linux/arch/powerpc/kvm/book3s_hv.c
<<
>>
Prefs
   1/*
   2 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
   3 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
   4 *
   5 * Authors:
   6 *    Paul Mackerras <paulus@au1.ibm.com>
   7 *    Alexander Graf <agraf@suse.de>
   8 *    Kevin Wolf <mail@kevin-wolf.de>
   9 *
  10 * Description: KVM functions specific to running on Book 3S
  11 * processors in hypervisor mode (specifically POWER7 and later).
  12 *
  13 * This file is derived from arch/powerpc/kvm/book3s.c,
  14 * by Alexander Graf <agraf@suse.de>.
  15 *
  16 * This program is free software; you can redistribute it and/or modify
  17 * it under the terms of the GNU General Public License, version 2, as
  18 * published by the Free Software Foundation.
  19 */
  20
  21#include <linux/kvm_host.h>
  22#include <linux/err.h>
  23#include <linux/slab.h>
  24#include <linux/preempt.h>
  25#include <linux/sched.h>
  26#include <linux/delay.h>
  27#include <linux/export.h>
  28#include <linux/fs.h>
  29#include <linux/anon_inodes.h>
  30#include <linux/cpumask.h>
  31#include <linux/spinlock.h>
  32#include <linux/page-flags.h>
  33#include <linux/srcu.h>
  34#include <linux/miscdevice.h>
  35
  36#include <asm/reg.h>
  37#include <asm/cputable.h>
  38#include <asm/cache.h>
  39#include <asm/cacheflush.h>
  40#include <asm/tlbflush.h>
  41#include <asm/uaccess.h>
  42#include <asm/io.h>
  43#include <asm/kvm_ppc.h>
  44#include <asm/kvm_book3s.h>
  45#include <asm/mmu_context.h>
  46#include <asm/lppaca.h>
  47#include <asm/processor.h>
  48#include <asm/cputhreads.h>
  49#include <asm/page.h>
  50#include <asm/hvcall.h>
  51#include <asm/switch_to.h>
  52#include <asm/smp.h>
  53#include <linux/gfp.h>
  54#include <linux/vmalloc.h>
  55#include <linux/highmem.h>
  56#include <linux/hugetlb.h>
  57#include <linux/module.h>
  58
  59#include "book3s.h"
  60
  61/* #define EXIT_DEBUG */
  62/* #define EXIT_DEBUG_SIMPLE */
  63/* #define EXIT_DEBUG_INT */
  64
  65/* Used to indicate that a guest page fault needs to be handled */
  66#define RESUME_PAGE_FAULT       (RESUME_GUEST | RESUME_FLAG_ARCH1)
  67
  68/* Used as a "null" value for timebase values */
  69#define TB_NIL  (~(u64)0)
  70
  71static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
  72
  73#if defined(CONFIG_PPC_64K_PAGES)
  74#define MPP_BUFFER_ORDER        0
  75#elif defined(CONFIG_PPC_4K_PAGES)
  76#define MPP_BUFFER_ORDER        3
  77#endif
  78
  79
  80static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
  81static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
  82
  83static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
  84{
  85        int me;
  86        int cpu = vcpu->cpu;
  87        wait_queue_head_t *wqp;
  88
  89        wqp = kvm_arch_vcpu_wq(vcpu);
  90        if (waitqueue_active(wqp)) {
  91                wake_up_interruptible(wqp);
  92                ++vcpu->stat.halt_wakeup;
  93        }
  94
  95        me = get_cpu();
  96
  97        /* CPU points to the first thread of the core */
  98        if (cpu != me && cpu >= 0 && cpu < nr_cpu_ids) {
  99#ifdef CONFIG_PPC_ICP_NATIVE
 100                int real_cpu = cpu + vcpu->arch.ptid;
 101                if (paca[real_cpu].kvm_hstate.xics_phys)
 102                        xics_wake_cpu(real_cpu);
 103                else
 104#endif
 105                if (cpu_online(cpu))
 106                        smp_send_reschedule(cpu);
 107        }
 108        put_cpu();
 109}
 110
 111/*
 112 * We use the vcpu_load/put functions to measure stolen time.
 113 * Stolen time is counted as time when either the vcpu is able to
 114 * run as part of a virtual core, but the task running the vcore
 115 * is preempted or sleeping, or when the vcpu needs something done
 116 * in the kernel by the task running the vcpu, but that task is
 117 * preempted or sleeping.  Those two things have to be counted
 118 * separately, since one of the vcpu tasks will take on the job
 119 * of running the core, and the other vcpu tasks in the vcore will
 120 * sleep waiting for it to do that, but that sleep shouldn't count
 121 * as stolen time.
 122 *
 123 * Hence we accumulate stolen time when the vcpu can run as part of
 124 * a vcore using vc->stolen_tb, and the stolen time when the vcpu
 125 * needs its task to do other things in the kernel (for example,
 126 * service a page fault) in busy_stolen.  We don't accumulate
 127 * stolen time for a vcore when it is inactive, or for a vcpu
 128 * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
 129 * a misnomer; it means that the vcpu task is not executing in
 130 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
 131 * the kernel.  We don't have any way of dividing up that time
 132 * between time that the vcpu is genuinely stopped, time that
 133 * the task is actively working on behalf of the vcpu, and time
 134 * that the task is preempted, so we don't count any of it as
 135 * stolen.
 136 *
 137 * Updates to busy_stolen are protected by arch.tbacct_lock;
 138 * updates to vc->stolen_tb are protected by the arch.tbacct_lock
 139 * of the vcpu that has taken responsibility for running the vcore
 140 * (i.e. vc->runner).  The stolen times are measured in units of
 141 * timebase ticks.  (Note that the != TB_NIL checks below are
 142 * purely defensive; they should never fail.)
 143 */
 144
 145static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
 146{
 147        struct kvmppc_vcore *vc = vcpu->arch.vcore;
 148        unsigned long flags;
 149
 150        spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
 151        if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE &&
 152            vc->preempt_tb != TB_NIL) {
 153                vc->stolen_tb += mftb() - vc->preempt_tb;
 154                vc->preempt_tb = TB_NIL;
 155        }
 156        if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
 157            vcpu->arch.busy_preempt != TB_NIL) {
 158                vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
 159                vcpu->arch.busy_preempt = TB_NIL;
 160        }
 161        spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
 162}
 163
 164static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
 165{
 166        struct kvmppc_vcore *vc = vcpu->arch.vcore;
 167        unsigned long flags;
 168
 169        spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
 170        if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE)
 171                vc->preempt_tb = mftb();
 172        if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
 173                vcpu->arch.busy_preempt = mftb();
 174        spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
 175}
 176
 177static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
 178{
 179        vcpu->arch.shregs.msr = msr;
 180        kvmppc_end_cede(vcpu);
 181}
 182
 183void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
 184{
 185        vcpu->arch.pvr = pvr;
 186}
 187
 188int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
 189{
 190        unsigned long pcr = 0;
 191        struct kvmppc_vcore *vc = vcpu->arch.vcore;
 192
 193        if (arch_compat) {
 194                if (!cpu_has_feature(CPU_FTR_ARCH_206))
 195                        return -EINVAL; /* 970 has no compat mode support */
 196
 197                switch (arch_compat) {
 198                case PVR_ARCH_205:
 199                        /*
 200                         * If an arch bit is set in PCR, all the defined
 201                         * higher-order arch bits also have to be set.
