linux/mm/slub.c
<<
>>
Prefs
   1/*
   2 * SLUB: A slab allocator that limits cache line use instead of queuing
   3 * objects in per cpu and per node lists.
   4 *
   5 * The allocator synchronizes using per slab locks or atomic operatios
   6 * and only uses a centralized lock to manage a pool of partial slabs.
   7 *
   8 * (C) 2007 SGI, Christoph Lameter
   9 * (C) 2011 Linux Foundation, Christoph Lameter
  10 */
  11
  12#include <linux/mm.h>
  13#include <linux/swap.h> /* struct reclaim_state */
  14#include <linux/module.h>
  15#include <linux/bit_spinlock.h>
  16#include <linux/interrupt.h>
  17#include <linux/bitops.h>
  18#include <linux/slab.h>
  19#include "slab.h"
  20#include <linux/proc_fs.h>
  21#include <linux/notifier.h>
  22#include <linux/seq_file.h>
  23#include <linux/kmemcheck.h>
  24#include <linux/cpu.h>
  25#include <linux/cpuset.h>
  26#include <linux/mempolicy.h>
  27#include <linux/ctype.h>
  28#include <linux/debugobjects.h>
  29#include <linux/kallsyms.h>
  30#include <linux/memory.h>
  31#include <linux/math64.h>
  32#include <linux/fault-inject.h>
  33#include <linux/stacktrace.h>
  34#include <linux/prefetch.h>
  35#include <linux/memcontrol.h>
  36
  37#include <trace/events/kmem.h>
  38
  39#include "internal.h"
  40
  41/*
  42 * Lock order:
  43 *   1. slab_mutex (Global Mutex)
  44 *   2. node->list_lock
  45 *   3. slab_lock(page) (Only on some arches and for debugging)
  46 *
  47 *   slab_mutex
  48 *
  49 *   The role of the slab_mutex is to protect the list of all the slabs
  50 *   and to synchronize major metadata changes to slab cache structures.
  51 *
  52 *   The slab_lock is only used for debugging and on arches that do not
  53 *   have the ability to do a cmpxchg_double. It only protects the second
  54 *   double word in the page struct. Meaning
  55 *      A. page->freelist       -> List of object free in a page
  56 *      B. page->counters       -> Counters of objects
  57 *      C. page->frozen         -> frozen state
  58 *
  59 *   If a slab is frozen then it is exempt from list management. It is not
  60 *   on any list. The processor that froze the slab is the one who can
  61 *   perform list operations on the page. Other processors may put objects
  62 *   onto the freelist but the processor that froze the slab is the only
  63 *   one that can retrieve the objects from the page's freelist.
  64 *
  65 *   The list_lock protects the partial and full list on each node and
  66 *   the partial slab counter. If taken then no new slabs may be added or
  67 *   removed from the lists nor make the number of partial slabs be modified.
  68 *   (Note that the total number of slabs is an atomic value that may be
  69 *   modified without taking the list lock).
  70 *
  71 *   The list_lock is a centralized lock and thus we avoid taking it as
  72 *   much as possible. As long as SLUB does not have to handle partial
  73 *   slabs, operations can continue without any centralized lock. F.e.
  74 *   allocating a long series of objects that fill up slabs does not require
  75 *   the list lock.
  76 *   Interrupts are disabled during allocation and deallocation in order to
  77 *   make the slab allocator safe to use in the context of an irq. In addition
  78 *   interrupts are disabled to ensure that the processor does not change
  79 *   while handling per_cpu slabs, due to kernel preemption.
  80 *
  81 * SLUB assigns one slab for allocation to each processor.
  82 * Allocations only occur from these slabs called cpu slabs.
  83 *
  84 * Slabs with free elements are kept on a partial list and during regular
  85 * operations no list for full slabs is used. If an object in a full slab is
  86 * freed then the slab will show up again on the partial lists.
  87 * We track full slabs for debugging purposes though because otherwise we
  88 * cannot scan all objects.
  89 *
  90 * Slabs are freed when they become empty. Teardown and setup is
  91 * minimal so we rely on the page allocators per cpu caches for
  92 * fast frees and allocs.
  93 *
  94 * Overloading of page flags that are otherwise used for LRU management.
  95 *
  96 * PageActive           The slab is frozen and exempt from list processing.
  97 *                      This means that the slab is dedicated to a purpose
  98 *                      such as satisfying allocations for a specific
  99 *                      processor. Objects may be freed in the slab while
 100 *                      it is frozen but slab_free will then skip the usual
 101 *                      list operations. It is up to the processor holding
 102 *                      the slab to integrate the slab into the slab lists
 103 *                      when the slab is no longer needed.
 104 *
 105 *                      One use of this flag is to mark slabs that are
 106 *                      used for allocations. Then such a slab becomes a cpu
 107 *                      slab. The cpu slab may be equipped with an additional
 108 *                      freelist that allows lockless access to
 109 *                      free objects in addition to the regular freelist
 110 *                      that requires the slab lock.
 111 *
 112 * PageError            Slab requires special handling due to debug
 113 *                      options set. This moves slab handling out of
 114 *                      the fast path and disables lockless freelists.
 115 */
 116
 117static inline int kmem_cache_debug(struct kmem_cache *s)
 118{
 119#ifdef CONFIG_SLUB_DEBUG
 120        return unlikely(s->flags & SLAB_DEBUG_FLAGS);
 121#else
 122        return 0;
 123#endif
 124}
 125
 126static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
 127{
 128#ifdef CONFIG_SLUB_CPU_PARTIAL
 129        return !kmem_cache_debug(s);
 130#else
 131        return false;
 132#endif
 133}
 134
 135/*
 136 * Issues still to be resolved:
 137 *
 138 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
 139 *
 140 * - Variable sizing of the per node arrays
 141 */
 142
 143/* Enable to test recovery from slab corruption on boot */
 144#undef SLUB_RESILIENCY_TEST
 145
 146/* Enable to log cmpxchg failures */
 147#undef SLUB_DEBUG_CMPXCHG
 148
 149/*
 150 * Mininum number of partial slabs. These will be left on the partial
 151 * lists even if they are empty. kmem_cache_shrink may reclaim them.
 152 */
 153#define MIN_PARTIAL 5
 154
 155/*
 156 * Maximum number of desirable partial slabs.
 157 * The existence of more partial slabs makes kmem_cache_shrink
 158 * sort the partial list by the number of objects in use.
 159 */
 160#define MAX_PARTIAL 10
 161
 162#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
 163                                SLAB_POISON | SLAB_STORE_USER)
 164
 165/*
 166 * Debugging flags that require metadata to be stored in the slab.  These get
 167 * disabled when slub_debug=O is used and a cache's min order increases with
 168 * metadata.
 169 */
 170#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
 171
 172/*
 173 * Set of flags that will prevent slab merging
 174 */
 175#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
 176                SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
 177                SLAB_FAILSLAB)
 178
 179#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
 180                SLAB_CACHE_DMA | SLAB_NOTRACK)
 181
 182#define OO_SHIFT        16
 183#define OO_MASK         ((1 << OO_SHIFT) - 1)
 184#define MAX_OBJS_PER_PAGE       32767 /* since page.objects is u15 */
 185
 186/* Internal SLUB flags */
 187#define __OBJECT_POISON         0x80000000UL /* Poison object */
 188#define __CMPXCHG_DOUBLE        0x40000000UL /* Use cmpxchg_double */
 189
 190#ifdef CONFIG_SMP
 191static struct notifier_block slab_notifier;
 192#endif
 193
 194/*
 195 * Tracking user of a slab.
 196 */
 197#define TRACK_ADDRS_COUNT 16
 198struct track {
 199        unsigned long addr;     /* Called from address */
 200#ifdef CONFIG_STACKTRACE
 201        unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
 202#endif
 203        int cpu;                /* Was running on cpu */
 204        int pid;                /* Pid context */
 205        unsigned long when;     /* When did the operation occur */
 206};
 207
 208enum track_item { TRACK_ALLOC, TRACK_FREE };
 209
 210#ifdef CONFIG_SYSFS
 211static int sysfs_slab_add(struct kmem_cache *);
 212static int sysfs_slab_alias(struct kmem_cache *, const char *);
 213static void memcg_propagate_slab_attrs(struct kmem_cache *s);
 214#else
 215static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
 216static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
 217                                                        { return 0; }
 218static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
 219#endif
 220
 221static inline void stat(const struct kmem_cache *s, enum stat_item si)
 222{
 223#ifdef CONFIG_SLUB_STATS
 224        /*
 225         * The rmw is racy on a preemptible kernel but this is acceptable, so
 226         * avoid this_cpu_add()'s irq-disable overhead.
 227         */
 228        raw_cpu_inc(s->cpu_slab->stat[si]);
 229#endif
 230}
 231
 232/********************************************************************
 233 *                      Core slab cache functions
 234 *******************************************************************/
 235
 236static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
 237{
 238        return s->node[node];
 239}
 240
 241/* Verify that a pointer has an address that is valid within a slab page */
 242static inline int check_valid_pointer(struct kmem_cache *s,
 243                                struct page *page, const void *object)
 244{
 245        void *base;
 246
 247        if (!object)
 248                return 1;
 249
 250        base = page_address(page);
 251        if (object < base || object >= base + page->objects * s->size ||
 252                (object - base) % s->size) {
 253                return 0;
 254        }
 255
 256        return 1;
 257}
 258
 259static inline void *get_freepointer(struct kmem_cache *s, void *object)
 260{
 261        return *(void **)(object + s->offset);
 262}
 263
 264static void prefetch_freepointer(const struct kmem_cache *s, void *object)
 265{
 266        prefetch(object + s->offset);
 267}
 268
 269static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
 270{
 271        void *p;
 272
 273#ifdef CONFIG_DEBUG_PAGEALLOC
 274        probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
 275#else
 276        p = get_freepointer(s, object);
 277#endif
 278        return p;
 279}
 280
 281static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
 282{
 283        *(void **)(object + s->offset) = fp;
 284}
 285
 286/* Loop over all objects in a slab */
 287#define for_each_object(__p, __s, __addr, __objects) \
 288        for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
 289                        __p += (__s)->size)
 290
 291/* Determine object index from a given position */
 292static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
 293{
 294        return (p - addr) / s->size;
 295}
 296
 297static inline size_t slab_ksize(const struct kmem_cache *s)
 298{
 299#ifdef CONFIG_SLUB_DEBUG
 300        /*
 301         * Debugging requires use of the padding between object
 302         * and whatever may come after it.
 303         */
 304        if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
 305                return s->object_size;
 306
 307#endif
 308        /*
 309         * If we have the need to store the freelist pointer
 310         * back there or track user information then we can
 311         * only use the space before that information.
 312         */
 313        if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
 314                return s->inuse;
 315        /*
 316         * Else we can use all the padding etc for the allocation
 317         */
 318        return s->size;
 319}
 320
 321static inline int order_objects(int order, unsigned long size, int reserved)
 322{
 323        return ((PAGE_SIZE << order) - reserved) / size;
 324}
 325
 326static inline struct kmem_cache_order_objects oo_make(int order,
 327                unsigned long size, int reserved)
 328{
 329        struct kmem_cache_order_objects x = {
 330                (order << OO_SHIFT) + order_objects(order, size, reserved)
 331        };
 332
 333        return x;
 334}
 335
 336static inline int oo_order(struct kmem_cache_order_objects x)
 337{
 338        return x.x >> OO_SHIFT;
 339}
 340
 341static inline int oo_objects(struct kmem_cache_order_objects x)
 342{
 343        return x.x & OO_MASK;
 344}
 345
 346/*
 347 * Per slab locking using the pagelock
 348 */
 349static __always_inline void slab_lock(struct page *page)
 350{
 351        bit_spin_lock(PG_locked, &page->flags);
 352}
 353
 354static __always_inline void slab_unlock(struct page *page)
 355{
 356        __bit_spin_unlock(PG_locked, &page->flags);
 357}
 358
 359static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
 360{
 361        struct page tmp;
 362        tmp.counters = counters_new;
 363        /*
 364         * page->counters can cover frozen/inuse/objects as well
 365         * as page->_count.  If we assign to ->counters directly
 366         * we run the risk of losing updates to page->_count, so
 367         * be careful and only assign to the fields we need.
 368         */
 369        page->frozen  = tmp.frozen;
 370        page->inuse   = tmp.inuse;
 371        page->objects = tmp.objects;
 372}
 373
 374/* Interrupts must be disabled (for the fallback code to work right) */
 375static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
 376                void *freelist_old, unsigned long counters_old,
 377                void *freelist_new, unsigned long counters_new,
 378                const char *n)
 379{
 380        VM_BUG_ON(!irqs_disabled());
 381#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
 382    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
 383        if (s->flags & __CMPXCHG_DOUBLE) {
 384                if (cmpxchg_double(&page->freelist, &page->counters,
 385                        freelist_old, counters_old,
 386                        freelist_new, counters_new))
 387                return 1;
 388        } else
 389#endif
 390        {
 391                slab_lock(page);
 392                if (page->freelist == freelist_old &&
 393                                        page->counters == counters_old) {
 394                        page->freelist = freelist_new;
 395                        set_page_slub_counters(page, counters_new);
 396                        slab_unlock(page);
 397                        return 1;
 398                }
 399                slab_unlock(page);
 400        }
 401
 402        cpu_relax();
 403        stat(s, CMPXCHG_DOUBLE_FAIL);
 404
 405#ifdef SLUB_DEBUG_CMPXCHG
 406        pr_info("%s %s: cmpxchg double redo ", n, s->name);
 407#endif
 408
 409        return 0;
 410}
 411
 412static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
 413                void *freelist_old, unsigned long counters_old,
 414                void *freelist_new, unsigned long counters_new,
 415                const char *n)
 416{
 417#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
 418    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
 419        if (s->flags & __CMPXCHG_DOUBLE) {
 420                if (cmpxchg_double(&page->freelist, &page->counters,
 421                        freelist_old, counters_old,
 422                        freelist_new, counters_new))
 423                return 1;
 424        } else
 425#endif
 426        {
 427                unsigned long flags;
 428
 429                local_irq_save(flags);
 430                slab_lock(page);
 431                if (page->freelist == freelist_old &&
 432                                        page->counters == counters_old) {
 433                        page->freelist = freelist_new;
 434                        set_page_slub_counters(page, counters_new);
 435                        slab_unlock(page);
 436                        local_irq_restore(flags);
 437                        return 1;
 438                }
 439                slab_unlock(page);
 440                local_irq_restore(flags);
 441        }
 442
 443        cpu_relax();
 444        stat(s, CMPXCHG_DOUBLE_FAIL);
 445
 446#ifdef SLUB_DEBUG_CMPXCHG
 447        pr_info("%s %s: cmpxchg double redo ", n, s->name);
 448#endif
 449
 450        return 0;
 451}
 452
 453#ifdef CONFIG_SLUB_DEBUG
 454/*
 455 * Determine a map of object in use on a page.
 456 *
 457 * Node listlock must be held to guarantee that the page does
 458 * not vanish from under us.
 459 */
 460static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
 461{
 462        void *p;
 463        void *addr = page_address(page);
 464
 465        for (p = page->freelist; p; p = get_freepointer(s, p))
 466                set_bit(slab_index(p, s, addr), map);
 467}
 468
 469/*
 470 * Debug settings:
 471 */
 472#ifdef CONFIG_SLUB_DEBUG_ON
 473static int slub_debug = DEBUG_DEFAULT_FLAGS;
 474#else
 475static int slub_debug;
 476#endif
 477
 478static char *slub_debug_slabs;
 479static int disable_higher_order_debug;
 480
 481/*
 482 * Object debugging
 483 */
 484static void print_section(char *text, u8 *addr, unsigned int length)
 485{
 486        print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
 487                        length, 1);
 488}
 489
 490static struct track *get_track(struct kmem_cache *s, void *object,
 491        enum track_item alloc)
 492{
 493        struct track *p;
 494
 495        if (s->offset)
 496                p = object + s->offset + sizeof(void *);
 497        else
 498                p = object + s->inuse;
 499
 500        return p + alloc;
 501}
 502
 503static void set_track(struct kmem_cache *s, void *object,
 504                        enum track_item alloc, unsigned long addr)
 505{
 506        struct track *p = get_track(s, object, alloc);
 507
 508        if (addr) {
 509#ifdef CONFIG_STACKTRACE
 510                struct stack_trace trace;
 511                int i;
 512
 513                trace.nr_entries = 0;
 514                trace.max_entries = TRACK_ADDRS_COUNT;
 515                trace.entries = p->addrs;
 516                trace.skip = 3;
 517                save_stack_trace(&trace);
 518
 519                /* See rant in lockdep.c */
 520                if (trace.nr_entries != 0 &&
 521                    trace.entries[trace.nr_entries - 1] == ULONG_MAX)
 522                        trace.nr_entries--;
 523
 524                for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
 525                        p->addrs[i] = 0;
 526#endif
 527                p->addr = addr;
 528                p->cpu = smp_processor_id();
 529                p->pid = current->pid;
 530                p->when = jiffies;
 531        } else
 532                memset(p, 0, sizeof(struct track));
 533}
 534
 535static void init_tracking(struct kmem_cache *s, void *object)
 536{
 537        if (!(s->flags & SLAB_STORE_USER))
 538                return;
 539
 540        set_track(s, object, TRACK_FREE, 0UL);
 541        set_track(s, object, TRACK_ALLOC, 0UL);
 542}
 543
 544static void print_track(const char *s, struct track *t)
 545{
 546        if (!t->addr)
 547                return;
 548
 549        pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
 550               s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
 551#ifdef CONFIG_STACKTRACE
 552        {
 553                int i;
 554                for (i = 0; i < TRACK_ADDRS_COUNT; i++)
 555                        if (t->addrs[i])
 556                                pr_err("\t%pS\n", (void *)t->addrs[i]);
 557                        else
 558                                break;
 559        }
 560#endif
 561}
 562
 563static void print_tracking(struct kmem_cache *s, void *object)
 564{
 565        if (!(s->flags & SLAB_STORE_USER))
 566                return;
 567
 568        print_track("Allocated", get_track(s, object, TRACK_ALLOC));
 569        print_track("Freed", get_track(s, object, TRACK_FREE));
 570}
 571
 572static void print_page_info(struct page *page)
 573{
 574        pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
 575               page, page->objects, page->inuse, page->freelist, page->flags);
 576
 577}
 578
 579static void slab_bug(struct kmem_cache *s, char *fmt, ...)
 580{
 581        struct va_format vaf;
 582        va_list args;
 583
 584        va_start(args, fmt);
 585        vaf.fmt = fmt;
 586        vaf.va = &args;
 587        pr_err("=============================================================================\n");
 588        pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
 589        pr_err("-----------------------------------------------------------------------------\n\n");
 590
 591        add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 592        va_end(args);
 593}
 594
 595static void slab_fix(struct kmem_cache *s, char *fmt, ...)
 596{
 597        struct va_format vaf;
 598        va_list args;
 599
 600        va_start(args, fmt);
 601        vaf.fmt = fmt;
 602        vaf.va = &args;
 603        pr_err("FIX %s: %pV\n", s->name, &vaf);
 604        va_end(args);
 605}
 606
 607static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
 608{
 609        unsigned int off;       /* Offset of last byte */
 610        u8 *addr = page_address(page);
 611
 612        print_tracking(s, p);
 613
 614        print_page_info(page);
 615
 616        pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
 617               p, p - addr, get_freepointer(s, p));
 618
 619        if (p > addr + 16)
 620                print_section("Bytes b4 ", p - 16, 16);
 621
 622        print_section("Object ", p, min_t(unsigned long, s->object_size,
 623                                PAGE_SIZE));
 624        if (s->flags & SLAB_RED_ZONE)
 625                print_section("Redzone ", p + s->object_size,
 626                        s->inuse - s->object_size);
 627
 628        if (s->offset)
 629                off = s->offset + sizeof(void *);
 630        else
 631                off = s->inuse;
 632
 633        if (s->flags & SLAB_STORE_USER)
 634                off += 2 * sizeof(struct track);
 635
 636        if (off != s->size)
 637                /* Beginning of the filler is the free pointer */
 638                print_section("Padding ", p + off, s->size - off);
 639
 640        dump_stack();
 641}
 642
 643static void object_err(struct kmem_cache *s, struct page *page,
 644                        u8 *object, char *reason)
 645{
 646        slab_bug(s, "%s", reason);
 647        print_trailer(s, page, object);
 648}
 649
 650static void slab_err(struct kmem_cache *s, struct page *page,
 651                        const char *fmt, ...)
