linux/mm/truncate.c
<<
>>
Prefs
   1/*
   2 * mm/truncate.c - code for taking down pages from address_spaces
   3 *
   4 * Copyright (C) 2002, Linus Torvalds
   5 *
   6 * 10Sep2002    Andrew Morton
   7 *              Initial version.
   8 */
   9
  10#include <linux/kernel.h>
  11#include <linux/backing-dev.h>
  12#include <linux/gfp.h>
  13#include <linux/mm.h>
  14#include <linux/swap.h>
  15#include <linux/export.h>
  16#include <linux/pagemap.h>
  17#include <linux/highmem.h>
  18#include <linux/pagevec.h>
  19#include <linux/task_io_accounting_ops.h>
  20#include <linux/buffer_head.h>  /* grr. try_to_release_page,
  21                                   do_invalidatepage */
  22#include <linux/cleancache.h>
  23#include "internal.h"
  24
  25static void clear_exceptional_entry(struct address_space *mapping,
  26                                    pgoff_t index, void *entry)
  27{
  28        struct radix_tree_node *node;
  29        void **slot;
  30
  31        /* Handled by shmem itself */
  32        if (shmem_mapping(mapping))
  33                return;
  34
  35        spin_lock_irq(&mapping->tree_lock);
  36        /*
  37         * Regular page slots are stabilized by the page lock even
  38         * without the tree itself locked.  These unlocked entries
  39         * need verification under the tree lock.
  40         */
  41        if (!__radix_tree_lookup(&mapping->page_tree, index, &node, &slot))
  42                goto unlock;
  43        if (*slot != entry)
  44                goto unlock;
  45        radix_tree_replace_slot(slot, NULL);
  46        mapping->nrshadows--;
  47        if (!node)
  48                goto unlock;
  49        workingset_node_shadows_dec(node);
  50        /*
  51         * Don't track node without shadow entries.
  52         *
  53         * Avoid acquiring the list_lru lock if already untracked.
  54         * The list_empty() test is safe as node->private_list is
  55         * protected by mapping->tree_lock.
  56         */
  57        if (!workingset_node_shadows(node) &&
  58            !list_empty(&node->private_list))
  59                list_lru_del(&workingset_shadow_nodes, &node->private_list);
  60        __radix_tree_delete_node(&mapping->page_tree, node);
  61unlock:
  62        spin_unlock_irq(&mapping->tree_lock);
  63}
  64
  65/**
  66 * do_invalidatepage - invalidate part or all of a page
  67 * @page: the page which is affected
  68 * @offset: start of the range to invalidate
  69 * @length: length of the range to invalidate
  70 *
  71 * do_invalidatepage() is called when all or part of the page has become
  72 * invalidated by a truncate operation.
  73 *
  74 * do_invalidatepage() does not have to release all buffers, but it must
  75 * ensure that no dirty buffer is left outside @offset and that no I/O
  76 * is underway against any of the blocks which are outside the truncation
  77 * point.  Because the caller is about to free (and possibly reuse) those
  78 * blocks on-disk.
  79 */
  80void do_invalidatepage(struct page *page, unsigned int offset,
  81                       unsigned int length)
  82{
  83        void (*invalidatepage)(struct page *, unsigned int, unsigned int);
  84
  85        invalidatepage = page->mapping->a_ops->invalidatepage;
  86#ifdef CONFIG_BLOCK
  87        if (!invalidatepage)
  88                invalidatepage = block_invalidatepage;
  89#endif
  90        if (invalidatepage)
  91                (*invalidatepage)(page, offset, length);
  92}
  93
  94/*
  95 * This cancels just the dirty bit on the kernel page itself, it
  96 * does NOT actually remove dirty bits on any mmap's that may be
  97 * around. It also leaves the page tagged dirty, so any sync
  98 * activity will still find it on the dirty lists, and in particular,
  99 * clear_page_dirty_for_io() will still look at the dirty bits in
 100 * the VM.
 101 *
 102 * Doing this should *normally* only ever be done when a page
 103 * is truncated, and is not actually mapped anywhere at all. However,
 104 * fs/buffer.c does this when it notices that somebody has cleaned
 105 * out all the buffers on a page without actually doing it through
 106 * the VM. Can you say "ext3 is horribly ugly"? Tought you could.