 202                         */
 203                        pcr = PCR_ARCH_206 | PCR_ARCH_205;
 204                        break;
 205                case PVR_ARCH_206:
 206                case PVR_ARCH_206p:
 207                        pcr = PCR_ARCH_206;
 208                        break;
 209                case PVR_ARCH_207:
 210                        break;
 211                default:
 212                        return -EINVAL;
 213                }
 214
 215                if (!cpu_has_feature(CPU_FTR_ARCH_207S)) {
 216                        /* POWER7 can't emulate POWER8 */
 217                        if (!(pcr & PCR_ARCH_206))
 218                                return -EINVAL;
 219                        pcr &= ~PCR_ARCH_206;
 220                }
 221        }
 222
 223        spin_lock(&vc->lock);
 224        vc->arch_compat = arch_compat;
 225        vc->pcr = pcr;
 226        spin_unlock(&vc->lock);
 227
 228        return 0;
 229}
 230
 231void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
 232{
 233        int r;
 234
 235        pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
 236        pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
 237               vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
 238        for (r = 0; r < 16; ++r)
 239                pr_err("r%2d = %.16lx  r%d = %.16lx\n",
 240                       r, kvmppc_get_gpr(vcpu, r),
 241                       r+16, kvmppc_get_gpr(vcpu, r+16));
 242        pr_err("ctr = %.16lx  lr  = %.16lx\n",
 243               vcpu->arch.ctr, vcpu->arch.lr);
 244        pr_err("srr0 = %.16llx srr1 = %.16llx\n",
 245               vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
 246        pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
 247               vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
 248        pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
 249               vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
 250        pr_err("cr = %.8x  xer = %.16lx  dsisr = %.8x\n",
 251               vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
 252        pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
 253        pr_err("fault dar = %.16lx dsisr = %.8x\n",
 254               vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
 255        pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
 256        for (r = 0; r < vcpu->arch.slb_max; ++r)
 257                pr_err("  ESID = %.16llx VSID = %.16llx\n",
 258                       vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
 259        pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
 260               vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
 261               vcpu->arch.last_inst);
 262}
 263
 264struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
 265{
 266        int r;
 267        struct kvm_vcpu *v, *ret = NULL;
 268
 269        mutex_lock(&kvm->lock);
 270        kvm_for_each_vcpu(r, v, kvm) {
 271                if (v->vcpu_id == id) {
 272                        ret = v;
 273                        break;
 274                }
 275        }
 276        mutex_unlock(&kvm->lock);
 277        return ret;
 278}
 279
 280static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
 281{
 282        vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
 283        vpa->yield_count = cpu_to_be32(1);
 284}
 285
 286static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
 287                   unsigned long addr, unsigned long len)
 288{
 289        /* check address is cacheline aligned */
 290        if (addr & (L1_CACHE_BYTES - 1))
 291                return -EINVAL;
 292        spin_lock(&vcpu->arch.vpa_update_lock);
 293        if (v->next_gpa != addr || v->len != len) {
 294                v->next_gpa = addr;
 295                v->len = addr ? len : 0;
 296                v->update_pending = 1;
 297        }
 298        spin_unlock(&vcpu->arch.vpa_update_lock);
 299        return 0;
 300}
 301
 302/* Length for a per-processor buffer is passed in at offset 4 in the buffer */
 303struct reg_vpa {
 304        u32 dummy;
 305        union {
 306                __be16 hword;
 307                __be32 word;
 308        } length;
 309};
 310
 311static int vpa_is_registered(struct kvmppc_vpa *vpap)
 312{
 313        if (vpap->update_pending)
 314                return vpap->next_gpa != 0;
 315        return vpap->pinned_addr != NULL;
 316}
 317
 318static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
 319                                       unsigned long flags,
 320                                       unsigned long vcpuid, unsigned long vpa)
 321{
 322        struct kvm *kvm = vcpu->kvm;
 323        unsigned long len, nb;
 324        void *va;
 325        struct kvm_vcpu *tvcpu;
 326        int err;
 327        int subfunc;
 328        struct kvmppc_vpa *vpap;
 329
 330        tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
 331        if (!tvcpu)
 332                return H_PARAMETER;
 333
 334        subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
 335        if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
 336            subfunc == H_VPA_REG_SLB) {
 337                /* Registering new area - address must be cache-line aligned */
 338                if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
 339                        return H_PARAMETER;
 340
 341                /* convert logical addr to kernel addr and read length */
 342                va = kvmppc_pin_guest_page(kvm, vpa, &nb);
 343                if (va == NULL)
 344                        return H_PARAMETER;
 345                if (subfunc == H_VPA_REG_VPA)
 346                        len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
 347                else
 348                        len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
 349                kvmppc_unpin_guest_page(kvm, va, vpa, false);
 350
 351                /* Check length */
 352                if (len > nb || len < sizeof(struct reg_vpa))
 353                        return H_PARAMETER;
 354        } else {
 355                vpa = 0;
 356                len = 0;
 357        }
 358
 359        err = H_PARAMETER;
 360        vpap = NULL;
 361        spin_lock(&tvcpu->arch.vpa_update_lock);
 362
 363        switch (subfunc) {
 364        case H_VPA_REG_VPA:             /* register VPA */
 365                if (len < sizeof(struct lppaca))
 366                        break;
 367                vpap = &tvcpu->arch.vpa;
 368                err = 0;
 369                break;
 370
 371        case H_VPA_REG_DTL:             /* register DTL */
 372                if (len < sizeof(struct dtl_entry))
 373                        break;
 374                len -= len % sizeof(struct dtl_entry);
 375
 376                /* Check that they have previously registered a VPA */
 377                err = H_RESOURCE;
 378                if (!vpa_is_registered(&tvcpu->arch.vpa))
 379                        break;
 380
 381                vpap = &tvcpu->arch.dtl;
 382                err = 0;
 383                break;
 384
 385        case H_VPA_REG_SLB:             /* register SLB shadow buffer */
 386                /* Check that they have previously registered a VPA */
 387                err = H_RESOURCE;
 388                if (!vpa_is_registered(&tvcpu->arch.vpa))
 389                        break;
 390
 391                vpap = &tvcpu->arch.slb_shadow;
 392                err = 0;
 393                break;
 394
 395        case H_VPA_DEREG_VPA:           /* deregister VPA */
 396                /* Check they don't still have a DTL or SLB buf registered */
 397                err = H_RESOURCE;
 398                if (vpa_is_registered(&tvcpu->arch.dtl) ||
 399                    vpa_is_registered(&tvcpu->arch.slb_shadow))
 400                        break;
 401
 402                vpap = &tvcpu->arch.vpa;
 403                err = 0;
 404                break;
 405
 406        case H_VPA_DEREG_DTL:           /* deregister DTL */
 407                vpap = &tvcpu->arch.dtl;
 408                err = 0;
 409                break;
 410
 411        case H_VPA_DEREG_SLB:           /* deregister SLB shadow buffer */
 412                vpap = &tvcpu->arch.slb_shadow;
 413                err = 0;
 414                break;
 415        }
 416
 417        if (vpap) {
 418                vpap->next_gpa = vpa;
 419                vpap->len = len;
 420                vpap->update_pending = 1;
 421        }
 422
 423        spin_unlock(&tvcpu->arch.vpa_update_lock);
 424
 425        return err;
 426}
 427
 428static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
 429{
 430        struct kvm *kvm = vcpu->kvm;
 431        void *va;
 432        unsigned long nb;
 433        unsigned long gpa;
 434
 435        /*
 436         * We need to pin the page pointed to by vpap->next_gpa,
 437         * but we can't call kvmppc_pin_guest_page under the lock
 438         * as it does get_user_pages() and down_read().  So we
 439         * have to drop the lock, pin the page, then get the lock
 440         * again and check that a new area didn't get registered
 441         * in the meantime.
 442         */
 443        for (;;) {
 444                gpa = vpap->next_gpa;
 445                spin_unlock(&vcpu->arch.vpa_update_lock);
 446                va = NULL;
 447                nb = 0;
 448                if (gpa)
 449                        va = kvmppc_pin_guest_page(kvm, gpa, &nb);
 450                spin_lock(&vcpu->arch.vpa_update_lock);
 451                if (gpa == vpap->next_gpa)
 452                        break;
 453                /* sigh... unpin that one and try again */
 454                if (va)
 455                        kvmppc_unpin_guest_page(kvm, va, gpa, false);
 456        }
 457
 458        vpap->update_pending = 0;
 459        if (va && nb < vpap->len) {
 460                /*
 461                 * If it's now too short, it must be that userspace
 462                 * has changed the mappings underlying guest memory,
 463                 * so unregister the region.
 464                 */
 465                kvmppc_unpin_guest_page(kvm, va, gpa, false);
 466                va = NULL;
 467        }
 468        if (vpap->pinned_addr)
 469                kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
 470                                        vpap->dirty);
 471        vpap->gpa = gpa;
 472        vpap->pinned_addr = va;
 473        vpap->dirty = false;
 474        if (va)
 475                vpap->pinned_end = va + vpap->len;
 476}
 477
 478static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
 479{
 480        if (!(vcpu->arch.vpa.update_pending ||
 481              vcpu->arch.slb_shadow.update_pending ||
 482              vcpu->arch.dtl.update_pending))
 483                return;
 484
 485        spin_lock(&vcpu->arch.vpa_update_lock);
 486        if (vcpu->arch.vpa.update_pending) {
 487                kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
 488                if (vcpu->arch.vpa.pinned_addr)
 489                        init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
 490        }
 491        if (vcpu->arch.dtl.update_pending) {
 492                kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
 493                vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
 494                vcpu->arch.dtl_index = 0;
 495        }
 496        if (vcpu->arch.slb_shadow.update_pending)
 497                kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
 498        spin_unlock(&vcpu->arch.vpa_update_lock);
 499}
 500
 501/*
 502 * Return the accumulated stolen time for the vcore up until `now'.
 503 * The caller should hold the vcore lock.
 504 */
 505static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
 506{
 507        u64 p;
 508
 509        /*
 510         * If we are the task running the vcore, then since we hold
 511         * the vcore lock, we can't be preempted, so stolen_tb/preempt_tb
 512         * can't be updated, so we don't need the tbacct_lock.
 513         * If the vcore is inactive, it can't become active (since we
 514         * hold the vcore lock), so the vcpu load/put functions won't
 515         * update stolen_tb/preempt_tb, and we don't need tbacct_lock.
