linux/arch/arm/kernel/process.c
<<
>>
Prefs
   1/*
   2 *  linux/arch/arm/kernel/process.c
   3 *
   4 *  Copyright (C) 1996-2000 Russell King - Converted to ARM.
   5 *  Original Copyright (C) 1995  Linus Torvalds
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11#include <stdarg.h>
  12
  13#include <linux/export.h>
  14#include <linux/sched.h>
  15#include <linux/kernel.h>
  16#include <linux/mm.h>
  17#include <linux/stddef.h>
  18#include <linux/unistd.h>
  19#include <linux/user.h>
  20#include <linux/delay.h>
  21#include <linux/reboot.h>
  22#include <linux/interrupt.h>
  23#include <linux/kallsyms.h>
  24#include <linux/init.h>
  25#include <linux/cpu.h>
  26#include <linux/elfcore.h>
  27#include <linux/pm.h>
  28#include <linux/tick.h>
  29#include <linux/utsname.h>
  30#include <linux/uaccess.h>
  31#include <linux/random.h>
  32#include <linux/hw_breakpoint.h>
  33#include <linux/leds.h>
  34#include <linux/reboot.h>
  35
  36#include <asm/cacheflush.h>
  37#include <asm/idmap.h>
  38#include <asm/processor.h>
  39#include <asm/thread_notify.h>
  40#include <asm/stacktrace.h>
  41#include <asm/system_misc.h>
  42#include <asm/mach/time.h>
  43#include <asm/tls.h>
  44
  45#ifdef CONFIG_CC_STACKPROTECTOR
  46#include <linux/stackprotector.h>
  47unsigned long __stack_chk_guard __read_mostly;
  48EXPORT_SYMBOL(__stack_chk_guard);
  49#endif
  50
  51static const char *processor_modes[] __maybe_unused = {
  52  "USER_26", "FIQ_26" , "IRQ_26" , "SVC_26" , "UK4_26" , "UK5_26" , "UK6_26" , "UK7_26" ,
  53  "UK8_26" , "UK9_26" , "UK10_26", "UK11_26", "UK12_26", "UK13_26", "UK14_26", "UK15_26",
  54  "USER_32", "FIQ_32" , "IRQ_32" , "SVC_32" , "UK4_32" , "UK5_32" , "UK6_32" , "ABT_32" ,
  55  "UK8_32" , "UK9_32" , "UK10_32", "UND_32" , "UK12_32", "UK13_32", "UK14_32", "SYS_32"
  56};
  57
  58static const char *isa_modes[] __maybe_unused = {
  59  "ARM" , "Thumb" , "Jazelle", "ThumbEE"
  60};
  61
  62extern void call_with_stack(void (*fn)(void *), void *arg, void *sp);
  63typedef void (*phys_reset_t)(unsigned long);
  64
  65/*
  66 * A temporary stack to use for CPU reset. This is static so that we
  67 * don't clobber it with the identity mapping. When running with this
  68 * stack, any references to the current task *will not work* so you
  69 * should really do as little as possible before jumping to your reset
  70 * code.
  71 */
  72static u64 soft_restart_stack[16];
  73
  74static void __soft_restart(void *addr)
  75{
  76        phys_reset_t phys_reset;
  77
  78        /* Take out a flat memory mapping. */
  79        setup_mm_for_reboot();
  80
  81        /* Clean and invalidate caches */
  82        flush_cache_all();
  83
  84        /* Turn off caching */
  85        cpu_proc_fin();
  86
  87        /* Push out any further dirty data, and ensure cache is empty */
  88        flush_cache_all();
  89
  90        /* Switch to the identity mapping. */
  91        phys_reset = (phys_reset_t)(unsigned long)virt_to_phys(cpu_reset);
  92        phys_reset((unsigned long)addr);
  93
  94        /* Should never get here. */
  95        BUG();
  96}
  97
  98void soft_restart(unsigned long addr)
  99{
 100        u64 *stack = soft_restart_stack + ARRAY_SIZE(soft_restart_stack);
 101
 102        /* Disable interrupts first */
 103        raw_local_irq_disable();
 104        local_fiq_disable();
 105
 106        /* Disable the L2 if we're the last man standing. */
 107        if (num_online_cpus() == 1)
 108                outer_disable();
 109
 110        /* Change to the new stack and continue with the reset. */
 111        call_with_stack(__soft_restart, (void *)addr, (void *)stack);
 112
 113        /* Should never get here. */
 114        BUG();
 115}
 116
 117static void null_restart(enum reboot_mode reboot_mode, const char *cmd)
 118{
 119}
 120
 121/*
 122 * Function pointers to optional machine specific functions
 123 */
 124void (*pm_power_off)(void);
 125EXPORT_SYMBOL(pm_power_off);
 126
 127void (*arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd) = null_restart;
 128EXPORT_SYMBOL_GPL(arm_pm_restart);
 129
 130/*
 131 * This is our default idle handler.
