs_type = {
2802        .owner          = THIS_MODULE,
2803        .name           = "tmpfs",
2804        .mount          = shmem_mount,
2805        .kill_sb        = kill_litter_super,
2806        .fs_flags       = FS_USERNS_MOUNT,
2807};
2808
2809int __init shmem_init(void)
2810{
2811        int error;
2812
2813        /* If rootfs called this, don't re-init */
2814        if (shmem_inode_cachep)
2815                return 0;
2816
2817        error = bdi_init(&shmem_backing_dev_info);
2818        if (error)
2819                goto out4;
2820
2821        error = shmem_init_inodecache();
2822        if (error)
2823                goto out3;
2824
2825        error = register_filesystem(&shmem_fs_type);
2826        if (error) {
2827                printk(KERN_ERR "Could not register tmpfs\n");
2828                goto out2;
2829        }
2830
2831        shm_mnt = kern_mount(&shmem_fs_type);
2832        if (IS_ERR(shm_mnt)) {
2833                error = PTR_ERR(shm_mnt);
2834                printk(KERN_ERR "Could not kern_mount tmpfs\n");
2835                goto out1;
2836        }
2837        return 0;
2838
2839out1:
2840        unregister_filesystem(&shmem_fs_type);
2841out2:
2842        shmem_destroy_inodecache();
2843out3:
2844        bdi_destroy(&shmem_backing_dev_info);
2845out4:
2846        shm_mnt = ERR_PTR(error);
2847        return error;
2848}
2849
2850#else /* !CONFIG_SHMEM */
2851
2852/*
2853 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2854 *
2855 * This is intended for small system where the benefits of the full
2856 * shmem code (swap-backed and resource-limited) are outweighed by
2857 * their complexity. On systems without swap this code should be
2858 * effectively equivalent, but much lighter weight.
2859 */
2860
2861static struct file_system_type shmem_fs_type = {
2862        .name           = "tmpfs",
2863        .mount          = ramfs_mount,
2864        .kill_sb        = kill_litter_super,
2865        .fs_flags       = FS_USERNS_MOUNT,
2866};
2867
2868int __init shmem_init(void)
2869{
2870        BUG_ON(register_filesystem(&shmem_fs_type) != 0);
2871
2872        shm_mnt = kern_mount(&shmem_fs_type);
2873        BUG_ON(IS_ERR(shm_mnt));
2874
2875        return 0;
2876}
2877
2878int shmem_unuse(swp_entry_t swap, struct page *page)
2879{
2880        return 0;
2881}
2882
2883int shmem_lock(struct file *file, int lock, struct user_struct *user)
2884{
2885        return 0;
2886}
2887
2888void shmem_unlock_mapping(struct address_space *mapping)
2889{
2890}
2891
2892void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
2893{
2894        truncate_inode_pages_range(inode->i_mapping, lstart, lend);
2895}
2896EXPORT_SYMBOL_GPL(shmem_truncate_range);
2897
2898#define shmem_vm_ops                            generic_file_vm_ops
2899#define shmem_file_operations                   ramfs_file_operations
2900#define shmem_get_inode(sb, dir, mode, dev, flags)      ramfs_get_inode(sb, dir, mode, dev)
2901#define shmem_acct_size(flags, size)            0
2902#define shmem_unacct_size(flags, size)          do {} while (0)
2903
2904#endif /* CONFIG_SHMEM */
2905
2906/* common code */
2907
2908static struct dentry_operations anon_ops = {
2909        .d_dname = simple_dname
2910};
2911
2912static struct file *__shmem_file_setup(const char *name, loff_t size,
2913                                       unsigned long flags, unsigned int i_flags)
2914{
2915        struct file *res;
2916        struct inode *inode;
2917        struct path path;
2918        struct super_block *sb;
2919        struct qstr this;
2920
2921        if (IS_ERR(shm_mnt))
2922                return ERR_CAST(shm_mnt);
2923
2924        if (size < 0 || size > MAX_LFS_FILESIZE)
2925                return ERR_PTR(-EINVAL);
2926
2927        if (shmem_acct_size(flags, size))
2928                return ERR_PTR(-ENOMEM);
2929
2930        res = ERR_PTR(-ENOMEM);
2931        this.name = name;
2932        this.len = strlen(name);
2933        this.hash = 0; /* will go */
2934        sb = shm_mnt->mnt_sb;
2935        path.dentry = d_alloc_pseudo(sb, &this);
2936        if (!path.dentry)
2937                goto put_memory;