 516         */
 517        if (vc->vcore_state != VCORE_INACTIVE &&
 518            vc->runner->arch.run_task != current) {
 519                spin_lock_irq(&vc->runner->arch.tbacct_lock);
 520                p = vc->stolen_tb;
 521                if (vc->preempt_tb != TB_NIL)
 522                        p += now - vc->preempt_tb;
 523                spin_unlock_irq(&vc->runner->arch.tbacct_lock);
 524        } else {
 525                p = vc->stolen_tb;
 526        }
 527        return p;
 528}
 529
 530static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
 531                                    struct kvmppc_vcore *vc)
 532{
 533        struct dtl_entry *dt;
 534        struct lppaca *vpa;
 535        unsigned long stolen;
 536        unsigned long core_stolen;
 537        u64 now;
 538
 539        dt = vcpu->arch.dtl_ptr;
 540        vpa = vcpu->arch.vpa.pinned_addr;
 541        now = mftb();
 542        core_stolen = vcore_stolen_time(vc, now);
 543        stolen = core_stolen - vcpu->arch.stolen_logged;
 544        vcpu->arch.stolen_logged = core_stolen;
 545        spin_lock_irq(&vcpu->arch.tbacct_lock);
 546        stolen += vcpu->arch.busy_stolen;
 547        vcpu->arch.busy_stolen = 0;
 548        spin_unlock_irq(&vcpu->arch.tbacct_lock);
 549        if (!dt || !vpa)
 550                return;
 551        memset(dt, 0, sizeof(struct dtl_entry));
 552        dt->dispatch_reason = 7;
 553        dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
 554        dt->timebase = cpu_to_be64(now + vc->tb_offset);
 555        dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
 556        dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
 557        dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
 558        ++dt;
 559        if (dt == vcpu->arch.dtl.pinned_end)
 560                dt = vcpu->arch.dtl.pinned_addr;
 561        vcpu->arch.dtl_ptr = dt;
 562        /* order writing *dt vs. writing vpa->dtl_idx */
 563        smp_wmb();
 564        vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
 565        vcpu->arch.dtl.dirty = true;
 566}
 567
 568static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
 569{
 570        if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
 571                return true;
 572        if ((!vcpu->arch.vcore->arch_compat) &&
 573            cpu_has_feature(CPU_FTR_ARCH_207S))
 574                return true;
 575        return false;
 576}
 577
 578static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
 579                             unsigned long resource, unsigned long value1,
 580                             unsigned long value2)
 581{
 582        switch (resource) {
 583        case H_SET_MODE_RESOURCE_SET_CIABR:
 584                if (!kvmppc_power8_compatible(vcpu))
 585                        return H_P2;
 586                if (value2)
 587                        return H_P4;
 588                if (mflags)
 589                        return H_UNSUPPORTED_FLAG_START;
 590                /* Guests can't breakpoint the hypervisor */
 591                if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
 592                        return H_P3;
 593                vcpu->arch.ciabr  = value1;
 594                return H_SUCCESS;
 595        case H_SET_MODE_RESOURCE_SET_DAWR:
 596                if (!kvmppc_power8_compatible(vcpu))
 597                        return H_P2;
 598                if (mflags)
 599                        return H_UNSUPPORTED_FLAG_START;
 600                if (value2 & DABRX_HYP)
 601                        return H_P4;
 602                vcpu->arch.dawr  = value1;
 603                vcpu->arch.dawrx = value2;
 604                return H_SUCCESS;
 605        default:
 606                return H_TOO_HARD;
 607        }
 608}
 609
 610int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
 611{
 612        unsigned long req = kvmppc_get_gpr(vcpu, 3);
 613        unsigned long target, ret = H_SUCCESS;
 614        struct kvm_vcpu *tvcpu;
 615        int idx, rc;
 616
 617        if (req <= MAX_HCALL_OPCODE &&
 618            !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
 619                return RESUME_HOST;
 620
 621        switch (req) {
 622        case H_ENTER:
 623                idx = srcu_read_lock(&vcpu->kvm->srcu);
 624                ret = kvmppc_virtmode_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4),
 625                                              kvmppc_get_gpr(vcpu, 5),
 626                                              kvmppc_get_gpr(vcpu, 6),
 627                                              kvmppc_get_gpr(vcpu, 7));
 628                srcu_read_unlock(&vcpu->kvm->srcu, idx);
 629                break;
 630        case H_CEDE:
 631                break;
 632        case H_PROD:
 633                target = kvmppc_get_gpr(vcpu, 4);
 634                tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
 635                if (!tvcpu) {
 636                        ret = H_PARAMETER;
 637                        break;
 638                }
 639                tvcpu->arch.prodded = 1;
 640                smp_mb();
 641                if (vcpu->arch.ceded) {
 642                        if (waitqueue_active(&vcpu->wq)) {
 643                                wake_up_interruptible(&vcpu->wq);
 644                                vcpu->stat.halt_wakeup++;
 645                        }
 646                }
 647                break;
 648        case H_CONFER:
 649                target = kvmppc_get_gpr(vcpu, 4);
 650                if (target == -1)
 651                        break;
 652                tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
 653                if (!tvcpu) {
 654                        ret = H_PARAMETER;
 655                        break;
 656                }
 657                kvm_vcpu_yield_to(tvcpu);
 658                break;
 659        case H_REGISTER_VPA:
 660                ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
 661                                        kvmppc_get_gpr(vcpu, 5),
 662                                        kvmppc_get_gpr(vcpu, 6));
 663                break;
 664        case H_RTAS:
 665                if (list_empty(&vcpu->kvm->arch.rtas_tokens))
 666                        return RESUME_HOST;
 667
 668                idx = srcu_read_lock(&vcpu->kvm->srcu);
 669                rc = kvmppc_rtas_hcall(vcpu);
 670                srcu_read_unlock(&vcpu->kvm->srcu, idx);
 671
 672                if (rc == -ENOENT)
 673                        return RESUME_HOST;
 674                else if (rc == 0)
 675                        break;
 676
 677                /* Send the error out to userspace via KVM_RUN */
 678                return rc;
 679        case H_SET_MODE:
 680                ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
 681                                        kvmppc_get_gpr(vcpu, 5),
 682                                        kvmppc_get_gpr(vcpu, 6),
 683                                        kvmppc_get_gpr(vcpu, 7));
 684                if (ret == H_TOO_HARD)
 685                        return RESUME_HOST;
 686                break;
 687        case H_XIRR:
 688        case H_CPPR:
 689        case H_EOI:
 690        case H_IPI:
 691        case H_IPOLL:
 692        case H_XIRR_X:
 693                if (kvmppc_xics_enabled(vcpu)) {
 694                        ret = kvmppc_xics_hcall(vcpu, req);
 695                        break;
 696                } /* fallthrough */
 697        default:
 698                return RESUME_HOST;
 699        }
 700        kvmppc_set_gpr(vcpu, 3, ret);
 701        vcpu->arch.hcall_needed = 0;
 702        return RESUME_GUEST;
 703}
 704
 705static int kvmppc_hcall_impl_hv(unsigned long cmd)
 706{
 707        switch (cmd) {
 708        case H_CEDE:
 709        case H_PROD:
 710        case H_CONFER:
 711        case H_REGISTER_VPA:
 712        case H_SET_MODE:
 713#ifdef CONFIG_KVM_XICS
 714        case H_XIRR:
 715        case H_CPPR:
 716        case H_EOI:
 717        case H_IPI:
 718        case H_IPOLL:
 719        case H_XIRR_X:
 720#endif
 721                return 1;
 722        }
 723
 724        /* See if it's in the real-mode table */
 725        return kvmppc_hcall_impl_hv_realmode(cmd);
 726}
 727
 728static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
 729                                 struct task_struct *tsk)
 730{
 731        int r = RESUME_HOST;
 732
 733        vcpu->stat.sum_exits++;
 734
 735        run->exit_reason = KVM_EXIT_UNKNOWN;
 736        run->ready_for_interrupt_injection = 1;
 737        switch (vcpu->arch.trap) {
 738        /* We're good on these - the host merely wanted to get our attention */
 739        case BOOK3S_INTERRUPT_HV_DECREMENTER:
 740                vcpu->stat.dec_exits++;
 741                r = RESUME_GUEST;
 742                break;
 743        case BOOK3S_INTERRUPT_EXTERNAL:
 744        case BOOK3S_INTERRUPT_H_DOORBELL:
 745                vcpu->stat.ext_intr_exits++;
 746                r = RESUME_GUEST;
 747                break;
 748        case BOOK3S_INTERRUPT_PERFMON:
 749                r = RESUME_GUEST;
 750                break;
 751        case BOOK3S_INTERRUPT_MACHINE_CHECK:
 752                /*
 753                 * Deliver a machine check interrupt to the guest.
 754                 * We have to do this, even if the host has handled the
 755                 * machine check, because machine checks use SRR0/1 and
 756                 * the interrupt might have trashed guest state in them.
 757                 */
 758                kvmppc_book3s_queue_irqprio(vcpu,
 759                                            BOOK3S_INTERRUPT_MACHINE_CHECK);
 760                r = RESUME_GUEST;
 761                break;
 762        case BOOK3S_INTERRUPT_PROGRAM:
 763        {
 764                ulong flags;
 765                /*
 766                 * Normally program interrupts are delivered directly
 767                 * to the guest by the hardware, but we can get here
 768                 * as a result of a hypervisor emulation interrupt
 769                 * (e40) getting turned into a 700 by BML RTAS.
 770                 */
 771                flags = vcpu->arch.shregs.msr & 0x1f0000ull;
 772                kvmppc_core_queue_program(vcpu, flags);
 773                r = RESUME_GUEST;
 774                break;
 775        }
 776        case BOOK3S_INTERRUPT_SYSCALL:
 777        {
 778                /* hcall - punt to userspace */
 779                int i;
 780
 781                /* hypercall with MSR_PR has already been handled in rmode,
 782                 * and never reaches here.
 783                 */
 784
 785                run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
 786                for (i = 0; i < 9; ++i)
 787                        run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
 788                run->exit_reason = KVM_EXIT_PAPR_HCALL;
 789                vcpu->arch.hcall_needed = 1;
 790                r = RESUME_HOST;
 791                break;
 792        }
 793        /*
 794         * We get these next two if the guest accesses a page which it thinks
 795         * it has mapped but which is not actually present, either because
 796         * it is for an emulated I/O device or because the corresonding
 797         * host page has been paged out.  Any other HDSI/HISI interrupts
 798         * have been handled already.
 799         */
 800        case BOOK3S_INTERRUPT_H_DATA_STORAGE:
 801                r = RESUME_PAGE_FAULT;
 802                break;
 803        case BOOK3S_INTERRUPT_H_INST_STORAGE:
 804                vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
 805                vcpu->arch.fault_dsisr = 0;
 806                r = RESUME_PAGE_FAULT;
 807                break;
 808        /*
 809         * This occurs if the guest executes an illegal instruction.
 810         * We just generate a program interrupt to the guest, since
 811         * we don't emulate any guest instructions at this stage.