 132 */
 133
 134void (*arm_pm_idle)(void);
 135
 136/*
 137 * Called from the core idle loop.
 138 */
 139
 140void arch_cpu_idle(void)
 141{
 142        if (arm_pm_idle)
 143                arm_pm_idle();
 144        else
 145                cpu_do_idle();
 146        local_irq_enable();
 147}
 148
 149void arch_cpu_idle_prepare(void)
 150{
 151        local_fiq_enable();
 152}
 153
 154void arch_cpu_idle_enter(void)
 155{
 156        ledtrig_cpu(CPU_LED_IDLE_START);
 157#ifdef CONFIG_PL310_ERRATA_769419
 158        wmb();
 159#endif
 160}
 161
 162void arch_cpu_idle_exit(void)
 163{
 164        ledtrig_cpu(CPU_LED_IDLE_END);
 165}
 166
 167#ifdef CONFIG_HOTPLUG_CPU
 168void arch_cpu_idle_dead(void)
 169{
 170        cpu_die();
 171}
 172#endif
 173
 174/*
 175 * Called by kexec, immediately prior to machine_kexec().
 176 *
 177 * This must completely disable all secondary CPUs; simply causing those CPUs
 178 * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
 179 * kexec'd kernel to use any and all RAM as it sees fit, without having to
 180 * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
 181 * functionality embodied in disable_nonboot_cpus() to achieve this.
 182 */
 183void machine_shutdown(void)
 184{
 185        disable_nonboot_cpus();
 186}
 187
 188/*
 189 * Halting simply requires that the secondary CPUs stop performing any
 190 * activity (executing tasks, handling interrupts). smp_send_stop()
 191 * achieves this.
 192 */
 193void machine_halt(void)
 194{
 195        local_irq_disable();
 196        smp_send_stop();
 197
 198        local_irq_disable();
 199        while (1);
 200}
 201
 202/*
 203 * Power-off simply requires that the secondary CPUs stop performing any
 204 * activity (executing tasks, handling interrupts). smp_send_stop()
 205 * achieves this. When the system power is turned off, it will take all CPUs
 206 * with it.
 207 */
 208void machine_power_off(void)
 209{
 210        local_irq_disable();
 211        smp_send_stop();
 212
 213        if (pm_power_off)
 214                pm_power_off();
 215}
 216
 217/*
 218 * Restart requires that the secondary CPUs stop performing any activity
 219 * while the primary CPU resets the system. Systems with a single CPU can
 220 * use soft_restart() as their machine descriptor's .restart hook, since that
 221 * will cause the only available CPU to reset. Systems with multiple CPUs must
 222 * provide a HW restart implementation, to ensure that all CPUs reset at once.
 223 * This is required so that any code running after reset on the primary CPU
 224 * doesn't have to co-ordinate with other CPUs to ensure they aren't still
 225 * executing pre-reset code, and using RAM that the primary CPU's code wishes
 226 * to use. Implementing such co-ordination would be essentially impossible.
 227 */
 228void machine_restart(char *cmd)
 229{
 230        local_irq_disable();
 231        smp_send_stop();
 232
 233        arm_pm_restart(reboot_mode, cmd);
 234
 235        /* Give a grace period for failure to restart of 1s */
 236        mdelay(1000);
 237
 238        /* Whoops - the platform was unable to reboot. Tell the user! */
 239        printk("Reboot failed -- System halted\n");
 240        local_irq_disable();
 241        while (1);
 242}
 243
 244void __show_regs(struct pt_regs *regs)
 245{
 246        unsigned long flags;
 247        char buf[64];
 248
 249        show_regs_print_info(KERN_DEFAULT);
 250
 251        print_symbol("PC is at %s\n", instruction_pointer(regs));
 252        print_symbol("LR is at %s\n", regs->ARM_lr);
 253        printk("pc : [<%08lx>]    lr : [<%08lx>]    psr: %08lx\n"
 254               "sp : %08lx  ip : %08lx  fp : %08lx\n",
 255                regs->ARM_pc, regs->ARM_lr, regs->ARM_cpsr,
 256                regs->ARM_sp, regs->ARM_ip, regs->ARM_fp);
 257        printk("r10: %08lx  r9 : %08lx  r8 : %08lx\n",
 258                regs->ARM_r10, regs->ARM_r9,
 259                regs->ARM_r8);
 260        printk("r7 : %08lx  r6 : %08lx  r5 : %08lx  r4 : %08lx\n",
 261                regs->ARM_r7, regs->ARM_r6,
 262                regs->ARM_r5, regs->ARM_r4);
