linux/arch/ia64/kernel/perfmon.c
<<
>>
Prefs
   1/*
   2 * This file implements the perfmon-2 subsystem which is used
   3 * to program the IA-64 Performance Monitoring Unit (PMU).
   4 *
   5 * The initial version of perfmon.c was written by
   6 * Ganesh Venkitachalam, IBM Corp.
   7 *
   8 * Then it was modified for perfmon-1.x by Stephane Eranian and
   9 * David Mosberger, Hewlett Packard Co.
  10 *
  11 * Version Perfmon-2.x is a rewrite of perfmon-1.x
  12 * by Stephane Eranian, Hewlett Packard Co.
  13 *
  14 * Copyright (C) 1999-2005  Hewlett Packard Co
  15 *               Stephane Eranian <eranian@hpl.hp.com>
  16 *               David Mosberger-Tang <davidm@hpl.hp.com>
  17 *
  18 * More information about perfmon available at:
  19 *      http://www.hpl.hp.com/research/linux/perfmon
  20 */
  21
  22#include <linux/module.h>
  23#include <linux/kernel.h>
  24#include <linux/sched.h>
  25#include <linux/interrupt.h>
  26#include <linux/proc_fs.h>
  27#include <linux/seq_file.h>
  28#include <linux/init.h>
  29#include <linux/vmalloc.h>
  30#include <linux/mm.h>
  31#include <linux/sysctl.h>
  32#include <linux/list.h>
  33#include <linux/file.h>
  34#include <linux/poll.h>
  35#include <linux/vfs.h>
  36#include <linux/smp.h>
  37#include <linux/pagemap.h>
  38#include <linux/mount.h>
  39#include <linux/bitops.h>
  40#include <linux/capability.h>
  41#include <linux/rcupdate.h>
  42#include <linux/completion.h>
  43#include <linux/tracehook.h>
  44#include <linux/slab.h>
  45#include <linux/cpu.h>
  46
  47#include <asm/errno.h>
  48#include <asm/intrinsics.h>
  49#include <asm/page.h>
  50#include <asm/perfmon.h>
  51#include <asm/processor.h>
  52#include <asm/signal.h>
  53#include <asm/uaccess.h>
  54#include <asm/delay.h>
  55
  56#ifdef CONFIG_PERFMON
  57/*
  58 * perfmon context state
  59 */
  60#define PFM_CTX_UNLOADED        1       /* context is not loaded onto any task */
  61#define PFM_CTX_LOADED          2       /* context is loaded onto a task */
  62#define PFM_CTX_MASKED          3       /* context is loaded but monitoring is masked due to overflow */
  63#define PFM_CTX_ZOMBIE          4       /* owner of the context is closing it */
  64
  65#define PFM_INVALID_ACTIVATION  (~0UL)
  66
  67#define PFM_NUM_PMC_REGS        64      /* PMC save area for ctxsw */
  68#define PFM_NUM_PMD_REGS        64      /* PMD save area for ctxsw */
  69
  70/*
  71 * depth of message queue
  72 */
  73#define PFM_MAX_MSGS            32
  74#define PFM_CTXQ_EMPTY(g)       ((g)->ctx_msgq_head == (g)->ctx_msgq_tail)
  75
  76/*
  77 * type of a PMU register (bitmask).
  78 * bitmask structure:
  79 *      bit0   : register implemented
  80 *      bit1   : end marker
  81 *      bit2-3 : reserved
  82 *      bit4   : pmc has pmc.pm
  83 *      bit5   : pmc controls a counter (has pmc.oi), pmd is used as counter
  84 *      bit6-7 : register type
  85 *      bit8-31: reserved
  86 */
  87#define PFM_REG_NOTIMPL         0x0 /* not implemented at all */
  88#define PFM_REG_IMPL            0x1 /* register implemented */
  89#define PFM_REG_END             0x2 /* end marker */
  90#define PFM_REG_MONITOR         (0x1<<4|PFM_REG_IMPL) /* a PMC with a pmc.pm field only */
  91#define PFM_REG_COUNTING        (0x2<<4|PFM_REG_MONITOR) /* a monitor + pmc.oi+ PMD used as a counter */
  92#define PFM_REG_CONTROL         (0x4<<4|PFM_REG_IMPL) /* PMU control register */
  93#define PFM_REG_CONFIG          (0x8<<4|PFM_REG_IMPL) /* configuration register */
  94#define PFM_REG_BUFFER          (0xc<<4|PFM_REG_IMPL) /* PMD used as buffer */
  95
  96#define PMC_IS_LAST(i)  (pmu_conf->pmc_desc[i].type & PFM_REG_END)
  97#define PMD_IS_LAST(i)  (pmu_conf->pmd_desc[i].type & PFM_REG_END)
  98
  99#define PMC_OVFL_NOTIFY(ctx, i) ((ctx)->ctx_pmds[i].flags &  PFM_REGFL_OVFL_NOTIFY)
 100
 101/* i assumed unsigned */
 102#define PMC_IS_IMPL(i)    (i< PMU_MAX_PMCS && (pmu_conf->pmc_desc[i].type & PFM_REG_IMPL))
 103#define PMD_IS_IMPL(i)    (i< PMU_MAX_PMDS && (pmu_conf->pmd_desc[i].type & PFM_REG_IMPL))
 104
 105/* XXX: these assume that register i is implemented */
 106#define PMD_IS_COUNTING(i) ((pmu_conf->pmd_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
 107#define PMC_IS_COUNTING(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
 108#define PMC_IS_MONITOR(i)  ((pmu_conf->pmc_desc[i].type & PFM_REG_MONITOR)  == PFM_REG_MONITOR)
 109#define PMC_IS_CONTROL(i)  ((pmu_conf->pmc_desc[i].type & PFM_REG_CONTROL)  == PFM_REG_CONTROL)
 110
 111#define PMC_DFL_VAL(i)     pmu_conf->pmc_desc[i].default_value
 112#define PMC_RSVD_MASK(i)   pmu_conf->pmc_desc[i].reserved_mask
 113#define PMD_PMD_DEP(i)     pmu_conf->pmd_desc[i].dep_pmd[0]
 114#define PMC_PMD_DEP(i)     pmu_conf->pmc_desc[i].dep_pmd[0]
 115
 116#define PFM_NUM_IBRS      IA64_NUM_DBG_REGS
 117#define PFM_NUM_DBRS      IA64_NUM_DBG_REGS
 118
 119#define CTX_OVFL_NOBLOCK(c)     ((c)->ctx_fl_block == 0)
 120#define CTX_HAS_SMPL(c)         ((c)->ctx_fl_is_sampling)
 121#define PFM_CTX_TASK(h)         (h)->ctx_task
 122
 123#define PMU_PMC_OI              5 /* position of pmc.oi bit */
 124
 125/* XXX: does not support more than 64 PMDs */
 126#define CTX_USED_PMD(ctx, mask) (ctx)->ctx_used_pmds[0] |= (mask)
 127#define CTX_IS_USED_PMD(ctx, c) (((ctx)->ctx_used_pmds[0] & (1UL << (c))) != 0UL)
 128
 129#define CTX_USED_MONITOR(ctx, mask) (ctx)->ctx_used_monitors[0] |= (mask)
 130
 131#define CTX_USED_IBR(ctx,n)     (ctx)->ctx_used_ibrs[(n)>>6] |= 1UL<< ((n) % 64)
 132#define CTX_USED_DBR(ctx,n)     (ctx)->ctx_used_dbrs[(n)>>6] |= 1UL<< ((n) % 64)
 133#define CTX_USES_DBREGS(ctx)    (((pfm_context_t *)(ctx))->ctx_fl_using_dbreg==1)
 134#define PFM_CODE_RR     0       /* requesting code range restriction */
 135#define PFM_DATA_RR     1       /* requestion data range restriction */
 136
 137#define PFM_CPUINFO_CLEAR(v)    pfm_get_cpu_var(pfm_syst_info) &= ~(v)
 138#define PFM_CPUINFO_SET(v)      pfm_get_cpu_var(pfm_syst_info) |= (v)
 139#define PFM_CPUINFO_GET()       pfm_get_cpu_var(pfm_syst_info)
 140
 141#define RDEP(x) (1UL<<(x))
 142
 143/*
 144 * context protection macros
 145 * in SMP:
 146 *      - we need to protect against CPU concurrency (spin_lock)
 147 *      - we need to protect against PMU overflow interrupts (local_irq_disable)
 148 * in UP:
 149 *      - we need to protect against PMU overflow interrupts (local_irq_disable)
 150 *
 151 * spin_lock_irqsave()/spin_unlock_irqrestore():
 152 *      in SMP: local_irq_disable + spin_lock
 153 *      in UP : local_irq_disable
 154 *
 155 * spin_lock()/spin_lock():
 156 *      in UP : removed automatically
 157 *      in SMP: protect against context accesses from other CPU. interrupts
 158 *              are not masked. This is useful for the PMU interrupt handler
 159 *              because we know we will not get PMU concurrency in that code.
 160 */
 161#define PROTECT_CTX(c, f) \
 162        do {  \
 163                DPRINT(("spinlock_irq_save ctx %p by [%d]\n", c, task_pid_nr(current))); \
 164                spin_lock_irqsave(&(c)->ctx_lock, f); \
 165                DPRINT(("spinlocked ctx %p  by [%d]\n", c, task_pid_nr(current))); \
 166        } while(0)
 167
 168#define UNPROTECT_CTX(c, f) \
 169        do { \
 170                DPRINT(("spinlock_irq_restore ctx %p by [%d]\n", c, task_pid_nr(current))); \
 171                spin_unlock_irqrestore(&(c)->ctx_lock, f); \
 172        } while(0)
 173
 174#define PROTECT_CTX_NOPRINT(c, f) \
 175        do {  \
 176                spin_lock_irqsave(&(c)->ctx_lock, f); \
 177        } while(0)
 178
 179
 180#define UNPROTECT_CTX_NOPRINT(c, f) \
 181        do { \
 182                spin_unlock_irqrestore(&(c)->ctx_lock, f); \
 183        } while(0)
 184
 185
 186#define PROTECT_CTX_NOIRQ(c) \
 187        do {  \
 188                spin_lock(&(c)->ctx_lock); \
 189        } while(0)
 190
 191#define UNPROTECT_CTX_NOIRQ(c) \
 192        do { \
 193                spin_unlock(&(c)->ctx_lock); \
 194        } while(0)
 195
 196
 197#ifdef CONFIG_SMP
 198
 199#define GET_ACTIVATION()        pfm_get_cpu_var(pmu_activation_number)
 200#define INC_ACTIVATION()        pfm_get_cpu_var(pmu_activation_number)++
 201#define SET_ACTIVATION(c)       (c)->ctx_last_activation = GET_ACTIVATION()
 202
 203#else /* !CONFIG_SMP */
 204#define SET_ACTIVATION(t)       do {} while(0)
 205#define GET_ACTIVATION(t)       do {} while(0)
 206#define INC_ACTIVATION(t)       do {} while(0)
 207#endif /* CONFIG_SMP */
 208
 209#define SET_PMU_OWNER(t, c)     do { pfm_get_cpu_var(pmu_owner) = (t); pfm_get_cpu_var(pmu_ctx) = (c); } while(0)
 210#define GET_PMU_OWNER()         pfm_get_cpu_var(pmu_owner)
 211#define GET_PMU_CTX()           pfm_get_cpu_var(pmu_ctx)
 212
 213#define LOCK_PFS(g)             spin_lock_irqsave(&pfm_sessions.pfs_lock, g)
 214#define UNLOCK_PFS(g)           spin_unlock_irqrestore(&pfm_sessions.pfs_lock, g)
 215
 216#define PFM_REG_RETFLAG_SET(flags, val) do { flags &= ~PFM_REG_RETFL_MASK; flags |= (val); } while(0)
 217
 218/*
 219 * cmp0 must be the value of pmc0
 220 */
 221#define PMC0_HAS_OVFL(cmp0)  (cmp0 & ~0x1UL)
 222
 223#define PFMFS_MAGIC 0xa0b4d889
 224
 225/*
 226 * debugging
 227 */
 228#define PFM_DEBUGGING 1
 229#ifdef PFM_DEBUGGING
 230#define DPRINT(a) \
 231        do { \
 232                if (unlikely(pfm_sysctl.debug >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
 233        } while (0)
 234
 235#define DPRINT_ovfl(a) \
 236        do { \
 237                if (unlikely(pfm_sysctl.debug > 0 && pfm_sysctl.debug_ovfl >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
 238        } while (0)
 239#endif
 240
 241/*
 242 * 64-bit software counter structure
 243 *
 244 * the next_reset_type is applied to the next call to pfm_reset_regs()
 245 */
 246typedef struct {
 247        unsigned long   val;            /* virtual 64bit counter value */
 248        unsigned long   lval;           /* last reset value */
 249        unsigned long   long_reset;     /* reset value on sampling overflow */
 250        unsigned long   short_reset;    /* reset value on overflow */
 251        unsigned long   reset_pmds[4];  /* which other pmds to reset when this counter overflows */
 252        unsigned long   smpl_pmds[4];   /* which pmds are accessed when counter overflow */
 253        unsigned long   seed;           /* seed for random-number generator */
 254        unsigned long   mask;           /* mask for random-number generator */
 255        unsigned int    flags;          /* notify/do not notify */
 256        unsigned long   eventid;        /* overflow event identifier */
 257} pfm_counter_t;
 258
 259/*
 260 * context flags
 261 */
 262typedef struct {
 263        unsigned int block:1;           /* when 1, task will blocked on user notifications */
 264        unsigned int system:1;          /* do system wide monitoring */
 265        unsigned int using_dbreg:1;     /* using range restrictions (debug registers) */
 266        unsigned int is_sampling:1;     /* true if using a custom format */
 267        unsigned int excl_idle:1;       /* exclude idle task in system wide session */
 268        unsigned int going_zombie:1;    /* context is zombie (MASKED+blocking) */
 269        unsigned int trap_reason:2;     /* reason for going into pfm_handle_work() */
 270        unsigned int no_msg:1;          /* no message sent on overflow */
 271        unsigned int can_restart:1;     /* allowed to issue a PFM_RESTART */
 272        unsigned int reserved:22;
 273} pfm_context_flags_t;
 274
 275#define PFM_TRAP_REASON_NONE            0x0     /* default value */
 276#define PFM_TRAP_REASON_BLOCK           0x1     /* we need to block on overflow */
 277#define PFM_TRAP_REASON_RESET           0x2     /* we need to reset PMDs */
 278
 279
 280/*
 281 * perfmon context: encapsulates all the state of a monitoring session
 282 */
 283
 284typedef struct pfm_context {
 285        spinlock_t              ctx_lock;               /* context protection */
 286
 287        pfm_context_flags_t     ctx_flags;              /* bitmask of flags  (block reason incl.) */
 288        unsigned int            ctx_state;              /* state: active/inactive (no bitfield) */
 289
 290        struct task_struct      *ctx_task;              /* task to which context is attached */
 291
 292        unsigned long           ctx_ovfl_regs[4];       /* which registers overflowed (notification) */
 293
 294        struct completion       ctx_restart_done;       /* use for blocking notification mode */
 295
 296        unsigned long           ctx_used_pmds[4];       /* bitmask of PMD used            */
 297        unsigned long           ctx_all_pmds[4];        /* bitmask of all accessible PMDs */
 298        unsigned long           ctx_reload_pmds[4];     /* bitmask of force reload PMD on ctxsw in */
 299
 300        unsigned long           ctx_all_pmcs[4];        /* bitmask of all accessible PMCs */
 301        unsigned long           ctx_reload_pmcs[4];     /* bitmask of force reload PMC on ctxsw in */
 302        unsigned long           ctx_used_monitors[4];   /* bitmask of monitor PMC being used */
 303
 304        unsigned long           ctx_pmcs[PFM_NUM_PMC_REGS];     /*  saved copies of PMC values */
 305
 306        unsigned int            ctx_used_ibrs[1];               /* bitmask of used IBR (speedup ctxsw in) */
 307        unsigned int            ctx_used_dbrs[1];               /* bitmask of used DBR (speedup ctxsw in) */
 308        unsigned long           ctx_dbrs[IA64_NUM_DBG_REGS];    /* DBR values (cache) when not loaded */
 309        unsigned long           ctx_ibrs[IA64_NUM_DBG_REGS];    /* IBR values (cache) when not loaded */
 310
 311        pfm_counter_t           ctx_pmds[PFM_NUM_PMD_REGS]; /* software state for PMDS */
 312
 313        unsigned long           th_pmcs[PFM_NUM_PMC_REGS];      /* PMC thread save state */
 314        unsigned long           th_pmds[PFM_NUM_PMD_REGS];      /* PMD thread save state */
 315
 316        unsigned long           ctx_saved_psr_up;       /* only contains psr.up value */
 317
 318        unsigned long           ctx_last_activation;    /* context last activation number for last_cpu */
 319        unsigned int            ctx_last_cpu;           /* CPU id of current or last CPU used (SMP only) */
 320        unsigned int            ctx_cpu;                /* cpu to which perfmon is applied (system wide) */
 321
 322        int                     ctx_fd;                 /* file descriptor used my this context */
 323        pfm_ovfl_arg_t          ctx_ovfl_arg;           /* argument to custom buffer format handler */
 324
 325        pfm_buffer_fmt_t        *ctx_buf_fmt;           /* buffer format callbacks */
 326        void                    *ctx_smpl_hdr;          /* points to sampling buffer header kernel vaddr */
 327        unsigned long           ctx_smpl_size;          /* size of sampling buffer */
 328        void                    *ctx_smpl_vaddr;        /* user level virtual address of smpl buffer */
 329
 330        wait_queue_head_t       ctx_msgq_wait;
 331        pfm_msg_t               ctx_msgq[PFM_MAX_MSGS];
 332        int                     ctx_msgq_head;
 333        int                     ctx_msgq_tail;
 334        struct fasync_struct    *ctx_async_queue;
 335
 336        wait_queue_head_t       ctx_zombieq;            /* termination cleanup wait queue */
 337} pfm_context_t;
 338
 339/*
 340 * magic number used to verify that structure is really
 341 * a perfmon context
 342 */
 343#define PFM_IS_FILE(f)          ((f)->f_op == &pfm_file_ops)
 344
 345#define PFM_GET_CTX(t)          ((pfm_context_t *)(t)->thread.pfm_context)
 346
 347#ifdef CONFIG_SMP
 348#define SET_LAST_CPU(ctx, v)    (ctx)->ctx_last_cpu = (v)
 349#define GET_LAST_CPU(ctx)       (ctx)->ctx_last_cpu
 350#else
 351#define SET_LAST_CPU(ctx, v)    do {} while(0)
 352#define GET_LAST_CPU(ctx)       do {} while(0)
 353#endif
 354
 355
 356#define ctx_fl_block            ctx_flags.block
 357#define ctx_fl_system           ctx_flags.system
 358#define ctx_fl_using_dbreg      ctx_flags.using_dbreg
 359#define ctx_fl_is_sampling      ctx_flags.is_sampling
 360#define ctx_fl_excl_idle        ctx_flags.excl_idle
 361#define ctx_fl_going_zombie     ctx_flags.going_zombie
 362#define ctx_fl_trap_reason      ctx_flags.trap_reason
 363#define ctx_fl_no_msg           ctx_flags.no_msg
 364#define ctx_fl_can_restart      ctx_flags.can_restart
 365
 366#define PFM_SET_WORK_PENDING(t, v)      do { (t)->thread.pfm_needs_checking = v; } while(0);
 367#define PFM_GET_WORK_PENDING(t)         (t)->thread.pfm_needs_checking
 368
 369/*
 370 * global information about all sessions
 371 * mostly used to synchronize between system wide and per-process
 372 */
 373typedef struct {
 374        spinlock_t              pfs_lock;                  /* lock the structure */
 375
 376        unsigned int            pfs_task_sessions;         /* number of per task sessions */
 377        unsigned int            pfs_sys_sessions;          /* number of per system wide sessions */
 378        unsigned int            pfs_sys_use_dbregs;        /* incremented when a system wide session uses debug regs */
 379        unsigned int            pfs_ptrace_use_dbregs;     /* incremented when a process uses debug regs */
 380        struct task_struct      *pfs_sys_session[NR_CPUS]; /* point to task owning a system-wide session */
 381} pfm_session_t;
 382
 383/*
 384 * information about a PMC or PMD.
 385 * dep_pmd[]: a bitmask of dependent PMD registers
 386 * dep_pmc[]: a bitmask of dependent PMC registers
 387 */
 388typedef int (*pfm_reg_check_t)(struct task_struct *task, pfm_context_t *ctx, unsigned int cnum, unsigned long *val, struct pt_regs *regs);
 389typedef struct {
 390        unsigned int            type;
 391        int                     pm_pos;
 392        unsigned long           default_value;  /* power-on default value */
 393        unsigned long           reserved_mask;  /* bitmask of reserved bits */
 394        pfm_reg_check_t         read_check;
 395        pfm_reg_check_t         write_check;
 396        unsigned long           dep_pmd[4];
 397        unsigned long           dep_pmc[4];
 398} pfm_reg_desc_t;
 399
 400/* assume cnum is a valid monitor */
 401#define PMC_PM(cnum, val)       (((val) >> (pmu_conf->pmc_desc[cnum].pm_pos)) & 0x1)
 402
 403/*
 404 * This structure is initialized at boot time and contains
 405 * a description of the PMU main characteristics.
 406 *
 407 * If the probe function is defined, detection is based
 408 * on its return value: 
 409 *      - 0 means recognized PMU
 410 *      - anything else means not supported
 411 * When the probe function is not defined, then the pmu_family field
 412 * is used and it must match the host CPU family such that:
 413 *      - cpu->family & config->pmu_family != 0
 414 */
 415typedef struct {
 416        unsigned long  ovfl_val;        /* overflow value for counters */
 417
 418        pfm_reg_desc_t *pmc_desc;       /* detailed PMC register dependencies descriptions */
 419        pfm_reg_desc_t *pmd_desc;       /* detailed PMD register dependencies descriptions */
 420
 421        unsigned int   num_pmcs;        /* number of PMCS: computed at init time */
 422        unsigned int   num_pmds;        /* number of PMDS: computed at init time */
 423        unsigned long  impl_pmcs[4];    /* bitmask of implemented PMCS */
 424        unsigned long  impl_pmds[4];    /* bitmask of implemented PMDS */
 425
 426        char          *pmu_name;        /* PMU family name */
 427        unsigned int  pmu_family;       /* cpuid family pattern used to identify pmu */
 428        unsigned int  flags;            /* pmu specific flags */
 429        unsigned int  num_ibrs;         /* number of IBRS: computed at init time */
 430        unsigned int  num_dbrs;         /* number of DBRS: computed at init time */
 431        unsigned int  num_counters;     /* PMC/PMD counting pairs : computed at init time */
 432        int           (*probe)(void);   /* customized probe routine */
 433        unsigned int  use_rr_dbregs:1;  /* set if debug registers used for range restriction */
 434} pmu_config_t;
 435/*
 436 * PMU specific flags
 437 */
 438#define PFM_PMU_IRQ_RESEND      1       /* PMU needs explicit IRQ resend */
 439
 440/*
 441 * debug register related type definitions
 442 */
 443typedef struct {
 444        unsigned long ibr_mask:56;
 445        unsigned long ibr_plm:4;
 446        unsigned long ibr_ig:3;
 447        unsigned long ibr_x:1;
 448} ibr_mask_reg_t;
 449
 450typedef struct {
 451        unsigned long dbr_mask:56;
 452        unsigned long dbr_plm:4;
 453        unsigned long dbr_ig:2;
 454        unsigned long dbr_w:1;
 455        unsigned long dbr_r:1;
 456} dbr_mask_reg_t;
 457
 458typedef union {
 459        unsigned long  val;
 460        ibr_mask_reg_t ibr;
 461        dbr_mask_reg_t dbr;
 462} dbreg_t;
 463
 464
 465/*
 466 * perfmon command descriptions
 467 */
 468typedef struct {
 469        int             (*cmd_func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
 470        char            *cmd_name;
 471        int             cmd_flags;
 472        unsigned int    cmd_narg;
 473        size_t          cmd_argsize;
 474        int             (*cmd_getsize)(void *arg, size_t *sz);
 475} pfm_cmd_desc_t;
 476
 477#define PFM_CMD_FD              0x01    /* command requires a file descriptor */
 478#define PFM_CMD_ARG_READ        0x02    /* command must read argument(s) */
 479#define PFM_CMD_ARG_RW          0x04    /* command must read/write argument(s) */
 480#define PFM_CMD_STOP            0x08    /* command does not work on zombie context */
 481
 482
 483#define PFM_CMD_NAME(cmd)       pfm_cmd_tab[(cmd)].cmd_name
 484#define PFM_CMD_READ_ARG(cmd)   (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_READ)
 485#define PFM_CMD_RW_ARG(cmd)     (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_RW)
 486#define PFM_CMD_USE_FD(cmd)     (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_FD)
 487#define PFM_CMD_STOPPED(cmd)    (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_STOP)
 488
 489#define PFM_CMD_ARG_MANY        -1 /* cannot be zero */
 490
 491typedef struct {
 492        unsigned long pfm_spurious_ovfl_intr_count;     /* keep track of spurious ovfl interrupts */
 493        unsigned long pfm_replay_ovfl_intr_count;       /* keep track of replayed ovfl interrupts */
 494        unsigned long pfm_ovfl_intr_count;              /* keep track of ovfl interrupts */
 495        unsigned long pfm_ovfl_intr_cycles;             /* cycles spent processing ovfl interrupts */
 496        unsigned long pfm_ovfl_intr_cycles_min;         /* min cycles spent processing ovfl interrupts */
 497        unsigned long pfm_ovfl_intr_cycles_max;         /* max cycles spent processing ovfl interrupts */
 498        unsigned long pfm_smpl_handler_calls;
 499        unsigned long pfm_smpl_handler_cycles;
 500        char pad[SMP_CACHE_BYTES] ____cacheline_aligned;
 501} pfm_stats_t;
 502
 503/*
 504 * perfmon internal variables
 505 */
 506static pfm_stats_t              pfm_stats[NR_CPUS];
 507static pfm_session_t            pfm_sessions;   /* global sessions information */
 508
 509static DEFINE_SPINLOCK(pfm_alt_install_check);
 510static pfm_intr_handler_desc_t  *pfm_alt_intr_handler;
 511
 512static struct proc_dir_entry    *perfmon_dir;
 513static pfm_uuid_t               pfm_null_uuid = {0,};
 514
 515static spinlock_t               pfm_buffer_fmt_lock;
 516static LIST_HEAD(pfm_buffer_fmt_list);
 517
 518static pmu_config_t             *pmu_conf;
 519
 520/* sysctl() controls */
 521pfm_sysctl_t pfm_sysctl;
 522EXPORT_SYMBOL(pfm_sysctl);
 523
 524static struct ctl_table pfm_ctl_table[] = {
 525        {
 526                .procname       = "debug",
 527                .data           = &pfm_sysctl.debug,
 528                .maxlen         = sizeof(int),
 529                .mode           = 0666,
 530                .proc_handler   = proc_dointvec,
 531        },
 532        {
 533                .procname       = "debug_ovfl",
 534                .data           = &pfm_sysctl.debug_ovfl,
 535                .maxlen         = sizeof(int),
 536                .mode           = 0666,
 537                .proc_handler   = proc_dointvec,
 538        },
 539        {
 540                .procname       = "fastctxsw",
 541                .data           = &pfm_sysctl.fastctxsw,
 542                .maxlen         = sizeof(int),
 543                .mode           = 0600,
 544                .proc_handler   = proc_dointvec,
 545        },
 546        {
 547                .procname       = "expert_mode",
 548                .data           = &pfm_sysctl.expert_mode,
 549                .maxlen         = sizeof(int),
 550                .mode           = 0600,
 551                .proc_handler   = proc_dointvec,
 552        },
 553        {}
 554};
 555static struct ctl_table pfm_sysctl_dir[] = {
 556        {
 557                .procname       = "perfmon",
 558                .mode           = 0555,
 559                .child          = pfm_ctl_table,
 560        },
 561        {}
 562};
 563static struct ctl_table pfm_sysctl_root[] = {
 564        {
 565                .procname       = "kernel",
 566                .mode           = 0555,
 567                .child          = pfm_sysctl_dir,
 568        },
 569        {}
 570};
 571static struct ctl_table_header *pfm_sysctl_header;
 572
 573static int pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
 574
 575#define pfm_get_cpu_var(v)              __ia64_per_cpu_var(v)
 576#define pfm_get_cpu_data(a,b)           per_cpu(a, b)
 577
 578static inline void
 579pfm_put_task(struct task_struct *task)
 580{
 581        if (task != current) put_task_struct(task);
 582}
 583
 584static inline void
 585pfm_reserve_page(unsigned long a)
 586{
 587        SetPageReserved(vmalloc_to_page((void *)a));
 588}
 589static inline void
 590pfm_unreserve_page(unsigned long a)
 591{
 592        ClearPageReserved(vmalloc_to_page((void*)a));
 593}
 594
 595static inline unsigned long
 596pfm_protect_ctx_ctxsw(pfm_context_t *x)
 597{
 598        spin_lock(&(x)->ctx_lock);
 599        return 0UL;
 600}
 601
 602static inline void
 603pfm_unprotect_ctx_ctxsw(pfm_context_t *x, unsigned long f)
 604{
 605        spin_unlock(&(x)->ctx_lock);
 606}
 607
 608/* forward declaration */
 609static const struct dentry_operations pfmfs_dentry_operations;
 610
 611static struct dentry *
 612pfmfs_mount(struct file_system_type *fs_type, int flags, const char *dev_name, void *data)
 613{
 614        return mount_pseudo(fs_type, "pfm:", NULL, &pfmfs_dentry_operations,
 615                        PFMFS_MAGIC);
 616}
 617
 618static struct file_system_type pfm_fs_type = {
 619        .name     = "pfmfs",
 620        .mount    = pfmfs_mount,
 621        .kill_sb  = kill_anon_super,
 622};
 623MODULE_ALIAS_FS("pfmfs");
 624
 625DEFINE_PER_CPU(unsigned long, pfm_syst_info);
 626DEFINE_PER_CPU(struct task_struct *, pmu_owner);
 627DEFINE_PER_CPU(pfm_context_t  *, pmu_ctx);
 628DEFINE_PER_CPU(unsigned long, pmu_activation_number);
 629EXPORT_PER_CPU_SYMBOL_GPL(pfm_syst_info);
 630
 631
 632/* forward declaration */
 633static const struct file_operations pfm_file_ops;
 634
 635/*
 636 * forward declarations
 637 */
 638#ifndef CONFIG_SMP
 639static void pfm_lazy_save_regs (struct task_struct *ta);
 640#endif
 641
 642void dump_pmu_state(const char *);
 643static int pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
 644
 645#include "perfmon_itanium.h"
 646#include "perfmon_mckinley.h"
 647#include "perfmon_montecito.h"
 648#include "perfmon_generic.h"
 649
 650static pmu_config_t *pmu_confs[]={
 651        &pmu_conf_mont,
 652        &pmu_conf_mck,
 653        &pmu_conf_ita,
 654        &pmu_conf_gen, /* must be last */
 655        NULL
 656};
 657
 658
 659static int pfm_end_notify_user(pfm_context_t *ctx);
 660
 661static inline void