 812         */
 813        case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
 814                kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
 815                r = RESUME_GUEST;
 816                break;
 817        /*
 818         * This occurs if the guest (kernel or userspace), does something that
 819         * is prohibited by HFSCR.  We just generate a program interrupt to
 820         * the guest.
 821         */
 822        case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
 823                kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
 824                r = RESUME_GUEST;
 825                break;
 826        default:
 827                kvmppc_dump_regs(vcpu);
 828                printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
 829                        vcpu->arch.trap, kvmppc_get_pc(vcpu),
 830                        vcpu->arch.shregs.msr);
 831                run->hw.hardware_exit_reason = vcpu->arch.trap;
 832                r = RESUME_HOST;
 833                break;
 834        }
 835
 836        return r;
 837}
 838
 839static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
 840                                            struct kvm_sregs *sregs)
 841{
 842        int i;
 843
 844        memset(sregs, 0, sizeof(struct kvm_sregs));
 845        sregs->pvr = vcpu->arch.pvr;
 846        for (i = 0; i < vcpu->arch.slb_max; i++) {
 847                sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
 848                sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
 849        }
 850
 851        return 0;
 852}
 853
 854static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
 855                                            struct kvm_sregs *sregs)
 856{
 857        int i, j;
 858
 859        kvmppc_set_pvr_hv(vcpu, sregs->pvr);
 860
 861        j = 0;
 862        for (i = 0; i < vcpu->arch.slb_nr; i++) {
 863                if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
 864                        vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
 865                        vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
 866                        ++j;
 867                }
 868        }
 869        vcpu->arch.slb_max = j;
 870
 871        return 0;
 872}
 873
 874static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
 875                bool preserve_top32)
 876{
 877        struct kvmppc_vcore *vc = vcpu->arch.vcore;
 878        u64 mask;
 879
 880        spin_lock(&vc->lock);
 881        /*
 882         * If ILE (interrupt little-endian) has changed, update the
 883         * MSR_LE bit in the intr_msr for each vcpu in this vcore.
 884         */
 885        if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
 886                struct kvm *kvm = vcpu->kvm;
 887                struct kvm_vcpu *vcpu;
 888                int i;
 889
 890                mutex_lock(&kvm->lock);
 891                kvm_for_each_vcpu(i, vcpu, kvm) {
 892                        if (vcpu->arch.vcore != vc)
 893                                continue;
 894                        if (new_lpcr & LPCR_ILE)
 895                                vcpu->arch.intr_msr |= MSR_LE;
 896                        else
 897                                vcpu->arch.intr_msr &= ~MSR_LE;
 898                }
 899                mutex_unlock(&kvm->lock);
 900        }
 901
 902        /*
 903         * Userspace can only modify DPFD (default prefetch depth),
 904         * ILE (interrupt little-endian) and TC (translation control).
 905         * On POWER8 userspace can also modify AIL (alt. interrupt loc.)
 906         */
 907        mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
 908        if (cpu_has_feature(CPU_FTR_ARCH_207S))
 909                mask |= LPCR_AIL;
 910
 911        /* Broken 32-bit version of LPCR must not clear top bits */
 912        if (preserve_top32)
 913                mask &= 0xFFFFFFFF;
 914        vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
 915        spin_unlock(&vc->lock);
 916}
 917
 918static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
 919                                 union kvmppc_one_reg *val)
 920{
 921        int r = 0;
 922        long int i;
 923
 924        switch (id) {
 925        case KVM_REG_PPC_HIOR:
 926                *val = get_reg_val(id, 0);
 927                break;
 928        case KVM_REG_PPC_DABR:
 929                *val = get_reg_val(id, vcpu->arch.dabr);
 930                break;
 931        case KVM_REG_PPC_DABRX:
 932                *val = get_reg_val(id, vcpu->arch.dabrx);
 933                break;
 934        case KVM_REG_PPC_DSCR:
 935                *val = get_reg_val(id, vcpu->arch.dscr);
 936                break;
 937        case KVM_REG_PPC_PURR:
 938                *val = get_reg_val(id, vcpu->arch.purr);
 939                break;
 940        case KVM_REG_PPC_SPURR:
 941                *val = get_reg_val(id, vcpu->arch.spurr);
 942                break;
 943        case KVM_REG_PPC_AMR:
 944                *val = get_reg_val(id, vcpu->arch.amr);
 945                break;
 946        case KVM_REG_PPC_UAMOR:
 947                *val = get_reg_val(id, vcpu->arch.uamor);
 948                break;
 949        case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
 950                i = id - KVM_REG_PPC_MMCR0;
 951                *val = get_reg_val(id, vcpu->arch.mmcr[i]);
 952                break;
 953        case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
 954                i = id - KVM_REG_PPC_PMC1;
 955                *val = get_reg_val(id, vcpu->arch.pmc[i]);
 956                break;
 957        case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
 958                i = id - KVM_REG_PPC_SPMC1;
 959                *val = get_reg_val(id, vcpu->arch.spmc[i]);
 960                break;
 961        case KVM_REG_PPC_SIAR:
 962                *val = get_reg_val(id, vcpu->arch.siar);
 963                break;
 964        case KVM_REG_PPC_SDAR:
 965                *val = get_reg_val(id, vcpu->arch.sdar);
 966                break;
 967        case KVM_REG_PPC_SIER:
 968                *val = get_reg_val(id, vcpu->arch.sier);
 969                break;
 970        case KVM_REG_PPC_IAMR:
 971                *val = get_reg_val(id, vcpu->arch.iamr);
 972                break;
 973        case KVM_REG_PPC_PSPB:
 974                *val = get_reg_val(id, vcpu->arch.pspb);
 975                break;
 976        case KVM_REG_PPC_DPDES:
 977                *val = get_reg_val(id, vcpu->arch.vcore->dpdes);
 978                break;
 979        case KVM_REG_PPC_DAWR:
 980                *val = get_reg_val(id, vcpu->arch.dawr);
 981                break;
 982        case KVM_REG_PPC_DAWRX:
 983                *val = get_reg_val(id, vcpu->arch.dawrx);
 984                break;
 985        case KVM_REG_PPC_CIABR:
 986                *val = get_reg_val(id, vcpu->arch.ciabr);
 987                break;
 988        case KVM_REG_PPC_CSIGR:
 989                *val = get_reg_val(id, vcpu->arch.csigr);
 990                break;
 991        case KVM_REG_PPC_TACR:
 992                *val = get_reg_val(id, vcpu->arch.tacr);
 993                break;
 994        case KVM_REG_PPC_TCSCR:
 995                *val = get_reg_val(id, vcpu->arch.tcscr);
 996                break;
 997        case KVM_REG_PPC_PID:
 998                *val = get_reg_val(id, vcpu->arch.pid);
 999                break;
1000        case KVM_REG_PPC_ACOP:
1001                *val = get_reg_val(id, vcpu->arch.acop);
1002                break;
1003        case KVM_REG_PPC_WORT:
1004                *val = get_reg_val(id, vcpu->arch.wort);
1005                break;
1006        case KVM_REG_PPC_VPA_ADDR:
1007                spin_lock(&vcpu->arch.vpa_update_lock);
1008                *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
1009                spin_unlock(&vcpu->arch.vpa_update_lock);
1010                break;
1011        case KVM_REG_PPC_VPA_SLB:
1012                spin_lock(&vcpu->arch.vpa_update_lock);
1013                val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
1014                val->vpaval.length = vcpu->arch.slb_shadow.len;
1015                spin_unlock(&vcpu->arch.vpa_update_lock);
1016                break;
1017        case KVM_REG_PPC_VPA_DTL:
1018                spin_lock(&vcpu->arch.vpa_update_lock);
1019                val->vpaval.addr = vcpu->arch.dtl.next_gpa;
1020                val->vpaval.length = vcpu->arch.dtl.len;
1021                spin_unlock(&vcpu->arch.vpa_update_lock);
1022                break;
1023        case KVM_REG_PPC_TB_OFFSET:
1024                *val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
1025                break;
1026        case KVM_REG_PPC_LPCR:
1027        case KVM_REG_PPC_LPCR_64:
1028                *val = get_reg_val(id, vcpu->arch.vcore->lpcr);
1029                break;
1030        case KVM_REG_PPC_PPR:
1031                *val = get_reg_val(id, vcpu->arch.ppr);
1032                break;
1033#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1034        case KVM_REG_PPC_TFHAR:
1035                *val = get_reg_val(id, vcpu->arch.tfhar);
1036                break;
1037        case KVM_REG_PPC_TFIAR:
1038                *val = get_reg_val(id, vcpu->arch.tfiar);
1039                break;
1040        case KVM_REG_PPC_TEXASR:
1041                *val = get_reg_val(id, vcpu->arch.texasr);
1042                break;
1043        case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1044                i = id - KVM_REG_PPC_TM_GPR0;
1045                *val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
1046                break;
1047        case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1048        {
1049                int j;
1050                i = id - KVM_REG_PPC_TM_VSR0;
1051                if (i < 32)
1052                        for (j = 0; j < TS_FPRWIDTH; j++)