 652{
 653        va_list args;
 654        char buf[100];
 655
 656        va_start(args, fmt);
 657        vsnprintf(buf, sizeof(buf), fmt, args);
 658        va_end(args);
 659        slab_bug(s, "%s", buf);
 660        print_page_info(page);
 661        dump_stack();
 662}
 663
 664static void init_object(struct kmem_cache *s, void *object, u8 val)
 665{
 666        u8 *p = object;
 667
 668        if (s->flags & __OBJECT_POISON) {
 669                memset(p, POISON_FREE, s->object_size - 1);
 670                p[s->object_size - 1] = POISON_END;
 671        }
 672
 673        if (s->flags & SLAB_RED_ZONE)
 674                memset(p + s->object_size, val, s->inuse - s->object_size);
 675}
 676
 677static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
 678                                                void *from, void *to)
 679{
 680        slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
 681        memset(from, data, to - from);
 682}
 683
 684static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
 685                        u8 *object, char *what,
 686                        u8 *start, unsigned int value, unsigned int bytes)
 687{
 688        u8 *fault;
 689        u8 *end;
 690
 691        fault = memchr_inv(start, value, bytes);
 692        if (!fault)
 693                return 1;
 694
 695        end = start + bytes;
 696        while (end > fault && end[-1] == value)
 697                end--;
 698
 699        slab_bug(s, "%s overwritten", what);
 700        pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
 701                                        fault, end - 1, fault[0], value);
 702        print_trailer(s, page, object);
 703
 704        restore_bytes(s, what, value, fault, end);
 705        return 0;
 706}
 707
 708/*
 709 * Object layout:
 710 *
 711 * object address
 712 *      Bytes of the object to be managed.
 713 *      If the freepointer may overlay the object then the free
 714 *      pointer is the first word of the object.
 715 *
 716 *      Poisoning uses 0x6b (POISON_FREE) and the last byte is
 717 *      0xa5 (POISON_END)
 718 *
 719 * object + s->object_size
 720 *      Padding to reach word boundary. This is also used for Redzoning.
 721 *      Padding is extended by another word if Redzoning is enabled and
 722 *      object_size == inuse.
 723 *
 724 *      We fill with 0xbb (RED_INACTIVE) for inactive objects and with
 725 *      0xcc (RED_ACTIVE) for objects in use.
 726 *
 727 * object + s->inuse
 728 *      Meta data starts here.
 729 *
 730 *      A. Free pointer (if we cannot overwrite object on free)
 731 *      B. Tracking data for SLAB_STORE_USER
 732 *      C. Padding to reach required alignment boundary or at mininum
 733 *              one word if debugging is on to be able to detect writes
 734 *              before the word boundary.
 735 *
 736 *      Padding is done using 0x5a (POISON_INUSE)
 737 *
 738 * object + s->size
 739 *      Nothing is used beyond s->size.
 740 *
 741 * If slabcaches are merged then the object_size and inuse boundaries are mostly
 742 * ignored. And therefore no slab options that rely on these boundaries
 743 * may be used with merged slabcaches.
 744 */
 745
 746static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
 747{
 748        unsigned long off = s->inuse;   /* The end of info */
 749
 750        if (s->offset)
 751                /* Freepointer is placed after the object. */
 752                off += sizeof(void *);
 753
 754        if (s->flags & SLAB_STORE_USER)
 755                /* We also have user information there */
 756                off += 2 * sizeof(struct track);
 757
 758        if (s->size == off)
 759                return 1;
 760
 761        return check_bytes_and_report(s, page, p, "Object padding",
 762                                p + off, POISON_INUSE, s->size - off);
 763}
 764
 765/* Check the pad bytes at the end of a slab page */
 766static int slab_pad_check(struct kmem_cache *s, struct page *page)
 767{
 768        u8 *start;
 769        u8 *fault;
 770        u8 *end;
 771        int length;
 772        int remainder;
 773
 774        if (!(s->flags & SLAB_POISON))
 775                return 1;
 776
 777        start = page_address(page);
 778        length = (PAGE_SIZE << compound_order(page)) - s->reserved;
 779        end = start + length;
 780        remainder = length % s->size;
 781        if (!remainder)
 782                return 1;
 783
 784        fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
 785        if (!fault)
 786                return 1;
 787        while (end > fault && end[-1] == POISON_INUSE)
 788                end--;
 789
 790        slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
 791        print_section("Padding ", end - remainder, remainder);
 792
 793        restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
 794        return 0;
 795}
 796
 797static int check_object(struct kmem_cache *s, struct page *page,
 798                                        void *object, u8 val)
 799{
 800        u8 *p = object;
 801        u8 *endobject = object + s->object_size;
 802
 803        if (s->flags & SLAB_RED_ZONE) {
 804                if (!check_bytes_and_report(s, page, object, "Redzone",
 805                        endobject, val, s->inuse - s->object_size))
 806                        return 0;
 807        } else {
 808                if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
 809                        check_bytes_and_report(s, page, p, "Alignment padding",
 810                                endobject, POISON_INUSE,
 811                                s->inuse - s->object_size);
 812                }
 813        }
 814
 815        if (s->flags & SLAB_POISON) {
 816                if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
 817                        (!check_bytes_and_report(s, page, p, "Poison", p,
 818                                        POISON_FREE, s->object_size - 1) ||
 819                         !check_bytes_and_report(s, page, p, "Poison",
 820                                p + s->object_size - 1, POISON_END, 1)))
 821                        return 0;
 822                /*
 823                 * check_pad_bytes cleans up on its own.
 824                 */
 825                check_pad_bytes(s, page, p);
 826        }
 827
 828        if (!s->offset && val == SLUB_RED_ACTIVE)
 829                /*
 830                 * Object and freepointer overlap. Cannot check
 831                 * freepointer while object is allocated.
 832                 */
 833                return 1;
 834
 835        /* Check free pointer validity */
 836        if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
 837                object_err(s, page, p, "Freepointer corrupt");
 838                /*
 839                 * No choice but to zap it and thus lose the remainder
 840                 * of the free objects in this slab. May cause
 841                 * another error because the object count is now wrong.
 842                 */
 843                set_freepointer(s, p, NULL);
 844                return 0;
 845        }
 846        return 1;
 847}
 848
 849static int check_slab(struct kmem_cache *s, struct page *page)
 850{
 851        int maxobj;
 852
 853        VM_BUG_ON(!irqs_disabled());
 854
 855        if (!PageSlab(page)) {
 856                slab_err(s, page, "Not a valid slab page");
 857                return 0;
 858        }
 859
 860        maxobj = order_objects(compound_order(page), s->size, s->reserved);
 861        if (page->objects > maxobj) {
 862                slab_err(s, page, "objects %u > max %u",
 863                        s->name, page->objects, maxobj);
 864                return 0;
 865        }
 866        if (page->inuse > page->objects) {
 867                slab_err(s, page, "inuse %u > max %u",
 868                        s->name, page->inuse, page->objects);
 869                return 0;
 870        }
 871        /* Slab_pad_check fixes things up after itself */
 872        slab_pad_check(s, page);
 873        return 1;
 874}
 875
 876/*
 877 * Determine if a certain object on a page is on the freelist. Must hold the
 878 * slab lock to guarantee that the chains are in a consistent state.
 879 */
 880static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
 881{
 882        int nr = 0;
 883        void *fp;
 884        void *object = NULL;
 885        unsigned long max_objects;
 886
 887        fp = page->freelist;
 888        while (fp && nr <= page->objects) {
 889                if (fp == search)
 890                        return 1;
 891                if (!check_valid_pointer(s, page, fp)) {
 892                        if (object) {
 893                                object_err(s, page, object,
 894                                        "Freechain corrupt");
 895                                set_freepointer(s, object, NULL);
 896                        } else {
 897                                slab_err(s, page, "Freepointer corrupt");
 898                                page->freelist = NULL;
 899                                page->inuse = page->objects;
 900                                slab_fix(s, "Freelist cleared");
 901                                return 0;
 902                        }
 903                        break;
 904                }
 905                object = fp;
 906                fp = get_freepointer(s, object);
 907                nr++;
 908        }
 909
 910        max_objects = order_objects(compound_order(page), s->size, s->reserved);
 911        if (max_objects > MAX_OBJS_PER_PAGE)
 912                max_objects = MAX_OBJS_PER_PAGE;
 913
 914        if (page->objects != max_objects) {
 915                slab_err(s, page, "Wrong number of objects. Found %d but "
 916                        "should be %d", page->objects, max_objects);
 917                page->objects = max_objects;
 918                slab_fix(s, "Number of objects adjusted.");
 919        }
 920        if (page->inuse != page->objects - nr) {
 921                slab_err(s, page, "Wrong object count. Counter is %d but "
 922                        "counted were %d", page->inuse, page->objects - nr);
 923                page->inuse = page->objects - nr;
 924                slab_fix(s, "Object count adjusted.");
 925        }
 926        return search == NULL;
 927}
 928
 929static void trace(struct kmem_cache *s, struct page *page, void *object,
 930                                                                int alloc)
 931{
 932        if (s->flags & SLAB_TRACE) {
 933                pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
 934                        s->name,
 935                        alloc ? "alloc" : "free",
 936                        object, page->inuse,
 937                        page->freelist);
 938
 939                if (!alloc)
 940                        print_section("Object ", (void *)object,
 941                                        s->object_size);
 942
 943                dump_stack();
 944        }
 945}
 946
 947/*
 948 * Hooks for other subsystems that check memory allocations. In a typical
 949 * production configuration these hooks all should produce no code at all.
 950 */
 951static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
 952{
 953        kmemleak_alloc(ptr, size, 1, flags);
 954}
 955
 956static inline void kfree_hook(const void *x)
 957{
 958        kmemleak_free(x);
 959}
 960
 961static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
 962{
 963        flags &= gfp_allowed_mask;
 964        lockdep_trace_alloc(flags);
 965        might_sleep_if(flags & __GFP_WAIT);
 966
 967        return should_failslab(s->object_size, flags, s->flags);
 968}
 969
 970static inline void slab_post_alloc_hook(struct kmem_cache *s,
 971                                        gfp_t flags, void *object)
 972{
 973        flags &= gfp_allowed_mask;
 974        kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
 975        kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
 976}
 977
 978static inline void slab_free_hook(struct kmem_cache *s, void *x)
 979{
 980        kmemleak_free_recursive(x, s->flags);
 981
 982        /*
 983         * Trouble is that we may no longer disable interrupts in the fast path
 984         * So in order to make the debug calls that expect irqs to be
 985         * disabled we need to disable interrupts temporarily.
 986         */
 987#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
 988        {
 989                unsigned long flags;
 990
 991                local_irq_save(flags);
 992                kmemcheck_slab_free(s, x, s->object_size);
 993                debug_check_no_locks_freed(x, s->object_size);
 994                local_irq_restore(flags);
 995        }
 996#endif
 997        if (!(s->flags & SLAB_DEBUG_OBJECTS))
 998                debug_check_no_obj_freed(x, s->object_size);
 999}
1000
1001/*
1002 * Tracking of fully allocated slabs for debugging purposes.
1003 */
1004static void add_full(struct kmem_cache *s,
1005        struct kmem_cache_node *n, struct page *page)
1006{
1007        if (!(s->flags & SLAB_STORE_USER))
1008                return;
1009
1010        lockdep_assert_held(&n->list_lock);
1011        list_add(&page->lru, &n->full);
1012}
1013
1014static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1015{
1016        if (!(s->flags & SLAB_STORE_USER))
1017                return;
1018
1019        lockdep_assert_held(&n->list_lock);
1020        list_del(&page->lru);
1021}
1022
1023/* Tracking of the number of slabs for debugging purposes */
1024static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1025{
1026        struct kmem_cache_node *n = get_node(s, node);
1027
1028        return atomic_long_read(&n->nr_slabs);
1029}
1030
1031static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1032{
1033        return atomic_long_read(&n->nr_slabs);
1034}
1035
1036static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1037{
1038        struct kmem_cache_node *n = get_node(s, node);
1039
1040        /*
1041         * May be called early in order to allocate a slab for the
1042         * kmem_cache_node structure. Solve the chicken-egg
1043         * dilemma by deferring the increment of the count during
1044         * bootstrap (see early_kmem_cache_node_alloc).
1045         */
1046        if (likely(n)) {
1047                atomic_long_inc(&n->nr_slabs);
1048                atomic_long_add(objects, &n->total_objects);
1049        }
1050}
1051static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1052{
1053        struct kmem_cache_node *n = get_node(s, node);
1054
1055        atomic_long_dec(&n->nr_slabs);
1056        atomic_long_sub(objects, &n->total_objects);
1057}
1058
1059/* Object debug checks for alloc/free paths */
1060static void setup_object_debug(struct kmem_cache *s, struct page *page,
1061                                                                void *object)
1062{
1063        if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1064                return;
1065
1066        init_object(s, object, SLUB_RED_INACTIVE);
1067        init_tracking(s, object);
1068}
1069
1070static noinline int alloc_debug_processing(struct kmem_cache *s,
1071                                        struct page *page,
1072                                        void *object, unsigned long addr)
1073{
1074        if (!check_slab(s, page))
1075                goto bad;
1076
1077        if (!check_valid_pointer(s, page, object)) {
1078                object_err(s, page, object, "Freelist Pointer check fails");
1079                goto bad;
1080        }
1081
1082        if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1083                goto bad;
1084
1085        /* Success perform special debug activities for allocs */
1086        if (s->flags & SLAB_STORE_USER)
1087                set_track(s, object, TRACK_ALLOC, addr);
1088        trace(s, page, object, 1);
1089        init_object(s, object, SLUB_RED_ACTIVE);
1090        return 1;
1091
1092bad:
1093        if (PageSlab(page)) {
1094                /*
1095                 * If this is a slab page then lets do the best we can
1096                 * to avoid issues in the future. Marking all objects
1097                 * as used avoids touching the remaining objects.
1098                 */
1099                slab_fix(s, "Marking all objects used");
1100                page->inuse = page->objects;
1101                page->freelist = NULL;
1102        }
1103        return 0;
1104}
1105
1106static noinline struct kmem_cache_node *free_debug_processing(
1107        struct kmem_cache *s, struct page *page, void *object,
1108        unsigned long addr, unsigned long *flags)
1109{
1110        struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1111
1112        spin_lock_irqsave(&n->list_lock, *flags);
1113        slab_lock(page);
1114
1115        if (!check_slab(s, page))
1116                goto fail;
1117
1118        if (!check_valid_pointer(s, page, object)) {
1119                slab_err(s, page, "Invalid object pointer 0x%p", object);
1120                goto fail;
1121        }
1122
1123        if (on_freelist(s, page, object)) {
1124                object_err(s, page, object, "Object already free");
1125                goto fail;
1126        }
1127
1128        if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1129                goto out;
1130
1131        if (unlikely(s != page->slab_cache)) {
1132                if (!PageSlab(page)) {
1133                        slab_err(s, page, "Attempt to free object(0x%p) "
1134                                "outside of slab", object);
1135                } else if (!page->slab_cache) {
1136                        pr_err("SLUB <none>: no slab for object 0x%p.\n",
1137                               object);
1138                        dump_stack();
1139                } else
1140                        object_err(s, page, object,
1141                                        "page slab pointer corrupt.");
1142                goto fail;
1143        }
1144
1145        if (s->flags & SLAB_STORE_USER)
1146                set_track(s, object, TRACK_FREE, addr);
1147        trace(s, page, object, 0);
1148        init_object(s, object, SLUB_RED_INACTIVE);
1149out:
1150        slab_unlock(page);
1151        /*
1152         * Keep node_lock to preserve integrity
1153         * until the object is actually freed
1154         */
1155        return n;
1156
1157fail:
1158        slab_unlock(page);
1159        spin_unlock_irqrestore(&n->list_lock, *flags);
1160        slab_fix(s, "Object at 0x%p not freed", object);
1161        return NULL;
1162}
1163
1164static int __init setup_slub_debug(char *str)
1165{
1166        slub_debug = DEBUG_DEFAULT_FLAGS;
1167        if (*str++ != '=' || !*str)
1168                /*
1169                 * No options specified. Switch on full debugging.
1170                 */
1171                goto out;
1172
1173        if (*str == ',')
1174                /*
1175                 * No options but restriction on slabs. This means full
1176                 * debugging for slabs matching a pattern.
1177                 */
1178                goto check_slabs;
1179
1180        if (tolower(*str) == 'o') {
1181                /*
1182                 * Avoid enabling debugging on caches if its minimum order
1183                 * would increase as a result.
1184                 */
1185                disable_higher_order_debug = 1;
1186                goto out;
1187        }
1188
1189        slub_debug = 0;
1190        if (*str == '-')
1191                /*
1192                 * Switch off all debugging measures.
1193                 */
1194                goto out;
1195
1196        /*
1197         * Determine which debug features should be switched on
1198         */
1199        for (; *str && *str != ','; str++) {
1200                switch (tolower(*str)) {
1201                case 'f':
1202                        slub_debug |= SLAB_DEBUG_FREE;
1203                        break;
1204                case 'z':
1205                        slub_debug |= SLAB_RED_ZONE;
1206                        break;
1207                case 'p':
1208                        slub_debug |= SLAB_POISON;
1209                        break;
1210                case 'u':
1211                        slub_debug |= SLAB_STORE_USER;
1212                        break;
1213                case 't':
1214                        slub_debug |= SLAB_TRACE;
1215                        break;
1216                case 'a':
1217                        slub_debug |= SLAB_FAILSLAB;
1218                        break;
1219                default:
1220                        pr_err("slub_debug option '%c' unknown. skipped\n",
1221                               *str);
1222                }
1223        }
1224
1225check_slabs:
1226        if (*str == ',')
1227                slub_debug_slabs = str + 1;
1228out:
1229        return 1;
1230}
1231
1232__setup("slub_debug", setup_slub_debug);
1233
1234static unsigned long kmem_cache_flags(unsigned long object_size,
1235        unsigned long flags, const char *name,
1236        void (*ctor)(void *))
1237{
1238        /*
1239         * Enable debugging if selected on the kernel commandline.
1240         */
1241        if (slub_debug && (!slub_debug_slabs || (name &&
1242                !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1243                flags |= slub_debug;
1244
1245        return flags;
1246}
1247#else
1248static inline void setup_object_debug(struct kmem_cache *s,
1249                        struct page *page, void *object) {}
1250
1251static inline int alloc_debug_processing(struct kmem_cache *s,
1252        struct page *page, void *object, unsigned long addr) { return 0; }
1253
1254static inline struct kmem_cache_node *free_debug_processing(
1255        struct kmem_cache *s, struct page *page, void *object,
1256        unsigned long addr, unsigned long *flags) { return NULL; }
1257
1258static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1259                        { return 1; }
1260static inline int check_object(struct kmem_cache *s, struct page *page,
1261                        void *object, u8 val) { return 1; }
1262static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1263                                        struct page *page) {}
1264static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1265                                        struct page *page) {}
1266static inline unsigned long kmem_cache_flags(unsigned long object_size,
1267        unsigned long flags, const char *name,
1268        void (*ctor)(void *))
1269{
1270        return flags;
1271}
1272#define slub_debug 0
1273
1274#define disable_higher_order_debug 0
1275
1276static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1277                                                        { return 0; }
1278static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1279                                                        { return 0; }
1280static inline void inc_slabs_node(struct kmem_cache *s, int node,
1281                                                        int objects) {}
1282static inline void dec_slabs_node(struct kmem_cache *s, int node,
1283                                                        int objects) {}
1284
1285static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1286{
1287        kmemleak_alloc(ptr, size, 1, flags);
1288}
1289
1290static inline void kfree_hook(const void *x)
1291{
1292        kmemleak_free(x);
1293}
1294
1295static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1296                                                        { return 0; }
1297
1298static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1299                void *object)
1300{
1301        kmemleak_alloc_recursive(object, s->object_size, 1, s->flags,
1302                flags & gfp_allowed_mask);
1303}
1304
1305static inline void slab_free_hook(struct kmem_cache *s, void *x)
1306{
1307        kmemleak_free_recursive(x, s->flags);
1308}
1309
1310#endif /* CONFIG_SLUB_DEBUG */
1311
1312/*
1313 * Slab allocation and freeing
1314 */
1315static inline struct page *alloc_slab_page(struct kmem_cache *s,
1316                gfp_t flags, int node, struct kmem_cache_order_objects oo)
1317{
1318        struct page *page;
1319        int order = oo_order(oo);
1320
1321        flags |= __GFP_NOTRACK;
1322
1323        if (memcg_charge_slab(s, flags, order))
1324                return NULL;
1325
1326        if (node == NUMA_NO_NODE)
1327                page = alloc_pages(flags, order);
1328        else
1329                page = alloc_pages_exact_node(node, flags, order);
1330
1331        if (!page)
1332                memcg_uncharge_slab(s, order);
1333
1334        return page;
1335}
1336
1337static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1338{
1339        struct page *page;
1340        struct kmem_cache_order_objects oo = s->oo;
1341        gfp_t alloc_gfp;
1342
1343        flags &= gfp_allowed_mask;
1344
1345        if (flags & __GFP_WAIT)
1346                local_irq_enable();
1347
1348        flags |= s->allocflags;
1349
1350        /*
1351         * Let the initial higher-order allocation fail under memory pressure
1352         * so we fall-back to the minimum order allocation.