 107 */
 108void cancel_dirty_page(struct page *page, unsigned int account_size)
 109{
 110        if (TestClearPageDirty(page)) {
 111                struct address_space *mapping = page->mapping;
 112                if (mapping && mapping_cap_account_dirty(mapping)) {
 113                        dec_zone_page_state(page, NR_FILE_DIRTY);
 114                        dec_bdi_stat(mapping->backing_dev_info,
 115                                        BDI_RECLAIMABLE);
 116                        if (account_size)
 117                                task_io_account_cancelled_write(account_size);
 118                }
 119        }
 120}
 121EXPORT_SYMBOL(cancel_dirty_page);
 122
 123/*
 124 * If truncate cannot remove the fs-private metadata from the page, the page
 125 * becomes orphaned.  It will be left on the LRU and may even be mapped into
 126 * user pagetables if we're racing with filemap_fault().
 127 *
 128 * We need to bale out if page->mapping is no longer equal to the original
 129 * mapping.  This happens a) when the VM reclaimed the page while we waited on
 130 * its lock, b) when a concurrent invalidate_mapping_pages got there first and
 131 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
 132 */
 133static int
 134truncate_complete_page(struct address_space *mapping, struct page *page)
 135{
 136        if (page->mapping != mapping)
 137                return -EIO;
 138
 139        if (page_has_private(page))
 140                do_invalidatepage(page, 0, PAGE_CACHE_SIZE);
 141
 142        cancel_dirty_page(page, PAGE_CACHE_SIZE);
 143
 144        ClearPageMappedToDisk(page);
 145        delete_from_page_cache(page);
 146        return 0;
 147}
 148
 149/*
 150 * This is for invalidate_mapping_pages().  That function can be called at
 151 * any time, and is not supposed to throw away dirty pages.  But pages can
 152 * be marked dirty at any time too, so use remove_mapping which safely
 153 * discards clean, unused pages.
 154 *
 155 * Returns non-zero if the page was successfully invalidated.
 156 */
 157static int
 158invalidate_complete_page(struct address_space *mapping, struct page *page)
 159{
 160        int ret;
 161
 162        if (page->mapping != mapping)
 163                return 0;
 164
 165        if (page_has_private(page) && !try_to_release_page(page, 0))
 166                return 0;
 167
 168        ret = remove_mapping(mapping, page);
 169
 170        return ret;
 171}
 172
 173int truncate_inode_page(struct address_space *mapping, struct page *page)
 174{
 175        if (page_mapped(page)) {
 176                unmap_mapping_range(mapping,
 177                                   (loff_t)page->index << PAGE_CACHE_SHIFT,
 178                                   PAGE_CACHE_SIZE, 0);
 179        }
 180        return truncate_complete_page(mapping, page);
 181}
 182
 183/*
 184 * Used to get rid of pages on hardware memory corruption.
 185 */
 186int generic_error_remove_page(struct address_space *mapping, struct page *page)
 187{
 188        if (!mapping)
 189                return -EINVAL;
 190        /*
 191         * Only punch for normal data pages for now.
 192         * Handling other types like directories would need more auditing.
 193         */
 194        if (!S_ISREG(mapping->host->i_mode))
 195                return -EIO;
 196        return truncate_inode_page(mapping, page);
 197}
 198EXPORT_SYMBOL(generic_error_remove_page);
 199
 200/*
 201 * Safely invalidate one page from its pagecache mapping.
 202 * It only drops clean, unused pages. The page must be locked.
 203 *
 204 * Returns 1 if the page is successfully invalidated, otherwise 0.
 205 */
 206int invalidate_inode_page(struct page *page)
 207{
 208        struct address_space *mapping = page_mapping(page);
 209        if (!mapping)
 210                return 0;
 211        if (PageDirty(page) || PageWriteback(page))
 212                return 0;
 213        if (page_mapped(page))
 214                return 0;
 215        return invalidate_complete_page(mapping, page);
 216}
 217
 218/**
 219 * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets
 220 * @mapping: mapping to truncate
 221 * @lstart: offset from which to truncate
 222 * @lend: offset to which to truncate (inclusive)
 223 *
 224 * Truncate the page cache, removing the pages that are between
 225 * specified offsets (and zeroing out partial pages
 226 * if lstart or lend + 1 is not page aligned).