1053                                val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1054                else {
1055                        if (cpu_has_feature(CPU_FTR_ALTIVEC))
1056                                val->vval = vcpu->arch.vr_tm.vr[i-32];
1057                        else
1058                                r = -ENXIO;
1059                }
1060                break;
1061        }
1062        case KVM_REG_PPC_TM_CR:
1063                *val = get_reg_val(id, vcpu->arch.cr_tm);
1064                break;
1065        case KVM_REG_PPC_TM_LR:
1066                *val = get_reg_val(id, vcpu->arch.lr_tm);
1067                break;
1068        case KVM_REG_PPC_TM_CTR:
1069                *val = get_reg_val(id, vcpu->arch.ctr_tm);
1070                break;
1071        case KVM_REG_PPC_TM_FPSCR:
1072                *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1073                break;
1074        case KVM_REG_PPC_TM_AMR:
1075                *val = get_reg_val(id, vcpu->arch.amr_tm);
1076                break;
1077        case KVM_REG_PPC_TM_PPR:
1078                *val = get_reg_val(id, vcpu->arch.ppr_tm);
1079                break;
1080        case KVM_REG_PPC_TM_VRSAVE:
1081                *val = get_reg_val(id, vcpu->arch.vrsave_tm);
1082                break;
1083        case KVM_REG_PPC_TM_VSCR:
1084                if (cpu_has_feature(CPU_FTR_ALTIVEC))
1085                        *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1086                else
1087                        r = -ENXIO;
1088                break;
1089        case KVM_REG_PPC_TM_DSCR:
1090                *val = get_reg_val(id, vcpu->arch.dscr_tm);
1091                break;
1092        case KVM_REG_PPC_TM_TAR:
1093                *val = get_reg_val(id, vcpu->arch.tar_tm);
1094                break;
1095#endif
1096        case KVM_REG_PPC_ARCH_COMPAT:
1097                *val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
1098                break;
1099        default:
1100                r = -EINVAL;
1101                break;
1102        }
1103
1104        return r;
1105}
1106
1107static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1108                                 union kvmppc_one_reg *val)
1109{
1110        int r = 0;
1111        long int i;
1112        unsigned long addr, len;
1113
1114        switch (id) {
1115        case KVM_REG_PPC_HIOR:
1116                /* Only allow this to be set to zero */
1117                if (set_reg_val(id, *val))
1118                        r = -EINVAL;
1119                break;
1120        case KVM_REG_PPC_DABR:
1121                vcpu->arch.dabr = set_reg_val(id, *val);
1122                break;
1123        case KVM_REG_PPC_DABRX:
1124                vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
1125                break;
1126        case KVM_REG_PPC_DSCR:
1127                vcpu->arch.dscr = set_reg_val(id, *val);
1128                break;
1129        case KVM_REG_PPC_PURR:
1130                vcpu->arch.purr = set_reg_val(id, *val);
1131                break;
1132        case KVM_REG_PPC_SPURR:
1133                vcpu->arch.spurr = set_reg_val(id, *val);
1134                break;
1135        case KVM_REG_PPC_AMR:
1136                vcpu->arch.amr = set_reg_val(id, *val);
1137                break;
1138        case KVM_REG_PPC_UAMOR:
1139                vcpu->arch.uamor = set_reg_val(id, *val);
1140                break;
1141        case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1142                i = id - KVM_REG_PPC_MMCR0;
1143                vcpu->arch.mmcr[i] = set_reg_val(id, *val);
1144                break;
1145        case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1146                i = id - KVM_REG_PPC_PMC1;
1147                vcpu->arch.pmc[i] = set_reg_val(id, *val);
1148                break;
1149        case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1150                i = id - KVM_REG_PPC_SPMC1;
1151                vcpu->arch.spmc[i] = set_reg_val(id, *val);
1152                break;
1153        case KVM_REG_PPC_SIAR:
1154                vcpu->arch.siar = set_reg_val(id, *val);
1155                break;
1156        case KVM_REG_PPC_SDAR:
1157                vcpu->arch.sdar = set_reg_val(id, *val);
1158                break;
1159        case KVM_REG_PPC_SIER:
1160                vcpu->arch.sier = set_reg_val(id, *val);
1161                break;
1162        case KVM_REG_PPC_IAMR:
1163                vcpu->arch.iamr = set_reg_val(id, *val);
1164                break;
1165        case KVM_REG_PPC_PSPB:
1166                vcpu->arch.pspb = set_reg_val(id, *val);
1167                break;
1168        case KVM_REG_PPC_DPDES:
1169                vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
1170                break;
1171        case KVM_REG_PPC_DAWR:
1172                vcpu->arch.dawr = set_reg_val(id, *val);
1173                break;
1174        case KVM_REG_PPC_DAWRX:
1175                vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
1176                break;
1177        case KVM_REG_PPC_CIABR:
1178                vcpu->arch.ciabr = set_reg_val(id, *val);
1179                /* Don't allow setting breakpoints in hypervisor code */
1180                if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
1181                        vcpu->arch.ciabr &= ~CIABR_PRIV;        /* disable */
1182                break;
1183        case KVM_REG_PPC_CSIGR:
1184                vcpu->arch.csigr = set_reg_val(id, *val);
1185                break;
1186        case KVM_REG_PPC_TACR:
1187                vcpu->arch.tacr = set_reg_val(id, *val);
1188                break;
1189        case KVM_REG_PPC_TCSCR:
1190                vcpu->arch.tcscr = set_reg_val(id, *val);
1191                break;
1192        case KVM_REG_PPC_PID:
1193                vcpu->arch.pid = set_reg_val(id, *val);
1194                break;
1195        case KVM_REG_PPC_ACOP:
1196                vcpu->arch.acop = set_reg_val(id, *val);
1197                break;
1198        case KVM_REG_PPC_WORT:
1199                vcpu->arch.wort = set_reg_val(id, *val);
1200                break;
1201        case KVM_REG_PPC_VPA_ADDR:
1202                addr = set_reg_val(id, *val);
1203                r = -EINVAL;
1204                if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
1205                              vcpu->arch.dtl.next_gpa))
1206                        break;
1207                r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
1208                break;
1209        case KVM_REG_PPC_VPA_SLB:
1210                addr = val->vpaval.addr;
1211                len = val->vpaval.length;
1212                r = -EINVAL;
1213                if (addr && !vcpu->arch.vpa.next_gpa)
1214                        break;
1215                r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
1216                break;
1217        case KVM_REG_PPC_VPA_DTL:
1218                addr = val->vpaval.addr;
1219                len = val->vpaval.length;
1220                r = -EINVAL;
1221                if (addr && (len < sizeof(struct dtl_entry) ||
1222                             !vcpu->arch.vpa.next_gpa))
1223                        break;
1224                len -= len % sizeof(struct dtl_entry);
1225                r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
1226                break;
1227        case KVM_REG_PPC_TB_OFFSET:
1228                /* round up to multiple of 2^24 */
1229                vcpu->arch.vcore->tb_offset =
1230                        ALIGN(set_reg_val(id, *val), 1UL << 24);
1231                break;
1232        case KVM_REG_PPC_LPCR:
1233                kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
1234                break;
1235        case KVM_REG_PPC_LPCR_64:
1236                kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
1237                break;
1238        case KVM_REG_PPC_PPR:
1239                vcpu->arch.ppr = set_reg_val(id, *val);
1240                break;
1241#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1242        case KVM_REG_PPC_TFHAR:
1243                vcpu->arch.tfhar = set_reg_val(id, *val);
1244                break;
1245        case KVM_REG_PPC_TFIAR:
1246                vcpu->arch.tfiar = set_reg_val(id, *val);
1247                break;
1248        case KVM_REG_PPC_TEXASR:
1249                vcpu->arch.texasr = set_reg_val(id, *val);
1250                break;
1251        case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1252                i = id - KVM_REG_PPC_TM_GPR0;
1253                vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
1254                break;
1255        case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1256        {
1257                int j;
1258                i = id - KVM_REG_PPC_TM_VSR0;
1259                if (i < 32)
1260                        for (j = 0; j < TS_FPRWIDTH; j++)
1261                                vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
1262                else
1263                        if (cpu_has_feature(CPU_FTR_ALTIVEC))
1264                                vcpu->arch.vr_tm.vr[i-32] = val->vval;
1265                        else
1266                                r = -ENXIO;
1267                break;
1268        }
1269        case KVM_REG_PPC_TM_CR:
1270                vcpu->arch.cr_tm = set_reg_val(id, *val);
1271                break;
1272        case KVM_REG_PPC_TM_LR:
1273                vcpu->arch.lr_tm = set_reg_val(id, *val);
1274                break;
1275        case KVM_REG_PPC_TM_CTR:
1276                vcpu->arch.ctr_tm = set_reg_val(id, *val);
1277                break;
1278        case KVM_REG_PPC_TM_FPSCR:
1279                vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
1280                break;
1281        case KVM_REG_PPC_TM_AMR:
1282                vcpu->arch.amr_tm = set_reg_val(id, *val);
1283                break;
1284        case KVM_REG_PPC_TM_PPR:
1285                vcpu->arch.ppr_tm = set_reg_val(id, *val);