1353         */
1354        alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1355
1356        page = alloc_slab_page(s, alloc_gfp, node, oo);
1357        if (unlikely(!page)) {
1358                oo = s->min;
1359                alloc_gfp = flags;
1360                /*
1361                 * Allocation may have failed due to fragmentation.
1362                 * Try a lower order alloc if possible
1363                 */
1364                page = alloc_slab_page(s, alloc_gfp, node, oo);
1365
1366                if (page)
1367                        stat(s, ORDER_FALLBACK);
1368        }
1369
1370        if (kmemcheck_enabled && page
1371                && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1372                int pages = 1 << oo_order(oo);
1373
1374                kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
1375
1376                /*
1377                 * Objects from caches that have a constructor don't get
1378                 * cleared when they're allocated, so we need to do it here.
1379                 */
1380                if (s->ctor)
1381                        kmemcheck_mark_uninitialized_pages(page, pages);
1382                else
1383                        kmemcheck_mark_unallocated_pages(page, pages);
1384        }
1385
1386        if (flags & __GFP_WAIT)
1387                local_irq_disable();
1388        if (!page)
1389                return NULL;
1390
1391        page->objects = oo_objects(oo);
1392        mod_zone_page_state(page_zone(page),
1393                (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1394                NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1395                1 << oo_order(oo));
1396
1397        return page;
1398}
1399
1400static void setup_object(struct kmem_cache *s, struct page *page,
1401                                void *object)
1402{
1403        setup_object_debug(s, page, object);
1404        if (unlikely(s->ctor))
1405                s->ctor(object);
1406}
1407
1408static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1409{
1410        struct page *page;
1411        void *start;
1412        void *last;
1413        void *p;
1414        int order;
1415
1416        BUG_ON(flags & GFP_SLAB_BUG_MASK);
1417
1418        page = allocate_slab(s,
1419                flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1420        if (!page)
1421                goto out;
1422
1423        order = compound_order(page);
1424        inc_slabs_node(s, page_to_nid(page), page->objects);
1425        page->slab_cache = s;
1426        __SetPageSlab(page);
1427        if (page->pfmemalloc)
1428                SetPageSlabPfmemalloc(page);
1429
1430        start = page_address(page);
1431
1432        if (unlikely(s->flags & SLAB_POISON))
1433                memset(start, POISON_INUSE, PAGE_SIZE << order);
1434
1435        last = start;
1436        for_each_object(p, s, start, page->objects) {
1437                setup_object(s, page, last);
1438                set_freepointer(s, last, p);
1439                last = p;
1440        }
1441        setup_object(s, page, last);
1442        set_freepointer(s, last, NULL);
1443
1444        page->freelist = start;
1445        page->inuse = page->objects;
1446        page->frozen = 1;
1447out:
1448        return page;
1449}
1450
1451static void __free_slab(struct kmem_cache *s, struct page *page)
1452{
1453        int order = compound_order(page);
1454        int pages = 1 << order;
1455
1456        if (kmem_cache_debug(s)) {
1457                void *p;
1458
1459                slab_pad_check(s, page);
1460                for_each_object(p, s, page_address(page),
1461                                                page->objects)
1462                        check_object(s, page, p, SLUB_RED_INACTIVE);
1463        }
1464
1465        kmemcheck_free_shadow(page, compound_order(page));
1466
1467        mod_zone_page_state(page_zone(page),
1468                (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1469                NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1470                -pages);
1471
1472        __ClearPageSlabPfmemalloc(page);
1473        __ClearPageSlab(page);
1474
1475        page_mapcount_reset(page);
1476        if (current->reclaim_state)
1477                current->reclaim_state->reclaimed_slab += pages;
1478        __free_pages(page, order);
1479        memcg_uncharge_slab(s, order);
1480}
1481
1482#define need_reserve_slab_rcu                                           \
1483        (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1484
1485static void rcu_free_slab(struct rcu_head *h)
1486{
1487        struct page *page;
1488
1489        if (need_reserve_slab_rcu)
1490                page = virt_to_head_page(h);
1491        else
1492                page = container_of((struct list_head *)h, struct page, lru);
1493
1494        __free_slab(page->slab_cache, page);
1495}
1496
1497static void free_slab(struct kmem_cache *s, struct page *page)
1498{
1499        if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1500                struct rcu_head *head;
1501
1502                if (need_reserve_slab_rcu) {
1503                        int order = compound_order(page);
1504                        int offset = (PAGE_SIZE << order) - s->reserved;
1505
1506                        VM_BUG_ON(s->reserved != sizeof(*head));
1507                        head = page_address(page) + offset;
1508                } else {
1509                        /*
1510                         * RCU free overloads the RCU head over the LRU
1511                         */
1512                        head = (void *)&page->lru;
1513                }
1514
1515                call_rcu(head, rcu_free_slab);
1516        } else
1517                __free_slab(s, page);
1518}
1519
1520static void discard_slab(struct kmem_cache *s, struct page *page)
1521{
1522        dec_slabs_node(s, page_to_nid(page), page->objects);
1523        free_slab(s, page);
1524}
1525
1526/*
1527 * Management of partially allocated slabs.
1528 */
1529static inline void
1530__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1531{
1532        n->nr_partial++;
1533        if (tail == DEACTIVATE_TO_TAIL)
1534                list_add_tail(&page->lru, &n->partial);
1535        else
1536                list_add(&page->lru, &n->partial);
1537}
1538
1539static inline void add_partial(struct kmem_cache_node *n,
1540                                struct page *page, int tail)
1541{
1542        lockdep_assert_held(&n->list_lock);
1543        __add_partial(n, page, tail);
1544}
1545
1546static inline void
1547__remove_partial(struct kmem_cache_node *n, struct page *page)
1548{
1549        list_del(&page->lru);
1550        n->nr_partial--;
1551}
1552
1553static inline void remove_partial(struct kmem_cache_node *n,
1554                                        struct page *page)
1555{
1556        lockdep_assert_held(&n->list_lock);
1557        __remove_partial(n, page);
1558}
1559
1560/*
1561 * Remove slab from the partial list, freeze it and
1562 * return the pointer to the freelist.
1563 *
1564 * Returns a list of objects or NULL if it fails.
1565 */
1566static inline void *acquire_slab(struct kmem_cache *s,
1567                struct kmem_cache_node *n, struct page *page,
1568                int mode, int *objects)
1569{
1570        void *freelist;
1571        unsigned long counters;
1572        struct page new;
1573
1574        lockdep_assert_held(&n->list_lock);
1575
1576        /*
1577         * Zap the freelist and set the frozen bit.
1578         * The old freelist is the list of objects for the
1579         * per cpu allocation list.
1580         */
1581        freelist = page->freelist;
1582        counters = page->counters;
1583        new.counters = counters;
1584        *objects = new.objects - new.inuse;
1585        if (mode) {
1586                new.inuse = page->objects;
1587                new.freelist = NULL;
1588        } else {
1589                new.freelist = freelist;
1590        }
1591
1592        VM_BUG_ON(new.frozen);
1593        new.frozen = 1;
1594
1595        if (!__cmpxchg_double_slab(s, page,
1596                        freelist, counters,
1597                        new.freelist, new.counters,
1598                        "acquire_slab"))
1599                return NULL;
1600
1601        remove_partial(n, page);
1602        WARN_ON(!freelist);
1603        return freelist;
1604}
1605
1606static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1607static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1608
1609/*
1610 * Try to allocate a partial slab from a specific node.
1611 */
1612static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1613                                struct kmem_cache_cpu *c, gfp_t flags)
1614{
1615        struct page *page, *page2;
1616        void *object = NULL;
1617        int available = 0;
1618        int objects;
1619
1620        /*
1621         * Racy check. If we mistakenly see no partial slabs then we
1622         * just allocate an empty slab. If we mistakenly try to get a
1623         * partial slab and there is none available then get_partials()
1624         * will return NULL.
1625         */
1626        if (!n || !n->nr_partial)
1627                return NULL;
1628
1629        spin_lock(&n->list_lock);
1630        list_for_each_entry_safe(page, page2, &n->partial, lru) {
1631                void *t;
1632
1633                if (!pfmemalloc_match(page, flags))
1634                        continue;
1635
1636                t = acquire_slab(s, n, page, object == NULL, &objects);
1637                if (!t)
1638                        break;
1639
1640                available += objects;
1641                if (!object) {
1642                        c->page = page;
1643                        stat(s, ALLOC_FROM_PARTIAL);
1644                        object = t;
1645                } else {
1646                        put_cpu_partial(s, page, 0);
1647                        stat(s, CPU_PARTIAL_NODE);
1648                }
1649                if (!kmem_cache_has_cpu_partial(s)
1650                        || available > s->cpu_partial / 2)
1651                        break;
1652
1653        }
1654        spin_unlock(&n->list_lock);
1655        return object;
1656}
1657
1658/*
1659 * Get a page from somewhere. Search in increasing NUMA distances.
1660 */
1661static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1662                struct kmem_cache_cpu *c)
1663{
1664#ifdef CONFIG_NUMA
1665        struct zonelist *zonelist;
1666        struct zoneref *z;
1667        struct zone *zone;
1668        enum zone_type high_zoneidx = gfp_zone(flags);
1669        void *object;
1670        unsigned int cpuset_mems_cookie;
1671
1672        /*
1673         * The defrag ratio allows a configuration of the tradeoffs between
1674         * inter node defragmentation and node local allocations. A lower
1675         * defrag_ratio increases the tendency to do local allocations
1676         * instead of attempting to obtain partial slabs from other nodes.
1677         *
1678         * If the defrag_ratio is set to 0 then kmalloc() always
1679         * returns node local objects. If the ratio is higher then kmalloc()
1680         * may return off node objects because partial slabs are obtained
1681         * from other nodes and filled up.
1682         *
1683         * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1684         * defrag_ratio = 1000) then every (well almost) allocation will
1685         * first attempt to defrag slab caches on other nodes. This means
1686         * scanning over all nodes to look for partial slabs which may be
1687         * expensive if we do it every time we are trying to find a slab
1688         * with available objects.
1689         */
1690        if (!s->remote_node_defrag_ratio ||
1691                        get_cycles() % 1024 > s->remote_node_defrag_ratio)
1692                return NULL;
1693
1694        do {
1695                cpuset_mems_cookie = read_mems_allowed_begin();
1696                zonelist = node_zonelist(mempolicy_slab_node(), flags);
1697                for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1698                        struct kmem_cache_node *n;
1699
1700                        n = get_node(s, zone_to_nid(zone));
1701
1702                        if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1703                                        n->nr_partial > s->min_partial) {
1704                                object = get_partial_node(s, n, c, flags);
1705                                if (object) {
1706                                        /*
1707                                         * Don't check read_mems_allowed_retry()
1708                                         * here - if mems_allowed was updated in
1709                                         * parallel, that was a harmless race
1710                                         * between allocation and the cpuset
1711                                         * update
1712                                         */
1713                                        return object;
1714                                }
1715                        }
1716                }
1717        } while (read_mems_allowed_retry(cpuset_mems_cookie));
1718#endif
1719        return NULL;
1720}
1721
1722/*
1723 * Get a partial page, lock it and return it.
1724 */
1725static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1726                struct kmem_cache_cpu *c)
1727{
1728        void *object;
1729        int searchnode = (node == NUMA_NO_NODE) ? numa_mem_id() : node;
1730
1731        object = get_partial_node(s, get_node(s, searchnode), c, flags);
1732        if (object || node != NUMA_NO_NODE)
1733                return object;
1734
1735        return get_any_partial(s, flags, c);
1736}
1737
1738#ifdef CONFIG_PREEMPT
1739/*
1740 * Calculate the next globally unique transaction for disambiguiation
1741 * during cmpxchg. The transactions start with the cpu number and are then
1742 * incremented by CONFIG_NR_CPUS.
1743 */
1744#define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
1745#else
1746/*
1747 * No preemption supported therefore also no need to check for
1748 * different cpus.
1749 */
1750#define TID_STEP 1
1751#endif
1752
1753static inline unsigned long next_tid(unsigned long tid)
1754{
1755        return tid + TID_STEP;
1756}
1757
1758static inline unsigned int tid_to_cpu(unsigned long tid)
1759{
1760        return tid % TID_STEP;
1761}
1762
1763static inline unsigned long tid_to_event(unsigned long tid)
1764{
1765        return tid / TID_STEP;
1766}
1767
1768static inline unsigned int init_tid(int cpu)
1769{
1770        return cpu;
1771}
1772
1773static inline void note_cmpxchg_failure(const char *n,
1774                const struct kmem_cache *s, unsigned long tid)
1775{
1776#ifdef SLUB_DEBUG_CMPXCHG
1777        unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1778
1779        pr_info("%s %s: cmpxchg redo ", n, s->name);
1780
1781#ifdef CONFIG_PREEMPT
1782        if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1783                pr_warn("due to cpu change %d -> %d\n",
1784                        tid_to_cpu(tid), tid_to_cpu(actual_tid));
1785        else
1786#endif
1787        if (tid_to_event(tid) != tid_to_event(actual_tid))
1788                pr_warn("due to cpu running other code. Event %ld->%ld\n",
1789                        tid_to_event(tid), tid_to_event(actual_tid));
1790        else
1791                pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
1792                        actual_tid, tid, next_tid(tid));
1793#endif
1794        stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1795}
1796
1797static void init_kmem_cache_cpus(struct kmem_cache *s)
1798{
1799        int cpu;
1800
1801        for_each_possible_cpu(cpu)
1802                per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1803}
1804
1805/*
1806 * Remove the cpu slab
1807 */
1808static void deactivate_slab(struct kmem_cache *s, struct page *page,
1809                                void *freelist)
1810{
1811        enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1812        struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1813        int lock = 0;
1814        enum slab_modes l = M_NONE, m = M_NONE;
1815        void *nextfree;
1816        int tail = DEACTIVATE_TO_HEAD;
1817        struct page new;
1818        struct page old;
1819
1820        if (page->freelist) {
1821                stat(s, DEACTIVATE_REMOTE_FREES);
1822                tail = DEACTIVATE_TO_TAIL;
1823        }
1824
1825        /*
1826         * Stage one: Free all available per cpu objects back
1827         * to the page freelist while it is still frozen. Leave the
1828         * last one.
1829         *
1830         * There is no need to take the list->lock because the page
1831         * is still frozen.
1832         */
1833        while (freelist && (nextfree = get_freepointer(s, freelist))) {
1834                void *prior;
1835                unsigned long counters;
1836
1837                do {
1838                        prior = page->freelist;
1839                        counters = page->counters;
1840                        set_freepointer(s, freelist, prior);
1841                        new.counters = counters;
1842                        new.inuse--;
1843                        VM_BUG_ON(!new.frozen);
1844
1845                } while (!__cmpxchg_double_slab(s, page,
1846                        prior, counters,
1847                        freelist, new.counters,
1848                        "drain percpu freelist"));
1849
1850                freelist = nextfree;
1851        }
1852
1853        /*
1854         * Stage two: Ensure that the page is unfrozen while the
1855         * list presence reflects the actual number of objects
1856         * during unfreeze.
1857         *
1858         * We setup the list membership and then perform a cmpxchg
1859         * with the count. If there is a mismatch then the page
1860         * is not unfrozen but the page is on the wrong list.
1861         *
1862         * Then we restart the process which may have to remove
1863         * the page from the list that we just put it on again
1864         * because the number of objects in the slab may have
1865         * changed.
1866         */
1867redo:
1868
1869        old.freelist = page->freelist;
1870        old.counters = page->counters;
1871        VM_BUG_ON(!old.frozen);
1872
1873        /* Determine target state of the slab */
1874        new.counters = old.counters;
1875        if (freelist) {
1876                new.inuse--;
1877                set_freepointer(s, freelist, old.freelist);
1878                new.freelist = freelist;
1879        } else
1880                new.freelist = old.freelist;
1881
1882        new.frozen = 0;
1883
1884        if (!new.inuse && n->nr_partial >= s->min_partial)
1885                m = M_FREE;
1886        else if (new.freelist) {
1887                m = M_PARTIAL;
1888                if (!lock) {
1889                        lock = 1;
1890                        /*
1891                         * Taking the spinlock removes the possiblity
1892                         * that acquire_slab() will see a slab page that
1893                         * is frozen
1894                         */
1895                        spin_lock(&n->list_lock);
1896                }
1897        } else {
1898                m = M_FULL;
1899                if (kmem_cache_debug(s) && !lock) {
1900                        lock = 1;
1901                        /*
1902                         * This also ensures that the scanning of full
1903                         * slabs from diagnostic functions will not see
1904                         * any frozen slabs.
1905                         */
1906                        spin_lock(&n->list_lock);
1907                }
1908        }
1909
1910        if (l != m) {
1911
1912                if (l == M_PARTIAL)
1913
1914                        remove_partial(n, page);
1915
1916                else if (l == M_FULL)
1917
1918                        remove_full(s, n, page);
1919
1920                if (m == M_PARTIAL) {
1921
1922                        add_partial(n, page, tail);
1923                        stat(s, tail);
1924
1925                } else if (m == M_FULL) {
1926
1927                        stat(s, DEACTIVATE_FULL);
1928                        add_full(s, n, page);
1929
1930                }
1931        }
1932
1933        l = m;
1934        if (!__cmpxchg_double_slab(s, page,
1935                                old.freelist, old.counters,
1936                                new.freelist, new.counters,
1937                                "unfreezing slab"))
1938                goto redo;
1939
1940        if (lock)
1941                spin_unlock(&n->list_lock);
1942
1943        if (m == M_FREE) {
1944                stat(s, DEACTIVATE_EMPTY);
1945                discard_slab(s, page);
1946                stat(s, FREE_SLAB);
1947        }
1948}
1949
1950/*
1951 * Unfreeze all the cpu partial slabs.
1952 *
1953 * This function must be called with interrupts disabled
1954 * for the cpu using c (or some other guarantee must be there
1955 * to guarantee no concurrent accesses).
