linux/arch/powerpc/include/asm/pgtable.h
<<
>>
Prefs
   1#ifndef _ASM_POWERPC_PGTABLE_H
   2#define _ASM_POWERPC_PGTABLE_H
   3#ifdef __KERNEL__
   4
   5#ifndef __ASSEMBLY__
   6#include <linux/mmdebug.h>
   7#include <asm/processor.h>              /* For TASK_SIZE */
   8#include <asm/mmu.h>
   9#include <asm/page.h>
  10
  11struct mm_struct;
  12
  13#endif /* !__ASSEMBLY__ */
  14
  15#if defined(CONFIG_PPC64)
  16#  include <asm/pgtable-ppc64.h>
  17#else
  18#  include <asm/pgtable-ppc32.h>
  19#endif
  20
  21/*
  22 * We save the slot number & secondary bit in the second half of the
  23 * PTE page. We use the 8 bytes per each pte entry.
  24 */
  25#define PTE_PAGE_HIDX_OFFSET (PTRS_PER_PTE * 8)
  26
  27#ifndef __ASSEMBLY__
  28
  29#include <asm/tlbflush.h>
  30
  31/* Generic accessors to PTE bits */
  32static inline int pte_write(pte_t pte)          { return pte_val(pte) & _PAGE_RW; }
  33static inline int pte_dirty(pte_t pte)          { return pte_val(pte) & _PAGE_DIRTY; }
  34static inline int pte_young(pte_t pte)          { return pte_val(pte) & _PAGE_ACCESSED; }
  35static inline int pte_file(pte_t pte)           { return pte_val(pte) & _PAGE_FILE; }
  36static inline int pte_special(pte_t pte)        { return pte_val(pte) & _PAGE_SPECIAL; }
  37static inline int pte_none(pte_t pte)           { return (pte_val(pte) & ~_PTE_NONE_MASK) == 0; }
  38static inline pgprot_t pte_pgprot(pte_t pte)    { return __pgprot(pte_val(pte) & PAGE_PROT_BITS); }
  39
  40#ifdef CONFIG_NUMA_BALANCING
  41
  42static inline int pte_present(pte_t pte)
  43{
  44        return pte_val(pte) & (_PAGE_PRESENT | _PAGE_NUMA);
  45}
  46
  47#define pte_present_nonuma pte_present_nonuma
  48static inline int pte_present_nonuma(pte_t pte)
  49{
  50        return pte_val(pte) & (_PAGE_PRESENT);
  51}
  52
  53#define pte_numa pte_numa
  54static inline int pte_numa(pte_t pte)
  55{
  56        return (pte_val(pte) &
  57                (_PAGE_NUMA|_PAGE_PRESENT)) == _PAGE_NUMA;
  58}
  59
  60#define pte_mknonnuma pte_mknonnuma
  61static inline pte_t pte_mknonnuma(pte_t pte)
  62{
  63        pte_val(pte) &= ~_PAGE_NUMA;
  64        pte_val(pte) |=  _PAGE_PRESENT | _PAGE_ACCESSED;
  65        return pte;
  66}
  67
  68#define pte_mknuma pte_mknuma
  69static inline pte_t pte_mknuma(pte_t pte)
  70{
  71        /*
  72         * We should not set _PAGE_NUMA on non present ptes. Also clear the
  73         * present bit so that hash_page will return 1 and we collect this
  74         * as numa fault.
  75         */
  76        if (pte_present(pte)) {
  77                pte_val(pte) |= _PAGE_NUMA;
  78                pte_val(pte) &= ~_PAGE_PRESENT;
  79        } else
  80                VM_BUG_ON(1);
  81        return pte;
  82}
  83
  84#define ptep_set_numa ptep_set_numa
  85static inline void ptep_set_numa(struct mm_struct *mm, unsigned long addr,
  86                                 pte_t *ptep)
  87{
  88        if ((pte_val(*ptep) & _PAGE_PRESENT) == 0)
  89                VM_BUG_ON(1);
  90
  91        pte_update(mm, addr, ptep, _PAGE_PRESENT, _PAGE_NUMA, 0);
  92        return;
  93}
  94
  95#define pmd_numa pmd_numa
  96static inline int pmd_numa(pmd_t pmd)
  97{
  98        return pte_numa(pmd_pte(pmd));
  99}
 100
 101#define pmdp_set_numa pmdp_set_numa
 102static inline void pmdp_set_numa(struct mm_struct *mm, unsigned long addr,
 103                                 pmd_t *pmdp)
 104{
 105        if ((pmd_val(*pmdp) & _PAGE_PRESENT) == 0)
 106                VM_BUG_ON(1);
 107
 108        pmd_hugepage_update(mm, addr, pmdp, _PAGE_PRESENT, _PAGE_NUMA);
 109        return;
 110}
 111
 112#define pmd_mknonnuma pmd_mknonnuma
 113static inline pmd_t pmd_mknonnuma(pmd_t pmd)
 114{
 115        return pte_pmd(pte_mknonnuma(pmd_pte(pmd)));
 116}
 117
 118#define pmd_mknuma pmd_mknuma
 119static inline pmd_t pmd_mknuma(pmd_t pmd)
 120{
 121        return pte_pmd(pte_mknuma(pmd_pte(pmd)));
 122}
 123
 124# else
 125
 126static inline int pte_present(pte_t pte)
 127{
 128        return pte_val(pte) & _PAGE_PRESENT;
 129}
 130#endif /* CONFIG_NUMA_BALANCING */
 131
 132/* Conversion functions: convert a page and protection to a page entry,
 133 * and a page entry and page directory to the page they refer to.