1286                break;
1287        case KVM_REG_PPC_TM_VRSAVE:
1288                vcpu->arch.vrsave_tm = set_reg_val(id, *val);
1289                break;
1290        case KVM_REG_PPC_TM_VSCR:
1291                if (cpu_has_feature(CPU_FTR_ALTIVEC))
1292                        vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
1293                else
1294                        r = - ENXIO;
1295                break;
1296        case KVM_REG_PPC_TM_DSCR:
1297                vcpu->arch.dscr_tm = set_reg_val(id, *val);
1298                break;
1299        case KVM_REG_PPC_TM_TAR:
1300                vcpu->arch.tar_tm = set_reg_val(id, *val);
1301                break;
1302#endif
1303        case KVM_REG_PPC_ARCH_COMPAT:
1304                r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
1305                break;
1306        default:
1307                r = -EINVAL;
1308                break;
1309        }
1310
1311        return r;
1312}
1313
1314static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int core)
1315{
1316        struct kvmppc_vcore *vcore;
1317
1318        vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
1319
1320        if (vcore == NULL)
1321                return NULL;
1322
1323        INIT_LIST_HEAD(&vcore->runnable_threads);
1324        spin_lock_init(&vcore->lock);
1325        init_waitqueue_head(&vcore->wq);
1326        vcore->preempt_tb = TB_NIL;
1327        vcore->lpcr = kvm->arch.lpcr;
1328        vcore->first_vcpuid = core * threads_per_subcore;
1329        vcore->kvm = kvm;
1330
1331        vcore->mpp_buffer_is_valid = false;
1332
1333        if (cpu_has_feature(CPU_FTR_ARCH_207S))
1334                vcore->mpp_buffer = (void *)__get_free_pages(
1335                        GFP_KERNEL|__GFP_ZERO,
1336                        MPP_BUFFER_ORDER);
1337
1338        return vcore;
1339}
1340
1341static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
1342                                                   unsigned int id)
1343{
1344        struct kvm_vcpu *vcpu;
1345        int err = -EINVAL;
1346        int core;
1347        struct kvmppc_vcore *vcore;
1348
1349        core = id / threads_per_subcore;
1350        if (core >= KVM_MAX_VCORES)
1351                goto out;
1352
1353        err = -ENOMEM;
1354        vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1355        if (!vcpu)
1356                goto out;
1357
1358        err = kvm_vcpu_init(vcpu, kvm, id);
1359        if (err)
1360                goto free_vcpu;
1361
1362        vcpu->arch.shared = &vcpu->arch.shregs;
1363#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1364        /*
1365         * The shared struct is never shared on HV,
1366         * so we can always use host endianness
1367         */
1368#ifdef __BIG_ENDIAN__
1369        vcpu->arch.shared_big_endian = true;
1370#else
1371        vcpu->arch.shared_big_endian = false;
1372#endif
1373#endif
1374        vcpu->arch.mmcr[0] = MMCR0_FC;
1375        vcpu->arch.ctrl = CTRL_RUNLATCH;
1376        /* default to host PVR, since we can't spoof it */
1377        kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
1378        spin_lock_init(&vcpu->arch.vpa_update_lock);
1379        spin_lock_init(&vcpu->arch.tbacct_lock);
1380        vcpu->arch.busy_preempt = TB_NIL;
1381        vcpu->arch.intr_msr = MSR_SF | MSR_ME;
1382
1383        kvmppc_mmu_book3s_hv_init(vcpu);
1384
1385        vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
1386
1387        init_waitqueue_head(&vcpu->arch.cpu_run);
1388
1389        mutex_lock(&kvm->lock);
1390        vcore = kvm->arch.vcores[core];
1391        if (!vcore) {
1392                vcore = kvmppc_vcore_create(kvm, core);
1393                kvm->arch.vcores[core] = vcore;
1394                kvm->arch.online_vcores++;
1395        }
1396        mutex_unlock(&kvm->lock);
1397
1398        if (!vcore)
1399                goto free_vcpu;
1400
1401        spin_lock(&vcore->lock);
1402        ++vcore->num_threads;
1403        spin_unlock(&vcore->lock);
1404        vcpu->arch.vcore = vcore;
1405        vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
1406
1407        vcpu->arch.cpu_type = KVM_CPU_3S_64;
1408        kvmppc_sanity_check(vcpu);
1409
1410        return vcpu;
1411
1412free_vcpu:
1413        kmem_cache_free(kvm_vcpu_cache, vcpu);
1414out:
1415        return ERR_PTR(err);
1416}
1417
1418static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
1419{
1420        if (vpa->pinned_addr)
1421                kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
1422                                        vpa->dirty);
1423}
1424
1425static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
1426{
1427        spin_lock(&vcpu->arch.vpa_update_lock);
1428        unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
1429        unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
1430        unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
1431        spin_unlock(&vcpu->arch.vpa_update_lock);
1432        kvm_vcpu_uninit(vcpu);
1433        kmem_cache_free(kvm_vcpu_cache, vcpu);
1434}
1435
1436static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
1437{
1438        /* Indicate we want to get back into the guest */
1439        return 1;
1440}
1441
1442static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
1443{
1444        unsigned long dec_nsec, now;
1445
1446        now = get_tb();
1447        if (now > vcpu->arch.dec_expires) {
1448                /* decrementer has already gone negative */
1449                kvmppc_core_queue_dec(vcpu);
1450                kvmppc_core_prepare_to_enter(vcpu);
1451                return;
1452        }
1453        dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
1454                   / tb_ticks_per_sec;
1455        hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec),
1456                      HRTIMER_MODE_REL);
1457        vcpu->arch.timer_running = 1;
1458}
1459
1460static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
1461{
1462        vcpu->arch.ceded = 0;
1463        if (vcpu->arch.timer_running) {
1464                hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
1465                vcpu->arch.timer_running = 0;
1466        }
1467}
1468
1469extern void __kvmppc_vcore_entry(void);
1470
1471static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
1472                                   struct kvm_vcpu *vcpu)
1473{
1474        u64 now;
1475
1476        if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
1477                return;
1478        spin_lock_irq(&vcpu->arch.tbacct_lock);
1479        now = mftb();
1480        vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
1481                vcpu->arch.stolen_logged;
1482        vcpu->arch.busy_preempt = now;
1483        vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
1484        spin_unlock_irq(&vcpu->arch.tbacct_lock);
1485        --vc->n_runnable;
1486        list_del(&vcpu->arch.run_list);
1487}
1488
1489static int kvmppc_grab_hwthread(int cpu)
1490{
1491        struct paca_struct *tpaca;
1492        long timeout = 1000;
1493
1494        tpaca = &paca[cpu];
1495
1496        /* Ensure the thread won't go into the kernel if it wakes */
1497        tpaca->kvm_hstate.hwthread_req = 1;
1498        tpaca->kvm_hstate.kvm_vcpu = NULL;
1499
1500        /*
1501         * If the thread is already executing in the kernel (e.g. handling
1502         * a stray interrupt), wait for it to get back to nap mode.
1503         * The smp_mb() is to ensure that our setting of hwthread_req
1504         * is visible before we look at hwthread_state, so if this
1505         * races with the code at system_reset_pSeries and the thread
1506         * misses our setting of hwthread_req, we are sure to see its
1507         * setting of hwthread_state, and vice versa.
1508         */
1509        smp_mb();
1510        while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
1511                if (--timeout <= 0) {
1512                        pr_err("KVM: couldn't grab cpu %d\n", cpu);
1513                        return -EBUSY;
1514                }
1515                udelay(1);
1516        }
1517        return 0;
1518}
1519
1520static void kvmppc_release_hwthread(int cpu)
1521{
1522        struct paca_struct *tpaca;
1523
1524        tpaca = &paca[cpu];
1525        tpaca->kvm_hstate.hwthread_req = 0;
1526        tpaca->kvm_hstate.kvm_vcpu = NULL;
1527}
1528
1529static void kvmppc_start_thread(struct kvm_vcpu *vcpu)
1530{
1531        int cpu;
1532        struct paca_struct *tpaca;
1533        struct kvmppc_vcore *vc = vcpu->arch.vcore;
1534
1535        if (vcpu->arch.timer_running) {
1536                hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
1537                vcpu->arch.timer_running = 0;
1538        }
1539        cpu = vc->pcpu + vcpu->arch.ptid;
1540        tpaca = &paca[cpu];
1541        tpaca->kvm_hstate.kvm_vcpu = vcpu;
1542        tpaca->kvm_hstate.kvm_vcore = vc;
1543        tpaca->kvm_hstate.ptid = vcpu->arch.ptid;
1544        vcpu->cpu = vc->pcpu;
1545        smp_wmb();
1546#if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
1547        if (cpu != smp_processor_id()) {
1548                xics_wake_cpu(cpu);
1549                if (vcpu->arch.ptid)
1550                        ++vc->n_woken;
1551        }
1552#endif
1553}
1554
1555static void kvmppc_wait_for_nap(struct kvmppc_vcore *vc)
1556{
1557        int i;
1558
1559        HMT_low();
1560        i = 0;
1561        while (vc->nap_count < vc->n_woken) {
1562                if (++i >= 1000000) {
1563                        pr_err("kvmppc_wait_for_nap timeout %d %d\n",
1564                               vc->nap_count, vc->n_woken);
1565                        break;
1566                }
1567                cpu_relax();
1568        }
1569        HMT_medium();
1570}
1571
1572/*
1573 * Check that we are on thread 0 and that any other threads in
1574 * this core are off-line.  Then grab the threads so they can't
1575 * enter the kernel.