2938        d_set_d_op(path.dentry, &anon_ops);
2939        path.mnt = mntget(shm_mnt);
2940
2941        res = ERR_PTR(-ENOSPC);
2942        inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2943        if (!inode)
2944                goto put_dentry;
2945
2946        inode->i_flags |= i_flags;
2947        d_instantiate(path.dentry, inode);
2948        inode->i_size = size;
2949        clear_nlink(inode);     /* It is unlinked */
2950        res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
2951        if (IS_ERR(res))
2952                goto put_dentry;
2953
2954        res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2955                  &shmem_file_operations);
2956        if (IS_ERR(res))
2957                goto put_dentry;
2958
2959        return res;
2960
2961put_dentry:
2962        path_put(&path);
2963put_memory:
2964        shmem_unacct_size(flags, size);
2965        return res;
2966}
2967
2968/**
2969 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
2970 *      kernel internal.  There will be NO LSM permission checks against the
2971 *      underlying inode.  So users of this interface must do LSM checks at a
2972 *      higher layer.  The one user is the big_key implementation.  LSM checks
2973 *      are provided at the key level rather than the inode level.
2974 * @name: name for dentry (to be seen in /proc/<pid>/maps
2975 * @size: size to be set for the file
2976 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2977 */
2978struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
2979{
2980        return __shmem_file_setup(name, size, flags, S_PRIVATE);
2981}
2982
2983/**
2984 * shmem_file_setup - get an unlinked file living in tmpfs
2985 * @name: name for dentry (to be seen in /proc/<pid>/maps
2986 * @size: size to be set for the file
2987 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2988 */
2989struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2990{
2991        return __shmem_file_setup(name, size, flags, 0);
2992}
2993EXPORT_SYMBOL_GPL(shmem_file_setup);
2994
2995/**
2996 * shmem_zero_setup - setup a shared anonymous mapping
2997 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2998 */
2999int shmem_zero_setup(struct vm_area_struct *vma)
3000{
3001        struct file *file;
3002        loff_t size = vma->vm_end - vma->vm_start;
3003
3004        file = shmem_file_setup("dev/zero", size, vma->vm_flags);
3005        if (IS_ERR(file))
3006                return PTR_ERR(file);
3007
3008        if (vma->vm_file)
3009                fput(vma->vm_file);
3010        vma->vm_file = file;
3011        vma->vm_ops = &shmem_vm_ops;
3012        return 0;
3013}
3014
3015/**
3016 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3017 * @mapping:    the page's address_space
3018 * @index:      the page index
3019 * @gfp:        the page allocator flags to use if allocating
3020 *
3021 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3022 * with any new page allocations done using the specified allocation flags.
3023 * But read_cache_page_gfp() uses the ->readpage() method: which does not
3024 * suit tmpfs, since it may have pages in swapcache, and needs to find those
3025 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3026 *
3027 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3028 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3029 */
3030struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3031                                         pgoff_t index, gfp_t gfp)
3032{
3033#ifdef CONFIG_SHMEM
3034        struct inode *inode = mapping->host;
3035        struct page *page;
3036        int error;
3037
3038        BUG_ON(mapping->a_ops != &shmem_aops);
3039        error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3040        if (error)
3041                page = ERR_PTR(error);
3042        else
3043                unlock_page(page);
3044        return page;
3045#else
3046        /*
3047         * The tiny !SHMEM case uses ramfs without swap
3048         */
3049        return read_cache_page_gfp(mapping, index, gfp);
3050#endif
3051}
3052EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
3053