 227 *
 228 * Truncate takes two passes - the first pass is nonblocking.  It will not
 229 * block on page locks and it will not block on writeback.  The second pass
 230 * will wait.  This is to prevent as much IO as possible in the affected region.
 231 * The first pass will remove most pages, so the search cost of the second pass
 232 * is low.
 233 *
 234 * We pass down the cache-hot hint to the page freeing code.  Even if the
 235 * mapping is large, it is probably the case that the final pages are the most
 236 * recently touched, and freeing happens in ascending file offset order.
 237 *
 238 * Note that since ->invalidatepage() accepts range to invalidate
 239 * truncate_inode_pages_range is able to handle cases where lend + 1 is not
 240 * page aligned properly.
 241 */
 242void truncate_inode_pages_range(struct address_space *mapping,
 243                                loff_t lstart, loff_t lend)
 244{
 245        pgoff_t         start;          /* inclusive */
 246        pgoff_t         end;            /* exclusive */
 247        unsigned int    partial_start;  /* inclusive */
 248        unsigned int    partial_end;    /* exclusive */
 249        struct pagevec  pvec;
 250        pgoff_t         indices[PAGEVEC_SIZE];
 251        pgoff_t         index;
 252        int             i;
 253
 254        cleancache_invalidate_inode(mapping);
 255        if (mapping->nrpages == 0 && mapping->nrshadows == 0)
 256                return;
 257
 258        /* Offsets within partial pages */
 259        partial_start = lstart & (PAGE_CACHE_SIZE - 1);
 260        partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
 261
 262        /*
 263         * 'start' and 'end' always covers the range of pages to be fully
 264         * truncated. Partial pages are covered with 'partial_start' at the
 265         * start of the range and 'partial_end' at the end of the range.
 266         * Note that 'end' is exclusive while 'lend' is inclusive.
 267         */
 268        start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
 269        if (lend == -1)
 270                /*
 271                 * lend == -1 indicates end-of-file so we have to set 'end'
 272                 * to the highest possible pgoff_t and since the type is
 273                 * unsigned we're using -1.
 274                 */
 275                end = -1;
 276        else
 277                end = (lend + 1) >> PAGE_CACHE_SHIFT;
 278
 279        pagevec_init(&pvec, 0);
 280        index = start;
 281        while (index < end && pagevec_lookup_entries(&pvec, mapping, index,
 282                        min(end - index, (pgoff_t)PAGEVEC_SIZE),
 283                        indices)) {
 284                mem_cgroup_uncharge_start();
 285                for (i = 0; i < pagevec_count(&pvec); i++) {
 286                        struct page *page = pvec.pages[i];
 287
 288                        /* We rely upon deletion not changing page->index */
 289                        index = indices[i];
 290                        if (index >= end)
 291                                break;
 292
 293                        if (radix_tree_exceptional_entry(page)) {
 294                                clear_exceptional_entry(mapping, index, page);
 295                                continue;
 296                        }
 297
 298                        if (!trylock_page(page))
 299                                continue;
 300                        WARN_ON(page->index != index);
 301                        if (PageWriteback(page)) {
 302                                unlock_page(page);
 303                                continue;
 304                        }
 305                        truncate_inode_page(mapping, page);
 306                        unlock_page(page);
 307                }
 308                pagevec_remove_exceptionals(&pvec);
 309                pagevec_release(&pvec);
 310                mem_cgroup_uncharge_end();
 311                cond_resched();
 312                index++;
 313        }
 314
 315        if (partial_start) {
 316                struct page *page = find_lock_page(mapping, start - 1);
 317                if (page) {
 318                        unsigned int top = PAGE_CACHE_SIZE;
 319                        if (start > end) {
 320                                /* Truncation within a single page */
 321                                top = partial_end;
 322                                partial_end = 0;
 323                        }
 324                        wait_on_page_writeback(page);
 325                        zero_user_segment(page, partial_start, top);
 326                        cleancache_invalidate_page(mapping, page);
 327                        if (page_has_private(page))
 328                                do_invalidatepage(page, partial_start,
 329                                                  top - partial_start);
 330                        unlock_page(page);
 331                        page_cache_release(page);
 332                }
 333        }
 334        if (partial_end) {
 335                struct page *page = find_lock_page(mapping, end);
 336                if (page) {
 337                        wait_on_page_writeback(page);
 338                        zero_user_segment(page, 0, partial_end);
 339                        cleancache_invalidate_page(mapping, page);
 340                        if (page_has_private(page))
 341                                do_invalidatepage(page, 0,
 342                                                  partial_end);
 343                        unlock_page(page);
 344                        page_cache_release(page);
 345                }
 346        }
 347        /*
 348         * If the truncation happened within a single page no pages
 349         * will be released, just zeroed, so we can bail out now.