1576 */
1577static int on_primary_thread(void)
1578{
1579        int cpu = smp_processor_id();
1580        int thr;
1581
1582        /* Are we on a primary subcore? */
1583        if (cpu_thread_in_subcore(cpu))
1584                return 0;
1585
1586        thr = 0;
1587        while (++thr < threads_per_subcore)
1588                if (cpu_online(cpu + thr))
1589                        return 0;
1590
1591        /* Grab all hw threads so they can't go into the kernel */
1592        for (thr = 1; thr < threads_per_subcore; ++thr) {
1593                if (kvmppc_grab_hwthread(cpu + thr)) {
1594                        /* Couldn't grab one; let the others go */
1595                        do {
1596                                kvmppc_release_hwthread(cpu + thr);
1597                        } while (--thr > 0);
1598                        return 0;
1599                }
1600        }
1601        return 1;
1602}
1603
1604static void kvmppc_start_saving_l2_cache(struct kvmppc_vcore *vc)
1605{
1606        phys_addr_t phy_addr, mpp_addr;
1607
1608        phy_addr = (phys_addr_t)virt_to_phys(vc->mpp_buffer);
1609        mpp_addr = phy_addr & PPC_MPPE_ADDRESS_MASK;
1610
1611        mtspr(SPRN_MPPR, mpp_addr | PPC_MPPR_FETCH_ABORT);
1612        logmpp(mpp_addr | PPC_LOGMPP_LOG_L2);
1613
1614        vc->mpp_buffer_is_valid = true;
1615}
1616
1617static void kvmppc_start_restoring_l2_cache(const struct kvmppc_vcore *vc)
1618{
1619        phys_addr_t phy_addr, mpp_addr;
1620
1621        phy_addr = virt_to_phys(vc->mpp_buffer);
1622        mpp_addr = phy_addr & PPC_MPPE_ADDRESS_MASK;
1623
1624        /* We must abort any in-progress save operations to ensure
1625         * the table is valid so that prefetch engine knows when to
1626         * stop prefetching. */
1627        logmpp(mpp_addr | PPC_LOGMPP_LOG_ABORT);
1628        mtspr(SPRN_MPPR, mpp_addr | PPC_MPPR_FETCH_WHOLE_TABLE);
1629}
1630
1631/*
1632 * Run a set of guest threads on a physical core.
1633 * Called with vc->lock held.
1634 */
1635static void kvmppc_run_core(struct kvmppc_vcore *vc)
1636{
1637        struct kvm_vcpu *vcpu, *vnext;
1638        long ret;
1639        u64 now;
1640        int i, need_vpa_update;
1641        int srcu_idx;
1642        struct kvm_vcpu *vcpus_to_update[threads_per_core];
1643
1644        /* don't start if any threads have a signal pending */
1645        need_vpa_update = 0;
1646        list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1647                if (signal_pending(vcpu->arch.run_task))
1648                        return;
1649                if (vcpu->arch.vpa.update_pending ||
1650                    vcpu->arch.slb_shadow.update_pending ||
1651                    vcpu->arch.dtl.update_pending)
1652                        vcpus_to_update[need_vpa_update++] = vcpu;
1653        }
1654
1655        /*
1656         * Initialize *vc, in particular vc->vcore_state, so we can
1657         * drop the vcore lock if necessary.
1658         */
1659        vc->n_woken = 0;
1660        vc->nap_count = 0;
1661        vc->entry_exit_count = 0;
1662        vc->vcore_state = VCORE_STARTING;
1663        vc->in_guest = 0;
1664        vc->napping_threads = 0;
1665
1666        /*
1667         * Updating any of the vpas requires calling kvmppc_pin_guest_page,
1668         * which can't be called with any spinlocks held.
1669         */
1670        if (need_vpa_update) {
1671                spin_unlock(&vc->lock);
1672                for (i = 0; i < need_vpa_update; ++i)
1673                        kvmppc_update_vpas(vcpus_to_update[i]);
1674                spin_lock(&vc->lock);
1675        }
1676
1677        /*
1678         * Make sure we are running on primary threads, and that secondary
1679         * threads are offline.  Also check if the number of threads in this
1680         * guest are greater than the current system threads per guest.
1681         */
1682        if ((threads_per_core > 1) &&
1683            ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) {
1684                list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
1685                        vcpu->arch.ret = -EBUSY;
1686                goto out;
1687        }
1688
1689
1690        vc->pcpu = smp_processor_id();
1691        list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1692                kvmppc_start_thread(vcpu);
1693                kvmppc_create_dtl_entry(vcpu, vc);
1694        }
1695
1696        /* Set this explicitly in case thread 0 doesn't have a vcpu */
1697        get_paca()->kvm_hstate.kvm_vcore = vc;
1698        get_paca()->kvm_hstate.ptid = 0;
1699
1700        vc->vcore_state = VCORE_RUNNING;
1701        preempt_disable();
1702        spin_unlock(&vc->lock);
1703
1704        kvm_guest_enter();
1705
1706        srcu_idx = srcu_read_lock(&vc->kvm->srcu);
1707
1708        if (vc->mpp_buffer_is_valid)
1709                kvmppc_start_restoring_l2_cache(vc);
1710
1711        __kvmppc_vcore_entry();
1712
1713        spin_lock(&vc->lock);
1714
1715        if (vc->mpp_buffer)
1716                kvmppc_start_saving_l2_cache(vc);
1717
1718        /* disable sending of IPIs on virtual external irqs */
1719        list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
1720                vcpu->cpu = -1;
1721        /* wait for secondary threads to finish writing their state to memory */
1722        if (vc->nap_count < vc->n_woken)
1723                kvmppc_wait_for_nap(vc);
1724        for (i = 0; i < threads_per_subcore; ++i)
1725                kvmppc_release_hwthread(vc->pcpu + i);
1726        /* prevent other vcpu threads from doing kvmppc_start_thread() now */
1727        vc->vcore_state = VCORE_EXITING;
1728        spin_unlock(&vc->lock);
1729
1730        srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
1731
1732        /* make sure updates to secondary vcpu structs are visible now */
1733        smp_mb();
1734        kvm_guest_exit();
1735
1736        preempt_enable();
1737        cond_resched();
1738
1739        spin_lock(&vc->lock);
1740        now = get_tb();
1741        list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1742                /* cancel pending dec exception if dec is positive */
1743                if (now < vcpu->arch.dec_expires &&
1744                    kvmppc_core_pending_dec(vcpu))
1745                        kvmppc_core_dequeue_dec(vcpu);
1746
1747                ret = RESUME_GUEST;
1748                if (vcpu->arch.trap)
1749                        ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
1750                                                    vcpu->arch.run_task);
1751
1752                vcpu->arch.ret = ret;
1753                vcpu->arch.trap = 0;
1754
1755                if (vcpu->arch.ceded) {
1756                        if (!is_kvmppc_resume_guest(ret))
1757                                kvmppc_end_cede(vcpu);
1758                        else
1759                                kvmppc_set_timer(vcpu);
1760                }
1761        }
1762
1763 out:
1764        vc->vcore_state = VCORE_INACTIVE;
1765        list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
1766                                 arch.run_list) {
1767                if (!is_kvmppc_resume_guest(vcpu->arch.ret)) {
1768                        kvmppc_remove_runnable(vc, vcpu);
1769                        wake_up(&vcpu->arch.cpu_run);
1770                }
1771        }
1772}
1773
1774/*
1775 * Wait for some other vcpu thread to execute us, and
1776 * wake us up when we need to handle something in the host.
1777 */
1778static void kvmppc_wait_for_exec(struct kvm_vcpu *vcpu, int wait_state)
1779{
1780        DEFINE_WAIT(wait);
1781
1782        prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
1783        if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE)
1784                schedule();
1785        finish_wait(&vcpu->arch.cpu_run, &wait);
1786}
1787
1788/*
1789 * All the vcpus in this vcore are idle, so wait for a decrementer
1790 * or external interrupt to one of the vcpus.  vc->lock is held.
1791 */
1792static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
1793{
1794        DEFINE_WAIT(wait);
1795
1796        prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
1797        vc->vcore_state = VCORE_SLEEPING;
1798        spin_unlock(&vc->lock);
1799        schedule();
1800        finish_wait(&vc->wq, &wait);
1801        spin_lock(&vc->lock);
1802        vc->vcore_state = VCORE_INACTIVE;
1803}
1804
1805static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
1806{
1807        int n_ceded;
1808        struct kvmppc_vcore *vc;
1809        struct kvm_vcpu *v, *vn;
1810
1811        kvm_run->exit_reason = 0;
1812        vcpu->arch.ret = RESUME_GUEST;
1813        vcpu->arch.trap = 0;
1814        kvmppc_update_vpas(vcpu);
1815
1816        /*
1817         * Synchronize with other threads in this virtual core
1818         */
1819        vc = vcpu->arch.vcore;
1820        spin_lock(&vc->lock);
1821        vcpu->arch.ceded = 0;
1822        vcpu->arch.run_task = current;
1823        vcpu->arch.kvm_run = kvm_run;
1824        vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
1825        vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
1826        vcpu->arch.busy_preempt = TB_NIL;
1827        list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads);
1828        ++vc->n_runnable;
1829
1830        /*
1831         * This happens the first time this is called for a vcpu.
1832         * If the vcore is already running, we may be able to start
1833         * this thread straight away and have it join in.