 662pfm_clear_psr_pp(void)
 663{
 664        ia64_rsm(IA64_PSR_PP);
 665        ia64_srlz_i();
 666}
 667
 668static inline void
 669pfm_set_psr_pp(void)
 670{
 671        ia64_ssm(IA64_PSR_PP);
 672        ia64_srlz_i();
 673}
 674
 675static inline void
 676pfm_clear_psr_up(void)
 677{
 678        ia64_rsm(IA64_PSR_UP);
 679        ia64_srlz_i();
 680}
 681
 682static inline void
 683pfm_set_psr_up(void)
 684{
 685        ia64_ssm(IA64_PSR_UP);
 686        ia64_srlz_i();
 687}
 688
 689static inline unsigned long
 690pfm_get_psr(void)
 691{
 692        unsigned long tmp;
 693        tmp = ia64_getreg(_IA64_REG_PSR);
 694        ia64_srlz_i();
 695        return tmp;
 696}
 697
 698static inline void
 699pfm_set_psr_l(unsigned long val)
 700{
 701        ia64_setreg(_IA64_REG_PSR_L, val);
 702        ia64_srlz_i();
 703}
 704
 705static inline void
 706pfm_freeze_pmu(void)
 707{
 708        ia64_set_pmc(0,1UL);
 709        ia64_srlz_d();
 710}
 711
 712static inline void
 713pfm_unfreeze_pmu(void)
 714{
 715        ia64_set_pmc(0,0UL);
 716        ia64_srlz_d();
 717}
 718
 719static inline void
 720pfm_restore_ibrs(unsigned long *ibrs, unsigned int nibrs)
 721{
 722        int i;
 723
 724        for (i=0; i < nibrs; i++) {
 725                ia64_set_ibr(i, ibrs[i]);
 726                ia64_dv_serialize_instruction();
 727        }
 728        ia64_srlz_i();
 729}
 730
 731static inline void
 732pfm_restore_dbrs(unsigned long *dbrs, unsigned int ndbrs)
 733{
 734        int i;
 735
 736        for (i=0; i < ndbrs; i++) {
 737                ia64_set_dbr(i, dbrs[i]);
 738                ia64_dv_serialize_data();
 739        }
 740        ia64_srlz_d();
 741}
 742
 743/*
 744 * PMD[i] must be a counter. no check is made
 745 */
 746static inline unsigned long
 747pfm_read_soft_counter(pfm_context_t *ctx, int i)
 748{
 749        return ctx->ctx_pmds[i].val + (ia64_get_pmd(i) & pmu_conf->ovfl_val);
 750}
 751
 752/*
 753 * PMD[i] must be a counter. no check is made
 754 */
 755static inline void
 756pfm_write_soft_counter(pfm_context_t *ctx, int i, unsigned long val)
 757{
 758        unsigned long ovfl_val = pmu_conf->ovfl_val;
 759
 760        ctx->ctx_pmds[i].val = val  & ~ovfl_val;
 761        /*
 762         * writing to unimplemented part is ignore, so we do not need to
 763         * mask off top part
 764         */
 765        ia64_set_pmd(i, val & ovfl_val);
 766}
 767
 768static pfm_msg_t *
 769pfm_get_new_msg(pfm_context_t *ctx)
 770{
 771        int idx, next;
 772
 773        next = (ctx->ctx_msgq_tail+1) % PFM_MAX_MSGS;
 774
 775        DPRINT(("ctx_fd=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
 776        if (next == ctx->ctx_msgq_head) return NULL;
 777
 778        idx =   ctx->ctx_msgq_tail;
 779        ctx->ctx_msgq_tail = next;
 780
 781        DPRINT(("ctx=%p head=%d tail=%d msg=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, idx));
 782
 783        return ctx->ctx_msgq+idx;
 784}
 785
 786static pfm_msg_t *
 787pfm_get_next_msg(pfm_context_t *ctx)
 788{
 789        pfm_msg_t *msg;
 790
 791        DPRINT(("ctx=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
 792
 793        if (PFM_CTXQ_EMPTY(ctx)) return NULL;
 794
 795        /*
 796         * get oldest message
 797         */
 798        msg = ctx->ctx_msgq+ctx->ctx_msgq_head;
 799
 800        /*
 801         * and move forward
 802         */
 803        ctx->ctx_msgq_head = (ctx->ctx_msgq_head+1) % PFM_MAX_MSGS;
 804
 805        DPRINT(("ctx=%p head=%d tail=%d type=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, msg->pfm_gen_msg.msg_type));
 806
 807        return msg;
 808}
 809
 810static void
 811pfm_reset_msgq(pfm_context_t *ctx)
 812{
 813        ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
 814        DPRINT(("ctx=%p msgq reset\n", ctx));
 815}
 816
 817static void *
 818pfm_rvmalloc(unsigned long size)
 819{
 820        void *mem;
 821        unsigned long addr;
 822
 823        size = PAGE_ALIGN(size);
 824        mem  = vzalloc(size);
 825        if (mem) {
 826                //printk("perfmon: CPU%d pfm_rvmalloc(%ld)=%p\n", smp_processor_id(), size, mem);
 827                addr = (unsigned long)mem;
 828                while (size > 0) {
 829                        pfm_reserve_page(addr);
 830                        addr+=PAGE_SIZE;
 831                        size-=PAGE_SIZE;
 832                }
 833        }
 834        return mem;
 835}
 836
 837static void
 838pfm_rvfree(void *mem, unsigned long size)
 839{
 840        unsigned long addr;
 841
 842        if (mem) {
 843                DPRINT(("freeing physical buffer @%p size=%lu\n", mem, size));
 844                addr = (unsigned long) mem;
 845                while ((long) size > 0) {
 846                        pfm_unreserve_page(addr);
 847                        addr+=PAGE_SIZE;
 848                        size-=PAGE_SIZE;
 849                }
 850                vfree(mem);
 851        }
 852        return;
 853}
 854
 855static pfm_context_t *
 856pfm_context_alloc(int ctx_flags)
 857{
 858        pfm_context_t *ctx;
 859
 860        /* 
 861         * allocate context descriptor 
 862         * must be able to free with interrupts disabled
 863         */
 864        ctx = kzalloc(sizeof(pfm_context_t), GFP_KERNEL);
 865        if (ctx) {
 866                DPRINT(("alloc ctx @%p\n", ctx));
 867
 868                /*
 869                 * init context protection lock
 870                 */
 871                spin_lock_init(&ctx->ctx_lock);
 872
 873                /*
 874                 * context is unloaded
 875                 */
 876                ctx->ctx_state = PFM_CTX_UNLOADED;
 877
 878                /*
 879                 * initialization of context's flags
 880                 */
 881                ctx->ctx_fl_block       = (ctx_flags & PFM_FL_NOTIFY_BLOCK) ? 1 : 0;
 882                ctx->ctx_fl_system      = (ctx_flags & PFM_FL_SYSTEM_WIDE) ? 1: 0;
 883                ctx->ctx_fl_no_msg      = (ctx_flags & PFM_FL_OVFL_NO_MSG) ? 1: 0;
 884                /*
 885                 * will move to set properties
 886                 * ctx->ctx_fl_excl_idle   = (ctx_flags & PFM_FL_EXCL_IDLE) ? 1: 0;
 887                 */
 888
 889                /*
 890                 * init restart semaphore to locked
 891                 */
 892                init_completion(&ctx->ctx_restart_done);
 893
 894                /*
 895                 * activation is used in SMP only
 896                 */
 897                ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
 898                SET_LAST_CPU(ctx, -1);
 899
 900                /*
 901                 * initialize notification message queue
 902                 */
 903                ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
 904                init_waitqueue_head(&ctx->ctx_msgq_wait);
 905                init_waitqueue_head(&ctx->ctx_zombieq);
 906
 907        }
 908        return ctx;
 909}
 910
 911static void
 912pfm_context_free(pfm_context_t *ctx)
 913{
 914        if (ctx) {
 915                DPRINT(("free ctx @%p\n", ctx));
 916                kfree(ctx);
 917        }
 918}
 919
 920static void
 921pfm_mask_monitoring(struct task_struct *task)
 922{
 923        pfm_context_t *ctx = PFM_GET_CTX(task);
 924        unsigned long mask, val, ovfl_mask;
 925        int i;
 926
 927        DPRINT_ovfl(("masking monitoring for [%d]\n", task_pid_nr(task)));
 928
 929        ovfl_mask = pmu_conf->ovfl_val;
 930        /*
 931         * monitoring can only be masked as a result of a valid
 932         * counter overflow. In UP, it means that the PMU still
 933         * has an owner. Note that the owner can be different
 934         * from the current task. However the PMU state belongs
 935         * to the owner.
 936         * In SMP, a valid overflow only happens when task is
 937         * current. Therefore if we come here, we know that
 938         * the PMU state belongs to the current task, therefore
 939         * we can access the live registers.
 940         *
 941         * So in both cases, the live register contains the owner's
 942         * state. We can ONLY touch the PMU registers and NOT the PSR.
 943         *
 944         * As a consequence to this call, the ctx->th_pmds[] array
 945         * contains stale information which must be ignored
 946         * when context is reloaded AND monitoring is active (see
 947         * pfm_restart).
 948         */
 949        mask = ctx->ctx_used_pmds[0];
 950        for (i = 0; mask; i++, mask>>=1) {
 951                /* skip non used pmds */
 952                if ((mask & 0x1) == 0) continue;
 953                val = ia64_get_pmd(i);
 954
 955                if (PMD_IS_COUNTING(i)) {
 956                        /*
 957                         * we rebuild the full 64 bit value of the counter
 958                         */
 959                        ctx->ctx_pmds[i].val += (val & ovfl_mask);
 960                } else {
 961                        ctx->ctx_pmds[i].val = val;
 962                }
 963                DPRINT_ovfl(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
 964                        i,
 965                        ctx->ctx_pmds[i].val,
 966                        val & ovfl_mask));
 967        }
 968        /*
 969         * mask monitoring by setting the privilege level to 0
 970         * we cannot use psr.pp/psr.up for this, it is controlled by
 971         * the user
 972         *
 973         * if task is current, modify actual registers, otherwise modify
 974         * thread save state, i.e., what will be restored in pfm_load_regs()
 975         */
 976        mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
 977        for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
 978                if ((mask & 0x1) == 0UL) continue;
 979                ia64_set_pmc(i, ctx->th_pmcs[i] & ~0xfUL);
 980                ctx->th_pmcs[i] &= ~0xfUL;
 981                DPRINT_ovfl(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
 982        }
 983        /*
 984         * make all of this visible
 985         */
 986        ia64_srlz_d();
 987}
 988
 989/*
 990 * must always be done with task == current
 991 *
 992 * context must be in MASKED state when calling
 993 */
 994static void
 995pfm_restore_monitoring(struct task_struct *task)
 996{
 997        pfm_context_t *ctx = PFM_GET_CTX(task);
 998        unsigned long mask, ovfl_mask;
 999        unsigned long psr, val;
1000        int i, is_system;
1001
1002        is_system = ctx->ctx_fl_system;
1003        ovfl_mask = pmu_conf->ovfl_val;
1004
1005        if (task != current) {
1006                printk(KERN_ERR "perfmon.%d: invalid task[%d] current[%d]\n", __LINE__, task_pid_nr(task), task_pid_nr(current));
1007                return;
1008        }
1009        if (ctx->ctx_state != PFM_CTX_MASKED) {
1010                printk(KERN_ERR "perfmon.%d: task[%d] current[%d] invalid state=%d\n", __LINE__,
1011                        task_pid_nr(task), task_pid_nr(current), ctx->ctx_state);
1012                return;
1013        }
1014        psr = pfm_get_psr();
1015        /*
1016         * monitoring is masked via the PMC.
1017         * As we restore their value, we do not want each counter to
1018         * restart right away. We stop monitoring using the PSR,
1019         * restore the PMC (and PMD) and then re-establish the psr
1020         * as it was. Note that there can be no pending overflow at
1021         * this point, because monitoring was MASKED.
1022         *
1023         * system-wide session are pinned and self-monitoring
1024         */
1025        if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1026                /* disable dcr pp */
1027                ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
1028                pfm_clear_psr_pp();
1029        } else {
1030                pfm_clear_psr_up();
1031        }
1032        /*
1033         * first, we restore the PMD
1034         */
1035        mask = ctx->ctx_used_pmds[0];
1036        for (i = 0; mask; i++, mask>>=1) {
1037                /* skip non used pmds */
1038                if ((mask & 0x1) == 0) continue;
1039
1040                if (PMD_IS_COUNTING(i)) {
1041                        /*
1042                         * we split the 64bit value according to
1043                         * counter width
1044                         */
1045                        val = ctx->ctx_pmds[i].val & ovfl_mask;
1046                        ctx->ctx_pmds[i].val &= ~ovfl_mask;
1047                } else {
1048                        val = ctx->ctx_pmds[i].val;
1049                }
1050                ia64_set_pmd(i, val);
1051
1052                DPRINT(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
1053                        i,
1054                        ctx->ctx_pmds[i].val,
1055                        val));
1056        }
1057        /*
1058         * restore the PMCs
1059         */
1060        mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
1061        for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
1062                if ((mask & 0x1) == 0UL) continue;
1063                ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1064                ia64_set_pmc(i, ctx->th_pmcs[i]);
1065                DPRINT(("[%d] pmc[%d]=0x%lx\n",
1066                                        task_pid_nr(task), i, ctx->th_pmcs[i]));
1067        }
1068        ia64_srlz_d();
1069
1070        /*
1071         * must restore DBR/IBR because could be modified while masked
1072         * XXX: need to optimize 
1073         */
1074        if (ctx->ctx_fl_using_dbreg) {
1075                pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
1076                pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
1077        }
1078
1079        /*
1080         * now restore PSR
1081         */
1082        if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1083                /* enable dcr pp */
1084                ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
1085                ia64_srlz_i();
1086        }
1087        pfm_set_psr_l(psr);
1088}
1089
1090static inline void
1091pfm_save_pmds(unsigned long *pmds, unsigned long mask)
1092{
1093        int i;
1094
1095        ia64_srlz_d();
1096
1097        for (i=0; mask; i++, mask>>=1) {
1098                if (mask & 0x1) pmds[i] = ia64_get_pmd(i);
1099        }
1100}
1101
1102/*
1103 * reload from thread state (used for ctxw only)
1104 */
1105static inline void
1106pfm_restore_pmds(unsigned long *pmds, unsigned long mask)
1107{
1108        int i;
1109        unsigned long val, ovfl_val = pmu_conf->ovfl_val;
1110
1111        for (i=0; mask; i++, mask>>=1) {
1112                if ((mask & 0x1) == 0) continue;
1113                val = PMD_IS_COUNTING(i) ? pmds[i] & ovfl_val : pmds[i];
1114                ia64_set_pmd(i, val);
1115        }
1116        ia64_srlz_d();
1117}
1118
1119/*
1120 * propagate PMD from context to thread-state
1121 */
1122static inline void
1123pfm_copy_pmds(struct task_struct *task, pfm_context_t *ctx)
1124{
1125        unsigned long ovfl_val = pmu_conf->ovfl_val;
1126        unsigned long mask = ctx->ctx_all_pmds[0];
1127        unsigned long val;
1128        int i;
1129
1130        DPRINT(("mask=0x%lx\n", mask));
1131
1132        for (i=0; mask; i++, mask>>=1) {
1133
1134                val = ctx->ctx_pmds[i].val;
1135
1136                /*
1137                 * We break up the 64 bit value into 2 pieces
1138                 * the lower bits go to the machine state in the
1139                 * thread (will be reloaded on ctxsw in).
1140                 * The upper part stays in the soft-counter.
1141                 */
1142                if (PMD_IS_COUNTING(i)) {
1143                        ctx->ctx_pmds[i].val = val & ~ovfl_val;
1144                         val &= ovfl_val;
1145                }
1146                ctx->th_pmds[i] = val;
1147
1148                DPRINT(("pmd[%d]=0x%lx soft_val=0x%lx\n",
1149                        i,
1150                        ctx->th_pmds[i],
1151                        ctx->ctx_pmds[i].val));
1152        }
1153}
1154
1155/*
1156 * propagate PMC from context to thread-state
1157 */
1158static inline void
1159pfm_copy_pmcs(struct task_struct *task, pfm_context_t *ctx)
1160{
1161        unsigned long mask = ctx->ctx_all_pmcs[0];
1162        int i;
1163
1164        DPRINT(("mask=0x%lx\n", mask));
1165
1166        for (i=0; mask; i++, mask>>=1) {
1167                /* masking 0 with ovfl_val yields 0 */
1168                ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1169                DPRINT(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
1170        }
1171}
1172
1173
1174
1175static inline void
1176pfm_restore_pmcs(unsigned long *pmcs, unsigned long mask)
1177{
1178        int i;
1179
1180        for (i=0; mask; i++, mask>>=1) {
1181                if ((mask & 0x1) == 0) continue;
1182                ia64_set_pmc(i, pmcs[i]);
1183        }
1184        ia64_srlz_d();
1185}
1186
1187static inline int
1188pfm_uuid_cmp(pfm_uuid_t a, pfm_uuid_t b)
1189{
1190        return memcmp(a, b, sizeof(pfm_uuid_t));
1191}
1192
1193static inline int
1194pfm_buf_fmt_exit(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, struct pt_regs *regs)
1195{
1196        int ret = 0;
1197        if (fmt->fmt_exit) ret = (*fmt->fmt_exit)(task, buf, regs);
1198        return ret;
1199}
1200
1201static inline int
1202pfm_buf_fmt_getsize(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags, int cpu, void *arg, unsigned long *size)
1203{
1204        int ret = 0;
1205        if (fmt->fmt_getsize) ret = (*fmt->fmt_getsize)(task, flags, cpu, arg, size);
1206        return ret;
1207}
1208
1209
1210static inline int
1211pfm_buf_fmt_validate(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags,
1212                     int cpu, void *arg)
1213{
1214        int ret = 0;
1215        if (fmt->fmt_validate) ret = (*fmt->fmt_validate)(task, flags, cpu, arg);
1216        return ret;
1217}
1218
1219static inline int
1220pfm_buf_fmt_init(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, unsigned int flags,
1221                     int cpu, void *arg)
1222{
1223        int ret = 0;
1224        if (fmt->fmt_init) ret = (*fmt->fmt_init)(task, buf, flags, cpu, arg);
1225        return ret;
1226}
1227
1228static inline int
1229pfm_buf_fmt_restart(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1230{
1231        int ret = 0;
1232        if (fmt->fmt_restart) ret = (*fmt->fmt_restart)(task, ctrl, buf, regs);
1233        return ret;
1234}
1235
1236static inline int
1237pfm_buf_fmt_restart_active(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1238{
1239        int ret = 0;
1240        if (fmt->fmt_restart_active) ret = (*fmt->fmt_restart_active)(task, ctrl, buf, regs);
1241        return ret;
1242}
1243
1244static pfm_buffer_fmt_t *
1245__pfm_find_buffer_fmt(pfm_uuid_t uuid)
1246{
1247        struct list_head * pos;
1248        pfm_buffer_fmt_t * entry;
1249
1250        list_for_each(pos, &pfm_buffer_fmt_list) {
1251                entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
1252                if (pfm_uuid_cmp(uuid, entry->fmt_uuid) == 0)
1253                        return entry;
1254        }
1255        return NULL;
1256}
1257 
1258/*
1259 * find a buffer format based on its uuid
1260 */
1261static pfm_buffer_fmt_t *
1262pfm_find_buffer_fmt(pfm_uuid_t uuid)
1263{
1264        pfm_buffer_fmt_t * fmt;
1265        spin_lock(&pfm_buffer_fmt_lock);
1266        fmt = __pfm_find_buffer_fmt(uuid);
1267        spin_unlock(&pfm_buffer_fmt_lock);
1268        return fmt;
1269}
1270 
1271int
1272pfm_register_buffer_fmt(pfm_buffer_fmt_t *fmt)
1273{
1274        int ret = 0;
1275
1276        /* some sanity checks */
1277        if (fmt == NULL || fmt->fmt_name == NULL) return -EINVAL;
1278
1279        /* we need at least a handler */
1280        if (fmt->fmt_handler == NULL) return -EINVAL;
1281
1282        /*
1283         * XXX: need check validity of fmt_arg_size
1284         */
1285
1286        spin_lock(&pfm_buffer_fmt_lock);
1287
1288        if (__pfm_find_buffer_fmt(fmt->fmt_uuid)) {
1289                printk(KERN_ERR "perfmon: duplicate sampling format: %s\n", fmt->fmt_name);
1290                ret = -EBUSY;
1291                goto out;
1292        } 
1293        list_add(&fmt->fmt_list, &pfm_buffer_fmt_list);
1294        printk(KERN_INFO "perfmon: added sampling format %s\n", fmt->fmt_name);
1295
1296out:
1297        spin_unlock(&pfm_buffer_fmt_lock);
1298        return ret;
1299}
1300EXPORT_SYMBOL(pfm_register_buffer_fmt);
1301
1302int
1303pfm_unregister_buffer_fmt(pfm_uuid_t uuid)
1304{
1305        pfm_buffer_fmt_t *fmt;
1306        int ret = 0;
1307
1308        spin_lock(&pfm_buffer_fmt_lock);
1309
1310        fmt = __pfm_find_buffer_fmt(uuid);
1311        if (!fmt) {
1312                printk(KERN_ERR "perfmon: cannot unregister format, not found\n");
1313                ret = -EINVAL;
1314                goto out;
1315        }
1316        list_del_init(&fmt->fmt_list);
1317        printk(KERN_INFO "perfmon: removed sampling format: %s\n", fmt->fmt_name);
1318
1319out:
1320        spin_unlock(&pfm_buffer_fmt_lock);
1321        return ret;
1322
1323}
1324EXPORT_SYMBOL(pfm_unregister_buffer_fmt);
1325
1326static int
1327pfm_reserve_session(struct task_struct *task, int is_syswide, unsigned int cpu)
1328{
1329        unsigned long flags;
1330        /*
1331         * validity checks on cpu_mask have been done upstream
1332         */
1333        LOCK_PFS(flags);
1334
1335        DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1336                pfm_sessions.pfs_sys_sessions,
1337                pfm_sessions.pfs_task_sessions,
1338                pfm_sessions.pfs_sys_use_dbregs,
1339                is_syswide,
1340                cpu));
1341
1342        if (is_syswide) {
1343                /*
1344                 * cannot mix system wide and per-task sessions
1345                 */
1346                if (pfm_sessions.pfs_task_sessions > 0UL) {
1347                        DPRINT(("system wide not possible, %u conflicting task_sessions\n",
1348                                pfm_sessions.pfs_task_sessions));
1349                        goto abort;
1350                }
1351
1352                if (pfm_sessions.pfs_sys_session[cpu]) goto error_conflict;
1353
1354                DPRINT(("reserving system wide session on CPU%u currently on CPU%u\n", cpu, smp_processor_id()));
1355
1356                pfm_sessions.pfs_sys_session[cpu] = task;
1357
1358                pfm_sessions.pfs_sys_sessions++ ;
1359
1360        } else {
1361                if (pfm_sessions.pfs_sys_sessions) goto abort;
1362                pfm_sessions.pfs_task_sessions++;
1363        }
1364
1365        DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1366                pfm_sessions.pfs_sys_sessions,
1367                pfm_sessions.pfs_task_sessions,
1368                pfm_sessions.pfs_sys_use_dbregs,
1369                is_syswide,
1370                cpu));
1371
1372        /*
1373         * Force idle() into poll mode
1374         */
1375        cpu_idle_poll_ctrl(true);
1376
1377        UNLOCK_PFS(flags);
1378
1379        return 0;
1380
1381error_conflict:
1382        DPRINT(("system wide not possible, conflicting session [%d] on CPU%d\n",
1383                task_pid_nr(pfm_sessions.pfs_sys_session[cpu]),
1384                cpu));
1385abort:
1386        UNLOCK_PFS(flags);
1387
1388        return -EBUSY;
1389
1390}
1391
1392static int
1393pfm_unreserve_session(pfm_context_t *ctx, int is_syswide, unsigned int cpu)
1394{
1395        unsigned long flags;
1396        /*
1397         * validity checks on cpu_mask have been done upstream
1398         */
1399        LOCK_PFS(flags);
1400
1401        DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1402                pfm_sessions.pfs_sys_sessions,
1403                pfm_sessions.pfs_task_sessions,
1404                pfm_sessions.pfs_sys_use_dbregs,
1405                is_syswide,
1406                cpu));
1407
1408
1409        if (is_syswide) {
1410                pfm_sessions.pfs_sys_session[cpu] = NULL;
1411                /*
1412                 * would not work with perfmon+more than one bit in cpu_mask
1413                 */
1414                if (ctx && ctx->ctx_fl_using_dbreg) {
1415                        if (pfm_sessions.pfs_sys_use_dbregs == 0) {
1416                                printk(KERN_ERR "perfmon: invalid release for ctx %p sys_use_dbregs=0\n", ctx);
1417                        } else {
1418                                pfm_sessions.pfs_sys_use_dbregs--;
1419                        }
1420                }
1421                pfm_sessions.pfs_sys_sessions--;
1422        } else {
1423                pfm_sessions.pfs_task_sessions--;
1424        }
1425        DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1426                pfm_sessions.pfs_sys_sessions,
1427                pfm_sessions.pfs_task_sessions,
1428                pfm_sessions.pfs_sys_use_dbregs,
1429                is_syswide,
1430                cpu));
1431
1432        /* Undo forced polling. Last session reenables pal_halt */
1433        cpu_idle_poll_ctrl(false);
1434
1435        UNLOCK_PFS(flags);
1436
1437        return 0;
1438}
1439
1440/*
1441 * removes virtual mapping of the sampling buffer.
1442 * IMPORTANT: cannot be called with interrupts disable, e.g. inside
1443 * a PROTECT_CTX() section.
1444 */
1445static int
1446pfm_remove_smpl_mapping(void *vaddr, unsigned long size)
1447{
1448        struct task_struct *task = current;
1449        int r;
1450
1451        /* sanity checks */
1452        if (task->mm == NULL || size == 0UL || vaddr == NULL) {
1453                printk(KERN_ERR "perfmon: pfm_remove_smpl_mapping [%d] invalid context mm=%p\n", task_pid_nr(task), task->mm);
1454                return -EINVAL;
1455        }
1456
1457        DPRINT(("smpl_vaddr=%p size=%lu\n", vaddr, size));
1458
1459        /*
1460         * does the actual unmapping
1461         */
1462        r = vm_munmap((unsigned long)vaddr, size);
1463
1464        if (r !=0) {
1465                printk(KERN_ERR "perfmon: [%d] unable to unmap sampling buffer @%p size=%lu\n", task_pid_nr(task), vaddr, size);
1466        }
1467
1468        DPRINT(("do_unmap(%p, %lu)=%d\n", vaddr, size, r));
1469
1470        return 0;
1471}
1472
1473/*
1474 * free actual physical storage used by sampling buffer
1475 */
1476#if 0
1477static int
1478pfm_free_smpl_buffer(pfm_context_t *ctx)
1479{
1480        pfm_buffer_fmt_t *fmt;
1481
1482        if (ctx->ctx_smpl_hdr == NULL) goto invalid_free;
1483
1484        /*
1485         * we won't use the buffer format anymore
1486         */
1487        fmt = ctx->ctx_buf_fmt;
1488
1489        DPRINT(("sampling buffer @%p size %lu vaddr=%p\n",
1490                ctx->ctx_smpl_hdr,
1491                ctx->ctx_smpl_size,
1492                ctx->ctx_smpl_vaddr));
1493
1494        pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1495
1496        /*
1497         * free the buffer
1498         */
1499        pfm_rvfree(ctx->ctx_smpl_hdr, ctx->ctx_smpl_size);
1500
1501        ctx->ctx_smpl_hdr  = NULL;
1502        ctx->ctx_smpl_size = 0UL;
1503
1504        return 0;
1505
1506invalid_free:
1507        printk(KERN_ERR "perfmon: pfm_free_smpl_buffer [%d] no buffer\n", task_pid_nr(current));
1508        return -EINVAL;
1509}
1510#endif
1511
1512static inline void
1513pfm_exit_smpl_buffer(pfm_buffer_fmt_t *fmt)
1514{
1515        if (fmt == NULL) return;
1516
1517        pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1518
1519}
1520
1521/*
1522 * pfmfs should _never_ be mounted by userland - too much of security hassle,
1523 * no real gain from having the whole whorehouse mounted. So we don't need
1524 * any operations on the root directory. However, we need a non-trivial
1525 * d_name - pfm: will go nicely and kill the special-casing in procfs.