 350         */
 351        if (start >= end)
 352                return;
 353
 354        index = start;
 355        for ( ; ; ) {
 356                cond_resched();
 357                if (!pagevec_lookup_entries(&pvec, mapping, index,
 358                        min(end - index, (pgoff_t)PAGEVEC_SIZE), indices)) {
 359                        /* If all gone from start onwards, we're done */
 360                        if (index == start)
 361                                break;
 362                        /* Otherwise restart to make sure all gone */
 363                        index = start;
 364                        continue;
 365                }
 366                if (index == start && indices[0] >= end) {
 367                        /* All gone out of hole to be punched, we're done */
 368                        pagevec_remove_exceptionals(&pvec);
 369                        pagevec_release(&pvec);
 370                        break;
 371                }
 372                mem_cgroup_uncharge_start();
 373                for (i = 0; i < pagevec_count(&pvec); i++) {
 374                        struct page *page = pvec.pages[i];
 375
 376                        /* We rely upon deletion not changing page->index */
 377                        index = indices[i];
 378                        if (index >= end) {
 379                                /* Restart punch to make sure all gone */
 380                                index = start - 1;
 381                                break;
 382                        }
 383
 384                        if (radix_tree_exceptional_entry(page)) {
 385                                clear_exceptional_entry(mapping, index, page);
 386                                continue;
 387                        }
 388
 389                        lock_page(page);
 390                        WARN_ON(page->index != index);
 391                        wait_on_page_writeback(page);
 392                        truncate_inode_page(mapping, page);
 393                        unlock_page(page);
 394                }
 395                pagevec_remove_exceptionals(&pvec);
 396                pagevec_release(&pvec);
 397                mem_cgroup_uncharge_end();
 398                index++;
 399        }
 400        cleancache_invalidate_inode(mapping);
 401}
 402EXPORT_SYMBOL(truncate_inode_pages_range);
 403
 404/**
 405 * truncate_inode_pages - truncate *all* the pages from an offset
 406 * @mapping: mapping to truncate
 407 * @lstart: offset from which to truncate
 408 *
 409 * Called under (and serialised by) inode->i_mutex.
 410 *
 411 * Note: When this function returns, there can be a page in the process of
 412 * deletion (inside __delete_from_page_cache()) in the specified range.  Thus
 413 * mapping->nrpages can be non-zero when this function returns even after
 414 * truncation of the whole mapping.
 415 */
 416void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
 417{
 418        truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
 419}
 420EXPORT_SYMBOL(truncate_inode_pages);
 421
 422/**
 423 * truncate_inode_pages_final - truncate *all* pages before inode dies
 424 * @mapping: mapping to truncate
 425 *
 426 * Called under (and serialized by) inode->i_mutex.
 427 *
 428 * Filesystems have to use this in the .evict_inode path to inform the
 429 * VM that this is the final truncate and the inode is going away.
 430 */
 431void truncate_inode_pages_final(struct address_space *mapping)
 432{
 433        unsigned long nrshadows;
 434        unsigned long nrpages;
 435
 436        /*
 437         * Page reclaim can not participate in regular inode lifetime
 438         * management (can't call iput()) and thus can race with the
 439         * inode teardown.  Tell it when the address space is exiting,
 440         * so that it does not install eviction information after the
 441         * final truncate has begun.