 263        printk("r3 : %08lx  r2 : %08lx  r1 : %08lx  r0 : %08lx\n",
 264                regs->ARM_r3, regs->ARM_r2,
 265                regs->ARM_r1, regs->ARM_r0);
 266
 267        flags = regs->ARM_cpsr;
 268        buf[0] = flags & PSR_N_BIT ? 'N' : 'n';
 269        buf[1] = flags & PSR_Z_BIT ? 'Z' : 'z';
 270        buf[2] = flags & PSR_C_BIT ? 'C' : 'c';
 271        buf[3] = flags & PSR_V_BIT ? 'V' : 'v';
 272        buf[4] = '\0';
 273
 274#ifndef CONFIG_CPU_V7M
 275        printk("Flags: %s  IRQs o%s  FIQs o%s  Mode %s  ISA %s  Segment %s\n",
 276                buf, interrupts_enabled(regs) ? "n" : "ff",
 277                fast_interrupts_enabled(regs) ? "n" : "ff",
 278                processor_modes[processor_mode(regs)],
 279                isa_modes[isa_mode(regs)],
 280                get_fs() == get_ds() ? "kernel" : "user");
 281#else
 282        printk("xPSR: %08lx\n", regs->ARM_cpsr);
 283#endif
 284
 285#ifdef CONFIG_CPU_CP15
 286        {
 287                unsigned int ctrl;
 288
 289                buf[0] = '\0';
 290#ifdef CONFIG_CPU_CP15_MMU
 291                {
 292                        unsigned int transbase, dac;
 293                        asm("mrc p15, 0, %0, c2, c0\n\t"
 294                            "mrc p15, 0, %1, c3, c0\n"
 295                            : "=r" (transbase), "=r" (dac));
 296                        snprintf(buf, sizeof(buf), "  Table: %08x  DAC: %08x",
 297                                transbase, dac);
 298                }
 299#endif
 300                asm("mrc p15, 0, %0, c1, c0\n" : "=r" (ctrl));
 301
 302                printk("Control: %08x%s\n", ctrl, buf);
 303        }
 304#endif
 305}
 306
 307void show_regs(struct pt_regs * regs)
 308{
 309        printk("\n");
 310        __show_regs(regs);
 311        dump_stack();
 312}
 313
 314ATOMIC_NOTIFIER_HEAD(thread_notify_head);
 315
 316EXPORT_SYMBOL_GPL(thread_notify_head);
 317
 318/*
 319 * Free current thread data structures etc..
 320 */
 321void exit_thread(void)
 322{
 323        thread_notify(THREAD_NOTIFY_EXIT, current_thread_info());
 324}
 325
 326void flush_thread(void)
 327{
 328        struct thread_info *thread = current_thread_info();
 329        struct task_struct *tsk = current;
 330
 331        flush_ptrace_hw_breakpoint(tsk);
 332
 333        memset(thread->used_cp, 0, sizeof(thread->used_cp));
 334        memset(&tsk->thread.debug, 0, sizeof(struct debug_info));
 335        memset(&thread->fpstate, 0, sizeof(union fp_state));
 336
 337        flush_tls();
 338
 339        thread_notify(THREAD_NOTIFY_FLUSH, thread);
 340}
 341
 342void release_thread(struct task_struct *dead_task)
 343{
 344}
 345
 346asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
 347
 348int
 349copy_thread(unsigned long clone_flags, unsigned long stack_start,
 350            unsigned long stk_sz, struct task_struct *p)
 351{
 352        struct thread_info *thread = task_thread_info(p);
 353        struct pt_regs *childregs = task_pt_regs(p);
 354
 355        memset(&thread->cpu_context, 0, sizeof(struct cpu_context_save));
 356
 357        if (likely(!(p->flags & PF_KTHREAD))) {
 358                *childregs = *current_pt_regs();
 359                childregs->ARM_r0 = 0;
 360                if (stack_start)
 361                        childregs->ARM_sp = stack_start;
 362        } else {
 363                memset(childregs, 0, sizeof(struct pt_regs));
 364                thread->cpu_context.r4 = stk_sz;
 365                thread->cpu_context.r5 = stack_start;
 366                childregs->ARM_cpsr = SVC_MODE;
 367        }
 368        thread->cpu_context.pc = (unsigned long)ret_from_fork;
 369        thread->cpu_context.sp = (unsigned long)childregs;
 370
 371        clear_ptrace_hw_breakpoint(p);
 372
 373        if (clone_flags & CLONE_SETTLS)
 374                thread->tp_value[0] = childregs->ARM_r3;
 375        thread->tp_value[1] = get_tpuser();
 376
 377        thread_notify(THREAD_NOTIFY_COPY, thread);
 378
 379        return 0;
 380}
 381
 382/*
 383 * Fill in the task's elfregs structure for a core dump.