1526 */
1527static struct vfsmount *pfmfs_mnt __read_mostly;
1528
1529static int __init
1530init_pfm_fs(void)
1531{
1532        int err = register_filesystem(&pfm_fs_type);
1533        if (!err) {
1534                pfmfs_mnt = kern_mount(&pfm_fs_type);
1535                err = PTR_ERR(pfmfs_mnt);
1536                if (IS_ERR(pfmfs_mnt))
1537                        unregister_filesystem(&pfm_fs_type);
1538                else
1539                        err = 0;
1540        }
1541        return err;
1542}
1543
1544static ssize_t
1545pfm_read(struct file *filp, char __user *buf, size_t size, loff_t *ppos)
1546{
1547        pfm_context_t *ctx;
1548        pfm_msg_t *msg;
1549        ssize_t ret;
1550        unsigned long flags;
1551        DECLARE_WAITQUEUE(wait, current);
1552        if (PFM_IS_FILE(filp) == 0) {
1553                printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current));
1554                return -EINVAL;
1555        }
1556
1557        ctx = filp->private_data;
1558        if (ctx == NULL) {
1559                printk(KERN_ERR "perfmon: pfm_read: NULL ctx [%d]\n", task_pid_nr(current));
1560                return -EINVAL;
1561        }
1562
1563        /*
1564         * check even when there is no message
1565         */
1566        if (size < sizeof(pfm_msg_t)) {
1567                DPRINT(("message is too small ctx=%p (>=%ld)\n", ctx, sizeof(pfm_msg_t)));
1568                return -EINVAL;
1569        }
1570
1571        PROTECT_CTX(ctx, flags);
1572
1573        /*
1574         * put ourselves on the wait queue
1575         */
1576        add_wait_queue(&ctx->ctx_msgq_wait, &wait);
1577
1578
1579        for(;;) {
1580                /*
1581                 * check wait queue
1582                 */
1583
1584                set_current_state(TASK_INTERRUPTIBLE);
1585
1586                DPRINT(("head=%d tail=%d\n", ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
1587
1588                ret = 0;
1589                if(PFM_CTXQ_EMPTY(ctx) == 0) break;
1590
1591                UNPROTECT_CTX(ctx, flags);
1592
1593                /*
1594                 * check non-blocking read
1595                 */
1596                ret = -EAGAIN;
1597                if(filp->f_flags & O_NONBLOCK) break;
1598
1599                /*
1600                 * check pending signals
1601                 */
1602                if(signal_pending(current)) {
1603                        ret = -EINTR;
1604                        break;
1605                }
1606                /*
1607                 * no message, so wait
1608                 */
1609                schedule();
1610
1611                PROTECT_CTX(ctx, flags);
1612        }
1613        DPRINT(("[%d] back to running ret=%ld\n", task_pid_nr(current), ret));
1614        set_current_state(TASK_RUNNING);
1615        remove_wait_queue(&ctx->ctx_msgq_wait, &wait);
1616
1617        if (ret < 0) goto abort;
1618
1619        ret = -EINVAL;
1620        msg = pfm_get_next_msg(ctx);
1621        if (msg == NULL) {
1622                printk(KERN_ERR "perfmon: pfm_read no msg for ctx=%p [%d]\n", ctx, task_pid_nr(current));
1623                goto abort_locked;
1624        }
1625
1626        DPRINT(("fd=%d type=%d\n", msg->pfm_gen_msg.msg_ctx_fd, msg->pfm_gen_msg.msg_type));
1627
1628        ret = -EFAULT;
1629        if(copy_to_user(buf, msg, sizeof(pfm_msg_t)) == 0) ret = sizeof(pfm_msg_t);
1630
1631abort_locked:
1632        UNPROTECT_CTX(ctx, flags);
1633abort:
1634        return ret;
1635}
1636
1637static ssize_t
1638pfm_write(struct file *file, const char __user *ubuf,
1639                          size_t size, loff_t *ppos)
1640{
1641        DPRINT(("pfm_write called\n"));
1642        return -EINVAL;
1643}
1644
1645static unsigned int
1646pfm_poll(struct file *filp, poll_table * wait)
1647{
1648        pfm_context_t *ctx;
1649        unsigned long flags;
1650        unsigned int mask = 0;
1651
1652        if (PFM_IS_FILE(filp) == 0) {
1653                printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current));
1654                return 0;
1655        }
1656
1657        ctx = filp->private_data;
1658        if (ctx == NULL) {
1659                printk(KERN_ERR "perfmon: pfm_poll: NULL ctx [%d]\n", task_pid_nr(current));
1660                return 0;
1661        }
1662
1663
1664        DPRINT(("pfm_poll ctx_fd=%d before poll_wait\n", ctx->ctx_fd));
1665
1666        poll_wait(filp, &ctx->ctx_msgq_wait, wait);
1667
1668        PROTECT_CTX(ctx, flags);
1669
1670        if (PFM_CTXQ_EMPTY(ctx) == 0)
1671                mask =  POLLIN | POLLRDNORM;
1672
1673        UNPROTECT_CTX(ctx, flags);
1674
1675        DPRINT(("pfm_poll ctx_fd=%d mask=0x%x\n", ctx->ctx_fd, mask));
1676
1677        return mask;
1678}
1679
1680static long
1681pfm_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1682{
1683        DPRINT(("pfm_ioctl called\n"));
1684        return -EINVAL;
1685}
1686
1687/*
1688 * interrupt cannot be masked when coming here
1689 */
1690static inline int
1691pfm_do_fasync(int fd, struct file *filp, pfm_context_t *ctx, int on)
1692{
1693        int ret;
1694
1695        ret = fasync_helper (fd, filp, on, &ctx->ctx_async_queue);
1696
1697        DPRINT(("pfm_fasync called by [%d] on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1698                task_pid_nr(current),
1699                fd,
1700                on,
1701                ctx->ctx_async_queue, ret));
1702
1703        return ret;
1704}
1705
1706static int
1707pfm_fasync(int fd, struct file *filp, int on)
1708{
1709        pfm_context_t *ctx;
1710        int ret;
1711
1712        if (PFM_IS_FILE(filp) == 0) {
1713                printk(KERN_ERR "perfmon: pfm_fasync bad magic [%d]\n", task_pid_nr(current));
1714                return -EBADF;
1715        }
1716
1717        ctx = filp->private_data;
1718        if (ctx == NULL) {
1719                printk(KERN_ERR "perfmon: pfm_fasync NULL ctx [%d]\n", task_pid_nr(current));
1720                return -EBADF;
1721        }
1722        /*
1723         * we cannot mask interrupts during this call because this may
1724         * may go to sleep if memory is not readily avalaible.
1725         *
1726         * We are protected from the conetxt disappearing by the get_fd()/put_fd()
1727         * done in caller. Serialization of this function is ensured by caller.
1728         */
1729        ret = pfm_do_fasync(fd, filp, ctx, on);
1730
1731
1732        DPRINT(("pfm_fasync called on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1733                fd,
1734                on,
1735                ctx->ctx_async_queue, ret));
1736
1737        return ret;
1738}
1739
1740#ifdef CONFIG_SMP
1741/*
1742 * this function is exclusively called from pfm_close().
1743 * The context is not protected at that time, nor are interrupts
1744 * on the remote CPU. That's necessary to avoid deadlocks.
1745 */
1746static void
1747pfm_syswide_force_stop(void *info)
1748{
1749        pfm_context_t   *ctx = (pfm_context_t *)info;
1750        struct pt_regs *regs = task_pt_regs(current);
1751        struct task_struct *owner;
1752        unsigned long flags;
1753        int ret;
1754
1755        if (ctx->ctx_cpu != smp_processor_id()) {
1756                printk(KERN_ERR "perfmon: pfm_syswide_force_stop for CPU%d  but on CPU%d\n",
1757                        ctx->ctx_cpu,
1758                        smp_processor_id());
1759                return;
1760        }
1761        owner = GET_PMU_OWNER();
1762        if (owner != ctx->ctx_task) {
1763                printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected owner [%d] instead of [%d]\n",
1764                        smp_processor_id(),
1765                        task_pid_nr(owner), task_pid_nr(ctx->ctx_task));
1766                return;
1767        }
1768        if (GET_PMU_CTX() != ctx) {
1769                printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected ctx %p instead of %p\n",
1770                        smp_processor_id(),
1771                        GET_PMU_CTX(), ctx);
1772                return;
1773        }
1774
1775        DPRINT(("on CPU%d forcing system wide stop for [%d]\n", smp_processor_id(), task_pid_nr(ctx->ctx_task)));
1776        /*
1777         * the context is already protected in pfm_close(), we simply
1778         * need to mask interrupts to avoid a PMU interrupt race on
1779         * this CPU
1780         */
1781        local_irq_save(flags);
1782
1783        ret = pfm_context_unload(ctx, NULL, 0, regs);
1784        if (ret) {
1785                DPRINT(("context_unload returned %d\n", ret));
1786        }
1787
1788        /*
1789         * unmask interrupts, PMU interrupts are now spurious here
1790         */
1791        local_irq_restore(flags);
1792}
1793
1794static void
1795pfm_syswide_cleanup_other_cpu(pfm_context_t *ctx)
1796{
1797        int ret;
1798
1799        DPRINT(("calling CPU%d for cleanup\n", ctx->ctx_cpu));
1800        ret = smp_call_function_single(ctx->ctx_cpu, pfm_syswide_force_stop, ctx, 1);
1801        DPRINT(("called CPU%d for cleanup ret=%d\n", ctx->ctx_cpu, ret));
1802}
1803#endif /* CONFIG_SMP */
1804
1805/*
1806 * called for each close(). Partially free resources.
1807 * When caller is self-monitoring, the context is unloaded.
1808 */
1809static int
1810pfm_flush(struct file *filp, fl_owner_t id)
1811{
1812        pfm_context_t *ctx;
1813        struct task_struct *task;
1814        struct pt_regs *regs;
1815        unsigned long flags;
1816        unsigned long smpl_buf_size = 0UL;
1817        void *smpl_buf_vaddr = NULL;
1818        int state, is_system;
1819
1820        if (PFM_IS_FILE(filp) == 0) {
1821                DPRINT(("bad magic for\n"));
1822                return -EBADF;
1823        }
1824
1825        ctx = filp->private_data;
1826        if (ctx == NULL) {
1827                printk(KERN_ERR "perfmon: pfm_flush: NULL ctx [%d]\n", task_pid_nr(current));
1828                return -EBADF;
1829        }
1830
1831        /*
1832         * remove our file from the async queue, if we use this mode.
1833         * This can be done without the context being protected. We come
1834         * here when the context has become unreachable by other tasks.
1835         *
1836         * We may still have active monitoring at this point and we may
1837         * end up in pfm_overflow_handler(). However, fasync_helper()
1838         * operates with interrupts disabled and it cleans up the
1839         * queue. If the PMU handler is called prior to entering
1840         * fasync_helper() then it will send a signal. If it is
1841         * invoked after, it will find an empty queue and no
1842         * signal will be sent. In both case, we are safe
1843         */
1844        PROTECT_CTX(ctx, flags);
1845
1846        state     = ctx->ctx_state;
1847        is_system = ctx->ctx_fl_system;
1848
1849        task = PFM_CTX_TASK(ctx);
1850        regs = task_pt_regs(task);
1851
1852        DPRINT(("ctx_state=%d is_current=%d\n",
1853                state,
1854                task == current ? 1 : 0));
1855
1856        /*
1857         * if state == UNLOADED, then task is NULL
1858         */
1859
1860        /*
1861         * we must stop and unload because we are losing access to the context.
1862         */
1863        if (task == current) {
1864#ifdef CONFIG_SMP
1865                /*
1866                 * the task IS the owner but it migrated to another CPU: that's bad
1867                 * but we must handle this cleanly. Unfortunately, the kernel does
1868                 * not provide a mechanism to block migration (while the context is loaded).
1869                 *
1870                 * We need to release the resource on the ORIGINAL cpu.
1871                 */
1872                if (is_system && ctx->ctx_cpu != smp_processor_id()) {
1873
1874                        DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
1875                        /*
1876                         * keep context protected but unmask interrupt for IPI
1877                         */
1878                        local_irq_restore(flags);
1879
1880                        pfm_syswide_cleanup_other_cpu(ctx);
1881
1882                        /*
1883                         * restore interrupt masking
1884                         */
1885                        local_irq_save(flags);
1886
1887                        /*
1888                         * context is unloaded at this point
1889                         */
1890                } else
1891#endif /* CONFIG_SMP */
1892                {
1893
1894                        DPRINT(("forcing unload\n"));
1895                        /*
1896                        * stop and unload, returning with state UNLOADED
1897                        * and session unreserved.
1898                        */
1899                        pfm_context_unload(ctx, NULL, 0, regs);
1900
1901                        DPRINT(("ctx_state=%d\n", ctx->ctx_state));
1902                }
1903        }
1904
1905        /*
1906         * remove virtual mapping, if any, for the calling task.
1907         * cannot reset ctx field until last user is calling close().
1908         *
1909         * ctx_smpl_vaddr must never be cleared because it is needed
1910         * by every task with access to the context
1911         *
1912         * When called from do_exit(), the mm context is gone already, therefore
1913         * mm is NULL, i.e., the VMA is already gone  and we do not have to
1914         * do anything here
1915         */
1916        if (ctx->ctx_smpl_vaddr && current->mm) {
1917                smpl_buf_vaddr = ctx->ctx_smpl_vaddr;
1918                smpl_buf_size  = ctx->ctx_smpl_size;
1919        }
1920
1921        UNPROTECT_CTX(ctx, flags);
1922
1923        /*
1924         * if there was a mapping, then we systematically remove it
1925         * at this point. Cannot be done inside critical section
1926         * because some VM function reenables interrupts.
1927         *
1928         */
1929        if (smpl_buf_vaddr) pfm_remove_smpl_mapping(smpl_buf_vaddr, smpl_buf_size);
1930
1931        return 0;
1932}
1933/*
1934 * called either on explicit close() or from exit_files(). 
1935 * Only the LAST user of the file gets to this point, i.e., it is
1936 * called only ONCE.
1937 *
1938 * IMPORTANT: we get called ONLY when the refcnt on the file gets to zero 
1939 * (fput()),i.e, last task to access the file. Nobody else can access the 
1940 * file at this point.
1941 *
1942 * When called from exit_files(), the VMA has been freed because exit_mm()
1943 * is executed before exit_files().
1944 *
1945 * When called from exit_files(), the current task is not yet ZOMBIE but we
1946 * flush the PMU state to the context. 
1947 */
1948static int
1949pfm_close(struct inode *inode, struct file *filp)
1950{
1951        pfm_context_t *ctx;
1952        struct task_struct *task;
1953        struct pt_regs *regs;
1954        DECLARE_WAITQUEUE(wait, current);
1955        unsigned long flags;
1956        unsigned long smpl_buf_size = 0UL;
1957        void *smpl_buf_addr = NULL;
1958        int free_possible = 1;
1959        int state, is_system;
1960
1961        DPRINT(("pfm_close called private=%p\n", filp->private_data));
1962
1963        if (PFM_IS_FILE(filp) == 0) {
1964                DPRINT(("bad magic\n"));
1965                return -EBADF;
1966        }
1967        
1968        ctx = filp->private_data;
1969        if (ctx == NULL) {
1970                printk(KERN_ERR "perfmon: pfm_close: NULL ctx [%d]\n", task_pid_nr(current));
1971                return -EBADF;
1972        }
1973
1974        PROTECT_CTX(ctx, flags);
1975
1976        state     = ctx->ctx_state;
1977        is_system = ctx->ctx_fl_system;
1978
1979        task = PFM_CTX_TASK(ctx);
1980        regs = task_pt_regs(task);
1981
1982        DPRINT(("ctx_state=%d is_current=%d\n", 
1983                state,
1984                task == current ? 1 : 0));
1985
1986        /*
1987         * if task == current, then pfm_flush() unloaded the context
1988         */
1989        if (state == PFM_CTX_UNLOADED) goto doit;
1990
1991        /*
1992         * context is loaded/masked and task != current, we need to
1993         * either force an unload or go zombie
1994         */
1995
1996        /*
1997         * The task is currently blocked or will block after an overflow.
1998         * we must force it to wakeup to get out of the
1999         * MASKED state and transition to the unloaded state by itself.
2000         *
2001         * This situation is only possible for per-task mode
2002         */
2003        if (state == PFM_CTX_MASKED && CTX_OVFL_NOBLOCK(ctx) == 0) {
2004
2005                /*
2006                 * set a "partial" zombie state to be checked
2007                 * upon return from down() in pfm_handle_work().
2008                 *
2009                 * We cannot use the ZOMBIE state, because it is checked
2010                 * by pfm_load_regs() which is called upon wakeup from down().
2011                 * In such case, it would free the context and then we would
2012                 * return to pfm_handle_work() which would access the
2013                 * stale context. Instead, we set a flag invisible to pfm_load_regs()
2014                 * but visible to pfm_handle_work().
2015                 *
2016                 * For some window of time, we have a zombie context with
2017                 * ctx_state = MASKED  and not ZOMBIE
2018                 */
2019                ctx->ctx_fl_going_zombie = 1;
2020
2021                /*
2022                 * force task to wake up from MASKED state
2023                 */
2024                complete(&ctx->ctx_restart_done);
2025
2026                DPRINT(("waking up ctx_state=%d\n", state));
2027
2028                /*
2029                 * put ourself to sleep waiting for the other
2030                 * task to report completion
2031                 *
2032                 * the context is protected by mutex, therefore there
2033                 * is no risk of being notified of completion before
2034                 * begin actually on the waitq.
2035                 */
2036                set_current_state(TASK_INTERRUPTIBLE);
2037                add_wait_queue(&ctx->ctx_zombieq, &wait);
2038
2039                UNPROTECT_CTX(ctx, flags);
2040
2041                /*
2042                 * XXX: check for signals :
2043                 *      - ok for explicit close
2044                 *      - not ok when coming from exit_files()
2045                 */
2046                schedule();
2047
2048
2049                PROTECT_CTX(ctx, flags);
2050
2051
2052                remove_wait_queue(&ctx->ctx_zombieq, &wait);
2053                set_current_state(TASK_RUNNING);
2054
2055                /*
2056                 * context is unloaded at this point
2057                 */
2058                DPRINT(("after zombie wakeup ctx_state=%d for\n", state));
2059        }
2060        else if (task != current) {
2061#ifdef CONFIG_SMP
2062                /*
2063                 * switch context to zombie state
2064                 */
2065                ctx->ctx_state = PFM_CTX_ZOMBIE;
2066
2067                DPRINT(("zombie ctx for [%d]\n", task_pid_nr(task)));
2068                /*
2069                 * cannot free the context on the spot. deferred until
2070                 * the task notices the ZOMBIE state
2071                 */
2072                free_possible = 0;
2073#else
2074                pfm_context_unload(ctx, NULL, 0, regs);
2075#endif
2076        }
2077
2078doit:
2079        /* reload state, may have changed during  opening of critical section */
2080        state = ctx->ctx_state;
2081
2082        /*
2083         * the context is still attached to a task (possibly current)
2084         * we cannot destroy it right now
2085         */
2086
2087        /*
2088         * we must free the sampling buffer right here because
2089         * we cannot rely on it being cleaned up later by the
2090         * monitored task. It is not possible to free vmalloc'ed
2091         * memory in pfm_load_regs(). Instead, we remove the buffer
2092         * now. should there be subsequent PMU overflow originally
2093         * meant for sampling, the will be converted to spurious
2094         * and that's fine because the monitoring tools is gone anyway.
2095         */
2096        if (ctx->ctx_smpl_hdr) {
2097                smpl_buf_addr = ctx->ctx_smpl_hdr;
2098                smpl_buf_size = ctx->ctx_smpl_size;
2099                /* no more sampling */
2100                ctx->ctx_smpl_hdr = NULL;
2101                ctx->ctx_fl_is_sampling = 0;
2102        }
2103
2104        DPRINT(("ctx_state=%d free_possible=%d addr=%p size=%lu\n",
2105                state,
2106                free_possible,
2107                smpl_buf_addr,
2108                smpl_buf_size));
2109
2110        if (smpl_buf_addr) pfm_exit_smpl_buffer(ctx->ctx_buf_fmt);
2111
2112        /*
2113         * UNLOADED that the session has already been unreserved.
2114         */
2115        if (state == PFM_CTX_ZOMBIE) {
2116                pfm_unreserve_session(ctx, ctx->ctx_fl_system , ctx->ctx_cpu);
2117        }
2118
2119        /*
2120         * disconnect file descriptor from context must be done
2121         * before we unlock.
2122         */
2123        filp->private_data = NULL;
2124
2125        /*
2126         * if we free on the spot, the context is now completely unreachable
2127         * from the callers side. The monitored task side is also cut, so we
2128         * can freely cut.
2129         *
2130         * If we have a deferred free, only the caller side is disconnected.
2131         */
2132        UNPROTECT_CTX(ctx, flags);
2133
2134        /*
2135         * All memory free operations (especially for vmalloc'ed memory)
2136         * MUST be done with interrupts ENABLED.
2137         */
2138        if (smpl_buf_addr)  pfm_rvfree(smpl_buf_addr, smpl_buf_size);
2139
2140        /*
2141         * return the memory used by the context
2142         */
2143        if (free_possible) pfm_context_free(ctx);
2144
2145        return 0;
2146}
2147
2148static int
2149pfm_no_open(struct inode *irrelevant, struct file *dontcare)
2150{
2151        DPRINT(("pfm_no_open called\n"));
2152        return -ENXIO;
2153}
2154
2155
2156
2157static const struct file_operations pfm_file_ops = {
2158        .llseek         = no_llseek,
2159        .read           = pfm_read,
2160        .write          = pfm_write,
2161        .poll           = pfm_poll,
2162        .unlocked_ioctl = pfm_ioctl,
2163        .open           = pfm_no_open,  /* special open code to disallow open via /proc */
2164        .fasync         = pfm_fasync,
2165        .release        = pfm_close,
2166        .flush          = pfm_flush
2167};
2168
2169static char *pfmfs_dname(struct dentry *dentry, char *buffer, int buflen)
2170{
2171        return dynamic_dname(dentry, buffer, buflen, "pfm:[%lu]",
2172                             dentry->d_inode->i_ino);
2173}
2174
2175static const struct dentry_operations pfmfs_dentry_operations = {
2176        .d_delete = always_delete_dentry,
2177        .d_dname = pfmfs_dname,
2178};
2179
2180
2181static struct file *
2182pfm_alloc_file(pfm_context_t *ctx)
2183{
2184        struct file *file;
2185        struct inode *inode;
2186        struct path path;
2187        struct qstr this = { .name = "" };
2188
2189        /*
2190         * allocate a new inode
2191         */
2192        inode = new_inode(pfmfs_mnt->mnt_sb);
2193        if (!inode)
2194                return ERR_PTR(-ENOMEM);
2195
2196        DPRINT(("new inode ino=%ld @%p\n", inode->i_ino, inode));
2197
2198        inode->i_mode = S_IFCHR|S_IRUGO;
2199        inode->i_uid  = current_fsuid();
2200        inode->i_gid  = current_fsgid();
2201
2202        /*
2203         * allocate a new dcache entry
2204         */
2205        path.dentry = d_alloc(pfmfs_mnt->mnt_root, &this);
2206        if (!path.dentry) {
2207                iput(inode);
2208                return ERR_PTR(-ENOMEM);
2209        }
2210        path.mnt = mntget(pfmfs_mnt);
2211
2212        d_add(path.dentry, inode);
2213
2214        file = alloc_file(&path, FMODE_READ, &pfm_file_ops);
2215        if (IS_ERR(file)) {
2216                path_put(&path);
2217                return file;
2218        }
2219
2220        file->f_flags = O_RDONLY;
2221        file->private_data = ctx;
2222
2223        return file;
2224}
2225
2226static int
2227pfm_remap_buffer(struct vm_area_struct *vma, unsigned long buf, unsigned long addr, unsigned long size)
2228{
2229        DPRINT(("CPU%d buf=0x%lx addr=0x%lx size=%ld\n", smp_processor_id(), buf, addr, size));
2230
2231        while (size > 0) {
2232                unsigned long pfn = ia64_tpa(buf) >> PAGE_SHIFT;
2233
2234
2235                if (remap_pfn_range(vma, addr, pfn, PAGE_SIZE, PAGE_READONLY))
2236                        return -ENOMEM;
2237
2238                addr  += PAGE_SIZE;
2239                buf   += PAGE_SIZE;
2240                size  -= PAGE_SIZE;
2241        }
2242        return 0;
2243}
2244
2245/*
2246 * allocate a sampling buffer and remaps it into the user address space of the task
2247 */
2248static int
2249pfm_smpl_buffer_alloc(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned long rsize, void **user_vaddr)
2250{
2251        struct mm_struct *mm = task->mm;
2252        struct vm_area_struct *vma = NULL;
2253        unsigned long size;
2254        void *smpl_buf;
2255
2256
2257        /*
2258         * the fixed header + requested size and align to page boundary
2259         */
2260        size = PAGE_ALIGN(rsize);
2261
2262        DPRINT(("sampling buffer rsize=%lu size=%lu bytes\n", rsize, size));
2263
2264        /*
2265         * check requested size to avoid Denial-of-service attacks
2266         * XXX: may have to refine this test
2267         * Check against address space limit.
2268         *
2269         * if ((mm->total_vm << PAGE_SHIFT) + len> task->rlim[RLIMIT_AS].rlim_cur)
2270         *      return -ENOMEM;
2271         */
2272        if (size > task_rlimit(task, RLIMIT_MEMLOCK))
2273                return -ENOMEM;
2274
2275        /*
2276         * We do the easy to undo allocations first.
2277         *
2278         * pfm_rvmalloc(), clears the buffer, so there is no leak
2279         */
2280        smpl_buf = pfm_rvmalloc(size);
2281        if (smpl_buf == NULL) {
2282                DPRINT(("Can't allocate sampling buffer\n"));
2283                return -ENOMEM;
2284        }
2285
2286        DPRINT(("smpl_buf @%p\n", smpl_buf));
2287
2288        /* allocate vma */
2289        vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2290        if (!vma) {
2291                DPRINT(("Cannot allocate vma\n"));
2292                goto error_kmem;
2293        }
2294        INIT_LIST_HEAD(&vma->anon_vma_chain);
2295
2296        /*
2297         * partially initialize the vma for the sampling buffer
2298         */
2299        vma->vm_mm           = mm;
2300        vma->vm_file         = get_file(filp);
2301        vma->vm_flags        = VM_READ|VM_MAYREAD|VM_DONTEXPAND|VM_DONTDUMP;
2302        vma->vm_page_prot    = PAGE_READONLY; /* XXX may need to change */
2303
2304        /*
2305         * Now we have everything we need and we can initialize
2306         * and connect all the data structures
2307         */
2308
2309        ctx->ctx_smpl_hdr   = smpl_buf;
2310        ctx->ctx_smpl_size  = size; /* aligned size */
2311
2312        /*
2313         * Let's do the difficult operations next.
2314         *
2315         * now we atomically find some area in the address space and
2316         * remap the buffer in it.
2317         */
2318        down_write(&task->mm->mmap_sem);
2319
2320        /* find some free area in address space, must have mmap sem held */
2321        vma->vm_start = get_unmapped_area(NULL, 0, size, 0, MAP_PRIVATE|MAP_ANONYMOUS);
2322        if (IS_ERR_VALUE(vma->vm_start)) {
2323                DPRINT(("Cannot find unmapped area for size %ld\n", size));
2324                up_write(&task->mm->mmap_sem);
2325                goto error;
2326        }
2327        vma->vm_end = vma->vm_start + size;
2328        vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2329
2330        DPRINT(("aligned size=%ld, hdr=%p mapped @0x%lx\n", size, ctx->ctx_smpl_hdr, vma->vm_start));
2331
2332        /* can only be applied to current task, need to have the mm semaphore held when called */
2333        if (pfm_remap_buffer(vma, (unsigned long)smpl_buf, vma->vm_start, size)) {
2334                DPRINT(("Can't remap buffer\n"));
2335                up_write(&task->mm->mmap_sem);
2336                goto error;
2337        }
2338
2339        /*
2340         * now insert the vma in the vm list for the process, must be
2341         * done with mmap lock held
2342         */
2343        insert_vm_struct(mm, vma);
2344
2345        vm_stat_account(vma->vm_mm, vma->vm_flags, vma->vm_file,
2346                                                        vma_pages(vma));
2347        up_write(&task->mm->mmap_sem);
2348
2349        /*
2350         * keep track of user level virtual address
2351         */
2352        ctx->ctx_smpl_vaddr = (void *)vma->vm_start;
2353        *(unsigned long *)user_vaddr = vma->vm_start;
2354
2355        return 0;
2356
2357error:
2358        kmem_cache_free(vm_area_cachep, vma);
2359error_kmem:
2360        pfm_rvfree(smpl_buf, size);
2361
2362        return -ENOMEM;
2363}
2364
2365/*
2366 * XXX: do something better here
2367 */
2368static int
2369pfm_bad_permissions(struct task_struct *task)
2370{
2371        const struct cred *tcred;
2372        kuid_t uid = current_uid();
2373        kgid_t gid = current_gid();
2374        int ret;
2375
2376        rcu_read_lock();
2377        tcred = __task_cred(task);
2378
2379        /* inspired by ptrace_attach() */
2380        DPRINT(("cur: uid=%d gid=%d task: euid=%d suid=%d uid=%d egid=%d sgid=%d\n",
2381                from_kuid(&init_user_ns, uid),
2382                from_kgid(&init_user_ns, gid),
2383                from_kuid(&init_user_ns, tcred->euid),
2384                from_kuid(&init_user_ns, tcred->suid),
2385                from_kuid(&init_user_ns, tcred->uid),
2386                from_kgid(&init_user_ns, tcred->egid),
2387                from_kgid(&init_user_ns, tcred->sgid)));
2388
2389        ret = ((!uid_eq(uid, tcred->euid))
2390               || (!uid_eq(uid, tcred->suid))
2391               || (!uid_eq(uid, tcred->uid))
2392               || (!gid_eq(gid, tcred->egid))
2393               || (!gid_eq(gid, tcred->sgid))
2394               || (!gid_eq(gid, tcred->gid))) && !capable(CAP_SYS_PTRACE);
2395
2396        rcu_read_unlock();
2397        return ret;
2398}
2399
2400static int
2401pfarg_is_sane(struct task_struct *task, pfarg_context_t *pfx)
2402{
2403        int ctx_flags;
2404
2405        /* valid signal */
2406
2407        ctx_flags = pfx->ctx_flags;
2408
2409        if (ctx_flags & PFM_FL_SYSTEM_WIDE) {
2410
2411                /*
2412                 * cannot block in this mode
2413                 */
2414                if (ctx_flags & PFM_FL_NOTIFY_BLOCK) {
2415                        DPRINT(("cannot use blocking mode when in system wide monitoring\n"));
2416                        return -EINVAL;
2417                }
2418        } else {
2419        }
2420        /* probably more to add here */
2421
2422        return 0;
2423}
2424
2425static int
2426pfm_setup_buffer_fmt(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned int ctx_flags,
2427                     unsigned int cpu, pfarg_context_t *arg)
2428{
2429        pfm_buffer_fmt_t *fmt = NULL;
2430        unsigned long size = 0UL;
2431        void *uaddr = NULL;
2432        void *fmt_arg = NULL;
2433        int ret = 0;
2434#define PFM_CTXARG_BUF_ARG(a)   (pfm_buffer_fmt_t *)(a+1)
2435
2436        /* invoke and lock buffer format, if found */
2437        fmt = pfm_find_buffer_fmt(arg->ctx_smpl_buf_id);
2438        if (fmt == NULL) {
2439                DPRINT(("[%d] cannot find buffer format\n", task_pid_nr(task)));
2440                return -EINVAL;
2441        }
2442
2443        /*
2444         * buffer argument MUST be contiguous to pfarg_context_t
2445         */
2446        if (fmt->fmt_arg_size) fmt_arg = PFM_CTXARG_BUF_ARG(arg);
2447
2448        ret = pfm_buf_fmt_validate(fmt, task, ctx_flags, cpu, fmt_arg);
2449
2450        DPRINT(("[%d] after validate(0x%x,%d,%p)=%d\n", task_pid_nr(task), ctx_flags, cpu, fmt_arg, ret));
2451
2452        if (ret) goto error;
2453
2454        /* link buffer format and context */
2455        ctx->ctx_buf_fmt = fmt;
2456        ctx->ctx_fl_is_sampling = 1; /* assume record() is defined */
2457
2458        /*
2459         * check if buffer format wants to use perfmon buffer allocation/mapping service
2460         */
2461        ret = pfm_buf_fmt_getsize(fmt, task, ctx_flags, cpu, fmt_arg, &size);
2462        if (ret) goto error;
2463
2464        if (size) {
2465                /*
2466                 * buffer is always remapped into the caller's address space
2467                 */
2468                ret = pfm_smpl_buffer_alloc(current, filp, ctx, size, &uaddr);
2469                if (ret) goto error;
2470
2471                /* keep track of user address of buffer */
2472                arg->ctx_smpl_vaddr = uaddr;
2473        }
2474        ret = pfm_buf_fmt_init(fmt, task, ctx->ctx_smpl_hdr, ctx_flags, cpu, fmt_arg);
2475
2476error:
2477        return ret;
2478}
2479
2480static void
2481pfm_reset_pmu_state(pfm_context_t *ctx)
2482{
2483        int i;
2484
2485        /*
2486         * install reset values for PMC.