 442         */
 443        mapping_set_exiting(mapping);
 444
 445        /*
 446         * When reclaim installs eviction entries, it increases
 447         * nrshadows first, then decreases nrpages.  Make sure we see
 448         * this in the right order or we might miss an entry.
 449         */
 450        nrpages = mapping->nrpages;
 451        smp_rmb();
 452        nrshadows = mapping->nrshadows;
 453
 454        if (nrpages || nrshadows) {
 455                /*
 456                 * As truncation uses a lockless tree lookup, cycle
 457                 * the tree lock to make sure any ongoing tree
 458                 * modification that does not see AS_EXITING is
 459                 * completed before starting the final truncate.
 460                 */
 461                spin_lock_irq(&mapping->tree_lock);
 462                spin_unlock_irq(&mapping->tree_lock);
 463
 464                truncate_inode_pages(mapping, 0);
 465        }
 466}
 467EXPORT_SYMBOL(truncate_inode_pages_final);
 468
 469/**
 470 * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
 471 * @mapping: the address_space which holds the pages to invalidate
 472 * @start: the offset 'from' which to invalidate
 473 * @end: the offset 'to' which to invalidate (inclusive)
 474 *
 475 * This function only removes the unlocked pages, if you want to
 476 * remove all the pages of one inode, you must call truncate_inode_pages.
 477 *
 478 * invalidate_mapping_pages() will not block on IO activity. It will not
 479 * invalidate pages which are dirty, locked, under writeback or mapped into
 480 * pagetables.
 481 */
 482unsigned long invalidate_mapping_pages(struct address_space *mapping,
 483                pgoff_t start, pgoff_t end)
 484{
 485        pgoff_t indices[PAGEVEC_SIZE];
 486        struct pagevec pvec;
 487        pgoff_t index = start;
 488        unsigned long ret;
 489        unsigned long count = 0;
 490        int i;
 491
 492        pagevec_init(&pvec, 0);
 493        while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
 494                        min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
 495                        indices)) {
 496                mem_cgroup_uncharge_start();
 497                for (i = 0; i < pagevec_count(&pvec); i++) {
 498                        struct page *page = pvec.pages[i];
 499
 500                        /* We rely upon deletion not changing page->index */
 501                        index = indices[i];
 502                        if (index > end)
 503                                break;
 504
 505                        if (radix_tree_exceptional_entry(page)) {
 506                                clear_exceptional_entry(mapping, index, page);
 507                                continue;
 508                        }
 509
 510                        if (!trylock_page(page))
 511                                continue;
 512                        WARN_ON(page->index != index);
 513                        ret = invalidate_inode_page(page);
 514                        unlock_page(page);
 515                        /*
 516                         * Invalidation is a hint that the page is no longer
 517                         * of interest and try to speed up its reclaim.
 518                         */
 519                        if (!ret)
 520                                deactivate_page(page);
 521                        count += ret;
 522                }
 523                pagevec_remove_exceptionals(&pvec);
 524                pagevec_release(&pvec);
 525                mem_cgroup_uncharge_end();
 526                cond_resched();
 527                index++;
 528        }
 529        return count;
 530}
 531EXPORT_SYMBOL(invalidate_mapping_pages);
 532
 533/*
 534 * This is like invalidate_complete_page(), except it ignores the page's
 535 * refcount.  We do this because invalidate_inode_pages2() needs stronger
 536 * invalidation guarantees, and cannot afford to leave pages behind because
 537 * shrink_page_list() has a temp ref on them, or because they're transiently
 538 * sitting in the lru_cache_add() pagevecs.