1956 */
1957static void unfreeze_partials(struct kmem_cache *s,
1958                struct kmem_cache_cpu *c)
1959{
1960#ifdef CONFIG_SLUB_CPU_PARTIAL
1961        struct kmem_cache_node *n = NULL, *n2 = NULL;
1962        struct page *page, *discard_page = NULL;
1963
1964        while ((page = c->partial)) {
1965                struct page new;
1966                struct page old;
1967
1968                c->partial = page->next;
1969
1970                n2 = get_node(s, page_to_nid(page));
1971                if (n != n2) {
1972                        if (n)
1973                                spin_unlock(&n->list_lock);
1974
1975                        n = n2;
1976                        spin_lock(&n->list_lock);
1977                }
1978
1979                do {
1980
1981                        old.freelist = page->freelist;
1982                        old.counters = page->counters;
1983                        VM_BUG_ON(!old.frozen);
1984
1985                        new.counters = old.counters;
1986                        new.freelist = old.freelist;
1987
1988                        new.frozen = 0;
1989
1990                } while (!__cmpxchg_double_slab(s, page,
1991                                old.freelist, old.counters,
1992                                new.freelist, new.counters,
1993                                "unfreezing slab"));
1994
1995                if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
1996                        page->next = discard_page;
1997                        discard_page = page;
1998                } else {
1999                        add_partial(n, page, DEACTIVATE_TO_TAIL);
2000                        stat(s, FREE_ADD_PARTIAL);
2001                }
2002        }
2003
2004        if (n)
2005                spin_unlock(&n->list_lock);
2006
2007        while (discard_page) {
2008                page = discard_page;
2009                discard_page = discard_page->next;
2010
2011                stat(s, DEACTIVATE_EMPTY);
2012                discard_slab(s, page);
2013                stat(s, FREE_SLAB);
2014        }
2015#endif
2016}
2017
2018/*
2019 * Put a page that was just frozen (in __slab_free) into a partial page
2020 * slot if available. This is done without interrupts disabled and without
2021 * preemption disabled. The cmpxchg is racy and may put the partial page
2022 * onto a random cpus partial slot.
2023 *
2024 * If we did not find a slot then simply move all the partials to the
2025 * per node partial list.
2026 */
2027static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2028{
2029#ifdef CONFIG_SLUB_CPU_PARTIAL
2030        struct page *oldpage;
2031        int pages;
2032        int pobjects;
2033
2034        do {
2035                pages = 0;
2036                pobjects = 0;
2037                oldpage = this_cpu_read(s->cpu_slab->partial);
2038
2039                if (oldpage) {
2040                        pobjects = oldpage->pobjects;
2041                        pages = oldpage->pages;
2042                        if (drain && pobjects > s->cpu_partial) {
2043                                unsigned long flags;
2044                                /*
2045                                 * partial array is full. Move the existing
2046                                 * set to the per node partial list.
2047                                 */
2048                                local_irq_save(flags);
2049                                unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2050                                local_irq_restore(flags);
2051                                oldpage = NULL;
2052                                pobjects = 0;
2053                                pages = 0;
2054                                stat(s, CPU_PARTIAL_DRAIN);
2055                        }
2056                }
2057
2058                pages++;
2059                pobjects += page->objects - page->inuse;
2060
2061                page->pages = pages;
2062                page->pobjects = pobjects;
2063                page->next = oldpage;
2064
2065        } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2066                                                                != oldpage);
2067#endif
2068}
2069
2070static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2071{
2072        stat(s, CPUSLAB_FLUSH);
2073        deactivate_slab(s, c->page, c->freelist);
2074
2075        c->tid = next_tid(c->tid);
2076        c->page = NULL;
2077        c->freelist = NULL;
2078}
2079
2080/*
2081 * Flush cpu slab.
2082 *
2083 * Called from IPI handler with interrupts disabled.
2084 */
2085static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2086{
2087        struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2088
2089        if (likely(c)) {
2090                if (c->page)
2091                        flush_slab(s, c);
2092
2093                unfreeze_partials(s, c);
2094        }
2095}
2096
2097static void flush_cpu_slab(void *d)
2098{
2099        struct kmem_cache *s = d;
2100
2101        __flush_cpu_slab(s, smp_processor_id());
2102}
2103
2104static bool has_cpu_slab(int cpu, void *info)
2105{
2106        struct kmem_cache *s = info;
2107        struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2108
2109        return c->page || c->partial;
2110}
2111
2112static void flush_all(struct kmem_cache *s)
2113{
2114        on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2115}
2116
2117/*
2118 * Check if the objects in a per cpu structure fit numa
2119 * locality expectations.
2120 */
2121static inline int node_match(struct page *page, int node)
2122{
2123#ifdef CONFIG_NUMA
2124        if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2125                return 0;
2126#endif
2127        return 1;
2128}
2129
2130#ifdef CONFIG_SLUB_DEBUG
2131static int count_free(struct page *page)
2132{
2133        return page->objects - page->inuse;
2134}
2135
2136static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2137{
2138        return atomic_long_read(&n->total_objects);
2139}
2140#endif /* CONFIG_SLUB_DEBUG */
2141
2142#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2143static unsigned long count_partial(struct kmem_cache_node *n,
2144                                        int (*get_count)(struct page *))
2145{
2146        unsigned long flags;
2147        unsigned long x = 0;
2148        struct page *page;
2149
2150        spin_lock_irqsave(&n->list_lock, flags);
2151        list_for_each_entry(page, &n->partial, lru)
2152                x += get_count(page);
2153        spin_unlock_irqrestore(&n->list_lock, flags);
2154        return x;
2155}
2156#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2157
2158static noinline void
2159slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2160{
2161#ifdef CONFIG_SLUB_DEBUG
2162        static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2163                                      DEFAULT_RATELIMIT_BURST);
2164        int node;
2165
2166        if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2167                return;
2168
2169        pr_warn("SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2170                nid, gfpflags);
2171        pr_warn("  cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2172                s->name, s->object_size, s->size, oo_order(s->oo),
2173                oo_order(s->min));
2174
2175        if (oo_order(s->min) > get_order(s->object_size))
2176                pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
2177                        s->name);
2178
2179        for_each_online_node(node) {
2180                struct kmem_cache_node *n = get_node(s, node);
2181                unsigned long nr_slabs;
2182                unsigned long nr_objs;
2183                unsigned long nr_free;
2184
2185                if (!n)
2186                        continue;
2187
2188                nr_free  = count_partial(n, count_free);
2189                nr_slabs = node_nr_slabs(n);
2190                nr_objs  = node_nr_objs(n);
2191
2192                pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
2193                        node, nr_slabs, nr_objs, nr_free);
2194        }
2195#endif
2196}
2197
2198static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2199                        int node, struct kmem_cache_cpu **pc)
2200{
2201        void *freelist;
2202        struct kmem_cache_cpu *c = *pc;
2203        struct page *page;
2204
2205        freelist = get_partial(s, flags, node, c);
2206
2207        if (freelist)
2208                return freelist;
2209
2210        page = new_slab(s, flags, node);
2211        if (page) {
2212                c = raw_cpu_ptr(s->cpu_slab);
2213                if (c->page)
2214                        flush_slab(s, c);
2215
2216                /*
2217                 * No other reference to the page yet so we can
2218                 * muck around with it freely without cmpxchg
2219                 */
2220                freelist = page->freelist;
2221                page->freelist = NULL;
2222
2223                stat(s, ALLOC_SLAB);
2224                c->page = page;
2225                *pc = c;
2226        } else
2227                freelist = NULL;
2228
2229        return freelist;
2230}
2231
2232static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2233{
2234        if (unlikely(PageSlabPfmemalloc(page)))
2235                return gfp_pfmemalloc_allowed(gfpflags);
2236
2237        return true;
2238}
2239
2240/*
2241 * Check the page->freelist of a page and either transfer the freelist to the
2242 * per cpu freelist or deactivate the page.
2243 *
2244 * The page is still frozen if the return value is not NULL.
2245 *
2246 * If this function returns NULL then the page has been unfrozen.
2247 *
2248 * This function must be called with interrupt disabled.
2249 */
2250static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2251{
2252        struct page new;
2253        unsigned long counters;
2254        void *freelist;
2255
2256        do {
2257                freelist = page->freelist;
2258                counters = page->counters;
2259
2260                new.counters = counters;
2261                VM_BUG_ON(!new.frozen);
2262
2263                new.inuse = page->objects;
2264                new.frozen = freelist != NULL;
2265
2266        } while (!__cmpxchg_double_slab(s, page,
2267                freelist, counters,
2268                NULL, new.counters,
2269                "get_freelist"));
2270
2271        return freelist;
2272}
2273
2274/*
2275 * Slow path. The lockless freelist is empty or we need to perform
2276 * debugging duties.
2277 *
2278 * Processing is still very fast if new objects have been freed to the
2279 * regular freelist. In that case we simply take over the regular freelist
2280 * as the lockless freelist and zap the regular freelist.
2281 *
2282 * If that is not working then we fall back to the partial lists. We take the
2283 * first element of the freelist as the object to allocate now and move the
2284 * rest of the freelist to the lockless freelist.
2285 *
2286 * And if we were unable to get a new slab from the partial slab lists then
2287 * we need to allocate a new slab. This is the slowest path since it involves
2288 * a call to the page allocator and the setup of a new slab.
2289 */
2290static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2291                          unsigned long addr, struct kmem_cache_cpu *c)
2292{
2293        void *freelist;
2294        struct page *page;
2295        unsigned long flags;
2296
2297        local_irq_save(flags);
2298#ifdef CONFIG_PREEMPT
2299        /*
2300         * We may have been preempted and rescheduled on a different
2301         * cpu before disabling interrupts. Need to reload cpu area
2302         * pointer.
2303         */
2304        c = this_cpu_ptr(s->cpu_slab);
2305#endif
2306
2307        page = c->page;
2308        if (!page)
2309                goto new_slab;
2310redo:
2311
2312        if (unlikely(!node_match(page, node))) {
2313                stat(s, ALLOC_NODE_MISMATCH);
2314                deactivate_slab(s, page, c->freelist);
2315                c->page = NULL;
2316                c->freelist = NULL;
2317                goto new_slab;
2318        }
2319
2320        /*
2321         * By rights, we should be searching for a slab page that was
2322         * PFMEMALLOC but right now, we are losing the pfmemalloc
2323         * information when the page leaves the per-cpu allocator
2324         */
2325        if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2326                deactivate_slab(s, page, c->freelist);
2327                c->page = NULL;
2328                c->freelist = NULL;
2329                goto new_slab;
2330        }
2331
2332        /* must check again c->freelist in case of cpu migration or IRQ */
2333        freelist = c->freelist;
2334        if (freelist)
2335                goto load_freelist;
2336
2337        freelist = get_freelist(s, page);
2338
2339        if (!freelist) {
2340                c->page = NULL;
2341                stat(s, DEACTIVATE_BYPASS);
2342                goto new_slab;
2343        }
2344
2345        stat(s, ALLOC_REFILL);
2346
2347load_freelist:
2348        /*
2349         * freelist is pointing to the list of objects to be used.
2350         * page is pointing to the page from which the objects are obtained.
2351         * That page must be frozen for per cpu allocations to work.
2352         */
2353        VM_BUG_ON(!c->page->frozen);
2354        c->freelist = get_freepointer(s, freelist);
2355        c->tid = next_tid(c->tid);
2356        local_irq_restore(flags);
2357        return freelist;
2358
2359new_slab:
2360
2361        if (c->partial) {
2362                page = c->page = c->partial;
2363                c->partial = page->next;
2364                stat(s, CPU_PARTIAL_ALLOC);
2365                c->freelist = NULL;
2366                goto redo;
2367        }
2368
2369        freelist = new_slab_objects(s, gfpflags, node, &c);
2370
2371        if (unlikely(!freelist)) {
2372                slab_out_of_memory(s, gfpflags, node);
2373                local_irq_restore(flags);
2374                return NULL;
2375        }
2376
2377        page = c->page;
2378        if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2379                goto load_freelist;
2380
2381        /* Only entered in the debug case */
2382        if (kmem_cache_debug(s) &&
2383                        !alloc_debug_processing(s, page, freelist, addr))
2384                goto new_slab;  /* Slab failed checks. Next slab needed */
2385
2386        deactivate_slab(s, page, get_freepointer(s, freelist));
2387        c->page = NULL;
2388        c->freelist = NULL;
2389        local_irq_restore(flags);
2390        return freelist;
2391}
2392
2393/*
2394 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2395 * have the fastpath folded into their functions. So no function call
2396 * overhead for requests that can be satisfied on the fastpath.
2397 *
2398 * The fastpath works by first checking if the lockless freelist can be used.
2399 * If not then __slab_alloc is called for slow processing.
2400 *
2401 * Otherwise we can simply pick the next object from the lockless free list.
2402 */
2403static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2404                gfp_t gfpflags, int node, unsigned long addr)
2405{
2406        void **object;
2407        struct kmem_cache_cpu *c;
2408        struct page *page;
2409        unsigned long tid;
2410
2411        if (slab_pre_alloc_hook(s, gfpflags))
2412                return NULL;
2413
2414        s = memcg_kmem_get_cache(s, gfpflags);
2415redo:
2416        /*
2417         * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2418         * enabled. We may switch back and forth between cpus while
2419         * reading from one cpu area. That does not matter as long
2420         * as we end up on the original cpu again when doing the cmpxchg.
2421         *
2422         * Preemption is disabled for the retrieval of the tid because that
2423         * must occur from the current processor. We cannot allow rescheduling
2424         * on a different processor between the determination of the pointer
2425         * and the retrieval of the tid.
2426         */
2427        preempt_disable();
2428        c = this_cpu_ptr(s->cpu_slab);
2429
2430        /*
2431         * The transaction ids are globally unique per cpu and per operation on
2432         * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2433         * occurs on the right processor and that there was no operation on the
2434         * linked list in between.
2435         */
2436        tid = c->tid;
2437        preempt_enable();
2438
2439        object = c->freelist;
2440        page = c->page;
2441        if (unlikely(!object || !node_match(page, node))) {
2442                object = __slab_alloc(s, gfpflags, node, addr, c);
2443                stat(s, ALLOC_SLOWPATH);
2444        } else {
2445                void *next_object = get_freepointer_safe(s, object);
2446
2447                /*
2448                 * The cmpxchg will only match if there was no additional
2449                 * operation and if we are on the right processor.
2450                 *
2451                 * The cmpxchg does the following atomically (without lock
2452                 * semantics!)
2453                 * 1. Relocate first pointer to the current per cpu area.
2454                 * 2. Verify that tid and freelist have not been changed
2455                 * 3. If they were not changed replace tid and freelist
2456                 *
2457                 * Since this is without lock semantics the protection is only
2458                 * against code executing on this cpu *not* from access by
2459                 * other cpus.
2460                 */
2461                if (unlikely(!this_cpu_cmpxchg_double(
2462                                s->cpu_slab->freelist, s->cpu_slab->tid,
2463                                object, tid,
2464                                next_object, next_tid(tid)))) {
2465
2466                        note_cmpxchg_failure("slab_alloc", s, tid);
2467                        goto redo;
2468                }
2469                prefetch_freepointer(s, next_object);
2470                stat(s, ALLOC_FASTPATH);
2471        }
2472
2473        if (unlikely(gfpflags & __GFP_ZERO) && object)
2474                memset(object, 0, s->object_size);
2475
2476        slab_post_alloc_hook(s, gfpflags, object);
2477
2478        return object;
2479}
2480
2481static __always_inline void *slab_alloc(struct kmem_cache *s,
2482                gfp_t gfpflags, unsigned long addr)
2483{
2484        return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2485}
2486
2487void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2488{
2489        void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2490
2491        trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2492                                s->size, gfpflags);
2493
2494        return ret;
2495}
2496EXPORT_SYMBOL(kmem_cache_alloc);
2497
2498#ifdef CONFIG_TRACING
2499void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2500{
2501        void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2502        trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2503        return ret;
2504}
2505EXPORT_SYMBOL(kmem_cache_alloc_trace);
2506#endif
2507
2508#ifdef CONFIG_NUMA
2509void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2510{
2511        void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2512
2513        trace_kmem_cache_alloc_node(_RET_IP_, ret,
2514                                    s->object_size, s->size, gfpflags, node);
2515
2516        return ret;
2517}
2518EXPORT_SYMBOL(kmem_cache_alloc_node);
2519
2520#ifdef CONFIG_TRACING
2521void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2522                                    gfp_t gfpflags,
2523                                    int node, size_t size)
2524{
2525        void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2526
2527        trace_kmalloc_node(_RET_IP_, ret,
2528                           size, s->size, gfpflags, node);
2529        return ret;
2530}
2531EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2532#endif
2533#endif
2534
2535/*
2536 * Slow patch handling. This may still be called frequently since objects
2537 * have a longer lifetime than the cpu slabs in most processing loads.
2538 *
2539 * So we still attempt to reduce cache line usage. Just take the slab
2540 * lock and free the item. If there is no additional partial page
2541 * handling required then we can return immediately.
2542 */
2543static void __slab_free(struct kmem_cache *s, struct page *page,
2544                        void *x, unsigned long addr)
2545{
2546        void *prior;
2547        void **object = (void *)x;
2548        int was_frozen;
2549        struct page new;
2550        unsigned long counters;
2551        struct kmem_cache_node *n = NULL;
2552        unsigned long uninitialized_var(flags);
2553
2554        stat(s, FREE_SLOWPATH);
2555
2556        if (kmem_cache_debug(s) &&
2557                !(n = free_debug_processing(s, page, x, addr, &flags)))
2558                return;
2559
2560        do {
2561                if (unlikely(n)) {
2562                        spin_unlock_irqrestore(&n->list_lock, flags);
2563                        n = NULL;
2564                }
2565                prior = page->freelist;
2566                counters = page->counters;
2567                set_freepointer(s, object, prior);
2568                new.counters = counters;
2569                was_frozen = new.frozen;
2570                new.inuse--;
2571                if ((!new.inuse || !prior) && !was_frozen) {
2572
2573                        if (kmem_cache_has_cpu_partial(s) && !prior) {
2574
2575                                /*
2576                                 * Slab was on no list before and will be
2577                                 * partially empty
2578                                 * We can defer the list move and instead
2579                                 * freeze it.
2580                                 */
2581                                new.frozen = 1;
2582
2583                        } else { /* Needs to be taken off a list */
2584
2585                                n = get_node(s, page_to_nid(page));
2586                                /*
2587                                 * Speculatively acquire the list_lock.
2588                                 * If the cmpxchg does not succeed then we may
2589                                 * drop the list_lock without any processing.
2590                                 *
2591                                 * Otherwise the list_lock will synchronize with
2592                                 * other processors updating the list of slabs.
2593                                 */
2594                                spin_lock_irqsave(&n->list_lock, flags);
2595
2596                        }
2597                }
2598
2599        } while (!cmpxchg_double_slab(s, page,
2600                prior, counters,
2601                object, new.counters,
2602                "__slab_free"));
2603
2604        if (likely(!n)) {
2605
2606                /*
2607                 * If we just froze the page then put it onto the
2608                 * per cpu partial list.
2609                 */
2610                if (new.frozen && !was_frozen) {
2611                        put_cpu_partial(s, page, 1);
2612                        stat(s, CPU_PARTIAL_FREE);
2613                }
2614                /*
2615                 * The list lock was not taken therefore no list
2616                 * activity can be necessary.
2617                 */
2618                if (was_frozen)
2619                        stat(s, FREE_FROZEN);
2620                return;
2621        }
2622
2623        if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2624                goto slab_empty;
2625
2626        /*
2627         * Objects left in the slab. If it was not on the partial list before
2628         * then add it.
2629         */
2630        if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2631                if (kmem_cache_debug(s))
2632                        remove_full(s, n, page);
2633                add_partial(n, page, DEACTIVATE_TO_TAIL);
2634                stat(s, FREE_ADD_PARTIAL);
2635        }
2636        spin_unlock_irqrestore(&n->list_lock, flags);
2637        return;
2638
2639slab_empty:
2640        if (prior) {
2641                /*
2642                 * Slab on the partial list.
2643                 */
2644                remove_partial(n, page);
2645                stat(s, FREE_REMOVE_PARTIAL);
2646        } else {
2647                /* Slab must be on the full list */
2648                remove_full(s, n, page);
2649        }
2650
2651        spin_unlock_irqrestore(&n->list_lock, flags);
2652        stat(s, FREE_SLAB);
2653        discard_slab(s, page);
2654}
2655
2656/*
2657 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2658 * can perform fastpath freeing without additional function calls.
2659 *
2660 * The fastpath is only possible if we are freeing to the current cpu slab
2661 * of this processor. This typically the case if we have just allocated
2662 * the item before.
2663 *
2664 * If fastpath is not possible then fall back to __slab_free where we deal
2665 * with all sorts of special processing.