 134 *
 135 * Even if PTEs can be unsigned long long, a PFN is always an unsigned
 136 * long for now.
 137 */
 138static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot) {
 139        return __pte(((pte_basic_t)(pfn) << PTE_RPN_SHIFT) |
 140                     pgprot_val(pgprot)); }
 141static inline unsigned long pte_pfn(pte_t pte)  {
 142        return pte_val(pte) >> PTE_RPN_SHIFT; }
 143
 144/* Keep these as a macros to avoid include dependency mess */
 145#define pte_page(x)             pfn_to_page(pte_pfn(x))
 146#define mk_pte(page, pgprot)    pfn_pte(page_to_pfn(page), (pgprot))
 147
 148/* Generic modifiers for PTE bits */
 149static inline pte_t pte_wrprotect(pte_t pte) {
 150        pte_val(pte) &= ~(_PAGE_RW | _PAGE_HWWRITE); return pte; }
 151static inline pte_t pte_mkclean(pte_t pte) {
 152        pte_val(pte) &= ~(_PAGE_DIRTY | _PAGE_HWWRITE); return pte; }
 153static inline pte_t pte_mkold(pte_t pte) {
 154        pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
 155static inline pte_t pte_mkwrite(pte_t pte) {
 156        pte_val(pte) |= _PAGE_RW; return pte; }
 157static inline pte_t pte_mkdirty(pte_t pte) {
 158        pte_val(pte) |= _PAGE_DIRTY; return pte; }
 159static inline pte_t pte_mkyoung(pte_t pte) {
 160        pte_val(pte) |= _PAGE_ACCESSED; return pte; }
 161static inline pte_t pte_mkspecial(pte_t pte) {
 162        pte_val(pte) |= _PAGE_SPECIAL; return pte; }
 163static inline pte_t pte_mkhuge(pte_t pte) {
 164        return pte; }
 165static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
 166{
 167        pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot);
 168        return pte;
 169}
 170
 171
 172/* Insert a PTE, top-level function is out of line. It uses an inline
 173 * low level function in the respective pgtable-* files
 174 */
 175extern void set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep,
 176                       pte_t pte);
 177
 178/* This low level function performs the actual PTE insertion
 179 * Setting the PTE depends on the MMU type and other factors. It's
 180 * an horrible mess that I'm not going to try to clean up now but
 181 * I'm keeping it in one place rather than spread around
 182 */
 183static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
 184                                pte_t *ptep, pte_t pte, int percpu)
 185{
 186#if defined(CONFIG_PPC_STD_MMU_32) && defined(CONFIG_SMP) && !defined(CONFIG_PTE_64BIT)
 187        /* First case is 32-bit Hash MMU in SMP mode with 32-bit PTEs. We use the
 188         * helper pte_update() which does an atomic update. We need to do that
 189         * because a concurrent invalidation can clear _PAGE_HASHPTE. If it's a
 190         * per-CPU PTE such as a kmap_atomic, we do a simple update preserving
 191         * the hash bits instead (ie, same as the non-SMP case)
 192         */
 193        if (percpu)
 194                *ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE)
 195                              | (pte_val(pte) & ~_PAGE_HASHPTE));
 196        else
 197                pte_update(ptep, ~_PAGE_HASHPTE, pte_val(pte));
 198
 199#elif defined(CONFIG_PPC32) && defined(CONFIG_PTE_64BIT)
 200        /* Second case is 32-bit with 64-bit PTE.  In this case, we
 201         * can just store as long as we do the two halves in the right order
 202         * with a barrier in between. This is possible because we take care,
 203         * in the hash code, to pre-invalidate if the PTE was already hashed,
 204         * which synchronizes us with any concurrent invalidation.