 539 */
 540static int
 541invalidate_complete_page2(struct address_space *mapping, struct page *page)
 542{
 543        if (page->mapping != mapping)
 544                return 0;
 545
 546        if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL))
 547                return 0;
 548
 549        spin_lock_irq(&mapping->tree_lock);
 550        if (PageDirty(page))
 551                goto failed;
 552
 553        BUG_ON(page_has_private(page));
 554        __delete_from_page_cache(page, NULL);
 555        spin_unlock_irq(&mapping->tree_lock);
 556        mem_cgroup_uncharge_cache_page(page);
 557
 558        if (mapping->a_ops->freepage)
 559                mapping->a_ops->freepage(page);
 560
 561        page_cache_release(page);       /* pagecache ref */
 562        return 1;
 563failed:
 564        spin_unlock_irq(&mapping->tree_lock);
 565        return 0;
 566}
 567
 568static int do_launder_page(struct address_space *mapping, struct page *page)
 569{
 570        if (!PageDirty(page))
 571                return 0;
 572        if (page->mapping != mapping || mapping->a_ops->launder_page == NULL)
 573                return 0;
 574        return mapping->a_ops->launder_page(page);
 575}
 576
 577/**
 578 * invalidate_inode_pages2_range - remove range of pages from an address_space
 579 * @mapping: the address_space
 580 * @start: the page offset 'from' which to invalidate
 581 * @end: the page offset 'to' which to invalidate (inclusive)
 582 *
 583 * Any pages which are found to be mapped into pagetables are unmapped prior to
 584 * invalidation.
 585 *
 586 * Returns -EBUSY if any pages could not be invalidated.
 587 */
 588int invalidate_inode_pages2_range(struct address_space *mapping,
 589                                  pgoff_t start, pgoff_t end)
 590{
 591        pgoff_t indices[PAGEVEC_SIZE];
 592        struct pagevec pvec;
 593        pgoff_t index;
 594        int i;
 595        int ret = 0;
 596        int ret2 = 0;
 597        int did_range_unmap = 0;
 598
 599        cleancache_invalidate_inode(mapping);
 600        pagevec_init(&pvec, 0);
 601        index = start;
 602        while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
 603                        min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
 604                        indices)) {
 605                mem_cgroup_uncharge_start();
 606                for (i = 0; i < pagevec_count(&pvec); i++) {
 607                        struct page *page = pvec.pages[i];
 608
 609                        /* We rely upon deletion not changing page->index */
 610                        index = indices[i];
 611                        if (index > end)
 612                                break;
 613
 614                        if (radix_tree_exceptional_entry(page)) {
 615                                clear_exceptional_entry(mapping, index, page);
 616                                continue;
 617                        }
 618
 619                        lock_page(page);
 620                        WARN_ON(page->index != index);
 621                        if (page->mapping != mapping) {
 622                                unlock_page(page);
 623                                continue;
 624                        }
 625                        wait_on_page_writeback(page);
 626                        if (page_mapped(page)) {
 627                                if (!did_range_unmap) {
 628                                        /*
 629                                         * Zap the rest of the file in one hit.
 630                                         */
 631                                        unmap_mapping_range(mapping,
 632                                           (loff_t)index << PAGE_CACHE_SHIFT,
 633                                           (loff_t)(1 + end - index)
 634                                                         << PAGE_CACHE_SHIFT,
 635                                            0);
 636                                        did_range_unmap = 1;
 637                                } else {
 638                                        /*
 639                                         * Just zap this page
 640                                         */
 641                                        unmap_mapping_range(mapping,
 642                                           (loff_t)index << PAGE_CACHE_SHIFT,
 643                                           PAGE_CACHE_SIZE, 0);
 644                                }
 645                        }
 646                        BUG_ON(page_mapped(page));
 647                        ret2 = do_launder_page(mapping, page);
 648                        if (ret2 == 0) {
 649                                if (!invalidate_complete_page2(mapping, page))
 650                                        ret2 = -EBUSY;
 651                        }
 652                        if (ret2 < 0)
 653                                ret = ret2;
 654                        unlock_page(page);
 655                }
 656                pagevec_remove_exceptionals(&pvec);
 657                pagevec_release(&pvec);
 658                mem_cgroup_uncharge_end();
 659                cond_resched();
 660                index++;
 661        }
 662        cleancache_invalidate_inode(mapping);
 663        return ret;
 664}
 665EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
 666
 667/**
 668 * invalidate_inode_pages2 - remove all pages from an address_space
 669 * @mapping: the address_space
 670 *
 671 * Any pages which are found to be mapped into pagetables are unmapped prior to
 672 * invalidation.
 673 *
 674 * Returns -EBUSY if any pages could not be invalidated.