2666 */
2667static __always_inline void slab_free(struct kmem_cache *s,
2668                        struct page *page, void *x, unsigned long addr)
2669{
2670        void **object = (void *)x;
2671        struct kmem_cache_cpu *c;
2672        unsigned long tid;
2673
2674        slab_free_hook(s, x);
2675
2676redo:
2677        /*
2678         * Determine the currently cpus per cpu slab.
2679         * The cpu may change afterward. However that does not matter since
2680         * data is retrieved via this pointer. If we are on the same cpu
2681         * during the cmpxchg then the free will succedd.
2682         */
2683        preempt_disable();
2684        c = this_cpu_ptr(s->cpu_slab);
2685
2686        tid = c->tid;
2687        preempt_enable();
2688
2689        if (likely(page == c->page)) {
2690                set_freepointer(s, object, c->freelist);
2691
2692                if (unlikely(!this_cpu_cmpxchg_double(
2693                                s->cpu_slab->freelist, s->cpu_slab->tid,
2694                                c->freelist, tid,
2695                                object, next_tid(tid)))) {
2696
2697                        note_cmpxchg_failure("slab_free", s, tid);
2698                        goto redo;
2699                }
2700                stat(s, FREE_FASTPATH);
2701        } else
2702                __slab_free(s, page, x, addr);
2703
2704}
2705
2706void kmem_cache_free(struct kmem_cache *s, void *x)
2707{
2708        s = cache_from_obj(s, x);
2709        if (!s)
2710                return;
2711        slab_free(s, virt_to_head_page(x), x, _RET_IP_);
2712        trace_kmem_cache_free(_RET_IP_, x);
2713}
2714EXPORT_SYMBOL(kmem_cache_free);
2715
2716/*
2717 * Object placement in a slab is made very easy because we always start at
2718 * offset 0. If we tune the size of the object to the alignment then we can
2719 * get the required alignment by putting one properly sized object after
2720 * another.
2721 *
2722 * Notice that the allocation order determines the sizes of the per cpu
2723 * caches. Each processor has always one slab available for allocations.
2724 * Increasing the allocation order reduces the number of times that slabs
2725 * must be moved on and off the partial lists and is therefore a factor in
2726 * locking overhead.
2727 */
2728
2729/*
2730 * Mininum / Maximum order of slab pages. This influences locking overhead
2731 * and slab fragmentation. A higher order reduces the number of partial slabs
2732 * and increases the number of allocations possible without having to
2733 * take the list_lock.
2734 */
2735static int slub_min_order;
2736static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2737static int slub_min_objects;
2738
2739/*
2740 * Merge control. If this is set then no merging of slab caches will occur.
2741 * (Could be removed. This was introduced to pacify the merge skeptics.)
2742 */
2743static int slub_nomerge;
2744
2745/*
2746 * Calculate the order of allocation given an slab object size.
2747 *
2748 * The order of allocation has significant impact on performance and other
2749 * system components. Generally order 0 allocations should be preferred since
2750 * order 0 does not cause fragmentation in the page allocator. Larger objects
2751 * be problematic to put into order 0 slabs because there may be too much
2752 * unused space left. We go to a higher order if more than 1/16th of the slab
2753 * would be wasted.
2754 *
2755 * In order to reach satisfactory performance we must ensure that a minimum
2756 * number of objects is in one slab. Otherwise we may generate too much
2757 * activity on the partial lists which requires taking the list_lock. This is
2758 * less a concern for large slabs though which are rarely used.
2759 *
2760 * slub_max_order specifies the order where we begin to stop considering the
2761 * number of objects in a slab as critical. If we reach slub_max_order then
2762 * we try to keep the page order as low as possible. So we accept more waste
2763 * of space in favor of a small page order.
2764 *
2765 * Higher order allocations also allow the placement of more objects in a
2766 * slab and thereby reduce object handling overhead. If the user has
2767 * requested a higher mininum order then we start with that one instead of
2768 * the smallest order which will fit the object.
2769 */
2770static inline int slab_order(int size, int min_objects,
2771                                int max_order, int fract_leftover, int reserved)
2772{
2773        int order;
2774        int rem;
2775        int min_order = slub_min_order;
2776
2777        if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2778                return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2779
2780        for (order = max(min_order,
2781                                fls(min_objects * size - 1) - PAGE_SHIFT);
2782                        order <= max_order; order++) {
2783
2784                unsigned long slab_size = PAGE_SIZE << order;
2785
2786                if (slab_size < min_objects * size + reserved)
2787                        continue;
2788
2789                rem = (slab_size - reserved) % size;
2790
2791                if (rem <= slab_size / fract_leftover)
2792                        break;
2793
2794        }
2795
2796        return order;
2797}
2798
2799static inline int calculate_order(int size, int reserved)
2800{
2801        int order;
2802        int min_objects;
2803        int fraction;
2804        int max_objects;
2805
2806        /*
2807         * Attempt to find best configuration for a slab. This
2808         * works by first attempting to generate a layout with
2809         * the best configuration and backing off gradually.
2810         *
2811         * First we reduce the acceptable waste in a slab. Then
2812         * we reduce the minimum objects required in a slab.
2813         */
2814        min_objects = slub_min_objects;
2815        if (!min_objects)
2816                min_objects = 4 * (fls(nr_cpu_ids) + 1);
2817        max_objects = order_objects(slub_max_order, size, reserved);
2818        min_objects = min(min_objects, max_objects);
2819
2820        while (min_objects > 1) {
2821                fraction = 16;
2822                while (fraction >= 4) {
2823                        order = slab_order(size, min_objects,
2824                                        slub_max_order, fraction, reserved);
2825                        if (order <= slub_max_order)
2826                                return order;
2827                        fraction /= 2;
2828                }
2829                min_objects--;
2830        }
2831
2832        /*
2833         * We were unable to place multiple objects in a slab. Now
2834         * lets see if we can place a single object there.
2835         */
2836        order = slab_order(size, 1, slub_max_order, 1, reserved);
2837        if (order <= slub_max_order)
2838                return order;
2839
2840        /*
2841         * Doh this slab cannot be placed using slub_max_order.
2842         */
2843        order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2844        if (order < MAX_ORDER)
2845                return order;
2846        return -ENOSYS;
2847}
2848
2849static void
2850init_kmem_cache_node(struct kmem_cache_node *n)
2851{
2852        n->nr_partial = 0;
2853        spin_lock_init(&n->list_lock);
2854        INIT_LIST_HEAD(&n->partial);
2855#ifdef CONFIG_SLUB_DEBUG
2856        atomic_long_set(&n->nr_slabs, 0);
2857        atomic_long_set(&n->total_objects, 0);
2858        INIT_LIST_HEAD(&n->full);
2859#endif
2860}
2861
2862static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2863{
2864        BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2865                        KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
2866
2867        /*
2868         * Must align to double word boundary for the double cmpxchg
2869         * instructions to work; see __pcpu_double_call_return_bool().
2870         */
2871        s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2872                                     2 * sizeof(void *));
2873
2874        if (!s->cpu_slab)
2875                return 0;
2876
2877        init_kmem_cache_cpus(s);
2878
2879        return 1;
2880}
2881
2882static struct kmem_cache *kmem_cache_node;
2883
2884/*
2885 * No kmalloc_node yet so do it by hand. We know that this is the first
2886 * slab on the node for this slabcache. There are no concurrent accesses
2887 * possible.
2888 *
2889 * Note that this function only works on the kmem_cache_node
2890 * when allocating for the kmem_cache_node. This is used for bootstrapping
2891 * memory on a fresh node that has no slab structures yet.
2892 */
2893static void early_kmem_cache_node_alloc(int node)
2894{
2895        struct page *page;
2896        struct kmem_cache_node *n;
2897
2898        BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2899
2900        page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2901
2902        BUG_ON(!page);
2903        if (page_to_nid(page) != node) {
2904                pr_err("SLUB: Unable to allocate memory from node %d\n", node);
2905                pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
2906        }
2907
2908        n = page->freelist;
2909        BUG_ON(!n);
2910        page->freelist = get_freepointer(kmem_cache_node, n);
2911        page->inuse = 1;
2912        page->frozen = 0;
2913        kmem_cache_node->node[node] = n;
2914#ifdef CONFIG_SLUB_DEBUG
2915        init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2916        init_tracking(kmem_cache_node, n);
2917#endif
2918        init_kmem_cache_node(n);
2919        inc_slabs_node(kmem_cache_node, node, page->objects);
2920
2921        /*
2922         * No locks need to be taken here as it has just been
2923         * initialized and there is no concurrent access.
2924         */
2925        __add_partial(n, page, DEACTIVATE_TO_HEAD);
2926}
2927
2928static void free_kmem_cache_nodes(struct kmem_cache *s)
2929{
2930        int node;
2931
2932        for_each_node_state(node, N_NORMAL_MEMORY) {
2933                struct kmem_cache_node *n = s->node[node];
2934
2935                if (n)
2936                        kmem_cache_free(kmem_cache_node, n);
2937
2938                s->node[node] = NULL;
2939        }
2940}
2941
2942static int init_kmem_cache_nodes(struct kmem_cache *s)
2943{
2944        int node;
2945
2946        for_each_node_state(node, N_NORMAL_MEMORY) {
2947                struct kmem_cache_node *n;
2948
2949                if (slab_state == DOWN) {
2950                        early_kmem_cache_node_alloc(node);
2951                        continue;
2952                }
2953                n = kmem_cache_alloc_node(kmem_cache_node,
2954                                                GFP_KERNEL, node);
2955
2956                if (!n) {
2957                        free_kmem_cache_nodes(s);
2958                        return 0;
2959                }
2960
2961                s->node[node] = n;
2962                init_kmem_cache_node(n);
2963        }
2964        return 1;
2965}
2966
2967static void set_min_partial(struct kmem_cache *s, unsigned long min)
2968{
2969        if (min < MIN_PARTIAL)
2970                min = MIN_PARTIAL;
2971        else if (min > MAX_PARTIAL)
2972                min = MAX_PARTIAL;
2973        s->min_partial = min;
2974}
2975
2976/*
2977 * calculate_sizes() determines the order and the distribution of data within
2978 * a slab object.
2979 */
2980static int calculate_sizes(struct kmem_cache *s, int forced_order)
2981{
2982        unsigned long flags = s->flags;
2983        unsigned long size = s->object_size;
2984        int order;
2985
2986        /*
2987         * Round up object size to the next word boundary. We can only
2988         * place the free pointer at word boundaries and this determines
2989         * the possible location of the free pointer.
2990         */
2991        size = ALIGN(size, sizeof(void *));
2992
2993#ifdef CONFIG_SLUB_DEBUG
2994        /*
2995         * Determine if we can poison the object itself. If the user of
2996         * the slab may touch the object after free or before allocation
2997         * then we should never poison the object itself.
2998         */
2999        if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
3000                        !s->ctor)
3001                s->flags |= __OBJECT_POISON;
3002        else
3003                s->flags &= ~__OBJECT_POISON;
3004
3005
3006        /*
3007         * If we are Redzoning then check if there is some space between the
3008         * end of the object and the free pointer. If not then add an
3009         * additional word to have some bytes to store Redzone information.
3010         */
3011        if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3012                size += sizeof(void *);
3013#endif
3014
3015        /*
3016         * With that we have determined the number of bytes in actual use
3017         * by the object. This is the potential offset to the free pointer.
3018         */
3019        s->inuse = size;
3020
3021        if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
3022                s->ctor)) {
3023                /*
3024                 * Relocate free pointer after the object if it is not
3025                 * permitted to overwrite the first word of the object on
3026                 * kmem_cache_free.
3027                 *
3028                 * This is the case if we do RCU, have a constructor or
3029                 * destructor or are poisoning the objects.
3030                 */
3031                s->offset = size;
3032                size += sizeof(void *);
3033        }
3034
3035#ifdef CONFIG_SLUB_DEBUG
3036        if (flags & SLAB_STORE_USER)
3037                /*
3038                 * Need to store information about allocs and frees after
3039                 * the object.
3040                 */
3041                size += 2 * sizeof(struct track);
3042
3043        if (flags & SLAB_RED_ZONE)
3044                /*
3045                 * Add some empty padding so that we can catch
3046                 * overwrites from earlier objects rather than let
3047                 * tracking information or the free pointer be
3048                 * corrupted if a user writes before the start
3049                 * of the object.
3050                 */
3051                size += sizeof(void *);
3052#endif
3053
3054        /*
3055         * SLUB stores one object immediately after another beginning from
3056         * offset 0. In order to align the objects we have to simply size
3057         * each object to conform to the alignment.
3058         */
3059        size = ALIGN(size, s->align);
3060        s->size = size;
3061        if (forced_order >= 0)
3062                order = forced_order;
3063        else
3064                order = calculate_order(size, s->reserved);
3065
3066        if (order < 0)
3067                return 0;
3068
3069        s->allocflags = 0;
3070        if (order)
3071                s->allocflags |= __GFP_COMP;
3072
3073        if (s->flags & SLAB_CACHE_DMA)
3074                s->allocflags |= GFP_DMA;
3075
3076        if (s->flags & SLAB_RECLAIM_ACCOUNT)
3077                s->allocflags |= __GFP_RECLAIMABLE;
3078
3079        /*
3080         * Determine the number of objects per slab
3081         */
3082        s->oo = oo_make(order, size, s->reserved);
3083        s->min = oo_make(get_order(size), size, s->reserved);
3084        if (oo_objects(s->oo) > oo_objects(s->max))
3085                s->max = s->oo;
3086
3087        return !!oo_objects(s->oo);
3088}
3089
3090static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
3091{
3092        s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3093        s->reserved = 0;
3094
3095        if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3096                s->reserved = sizeof(struct rcu_head);
3097
3098        if (!calculate_sizes(s, -1))
3099                goto error;
3100        if (disable_higher_order_debug) {
3101                /*
3102                 * Disable debugging flags that store metadata if the min slab
3103                 * order increased.
3104                 */
3105                if (get_order(s->size) > get_order(s->object_size)) {
3106                        s->flags &= ~DEBUG_METADATA_FLAGS;
3107                        s->offset = 0;
3108                        if (!calculate_sizes(s, -1))
3109                                goto error;
3110                }
3111        }
3112
3113#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3114    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3115        if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3116                /* Enable fast mode */
3117                s->flags |= __CMPXCHG_DOUBLE;
3118#endif
3119
3120        /*
3121         * The larger the object size is, the more pages we want on the partial
3122         * list to avoid pounding the page allocator excessively.
3123         */
3124        set_min_partial(s, ilog2(s->size) / 2);
3125
3126        /*
3127         * cpu_partial determined the maximum number of objects kept in the
3128         * per cpu partial lists of a processor.
3129         *
3130         * Per cpu partial lists mainly contain slabs that just have one
3131         * object freed. If they are used for allocation then they can be
3132         * filled up again with minimal effort. The slab will never hit the
3133         * per node partial lists and therefore no locking will be required.
3134         *
3135         * This setting also determines
3136         *
3137         * A) The number of objects from per cpu partial slabs dumped to the
3138         *    per node list when we reach the limit.
3139         * B) The number of objects in cpu partial slabs to extract from the
3140         *    per node list when we run out of per cpu objects. We only fetch
3141         *    50% to keep some capacity around for frees.
3142         */
3143        if (!kmem_cache_has_cpu_partial(s))
3144                s->cpu_partial = 0;
3145        else if (s->size >= PAGE_SIZE)
3146                s->cpu_partial = 2;
3147        else if (s->size >= 1024)
3148                s->cpu_partial = 6;
3149        else if (s->size >= 256)
3150                s->cpu_partial = 13;
3151        else
3152                s->cpu_partial = 30;
3153
3154#ifdef CONFIG_NUMA
3155        s->remote_node_defrag_ratio = 1000;
3156#endif
3157        if (!init_kmem_cache_nodes(s))
3158                goto error;
3159
3160        if (alloc_kmem_cache_cpus(s))
3161                return 0;
3162
3163        free_kmem_cache_nodes(s);
3164error:
3165        if (flags & SLAB_PANIC)
3166                panic("Cannot create slab %s size=%lu realsize=%u "
3167                        "order=%u offset=%u flags=%lx\n",
3168                        s->name, (unsigned long)s->size, s->size,
3169                        oo_order(s->oo), s->offset, flags);
3170        return -EINVAL;
3171}
3172
3173static void list_slab_objects(struct kmem_cache *s, struct page *page,
3174                                                        const char *text)
3175{
3176#ifdef CONFIG_SLUB_DEBUG
3177        void *addr = page_address(page);
3178        void *p;
3179        unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3180                                     sizeof(long), GFP_ATOMIC);
3181        if (!map)
3182                return;
3183        slab_err(s, page, text, s->name);
3184        slab_lock(page);
3185
3186        get_map(s, page, map);
3187        for_each_object(p, s, addr, page->objects) {
3188
3189                if (!test_bit(slab_index(p, s, addr), map)) {
3190                        pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3191                        print_tracking(s, p);
3192                }
3193        }
3194        slab_unlock(page);
3195        kfree(map);
3196#endif
3197}
3198
3199/*
3200 * Attempt to free all partial slabs on a node.
3201 * This is called from kmem_cache_close(). We must be the last thread
3202 * using the cache and therefore we do not need to lock anymore.
3203 */
3204static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3205{
3206        struct page *page, *h;
3207
3208        list_for_each_entry_safe(page, h, &n->partial, lru) {
3209                if (!page->inuse) {
3210                        __remove_partial(n, page);
3211                        discard_slab(s, page);
3212                } else {
3213                        list_slab_objects(s, page,
3214                        "Objects remaining in %s on kmem_cache_close()");
3215                }
3216        }
3217}
3218
3219/*
3220 * Release all resources used by a slab cache.
3221 */
3222static inline int kmem_cache_close(struct kmem_cache *s)
3223{
3224        int node;
3225
3226        flush_all(s);
3227        /* Attempt to free all objects */
3228        for_each_node_state(node, N_NORMAL_MEMORY) {
3229                struct kmem_cache_node *n = get_node(s, node);
3230
3231                free_partial(s, n);
3232                if (n->nr_partial || slabs_node(s, node))
3233                        return 1;
3234        }
3235        free_percpu(s->cpu_slab);
3236        free_kmem_cache_nodes(s);
3237        return 0;
3238}
3239
3240int __kmem_cache_shutdown(struct kmem_cache *s)
3241{
3242        return kmem_cache_close(s);
3243}
3244
3245/********************************************************************
3246 *              Kmalloc subsystem
3247 *******************************************************************/
3248
3249static int __init setup_slub_min_order(char *str)
3250{
3251        get_option(&str, &slub_min_order);
3252
3253        return 1;
3254}
3255
3256__setup("slub_min_order=", setup_slub_min_order);
3257
3258static int __init setup_slub_max_order(char *str)
3259{
3260        get_option(&str, &slub_max_order);
3261        slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3262
3263        return 1;
3264}
3265
3266__setup("slub_max_order=", setup_slub_max_order);
3267
3268static int __init setup_slub_min_objects(char *str)
3269{
3270        get_option(&str, &slub_min_objects);
3271
3272        return 1;
3273}
3274
3275__setup("slub_min_objects=", setup_slub_min_objects);
3276
3277static int __init setup_slub_nomerge(char *str)
3278{
3279        slub_nomerge = 1;
3280        return 1;
3281}
3282
3283__setup("slub_nomerge", setup_slub_nomerge);
3284
3285void *__kmalloc(size_t size, gfp_t flags)
3286{
3287        struct kmem_cache *s;
3288        void *ret;
3289
3290        if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3291                return kmalloc_large(size, flags);
3292
3293        s = kmalloc_slab(size, flags);
3294
3295        if (unlikely(ZERO_OR_NULL_PTR(s)))
3296                return s;
3297
3298        ret = slab_alloc(s, flags, _RET_IP_);
3299
3300        trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3301
3302        return ret;
3303}
3304EXPORT_SYMBOL(__kmalloc);
3305
3306#ifdef CONFIG_NUMA
3307static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3308{
3309        struct page *page;
3310        void *ptr = NULL;
3311
3312        flags |= __GFP_COMP | __GFP_NOTRACK;
3313        page = alloc_kmem_pages_node(node, flags, get_order(size));
3314        if (page)
3315                ptr = page_address(page);
3316
3317        kmalloc_large_node_hook(ptr, size, flags);
3318        return ptr;
3319}
3320
3321void *__kmalloc_node(size_t size, gfp_t flags, int node)
3322{
3323        struct kmem_cache *s;
3324        void *ret;
3325
3326        if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3327                ret = kmalloc_large_node(size, flags, node);
3328
3329                trace_kmalloc_node(_RET_IP_, ret,
3330                                   size, PAGE_SIZE << get_order(size),
3331                                   flags, node);
3332
3333                return ret;
3334        }
3335
3336        s = kmalloc_slab(size, flags);
3337
3338        if (unlikely(ZERO_OR_NULL_PTR(s)))
3339                return s;
3340
3341        ret = slab_alloc_node(s, flags, node, _RET_IP_);
3342
3343        trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3344
3345        return ret;
3346}
3347EXPORT_SYMBOL(__kmalloc_node);
3348#endif
3349
3350size_t ksize(const void *object)
3351{
3352        struct page *page;
3353
3354        if (unlikely(object == ZERO_SIZE_PTR))
3355                return 0;
3356
3357        page = virt_to_head_page(object);
3358
3359        if (unlikely(!PageSlab(page))) {
3360                WARN_ON(!PageCompound(page));
3361                return PAGE_SIZE << compound_order(page);
3362        }
3363
3364        return slab_ksize(page->slab_cache);
3365}
3366EXPORT_SYMBOL(ksize);
3367
3368void kfree(const void *x)
3369{
3370        struct page *page;
3371        void *object = (void *)x;
3372
3373        trace_kfree(_RET_IP_, x);
3374
3375        if (unlikely(ZERO_OR_NULL_PTR(x)))
3376                return;
3377
3378        page = virt_to_head_page(x);
3379        if (unlikely(!PageSlab(page))) {
3380                BUG_ON(!PageCompound(page));
3381                kfree_hook(x);
3382                __free_kmem_pages(page, compound_order(page));
3383                return;
3384        }
3385        slab_free(page->slab_cache, page, object, _RET_IP_);
3386}
3387EXPORT_SYMBOL(kfree);
3388
3389/*
3390 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3391 * the remaining slabs by the number of items in use. The slabs with the
3392 * most items in use come first. New allocations will then fill those up
3393 * and thus they can be removed from the partial lists.