 384 */
 385int dump_task_regs(struct task_struct *t, elf_gregset_t *elfregs)
 386{
 387        elf_core_copy_regs(elfregs, task_pt_regs(t));
 388        return 1;
 389}
 390
 391/*
 392 * fill in the fpe structure for a core dump...
 393 */
 394int dump_fpu (struct pt_regs *regs, struct user_fp *fp)
 395{
 396        struct thread_info *thread = current_thread_info();
 397        int used_math = thread->used_cp[1] | thread->used_cp[2];
 398
 399        if (used_math)
 400                memcpy(fp, &thread->fpstate.soft, sizeof (*fp));
 401
 402        return used_math != 0;
 403}
 404EXPORT_SYMBOL(dump_fpu);
 405
 406unsigned long get_wchan(struct task_struct *p)
 407{
 408        struct stackframe frame;
 409        unsigned long stack_page;
 410        int count = 0;
 411        if (!p || p == current || p->state == TASK_RUNNING)
 412                return 0;
 413
 414        frame.fp = thread_saved_fp(p);
 415        frame.sp = thread_saved_sp(p);
 416        frame.lr = 0;                   /* recovered from the stack */
 417        frame.pc = thread_saved_pc(p);
 418        stack_page = (unsigned long)task_stack_page(p);
 419        do {
 420                if (frame.sp < stack_page ||
 421                    frame.sp >= stack_page + THREAD_SIZE ||
 422                    unwind_frame(&frame) < 0)
 423                        return 0;
 424                if (!in_sched_functions(frame.pc))
 425                        return frame.pc;
 426        } while (count ++ < 16);
 427        return 0;
 428}
 429
 430unsigned long arch_randomize_brk(struct mm_struct *mm)
 431{
 432        unsigned long range_end = mm->brk + 0x02000000;
 433        return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
 434}
 435
 436#ifdef CONFIG_MMU
 437#ifdef CONFIG_KUSER_HELPERS
 438/*
 439 * The vectors page is always readable from user space for the
 440 * atomic helpers. Insert it into the gate_vma so that it is visible
 441 * through ptrace and /proc/<pid>/mem.
 442 */
 443static struct vm_area_struct gate_vma = {
 444        .vm_start       = 0xffff0000,
 445        .vm_end         = 0xffff0000 + PAGE_SIZE,
 446        .vm_flags       = VM_READ | VM_EXEC | VM_MAYREAD | VM_MAYEXEC,
 447};
 448
 449static int __init gate_vma_init(void)
 450{
 451        gate_vma.vm_page_prot = PAGE_READONLY_EXEC;
 452        return 0;
 453}
 454arch_initcall(gate_vma_init);
 455
 456struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
 457{
 458        return &gate_vma;
 459}
 460
 461int in_gate_area(struct mm_struct *mm, unsigned long addr)
 462{
 463        return (addr >= gate_vma.vm_start) && (addr < gate_vma.vm_end);
 464}
 465
 466int in_gate_area_no_mm(unsigned long addr)
 467{
 468        return in_gate_area(NULL, addr);
 469}
 470#define is_gate_vma(vma)        ((vma) == &gate_vma)
 471#else
 472#define is_gate_vma(vma)        0
 473#endif
 474
 475const char *arch_vma_name(struct vm_area_struct *vma)
 476{
 477        return is_gate_vma(vma) ? "[vectors]" :
 478                (vma->vm_mm && vma->vm_start == vma->vm_mm->context.sigpage) ?
 479                 "[sigpage]" : NULL;
 480}
 481
 482static struct page *signal_page;
 483extern struct page *get_signal_page(void);
 484
 485int arch_setup_additional_pages(struct linux_binprm *bprm, int uses_interp)
 486{
 487        struct mm_struct *mm = current->mm;
 488        unsigned long addr;
 489        int ret;
 490
 491        if (!signal_page)
 492                signal_page = get_signal_page();
 493        if (!signal_page)
 494                return -ENOMEM;
 495
 496        down_write(&mm->mmap_sem);
 497        addr = get_unmapped_area(NULL, 0, PAGE_SIZE, 0, 0);
 498        if (IS_ERR_VALUE(addr)) {
 499                ret = addr;
 500                goto up_fail;
 501        }
 502
 503        ret = install_special_mapping(mm, addr, PAGE_SIZE,
 504                VM_READ | VM_EXEC | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC,
 505                &signal_page);
 506
 507        if (ret == 0)
 508                mm->context.sigpage = addr;
 509
 510 up_fail:
 511        up_write(&mm->mmap_sem);
 512        return ret;
 513}
 514#endif
 515