2487         */
2488        for (i=1; PMC_IS_LAST(i) == 0; i++) {
2489                if (PMC_IS_IMPL(i) == 0) continue;
2490                ctx->ctx_pmcs[i] = PMC_DFL_VAL(i);
2491                DPRINT(("pmc[%d]=0x%lx\n", i, ctx->ctx_pmcs[i]));
2492        }
2493        /*
2494         * PMD registers are set to 0UL when the context in memset()
2495         */
2496
2497        /*
2498         * On context switched restore, we must restore ALL pmc and ALL pmd even
2499         * when they are not actively used by the task. In UP, the incoming process
2500         * may otherwise pick up left over PMC, PMD state from the previous process.
2501         * As opposed to PMD, stale PMC can cause harm to the incoming
2502         * process because they may change what is being measured.
2503         * Therefore, we must systematically reinstall the entire
2504         * PMC state. In SMP, the same thing is possible on the
2505         * same CPU but also on between 2 CPUs.
2506         *
2507         * The problem with PMD is information leaking especially
2508         * to user level when psr.sp=0
2509         *
2510         * There is unfortunately no easy way to avoid this problem
2511         * on either UP or SMP. This definitively slows down the
2512         * pfm_load_regs() function.
2513         */
2514
2515         /*
2516          * bitmask of all PMCs accessible to this context
2517          *
2518          * PMC0 is treated differently.
2519          */
2520        ctx->ctx_all_pmcs[0] = pmu_conf->impl_pmcs[0] & ~0x1;
2521
2522        /*
2523         * bitmask of all PMDs that are accessible to this context
2524         */
2525        ctx->ctx_all_pmds[0] = pmu_conf->impl_pmds[0];
2526
2527        DPRINT(("<%d> all_pmcs=0x%lx all_pmds=0x%lx\n", ctx->ctx_fd, ctx->ctx_all_pmcs[0],ctx->ctx_all_pmds[0]));
2528
2529        /*
2530         * useful in case of re-enable after disable
2531         */
2532        ctx->ctx_used_ibrs[0] = 0UL;
2533        ctx->ctx_used_dbrs[0] = 0UL;
2534}
2535
2536static int
2537pfm_ctx_getsize(void *arg, size_t *sz)
2538{
2539        pfarg_context_t *req = (pfarg_context_t *)arg;
2540        pfm_buffer_fmt_t *fmt;
2541
2542        *sz = 0;
2543
2544        if (!pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) return 0;
2545
2546        fmt = pfm_find_buffer_fmt(req->ctx_smpl_buf_id);
2547        if (fmt == NULL) {
2548                DPRINT(("cannot find buffer format\n"));
2549                return -EINVAL;
2550        }
2551        /* get just enough to copy in user parameters */
2552        *sz = fmt->fmt_arg_size;
2553        DPRINT(("arg_size=%lu\n", *sz));
2554
2555        return 0;
2556}
2557
2558
2559
2560/*
2561 * cannot attach if :
2562 *      - kernel task
2563 *      - task not owned by caller
2564 *      - task incompatible with context mode
2565 */
2566static int
2567pfm_task_incompatible(pfm_context_t *ctx, struct task_struct *task)
2568{
2569        /*
2570         * no kernel task or task not owner by caller
2571         */
2572        if (task->mm == NULL) {
2573                DPRINT(("task [%d] has not memory context (kernel thread)\n", task_pid_nr(task)));
2574                return -EPERM;
2575        }
2576        if (pfm_bad_permissions(task)) {
2577                DPRINT(("no permission to attach to  [%d]\n", task_pid_nr(task)));
2578                return -EPERM;
2579        }
2580        /*
2581         * cannot block in self-monitoring mode
2582         */
2583        if (CTX_OVFL_NOBLOCK(ctx) == 0 && task == current) {
2584                DPRINT(("cannot load a blocking context on self for [%d]\n", task_pid_nr(task)));
2585                return -EINVAL;
2586        }
2587
2588        if (task->exit_state == EXIT_ZOMBIE) {
2589                DPRINT(("cannot attach to  zombie task [%d]\n", task_pid_nr(task)));
2590                return -EBUSY;
2591        }
2592
2593        /*
2594         * always ok for self
2595         */
2596        if (task == current) return 0;
2597
2598        if (!task_is_stopped_or_traced(task)) {
2599                DPRINT(("cannot attach to non-stopped task [%d] state=%ld\n", task_pid_nr(task), task->state));
2600                return -EBUSY;
2601        }
2602        /*
2603         * make sure the task is off any CPU
2604         */
2605        wait_task_inactive(task, 0);
2606
2607        /* more to come... */
2608
2609        return 0;
2610}
2611
2612static int
2613pfm_get_task(pfm_context_t *ctx, pid_t pid, struct task_struct **task)
2614{
2615        struct task_struct *p = current;
2616        int ret;
2617
2618        /* XXX: need to add more checks here */
2619        if (pid < 2) return -EPERM;
2620
2621        if (pid != task_pid_vnr(current)) {
2622
2623                read_lock(&tasklist_lock);
2624
2625                p = find_task_by_vpid(pid);
2626
2627                /* make sure task cannot go away while we operate on it */
2628                if (p) get_task_struct(p);
2629
2630                read_unlock(&tasklist_lock);
2631
2632                if (p == NULL) return -ESRCH;
2633        }
2634
2635        ret = pfm_task_incompatible(ctx, p);
2636        if (ret == 0) {
2637                *task = p;
2638        } else if (p != current) {
2639                pfm_put_task(p);
2640        }
2641        return ret;
2642}
2643
2644
2645
2646static int
2647pfm_context_create(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2648{
2649        pfarg_context_t *req = (pfarg_context_t *)arg;
2650        struct file *filp;
2651        struct path path;
2652        int ctx_flags;
2653        int fd;
2654        int ret;
2655
2656        /* let's check the arguments first */
2657        ret = pfarg_is_sane(current, req);
2658        if (ret < 0)
2659                return ret;
2660
2661        ctx_flags = req->ctx_flags;
2662
2663        ret = -ENOMEM;
2664
2665        fd = get_unused_fd();
2666        if (fd < 0)
2667                return fd;
2668
2669        ctx = pfm_context_alloc(ctx_flags);
2670        if (!ctx)
2671                goto error;
2672
2673        filp = pfm_alloc_file(ctx);
2674        if (IS_ERR(filp)) {
2675                ret = PTR_ERR(filp);
2676                goto error_file;
2677        }
2678
2679        req->ctx_fd = ctx->ctx_fd = fd;
2680
2681        /*
2682         * does the user want to sample?
2683         */
2684        if (pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) {
2685                ret = pfm_setup_buffer_fmt(current, filp, ctx, ctx_flags, 0, req);
2686                if (ret)
2687                        goto buffer_error;
2688        }
2689
2690        DPRINT(("ctx=%p flags=0x%x system=%d notify_block=%d excl_idle=%d no_msg=%d ctx_fd=%d\n",
2691                ctx,
2692                ctx_flags,
2693                ctx->ctx_fl_system,
2694                ctx->ctx_fl_block,
2695                ctx->ctx_fl_excl_idle,
2696                ctx->ctx_fl_no_msg,
2697                ctx->ctx_fd));
2698
2699        /*
2700         * initialize soft PMU state
2701         */
2702        pfm_reset_pmu_state(ctx);
2703
2704        fd_install(fd, filp);
2705
2706        return 0;
2707
2708buffer_error:
2709        path = filp->f_path;
2710        put_filp(filp);
2711        path_put(&path);
2712
2713        if (ctx->ctx_buf_fmt) {
2714                pfm_buf_fmt_exit(ctx->ctx_buf_fmt, current, NULL, regs);
2715        }
2716error_file:
2717        pfm_context_free(ctx);
2718
2719error:
2720        put_unused_fd(fd);
2721        return ret;
2722}
2723
2724static inline unsigned long
2725pfm_new_counter_value (pfm_counter_t *reg, int is_long_reset)
2726{
2727        unsigned long val = is_long_reset ? reg->long_reset : reg->short_reset;
2728        unsigned long new_seed, old_seed = reg->seed, mask = reg->mask;
2729        extern unsigned long carta_random32 (unsigned long seed);
2730
2731        if (reg->flags & PFM_REGFL_RANDOM) {
2732                new_seed = carta_random32(old_seed);
2733                val -= (old_seed & mask);       /* counter values are negative numbers! */
2734                if ((mask >> 32) != 0)
2735                        /* construct a full 64-bit random value: */
2736                        new_seed |= carta_random32(old_seed >> 32) << 32;
2737                reg->seed = new_seed;
2738        }
2739        reg->lval = val;
2740        return val;
2741}
2742
2743static void
2744pfm_reset_regs_masked(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2745{
2746        unsigned long mask = ovfl_regs[0];
2747        unsigned long reset_others = 0UL;
2748        unsigned long val;
2749        int i;
2750
2751        /*
2752         * now restore reset value on sampling overflowed counters
2753         */
2754        mask >>= PMU_FIRST_COUNTER;
2755        for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2756
2757                if ((mask & 0x1UL) == 0UL) continue;
2758
2759                ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2760                reset_others        |= ctx->ctx_pmds[i].reset_pmds[0];
2761
2762                DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2763        }
2764
2765        /*
2766         * Now take care of resetting the other registers
2767         */
2768        for(i = 0; reset_others; i++, reset_others >>= 1) {
2769
2770                if ((reset_others & 0x1) == 0) continue;
2771
2772                ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2773
2774                DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2775                          is_long_reset ? "long" : "short", i, val));
2776        }
2777}
2778
2779static void
2780pfm_reset_regs(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2781{
2782        unsigned long mask = ovfl_regs[0];
2783        unsigned long reset_others = 0UL;
2784        unsigned long val;
2785        int i;
2786
2787        DPRINT_ovfl(("ovfl_regs=0x%lx is_long_reset=%d\n", ovfl_regs[0], is_long_reset));
2788
2789        if (ctx->ctx_state == PFM_CTX_MASKED) {
2790                pfm_reset_regs_masked(ctx, ovfl_regs, is_long_reset);
2791                return;
2792        }
2793
2794        /*
2795         * now restore reset value on sampling overflowed counters
2796         */
2797        mask >>= PMU_FIRST_COUNTER;
2798        for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2799
2800                if ((mask & 0x1UL) == 0UL) continue;
2801
2802                val           = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2803                reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2804
2805                DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2806
2807                pfm_write_soft_counter(ctx, i, val);
2808        }
2809
2810        /*
2811         * Now take care of resetting the other registers
2812         */
2813        for(i = 0; reset_others; i++, reset_others >>= 1) {
2814
2815                if ((reset_others & 0x1) == 0) continue;
2816
2817                val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2818
2819                if (PMD_IS_COUNTING(i)) {
2820                        pfm_write_soft_counter(ctx, i, val);
2821                } else {
2822                        ia64_set_pmd(i, val);
2823                }
2824                DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2825                          is_long_reset ? "long" : "short", i, val));
2826        }
2827        ia64_srlz_d();
2828}
2829
2830static int
2831pfm_write_pmcs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2832{
2833        struct task_struct *task;
2834        pfarg_reg_t *req = (pfarg_reg_t *)arg;
2835        unsigned long value, pmc_pm;
2836        unsigned long smpl_pmds, reset_pmds, impl_pmds;
2837        unsigned int cnum, reg_flags, flags, pmc_type;
2838        int i, can_access_pmu = 0, is_loaded, is_system, expert_mode;
2839        int is_monitor, is_counting, state;
2840        int ret = -EINVAL;
2841        pfm_reg_check_t wr_func;
2842#define PFM_CHECK_PMC_PM(x, y, z) ((x)->ctx_fl_system ^ PMC_PM(y, z))
2843
2844        state     = ctx->ctx_state;
2845        is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
2846        is_system = ctx->ctx_fl_system;
2847        task      = ctx->ctx_task;
2848        impl_pmds = pmu_conf->impl_pmds[0];
2849
2850        if (state == PFM_CTX_ZOMBIE) return -EINVAL;
2851
2852        if (is_loaded) {
2853                /*
2854                 * In system wide and when the context is loaded, access can only happen
2855                 * when the caller is running on the CPU being monitored by the session.
2856                 * It does not have to be the owner (ctx_task) of the context per se.
2857                 */
2858                if (is_system && ctx->ctx_cpu != smp_processor_id()) {
2859                        DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
2860                        return -EBUSY;
2861                }
2862                can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
2863        }
2864        expert_mode = pfm_sysctl.expert_mode; 
2865
2866        for (i = 0; i < count; i++, req++) {
2867
2868                cnum       = req->reg_num;
2869                reg_flags  = req->reg_flags;
2870                value      = req->reg_value;
2871                smpl_pmds  = req->reg_smpl_pmds[0];
2872                reset_pmds = req->reg_reset_pmds[0];
2873                flags      = 0;
2874
2875
2876                if (cnum >= PMU_MAX_PMCS) {
2877                        DPRINT(("pmc%u is invalid\n", cnum));
2878                        goto error;
2879                }
2880
2881                pmc_type   = pmu_conf->pmc_desc[cnum].type;
2882                pmc_pm     = (value >> pmu_conf->pmc_desc[cnum].pm_pos) & 0x1;
2883                is_counting = (pmc_type & PFM_REG_COUNTING) == PFM_REG_COUNTING ? 1 : 0;
2884                is_monitor  = (pmc_type & PFM_REG_MONITOR) == PFM_REG_MONITOR ? 1 : 0;
2885
2886                /*
2887                 * we reject all non implemented PMC as well
2888                 * as attempts to modify PMC[0-3] which are used
2889                 * as status registers by the PMU
2890                 */
2891                if ((pmc_type & PFM_REG_IMPL) == 0 || (pmc_type & PFM_REG_CONTROL) == PFM_REG_CONTROL) {
2892                        DPRINT(("pmc%u is unimplemented or no-access pmc_type=%x\n", cnum, pmc_type));
2893                        goto error;
2894                }
2895                wr_func = pmu_conf->pmc_desc[cnum].write_check;
2896                /*
2897                 * If the PMC is a monitor, then if the value is not the default:
2898                 *      - system-wide session: PMCx.pm=1 (privileged monitor)
2899                 *      - per-task           : PMCx.pm=0 (user monitor)
2900                 */
2901                if (is_monitor && value != PMC_DFL_VAL(cnum) && is_system ^ pmc_pm) {
2902                        DPRINT(("pmc%u pmc_pm=%lu is_system=%d\n",
2903                                cnum,
2904                                pmc_pm,
2905                                is_system));
2906                        goto error;
2907                }
2908
2909                if (is_counting) {
2910                        /*
2911                         * enforce generation of overflow interrupt. Necessary on all
2912                         * CPUs.
2913                         */
2914                        value |= 1 << PMU_PMC_OI;
2915
2916                        if (reg_flags & PFM_REGFL_OVFL_NOTIFY) {
2917                                flags |= PFM_REGFL_OVFL_NOTIFY;
2918                        }
2919
2920                        if (reg_flags & PFM_REGFL_RANDOM) flags |= PFM_REGFL_RANDOM;
2921
2922                        /* verify validity of smpl_pmds */
2923                        if ((smpl_pmds & impl_pmds) != smpl_pmds) {
2924                                DPRINT(("invalid smpl_pmds 0x%lx for pmc%u\n", smpl_pmds, cnum));
2925                                goto error;
2926                        }
2927
2928                        /* verify validity of reset_pmds */
2929                        if ((reset_pmds & impl_pmds) != reset_pmds) {
2930                                DPRINT(("invalid reset_pmds 0x%lx for pmc%u\n", reset_pmds, cnum));
2931                                goto error;
2932                        }
2933                } else {
2934                        if (reg_flags & (PFM_REGFL_OVFL_NOTIFY|PFM_REGFL_RANDOM)) {
2935                                DPRINT(("cannot set ovfl_notify or random on pmc%u\n", cnum));
2936                                goto error;
2937                        }
2938                        /* eventid on non-counting monitors are ignored */
2939                }
2940
2941                /*
2942                 * execute write checker, if any
2943                 */
2944                if (likely(expert_mode == 0 && wr_func)) {
2945                        ret = (*wr_func)(task, ctx, cnum, &value, regs);
2946                        if (ret) goto error;
2947                        ret = -EINVAL;
2948                }
2949
2950                /*
2951                 * no error on this register
2952                 */
2953                PFM_REG_RETFLAG_SET(req->reg_flags, 0);
2954
2955                /*
2956                 * Now we commit the changes to the software state
2957                 */
2958
2959                /*
2960                 * update overflow information
2961                 */
2962                if (is_counting) {
2963                        /*
2964                         * full flag update each time a register is programmed
2965                         */
2966                        ctx->ctx_pmds[cnum].flags = flags;
2967
2968                        ctx->ctx_pmds[cnum].reset_pmds[0] = reset_pmds;
2969                        ctx->ctx_pmds[cnum].smpl_pmds[0]  = smpl_pmds;
2970                        ctx->ctx_pmds[cnum].eventid       = req->reg_smpl_eventid;
2971
2972                        /*
2973                         * Mark all PMDS to be accessed as used.
2974                         *
2975                         * We do not keep track of PMC because we have to
2976                         * systematically restore ALL of them.
2977                         *
2978                         * We do not update the used_monitors mask, because
2979                         * if we have not programmed them, then will be in
2980                         * a quiescent state, therefore we will not need to
2981                         * mask/restore then when context is MASKED.
2982                         */
2983                        CTX_USED_PMD(ctx, reset_pmds);
2984                        CTX_USED_PMD(ctx, smpl_pmds);
2985                        /*
2986                         * make sure we do not try to reset on
2987                         * restart because we have established new values
2988                         */
2989                        if (state == PFM_CTX_MASKED) ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
2990                }
2991                /*
2992                 * Needed in case the user does not initialize the equivalent
2993                 * PMD. Clearing is done indirectly via pfm_reset_pmu_state() so there is no
2994                 * possible leak here.
2995                 */
2996                CTX_USED_PMD(ctx, pmu_conf->pmc_desc[cnum].dep_pmd[0]);
2997
2998                /*
2999                 * keep track of the monitor PMC that we are using.
3000                 * we save the value of the pmc in ctx_pmcs[] and if
3001                 * the monitoring is not stopped for the context we also
3002                 * place it in the saved state area so that it will be
3003                 * picked up later by the context switch code.
3004                 *
3005                 * The value in ctx_pmcs[] can only be changed in pfm_write_pmcs().
3006                 *
3007                 * The value in th_pmcs[] may be modified on overflow, i.e.,  when
3008                 * monitoring needs to be stopped.
3009                 */
3010                if (is_monitor) CTX_USED_MONITOR(ctx, 1UL << cnum);
3011
3012                /*
3013                 * update context state
3014                 */
3015                ctx->ctx_pmcs[cnum] = value;
3016
3017                if (is_loaded) {
3018                        /*
3019                         * write thread state
3020                         */
3021                        if (is_system == 0) ctx->th_pmcs[cnum] = value;
3022
3023                        /*
3024                         * write hardware register if we can
3025                         */
3026                        if (can_access_pmu) {
3027                                ia64_set_pmc(cnum, value);
3028                        }
3029#ifdef CONFIG_SMP
3030                        else {
3031                                /*
3032                                 * per-task SMP only here
3033                                 *
3034                                 * we are guaranteed that the task is not running on the other CPU,
3035                                 * we indicate that this PMD will need to be reloaded if the task
3036                                 * is rescheduled on the CPU it ran last on.
3037                                 */
3038                                ctx->ctx_reload_pmcs[0] |= 1UL << cnum;
3039                        }
3040#endif
3041                }
3042
3043                DPRINT(("pmc[%u]=0x%lx ld=%d apmu=%d flags=0x%x all_pmcs=0x%lx used_pmds=0x%lx eventid=%ld smpl_pmds=0x%lx reset_pmds=0x%lx reloads_pmcs=0x%lx used_monitors=0x%lx ovfl_regs=0x%lx\n",
3044                          cnum,
3045                          value,
3046                          is_loaded,
3047                          can_access_pmu,
3048                          flags,
3049                          ctx->ctx_all_pmcs[0],
3050                          ctx->ctx_used_pmds[0],
3051                          ctx->ctx_pmds[cnum].eventid,
3052                          smpl_pmds,
3053                          reset_pmds,
3054                          ctx->ctx_reload_pmcs[0],
3055                          ctx->ctx_used_monitors[0],
3056                          ctx->ctx_ovfl_regs[0]));
3057        }
3058
3059        /*
3060         * make sure the changes are visible
3061         */
3062        if (can_access_pmu) ia64_srlz_d();
3063
3064        return 0;
3065error:
3066        PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3067        return ret;
3068}
3069
3070static int
3071pfm_write_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3072{
3073        struct task_struct *task;
3074        pfarg_reg_t *req = (pfarg_reg_t *)arg;
3075        unsigned long value, hw_value, ovfl_mask;
3076        unsigned int cnum;
3077        int i, can_access_pmu = 0, state;
3078        int is_counting, is_loaded, is_system, expert_mode;
3079        int ret = -EINVAL;
3080        pfm_reg_check_t wr_func;
3081
3082
3083        state     = ctx->ctx_state;
3084        is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3085        is_system = ctx->ctx_fl_system;
3086        ovfl_mask = pmu_conf->ovfl_val;
3087        task      = ctx->ctx_task;
3088
3089        if (unlikely(state == PFM_CTX_ZOMBIE)) return -EINVAL;
3090
3091        /*
3092         * on both UP and SMP, we can only write to the PMC when the task is
3093         * the owner of the local PMU.
3094         */
3095        if (likely(is_loaded)) {
3096                /*
3097                 * In system wide and when the context is loaded, access can only happen
3098                 * when the caller is running on the CPU being monitored by the session.
3099                 * It does not have to be the owner (ctx_task) of the context per se.
3100                 */
3101                if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3102                        DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3103                        return -EBUSY;
3104                }
3105                can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3106        }
3107        expert_mode = pfm_sysctl.expert_mode; 
3108
3109        for (i = 0; i < count; i++, req++) {
3110
3111                cnum  = req->reg_num;
3112                value = req->reg_value;
3113
3114                if (!PMD_IS_IMPL(cnum)) {
3115                        DPRINT(("pmd[%u] is unimplemented or invalid\n", cnum));
3116                        goto abort_mission;
3117                }
3118                is_counting = PMD_IS_COUNTING(cnum);
3119                wr_func     = pmu_conf->pmd_desc[cnum].write_check;
3120
3121                /*
3122                 * execute write checker, if any
3123                 */
3124                if (unlikely(expert_mode == 0 && wr_func)) {
3125                        unsigned long v = value;
3126
3127                        ret = (*wr_func)(task, ctx, cnum, &v, regs);
3128                        if (ret) goto abort_mission;
3129
3130                        value = v;
3131                        ret   = -EINVAL;
3132                }
3133
3134                /*
3135                 * no error on this register
3136                 */
3137                PFM_REG_RETFLAG_SET(req->reg_flags, 0);
3138
3139                /*
3140                 * now commit changes to software state
3141                 */
3142                hw_value = value;
3143
3144                /*
3145                 * update virtualized (64bits) counter
3146                 */
3147                if (is_counting) {
3148                        /*
3149                         * write context state
3150                         */
3151                        ctx->ctx_pmds[cnum].lval = value;
3152
3153                        /*
3154                         * when context is load we use the split value
3155                         */
3156                        if (is_loaded) {
3157                                hw_value = value &  ovfl_mask;
3158                                value    = value & ~ovfl_mask;
3159                        }
3160                }
3161                /*
3162                 * update reset values (not just for counters)
3163                 */
3164                ctx->ctx_pmds[cnum].long_reset  = req->reg_long_reset;
3165                ctx->ctx_pmds[cnum].short_reset = req->reg_short_reset;
3166
3167                /*
3168                 * update randomization parameters (not just for counters)
3169                 */
3170                ctx->ctx_pmds[cnum].seed = req->reg_random_seed;
3171                ctx->ctx_pmds[cnum].mask = req->reg_random_mask;
3172
3173                /*
3174                 * update context value
3175                 */
3176                ctx->ctx_pmds[cnum].val  = value;
3177
3178                /*
3179                 * Keep track of what we use
3180                 *
3181                 * We do not keep track of PMC because we have to
3182                 * systematically restore ALL of them.
3183                 */
3184                CTX_USED_PMD(ctx, PMD_PMD_DEP(cnum));
3185
3186                /*
3187                 * mark this PMD register used as well
3188                 */
3189                CTX_USED_PMD(ctx, RDEP(cnum));
3190
3191                /*
3192                 * make sure we do not try to reset on
3193                 * restart because we have established new values
3194                 */
3195                if (is_counting && state == PFM_CTX_MASKED) {
3196                        ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
3197                }
3198
3199                if (is_loaded) {
3200                        /*
3201                         * write thread state
3202                         */
3203                        if (is_system == 0) ctx->th_pmds[cnum] = hw_value;
3204
3205                        /*
3206                         * write hardware register if we can
3207                         */
3208                        if (can_access_pmu) {
3209                                ia64_set_pmd(cnum, hw_value);
3210                        } else {
3211#ifdef CONFIG_SMP
3212                                /*
3213                                 * we are guaranteed that the task is not running on the other CPU,
3214                                 * we indicate that this PMD will need to be reloaded if the task
3215                                 * is rescheduled on the CPU it ran last on.
3216                                 */
3217                                ctx->ctx_reload_pmds[0] |= 1UL << cnum;
3218#endif
3219                        }
3220                }
3221
3222                DPRINT(("pmd[%u]=0x%lx ld=%d apmu=%d, hw_value=0x%lx ctx_pmd=0x%lx  short_reset=0x%lx "
3223                          "long_reset=0x%lx notify=%c seed=0x%lx mask=0x%lx used_pmds=0x%lx reset_pmds=0x%lx reload_pmds=0x%lx all_pmds=0x%lx ovfl_regs=0x%lx\n",
3224                        cnum,
3225                        value,
3226                        is_loaded,
3227                        can_access_pmu,
3228                        hw_value,
3229                        ctx->ctx_pmds[cnum].val,
3230                        ctx->ctx_pmds[cnum].short_reset,
3231                        ctx->ctx_pmds[cnum].long_reset,
3232                        PMC_OVFL_NOTIFY(ctx, cnum) ? 'Y':'N',
3233                        ctx->ctx_pmds[cnum].seed,
3234                        ctx->ctx_pmds[cnum].mask,
3235                        ctx->ctx_used_pmds[0],
3236                        ctx->ctx_pmds[cnum].reset_pmds[0],
3237                        ctx->ctx_reload_pmds[0],
3238                        ctx->ctx_all_pmds[0],
3239                        ctx->ctx_ovfl_regs[0]));
3240        }
3241
3242        /*
3243         * make changes visible
3244         */
3245        if (can_access_pmu) ia64_srlz_d();
3246
3247        return 0;
3248
3249abort_mission:
3250        /*
3251         * for now, we have only one possibility for error
3252         */
3253        PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3254        return ret;
3255}
3256
3257/*
3258 * By the way of PROTECT_CONTEXT(), interrupts are masked while we are in this function.
3259 * Therefore we know, we do not have to worry about the PMU overflow interrupt. If an
3260 * interrupt is delivered during the call, it will be kept pending until we leave, making
3261 * it appears as if it had been generated at the UNPROTECT_CONTEXT(). At least we are
3262 * guaranteed to return consistent data to the user, it may simply be old. It is not
3263 * trivial to treat the overflow while inside the call because you may end up in
3264 * some module sampling buffer code causing deadlocks.
3265 */
3266static int
3267pfm_read_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3268{
3269        struct task_struct *task;
3270        unsigned long val = 0UL, lval, ovfl_mask, sval;
3271        pfarg_reg_t *req = (pfarg_reg_t *)arg;
3272        unsigned int cnum, reg_flags = 0;
3273        int i, can_access_pmu = 0, state;
3274        int is_loaded, is_system, is_counting, expert_mode;
3275        int ret = -EINVAL;
3276        pfm_reg_check_t rd_func;
3277
3278        /*
3279         * access is possible when loaded only for
3280         * self-monitoring tasks or in UP mode
3281         */
3282
3283        state     = ctx->ctx_state;
3284        is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3285        is_system = ctx->ctx_fl_system;
3286        ovfl_mask = pmu_conf->ovfl_val;
3287        task      = ctx->ctx_task;
3288
3289        if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3290
3291        if (likely(is_loaded)) {
3292                /*
3293                 * In system wide and when the context is loaded, access can only happen
3294                 * when the caller is running on the CPU being monitored by the session.