 205         * In the percpu case, we also fallback to the simple update preserving
 206         * the hash bits
 207         */
 208        if (percpu) {
 209                *ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE)
 210                              | (pte_val(pte) & ~_PAGE_HASHPTE));
 211                return;
 212        }
 213#if _PAGE_HASHPTE != 0
 214        if (pte_val(*ptep) & _PAGE_HASHPTE)
 215                flush_hash_entry(mm, ptep, addr);
 216#endif
 217        __asm__ __volatile__("\
 218                stw%U0%X0 %2,%0\n\
 219                eieio\n\
 220                stw%U0%X0 %L2,%1"
 221        : "=m" (*ptep), "=m" (*((unsigned char *)ptep+4))
 222        : "r" (pte) : "memory");
 223
 224#elif defined(CONFIG_PPC_STD_MMU_32)
 225        /* Third case is 32-bit hash table in UP mode, we need to preserve
 226         * the _PAGE_HASHPTE bit since we may not have invalidated the previous
 227         * translation in the hash yet (done in a subsequent flush_tlb_xxx())
 228         * and see we need to keep track that this PTE needs invalidating
 229         */
 230        *ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE)
 231                      | (pte_val(pte) & ~_PAGE_HASHPTE));
 232
 233#else
 234        /* Anything else just stores the PTE normally. That covers all 64-bit
 235         * cases, and 32-bit non-hash with 32-bit PTEs.
 236         */
 237        *ptep = pte;
 238#endif
 239}
 240
 241
 242#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
 243extern int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address,
 244                                 pte_t *ptep, pte_t entry, int dirty);
 245
 246/*
 247 * Macro to mark a page protection value as "uncacheable".
 248 */
 249
 250#define _PAGE_CACHE_CTL (_PAGE_COHERENT | _PAGE_GUARDED | _PAGE_NO_CACHE | \
 251                         _PAGE_WRITETHRU)
 252
 253#define pgprot_noncached(prot)    (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
 254                                            _PAGE_NO_CACHE | _PAGE_GUARDED))
 255
 256#define pgprot_noncached_wc(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
 257                                            _PAGE_NO_CACHE))
 258
 259#define pgprot_cached(prot)       (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
 260                                            _PAGE_COHERENT))
 261
 262#define pgprot_cached_wthru(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
 263                                            _PAGE_COHERENT | _PAGE_WRITETHRU))
 264
 265#define pgprot_cached_noncoherent(prot) \
 266                (__pgprot(pgprot_val(prot) & ~_PAGE_CACHE_CTL))
 267
 268#define pgprot_writecombine pgprot_noncached_wc
 269
 270struct file;
 271extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
 272                                     unsigned long size, pgprot_t vma_prot);
 273#define __HAVE_PHYS_MEM_ACCESS_PROT
 274
 275/*
 276 * ZERO_PAGE is a global shared page that is always zero: used
 277 * for zero-mapped memory areas etc..
 278 */
 279extern unsigned long empty_zero_page[];
 280#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
 281
 282extern pgd_t swapper_pg_dir[];
 283
 284extern void paging_init(void);
 285
 286/*
 287 * kern_addr_valid is intended to indicate whether an address is a valid
 288 * kernel address.  Most 32-bit archs define it as always true (like this)
 289 * but most 64-bit archs actually perform a test.  What should we do here?
 290 */
 291#define kern_addr_valid(addr)   (1)
 292
 293#include <asm-generic/pgtable.h>
 294
 295
 296/*
 297 * This gets called at the end of handling a page fault, when
 298 * the kernel has put a new PTE into the page table for the process.
 299 * We use it to ensure coherency between the i-cache and d-cache
 300 * for the page which has just been mapped in.
 301 * On machines which use an MMU hash table, we use this to put a
 302 * corresponding HPTE into the hash table ahead of time, instead of
 303 * waiting for the inevitable extra hash-table miss exception.
 304 */
 305extern void update_mmu_cache(struct vm_area_struct *, unsigned long, pte_t *);
 306
 307extern int gup_hugepd(hugepd_t *hugepd, unsigned pdshift, unsigned long addr,
 308                      unsigned long end, int write, struct page **pages, int *nr);
 309
 310extern int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
 311                       unsigned long end, int write, struct page **pages, int *nr);
 312#ifndef CONFIG_TRANSPARENT_HUGEPAGE
 313#define pmd_large(pmd)          0
 314#define has_transparent_hugepage() 0
 315#endif
 316pte_t *find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea,
 317                                 unsigned *shift);
 318
 319static inline pte_t *lookup_linux_ptep(pgd_t *pgdir, unsigned long hva,
 320                                     unsigned long *pte_sizep)
 321{
 322        pte_t *ptep;
 323        unsigned long ps = *pte_sizep;
 324        unsigned int shift;
 325
 326        ptep = find_linux_pte_or_hugepte(pgdir, hva, &shift);
 327        if (!ptep)
 328                return NULL;
 329        if (shift)
 330                *pte_sizep = 1ul << shift;
 331        else
 332                *pte_sizep = PAGE_SIZE;
 333
 334        if (ps > *pte_sizep)
 335                return NULL;
 336
 337        return ptep;
 338}
 339#endif /* __ASSEMBLY__ */
 340
 341#endif /* __KERNEL__ */
 342#endif /* _ASM_POWERPC_PGTABLE_H */
 343