3394 *
3395 * The slabs with the least items are placed last. This results in them
3396 * being allocated from last increasing the chance that the last objects
3397 * are freed in them.
3398 */
3399int __kmem_cache_shrink(struct kmem_cache *s)
3400{
3401        int node;
3402        int i;
3403        struct kmem_cache_node *n;
3404        struct page *page;
3405        struct page *t;
3406        int objects = oo_objects(s->max);
3407        struct list_head *slabs_by_inuse =
3408                kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3409        unsigned long flags;
3410
3411        if (!slabs_by_inuse)
3412                return -ENOMEM;
3413
3414        flush_all(s);
3415        for_each_node_state(node, N_NORMAL_MEMORY) {
3416                n = get_node(s, node);
3417
3418                if (!n->nr_partial)
3419                        continue;
3420
3421                for (i = 0; i < objects; i++)
3422                        INIT_LIST_HEAD(slabs_by_inuse + i);
3423
3424                spin_lock_irqsave(&n->list_lock, flags);
3425
3426                /*
3427                 * Build lists indexed by the items in use in each slab.
3428                 *
3429                 * Note that concurrent frees may occur while we hold the
3430                 * list_lock. page->inuse here is the upper limit.
3431                 */
3432                list_for_each_entry_safe(page, t, &n->partial, lru) {
3433                        list_move(&page->lru, slabs_by_inuse + page->inuse);
3434                        if (!page->inuse)
3435                                n->nr_partial--;
3436                }
3437
3438                /*
3439                 * Rebuild the partial list with the slabs filled up most
3440                 * first and the least used slabs at the end.
3441                 */
3442                for (i = objects - 1; i > 0; i--)
3443                        list_splice(slabs_by_inuse + i, n->partial.prev);
3444
3445                spin_unlock_irqrestore(&n->list_lock, flags);
3446
3447                /* Release empty slabs */
3448                list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3449                        discard_slab(s, page);
3450        }
3451
3452        kfree(slabs_by_inuse);
3453        return 0;
3454}
3455
3456static int slab_mem_going_offline_callback(void *arg)
3457{
3458        struct kmem_cache *s;
3459
3460        mutex_lock(&slab_mutex);
3461        list_for_each_entry(s, &slab_caches, list)
3462                __kmem_cache_shrink(s);
3463        mutex_unlock(&slab_mutex);
3464
3465        return 0;
3466}
3467
3468static void slab_mem_offline_callback(void *arg)
3469{
3470        struct kmem_cache_node *n;
3471        struct kmem_cache *s;
3472        struct memory_notify *marg = arg;
3473        int offline_node;
3474
3475        offline_node = marg->status_change_nid_normal;
3476
3477        /*
3478         * If the node still has available memory. we need kmem_cache_node
3479         * for it yet.
3480         */
3481        if (offline_node < 0)
3482                return;
3483
3484        mutex_lock(&slab_mutex);
3485        list_for_each_entry(s, &slab_caches, list) {
3486                n = get_node(s, offline_node);
3487                if (n) {
3488                        /*
3489                         * if n->nr_slabs > 0, slabs still exist on the node
3490                         * that is going down. We were unable to free them,
3491                         * and offline_pages() function shouldn't call this
3492                         * callback. So, we must fail.
3493                         */
3494                        BUG_ON(slabs_node(s, offline_node));
3495
3496                        s->node[offline_node] = NULL;
3497                        kmem_cache_free(kmem_cache_node, n);
3498                }
3499        }
3500        mutex_unlock(&slab_mutex);
3501}
3502
3503static int slab_mem_going_online_callback(void *arg)
3504{
3505        struct kmem_cache_node *n;
3506        struct kmem_cache *s;
3507        struct memory_notify *marg = arg;
3508        int nid = marg->status_change_nid_normal;
3509        int ret = 0;
3510
3511        /*
3512         * If the node's memory is already available, then kmem_cache_node is
3513         * already created. Nothing to do.
3514         */
3515        if (nid < 0)
3516                return 0;
3517
3518        /*
3519         * We are bringing a node online. No memory is available yet. We must
3520         * allocate a kmem_cache_node structure in order to bring the node
3521         * online.
3522         */
3523        mutex_lock(&slab_mutex);
3524        list_for_each_entry(s, &slab_caches, list) {
3525                /*
3526                 * XXX: kmem_cache_alloc_node will fallback to other nodes
3527                 *      since memory is not yet available from the node that
3528                 *      is brought up.
3529                 */
3530                n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3531                if (!n) {
3532                        ret = -ENOMEM;
3533                        goto out;
3534                }
3535                init_kmem_cache_node(n);
3536                s->node[nid] = n;
3537        }
3538out:
3539        mutex_unlock(&slab_mutex);
3540        return ret;
3541}
3542
3543static int slab_memory_callback(struct notifier_block *self,
3544                                unsigned long action, void *arg)
3545{
3546        int ret = 0;
3547
3548        switch (action) {
3549        case MEM_GOING_ONLINE:
3550                ret = slab_mem_going_online_callback(arg);
3551                break;
3552        case MEM_GOING_OFFLINE:
3553                ret = slab_mem_going_offline_callback(arg);
3554                break;
3555        case MEM_OFFLINE:
3556        case MEM_CANCEL_ONLINE:
3557                slab_mem_offline_callback(arg);
3558                break;
3559        case MEM_ONLINE:
3560        case MEM_CANCEL_OFFLINE:
3561                break;
3562        }
3563        if (ret)
3564                ret = notifier_from_errno(ret);
3565        else
3566                ret = NOTIFY_OK;
3567        return ret;
3568}
3569
3570static struct notifier_block slab_memory_callback_nb = {
3571        .notifier_call = slab_memory_callback,
3572        .priority = SLAB_CALLBACK_PRI,
3573};
3574
3575/********************************************************************
3576 *                      Basic setup of slabs
3577 *******************************************************************/
3578
3579/*
3580 * Used for early kmem_cache structures that were allocated using
3581 * the page allocator. Allocate them properly then fix up the pointers
3582 * that may be pointing to the wrong kmem_cache structure.
3583 */
3584
3585static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
3586{
3587        int node;
3588        struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
3589
3590        memcpy(s, static_cache, kmem_cache->object_size);
3591
3592        /*
3593         * This runs very early, and only the boot processor is supposed to be
3594         * up.  Even if it weren't true, IRQs are not up so we couldn't fire
3595         * IPIs around.
3596         */
3597        __flush_cpu_slab(s, smp_processor_id());
3598        for_each_node_state(node, N_NORMAL_MEMORY) {
3599                struct kmem_cache_node *n = get_node(s, node);
3600                struct page *p;
3601
3602                if (n) {
3603                        list_for_each_entry(p, &n->partial, lru)
3604                                p->slab_cache = s;
3605
3606#ifdef CONFIG_SLUB_DEBUG
3607                        list_for_each_entry(p, &n->full, lru)
3608                                p->slab_cache = s;
3609#endif
3610                }
3611        }
3612        list_add(&s->list, &slab_caches);
3613        return s;
3614}
3615
3616void __init kmem_cache_init(void)
3617{
3618        static __initdata struct kmem_cache boot_kmem_cache,
3619                boot_kmem_cache_node;
3620
3621        if (debug_guardpage_minorder())
3622                slub_max_order = 0;
3623
3624        kmem_cache_node = &boot_kmem_cache_node;
3625        kmem_cache = &boot_kmem_cache;
3626
3627        create_boot_cache(kmem_cache_node, "kmem_cache_node",
3628                sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
3629
3630        register_hotmemory_notifier(&slab_memory_callback_nb);
3631
3632        /* Able to allocate the per node structures */
3633        slab_state = PARTIAL;
3634
3635        create_boot_cache(kmem_cache, "kmem_cache",
3636                        offsetof(struct kmem_cache, node) +
3637                                nr_node_ids * sizeof(struct kmem_cache_node *),
3638                       SLAB_HWCACHE_ALIGN);
3639
3640        kmem_cache = bootstrap(&boot_kmem_cache);
3641
3642        /*
3643         * Allocate kmem_cache_node properly from the kmem_cache slab.
3644         * kmem_cache_node is separately allocated so no need to
3645         * update any list pointers.
3646         */
3647        kmem_cache_node = bootstrap(&boot_kmem_cache_node);
3648
3649        /* Now we can use the kmem_cache to allocate kmalloc slabs */
3650        create_kmalloc_caches(0);
3651
3652#ifdef CONFIG_SMP
3653        register_cpu_notifier(&slab_notifier);
3654#endif
3655
3656        pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
3657                cache_line_size(),
3658                slub_min_order, slub_max_order, slub_min_objects,
3659                nr_cpu_ids, nr_node_ids);
3660}
3661
3662void __init kmem_cache_init_late(void)
3663{
3664}
3665
3666/*
3667 * Find a mergeable slab cache
3668 */
3669static int slab_unmergeable(struct kmem_cache *s)
3670{
3671        if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3672                return 1;
3673
3674        if (!is_root_cache(s))
3675                return 1;
3676
3677        if (s->ctor)
3678                return 1;
3679
3680        /*
3681         * We may have set a slab to be unmergeable during bootstrap.
3682         */
3683        if (s->refcount < 0)
3684                return 1;
3685
3686        return 0;
3687}
3688
3689static struct kmem_cache *find_mergeable(size_t size, size_t align,
3690                unsigned long flags, const char *name, void (*ctor)(void *))
3691{
3692        struct kmem_cache *s;
3693
3694        if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3695                return NULL;
3696
3697        if (ctor)
3698                return NULL;
3699
3700        size = ALIGN(size, sizeof(void *));
3701        align = calculate_alignment(flags, align, size);
3702        size = ALIGN(size, align);
3703        flags = kmem_cache_flags(size, flags, name, NULL);
3704
3705        list_for_each_entry(s, &slab_caches, list) {
3706                if (slab_unmergeable(s))
3707                        continue;
3708
3709                if (size > s->size)
3710                        continue;
3711
3712                if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3713                        continue;
3714                /*
3715                 * Check if alignment is compatible.
3716                 * Courtesy of Adrian Drzewiecki
3717                 */
3718                if ((s->size & ~(align - 1)) != s->size)
3719                        continue;
3720
3721                if (s->size - size >= sizeof(void *))
3722                        continue;
3723
3724                return s;
3725        }
3726        return NULL;
3727}
3728
3729struct kmem_cache *
3730__kmem_cache_alias(const char *name, size_t size, size_t align,
3731                   unsigned long flags, void (*ctor)(void *))
3732{
3733        struct kmem_cache *s;
3734
3735        s = find_mergeable(size, align, flags, name, ctor);
3736        if (s) {
3737                int i;
3738                struct kmem_cache *c;
3739
3740                s->refcount++;
3741
3742                /*
3743                 * Adjust the object sizes so that we clear
3744                 * the complete object on kzalloc.
3745                 */
3746                s->object_size = max(s->object_size, (int)size);
3747                s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3748
3749                for_each_memcg_cache_index(i) {
3750                        c = cache_from_memcg_idx(s, i);
3751                        if (!c)
3752                                continue;
3753                        c->object_size = s->object_size;
3754                        c->inuse = max_t(int, c->inuse,
3755                                         ALIGN(size, sizeof(void *)));
3756                }
3757
3758                if (sysfs_slab_alias(s, name)) {
3759                        s->refcount--;
3760                        s = NULL;
3761                }
3762        }
3763
3764        return s;
3765}
3766
3767int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
3768{
3769        int err;
3770
3771        err = kmem_cache_open(s, flags);
3772        if (err)
3773                return err;
3774
3775        /* Mutex is not taken during early boot */
3776        if (slab_state <= UP)
3777                return 0;
3778
3779        memcg_propagate_slab_attrs(s);
3780        err = sysfs_slab_add(s);
3781        if (err)
3782                kmem_cache_close(s);
3783
3784        return err;
3785}
3786
3787#ifdef CONFIG_SMP
3788/*
3789 * Use the cpu notifier to insure that the cpu slabs are flushed when
3790 * necessary.
3791 */
3792static int slab_cpuup_callback(struct notifier_block *nfb,
3793                unsigned long action, void *hcpu)
3794{
3795        long cpu = (long)hcpu;
3796        struct kmem_cache *s;
3797        unsigned long flags;
3798
3799        switch (action) {
3800        case CPU_UP_CANCELED:
3801        case CPU_UP_CANCELED_FROZEN:
3802        case CPU_DEAD:
3803        case CPU_DEAD_FROZEN:
3804                mutex_lock(&slab_mutex);
3805                list_for_each_entry(s, &slab_caches, list) {
3806                        local_irq_save(flags);
3807                        __flush_cpu_slab(s, cpu);
3808                        local_irq_restore(flags);
3809                }
3810                mutex_unlock(&slab_mutex);
3811                break;
3812        default:
3813                break;
3814        }
3815        return NOTIFY_OK;
3816}
3817
3818static struct notifier_block slab_notifier = {
3819        .notifier_call = slab_cpuup_callback
3820};
3821
3822#endif
3823
3824void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3825{
3826        struct kmem_cache *s;
3827        void *ret;
3828
3829        if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3830                return kmalloc_large(size, gfpflags);
3831
3832        s = kmalloc_slab(size, gfpflags);
3833
3834        if (unlikely(ZERO_OR_NULL_PTR(s)))
3835                return s;
3836
3837        ret = slab_alloc(s, gfpflags, caller);
3838
3839        /* Honor the call site pointer we received. */
3840        trace_kmalloc(caller, ret, size, s->size, gfpflags);
3841
3842        return ret;
3843}
3844
3845#ifdef CONFIG_NUMA
3846void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3847                                        int node, unsigned long caller)
3848{
3849        struct kmem_cache *s;
3850        void *ret;
3851
3852        if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3853                ret = kmalloc_large_node(size, gfpflags, node);
3854
3855                trace_kmalloc_node(caller, ret,
3856                                   size, PAGE_SIZE << get_order(size),
3857                                   gfpflags, node);
3858
3859                return ret;
3860        }
3861
3862        s = kmalloc_slab(size, gfpflags);
3863
3864        if (unlikely(ZERO_OR_NULL_PTR(s)))
3865                return s;
3866
3867        ret = slab_alloc_node(s, gfpflags, node, caller);
3868
3869        /* Honor the call site pointer we received. */
3870        trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3871
3872        return ret;
3873}
3874#endif
3875
3876#ifdef CONFIG_SYSFS
3877static int count_inuse(struct page *page)
3878{
3879        return page->inuse;
3880}
3881
3882static int count_total(struct page *page)
3883{
3884        return page->objects;
3885}
3886#endif
3887
3888#ifdef CONFIG_SLUB_DEBUG
3889static int validate_slab(struct kmem_cache *s, struct page *page,
3890                                                unsigned long *map)
3891{
3892        void *p;
3893        void *addr = page_address(page);
3894
3895        if (!check_slab(s, page) ||
3896                        !on_freelist(s, page, NULL))
3897                return 0;
3898
3899        /* Now we know that a valid freelist exists */
3900        bitmap_zero(map, page->objects);
3901
3902        get_map(s, page, map);
3903        for_each_object(p, s, addr, page->objects) {
3904                if (test_bit(slab_index(p, s, addr), map))
3905                        if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3906                                return 0;
3907        }
3908
3909        for_each_object(p, s, addr, page->objects)
3910                if (!test_bit(slab_index(p, s, addr), map))
3911                        if (!check_object(s, page, p, SLUB_RED_ACTIVE))
3912                                return 0;
3913        return 1;
3914}
3915
3916static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3917                                                unsigned long *map)
3918{
3919        slab_lock(page);
3920        validate_slab(s, page, map);
3921        slab_unlock(page);
3922}
3923
3924static int validate_slab_node(struct kmem_cache *s,
3925                struct kmem_cache_node *n, unsigned long *map)
3926{
3927        unsigned long count = 0;
3928        struct page *page;
3929        unsigned long flags;
3930
3931        spin_lock_irqsave(&n->list_lock, flags);
3932
3933        list_for_each_entry(page, &n->partial, lru) {
3934                validate_slab_slab(s, page, map);
3935                count++;
3936        }
3937        if (count != n->nr_partial)
3938                pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
3939                       s->name, count, n->nr_partial);
3940
3941        if (!(s->flags & SLAB_STORE_USER))
3942                goto out;
3943
3944        list_for_each_entry(page, &n->full, lru) {
3945                validate_slab_slab(s, page, map);
3946                count++;
3947        }
3948        if (count != atomic_long_read(&n->nr_slabs))
3949                pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
3950                       s->name, count, atomic_long_read(&n->nr_slabs));
3951
3952out:
3953        spin_unlock_irqrestore(&n->list_lock, flags);
3954        return count;
3955}
3956
3957static long validate_slab_cache(struct kmem_cache *s)
3958{
3959        int node;
3960        unsigned long count = 0;
3961        unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3962                                sizeof(unsigned long), GFP_KERNEL);
3963
3964        if (!map)
3965                return -ENOMEM;
3966
3967        flush_all(s);
3968        for_each_node_state(node, N_NORMAL_MEMORY) {
3969                struct kmem_cache_node *n = get_node(s, node);
3970
3971                count += validate_slab_node(s, n, map);
3972        }
3973        kfree(map);
3974        return count;
3975}
3976/*
3977 * Generate lists of code addresses where slabcache objects are allocated
3978 * and freed.