3295                 * It does not have to be the owner (ctx_task) of the context per se.
3296                 */
3297                if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3298                        DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3299                        return -EBUSY;
3300                }
3301                /*
3302                 * this can be true when not self-monitoring only in UP
3303                 */
3304                can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3305
3306                if (can_access_pmu) ia64_srlz_d();
3307        }
3308        expert_mode = pfm_sysctl.expert_mode; 
3309
3310        DPRINT(("ld=%d apmu=%d ctx_state=%d\n",
3311                is_loaded,
3312                can_access_pmu,
3313                state));
3314
3315        /*
3316         * on both UP and SMP, we can only read the PMD from the hardware register when
3317         * the task is the owner of the local PMU.
3318         */
3319
3320        for (i = 0; i < count; i++, req++) {
3321
3322                cnum        = req->reg_num;
3323                reg_flags   = req->reg_flags;
3324
3325                if (unlikely(!PMD_IS_IMPL(cnum))) goto error;
3326                /*
3327                 * we can only read the register that we use. That includes
3328                 * the one we explicitly initialize AND the one we want included
3329                 * in the sampling buffer (smpl_regs).
3330                 *
3331                 * Having this restriction allows optimization in the ctxsw routine
3332                 * without compromising security (leaks)
3333                 */
3334                if (unlikely(!CTX_IS_USED_PMD(ctx, cnum))) goto error;
3335
3336                sval        = ctx->ctx_pmds[cnum].val;
3337                lval        = ctx->ctx_pmds[cnum].lval;
3338                is_counting = PMD_IS_COUNTING(cnum);
3339
3340                /*
3341                 * If the task is not the current one, then we check if the
3342                 * PMU state is still in the local live register due to lazy ctxsw.
3343                 * If true, then we read directly from the registers.
3344                 */
3345                if (can_access_pmu){
3346                        val = ia64_get_pmd(cnum);
3347                } else {
3348                        /*
3349                         * context has been saved
3350                         * if context is zombie, then task does not exist anymore.
3351                         * In this case, we use the full value saved in the context (pfm_flush_regs()).
3352                         */
3353                        val = is_loaded ? ctx->th_pmds[cnum] : 0UL;
3354                }
3355                rd_func = pmu_conf->pmd_desc[cnum].read_check;
3356
3357                if (is_counting) {
3358                        /*
3359                         * XXX: need to check for overflow when loaded
3360                         */
3361                        val &= ovfl_mask;
3362                        val += sval;
3363                }
3364
3365                /*
3366                 * execute read checker, if any
3367                 */
3368                if (unlikely(expert_mode == 0 && rd_func)) {
3369                        unsigned long v = val;
3370                        ret = (*rd_func)(ctx->ctx_task, ctx, cnum, &v, regs);
3371                        if (ret) goto error;
3372                        val = v;
3373                        ret = -EINVAL;
3374                }
3375
3376                PFM_REG_RETFLAG_SET(reg_flags, 0);
3377
3378                DPRINT(("pmd[%u]=0x%lx\n", cnum, val));
3379
3380                /*
3381                 * update register return value, abort all if problem during copy.
3382                 * we only modify the reg_flags field. no check mode is fine because
3383                 * access has been verified upfront in sys_perfmonctl().
3384                 */
3385                req->reg_value            = val;
3386                req->reg_flags            = reg_flags;
3387                req->reg_last_reset_val   = lval;
3388        }
3389
3390        return 0;
3391
3392error:
3393        PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3394        return ret;
3395}
3396
3397int
3398pfm_mod_write_pmcs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3399{
3400        pfm_context_t *ctx;
3401
3402        if (req == NULL) return -EINVAL;
3403
3404        ctx = GET_PMU_CTX();
3405
3406        if (ctx == NULL) return -EINVAL;
3407
3408        /*
3409         * for now limit to current task, which is enough when calling
3410         * from overflow handler
3411         */
3412        if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3413
3414        return pfm_write_pmcs(ctx, req, nreq, regs);
3415}
3416EXPORT_SYMBOL(pfm_mod_write_pmcs);
3417
3418int
3419pfm_mod_read_pmds(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3420{
3421        pfm_context_t *ctx;
3422
3423        if (req == NULL) return -EINVAL;
3424
3425        ctx = GET_PMU_CTX();
3426
3427        if (ctx == NULL) return -EINVAL;
3428
3429        /*
3430         * for now limit to current task, which is enough when calling
3431         * from overflow handler
3432         */
3433        if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3434
3435        return pfm_read_pmds(ctx, req, nreq, regs);
3436}
3437EXPORT_SYMBOL(pfm_mod_read_pmds);
3438
3439/*
3440 * Only call this function when a process it trying to
3441 * write the debug registers (reading is always allowed)
3442 */
3443int
3444pfm_use_debug_registers(struct task_struct *task)
3445{
3446        pfm_context_t *ctx = task->thread.pfm_context;
3447        unsigned long flags;
3448        int ret = 0;
3449
3450        if (pmu_conf->use_rr_dbregs == 0) return 0;
3451
3452        DPRINT(("called for [%d]\n", task_pid_nr(task)));
3453
3454        /*
3455         * do it only once
3456         */
3457        if (task->thread.flags & IA64_THREAD_DBG_VALID) return 0;
3458
3459        /*
3460         * Even on SMP, we do not need to use an atomic here because
3461         * the only way in is via ptrace() and this is possible only when the
3462         * process is stopped. Even in the case where the ctxsw out is not totally
3463         * completed by the time we come here, there is no way the 'stopped' process
3464         * could be in the middle of fiddling with the pfm_write_ibr_dbr() routine.
3465         * So this is always safe.
3466         */
3467        if (ctx && ctx->ctx_fl_using_dbreg == 1) return -1;
3468
3469        LOCK_PFS(flags);
3470
3471        /*
3472         * We cannot allow setting breakpoints when system wide monitoring
3473         * sessions are using the debug registers.
3474         */
3475        if (pfm_sessions.pfs_sys_use_dbregs> 0)
3476                ret = -1;
3477        else
3478                pfm_sessions.pfs_ptrace_use_dbregs++;
3479
3480        DPRINT(("ptrace_use_dbregs=%u  sys_use_dbregs=%u by [%d] ret = %d\n",
3481                  pfm_sessions.pfs_ptrace_use_dbregs,
3482                  pfm_sessions.pfs_sys_use_dbregs,
3483                  task_pid_nr(task), ret));
3484
3485        UNLOCK_PFS(flags);
3486
3487        return ret;
3488}
3489
3490/*
3491 * This function is called for every task that exits with the
3492 * IA64_THREAD_DBG_VALID set. This indicates a task which was
3493 * able to use the debug registers for debugging purposes via
3494 * ptrace(). Therefore we know it was not using them for
3495 * performance monitoring, so we only decrement the number
3496 * of "ptraced" debug register users to keep the count up to date
3497 */
3498int
3499pfm_release_debug_registers(struct task_struct *task)
3500{
3501        unsigned long flags;
3502        int ret;
3503
3504        if (pmu_conf->use_rr_dbregs == 0) return 0;
3505
3506        LOCK_PFS(flags);
3507        if (pfm_sessions.pfs_ptrace_use_dbregs == 0) {
3508                printk(KERN_ERR "perfmon: invalid release for [%d] ptrace_use_dbregs=0\n", task_pid_nr(task));
3509                ret = -1;
3510        }  else {
3511                pfm_sessions.pfs_ptrace_use_dbregs--;
3512                ret = 0;
3513        }
3514        UNLOCK_PFS(flags);
3515
3516        return ret;
3517}
3518
3519static int
3520pfm_restart(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3521{
3522        struct task_struct *task;
3523        pfm_buffer_fmt_t *fmt;
3524        pfm_ovfl_ctrl_t rst_ctrl;
3525        int state, is_system;
3526        int ret = 0;
3527
3528        state     = ctx->ctx_state;
3529        fmt       = ctx->ctx_buf_fmt;
3530        is_system = ctx->ctx_fl_system;
3531        task      = PFM_CTX_TASK(ctx);
3532
3533        switch(state) {
3534                case PFM_CTX_MASKED:
3535                        break;
3536                case PFM_CTX_LOADED: 
3537                        if (CTX_HAS_SMPL(ctx) && fmt->fmt_restart_active) break;
3538                        /* fall through */
3539                case PFM_CTX_UNLOADED:
3540                case PFM_CTX_ZOMBIE:
3541                        DPRINT(("invalid state=%d\n", state));
3542                        return -EBUSY;
3543                default:
3544                        DPRINT(("state=%d, cannot operate (no active_restart handler)\n", state));
3545                        return -EINVAL;
3546        }
3547
3548        /*
3549         * In system wide and when the context is loaded, access can only happen
3550         * when the caller is running on the CPU being monitored by the session.
3551         * It does not have to be the owner (ctx_task) of the context per se.
3552         */
3553        if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3554                DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3555                return -EBUSY;
3556        }
3557
3558        /* sanity check */
3559        if (unlikely(task == NULL)) {
3560                printk(KERN_ERR "perfmon: [%d] pfm_restart no task\n", task_pid_nr(current));
3561                return -EINVAL;
3562        }
3563
3564        if (task == current || is_system) {
3565
3566                fmt = ctx->ctx_buf_fmt;
3567
3568                DPRINT(("restarting self %d ovfl=0x%lx\n",
3569                        task_pid_nr(task),
3570                        ctx->ctx_ovfl_regs[0]));
3571
3572                if (CTX_HAS_SMPL(ctx)) {
3573
3574                        prefetch(ctx->ctx_smpl_hdr);
3575
3576                        rst_ctrl.bits.mask_monitoring = 0;
3577                        rst_ctrl.bits.reset_ovfl_pmds = 0;
3578
3579                        if (state == PFM_CTX_LOADED)
3580                                ret = pfm_buf_fmt_restart_active(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3581                        else
3582                                ret = pfm_buf_fmt_restart(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3583                } else {
3584                        rst_ctrl.bits.mask_monitoring = 0;
3585                        rst_ctrl.bits.reset_ovfl_pmds = 1;
3586                }
3587
3588                if (ret == 0) {
3589                        if (rst_ctrl.bits.reset_ovfl_pmds)
3590                                pfm_reset_regs(ctx, ctx->ctx_ovfl_regs, PFM_PMD_LONG_RESET);
3591
3592                        if (rst_ctrl.bits.mask_monitoring == 0) {
3593                                DPRINT(("resuming monitoring for [%d]\n", task_pid_nr(task)));
3594
3595                                if (state == PFM_CTX_MASKED) pfm_restore_monitoring(task);
3596                        } else {
3597                                DPRINT(("keeping monitoring stopped for [%d]\n", task_pid_nr(task)));
3598
3599                                // cannot use pfm_stop_monitoring(task, regs);
3600                        }
3601                }
3602                /*
3603                 * clear overflowed PMD mask to remove any stale information
3604                 */
3605                ctx->ctx_ovfl_regs[0] = 0UL;
3606
3607                /*
3608                 * back to LOADED state
3609                 */
3610                ctx->ctx_state = PFM_CTX_LOADED;
3611
3612                /*
3613                 * XXX: not really useful for self monitoring
3614                 */
3615                ctx->ctx_fl_can_restart = 0;
3616
3617                return 0;
3618        }
3619
3620        /* 
3621         * restart another task
3622         */
3623
3624        /*
3625         * When PFM_CTX_MASKED, we cannot issue a restart before the previous 
3626         * one is seen by the task.
3627         */
3628        if (state == PFM_CTX_MASKED) {
3629                if (ctx->ctx_fl_can_restart == 0) return -EINVAL;
3630                /*
3631                 * will prevent subsequent restart before this one is
3632                 * seen by other task
3633                 */
3634                ctx->ctx_fl_can_restart = 0;
3635        }
3636
3637        /*
3638         * if blocking, then post the semaphore is PFM_CTX_MASKED, i.e.
3639         * the task is blocked or on its way to block. That's the normal
3640         * restart path. If the monitoring is not masked, then the task
3641         * can be actively monitoring and we cannot directly intervene.
3642         * Therefore we use the trap mechanism to catch the task and
3643         * force it to reset the buffer/reset PMDs.
3644         *
3645         * if non-blocking, then we ensure that the task will go into
3646         * pfm_handle_work() before returning to user mode.
3647         *
3648         * We cannot explicitly reset another task, it MUST always
3649         * be done by the task itself. This works for system wide because
3650         * the tool that is controlling the session is logically doing 
3651         * "self-monitoring".
3652         */
3653        if (CTX_OVFL_NOBLOCK(ctx) == 0 && state == PFM_CTX_MASKED) {
3654                DPRINT(("unblocking [%d]\n", task_pid_nr(task)));
3655                complete(&ctx->ctx_restart_done);
3656        } else {
3657                DPRINT(("[%d] armed exit trap\n", task_pid_nr(task)));
3658
3659                ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_RESET;
3660
3661                PFM_SET_WORK_PENDING(task, 1);
3662
3663                set_notify_resume(task);
3664
3665                /*
3666                 * XXX: send reschedule if task runs on another CPU
3667                 */
3668        }
3669        return 0;
3670}
3671
3672static int
3673pfm_debug(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3674{
3675        unsigned int m = *(unsigned int *)arg;
3676
3677        pfm_sysctl.debug = m == 0 ? 0 : 1;
3678
3679        printk(KERN_INFO "perfmon debugging %s (timing reset)\n", pfm_sysctl.debug ? "on" : "off");
3680
3681        if (m == 0) {
3682                memset(pfm_stats, 0, sizeof(pfm_stats));
3683                for(m=0; m < NR_CPUS; m++) pfm_stats[m].pfm_ovfl_intr_cycles_min = ~0UL;
3684        }
3685        return 0;
3686}
3687
3688/*
3689 * arg can be NULL and count can be zero for this function
3690 */
3691static int
3692pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3693{
3694        struct thread_struct *thread = NULL;
3695        struct task_struct *task;
3696        pfarg_dbreg_t *req = (pfarg_dbreg_t *)arg;
3697        unsigned long flags;
3698        dbreg_t dbreg;
3699        unsigned int rnum;
3700        int first_time;
3701        int ret = 0, state;
3702        int i, can_access_pmu = 0;
3703        int is_system, is_loaded;
3704
3705        if (pmu_conf->use_rr_dbregs == 0) return -EINVAL;
3706
3707        state     = ctx->ctx_state;
3708        is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3709        is_system = ctx->ctx_fl_system;
3710        task      = ctx->ctx_task;
3711
3712        if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3713
3714        /*
3715         * on both UP and SMP, we can only write to the PMC when the task is
3716         * the owner of the local PMU.
3717         */
3718        if (is_loaded) {
3719                thread = &task->thread;
3720                /*
3721                 * In system wide and when the context is loaded, access can only happen
3722                 * when the caller is running on the CPU being monitored by the session.
3723                 * It does not have to be the owner (ctx_task) of the context per se.
3724                 */
3725                if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3726                        DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3727                        return -EBUSY;
3728                }
3729                can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3730        }
3731
3732        /*
3733         * we do not need to check for ipsr.db because we do clear ibr.x, dbr.r, and dbr.w
3734         * ensuring that no real breakpoint can be installed via this call.
3735         *
3736         * IMPORTANT: regs can be NULL in this function
3737         */
3738
3739        first_time = ctx->ctx_fl_using_dbreg == 0;
3740
3741        /*
3742         * don't bother if we are loaded and task is being debugged
3743         */
3744        if (is_loaded && (thread->flags & IA64_THREAD_DBG_VALID) != 0) {
3745                DPRINT(("debug registers already in use for [%d]\n", task_pid_nr(task)));
3746                return -EBUSY;
3747        }
3748
3749        /*
3750         * check for debug registers in system wide mode
3751         *
3752         * If though a check is done in pfm_context_load(),
3753         * we must repeat it here, in case the registers are
3754         * written after the context is loaded
3755         */
3756        if (is_loaded) {
3757                LOCK_PFS(flags);
3758
3759                if (first_time && is_system) {
3760                        if (pfm_sessions.pfs_ptrace_use_dbregs)
3761                                ret = -EBUSY;
3762                        else
3763                                pfm_sessions.pfs_sys_use_dbregs++;
3764                }
3765                UNLOCK_PFS(flags);
3766        }
3767
3768        if (ret != 0) return ret;
3769
3770        /*
3771         * mark ourself as user of the debug registers for
3772         * perfmon purposes.
3773         */
3774        ctx->ctx_fl_using_dbreg = 1;
3775
3776        /*
3777         * clear hardware registers to make sure we don't
3778         * pick up stale state.
3779         *
3780         * for a system wide session, we do not use
3781         * thread.dbr, thread.ibr because this process
3782         * never leaves the current CPU and the state
3783         * is shared by all processes running on it
3784         */
3785        if (first_time && can_access_pmu) {
3786                DPRINT(("[%d] clearing ibrs, dbrs\n", task_pid_nr(task)));
3787                for (i=0; i < pmu_conf->num_ibrs; i++) {
3788                        ia64_set_ibr(i, 0UL);
3789                        ia64_dv_serialize_instruction();
3790                }
3791                ia64_srlz_i();
3792                for (i=0; i < pmu_conf->num_dbrs; i++) {
3793                        ia64_set_dbr(i, 0UL);
3794                        ia64_dv_serialize_data();
3795                }
3796                ia64_srlz_d();
3797        }
3798
3799        /*
3800         * Now install the values into the registers
3801         */
3802        for (i = 0; i < count; i++, req++) {
3803
3804                rnum      = req->dbreg_num;
3805                dbreg.val = req->dbreg_value;
3806
3807                ret = -EINVAL;
3808
3809                if ((mode == PFM_CODE_RR && rnum >= PFM_NUM_IBRS) || ((mode == PFM_DATA_RR) && rnum >= PFM_NUM_DBRS)) {
3810                        DPRINT(("invalid register %u val=0x%lx mode=%d i=%d count=%d\n",
3811                                  rnum, dbreg.val, mode, i, count));
3812
3813                        goto abort_mission;
3814                }
3815
3816                /*
3817                 * make sure we do not install enabled breakpoint
3818                 */
3819                if (rnum & 0x1) {
3820                        if (mode == PFM_CODE_RR)
3821                                dbreg.ibr.ibr_x = 0;
3822                        else
3823                                dbreg.dbr.dbr_r = dbreg.dbr.dbr_w = 0;
3824                }
3825
3826                PFM_REG_RETFLAG_SET(req->dbreg_flags, 0);
3827
3828                /*
3829                 * Debug registers, just like PMC, can only be modified
3830                 * by a kernel call. Moreover, perfmon() access to those
3831                 * registers are centralized in this routine. The hardware
3832                 * does not modify the value of these registers, therefore,
3833                 * if we save them as they are written, we can avoid having
3834                 * to save them on context switch out. This is made possible
3835                 * by the fact that when perfmon uses debug registers, ptrace()
3836                 * won't be able to modify them concurrently.
3837                 */
3838                if (mode == PFM_CODE_RR) {
3839                        CTX_USED_IBR(ctx, rnum);
3840
3841                        if (can_access_pmu) {
3842                                ia64_set_ibr(rnum, dbreg.val);
3843                                ia64_dv_serialize_instruction();
3844                        }
3845
3846                        ctx->ctx_ibrs[rnum] = dbreg.val;
3847
3848                        DPRINT(("write ibr%u=0x%lx used_ibrs=0x%x ld=%d apmu=%d\n",
3849                                rnum, dbreg.val, ctx->ctx_used_ibrs[0], is_loaded, can_access_pmu));
3850                } else {
3851                        CTX_USED_DBR(ctx, rnum);
3852
3853                        if (can_access_pmu) {
3854                                ia64_set_dbr(rnum, dbreg.val);
3855                                ia64_dv_serialize_data();
3856                        }
3857                        ctx->ctx_dbrs[rnum] = dbreg.val;
3858
3859                        DPRINT(("write dbr%u=0x%lx used_dbrs=0x%x ld=%d apmu=%d\n",
3860                                rnum, dbreg.val, ctx->ctx_used_dbrs[0], is_loaded, can_access_pmu));
3861                }
3862        }
3863
3864        return 0;
3865
3866abort_mission:
3867        /*
3868         * in case it was our first attempt, we undo the global modifications
3869         */
3870        if (first_time) {
3871                LOCK_PFS(flags);
3872                if (ctx->ctx_fl_system) {
3873                        pfm_sessions.pfs_sys_use_dbregs--;
3874                }
3875                UNLOCK_PFS(flags);
3876                ctx->ctx_fl_using_dbreg = 0;
3877        }
3878        /*
3879         * install error return flag
3880         */
3881        PFM_REG_RETFLAG_SET(req->dbreg_flags, PFM_REG_RETFL_EINVAL);
3882
3883        return ret;
3884}
3885
3886static int
3887pfm_write_ibrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3888{
3889        return pfm_write_ibr_dbr(PFM_CODE_RR, ctx, arg, count, regs);
3890}
3891
3892static int
3893pfm_write_dbrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3894{
3895        return pfm_write_ibr_dbr(PFM_DATA_RR, ctx, arg, count, regs);
3896}
3897
3898int
3899pfm_mod_write_ibrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3900{
3901        pfm_context_t *ctx;
3902
3903        if (req == NULL) return -EINVAL;
3904
3905        ctx = GET_PMU_CTX();
3906
3907        if (ctx == NULL) return -EINVAL;
3908
3909        /*
3910         * for now limit to current task, which is enough when calling
3911         * from overflow handler
3912         */
3913        if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3914
3915        return pfm_write_ibrs(ctx, req, nreq, regs);
3916}
3917EXPORT_SYMBOL(pfm_mod_write_ibrs);
3918
3919int
3920pfm_mod_write_dbrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3921{
3922        pfm_context_t *ctx;
3923
3924        if (req == NULL) return -EINVAL;
3925
3926        ctx = GET_PMU_CTX();
3927
3928        if (ctx == NULL) return -EINVAL;
3929
3930        /*
3931         * for now limit to current task, which is enough when calling
3932         * from overflow handler
3933         */
3934        if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3935
3936        return pfm_write_dbrs(ctx, req, nreq, regs);
3937}
3938EXPORT_SYMBOL(pfm_mod_write_dbrs);
3939
3940
3941static int
3942pfm_get_features(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3943{
3944        pfarg_features_t *req = (pfarg_features_t *)arg;
3945
3946        req->ft_version = PFM_VERSION;
3947        return 0;
3948}
3949
3950static int
3951pfm_stop(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3952{
3953        struct pt_regs *tregs;
3954        struct task_struct *task = PFM_CTX_TASK(ctx);
3955        int state, is_system;
3956
3957        state     = ctx->ctx_state;
3958        is_system = ctx->ctx_fl_system;
3959
3960        /*
3961         * context must be attached to issue the stop command (includes LOADED,MASKED,ZOMBIE)
3962         */
3963        if (state == PFM_CTX_UNLOADED) return -EINVAL;
3964
3965        /*
3966         * In system wide and when the context is loaded, access can only happen
3967         * when the caller is running on the CPU being monitored by the session.
3968         * It does not have to be the owner (ctx_task) of the context per se.
3969         */
3970        if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3971                DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3972                return -EBUSY;
3973        }
3974        DPRINT(("task [%d] ctx_state=%d is_system=%d\n",
3975                task_pid_nr(PFM_CTX_TASK(ctx)),
3976                state,
3977                is_system));
3978        /*
3979         * in system mode, we need to update the PMU directly
3980         * and the user level state of the caller, which may not
3981         * necessarily be the creator of the context.
3982         */
3983        if (is_system) {
3984                /*
3985                 * Update local PMU first
3986                 *
3987                 * disable dcr pp
3988                 */
3989                ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
3990                ia64_srlz_i();
3991
3992                /*
3993                 * update local cpuinfo
3994                 */
3995                PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
3996
3997                /*
3998                 * stop monitoring, does srlz.i
3999                 */
4000                pfm_clear_psr_pp();
4001
4002                /*
4003                 * stop monitoring in the caller
4004                 */
4005                ia64_psr(regs)->pp = 0;
4006
4007                return 0;
4008        }
4009        /*
4010         * per-task mode
4011         */
4012
4013        if (task == current) {
4014                /* stop monitoring  at kernel level */
4015                pfm_clear_psr_up();
4016
4017                /*
4018                 * stop monitoring at the user level
4019                 */
4020                ia64_psr(regs)->up = 0;
4021        } else {
4022                tregs = task_pt_regs(task);
4023
4024                /*
4025                 * stop monitoring at the user level
4026                 */
4027                ia64_psr(tregs)->up = 0;
4028
4029                /*
4030                 * monitoring disabled in kernel at next reschedule
4031                 */
4032                ctx->ctx_saved_psr_up = 0;
4033                DPRINT(("task=[%d]\n", task_pid_nr(task)));
4034        }
4035        return 0;
4036}
4037
4038
4039static int
4040pfm_start(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4041{
4042        struct pt_regs *tregs;
4043        int state, is_system;
4044
4045        state     = ctx->ctx_state;
4046        is_system = ctx->ctx_fl_system;
4047
4048        if (state != PFM_CTX_LOADED) return -EINVAL;
4049
4050        /*
4051         * In system wide and when the context is loaded, access can only happen
4052         * when the caller is running on the CPU being monitored by the session.
4053         * It does not have to be the owner (ctx_task) of the context per se.
4054         */
4055        if (is_system && ctx->ctx_cpu != smp_processor_id()) {
4056                DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
4057                return -EBUSY;
4058        }
4059
4060        /*
4061         * in system mode, we need to update the PMU directly
4062         * and the user level state of the caller, which may not
4063         * necessarily be the creator of the context.
4064         */
4065        if (is_system) {
4066
4067                /*
4068                 * set user level psr.pp for the caller
4069                 */
4070                ia64_psr(regs)->pp = 1;
4071
4072                /*
4073                 * now update the local PMU and cpuinfo
4074                 */
4075                PFM_CPUINFO_SET(PFM_CPUINFO_DCR_PP);
4076
4077                /*
4078                 * start monitoring at kernel level
4079                 */
4080                pfm_set_psr_pp();
4081
4082                /* enable dcr pp */
4083                ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
4084                ia64_srlz_i();
4085
4086                return 0;
4087        }
4088
4089        /*
4090         * per-process mode
4091         */
4092
4093        if (ctx->ctx_task == current) {
4094
4095                /* start monitoring at kernel level */
4096                pfm_set_psr_up();
4097
4098                /*
4099                 * activate monitoring at user level
4100                 */
4101                ia64_psr(regs)->up = 1;
4102
4103        } else {
4104                tregs = task_pt_regs(ctx->ctx_task);
4105
4106                /*
4107                 * start monitoring at the kernel level the next
4108                 * time the task is scheduled
4109                 */
4110                ctx->ctx_saved_psr_up = IA64_PSR_UP;
4111
4112                /*
4113                 * activate monitoring at user level
4114                 */
4115                ia64_psr(tregs)->up = 1;
4116        }
4117        return 0;
4118}
4119
4120static int
4121pfm_get_pmc_reset(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4122{
4123        pfarg_reg_t *req = (pfarg_reg_t *)arg;
4124        unsigned int cnum;
4125        int i;
4126        int ret = -EINVAL;
4127
4128        for (i = 0; i < count; i++, req++) {
4129
4130                cnum = req->reg_num;
4131
4132                if (!PMC_IS_IMPL(cnum)) goto abort_mission;
4133
4134                req->reg_value = PMC_DFL_VAL(cnum);
4135
4136                PFM_REG_RETFLAG_SET(req->reg_flags, 0);
4137
4138                DPRINT(("pmc_reset_val pmc[%u]=0x%lx\n", cnum, req->reg_value));
4139        }
4140        return 0;
4141
4142abort_mission:
4143        PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
4144        return ret;
4145}
4146
4147static int
4148pfm_check_task_exist(pfm_context_t *ctx)
4149{
4150        struct task_struct *g, *t;
4151        int ret = -ESRCH;
4152
4153        read_lock(&tasklist_lock);
4154
4155        do_each_thread (g, t) {
4156                if (t->thread.pfm_context == ctx) {
4157                        ret = 0;
4158                        goto out;
4159                }
4160        } while_each_thread (g, t);
4161out:
4162        read_unlock(&tasklist_lock);
4163
4164        DPRINT(("pfm_check_task_exist: ret=%d ctx=%p\n", ret, ctx));
4165
4166        return ret;
4167}
4168
4169static int
4170pfm_context_load(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4171{
4172        struct task_struct *task;
4173        struct thread_struct *thread;
4174        struct pfm_context_t *old;
4175        unsigned long flags;
4176#ifndef CONFIG_SMP
4177        struct task_struct *owner_task = NULL;
4178#endif
4179        pfarg_load_t *req = (pfarg_load_t *)arg;
4180        unsigned long *pmcs_source, *pmds_source;
4181        int the_cpu;
4182        int ret = 0;
4183        int state, is_system, set_dbregs = 0;
4184
4185        state     = ctx->ctx_state;
4186        is_system = ctx->ctx_fl_system;
4187        /*
4188         * can only load from unloaded or terminated state
4189         */
4190        if (state != PFM_CTX_UNLOADED) {
4191                DPRINT(("cannot load to [%d], invalid ctx_state=%d\n",
4192                        req->load_pid,
4193                        ctx->ctx_state));
4194                return -EBUSY;
4195        }
4196
4197        DPRINT(("load_pid [%d] using_dbreg=%d\n", req->load_pid, ctx->ctx_fl_using_dbreg));
4198
4199        if (CTX_OVFL_NOBLOCK(ctx) == 0 && req->load_pid == current->pid) {
4200                DPRINT(("cannot use blocking mode on self\n"));
4201                return -EINVAL;
4202        }
4203
4204        ret = pfm_get_task(ctx, req->load_pid, &task);
4205        if (ret) {
4206                DPRINT(("load_pid [%d] get_task=%d\n", req->load_pid, ret));
4207                return ret;
4208        }
4209
4210        ret = -EINVAL;
4211
4212        /*
4213         * system wide is self monitoring only
4214         */
4215        if (is_system && task != current) {
4216                DPRINT(("system wide is self monitoring only load_pid=%d\n",
4217                        req->load_pid));
4218                goto error;
4219        }
4220
4221        thread = &task->thread;
4222
4223        ret = 0;
4224        /*
4225         * cannot load a context which is using range restrictions,
4226         * into a task that is being debugged.