 675 */
 676int invalidate_inode_pages2(struct address_space *mapping)
 677{
 678        return invalidate_inode_pages2_range(mapping, 0, -1);
 679}
 680EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
 681
 682/**
 683 * truncate_pagecache - unmap and remove pagecache that has been truncated
 684 * @inode: inode
 685 * @newsize: new file size
 686 *
 687 * inode's new i_size must already be written before truncate_pagecache
 688 * is called.
 689 *
 690 * This function should typically be called before the filesystem
 691 * releases resources associated with the freed range (eg. deallocates
 692 * blocks). This way, pagecache will always stay logically coherent
 693 * with on-disk format, and the filesystem would not have to deal with
 694 * situations such as writepage being called for a page that has already
 695 * had its underlying blocks deallocated.
 696 */
 697void truncate_pagecache(struct inode *inode, loff_t newsize)
 698{
 699        struct address_space *mapping = inode->i_mapping;
 700        loff_t holebegin = round_up(newsize, PAGE_SIZE);
 701
 702        /*
 703         * unmap_mapping_range is called twice, first simply for
 704         * efficiency so that truncate_inode_pages does fewer
 705         * single-page unmaps.  However after this first call, and
 706         * before truncate_inode_pages finishes, it is possible for
 707         * private pages to be COWed, which remain after
 708         * truncate_inode_pages finishes, hence the second
 709         * unmap_mapping_range call must be made for correctness.
 710         */
 711        unmap_mapping_range(mapping, holebegin, 0, 1);
 712        truncate_inode_pages(mapping, newsize);
 713        unmap_mapping_range(mapping, holebegin, 0, 1);
 714}
 715EXPORT_SYMBOL(truncate_pagecache);
 716
 717/**
 718 * truncate_setsize - update inode and pagecache for a new file size
 719 * @inode: inode
 720 * @newsize: new file size
 721 *
 722 * truncate_setsize updates i_size and performs pagecache truncation (if
 723 * necessary) to @newsize. It will be typically be called from the filesystem's
 724 * setattr function when ATTR_SIZE is passed in.
 725 *
 726 * Must be called with inode_mutex held and before all filesystem specific
 727 * block truncation has been performed.
 728 */
 729void truncate_setsize(struct inode *inode, loff_t newsize)
 730{
 731        i_size_write(inode, newsize);
 732        truncate_pagecache(inode, newsize);
 733}
 734EXPORT_SYMBOL(truncate_setsize);
 735
 736/**
 737 * truncate_pagecache_range - unmap and remove pagecache that is hole-punched
 738 * @inode: inode
 739 * @lstart: offset of beginning of hole
 740 * @lend: offset of last byte of hole
 741 *
 742 * This function should typically be called before the filesystem
 743 * releases resources associated with the freed range (eg. deallocates
 744 * blocks). This way, pagecache will always stay logically coherent
 745 * with on-disk format, and the filesystem would not have to deal with
 746 * situations such as writepage being called for a page that has already
 747 * had its underlying blocks deallocated.
 748 */
 749void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend)
 750{
 751        struct address_space *mapping = inode->i_mapping;
 752        loff_t unmap_start = round_up(lstart, PAGE_SIZE);
 753        loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1;
 754        /*
 755         * This rounding is currently just for example: unmap_mapping_range
 756         * expands its hole outwards, whereas we want it to contract the hole
 757         * inwards.  However, existing callers of truncate_pagecache_range are
 758         * doing their own page rounding first.  Note that unmap_mapping_range
 759         * allows holelen 0 for all, and we allow lend -1 for end of file.
 760         */
 761
 762        /*
 763         * Unlike in truncate_pagecache, unmap_mapping_range is called only
 764         * once (before truncating pagecache), and without "even_cows" flag:
 765         * hole-punching should not remove private COWed pages from the hole.
 766         */
 767        if ((u64)unmap_end > (u64)unmap_start)
 768                unmap_mapping_range(mapping, unmap_start,
 769                                    1 + unmap_end - unmap_start, 0);
 770        truncate_inode_pages_range(mapping, lstart, lend);
 771}
 772EXPORT_SYMBOL(truncate_pagecache_range);
 773