3979 */
3980
3981struct location {
3982        unsigned long count;
3983        unsigned long addr;
3984        long long sum_time;
3985        long min_time;
3986        long max_time;
3987        long min_pid;
3988        long max_pid;
3989        DECLARE_BITMAP(cpus, NR_CPUS);
3990        nodemask_t nodes;
3991};
3992
3993struct loc_track {
3994        unsigned long max;
3995        unsigned long count;
3996        struct location *loc;
3997};
3998
3999static void free_loc_track(struct loc_track *t)
4000{
4001        if (t->max)
4002                free_pages((unsigned long)t->loc,
4003                        get_order(sizeof(struct location) * t->max));
4004}
4005
4006static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4007{
4008        struct location *l;
4009        int order;
4010
4011        order = get_order(sizeof(struct location) * max);
4012
4013        l = (void *)__get_free_pages(flags, order);
4014        if (!l)
4015                return 0;
4016
4017        if (t->count) {
4018                memcpy(l, t->loc, sizeof(struct location) * t->count);
4019                free_loc_track(t);
4020        }
4021        t->max = max;
4022        t->loc = l;
4023        return 1;
4024}
4025
4026static int add_location(struct loc_track *t, struct kmem_cache *s,
4027                                const struct track *track)
4028{
4029        long start, end, pos;
4030        struct location *l;
4031        unsigned long caddr;
4032        unsigned long age = jiffies - track->when;
4033
4034        start = -1;
4035        end = t->count;
4036
4037        for ( ; ; ) {
4038                pos = start + (end - start + 1) / 2;
4039
4040                /*
4041                 * There is nothing at "end". If we end up there
4042                 * we need to add something to before end.
4043                 */
4044                if (pos == end)
4045                        break;
4046
4047                caddr = t->loc[pos].addr;
4048                if (track->addr == caddr) {
4049
4050                        l = &t->loc[pos];
4051                        l->count++;
4052                        if (track->when) {
4053                                l->sum_time += age;
4054                                if (age < l->min_time)
4055                                        l->min_time = age;
4056                                if (age > l->max_time)
4057                                        l->max_time = age;
4058
4059                                if (track->pid < l->min_pid)
4060                                        l->min_pid = track->pid;
4061                                if (track->pid > l->max_pid)
4062                                        l->max_pid = track->pid;
4063
4064                                cpumask_set_cpu(track->cpu,
4065                                                to_cpumask(l->cpus));
4066                        }
4067                        node_set(page_to_nid(virt_to_page(track)), l->nodes);
4068                        return 1;
4069                }
4070
4071                if (track->addr < caddr)
4072                        end = pos;
4073                else
4074                        start = pos;
4075        }
4076
4077        /*
4078         * Not found. Insert new tracking element.
4079         */
4080        if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4081                return 0;
4082
4083        l = t->loc + pos;
4084        if (pos < t->count)
4085                memmove(l + 1, l,
4086                        (t->count - pos) * sizeof(struct location));
4087        t->count++;
4088        l->count = 1;
4089        l->addr = track->addr;
4090        l->sum_time = age;
4091        l->min_time = age;
4092        l->max_time = age;
4093        l->min_pid = track->pid;
4094        l->max_pid = track->pid;
4095        cpumask_clear(to_cpumask(l->cpus));
4096        cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4097        nodes_clear(l->nodes);
4098        node_set(page_to_nid(virt_to_page(track)), l->nodes);
4099        return 1;
4100}
4101
4102static void process_slab(struct loc_track *t, struct kmem_cache *s,
4103                struct page *page, enum track_item alloc,
4104                unsigned long *map)
4105{
4106        void *addr = page_address(page);
4107        void *p;
4108
4109        bitmap_zero(map, page->objects);
4110        get_map(s, page, map);
4111
4112        for_each_object(p, s, addr, page->objects)
4113                if (!test_bit(slab_index(p, s, addr), map))
4114                        add_location(t, s, get_track(s, p, alloc));
4115}
4116
4117static int list_locations(struct kmem_cache *s, char *buf,
4118                                        enum track_item alloc)
4119{
4120        int len = 0;
4121        unsigned long i;
4122        struct loc_track t = { 0, 0, NULL };
4123        int node;
4124        unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4125                                     sizeof(unsigned long), GFP_KERNEL);
4126
4127        if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4128                                     GFP_TEMPORARY)) {
4129                kfree(map);
4130                return sprintf(buf, "Out of memory\n");
4131        }
4132        /* Push back cpu slabs */
4133        flush_all(s);
4134
4135        for_each_node_state(node, N_NORMAL_MEMORY) {
4136                struct kmem_cache_node *n = get_node(s, node);
4137                unsigned long flags;
4138                struct page *page;
4139
4140                if (!atomic_long_read(&n->nr_slabs))
4141                        continue;
4142
4143                spin_lock_irqsave(&n->list_lock, flags);
4144                list_for_each_entry(page, &n->partial, lru)
4145                        process_slab(&t, s, page, alloc, map);
4146                list_for_each_entry(page, &n->full, lru)
4147                        process_slab(&t, s, page, alloc, map);
4148                spin_unlock_irqrestore(&n->list_lock, flags);
4149        }
4150
4151        for (i = 0; i < t.count; i++) {
4152                struct location *l = &t.loc[i];
4153
4154                if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4155                        break;
4156                len += sprintf(buf + len, "%7ld ", l->count);
4157
4158                if (l->addr)
4159                        len += sprintf(buf + len, "%pS", (void *)l->addr);
4160                else
4161                        len += sprintf(buf + len, "<not-available>");
4162
4163                if (l->sum_time != l->min_time) {
4164                        len += sprintf(buf + len, " age=%ld/%ld/%ld",
4165                                l->min_time,
4166                                (long)div_u64(l->sum_time, l->count),
4167                                l->max_time);
4168                } else
4169                        len += sprintf(buf + len, " age=%ld",
4170                                l->min_time);
4171
4172                if (l->min_pid != l->max_pid)
4173                        len += sprintf(buf + len, " pid=%ld-%ld",
4174                                l->min_pid, l->max_pid);
4175                else
4176                        len += sprintf(buf + len, " pid=%ld",
4177                                l->min_pid);
4178
4179                if (num_online_cpus() > 1 &&
4180                                !cpumask_empty(to_cpumask(l->cpus)) &&
4181                                len < PAGE_SIZE - 60) {
4182                        len += sprintf(buf + len, " cpus=");
4183                        len += cpulist_scnprintf(buf + len,
4184                                                 PAGE_SIZE - len - 50,
4185                                                 to_cpumask(l->cpus));
4186                }
4187
4188                if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4189                                len < PAGE_SIZE - 60) {
4190                        len += sprintf(buf + len, " nodes=");
4191                        len += nodelist_scnprintf(buf + len,
4192                                                  PAGE_SIZE - len - 50,
4193                                                  l->nodes);
4194                }
4195
4196                len += sprintf(buf + len, "\n");
4197        }
4198
4199        free_loc_track(&t);
4200        kfree(map);
4201        if (!t.count)
4202                len += sprintf(buf, "No data\n");
4203        return len;
4204}
4205#endif
4206
4207#ifdef SLUB_RESILIENCY_TEST
4208static void resiliency_test(void)
4209{
4210        u8 *p;
4211
4212        BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4213
4214        pr_err("SLUB resiliency testing\n");
4215        pr_err("-----------------------\n");
4216        pr_err("A. Corruption after allocation\n");
4217
4218        p = kzalloc(16, GFP_KERNEL);
4219        p[16] = 0x12;
4220        pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4221               p + 16);
4222
4223        validate_slab_cache(kmalloc_caches[4]);
4224
4225        /* Hmmm... The next two are dangerous */
4226        p = kzalloc(32, GFP_KERNEL);
4227        p[32 + sizeof(void *)] = 0x34;
4228        pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4229               p);
4230        pr_err("If allocated object is overwritten then not detectable\n\n");
4231
4232        validate_slab_cache(kmalloc_caches[5]);
4233        p = kzalloc(64, GFP_KERNEL);
4234        p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4235        *p = 0x56;
4236        pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4237               p);
4238        pr_err("If allocated object is overwritten then not detectable\n\n");
4239        validate_slab_cache(kmalloc_caches[6]);
4240
4241        pr_err("\nB. Corruption after free\n");
4242        p = kzalloc(128, GFP_KERNEL);
4243        kfree(p);
4244        *p = 0x78;
4245        pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4246        validate_slab_cache(kmalloc_caches[7]);
4247
4248        p = kzalloc(256, GFP_KERNEL);
4249        kfree(p);
4250        p[50] = 0x9a;
4251        pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4252        validate_slab_cache(kmalloc_caches[8]);
4253
4254        p = kzalloc(512, GFP_KERNEL);
4255        kfree(p);
4256        p[512] = 0xab;
4257        pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4258        validate_slab_cache(kmalloc_caches[9]);
4259}
4260#else
4261#ifdef CONFIG_SYSFS
4262static void resiliency_test(void) {};
4263#endif
4264#endif
4265
4266#ifdef CONFIG_SYSFS
4267enum slab_stat_type {
4268        SL_ALL,                 /* All slabs */
4269        SL_PARTIAL,             /* Only partially allocated slabs */
4270        SL_CPU,                 /* Only slabs used for cpu caches */
4271        SL_OBJECTS,             /* Determine allocated objects not slabs */
4272        SL_TOTAL                /* Determine object capacity not slabs */
4273};
4274
4275#define SO_ALL          (1 << SL_ALL)
4276#define SO_PARTIAL      (1 << SL_PARTIAL)
4277#define SO_CPU          (1 << SL_CPU)
4278#define SO_OBJECTS      (1 << SL_OBJECTS)
4279#define SO_TOTAL        (1 << SL_TOTAL)
4280
4281static ssize_t show_slab_objects(struct kmem_cache *s,
4282                            char *buf, unsigned long flags)
4283{
4284        unsigned long total = 0;
4285        int node;
4286        int x;
4287        unsigned long *nodes;
4288
4289        nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4290        if (!nodes)
4291                return -ENOMEM;
4292
4293        if (flags & SO_CPU) {
4294                int cpu;
4295
4296                for_each_possible_cpu(cpu) {
4297                        struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4298                                                               cpu);
4299                        int node;
4300                        struct page *page;
4301
4302                        page = ACCESS_ONCE(c->page);
4303                        if (!page)
4304                                continue;
4305
4306                        node = page_to_nid(page);
4307                        if (flags & SO_TOTAL)
4308                                x = page->objects;
4309                        else if (flags & SO_OBJECTS)
4310                                x = page->inuse;
4311                        else
4312                                x = 1;
4313
4314                        total += x;
4315                        nodes[node] += x;
4316
4317                        page = ACCESS_ONCE(c->partial);
4318                        if (page) {
4319                                node = page_to_nid(page);
4320                                if (flags & SO_TOTAL)
4321                                        WARN_ON_ONCE(1);
4322                                else if (flags & SO_OBJECTS)
4323                                        WARN_ON_ONCE(1);
4324                                else
4325                                        x = page->pages;
4326                                total += x;
4327                                nodes[node] += x;
4328                        }
4329                }
4330        }
4331
4332        get_online_mems();
4333#ifdef CONFIG_SLUB_DEBUG
4334        if (flags & SO_ALL) {
4335                for_each_node_state(node, N_NORMAL_MEMORY) {
4336                        struct kmem_cache_node *n = get_node(s, node);
4337
4338                        if (flags & SO_TOTAL)
4339                                x = atomic_long_read(&n->total_objects);
4340                        else if (flags & SO_OBJECTS)
4341                                x = atomic_long_read(&n->total_objects) -
4342                                        count_partial(n, count_free);
4343                        else
4344                                x = atomic_long_read(&n->nr_slabs);
4345                        total += x;
4346                        nodes[node] += x;
4347                }
4348
4349        } else
4350#endif
4351        if (flags & SO_PARTIAL) {
4352                for_each_node_state(node, N_NORMAL_MEMORY) {
4353                        struct kmem_cache_node *n = get_node(s, node);
4354
4355                        if (flags & SO_TOTAL)
4356                                x = count_partial(n, count_total);
4357                        else if (flags & SO_OBJECTS)
4358                                x = count_partial(n, count_inuse);
4359                        else
4360                                x = n->nr_partial;
4361                        total += x;
4362                        nodes[node] += x;
4363                }
4364        }
4365        x = sprintf(buf, "%lu", total);
4366#ifdef CONFIG_NUMA
4367        for_each_node_state(node, N_NORMAL_MEMORY)
4368                if (nodes[node])
4369                        x += sprintf(buf + x, " N%d=%lu",
4370                                        node, nodes[node]);
4371#endif
4372        put_online_mems();
4373        kfree(nodes);
4374        return x + sprintf(buf + x, "\n");
4375}
4376
4377#ifdef CONFIG_SLUB_DEBUG
4378static int any_slab_objects(struct kmem_cache *s)
4379{
4380        int node;
4381
4382        for_each_online_node(node) {
4383                struct kmem_cache_node *n = get_node(s, node);
4384
4385                if (!n)
4386                        continue;
4387
4388                if (atomic_long_read(&n->total_objects))
4389                        return 1;
4390        }
4391        return 0;
4392}
4393#endif
4394
4395#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4396#define to_slab(n) container_of(n, struct kmem_cache, kobj)
4397
4398struct slab_attribute {
4399        struct attribute attr;
4400        ssize_t (*show)(struct kmem_cache *s, char *buf);
4401        ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4402};
4403
4404#define SLAB_ATTR_RO(_name) \
4405        static struct slab_attribute _name##_attr = \
4406        __ATTR(_name, 0400, _name##_show, NULL)
4407
4408#define SLAB_ATTR(_name) \
4409        static struct slab_attribute _name##_attr =  \
4410        __ATTR(_name, 0600, _name##_show, _name##_store)
4411
4412static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4413{
4414        return sprintf(buf, "%d\n", s->size);
4415}
4416SLAB_ATTR_RO(slab_size);
4417
4418static ssize_t align_show(struct kmem_cache *s, char *buf)
4419{
4420        return sprintf(buf, "%d\n", s->align);
4421}
4422SLAB_ATTR_RO(align);
4423
4424static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4425{
4426        return sprintf(buf, "%d\n", s->object_size);
4427}
4428SLAB_ATTR_RO(object_size);
4429
4430static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4431{
4432        return sprintf(buf, "%d\n", oo_objects(s->oo));
4433}
4434SLAB_ATTR_RO(objs_per_slab);
4435
4436static ssize_t order_store(struct kmem_cache *s,
4437                                const char *buf, size_t length)
4438{
4439        unsigned long order;
4440        int err;
4441
4442        err = kstrtoul(buf, 10, &order);
4443        if (err)
4444                return err;
4445
4446        if (order > slub_max_order || order < slub_min_order)
4447                return -EINVAL;
4448
4449        calculate_sizes(s, order);
4450        return length;
4451}
4452
4453static ssize_t order_show(struct kmem_cache *s, char *buf)
4454{
4455        return sprintf(buf, "%d\n", oo_order(s->oo));
4456}
4457SLAB_ATTR(order);
4458
4459static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4460{
4461        return sprintf(buf, "%lu\n", s->min_partial);
4462}
4463
4464static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4465                                 size_t length)
4466{
4467        unsigned long min;
4468        int err;
4469
4470        err = kstrtoul(buf, 10, &min);
4471        if (err)
4472                return err;
4473
4474        set_min_partial(s, min);
4475        return length;
4476}
4477SLAB_ATTR(min_partial);
4478
4479static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4480{
4481        return sprintf(buf, "%u\n", s->cpu_partial);
4482}
4483
4484static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4485                                 size_t length)
4486{
4487        unsigned long objects;
4488        int err;
4489
4490        err = kstrtoul(buf, 10, &objects);
4491        if (err)
4492                return err;
4493        if (objects && !kmem_cache_has_cpu_partial(s))
4494                return -EINVAL;
4495
4496        s->cpu_partial = objects;
4497        flush_all(s);
4498        return length;
4499}
4500SLAB_ATTR(cpu_partial);
4501
4502static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4503{
4504        if (!s->ctor)
4505                return 0;
4506        return sprintf(buf, "%pS\n", s->ctor);
4507}
4508SLAB_ATTR_RO(ctor);
4509
4510static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4511{
4512        return sprintf(buf, "%d\n", s->refcount - 1);
4513}
4514SLAB_ATTR_RO(aliases);
4515
4516static ssize_t partial_show(struct kmem_cache *s, char *buf)
4517{
4518        return show_slab_objects(s, buf, SO_PARTIAL);
4519}
4520SLAB_ATTR_RO(partial);
4521
4522static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4523{
4524        return show_slab_objects(s, buf, SO_CPU);
4525}
4526SLAB_ATTR_RO(cpu_slabs);
4527
4528static ssize_t objects_show(struct kmem_cache *s, char *buf)
4529{
4530        return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4531}
4532SLAB_ATTR_RO(objects);
4533
4534static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4535{
4536        return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4537}
4538SLAB_ATTR_RO(objects_partial);
4539
4540static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4541{
4542        int objects = 0;
4543        int pages = 0;
4544        int cpu;
4545        int len;
4546
4547        for_each_online_cpu(cpu) {
4548                struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4549
4550                if (page) {
4551                        pages += page->pages;
4552                        objects += page->pobjects;
4553                }
4554        }
4555
4556        len = sprintf(buf, "%d(%d)", objects, pages);
4557
4558#ifdef CONFIG_SMP
4559        for_each_online_cpu(cpu) {
4560                struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4561
4562                if (page && len < PAGE_SIZE - 20)
4563                        len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4564                                page->pobjects, page->pages);
4565        }
4566#endif
4567        return len + sprintf(buf + len, "\n");
4568}
4569SLAB_ATTR_RO(slabs_cpu_partial);
4570
4571static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4572{
4573        return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4574}
4575
4576static ssize_t reclaim_account_store(struct kmem_cache *s,
4577                                const char *buf, size_t length)
4578{
4579        s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4580        if (buf[0] == '1')
4581                s->flags |= SLAB_RECLAIM_ACCOUNT;
4582        return length;
4583}
4584SLAB_ATTR(reclaim_account);
4585
4586static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4587{
4588        return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4589}
4590SLAB_ATTR_RO(hwcache_align);
4591
4592#ifdef CONFIG_ZONE_DMA
4593static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4594{
4595        return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4596}
4597SLAB_ATTR_RO(cache_dma);
4598#endif
4599
4600static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4601{
4602        return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4603}
4604SLAB_ATTR_RO(destroy_by_rcu);
4605
4606static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4607{
4608        return sprintf(buf, "%d\n", s->reserved);
4609}
4610SLAB_ATTR_RO(reserved);
4611
4612#ifdef CONFIG_SLUB_DEBUG
4613static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4614{
4615        return show_slab_objects(s, buf, SO_ALL);
4616}
4617SLAB_ATTR_RO(slabs);
4618
4619static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4620{
4621        return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4622}
4623SLAB_ATTR_RO(total_objects);
4624
4625static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4626{
4627        return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4628}
4629
4630static ssize_t sanity_checks_store(struct kmem_cache *s,
4631                                const char *buf, size_t length)
4632{
4633        s->flags &= ~SLAB_DEBUG_FREE;
4634        if (buf[0] == '1') {
4635                s->flags &= ~__CMPXCHG_DOUBLE;
4636                s->flags |= SLAB_DEBUG_FREE;
4637        }
4638        return length;
4639}
4640SLAB_ATTR(sanity_checks);
4641
4642static ssize_t trace_show(struct kmem_cache *s, char *buf)
4643{
4644        return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4645}
4646
4647static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4648                                                        size_t length)
4649{
4650        s->flags &= ~SLAB_TRACE;
4651        if (buf[0] == '1') {
4652                s->flags &= ~__CMPXCHG_DOUBLE;
4653                s->flags |= SLAB_TRACE;
4654        }
4655        return length;
4656}
4657SLAB_ATTR(trace);
4658
4659static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4660{
4661        return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4662}
4663
4664static ssize_t red_zone_store(struct kmem_cache *s,