4227         */
4228        if (ctx->ctx_fl_using_dbreg) {
4229                if (thread->flags & IA64_THREAD_DBG_VALID) {
4230                        ret = -EBUSY;
4231                        DPRINT(("load_pid [%d] task is debugged, cannot load range restrictions\n", req->load_pid));
4232                        goto error;
4233                }
4234                LOCK_PFS(flags);
4235
4236                if (is_system) {
4237                        if (pfm_sessions.pfs_ptrace_use_dbregs) {
4238                                DPRINT(("cannot load [%d] dbregs in use\n",
4239                                                        task_pid_nr(task)));
4240                                ret = -EBUSY;
4241                        } else {
4242                                pfm_sessions.pfs_sys_use_dbregs++;
4243                                DPRINT(("load [%d] increased sys_use_dbreg=%u\n", task_pid_nr(task), pfm_sessions.pfs_sys_use_dbregs));
4244                                set_dbregs = 1;
4245                        }
4246                }
4247
4248                UNLOCK_PFS(flags);
4249
4250                if (ret) goto error;
4251        }
4252
4253        /*
4254         * SMP system-wide monitoring implies self-monitoring.
4255         *
4256         * The programming model expects the task to
4257         * be pinned on a CPU throughout the session.
4258         * Here we take note of the current CPU at the
4259         * time the context is loaded. No call from
4260         * another CPU will be allowed.
4261         *
4262         * The pinning via shed_setaffinity()
4263         * must be done by the calling task prior
4264         * to this call.
4265         *
4266         * systemwide: keep track of CPU this session is supposed to run on
4267         */
4268        the_cpu = ctx->ctx_cpu = smp_processor_id();
4269
4270        ret = -EBUSY;
4271        /*
4272         * now reserve the session
4273         */
4274        ret = pfm_reserve_session(current, is_system, the_cpu);
4275        if (ret) goto error;
4276
4277        /*
4278         * task is necessarily stopped at this point.
4279         *
4280         * If the previous context was zombie, then it got removed in
4281         * pfm_save_regs(). Therefore we should not see it here.
4282         * If we see a context, then this is an active context
4283         *
4284         * XXX: needs to be atomic
4285         */
4286        DPRINT(("before cmpxchg() old_ctx=%p new_ctx=%p\n",
4287                thread->pfm_context, ctx));
4288
4289        ret = -EBUSY;
4290        old = ia64_cmpxchg(acq, &thread->pfm_context, NULL, ctx, sizeof(pfm_context_t *));
4291        if (old != NULL) {
4292                DPRINT(("load_pid [%d] already has a context\n", req->load_pid));
4293                goto error_unres;
4294        }
4295
4296        pfm_reset_msgq(ctx);
4297
4298        ctx->ctx_state = PFM_CTX_LOADED;
4299
4300        /*
4301         * link context to task
4302         */
4303        ctx->ctx_task = task;
4304
4305        if (is_system) {
4306                /*
4307                 * we load as stopped
4308                 */
4309                PFM_CPUINFO_SET(PFM_CPUINFO_SYST_WIDE);
4310                PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4311
4312                if (ctx->ctx_fl_excl_idle) PFM_CPUINFO_SET(PFM_CPUINFO_EXCL_IDLE);
4313        } else {
4314                thread->flags |= IA64_THREAD_PM_VALID;
4315        }
4316
4317        /*
4318         * propagate into thread-state
4319         */
4320        pfm_copy_pmds(task, ctx);
4321        pfm_copy_pmcs(task, ctx);
4322
4323        pmcs_source = ctx->th_pmcs;
4324        pmds_source = ctx->th_pmds;
4325
4326        /*
4327         * always the case for system-wide
4328         */
4329        if (task == current) {
4330
4331                if (is_system == 0) {
4332
4333                        /* allow user level control */
4334                        ia64_psr(regs)->sp = 0;
4335                        DPRINT(("clearing psr.sp for [%d]\n", task_pid_nr(task)));
4336
4337                        SET_LAST_CPU(ctx, smp_processor_id());
4338                        INC_ACTIVATION();
4339                        SET_ACTIVATION(ctx);
4340#ifndef CONFIG_SMP
4341                        /*
4342                         * push the other task out, if any
4343                         */
4344                        owner_task = GET_PMU_OWNER();
4345                        if (owner_task) pfm_lazy_save_regs(owner_task);
4346#endif
4347                }
4348                /*
4349                 * load all PMD from ctx to PMU (as opposed to thread state)
4350                 * restore all PMC from ctx to PMU
4351                 */
4352                pfm_restore_pmds(pmds_source, ctx->ctx_all_pmds[0]);
4353                pfm_restore_pmcs(pmcs_source, ctx->ctx_all_pmcs[0]);
4354
4355                ctx->ctx_reload_pmcs[0] = 0UL;
4356                ctx->ctx_reload_pmds[0] = 0UL;
4357
4358                /*
4359                 * guaranteed safe by earlier check against DBG_VALID
4360                 */
4361                if (ctx->ctx_fl_using_dbreg) {
4362                        pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
4363                        pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
4364                }
4365                /*
4366                 * set new ownership
4367                 */
4368                SET_PMU_OWNER(task, ctx);
4369
4370                DPRINT(("context loaded on PMU for [%d]\n", task_pid_nr(task)));
4371        } else {
4372                /*
4373                 * when not current, task MUST be stopped, so this is safe
4374                 */
4375                regs = task_pt_regs(task);
4376
4377                /* force a full reload */
4378                ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4379                SET_LAST_CPU(ctx, -1);
4380
4381                /* initial saved psr (stopped) */
4382                ctx->ctx_saved_psr_up = 0UL;
4383                ia64_psr(regs)->up = ia64_psr(regs)->pp = 0;
4384        }
4385
4386        ret = 0;
4387
4388error_unres:
4389        if (ret) pfm_unreserve_session(ctx, ctx->ctx_fl_system, the_cpu);
4390error:
4391        /*
4392         * we must undo the dbregs setting (for system-wide)
4393         */
4394        if (ret && set_dbregs) {
4395                LOCK_PFS(flags);
4396                pfm_sessions.pfs_sys_use_dbregs--;
4397                UNLOCK_PFS(flags);
4398        }
4399        /*
4400         * release task, there is now a link with the context
4401         */
4402        if (is_system == 0 && task != current) {
4403                pfm_put_task(task);
4404
4405                if (ret == 0) {
4406                        ret = pfm_check_task_exist(ctx);
4407                        if (ret) {
4408                                ctx->ctx_state = PFM_CTX_UNLOADED;
4409                                ctx->ctx_task  = NULL;
4410                        }
4411                }
4412        }
4413        return ret;
4414}
4415
4416/*
4417 * in this function, we do not need to increase the use count
4418 * for the task via get_task_struct(), because we hold the
4419 * context lock. If the task were to disappear while having
4420 * a context attached, it would go through pfm_exit_thread()
4421 * which also grabs the context lock  and would therefore be blocked
4422 * until we are here.
4423 */
4424static void pfm_flush_pmds(struct task_struct *, pfm_context_t *ctx);
4425
4426static int
4427pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4428{
4429        struct task_struct *task = PFM_CTX_TASK(ctx);
4430        struct pt_regs *tregs;
4431        int prev_state, is_system;
4432        int ret;
4433
4434        DPRINT(("ctx_state=%d task [%d]\n", ctx->ctx_state, task ? task_pid_nr(task) : -1));
4435
4436        prev_state = ctx->ctx_state;
4437        is_system  = ctx->ctx_fl_system;
4438
4439        /*
4440         * unload only when necessary
4441         */
4442        if (prev_state == PFM_CTX_UNLOADED) {
4443                DPRINT(("ctx_state=%d, nothing to do\n", prev_state));
4444                return 0;
4445        }
4446
4447        /*
4448         * clear psr and dcr bits
4449         */
4450        ret = pfm_stop(ctx, NULL, 0, regs);
4451        if (ret) return ret;
4452
4453        ctx->ctx_state = PFM_CTX_UNLOADED;
4454
4455        /*
4456         * in system mode, we need to update the PMU directly
4457         * and the user level state of the caller, which may not
4458         * necessarily be the creator of the context.
4459         */
4460        if (is_system) {
4461
4462                /*
4463                 * Update cpuinfo
4464                 *
4465                 * local PMU is taken care of in pfm_stop()
4466                 */
4467                PFM_CPUINFO_CLEAR(PFM_CPUINFO_SYST_WIDE);
4468                PFM_CPUINFO_CLEAR(PFM_CPUINFO_EXCL_IDLE);
4469
4470                /*
4471                 * save PMDs in context
4472                 * release ownership
4473                 */
4474                pfm_flush_pmds(current, ctx);
4475
4476                /*
4477                 * at this point we are done with the PMU
4478                 * so we can unreserve the resource.
4479                 */
4480                if (prev_state != PFM_CTX_ZOMBIE) 
4481                        pfm_unreserve_session(ctx, 1 , ctx->ctx_cpu);
4482
4483                /*
4484                 * disconnect context from task
4485                 */
4486                task->thread.pfm_context = NULL;
4487                /*
4488                 * disconnect task from context
4489                 */
4490                ctx->ctx_task = NULL;
4491
4492                /*
4493                 * There is nothing more to cleanup here.
4494                 */
4495                return 0;
4496        }
4497
4498        /*
4499         * per-task mode
4500         */
4501        tregs = task == current ? regs : task_pt_regs(task);
4502
4503        if (task == current) {
4504                /*
4505                 * cancel user level control
4506                 */
4507                ia64_psr(regs)->sp = 1;
4508
4509                DPRINT(("setting psr.sp for [%d]\n", task_pid_nr(task)));
4510        }
4511        /*
4512         * save PMDs to context
4513         * release ownership
4514         */
4515        pfm_flush_pmds(task, ctx);
4516
4517        /*
4518         * at this point we are done with the PMU
4519         * so we can unreserve the resource.
4520         *
4521         * when state was ZOMBIE, we have already unreserved.
4522         */
4523        if (prev_state != PFM_CTX_ZOMBIE) 
4524                pfm_unreserve_session(ctx, 0 , ctx->ctx_cpu);
4525
4526        /*
4527         * reset activation counter and psr
4528         */
4529        ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4530        SET_LAST_CPU(ctx, -1);
4531
4532        /*
4533         * PMU state will not be restored
4534         */
4535        task->thread.flags &= ~IA64_THREAD_PM_VALID;
4536
4537        /*
4538         * break links between context and task
4539         */
4540        task->thread.pfm_context  = NULL;
4541        ctx->ctx_task             = NULL;
4542
4543        PFM_SET_WORK_PENDING(task, 0);
4544
4545        ctx->ctx_fl_trap_reason  = PFM_TRAP_REASON_NONE;
4546        ctx->ctx_fl_can_restart  = 0;
4547        ctx->ctx_fl_going_zombie = 0;
4548
4549        DPRINT(("disconnected [%d] from context\n", task_pid_nr(task)));
4550
4551        return 0;
4552}
4553
4554
4555/*
4556 * called only from exit_thread(): task == current
4557 * we come here only if current has a context attached (loaded or masked)
4558 */
4559void
4560pfm_exit_thread(struct task_struct *task)
4561{
4562        pfm_context_t *ctx;
4563        unsigned long flags;
4564        struct pt_regs *regs = task_pt_regs(task);
4565        int ret, state;
4566        int free_ok = 0;
4567
4568        ctx = PFM_GET_CTX(task);
4569
4570        PROTECT_CTX(ctx, flags);
4571
4572        DPRINT(("state=%d task [%d]\n", ctx->ctx_state, task_pid_nr(task)));
4573
4574        state = ctx->ctx_state;
4575        switch(state) {
4576                case PFM_CTX_UNLOADED:
4577                        /*
4578                         * only comes to this function if pfm_context is not NULL, i.e., cannot
4579                         * be in unloaded state
4580                         */
4581                        printk(KERN_ERR "perfmon: pfm_exit_thread [%d] ctx unloaded\n", task_pid_nr(task));
4582                        break;
4583                case PFM_CTX_LOADED:
4584                case PFM_CTX_MASKED:
4585                        ret = pfm_context_unload(ctx, NULL, 0, regs);
4586                        if (ret) {
4587                                printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret);
4588                        }
4589                        DPRINT(("ctx unloaded for current state was %d\n", state));
4590
4591                        pfm_end_notify_user(ctx);
4592                        break;
4593                case PFM_CTX_ZOMBIE:
4594                        ret = pfm_context_unload(ctx, NULL, 0, regs);
4595                        if (ret) {
4596                                printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret);
4597                        }
4598                        free_ok = 1;
4599                        break;
4600                default:
4601                        printk(KERN_ERR "perfmon: pfm_exit_thread [%d] unexpected state=%d\n", task_pid_nr(task), state);
4602                        break;
4603        }
4604        UNPROTECT_CTX(ctx, flags);
4605
4606        { u64 psr = pfm_get_psr();
4607          BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
4608          BUG_ON(GET_PMU_OWNER());
4609          BUG_ON(ia64_psr(regs)->up);
4610          BUG_ON(ia64_psr(regs)->pp);
4611        }
4612
4613        /*
4614         * All memory free operations (especially for vmalloc'ed memory)
4615         * MUST be done with interrupts ENABLED.
4616         */
4617        if (free_ok) pfm_context_free(ctx);
4618}
4619
4620/*
4621 * functions MUST be listed in the increasing order of their index (see permfon.h)
4622 */
4623#define PFM_CMD(name, flags, arg_count, arg_type, getsz) { name, #name, flags, arg_count, sizeof(arg_type), getsz }
4624#define PFM_CMD_S(name, flags) { name, #name, flags, 0, 0, NULL }
4625#define PFM_CMD_PCLRWS  (PFM_CMD_FD|PFM_CMD_ARG_RW|PFM_CMD_STOP)
4626#define PFM_CMD_PCLRW   (PFM_CMD_FD|PFM_CMD_ARG_RW)
4627#define PFM_CMD_NONE    { NULL, "no-cmd", 0, 0, 0, NULL}
4628
4629static pfm_cmd_desc_t pfm_cmd_tab[]={
4630/* 0  */PFM_CMD_NONE,
4631/* 1  */PFM_CMD(pfm_write_pmcs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4632/* 2  */PFM_CMD(pfm_write_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4633/* 3  */PFM_CMD(pfm_read_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4634/* 4  */PFM_CMD_S(pfm_stop, PFM_CMD_PCLRWS),
4635/* 5  */PFM_CMD_S(pfm_start, PFM_CMD_PCLRWS),
4636/* 6  */PFM_CMD_NONE,
4637/* 7  */PFM_CMD_NONE,
4638/* 8  */PFM_CMD(pfm_context_create, PFM_CMD_ARG_RW, 1, pfarg_context_t, pfm_ctx_getsize),
4639/* 9  */PFM_CMD_NONE,
4640/* 10 */PFM_CMD_S(pfm_restart, PFM_CMD_PCLRW),
4641/* 11 */PFM_CMD_NONE,
4642/* 12 */PFM_CMD(pfm_get_features, PFM_CMD_ARG_RW, 1, pfarg_features_t, NULL),
4643/* 13 */PFM_CMD(pfm_debug, 0, 1, unsigned int, NULL),
4644/* 14 */PFM_CMD_NONE,
4645/* 15 */PFM_CMD(pfm_get_pmc_reset, PFM_CMD_ARG_RW, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4646/* 16 */PFM_CMD(pfm_context_load, PFM_CMD_PCLRWS, 1, pfarg_load_t, NULL),
4647/* 17 */PFM_CMD_S(pfm_context_unload, PFM_CMD_PCLRWS),
4648/* 18 */PFM_CMD_NONE,
4649/* 19 */PFM_CMD_NONE,
4650/* 20 */PFM_CMD_NONE,
4651/* 21 */PFM_CMD_NONE,
4652/* 22 */PFM_CMD_NONE,
4653/* 23 */PFM_CMD_NONE,
4654/* 24 */PFM_CMD_NONE,
4655/* 25 */PFM_CMD_NONE,
4656/* 26 */PFM_CMD_NONE,
4657/* 27 */PFM_CMD_NONE,
4658/* 28 */PFM_CMD_NONE,
4659/* 29 */PFM_CMD_NONE,
4660/* 30 */PFM_CMD_NONE,
4661/* 31 */PFM_CMD_NONE,
4662/* 32 */PFM_CMD(pfm_write_ibrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL),
4663/* 33 */PFM_CMD(pfm_write_dbrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL)
4664};
4665#define PFM_CMD_COUNT   (sizeof(pfm_cmd_tab)/sizeof(pfm_cmd_desc_t))
4666
4667static int
4668pfm_check_task_state(pfm_context_t *ctx, int cmd, unsigned long flags)
4669{
4670        struct task_struct *task;
4671        int state, old_state;
4672
4673recheck:
4674        state = ctx->ctx_state;
4675        task  = ctx->ctx_task;
4676
4677        if (task == NULL) {
4678                DPRINT(("context %d no task, state=%d\n", ctx->ctx_fd, state));
4679                return 0;
4680        }
4681
4682        DPRINT(("context %d state=%d [%d] task_state=%ld must_stop=%d\n",
4683                ctx->ctx_fd,
4684                state,
4685                task_pid_nr(task),
4686                task->state, PFM_CMD_STOPPED(cmd)));
4687
4688        /*
4689         * self-monitoring always ok.
4690         *
4691         * for system-wide the caller can either be the creator of the
4692         * context (to one to which the context is attached to) OR
4693         * a task running on the same CPU as the session.
4694         */
4695        if (task == current || ctx->ctx_fl_system) return 0;
4696
4697        /*
4698         * we are monitoring another thread
4699         */
4700        switch(state) {
4701                case PFM_CTX_UNLOADED:
4702                        /*
4703                         * if context is UNLOADED we are safe to go
4704                         */
4705                        return 0;
4706                case PFM_CTX_ZOMBIE:
4707                        /*
4708                         * no command can operate on a zombie context
4709                         */
4710                        DPRINT(("cmd %d state zombie cannot operate on context\n", cmd));
4711                        return -EINVAL;
4712                case PFM_CTX_MASKED:
4713                        /*
4714                         * PMU state has been saved to software even though
4715                         * the thread may still be running.
4716                         */
4717                        if (cmd != PFM_UNLOAD_CONTEXT) return 0;
4718        }
4719
4720        /*
4721         * context is LOADED or MASKED. Some commands may need to have 
4722         * the task stopped.
4723         *
4724         * We could lift this restriction for UP but it would mean that
4725         * the user has no guarantee the task would not run between
4726         * two successive calls to perfmonctl(). That's probably OK.
4727         * If this user wants to ensure the task does not run, then
4728         * the task must be stopped.
4729         */
4730        if (PFM_CMD_STOPPED(cmd)) {
4731                if (!task_is_stopped_or_traced(task)) {
4732                        DPRINT(("[%d] task not in stopped state\n", task_pid_nr(task)));
4733                        return -EBUSY;
4734                }
4735                /*
4736                 * task is now stopped, wait for ctxsw out
4737                 *
4738                 * This is an interesting point in the code.
4739                 * We need to unprotect the context because
4740                 * the pfm_save_regs() routines needs to grab
4741                 * the same lock. There are danger in doing
4742                 * this because it leaves a window open for
4743                 * another task to get access to the context
4744                 * and possibly change its state. The one thing
4745                 * that is not possible is for the context to disappear
4746                 * because we are protected by the VFS layer, i.e.,
4747                 * get_fd()/put_fd().
4748                 */
4749                old_state = state;
4750
4751                UNPROTECT_CTX(ctx, flags);
4752
4753                wait_task_inactive(task, 0);
4754
4755                PROTECT_CTX(ctx, flags);
4756
4757                /*
4758                 * we must recheck to verify if state has changed
4759                 */
4760                if (ctx->ctx_state != old_state) {
4761                        DPRINT(("old_state=%d new_state=%d\n", old_state, ctx->ctx_state));
4762                        goto recheck;
4763                }
4764        }
4765        return 0;
4766}
4767
4768/*
4769 * system-call entry point (must return long)
4770 */
4771asmlinkage long
4772sys_perfmonctl (int fd, int cmd, void __user *arg, int count)
4773{
4774        struct fd f = {NULL, 0};
4775        pfm_context_t *ctx = NULL;
4776        unsigned long flags = 0UL;
4777        void *args_k = NULL;
4778        long ret; /* will expand int return types */
4779        size_t base_sz, sz, xtra_sz = 0;
4780        int narg, completed_args = 0, call_made = 0, cmd_flags;
4781        int (*func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
4782        int (*getsize)(void *arg, size_t *sz);
4783#define PFM_MAX_ARGSIZE 4096
4784
4785        /*
4786         * reject any call if perfmon was disabled at initialization
4787         */
4788        if (unlikely(pmu_conf == NULL)) return -ENOSYS;
4789
4790        if (unlikely(cmd < 0 || cmd >= PFM_CMD_COUNT)) {
4791                DPRINT(("invalid cmd=%d\n", cmd));
4792                return -EINVAL;
4793        }
4794
4795        func      = pfm_cmd_tab[cmd].cmd_func;
4796        narg      = pfm_cmd_tab[cmd].cmd_narg;
4797        base_sz   = pfm_cmd_tab[cmd].cmd_argsize;
4798        getsize   = pfm_cmd_tab[cmd].cmd_getsize;
4799        cmd_flags = pfm_cmd_tab[cmd].cmd_flags;
4800
4801        if (unlikely(func == NULL)) {
4802                DPRINT(("invalid cmd=%d\n", cmd));
4803                return -EINVAL;
4804        }
4805
4806        DPRINT(("cmd=%s idx=%d narg=0x%x argsz=%lu count=%d\n",
4807                PFM_CMD_NAME(cmd),
4808                cmd,
4809                narg,
4810                base_sz,
4811                count));
4812
4813        /*
4814         * check if number of arguments matches what the command expects
4815         */
4816        if (unlikely((narg == PFM_CMD_ARG_MANY && count <= 0) || (narg > 0 && narg != count)))
4817                return -EINVAL;
4818
4819restart_args:
4820        sz = xtra_sz + base_sz*count;
4821        /*
4822         * limit abuse to min page size
4823         */
4824        if (unlikely(sz > PFM_MAX_ARGSIZE)) {
4825                printk(KERN_ERR "perfmon: [%d] argument too big %lu\n", task_pid_nr(current), sz);
4826                return -E2BIG;
4827        }
4828
4829        /*
4830         * allocate default-sized argument buffer
4831         */
4832        if (likely(count && args_k == NULL)) {
4833                args_k = kmalloc(PFM_MAX_ARGSIZE, GFP_KERNEL);
4834                if (args_k == NULL) return -ENOMEM;
4835        }
4836
4837        ret = -EFAULT;
4838
4839        /*
4840         * copy arguments
4841         *
4842         * assume sz = 0 for command without parameters
4843         */
4844        if (sz && copy_from_user(args_k, arg, sz)) {
4845                DPRINT(("cannot copy_from_user %lu bytes @%p\n", sz, arg));
4846                goto error_args;
4847        }
4848
4849        /*
4850         * check if command supports extra parameters
4851         */
4852        if (completed_args == 0 && getsize) {
4853                /*
4854                 * get extra parameters size (based on main argument)
4855                 */
4856                ret = (*getsize)(args_k, &xtra_sz);
4857                if (ret) goto error_args;
4858
4859                completed_args = 1;
4860
4861                DPRINT(("restart_args sz=%lu xtra_sz=%lu\n", sz, xtra_sz));
4862
4863                /* retry if necessary */
4864                if (likely(xtra_sz)) goto restart_args;
4865        }
4866
4867        if (unlikely((cmd_flags & PFM_CMD_FD) == 0)) goto skip_fd;
4868
4869        ret = -EBADF;
4870
4871        f = fdget(fd);
4872        if (unlikely(f.file == NULL)) {
4873                DPRINT(("invalid fd %d\n", fd));
4874                goto error_args;
4875        }
4876        if (unlikely(PFM_IS_FILE(f.file) == 0)) {
4877                DPRINT(("fd %d not related to perfmon\n", fd));
4878                goto error_args;
4879        }
4880
4881        ctx = f.file->private_data;
4882        if (unlikely(ctx == NULL)) {
4883                DPRINT(("no context for fd %d\n", fd));
4884                goto error_args;
4885        }
4886        prefetch(&ctx->ctx_state);
4887
4888        PROTECT_CTX(ctx, flags);
4889
4890        /*
4891         * check task is stopped
4892         */
4893        ret = pfm_check_task_state(ctx, cmd, flags);
4894        if (unlikely(ret)) goto abort_locked;
4895
4896skip_fd:
4897        ret = (*func)(ctx, args_k, count, task_pt_regs(current));
4898
4899        call_made = 1;
4900
4901abort_locked:
4902        if (likely(ctx)) {
4903                DPRINT(("context unlocked\n"));
4904                UNPROTECT_CTX(ctx, flags);
4905        }
4906
4907        /* copy argument back to user, if needed */
4908        if (call_made && PFM_CMD_RW_ARG(cmd) && copy_to_user(arg, args_k, base_sz*count)) ret = -EFAULT;
4909
4910error_args:
4911        if (f.file)
4912                fdput(f);
4913
4914        kfree(args_k);
4915
4916        DPRINT(("cmd=%s ret=%ld\n", PFM_CMD_NAME(cmd), ret));
4917
4918        return ret;
4919}
4920
4921static void
4922pfm_resume_after_ovfl(pfm_context_t *ctx, unsigned long ovfl_regs, struct pt_regs *regs)
4923{
4924        pfm_buffer_fmt_t *fmt = ctx->ctx_buf_fmt;
4925        pfm_ovfl_ctrl_t rst_ctrl;
4926        int state;
4927        int ret = 0;
4928
4929        state = ctx->ctx_state;
4930        /*
4931         * Unlock sampling buffer and reset index atomically
4932         * XXX: not really needed when blocking
4933         */
4934        if (CTX_HAS_SMPL(ctx)) {
4935
4936                rst_ctrl.bits.mask_monitoring = 0;
4937                rst_ctrl.bits.reset_ovfl_pmds = 0;
4938
4939                if (state == PFM_CTX_LOADED)
4940                        ret = pfm_buf_fmt_restart_active(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4941                else
4942                        ret = pfm_buf_fmt_restart(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4943        } else {
4944                rst_ctrl.bits.mask_monitoring = 0;
4945                rst_ctrl.bits.reset_ovfl_pmds = 1;
4946        }
4947
4948        if (ret == 0) {
4949                if (rst_ctrl.bits.reset_ovfl_pmds) {
4950                        pfm_reset_regs(ctx, &ovfl_regs, PFM_PMD_LONG_RESET);
4951                }
4952                if (rst_ctrl.bits.mask_monitoring == 0) {
4953                        DPRINT(("resuming monitoring\n"));
4954                        if (ctx->ctx_state == PFM_CTX_MASKED) pfm_restore_monitoring(current);
4955                } else {
4956                        DPRINT(("stopping monitoring\n"));
4957                        //pfm_stop_monitoring(current, regs);
4958                }
4959                ctx->ctx_state = PFM_CTX_LOADED;
4960        }
4961}
4962
4963/*
4964 * context MUST BE LOCKED when calling
4965 * can only be called for current
4966 */
4967static void
4968pfm_context_force_terminate(pfm_context_t *ctx, struct pt_regs *regs)
4969{
4970        int ret;
4971
4972        DPRINT(("entering for [%d]\n", task_pid_nr(current)));
4973
4974        ret = pfm_context_unload(ctx, NULL, 0, regs);
4975        if (ret) {
4976                printk(KERN_ERR "pfm_context_force_terminate: [%d] unloaded failed with %d\n", task_pid_nr(current), ret);
4977        }
4978
4979        /*
4980         * and wakeup controlling task, indicating we are now disconnected
4981         */
4982        wake_up_interruptible(&ctx->ctx_zombieq);
4983
4984        /*
4985         * given that context is still locked, the controlling
4986         * task will only get access when we return from
4987         * pfm_handle_work().
4988         */
4989}
4990
4991static int pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds);
4992
4993 /*
4994  * pfm_handle_work() can be called with interrupts enabled
4995  * (TIF_NEED_RESCHED) or disabled. The down_interruptible
4996  * call may sleep, therefore we must re-enable interrupts
4997  * to avoid deadlocks. It is safe to do so because this function
4998  * is called ONLY when returning to user level (pUStk=1), in which case
4999  * there is no risk of kernel stack overflow due to deep
5000  * interrupt nesting.
5001  */
5002void
5003pfm_handle_work(void)
5004{
5005        pfm_context_t *ctx;
5006        struct pt_regs *regs;
5007        unsigned long flags, dummy_flags;
5008        unsigned long ovfl_regs;
5009        unsigned int reason;
5010        int ret;
5011
5012        ctx = PFM_GET_CTX(current);
5013        if (ctx == NULL) {
5014                printk(KERN_ERR "perfmon: [%d] has no PFM context\n",
5015                        task_pid_nr(current));
5016                return;
5017        }
5018
5019        PROTECT_CTX(ctx, flags);
5020
5021        PFM_SET_WORK_PENDING(current, 0);
5022
5023        regs = task_pt_regs(current);
5024
5025        /*
5026         * extract reason for being here and clear
5027         */
5028        reason = ctx->ctx_fl_trap_reason;
5029        ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
5030        ovfl_regs = ctx->ctx_ovfl_regs[0];
5031
5032        DPRINT(("reason=%d state=%d\n", reason, ctx->ctx_state));
5033
5034        /*
5035         * must be done before we check for simple-reset mode
5036         */
5037        if (ctx->ctx_fl_going_zombie || ctx->ctx_state == PFM_CTX_ZOMBIE)
5038                goto do_zombie;
5039
5040        //if (CTX_OVFL_NOBLOCK(ctx)) goto skip_blocking;
5041        if (reason == PFM_TRAP_REASON_RESET)
5042                goto skip_blocking;
5043
5044        /*
5045         * restore interrupt mask to what it was on entry.
5046         * Could be enabled/diasbled.
5047         */
5048        UNPROTECT_CTX(ctx, flags);
5049
5050        /*
5051         * force interrupt enable because of down_interruptible()
5052         */
5053        local_irq_enable();
5054
5055        DPRINT(("before block sleeping\n"));
5056
5057        /*
5058         * may go through without blocking on SMP systems
5059         * if restart has been received already by the time we call down()
5060         */
5061        ret = wait_for_completion_interruptible(&ctx->ctx_restart_done);
5062
5063        DPRINT(("after block sleeping ret=%d\n", ret));
5064
5065        /*
5066         * lock context and mask interrupts again
5067         * We save flags into a dummy because we may have
5068         * altered interrupts mask compared to entry in this
5069         * function.
5070         */
5071        PROTECT_CTX(ctx, dummy_flags);
5072
5073        /*
5074         * we need to read the ovfl_regs only after wake-up
5075         * because we may have had pfm_write_pmds() in between
5076         * and that can changed PMD values and therefore 
5077         * ovfl_regs is reset for these new PMD values.
5078         */
5079        ovfl_regs = ctx->ctx_ovfl_regs[0];
5080
5081        if (ctx->ctx_fl_going_zombie) {
5082do_zombie:
5083                DPRINT(("context is zombie, bailing out\n"));
5084                pfm_context_force_terminate(ctx, regs);
5085                goto nothing_to_do;
5086        }
5087        /*
5088         * in case of interruption of down() we don't restart anything
5089         */
5090        if (ret < 0)
5091                goto nothing_to_do;
5092
5093skip_blocking:
5094        pfm_resume_after_ovfl(ctx, ovfl_regs, regs);
5095        ctx->ctx_ovfl_regs[0] = 0UL;
5096
5097nothing_to_do:
5098        /*
5099         * restore flags as they were upon entry
5100         */
5101        UNPROTECT_CTX(ctx, flags);
5102}
5103
5104static int
5105pfm_notify_user(pfm_context_t *ctx, pfm_msg_t *msg)
5106{
5107        if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5108                DPRINT(("ignoring overflow notification, owner is zombie\n"));
5109                return 0;
5110        }
5111
5112        DPRINT(("waking up somebody\n"));
5113
5114        if (msg) wake_up_interruptible(&ctx->ctx_msgq_wait);
5115
5116        /*
5117         * safe, we are not in intr handler, nor in ctxsw when
5118         * we come here
5119         */
5120        kill_fasync (&ctx->ctx_async_queue, SIGIO, POLL_IN);
5121
5122        return 0;
5123}
5124
5125static int
5126pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds)
5127{
5128        pfm_msg_t *msg = NULL;
5129
5130        if (ctx->ctx_fl_no_msg == 0) {
5131                msg = pfm_get_new_msg(ctx);
5132                if (msg == NULL) {
5133                        printk(KERN_ERR "perfmon: pfm_ovfl_notify_user no more notification msgs\n");
5134                        return -1;
5135                }
5136
5137                msg->pfm_ovfl_msg.msg_type         = PFM_MSG_OVFL;
5138                msg->pfm_ovfl_msg.msg_ctx_fd       = ctx->ctx_fd;
5139                msg->pfm_ovfl_msg.msg_active_set   = 0;
5140                msg->pfm_ovfl_msg.msg_ovfl_pmds[0] = ovfl_pmds;
5141                msg->pfm_ovfl_msg.msg_ovfl_pmds[1] = 0UL;
5142                msg->pfm_ovfl_msg.msg_ovfl_pmds[2] = 0UL;
5143                msg->pfm_ovfl_msg.msg_ovfl_pmds[3] = 0UL;
5144                msg->pfm_ovfl_msg.msg_tstamp       = 0UL;
5145        }
5146
5147        DPRINT(("ovfl msg: msg=%p no_msg=%d fd=%d ovfl_pmds=0x%lx\n",
5148                msg,
5149                ctx->ctx_fl_no_msg,
5150                ctx->ctx_fd,
5151                ovfl_pmds));
5152
5153        return pfm_notify_user(ctx, msg);
5154}
5155
5156static int
5157pfm_end_notify_user(pfm_context_t *ctx)
5158{
5159        pfm_msg_t *msg;
5160
5161        msg = pfm_get_new_msg(ctx);
5162        if (msg == NULL) {
5163                printk(KERN_ERR "perfmon: pfm_end_notify_user no more notification msgs\n");
5164                return -1;
5165        }
5166        /* no leak */
5167        memset(msg, 0, sizeof(*msg));
5168
5169        msg->pfm_end_msg.msg_type    = PFM_MSG_END;
5170        msg->pfm_end_msg.msg_ctx_fd  = ctx->ctx_fd;
5171        msg->pfm_ovfl_msg.msg_tstamp = 0UL;
5172
5173        DPRINT(("end msg: msg=%p no_msg=%d ctx_fd=%d\n",
5174                msg,
5175                ctx->ctx_fl_no_msg,
5176                ctx->ctx_fd));
5177
5178        return pfm_notify_user(ctx, msg);
5179}
5180
5181/*
5182 * main overflow processing routine.
5183 * it can be called from the interrupt path or explicitly during the context switch code
5184 */
5185static void pfm_overflow_handler(struct task_struct *task, pfm_context_t *ctx,
5186                                unsigned long pmc0, struct pt_regs *regs)
5187{
5188        pfm_ovfl_arg_t *ovfl_arg;
5189        unsigned long mask;
5190        unsigned long old_val, ovfl_val, new_val;
5191        unsigned long ovfl_notify = 0UL, ovfl_pmds = 0UL, smpl_pmds = 0UL, reset_pmds;
5192        unsigned long tstamp;
5193        pfm_ovfl_ctrl_t ovfl_ctrl;
5194        unsigned int i, has_smpl;
5195        int must_notify = 0;
5196
5197        if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) goto stop_monitoring;
5198
5199        /*
5200         * sanity test. Should never happen
5201         */
5202        if (unlikely((pmc0 & 0x1) == 0)) goto sanity_check;
5203
5204        tstamp   = ia64_get_itc();
5205        mask     = pmc0 >> PMU_FIRST_COUNTER;
5206        ovfl_val = pmu_conf->ovfl_val;
5207        has_smpl = CTX_HAS_SMPL(ctx);
5208
5209        DPRINT_ovfl(("pmc0=0x%lx pid=%d iip=0x%lx, %s "
5210                     "used_pmds=0x%lx\n",
5211                        pmc0,
5212                        task ? task_pid_nr(task): -1,
5213                        (regs ? regs->cr_iip : 0),
5214                        CTX_OVFL_NOBLOCK(ctx) ? "nonblocking" : "blocking",
5215                        ctx->ctx_used_pmds[0]));
5216
5217
5218        /*
5219         * first we update the virtual counters
5220         * assume there was a prior ia64_srlz_d() issued
5221         */
5222        for (i = PMU_FIRST_COUNTER; mask ; i++, mask >>= 1) {
5223
5224                /* skip pmd which did not overflow */
5225                if ((mask & 0x1) == 0) continue;
5226
5227                /*
5228                 * Note that the pmd is not necessarily 0 at this point as qualified events
5229                 * may have happened before the PMU was frozen. The residual count is not
5230                 * taken into consideration here but will be with any read of the pmd via
5231                 * pfm_read_pmds().
5232                 */
5233                old_val              = new_val = ctx->ctx_pmds[i].val;
5234                new_val             += 1 + ovfl_val;
5235                ctx->ctx_pmds[i].val = new_val;
5236
5237                /*
5238                 * check for overflow condition
5239                 */
5240                if (likely(old_val > new_val)) {
5241                        ovfl_pmds |= 1UL << i;
5242                        if (PMC_OVFL_NOTIFY(ctx, i)) ovfl_notify |= 1UL << i;
5243                }
5244
5245                DPRINT_ovfl(("ctx_pmd[%d].val=0x%lx old_val=0x%lx pmd=0x%lx ovfl_pmds=0x%lx ovfl_notify=0x%lx\n",
5246                        i,
5247                        new_val,
5248                        old_val,
5249                        ia64_get_pmd(i) & ovfl_val,
5250                        ovfl_pmds,
5251                        ovfl_notify));
5252        }
5253
5254        /*
5255         * there was no 64-bit overflow, nothing else to do
5256         */
5257        if (ovfl_pmds == 0UL) return;
5258
5259        /* 
5260         * reset all control bits
5261         */
5262        ovfl_ctrl.val = 0;
5263        reset_pmds    = 0UL;
5264
5265        /*
5266         * if a sampling format module exists, then we "cache" the overflow by 
5267         * calling the module's handler() routine.
5268         */
5269        if (has_smpl) {
5270                unsigned long start_cycles, end_cycles;
5271                unsigned long pmd_mask;
5272                int j, k, ret = 0;
5273                int this_cpu = smp_processor_id();
5274
5275                pmd_mask = ovfl_pmds >> PMU_FIRST_COUNTER;
5276                ovfl_arg = &ctx->ctx_ovfl_arg;
5277
5278                prefetch(ctx->ctx_smpl_hdr);
5279
5280                for(i=PMU_FIRST_COUNTER; pmd_mask && ret == 0; i++, pmd_mask >>=1) {
5281
5282                        mask = 1UL << i;
5283
5284                        if ((pmd_mask & 0x1) == 0) continue;
5285
5286                        ovfl_arg->ovfl_pmd      = (unsigned char )i;
5287                        ovfl_arg->ovfl_notify   = ovfl_notify & mask ? 1 : 0;
5288                        ovfl_arg->active_set    = 0;
5289                        ovfl_arg->ovfl_ctrl.val = 0; /* module must fill in all fields */
5290                        ovfl_arg->smpl_pmds[0]  = smpl_pmds = ctx->ctx_pmds[i].smpl_pmds[0];
5291
5292                        ovfl_arg->pmd_value      = ctx->ctx_pmds[i].val;
5293                        ovfl_arg->pmd_last_reset = ctx->ctx_pmds[i].lval;
5294                        ovfl_arg->pmd_eventid    = ctx->ctx_pmds[i].eventid;
5295
5296                        /*
5297                         * copy values of pmds of interest. Sampling format may copy them
5298                         * into sampling buffer.
5299                         */
5300                        if (smpl_pmds) {
5301                                for(j=0, k=0; smpl_pmds; j++, smpl_pmds >>=1) {
5302                                        if ((smpl_pmds & 0x1) == 0) continue;
5303                                        ovfl_arg->smpl_pmds_values[k++] = PMD_IS_COUNTING(j) ?  pfm_read_soft_counter(ctx, j) : ia64_get_pmd(j);
5304                                        DPRINT_ovfl(("smpl_pmd[%d]=pmd%u=0x%lx\n", k-1, j, ovfl_arg->smpl_pmds_values[k-1]));
5305                                }
5306                        }
5307
5308                        pfm_stats[this_cpu].pfm_smpl_handler_calls++;
5309
5310                        start_cycles = ia64_get_itc();
5311
5312                        /*
5313                         * call custom buffer format record (handler) routine
5314                         */
5315                        ret = (*ctx->ctx_buf_fmt->fmt_handler)(task, ctx->ctx_smpl_hdr, ovfl_arg, regs, tstamp);
5316
5317                        end_cycles = ia64_get_itc();
5318
5319                        /*
5320                         * For those controls, we take the union because they have
5321                         * an all or nothing behavior.
5322                         */
5323                        ovfl_ctrl.bits.notify_user     |= ovfl_arg->ovfl_ctrl.bits.notify_user;
5324                        ovfl_ctrl.bits.block_task      |= ovfl_arg->ovfl_ctrl.bits.block_task;
5325                        ovfl_ctrl.bits.mask_monitoring |= ovfl_arg->ovfl_ctrl.bits.mask_monitoring;
5326                        /*
5327                         * build the bitmask of pmds to reset now
5328                         */
5329                        if (ovfl_arg->ovfl_ctrl.bits.reset_ovfl_pmds) reset_pmds |= mask;
5330
5331                        pfm_stats[this_cpu].pfm_smpl_handler_cycles += end_cycles - start_cycles;
5332                }
5333                /*
5334                 * when the module cannot handle the rest of the overflows, we abort right here
5335                 */
5336                if (ret && pmd_mask) {
5337                        DPRINT(("handler aborts leftover ovfl_pmds=0x%lx\n",
5338                                pmd_mask<<PMU_FIRST_COUNTER));
5339                }
5340                /*
5341                 * remove the pmds we reset now from the set of pmds to reset in pfm_restart()
5342                 */
5343                ovfl_pmds &= ~reset_pmds;
5344        } else {
5345                /*
5346                 * when no sampling module is used, then the default
5347                 * is to notify on overflow if requested by user
5348                 */
5349                ovfl_ctrl.bits.notify_user     = ovfl_notify ? 1 : 0;
5350                ovfl_ctrl.bits.block_task      = ovfl_notify ? 1 : 0;
5351                ovfl_ctrl.bits.mask_monitoring = ovfl_notify ? 1 : 0; /* XXX: change for saturation */
5352                ovfl_ctrl.bits.reset_ovfl_pmds = ovfl_notify ? 0 : 1;
5353                /*
5354                 * if needed, we reset all overflowed pmds
5355                 */
5356                if (ovfl_notify == 0) reset_pmds = ovfl_pmds;
5357        }
5358
5359        DPRINT_ovfl(("ovfl_pmds=0x%lx reset_pmds=0x%lx\n", ovfl_pmds, reset_pmds));
5360
5361        /*
5362         * reset the requested PMD registers using the short reset values
5363         */
5364        if (reset_pmds) {
5365                unsigned long bm = reset_pmds;
5366                pfm_reset_regs(ctx, &bm, PFM_PMD_SHORT_RESET);
5367        }
5368
5369        if (ovfl_notify && ovfl_ctrl.bits.notify_user) {
5370                /*
5371                 * keep track of what to reset when unblocking
5372                 */
5373                ctx->ctx_ovfl_regs[0] = ovfl_pmds;
5374
5375                /*
5376                 * check for blocking context 
5377                 */
5378                if (CTX_OVFL_NOBLOCK(ctx) == 0 && ovfl_ctrl.bits.block_task) {
5379
5380                        ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_BLOCK;
5381
5382                        /*
5383                         * set the perfmon specific checking pending work for the task
5384                         */
5385                        PFM_SET_WORK_PENDING(task, 1);
5386
5387                        /*
5388                         * when coming from ctxsw, current still points to the
5389                         * previous task, therefore we must work with task and not current.
5390                         */
5391                        set_notify_resume(task);
5392                }
5393                /*
5394                 * defer until state is changed (shorten spin window). the context is locked
5395                 * anyway, so the signal receiver would come spin for nothing.
5396                 */
5397                must_notify = 1;
5398        }
5399
5400        DPRINT_ovfl(("owner [%d] pending=%ld reason=%u ovfl_pmds=0x%lx ovfl_notify=0x%lx masked=%d\n",
5401                        GET_PMU_OWNER() ? task_pid_nr(GET_PMU_OWNER()) : -1,
5402                        PFM_GET_WORK_PENDING(task),
5403                        ctx->ctx_fl_trap_reason,
5404                        ovfl_pmds,
5405                        ovfl_notify,
5406                        ovfl_ctrl.bits.mask_monitoring ? 1 : 0));
5407        /*
5408         * in case monitoring must be stopped, we toggle the psr bits
5409         */
5410        if (ovfl_ctrl.bits.mask_monitoring) {
5411                pfm_mask_monitoring(task);
5412                ctx->ctx_state = PFM_CTX_MASKED;
5413                ctx->ctx_fl_can_restart = 1;
5414        }
5415
5416        /*
5417         * send notification now
5418         */
5419        if (must_notify) pfm_ovfl_notify_user(ctx, ovfl_notify);
5420
5421        return;
5422
5423sanity_check:
5424        printk(KERN_ERR "perfmon: CPU%d overflow handler [%d] pmc0=0x%lx\n",
5425                        smp_processor_id(),
5426                        task ? task_pid_nr(task) : -1,
5427                        pmc0);
5428        return;
5429
5430stop_monitoring:
5431        /*
5432         * in SMP, zombie context is never restored but reclaimed in pfm_load_regs().
5433         * Moreover, zombies are also reclaimed in pfm_save_regs(). Therefore we can
5434         * come here as zombie only if the task is the current task. In which case, we
5435         * can access the PMU  hardware directly.
5436         *
5437         * Note that zombies do have PM_VALID set. So here we do the minimal.
5438         *
5439         * In case the context was zombified it could not be reclaimed at the time
5440         * the monitoring program exited. At this point, the PMU reservation has been
5441         * returned, the sampiing buffer has been freed. We must convert this call
5442         * into a spurious interrupt. However, we must also avoid infinite overflows
5443         * by stopping monitoring for this task. We can only come here for a per-task
5444         * context. All we need to do is to stop monitoring using the psr bits which
5445         * are always task private. By re-enabling secure montioring, we ensure that
5446         * the monitored task will not be able to re-activate monitoring.
5447         * The task will eventually be context switched out, at which point the context
5448         * will be reclaimed (that includes releasing ownership of the PMU).
5449         *
5450         * So there might be a window of time where the number of per-task session is zero
5451         * yet one PMU might have a owner and get at most one overflow interrupt for a zombie
5452         * context. This is safe because if a per-task session comes in, it will push this one
5453         * out and by the virtue on pfm_save_regs(), this one will disappear. If a system wide
5454         * session is force on that CPU, given that we use task pinning, pfm_save_regs() will
5455         * also push our zombie context out.
5456         *
5457         * Overall pretty hairy stuff....
5458         */
5459        DPRINT(("ctx is zombie for [%d], converted to spurious\n", task ? task_pid_nr(task): -1));
5460        pfm_clear_psr_up();
5461        ia64_psr(regs)->up = 0;
5462        ia64_psr(regs)->sp = 1;
5463        return;
5464}
5465
5466static int
5467pfm_do_interrupt_handler(void *arg, struct pt_regs *regs)
5468{
5469        struct task_struct *task;
5470        pfm_context_t *ctx;
5471        unsigned long flags;
5472        u64 pmc0;
5473        int this_cpu = smp_processor_id();
5474        int retval = 0;
5475
5476        pfm_stats[this_cpu].pfm_ovfl_intr_count++;
5477
5478        /*
5479         * srlz.d done before arriving here
5480         */
5481        pmc0 = ia64_get_pmc(0);
5482
5483        task = GET_PMU_OWNER();
5484        ctx  = GET_PMU_CTX();
5485
5486        /*
5487         * if we have some pending bits set
5488         * assumes : if any PMC0.bit[63-1] is set, then PMC0.fr = 1
5489         */
5490        if (PMC0_HAS_OVFL(pmc0) && task) {
5491                /*
5492                 * we assume that pmc0.fr is always set here
5493                 */
5494
5495                /* sanity check */
5496                if (!ctx) goto report_spurious1;
5497
5498                if (ctx->ctx_fl_system == 0 && (task->thread.flags & IA64_THREAD_PM_VALID) == 0) 
5499                        goto report_spurious2;
5500
5501                PROTECT_CTX_NOPRINT(ctx, flags);
5502
5503                pfm_overflow_handler(task, ctx, pmc0, regs);
5504
5505                UNPROTECT_CTX_NOPRINT(ctx, flags);
5506
5507        } else {
5508                pfm_stats[this_cpu].pfm_spurious_ovfl_intr_count++;
5509                retval = -1;
5510        }
5511        /*
5512         * keep it unfrozen at all times
5513         */
5514        pfm_unfreeze_pmu();
5515
5516        return retval;
5517
5518report_spurious1:
5519        printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d has no PFM context\n",
5520                this_cpu, task_pid_nr(task));
5521        pfm_unfreeze_pmu();
5522        return -1;
5523report_spurious2:
5524        printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d, invalid flag\n", 
5525                this_cpu, 
5526                task_pid_nr(task));
5527        pfm_unfreeze_pmu();
5528        return -1;
5529}
5530
5531static irqreturn_t
5532pfm_interrupt_handler(int irq, void *arg)
5533{
5534        unsigned long start_cycles, total_cycles;
5535        unsigned long min, max;
5536        int this_cpu;
5537        int ret;
5538        struct pt_regs *regs = get_irq_regs();
5539
5540        this_cpu = get_cpu();
5541        if (likely(!pfm_alt_intr_handler)) {
5542                min = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min;
5543                max = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max;
5544
5545                start_cycles = ia64_get_itc();
5546
5547                ret = pfm_do_interrupt_handler(arg, regs);
5548
5549                total_cycles = ia64_get_itc();
5550
5551                /*
5552                 * don't measure spurious interrupts
5553                 */
5554                if (likely(ret == 0)) {
5555                        total_cycles -= start_cycles;
5556
5557                        if (total_cycles < min) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min = total_cycles;
5558                        if (total_cycles > max) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max = total_cycles;
5559
5560                        pfm_stats[this_cpu].pfm_ovfl_intr_cycles += total_cycles;
5561                }
5562        }
5563        else {
5564                (*pfm_alt_intr_handler->handler)(irq, arg, regs);
5565        }
5566
5567        put_cpu();
5568        return IRQ_HANDLED;
5569}
5570
5571/*
5572 * /proc/perfmon interface, for debug only
5573 */
5574
5575#define PFM_PROC_SHOW_HEADER    ((void *)(long)nr_cpu_ids+1)
5576
5577static void *
5578pfm_proc_start(struct seq_file *m, loff_t *pos)
5579{
5580        if (*pos == 0) {
5581                return PFM_PROC_SHOW_HEADER;
5582        }
5583
5584        while (*pos <= nr_cpu_ids) {
5585                if (cpu_online(*pos - 1)) {
5586                        return (void *)*pos;
5587                }
5588                ++*pos;
5589        }
5590        return NULL;
5591}
5592
5593static void *
5594pfm_proc_next(struct seq_file *m, void *v, loff_t *pos)
5595{
5596        ++*pos;
5597        return pfm_proc_start(m, pos);
5598}
5599
5600static void
5601pfm_proc_stop(struct seq_file *m, void *v)
5602{
5603}
5604
5605static void
5606pfm_proc_show_header(struct seq_file *m)
5607{
5608        struct list_head * pos;
5609        pfm_buffer_fmt_t * entry;
5610        unsigned long flags;
5611
5612        seq_printf(m,
5613                "perfmon version           : %u.%u\n"
5614                "model                     : %s\n"
5615                "fastctxsw                 : %s\n"
5616                "expert mode               : %s\n"
5617                "ovfl_mask                 : 0x%lx\n"
5618                "PMU flags                 : 0x%x\n",
5619                PFM_VERSION_MAJ, PFM_VERSION_MIN,
5620                pmu_conf->pmu_name,
5621                pfm_sysctl.fastctxsw > 0 ? "Yes": "No",
5622                pfm_sysctl.expert_mode > 0 ? "Yes": "No",
5623                pmu_conf->ovfl_val,
5624                pmu_conf->flags);
5625
5626        LOCK_PFS(flags);
5627
5628        seq_printf(m,
5629                "proc_sessions             : %u\n"
5630                "sys_sessions              : %u\n"
5631                "sys_use_dbregs            : %u\n"
5632                "ptrace_use_dbregs         : %u\n",
5633                pfm_sessions.pfs_task_sessions,
5634                pfm_sessions.pfs_sys_sessions,
5635                pfm_sessions.pfs_sys_use_dbregs,
5636                pfm_sessions.pfs_ptrace_use_dbregs);
5637
5638        UNLOCK_PFS(flags);
5639
5640        spin_lock(&pfm_buffer_fmt_lock);
5641
5642        list_for_each(pos, &pfm_buffer_fmt_list) {
5643                entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
5644                seq_printf(m, "format                    : %16phD %s\n",
5645                           entry->fmt_uuid, entry->fmt_name);
5646        }
5647        spin_unlock(&pfm_buffer_fmt_lock);
5648
5649}
5650
5651static int
5652pfm_proc_show(struct seq_file *m, void *v)
5653{
5654        unsigned long psr;
5655        unsigned int i;
5656        int cpu;
5657
5658        if (v == PFM_PROC_SHOW_HEADER) {
5659                pfm_proc_show_header(m);
5660                return 0;
5661        }
5662
5663        /* show info for CPU (v - 1) */
5664
5665        cpu = (long)v - 1;
5666        seq_printf(m,
5667                "CPU%-2d overflow intrs      : %lu\n"
5668                "CPU%-2d overflow cycles     : %lu\n"
5669                "CPU%-2d overflow min        : %lu\n"
5670                "CPU%-2d overflow max        : %lu\n"
5671                "CPU%-2d smpl handler calls  : %lu\n"
5672                "CPU%-2d smpl handler cycles : %lu\n"
5673                "CPU%-2d spurious intrs      : %lu\n"
5674                "CPU%-2d replay   intrs      : %lu\n"
5675                "CPU%-2d syst_wide           : %d\n"
5676                "CPU%-2d dcr_pp              : %d\n"
5677                "CPU%-2d exclude idle        : %d\n"
5678                "CPU%-2d owner               : %d\n"
5679                "CPU%-2d context             : %p\n"
5680                "CPU%-2d activations         : %lu\n",
5681                cpu, pfm_stats[cpu].pfm_ovfl_intr_count,
5682                cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles,
5683                cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_min,
5684                cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_max,
5685                cpu, pfm_stats[cpu].pfm_smpl_handler_calls,
5686                cpu, pfm_stats[cpu].pfm_smpl_handler_cycles,
5687                cpu, pfm_stats[cpu].pfm_spurious_ovfl_intr_count,
5688                cpu, pfm_stats[cpu].pfm_replay_ovfl_intr_count,
5689                cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_SYST_WIDE ? 1 : 0,
5690                cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_DCR_PP ? 1 : 0,
5691                cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_EXCL_IDLE ? 1 : 0,
5692                cpu, pfm_get_cpu_data(pmu_owner, cpu) ? pfm_get_cpu_data(pmu_owner, cpu)->pid: -1,
5693                cpu, pfm_get_cpu_data(pmu_ctx, cpu),
5694                cpu, pfm_get_cpu_data(pmu_activation_number, cpu));
5695
5696        if (num_online_cpus() == 1 && pfm_sysctl.debug > 0) {
5697
5698                psr = pfm_get_psr();
5699
5700                ia64_srlz_d();
5701
5702                seq_printf(m, 
5703                        "CPU%-2d psr                 : 0x%lx\n"
5704                        "CPU%-2d pmc0                : 0x%lx\n", 
5705                        cpu, psr,
5706                        cpu, ia64_get_pmc(0));
5707
5708                for (i=0; PMC_IS_LAST(i) == 0;  i++) {
5709                        if (PMC_IS_COUNTING(i) == 0) continue;
5710                        seq_printf(m, 
5711                                "CPU%-2d pmc%u                : 0x%lx\n"
5712                                "CPU%-2d pmd%u                : 0x%lx\n", 
5713                                cpu, i, ia64_get_pmc(i),
5714                                cpu, i, ia64_get_pmd(i));
5715                }
5716        }
5717        return 0;
5718}
5719
5720const struct seq_operations pfm_seq_ops = {
5721        .start =        pfm_proc_start,
5722        .next =         pfm_proc_next,
5723        .stop =         pfm_proc_stop,
5724        .show =         pfm_proc_show
5725};
5726
5727static int
5728pfm_proc_open(struct inode *inode, struct file *file)
5729{
5730        return seq_open(file, &pfm_seq_ops);
5731}
5732
5733
5734/*
5735 * we come here as soon as local_cpu_data->pfm_syst_wide is set. this happens
5736 * during pfm_enable() hence before pfm_start(). We cannot assume monitoring
5737 * is active or inactive based on mode. We must rely on the value in
5738 * local_cpu_data->pfm_syst_info
5739 */
5740void
5741pfm_syst_wide_update_task(struct task_struct *task, unsigned long info, int is_ctxswin)
5742{
5743        struct pt_regs *regs;
5744        unsigned long dcr;
5745        unsigned long dcr_pp;
5746
5747        dcr_pp = info & PFM_CPUINFO_DCR_PP ? 1 : 0;
5748
5749        /*
5750         * pid 0 is guaranteed to be the idle task. There is one such task with pid 0
5751         * on every CPU, so we can rely on the pid to identify the idle task.
5752         */
5753        if ((info & PFM_CPUINFO_EXCL_IDLE) == 0 || task->pid) {
5754                regs = task_pt_regs(task);
5755                ia64_psr(regs)->pp = is_ctxswin ? dcr_pp : 0;
5756                return;
5757        }
5758        /*
5759         * if monitoring has started
5760         */
5761        if (dcr_pp) {
5762                dcr = ia64_getreg(_IA64_REG_CR_DCR);
5763                /*
5764                 * context switching in?
5765                 */
5766                if (is_ctxswin) {
5767                        /* mask monitoring for the idle task */
5768                        ia64_setreg(_IA64_REG_CR_DCR, dcr & ~IA64_DCR_PP);
5769                        pfm_clear_psr_pp();
5770                        ia64_srlz_i();
5771                        return;
5772                }
5773                /*
5774                 * context switching out
5775                 * restore monitoring for next task
5776                 *
5777                 * Due to inlining this odd if-then-else construction generates
5778                 * better code.
5779                 */
5780                ia64_setreg(_IA64_REG_CR_DCR, dcr |IA64_DCR_PP);
5781                pfm_set_psr_pp();
5782                ia64_srlz_i();
5783        }
5784}
5785
5786#ifdef CONFIG_SMP
5787
5788static void
5789pfm_force_cleanup(pfm_context_t *ctx, struct pt_regs *regs)
5790{
5791        struct task_struct *task = ctx->ctx_task;
5792
5793        ia64_psr(regs)->up = 0;
5794        ia64_psr(regs)->sp = 1;
5795
5796        if (GET_PMU_OWNER() == task) {
5797                DPRINT(("cleared ownership for [%d]\n",
5798                                        task_pid_nr(ctx->ctx_task)));
5799                SET_PMU_OWNER(NULL, NULL);
5800        }
5801
5802        /*
5803         * disconnect the task from the context and vice-versa
5804         */
5805        PFM_SET_WORK_PENDING(task, 0);
5806
5807        task->thread.pfm_context  = NULL;
5808        task->thread.flags       &= ~IA64_THREAD_PM_VALID;
5809
5810        DPRINT(("force cleanup for [%d]\n",  task_pid_nr(task)));
5811}
5812
5813
5814/*
5815 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5816 */
5817void
5818pfm_save_regs(struct task_struct *task)
5819{
5820        pfm_context_t *ctx;
5821        unsigned long flags;
5822        u64 psr;
5823
5824
5825        ctx = PFM_GET_CTX(task);
5826        if (ctx == NULL) return;
5827
5828        /*
5829         * we always come here with interrupts ALREADY disabled by
5830         * the scheduler. So we simply need to protect against concurrent
5831         * access, not CPU concurrency.
5832         */
5833        flags = pfm_protect_ctx_ctxsw(ctx);
5834
5835        if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5836                struct pt_regs *regs = task_pt_regs(task);
5837
5838                pfm_clear_psr_up();
5839
5840                pfm_force_cleanup(ctx, regs);
5841
5842                BUG_ON(ctx->ctx_smpl_hdr);
5843
5844                pfm_unprotect_ctx_ctxsw(ctx, flags);
5845
5846                pfm_context_free(ctx);
5847                return;
5848        }
5849
5850        /*
5851         * save current PSR: needed because we modify it
5852         */
5853        ia64_srlz_d();
5854        psr = pfm_get_psr();
5855
5856        BUG_ON(psr & (IA64_PSR_I));
5857
5858        /*
5859         * stop monitoring:
5860         * This is the last instruction which may generate an overflow
5861         *
5862         * We do not need to set psr.sp because, it is irrelevant in kernel.