4665                                const char *buf, size_t length)
4666{
4667        if (any_slab_objects(s))
4668                return -EBUSY;
4669
4670        s->flags &= ~SLAB_RED_ZONE;
4671        if (buf[0] == '1') {
4672                s->flags &= ~__CMPXCHG_DOUBLE;
4673                s->flags |= SLAB_RED_ZONE;
4674        }
4675        calculate_sizes(s, -1);
4676        return length;
4677}
4678SLAB_ATTR(red_zone);
4679
4680static ssize_t poison_show(struct kmem_cache *s, char *buf)
4681{
4682        return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4683}
4684
4685static ssize_t poison_store(struct kmem_cache *s,
4686                                const char *buf, size_t length)
4687{
4688        if (any_slab_objects(s))
4689                return -EBUSY;
4690
4691        s->flags &= ~SLAB_POISON;
4692        if (buf[0] == '1') {
4693                s->flags &= ~__CMPXCHG_DOUBLE;
4694                s->flags |= SLAB_POISON;
4695        }
4696        calculate_sizes(s, -1);
4697        return length;
4698}
4699SLAB_ATTR(poison);
4700
4701static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4702{
4703        return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4704}
4705
4706static ssize_t store_user_store(struct kmem_cache *s,
4707                                const char *buf, size_t length)
4708{
4709        if (any_slab_objects(s))
4710                return -EBUSY;
4711
4712        s->flags &= ~SLAB_STORE_USER;
4713        if (buf[0] == '1') {
4714                s->flags &= ~__CMPXCHG_DOUBLE;
4715                s->flags |= SLAB_STORE_USER;
4716        }
4717        calculate_sizes(s, -1);
4718        return length;
4719}
4720SLAB_ATTR(store_user);
4721
4722static ssize_t validate_show(struct kmem_cache *s, char *buf)
4723{
4724        return 0;
4725}
4726
4727static ssize_t validate_store(struct kmem_cache *s,
4728                        const char *buf, size_t length)
4729{
4730        int ret = -EINVAL;
4731
4732        if (buf[0] == '1') {
4733                ret = validate_slab_cache(s);
4734                if (ret >= 0)
4735                        ret = length;
4736        }
4737        return ret;
4738}
4739SLAB_ATTR(validate);
4740
4741static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4742{
4743        if (!(s->flags & SLAB_STORE_USER))
4744                return -ENOSYS;
4745        return list_locations(s, buf, TRACK_ALLOC);
4746}
4747SLAB_ATTR_RO(alloc_calls);
4748
4749static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4750{
4751        if (!(s->flags & SLAB_STORE_USER))
4752                return -ENOSYS;
4753        return list_locations(s, buf, TRACK_FREE);
4754}
4755SLAB_ATTR_RO(free_calls);
4756#endif /* CONFIG_SLUB_DEBUG */
4757
4758#ifdef CONFIG_FAILSLAB
4759static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4760{
4761        return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4762}
4763
4764static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4765                                                        size_t length)
4766{
4767        s->flags &= ~SLAB_FAILSLAB;
4768        if (buf[0] == '1')
4769                s->flags |= SLAB_FAILSLAB;
4770        return length;
4771}
4772SLAB_ATTR(failslab);
4773#endif
4774
4775static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4776{
4777        return 0;
4778}
4779
4780static ssize_t shrink_store(struct kmem_cache *s,
4781                        const char *buf, size_t length)
4782{
4783        if (buf[0] == '1') {
4784                int rc = kmem_cache_shrink(s);
4785
4786                if (rc)
4787                        return rc;
4788        } else
4789                return -EINVAL;
4790        return length;
4791}
4792SLAB_ATTR(shrink);
4793
4794#ifdef CONFIG_NUMA
4795static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4796{
4797        return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4798}
4799
4800static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4801                                const char *buf, size_t length)
4802{
4803        unsigned long ratio;
4804        int err;
4805
4806        err = kstrtoul(buf, 10, &ratio);
4807        if (err)
4808                return err;
4809
4810        if (ratio <= 100)
4811                s->remote_node_defrag_ratio = ratio * 10;
4812
4813        return length;
4814}
4815SLAB_ATTR(remote_node_defrag_ratio);
4816#endif
4817
4818#ifdef CONFIG_SLUB_STATS
4819static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4820{
4821        unsigned long sum  = 0;
4822        int cpu;
4823        int len;
4824        int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4825
4826        if (!data)
4827                return -ENOMEM;
4828
4829        for_each_online_cpu(cpu) {
4830                unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4831
4832                data[cpu] = x;
4833                sum += x;
4834        }
4835
4836        len = sprintf(buf, "%lu", sum);
4837
4838#ifdef CONFIG_SMP
4839        for_each_online_cpu(cpu) {
4840                if (data[cpu] && len < PAGE_SIZE - 20)
4841                        len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4842        }
4843#endif
4844        kfree(data);
4845        return len + sprintf(buf + len, "\n");
4846}
4847
4848static void clear_stat(struct kmem_cache *s, enum stat_item si)
4849{
4850        int cpu;
4851
4852        for_each_online_cpu(cpu)
4853                per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4854}
4855
4856#define STAT_ATTR(si, text)                                     \
4857static ssize_t text##_show(struct kmem_cache *s, char *buf)     \
4858{                                                               \
4859        return show_stat(s, buf, si);                           \
4860}                                                               \
4861static ssize_t text##_store(struct kmem_cache *s,               \
4862                                const char *buf, size_t length) \
4863{                                                               \
4864        if (buf[0] != '0')                                      \
4865                return -EINVAL;                                 \
4866        clear_stat(s, si);                                      \
4867        return length;                                          \
4868}                                                               \
4869SLAB_ATTR(text);                                                \
4870
4871STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4872STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4873STAT_ATTR(FREE_FASTPATH, free_fastpath);
4874STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4875STAT_ATTR(FREE_FROZEN, free_frozen);
4876STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4877STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4878STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4879STAT_ATTR(ALLOC_SLAB, alloc_slab);
4880STAT_ATTR(ALLOC_REFILL, alloc_refill);
4881STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
4882STAT_ATTR(FREE_SLAB, free_slab);
4883STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4884STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4885STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4886STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4887STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4888STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4889STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
4890STAT_ATTR(ORDER_FALLBACK, order_fallback);
4891STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
4892STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
4893STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
4894STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
4895STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
4896STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
4897#endif
4898
4899static struct attribute *slab_attrs[] = {
4900        &slab_size_attr.attr,
4901        &object_size_attr.attr,
4902        &objs_per_slab_attr.attr,
4903        &order_attr.attr,
4904        &min_partial_attr.attr,
4905        &cpu_partial_attr.attr,
4906        &objects_attr.attr,
4907        &objects_partial_attr.attr,
4908        &partial_attr.attr,
4909        &cpu_slabs_attr.attr,
4910        &ctor_attr.attr,
4911        &aliases_attr.attr,
4912        &align_attr.attr,
4913        &hwcache_align_attr.attr,
4914        &reclaim_account_attr.attr,
4915        &destroy_by_rcu_attr.attr,
4916        &shrink_attr.attr,
4917        &reserved_attr.attr,
4918        &slabs_cpu_partial_attr.attr,
4919#ifdef CONFIG_SLUB_DEBUG
4920        &total_objects_attr.attr,
4921        &slabs_attr.attr,
4922        &sanity_checks_attr.attr,
4923        &trace_attr.attr,
4924        &red_zone_attr.attr,
4925        &poison_attr.attr,
4926        &store_user_attr.attr,
4927        &validate_attr.attr,
4928        &alloc_calls_attr.attr,
4929        &free_calls_attr.attr,
4930#endif
4931#ifdef CONFIG_ZONE_DMA
4932        &cache_dma_attr.attr,
4933#endif
4934#ifdef CONFIG_NUMA
4935        &remote_node_defrag_ratio_attr.attr,
4936#endif
4937#ifdef CONFIG_SLUB_STATS
4938        &alloc_fastpath_attr.attr,
4939        &alloc_slowpath_attr.attr,
4940        &free_fastpath_attr.attr,
4941        &free_slowpath_attr.attr,
4942        &free_frozen_attr.attr,
4943        &free_add_partial_attr.attr,
4944        &free_remove_partial_attr.attr,
4945        &alloc_from_partial_attr.attr,
4946        &alloc_slab_attr.attr,
4947        &alloc_refill_attr.attr,
4948        &alloc_node_mismatch_attr.attr,
4949        &free_slab_attr.attr,
4950        &cpuslab_flush_attr.attr,
4951        &deactivate_full_attr.attr,
4952        &deactivate_empty_attr.attr,
4953        &deactivate_to_head_attr.attr,
4954        &deactivate_to_tail_attr.attr,
4955        &deactivate_remote_frees_attr.attr,
4956        &deactivate_bypass_attr.attr,
4957        &order_fallback_attr.attr,
4958        &cmpxchg_double_fail_attr.attr,
4959        &cmpxchg_double_cpu_fail_attr.attr,
4960        &cpu_partial_alloc_attr.attr,
4961        &cpu_partial_free_attr.attr,
4962        &cpu_partial_node_attr.attr,
4963        &cpu_partial_drain_attr.attr,
4964#endif
4965#ifdef CONFIG_FAILSLAB
4966        &failslab_attr.attr,
4967#endif
4968
4969        NULL
4970};
4971
4972static struct attribute_group slab_attr_group = {
4973        .attrs = slab_attrs,
4974};
4975
4976static ssize_t slab_attr_show(struct kobject *kobj,
4977                                struct attribute *attr,
4978                                char *buf)
4979{
4980        struct slab_attribute *attribute;
4981        struct kmem_cache *s;
4982        int err;
4983
4984        attribute = to_slab_attr(attr);
4985        s = to_slab(kobj);
4986
4987        if (!attribute->show)
4988                return -EIO;
4989
4990        err = attribute->show(s, buf);
4991
4992        return err;
4993}
4994
4995static ssize_t slab_attr_store(struct kobject *kobj,
4996                                struct attribute *attr,
4997                                const char *buf, size_t len)
4998{
4999        struct slab_attribute *attribute;
5000        struct kmem_cache *s;
5001        int err;
5002
5003        attribute = to_slab_attr(attr);
5004        s = to_slab(kobj);
5005
5006        if (!attribute->store)
5007                return -EIO;
5008
5009        err = attribute->store(s, buf, len);
5010#ifdef CONFIG_MEMCG_KMEM
5011        if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5012                int i;
5013
5014                mutex_lock(&slab_mutex);
5015                if (s->max_attr_size < len)
5016                        s->max_attr_size = len;
5017
5018                /*
5019                 * This is a best effort propagation, so this function's return
5020                 * value will be determined by the parent cache only. This is
5021                 * basically because not all attributes will have a well
5022                 * defined semantics for rollbacks - most of the actions will
5023                 * have permanent effects.
5024                 *
5025                 * Returning the error value of any of the children that fail
5026                 * is not 100 % defined, in the sense that users seeing the
5027                 * error code won't be able to know anything about the state of
5028                 * the cache.
5029                 *
5030                 * Only returning the error code for the parent cache at least
5031                 * has well defined semantics. The cache being written to
5032                 * directly either failed or succeeded, in which case we loop
5033                 * through the descendants with best-effort propagation.
5034                 */
5035                for_each_memcg_cache_index(i) {
5036                        struct kmem_cache *c = cache_from_memcg_idx(s, i);
5037                        if (c)
5038                                attribute->store(c, buf, len);
5039                }
5040                mutex_unlock(&slab_mutex);
5041        }
5042#endif
5043        return err;
5044}
5045
5046static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5047{
5048#ifdef CONFIG_MEMCG_KMEM
5049        int i;
5050        char *buffer = NULL;
5051        struct kmem_cache *root_cache;
5052
5053        if (is_root_cache(s))
5054                return;
5055
5056        root_cache = s->memcg_params->root_cache;
5057
5058        /*
5059         * This mean this cache had no attribute written. Therefore, no point
5060         * in copying default values around
5061         */
5062        if (!root_cache->max_attr_size)
5063                return;
5064
5065        for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5066                char mbuf[64];
5067                char *buf;
5068                struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5069
5070                if (!attr || !attr->store || !attr->show)
5071                        continue;
5072
5073                /*
5074                 * It is really bad that we have to allocate here, so we will
5075                 * do it only as a fallback. If we actually allocate, though,
5076                 * we can just use the allocated buffer until the end.
5077                 *
5078                 * Most of the slub attributes will tend to be very small in
5079                 * size, but sysfs allows buffers up to a page, so they can
5080                 * theoretically happen.
5081                 */
5082                if (buffer)
5083                        buf = buffer;
5084                else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5085                        buf = mbuf;
5086                else {
5087                        buffer = (char *) get_zeroed_page(GFP_KERNEL);
5088                        if (WARN_ON(!buffer))
5089                                continue;
5090                        buf = buffer;
5091                }
5092
5093                attr->show(root_cache, buf);
5094                attr->store(s, buf, strlen(buf));
5095        }
5096
5097        if (buffer)
5098                free_page((unsigned long)buffer);
5099#endif
5100}
5101
5102static void kmem_cache_release(struct kobject *k)
5103{
5104        slab_kmem_cache_release(to_slab(k));
5105}
5106
5107static const struct sysfs_ops slab_sysfs_ops = {
5108        .show = slab_attr_show,
5109        .store = slab_attr_store,
5110};
5111
5112static struct kobj_type slab_ktype = {
5113        .sysfs_ops = &slab_sysfs_ops,
5114        .release = kmem_cache_release,
5115};
5116
5117static int uevent_filter(struct kset *kset, struct kobject *kobj)
5118{
5119        struct kobj_type *ktype = get_ktype(kobj);
5120
5121        if (ktype == &slab_ktype)
5122                return 1;
5123        return 0;
5124}
5125
5126static const struct kset_uevent_ops slab_uevent_ops = {
5127        .filter = uevent_filter,
5128};
5129
5130static struct kset *slab_kset;
5131
5132static inline struct kset *cache_kset(struct kmem_cache *s)
5133{
5134#ifdef CONFIG_MEMCG_KMEM
5135        if (!is_root_cache(s))
5136                return s->memcg_params->root_cache->memcg_kset;
5137#endif
5138        return slab_kset;
5139}
5140
5141#define ID_STR_LENGTH 64
5142
5143/* Create a unique string id for a slab cache:
5144 *
5145 * Format       :[flags-]size
5146 */
5147static char *create_unique_id(struct kmem_cache *s)
5148{
5149        char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5150        char *p = name;
5151
5152        BUG_ON(!name);
5153
5154        *p++ = ':';
5155        /*
5156         * First flags affecting slabcache operations. We will only
5157         * get here for aliasable slabs so we do not need to support
5158         * too many flags. The flags here must cover all flags that
5159         * are matched during merging to guarantee that the id is
5160         * unique.
5161         */
5162        if (s->flags & SLAB_CACHE_DMA)
5163                *p++ = 'd';
5164        if (s->flags & SLAB_RECLAIM_ACCOUNT)
5165                *p++ = 'a';
5166        if (s->flags & SLAB_DEBUG_FREE)
5167                *p++ = 'F';
5168        if (!(s->flags & SLAB_NOTRACK))
5169                *p++ = 't';
5170        if (p != name + 1)
5171                *p++ = '-';
5172        p += sprintf(p, "%07d", s->size);
5173
5174#ifdef CONFIG_MEMCG_KMEM
5175        if (!is_root_cache(s))
5176                p += sprintf(p, "-%08d",
5177                                memcg_cache_id(s->memcg_params->memcg));
5178#endif
5179
5180        BUG_ON(p > name + ID_STR_LENGTH - 1);
5181        return name;
5182}
5183
5184static int sysfs_slab_add(struct kmem_cache *s)
5185{
5186        int err;
5187        const char *name;
5188        int unmergeable = slab_unmergeable(s);
5189
5190        if (unmergeable) {
5191                /*
5192                 * Slabcache can never be merged so we can use the name proper.
5193                 * This is typically the case for debug situations. In that
5194                 * case we can catch duplicate names easily.
5195                 */
5196                sysfs_remove_link(&slab_kset->kobj, s->name);
5197                name = s->name;
5198        } else {
5199                /*
5200                 * Create a unique name for the slab as a target
5201                 * for the symlinks.
5202                 */
5203                name = create_unique_id(s);
5204        }
5205
5206        s->kobj.kset = cache_kset(s);
5207        err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5208        if (err)
5209                goto out_put_kobj;
5210
5211        err = sysfs_create_group(&s->kobj, &slab_attr_group);
5212        if (err)
5213                goto out_del_kobj;
5214
5215#ifdef CONFIG_MEMCG_KMEM
5216        if (is_root_cache(s)) {
5217                s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5218                if (!s->memcg_kset) {
5219                        err = -ENOMEM;
5220                        goto out_del_kobj;
5221                }
5222        }
5223#endif
5224
5225        kobject_uevent(&s->kobj, KOBJ_ADD);
5226        if (!unmergeable) {
5227                /* Setup first alias */
5228                sysfs_slab_alias(s, s->name);
5229        }
5230out:
5231        if (!unmergeable)
5232                kfree(name);
5233        return err;
5234out_del_kobj:
5235        kobject_del(&s->kobj);
5236out_put_kobj:
5237        kobject_put(&s->kobj);
5238        goto out;
5239}
5240
5241void sysfs_slab_remove(struct kmem_cache *s)
5242{
5243        if (slab_state < FULL)
5244                /*
5245                 * Sysfs has not been setup yet so no need to remove the
5246                 * cache from sysfs.
5247                 */
5248                return;
5249
5250#ifdef CONFIG_MEMCG_KMEM
5251        kset_unregister(s->memcg_kset);
5252#endif
5253        kobject_uevent(&s->kobj, KOBJ_REMOVE);
5254        kobject_del(&s->kobj);
5255        kobject_put(&s->kobj);
5256}
5257
5258/*
5259 * Need to buffer aliases during bootup until sysfs becomes
5260 * available lest we lose that information.
5261 */
5262struct saved_alias {
5263        struct kmem_cache *s;
5264        const char *name;
5265        struct saved_alias *next;
5266};
5267
5268static struct saved_alias *alias_list;
5269
5270static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5271{
5272        struct saved_alias *al;
5273
5274        if (slab_state == FULL) {
5275                /*
5276                 * If we have a leftover link then remove it.
5277                 */
5278                sysfs_remove_link(&slab_kset->kobj, name);
5279                return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5280        }
5281
5282        al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5283        if (!al)
5284                return -ENOMEM;
5285
5286        al->s = s;
5287        al->name = name;
5288        al->next = alias_list;
5289        alias_list = al;
5290        return 0;
5291}
5292
5293static int __init slab_sysfs_init(void)
5294{
5295        struct kmem_cache *s;
5296        int err;
5297
5298        mutex_lock(&slab_mutex);
5299
5300        slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5301        if (!slab_kset) {
5302                mutex_unlock(&slab_mutex);
5303                pr_err("Cannot register slab subsystem.\n");
5304                return -ENOSYS;
5305        }
5306
5307        slab_state = FULL;
5308
5309        list_for_each_entry(s, &slab_caches, list) {
5310                err = sysfs_slab_add(s);
5311                if (err)
5312                        pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5313                               s->name);
5314        }
5315
5316        while (alias_list) {
5317                struct saved_alias *al = alias_list;
5318
5319                alias_list = alias_list->next;
5320                err = sysfs_slab_alias(al->s, al->name);
5321                if (err)
5322                        pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5323                               al->name);
5324                kfree(al);
5325        }
5326
5327        mutex_unlock(&slab_mutex);
5328        resiliency_test();
5329        return 0;
5330}
5331
5332__initcall(slab_sysfs_init);
5333#endif /* CONFIG_SYSFS */
5334
5335/*
5336 * The /proc/slabinfo ABI
5337 */
5338#ifdef CONFIG_SLABINFO
5339void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5340{
5341        unsigned long nr_slabs = 0;
5342        unsigned long nr_objs = 0;
5343        unsigned long nr_free = 0;
5344        int node;
5345
5346        for_each_online_node(node) {
5347                struct kmem_cache_node *n = get_node(s, node);
5348
5349                if (!n)
5350                        continue;
5351
5352                nr_slabs += node_nr_slabs(n);
5353                nr_objs += node_nr_objs(n);
5354                nr_free += count_partial(n, count_free);
5355        }
5356
5357        sinfo->active_objs = nr_objs - nr_free;
5358        sinfo->num_objs = nr_objs;
5359        sinfo->active_slabs = nr_slabs;
5360        sinfo->num_slabs = nr_slabs;
5361        sinfo->objects_per_slab = oo_objects(s->oo);
5362        sinfo->cache_order = oo_order(s->oo);
5363}
5364
5365void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5366{
5367}
5368
5369ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5370                       size_t count, loff_t *ppos)
5371{
5372        return -EIO;
5373}
5374#endif /* CONFIG_SLABINFO */
5375