5863         * It will be restored from ipsr when going back to user level
5864         */
5865        pfm_clear_psr_up();
5866
5867        /*
5868         * keep a copy of psr.up (for reload)
5869         */
5870        ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5871
5872        /*
5873         * release ownership of this PMU.
5874         * PM interrupts are masked, so nothing
5875         * can happen.
5876         */
5877        SET_PMU_OWNER(NULL, NULL);
5878
5879        /*
5880         * we systematically save the PMD as we have no
5881         * guarantee we will be schedule at that same
5882         * CPU again.
5883         */
5884        pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
5885
5886        /*
5887         * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5888         * we will need it on the restore path to check
5889         * for pending overflow.
5890         */
5891        ctx->th_pmcs[0] = ia64_get_pmc(0);
5892
5893        /*
5894         * unfreeze PMU if had pending overflows
5895         */
5896        if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
5897
5898        /*
5899         * finally, allow context access.
5900         * interrupts will still be masked after this call.
5901         */
5902        pfm_unprotect_ctx_ctxsw(ctx, flags);
5903}
5904
5905#else /* !CONFIG_SMP */
5906void
5907pfm_save_regs(struct task_struct *task)
5908{
5909        pfm_context_t *ctx;
5910        u64 psr;
5911
5912        ctx = PFM_GET_CTX(task);
5913        if (ctx == NULL) return;
5914
5915        /*
5916         * save current PSR: needed because we modify it
5917         */
5918        psr = pfm_get_psr();
5919
5920        BUG_ON(psr & (IA64_PSR_I));
5921
5922        /*
5923         * stop monitoring:
5924         * This is the last instruction which may generate an overflow
5925         *
5926         * We do not need to set psr.sp because, it is irrelevant in kernel.
5927         * It will be restored from ipsr when going back to user level
5928         */
5929        pfm_clear_psr_up();
5930
5931        /*
5932         * keep a copy of psr.up (for reload)
5933         */
5934        ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5935}
5936
5937static void
5938pfm_lazy_save_regs (struct task_struct *task)
5939{
5940        pfm_context_t *ctx;
5941        unsigned long flags;
5942
5943        { u64 psr  = pfm_get_psr();
5944          BUG_ON(psr & IA64_PSR_UP);
5945        }
5946
5947        ctx = PFM_GET_CTX(task);
5948
5949        /*
5950         * we need to mask PMU overflow here to
5951         * make sure that we maintain pmc0 until
5952         * we save it. overflow interrupts are
5953         * treated as spurious if there is no
5954         * owner.
5955         *
5956         * XXX: I don't think this is necessary
5957         */
5958        PROTECT_CTX(ctx,flags);
5959
5960        /*
5961         * release ownership of this PMU.
5962         * must be done before we save the registers.
5963         *
5964         * after this call any PMU interrupt is treated
5965         * as spurious.
5966         */
5967        SET_PMU_OWNER(NULL, NULL);
5968
5969        /*
5970         * save all the pmds we use
5971         */
5972        pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
5973
5974        /*
5975         * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5976         * it is needed to check for pended overflow
5977         * on the restore path
5978         */
5979        ctx->th_pmcs[0] = ia64_get_pmc(0);
5980
5981        /*
5982         * unfreeze PMU if had pending overflows
5983         */
5984        if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
5985
5986        /*
5987         * now get can unmask PMU interrupts, they will
5988         * be treated as purely spurious and we will not
5989         * lose any information
5990         */
5991        UNPROTECT_CTX(ctx,flags);
5992}
5993#endif /* CONFIG_SMP */
5994
5995#ifdef CONFIG_SMP
5996/*
5997 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5998 */
5999void
6000pfm_load_regs (struct task_struct *task)
6001{
6002        pfm_context_t *ctx;
6003        unsigned long pmc_mask = 0UL, pmd_mask = 0UL;
6004        unsigned long flags;
6005        u64 psr, psr_up;
6006        int need_irq_resend;
6007
6008        ctx = PFM_GET_CTX(task);
6009        if (unlikely(ctx == NULL)) return;
6010
6011        BUG_ON(GET_PMU_OWNER());
6012
6013        /*
6014         * possible on unload
6015         */
6016        if (unlikely((task->thread.flags & IA64_THREAD_PM_VALID) == 0)) return;
6017
6018        /*
6019         * we always come here with interrupts ALREADY disabled by
6020         * the scheduler. So we simply need to protect against concurrent
6021         * access, not CPU concurrency.
6022         */
6023        flags = pfm_protect_ctx_ctxsw(ctx);
6024        psr   = pfm_get_psr();
6025
6026        need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6027
6028        BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6029        BUG_ON(psr & IA64_PSR_I);
6030
6031        if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) {
6032                struct pt_regs *regs = task_pt_regs(task);
6033
6034                BUG_ON(ctx->ctx_smpl_hdr);
6035
6036                pfm_force_cleanup(ctx, regs);
6037
6038                pfm_unprotect_ctx_ctxsw(ctx, flags);
6039
6040                /*
6041                 * this one (kmalloc'ed) is fine with interrupts disabled
6042                 */
6043                pfm_context_free(ctx);
6044
6045                return;
6046        }
6047
6048        /*
6049         * we restore ALL the debug registers to avoid picking up
6050         * stale state.
6051         */
6052        if (ctx->ctx_fl_using_dbreg) {
6053                pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6054                pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6055        }
6056        /*
6057         * retrieve saved psr.up
6058         */
6059        psr_up = ctx->ctx_saved_psr_up;
6060
6061        /*
6062         * if we were the last user of the PMU on that CPU,
6063         * then nothing to do except restore psr
6064         */
6065        if (GET_LAST_CPU(ctx) == smp_processor_id() && ctx->ctx_last_activation == GET_ACTIVATION()) {
6066
6067                /*
6068                 * retrieve partial reload masks (due to user modifications)
6069                 */
6070                pmc_mask = ctx->ctx_reload_pmcs[0];
6071                pmd_mask = ctx->ctx_reload_pmds[0];
6072
6073        } else {
6074                /*
6075                 * To avoid leaking information to the user level when psr.sp=0,
6076                 * we must reload ALL implemented pmds (even the ones we don't use).
6077                 * In the kernel we only allow PFM_READ_PMDS on registers which
6078                 * we initialized or requested (sampling) so there is no risk there.
6079                 */
6080                pmd_mask = pfm_sysctl.fastctxsw ?  ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6081
6082                /*
6083                 * ALL accessible PMCs are systematically reloaded, unused registers
6084                 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6085                 * up stale configuration.
6086                 *
6087                 * PMC0 is never in the mask. It is always restored separately.
6088                 */
6089                pmc_mask = ctx->ctx_all_pmcs[0];
6090        }
6091        /*
6092         * when context is MASKED, we will restore PMC with plm=0
6093         * and PMD with stale information, but that's ok, nothing
6094         * will be captured.
6095         *
6096         * XXX: optimize here
6097         */
6098        if (pmd_mask) pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6099        if (pmc_mask) pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
6100
6101        /*
6102         * check for pending overflow at the time the state
6103         * was saved.
6104         */
6105        if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
6106                /*
6107                 * reload pmc0 with the overflow information
6108                 * On McKinley PMU, this will trigger a PMU interrupt
6109                 */
6110                ia64_set_pmc(0, ctx->th_pmcs[0]);
6111                ia64_srlz_d();
6112                ctx->th_pmcs[0] = 0UL;
6113
6114                /*
6115                 * will replay the PMU interrupt
6116                 */
6117                if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
6118
6119                pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6120        }
6121
6122        /*
6123         * we just did a reload, so we reset the partial reload fields
6124         */
6125        ctx->ctx_reload_pmcs[0] = 0UL;
6126        ctx->ctx_reload_pmds[0] = 0UL;
6127
6128        SET_LAST_CPU(ctx, smp_processor_id());
6129
6130        /*
6131         * dump activation value for this PMU
6132         */
6133        INC_ACTIVATION();
6134        /*
6135         * record current activation for this context
6136         */
6137        SET_ACTIVATION(ctx);
6138
6139        /*
6140         * establish new ownership. 
6141         */
6142        SET_PMU_OWNER(task, ctx);
6143
6144        /*
6145         * restore the psr.up bit. measurement
6146         * is active again.
6147         * no PMU interrupt can happen at this point
6148         * because we still have interrupts disabled.
6149         */
6150        if (likely(psr_up)) pfm_set_psr_up();
6151
6152        /*
6153         * allow concurrent access to context
6154         */
6155        pfm_unprotect_ctx_ctxsw(ctx, flags);
6156}
6157#else /*  !CONFIG_SMP */
6158/*
6159 * reload PMU state for UP kernels
6160 * in 2.5 we come here with interrupts disabled
6161 */
6162void
6163pfm_load_regs (struct task_struct *task)
6164{
6165        pfm_context_t *ctx;
6166        struct task_struct *owner;
6167        unsigned long pmd_mask, pmc_mask;
6168        u64 psr, psr_up;
6169        int need_irq_resend;
6170
6171        owner = GET_PMU_OWNER();
6172        ctx   = PFM_GET_CTX(task);
6173        psr   = pfm_get_psr();
6174
6175        BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6176        BUG_ON(psr & IA64_PSR_I);
6177
6178        /*
6179         * we restore ALL the debug registers to avoid picking up
6180         * stale state.
6181         *
6182         * This must be done even when the task is still the owner
6183         * as the registers may have been modified via ptrace()
6184         * (not perfmon) by the previous task.
6185         */
6186        if (ctx->ctx_fl_using_dbreg) {
6187                pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6188                pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6189        }
6190
6191        /*
6192         * retrieved saved psr.up
6193         */
6194        psr_up = ctx->ctx_saved_psr_up;
6195        need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6196
6197        /*
6198         * short path, our state is still there, just
6199         * need to restore psr and we go
6200         *
6201         * we do not touch either PMC nor PMD. the psr is not touched
6202         * by the overflow_handler. So we are safe w.r.t. to interrupt
6203         * concurrency even without interrupt masking.
6204         */
6205        if (likely(owner == task)) {
6206                if (likely(psr_up)) pfm_set_psr_up();
6207                return;
6208        }
6209
6210        /*
6211         * someone else is still using the PMU, first push it out and
6212         * then we'll be able to install our stuff !
6213         *
6214         * Upon return, there will be no owner for the current PMU
6215         */
6216        if (owner) pfm_lazy_save_regs(owner);
6217
6218        /*
6219         * To avoid leaking information to the user level when psr.sp=0,
6220         * we must reload ALL implemented pmds (even the ones we don't use).
6221         * In the kernel we only allow PFM_READ_PMDS on registers which
6222         * we initialized or requested (sampling) so there is no risk there.
6223         */
6224        pmd_mask = pfm_sysctl.fastctxsw ?  ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6225
6226        /*
6227         * ALL accessible PMCs are systematically reloaded, unused registers
6228         * get their default (from pfm_reset_pmu_state()) values to avoid picking
6229         * up stale configuration.
6230         *
6231         * PMC0 is never in the mask. It is always restored separately
6232         */
6233        pmc_mask = ctx->ctx_all_pmcs[0];
6234
6235        pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6236        pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
6237
6238        /*
6239         * check for pending overflow at the time the state
6240         * was saved.
6241         */
6242        if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
6243                /*
6244                 * reload pmc0 with the overflow information
6245                 * On McKinley PMU, this will trigger a PMU interrupt
6246                 */
6247                ia64_set_pmc(0, ctx->th_pmcs[0]);
6248                ia64_srlz_d();
6249
6250                ctx->th_pmcs[0] = 0UL;
6251
6252                /*
6253                 * will replay the PMU interrupt
6254                 */
6255                if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
6256
6257                pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6258        }
6259
6260        /*
6261         * establish new ownership. 
6262         */
6263        SET_PMU_OWNER(task, ctx);
6264
6265        /*
6266         * restore the psr.up bit. measurement
6267         * is active again.
6268         * no PMU interrupt can happen at this point
6269         * because we still have interrupts disabled.
6270         */
6271        if (likely(psr_up)) pfm_set_psr_up();
6272}
6273#endif /* CONFIG_SMP */
6274
6275/*
6276 * this function assumes monitoring is stopped
6277 */
6278static void
6279pfm_flush_pmds(struct task_struct *task, pfm_context_t *ctx)
6280{
6281        u64 pmc0;
6282        unsigned long mask2, val, pmd_val, ovfl_val;
6283        int i, can_access_pmu = 0;
6284        int is_self;
6285
6286        /*
6287         * is the caller the task being monitored (or which initiated the
6288         * session for system wide measurements)
6289         */
6290        is_self = ctx->ctx_task == task ? 1 : 0;
6291
6292        /*
6293         * can access PMU is task is the owner of the PMU state on the current CPU
6294         * or if we are running on the CPU bound to the context in system-wide mode
6295         * (that is not necessarily the task the context is attached to in this mode).
6296         * In system-wide we always have can_access_pmu true because a task running on an
6297         * invalid processor is flagged earlier in the call stack (see pfm_stop).
6298         */
6299        can_access_pmu = (GET_PMU_OWNER() == task) || (ctx->ctx_fl_system && ctx->ctx_cpu == smp_processor_id());
6300        if (can_access_pmu) {
6301                /*
6302                 * Mark the PMU as not owned
6303                 * This will cause the interrupt handler to do nothing in case an overflow
6304                 * interrupt was in-flight
6305                 * This also guarantees that pmc0 will contain the final state
6306                 * It virtually gives us full control on overflow processing from that point
6307                 * on.
6308                 */
6309                SET_PMU_OWNER(NULL, NULL);
6310                DPRINT(("releasing ownership\n"));
6311
6312                /*
6313                 * read current overflow status:
6314                 *
6315                 * we are guaranteed to read the final stable state
6316                 */
6317                ia64_srlz_d();
6318                pmc0 = ia64_get_pmc(0); /* slow */
6319
6320                /*
6321                 * reset freeze bit, overflow status information destroyed
6322                 */
6323                pfm_unfreeze_pmu();
6324        } else {
6325                pmc0 = ctx->th_pmcs[0];
6326                /*
6327                 * clear whatever overflow status bits there were
6328                 */
6329                ctx->th_pmcs[0] = 0;
6330        }
6331        ovfl_val = pmu_conf->ovfl_val;
6332        /*
6333         * we save all the used pmds
6334         * we take care of overflows for counting PMDs
6335         *
6336         * XXX: sampling situation is not taken into account here
6337         */
6338        mask2 = ctx->ctx_used_pmds[0];
6339
6340        DPRINT(("is_self=%d ovfl_val=0x%lx mask2=0x%lx\n", is_self, ovfl_val, mask2));
6341
6342        for (i = 0; mask2; i++, mask2>>=1) {
6343
6344                /* skip non used pmds */
6345                if ((mask2 & 0x1) == 0) continue;
6346
6347                /*
6348                 * can access PMU always true in system wide mode
6349                 */
6350                val = pmd_val = can_access_pmu ? ia64_get_pmd(i) : ctx->th_pmds[i];
6351
6352                if (PMD_IS_COUNTING(i)) {
6353                        DPRINT(("[%d] pmd[%d] ctx_pmd=0x%lx hw_pmd=0x%lx\n",
6354                                task_pid_nr(task),
6355                                i,
6356                                ctx->ctx_pmds[i].val,
6357                                val & ovfl_val));
6358
6359                        /*
6360                         * we rebuild the full 64 bit value of the counter
6361                         */
6362                        val = ctx->ctx_pmds[i].val + (val & ovfl_val);
6363
6364                        /*
6365                         * now everything is in ctx_pmds[] and we need
6366                         * to clear the saved context from save_regs() such that
6367                         * pfm_read_pmds() gets the correct value
6368                         */
6369                        pmd_val = 0UL;
6370
6371                        /*
6372                         * take care of overflow inline
6373                         */
6374                        if (pmc0 & (1UL << i)) {
6375                                val += 1 + ovfl_val;
6376                                DPRINT(("[%d] pmd[%d] overflowed\n", task_pid_nr(task), i));
6377                        }
6378                }
6379
6380                DPRINT(("[%d] ctx_pmd[%d]=0x%lx  pmd_val=0x%lx\n", task_pid_nr(task), i, val, pmd_val));
6381
6382                if (is_self) ctx->th_pmds[i] = pmd_val;
6383
6384                ctx->ctx_pmds[i].val = val;
6385        }
6386}
6387
6388static struct irqaction perfmon_irqaction = {
6389        .handler = pfm_interrupt_handler,
6390        .name    = "perfmon"
6391};
6392
6393static void
6394pfm_alt_save_pmu_state(void *data)
6395{
6396        struct pt_regs *regs;
6397
6398        regs = task_pt_regs(current);
6399
6400        DPRINT(("called\n"));
6401
6402        /*
6403         * should not be necessary but
6404         * let's take not risk
6405         */
6406        pfm_clear_psr_up();
6407        pfm_clear_psr_pp();
6408        ia64_psr(regs)->pp = 0;
6409
6410        /*
6411         * This call is required
6412         * May cause a spurious interrupt on some processors
6413         */
6414        pfm_freeze_pmu();
6415
6416        ia64_srlz_d();
6417}
6418
6419void
6420pfm_alt_restore_pmu_state(void *data)
6421{
6422        struct pt_regs *regs;
6423
6424        regs = task_pt_regs(current);
6425
6426        DPRINT(("called\n"));
6427
6428        /*
6429         * put PMU back in state expected
6430         * by perfmon
6431         */
6432        pfm_clear_psr_up();
6433        pfm_clear_psr_pp();
6434        ia64_psr(regs)->pp = 0;
6435
6436        /*
6437         * perfmon runs with PMU unfrozen at all times
6438         */
6439        pfm_unfreeze_pmu();
6440
6441        ia64_srlz_d();
6442}
6443
6444int
6445pfm_install_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6446{
6447        int ret, i;
6448        int reserve_cpu;
6449
6450        /* some sanity checks */
6451        if (hdl == NULL || hdl->handler == NULL) return -EINVAL;
6452
6453        /* do the easy test first */
6454        if (pfm_alt_intr_handler) return -EBUSY;
6455
6456        /* one at a time in the install or remove, just fail the others */
6457        if (!spin_trylock(&pfm_alt_install_check)) {
6458                return -EBUSY;
6459        }
6460
6461        /* reserve our session */
6462        for_each_online_cpu(reserve_cpu) {
6463                ret = pfm_reserve_session(NULL, 1, reserve_cpu);
6464                if (ret) goto cleanup_reserve;
6465        }
6466
6467        /* save the current system wide pmu states */
6468        ret = on_each_cpu(pfm_alt_save_pmu_state, NULL, 1);
6469        if (ret) {
6470                DPRINT(("on_each_cpu() failed: %d\n", ret));
6471                goto cleanup_reserve;
6472        }
6473
6474        /* officially change to the alternate interrupt handler */
6475        pfm_alt_intr_handler = hdl;
6476
6477        spin_unlock(&pfm_alt_install_check);
6478
6479        return 0;
6480
6481cleanup_reserve:
6482        for_each_online_cpu(i) {
6483                /* don't unreserve more than we reserved */
6484                if (i >= reserve_cpu) break;
6485
6486                pfm_unreserve_session(NULL, 1, i);
6487        }
6488
6489        spin_unlock(&pfm_alt_install_check);
6490
6491        return ret;
6492}
6493EXPORT_SYMBOL_GPL(pfm_install_alt_pmu_interrupt);
6494
6495int
6496pfm_remove_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6497{
6498        int i;
6499        int ret;
6500
6501        if (hdl == NULL) return -EINVAL;
6502
6503        /* cannot remove someone else's handler! */
6504        if (pfm_alt_intr_handler != hdl) return -EINVAL;
6505
6506        /* one at a time in the install or remove, just fail the others */
6507        if (!spin_trylock(&pfm_alt_install_check)) {
6508                return -EBUSY;
6509        }
6510
6511        pfm_alt_intr_handler = NULL;
6512
6513        ret = on_each_cpu(pfm_alt_restore_pmu_state, NULL, 1);
6514        if (ret) {
6515                DPRINT(("on_each_cpu() failed: %d\n", ret));
6516        }
6517
6518        for_each_online_cpu(i) {
6519                pfm_unreserve_session(NULL, 1, i);
6520        }
6521
6522        spin_unlock(&pfm_alt_install_check);
6523
6524        return 0;
6525}
6526EXPORT_SYMBOL_GPL(pfm_remove_alt_pmu_interrupt);
6527
6528/*
6529 * perfmon initialization routine, called from the initcall() table
6530 */
6531static int init_pfm_fs(void);
6532
6533static int __init
6534pfm_probe_pmu(void)
6535{
6536        pmu_config_t **p;
6537        int family;
6538
6539        family = local_cpu_data->family;
6540        p      = pmu_confs;
6541
6542        while(*p) {
6543                if ((*p)->probe) {
6544                        if ((*p)->probe() == 0) goto found;
6545                } else if ((*p)->pmu_family == family || (*p)->pmu_family == 0xff) {
6546                        goto found;
6547                }
6548                p++;
6549        }
6550        return -1;
6551found:
6552        pmu_conf = *p;
6553        return 0;
6554}
6555
6556static const struct file_operations pfm_proc_fops = {
6557        .open           = pfm_proc_open,
6558        .read           = seq_read,
6559        .llseek         = seq_lseek,
6560        .release        = seq_release,
6561};
6562
6563int __init
6564pfm_init(void)
6565{
6566        unsigned int n, n_counters, i;
6567
6568        printk("perfmon: version %u.%u IRQ %u\n",
6569                PFM_VERSION_MAJ,
6570                PFM_VERSION_MIN,
6571                IA64_PERFMON_VECTOR);
6572
6573        if (pfm_probe_pmu()) {
6574                printk(KERN_INFO "perfmon: disabled, there is no support for processor family %d\n", 
6575                                local_cpu_data->family);
6576                return -ENODEV;
6577        }
6578
6579        /*
6580         * compute the number of implemented PMD/PMC from the
6581         * description tables
6582         */
6583        n = 0;
6584        for (i=0; PMC_IS_LAST(i) == 0;  i++) {
6585                if (PMC_IS_IMPL(i) == 0) continue;
6586                pmu_conf->impl_pmcs[i>>6] |= 1UL << (i&63);
6587                n++;
6588        }
6589        pmu_conf->num_pmcs = n;
6590
6591        n = 0; n_counters = 0;
6592        for (i=0; PMD_IS_LAST(i) == 0;  i++) {
6593                if (PMD_IS_IMPL(i) == 0) continue;
6594                pmu_conf->impl_pmds[i>>6] |= 1UL << (i&63);
6595                n++;
6596                if (PMD_IS_COUNTING(i)) n_counters++;
6597        }
6598        pmu_conf->num_pmds      = n;
6599        pmu_conf->num_counters  = n_counters;
6600
6601        /*
6602         * sanity checks on the number of debug registers
6603         */
6604        if (pmu_conf->use_rr_dbregs) {
6605                if (pmu_conf->num_ibrs > IA64_NUM_DBG_REGS) {
6606                        printk(KERN_INFO "perfmon: unsupported number of code debug registers (%u)\n", pmu_conf->num_ibrs);
6607                        pmu_conf = NULL;
6608                        return -1;
6609                }
6610                if (pmu_conf->num_dbrs > IA64_NUM_DBG_REGS) {
6611                        printk(KERN_INFO "perfmon: unsupported number of data debug registers (%u)\n", pmu_conf->num_ibrs);
6612                        pmu_conf = NULL;
6613                        return -1;
6614                }
6615        }
6616
6617        printk("perfmon: %s PMU detected, %u PMCs, %u PMDs, %u counters (%lu bits)\n",
6618               pmu_conf->pmu_name,
6619               pmu_conf->num_pmcs,
6620               pmu_conf->num_pmds,
6621               pmu_conf->num_counters,
6622               ffz(pmu_conf->ovfl_val));
6623
6624        /* sanity check */
6625        if (pmu_conf->num_pmds >= PFM_NUM_PMD_REGS || pmu_conf->num_pmcs >= PFM_NUM_PMC_REGS) {
6626                printk(KERN_ERR "perfmon: not enough pmc/pmd, perfmon disabled\n");
6627                pmu_conf = NULL;
6628                return -1;
6629        }
6630
6631        /*
6632         * create /proc/perfmon (mostly for debugging purposes)
6633         */
6634        perfmon_dir = proc_create("perfmon", S_IRUGO, NULL, &pfm_proc_fops);
6635        if (perfmon_dir == NULL) {
6636                printk(KERN_ERR "perfmon: cannot create /proc entry, perfmon disabled\n");
6637                pmu_conf = NULL;
6638                return -1;
6639        }
6640
6641        /*
6642         * create /proc/sys/kernel/perfmon (for debugging purposes)
6643         */
6644        pfm_sysctl_header = register_sysctl_table(pfm_sysctl_root);
6645
6646        /*
6647         * initialize all our spinlocks
6648         */
6649        spin_lock_init(&pfm_sessions.pfs_lock);
6650        spin_lock_init(&pfm_buffer_fmt_lock);
6651
6652        init_pfm_fs();
6653
6654        for(i=0; i < NR_CPUS; i++) pfm_stats[i].pfm_ovfl_intr_cycles_min = ~0UL;
6655
6656        return 0;
6657}
6658
6659__initcall(pfm_init);
6660
6661/*
6662 * this function is called before pfm_init()
6663 */
6664void
6665pfm_init_percpu (void)
6666{
6667        static int first_time=1;
6668        /*
6669         * make sure no measurement is active
6670         * (may inherit programmed PMCs from EFI).
6671         */
6672        pfm_clear_psr_pp();
6673        pfm_clear_psr_up();
6674
6675        /*
6676         * we run with the PMU not frozen at all times
6677         */
6678        pfm_unfreeze_pmu();
6679
6680        if (first_time) {
6681                register_percpu_irq(IA64_PERFMON_VECTOR, &perfmon_irqaction);
6682                first_time=0;
6683        }
6684
6685        ia64_setreg(_IA64_REG_CR_PMV, IA64_PERFMON_VECTOR);
6686        ia64_srlz_d();
6687}
6688
6689/*
6690 * used for debug purposes only
6691 */
6692void
6693dump_pmu_state(const char *from)
6694{
6695        struct task_struct *task;
6696        struct pt_regs *regs;
6697        pfm_context_t *ctx;
6698        unsigned long psr, dcr, info, flags;
6699        int i, this_cpu;
6700
6701        local_irq_save(flags);
6702
6703        this_cpu = smp_processor_id();
6704        regs     = task_pt_regs(current);
6705        info     = PFM_CPUINFO_GET();
6706        dcr      = ia64_getreg(_IA64_REG_CR_DCR);
6707
6708        if (info == 0 && ia64_psr(regs)->pp == 0 && (dcr & IA64_DCR_PP) == 0) {
6709                local_irq_restore(flags);
6710                return;
6711        }
6712
6713        printk("CPU%d from %s() current [%d] iip=0x%lx %s\n", 
6714                this_cpu, 
6715                from, 
6716                task_pid_nr(current),
6717                regs->cr_iip,
6718                current->comm);
6719
6720        task = GET_PMU_OWNER();
6721        ctx  = GET_PMU_CTX();
6722
6723        printk("->CPU%d owner [%d] ctx=%p\n", this_cpu, task ? task_pid_nr(task) : -1, ctx);
6724
6725        psr = pfm_get_psr();
6726
6727        printk("->CPU%d pmc0=0x%lx psr.pp=%d psr.up=%d dcr.pp=%d syst_info=0x%lx user_psr.up=%d user_psr.pp=%d\n", 
6728                this_cpu,
6729                ia64_get_pmc(0),
6730                psr & IA64_PSR_PP ? 1 : 0,
6731                psr & IA64_PSR_UP ? 1 : 0,
6732                dcr & IA64_DCR_PP ? 1 : 0,
6733                info,
6734                ia64_psr(regs)->up,
6735                ia64_psr(regs)->pp);
6736
6737        ia64_psr(regs)->up = 0;
6738        ia64_psr(regs)->pp = 0;
6739
6740        for (i=1; PMC_IS_LAST(i) == 0; i++) {
6741                if (PMC_IS_IMPL(i) == 0) continue;
6742                printk("->CPU%d pmc[%d]=0x%lx thread_pmc[%d]=0x%lx\n", this_cpu, i, ia64_get_pmc(i), i, ctx->th_pmcs[i]);
6743        }
6744
6745        for (i=1; PMD_IS_LAST(i) == 0; i++) {
6746                if (PMD_IS_IMPL(i) == 0) continue;
6747                printk("->CPU%d pmd[%d]=0x%lx thread_pmd[%d]=0x%lx\n", this_cpu, i, ia64_get_pmd(i), i, ctx->th_pmds[i]);
6748        }
6749
6750        if (ctx) {
6751                printk("->CPU%d ctx_state=%d vaddr=%p addr=%p fd=%d ctx_task=[%d] saved_psr_up=0x%lx\n",
6752                                this_cpu,
6753                                ctx->ctx_state,
6754                                ctx->ctx_smpl_vaddr,
6755                                ctx->ctx_smpl_hdr,
6756                                ctx->ctx_msgq_head,
6757                                ctx->ctx_msgq_tail,
6758                                ctx->ctx_saved_psr_up);
6759        }
6760        local_irq_restore(flags);
6761}
6762
6763/*
6764 * called from process.c:copy_thread(). task is new child.
6765 */
6766void
6767pfm_inherit(struct task_struct *task, struct pt_regs *regs)
6768{
6769        struct thread_struct *thread;
6770
6771        DPRINT(("perfmon: pfm_inherit clearing state for [%d]\n", task_pid_nr(task)));
6772
6773        thread = &task->thread;
6774
6775        /*
6776         * cut links inherited from parent (current)
6777         */
6778        thread->pfm_context = NULL;
6779
6780        PFM_SET_WORK_PENDING(task, 0);
6781
6782        /*
6783         * the psr bits are already set properly in copy_threads()
6784         */
6785}
6786#else  /* !CONFIG_PERFMON */
6787asmlinkage long
6788sys_perfmonctl (int fd, int cmd, void *arg, int count)
6789{
6790        return -ENOSYS;
6791}
6792#endif /* CONFIG_PERFMON */
6793