1834         */
1835        if (!signal_pending(current)) {
1836                if (vc->vcore_state == VCORE_RUNNING &&
1837                    VCORE_EXIT_COUNT(vc) == 0) {
1838                        kvmppc_create_dtl_entry(vcpu, vc);
1839                        kvmppc_start_thread(vcpu);
1840                } else if (vc->vcore_state == VCORE_SLEEPING) {
1841                        wake_up(&vc->wq);
1842                }
1843
1844        }
1845
1846        while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
1847               !signal_pending(current)) {
1848                if (vc->vcore_state != VCORE_INACTIVE) {
1849                        spin_unlock(&vc->lock);
1850                        kvmppc_wait_for_exec(vcpu, TASK_INTERRUPTIBLE);
1851                        spin_lock(&vc->lock);
1852                        continue;
1853                }
1854                list_for_each_entry_safe(v, vn, &vc->runnable_threads,
1855                                         arch.run_list) {
1856                        kvmppc_core_prepare_to_enter(v);
1857                        if (signal_pending(v->arch.run_task)) {
1858                                kvmppc_remove_runnable(vc, v);
1859                                v->stat.signal_exits++;
1860                                v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
1861                                v->arch.ret = -EINTR;
1862                                wake_up(&v->arch.cpu_run);
1863                        }
1864                }
1865                if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
1866                        break;
1867                vc->runner = vcpu;
1868                n_ceded = 0;
1869                list_for_each_entry(v, &vc->runnable_threads, arch.run_list) {
1870                        if (!v->arch.pending_exceptions)
1871                                n_ceded += v->arch.ceded;
1872                        else
1873                                v->arch.ceded = 0;
1874                }
1875                if (n_ceded == vc->n_runnable)
1876                        kvmppc_vcore_blocked(vc);
1877                else
1878                        kvmppc_run_core(vc);
1879                vc->runner = NULL;
1880        }
1881
1882        while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
1883               (vc->vcore_state == VCORE_RUNNING ||
1884                vc->vcore_state == VCORE_EXITING)) {
1885                spin_unlock(&vc->lock);
1886                kvmppc_wait_for_exec(vcpu, TASK_UNINTERRUPTIBLE);
1887                spin_lock(&vc->lock);
1888        }
1889
1890        if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
1891                kvmppc_remove_runnable(vc, vcpu);
1892                vcpu->stat.signal_exits++;
1893                kvm_run->exit_reason = KVM_EXIT_INTR;
1894                vcpu->arch.ret = -EINTR;
1895        }
1896
1897        if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
1898                /* Wake up some vcpu to run the core */
1899                v = list_first_entry(&vc->runnable_threads,
1900                                     struct kvm_vcpu, arch.run_list);
1901                wake_up(&v->arch.cpu_run);
1902        }
1903
1904        spin_unlock(&vc->lock);
1905        return vcpu->arch.ret;
1906}
1907
1908static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
1909{
1910        int r;
1911        int srcu_idx;
1912
1913        if (!vcpu->arch.sane) {
1914                run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1915                return -EINVAL;
1916        }
1917
1918        kvmppc_core_prepare_to_enter(vcpu);
1919
1920        /* No need to go into the guest when all we'll do is come back out */
1921        if (signal_pending(current)) {
1922                run->exit_reason = KVM_EXIT_INTR;
1923                return -EINTR;
1924        }
1925
1926        atomic_inc(&vcpu->kvm->arch.vcpus_running);
1927        /* Order vcpus_running vs. rma_setup_done, see kvmppc_alloc_reset_hpt */
1928        smp_mb();
1929
1930        /* On the first time here, set up HTAB and VRMA or RMA */
1931        if (!vcpu->kvm->arch.rma_setup_done) {
1932                r = kvmppc_hv_setup_htab_rma(vcpu);
1933                if (r)
1934                        goto out;
1935        }
1936
1937        flush_fp_to_thread(current);
1938        flush_altivec_to_thread(current);
1939        flush_vsx_to_thread(current);
1940        vcpu->arch.wqp = &vcpu->arch.vcore->wq;
1941        vcpu->arch.pgdir = current->mm->pgd;
1942        vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
1943
1944        do {
1945                r = kvmppc_run_vcpu(run, vcpu);
1946
1947                if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
1948                    !(vcpu->arch.shregs.msr & MSR_PR)) {
1949                        r = kvmppc_pseries_do_hcall(vcpu);
1950                        kvmppc_core_prepare_to_enter(vcpu);
1951                } else if (r == RESUME_PAGE_FAULT) {
1952                        srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1953                        r = kvmppc_book3s_hv_page_fault(run, vcpu,
1954                                vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
1955                        srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1956                }
1957        } while (is_kvmppc_resume_guest(r));
1958
1959 out:
1960        vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
1961        atomic_dec(&vcpu->kvm->arch.vcpus_running);
1962        return r;
1963}
1964
1965
1966/* Work out RMLS (real mode limit selector) field value for a given RMA size.
1967   Assumes POWER7 or PPC970. */
1968static inline int lpcr_rmls(unsigned long rma_size)
1969{
1970        switch (rma_size) {
1971        case 32ul << 20:        /* 32 MB */
1972                if (cpu_has_feature(CPU_FTR_ARCH_206))
1973                        return 8;       /* only supported on POWER7 */
1974                return -1;
1975        case 64ul << 20:        /* 64 MB */
1976                return 3;
1977        case 128ul << 20:       /* 128 MB */
1978                return 7;
1979        case 256ul << 20:       /* 256 MB */
1980                return 4;
1981        case 1ul << 30:         /* 1 GB */
1982                return 2;
1983        case 16ul << 30:        /* 16 GB */
1984                return 1;
1985        case 256ul << 30:       /* 256 GB */
1986                return 0;
1987        default:
1988                return -1;
1989        }
1990}
1991
1992static int kvm_rma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1993{
1994        struct page *page;
1995        struct kvm_rma_info *ri = vma->vm_file->private_data;
1996
1997        if (vmf->pgoff >= kvm_rma_pages)
1998                return VM_FAULT_SIGBUS;
1999
2000        page = pfn_to_page(ri->base_pfn + vmf->pgoff);
2001        get_page(page);
2002        vmf->page = page;
2003        return 0;
2004}
2005
2006static const struct vm_operations_struct kvm_rma_vm_ops = {
2007        .fault = kvm_rma_fault,
2008};
2009
2010static int kvm_rma_mmap(struct file *file, struct vm_area_struct *vma)
2011{
2012        vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
2013        vma->vm_ops = &kvm_rma_vm_ops;
2014        return 0;
2015}
2016
2017static int kvm_rma_release(struct inode *inode, struct file *filp)
2018{
2019        struct kvm_rma_info *ri = filp->private_data;
2020
2021        kvm_release_rma(ri);
2022        return 0;
2023}
2024
2025static const struct file_operations kvm_rma_fops = {
2026        .mmap           = kvm_rma_mmap,
2027        .release        = kvm_rma_release,
2028};
2029
2030static long kvm_vm_ioctl_allocate_rma(struct kvm *kvm,
2031                                      struct kvm_allocate_rma *ret)
2032{
2033        long fd;
2034        struct kvm_rma_info *ri;
2035        /*
2036         * Only do this on PPC970 in HV mode
2037         */
2038        if (!cpu_has_feature(CPU_FTR_HVMODE) ||
2039            !cpu_has_feature(CPU_FTR_ARCH_201))
2040                return -EINVAL;
2041
2042        if (!kvm_rma_pages)
2043                return -EINVAL;
2044
2045        ri = kvm_alloc_rma();
2046        if (!ri)
2047                return -ENOMEM;
2048
2049        fd = anon_inode_getfd("kvm-rma", &kvm_rma_fops, ri, O_RDWR | O_CLOEXEC);
2050        if (fd < 0)
2051                kvm_release_rma(ri);
2052
2053        ret->rma_size = kvm_rma_pages << PAGE_SHIFT;
2054        return fd;
2055}
2056
2057static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
2058                                     int linux_psize)
2059{
2060        struct mmu_psize_def *def = &mmu_psize_defs[linux_psize];
2061
2062        if (!def->shift)
2063                return;
2064        (*sps)->page_shift = def->shift;
2065        (*sps)->slb_enc = def->sllp;
2066        (*sps)->enc[0].page_shift = def->shift;
2067        (*sps)->enc[0].pte_enc = def->penc[linux_psize];
2068        /*
2069         * Add 16MB MPSS support if host supports it
2070         */
2071        if (linux_psize != MMU_PAGE_16M && def->penc[MMU_PAGE_16M] != -1) {
2072                (*sps)->enc[1].page_shift = 24;
2073                (*sps)->enc[1].pte_enc = def->penc[MMU_PAGE_16M];
2074        }
2075        (*sps)++;
2076}
2077
2078static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
2079                                         struct kvm_ppc_smmu_info *info)
2080{
2081        struct kvm_ppc_one_seg_page_size *sps;
2082
2083        info->flags = KVM_PPC_PAGE_SIZES_REAL;
2084        if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
2085                info->flags |= KVM_PPC_1T_SEGMENTS;
2086        info->slb_size = mmu_slb_size;
2087
2088        /* We only support these sizes for now, and no muti-size segments */
2089        sps = &info->sps[0];
2090        kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K);
2091        kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K);
2092        kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M);
2093
2094        return 0;
2095}
2096
2097/*
2098 * Get (and clear) the dirty memory log for a memory slot.
2099 */
2100static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
2101                                         struct kvm_dirty_log *log)
2102{
2103        struct kvm_memory_slot *memslot;
2104        int r;
2105        unsigned long n;
2106
2107        mutex_lock(&kvm->slots_lock);
2108
2109        r = -EINVAL;
2110        if (log->slot >= KVM_USER_MEM_SLOTS)
2111                goto out;
2112
2113        memslot = id_to_memslot(kvm->memslots, log->slot);
2114        r = -ENOENT;
2115        if (!memslot->dirty_bitmap)
2116                goto out;
2117
2118        n = kvm_dirty_bitmap_bytes(memslot);
2119        memset(memslot->dirty_bitmap, 0, n);
2120
2121        r = kvmppc_hv_get_dirty_log(kvm, memslot, memslot->dirty_bitmap);
2122        if (r)
2123                goto out;
2124
2125        r = -EFAULT;
2126        if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
2127                goto out;
2128
2129        r = 0;
2130out:
2131        mutex_unlock(&kvm->slots_lock);
2132        return r;
2133}
2134
2135static void unpin_slot(struct kvm_memory_slot *memslot)
2136{
2137        unsigned long *physp;
2138        unsigned long j, npages, pfn;
2139        struct page *page;
2140
2141        physp = memslot->arch.slot_phys;
2142        npages = memslot->npages;
2143        if (!physp)
2144                return;
2145        for (j = 0; j < npages; j++) {
2146                if (!(physp[j] & KVMPPC_GOT_PAGE))
2147                        continue;
2148                pfn = physp[j] >> PAGE_SHIFT;
2149                page = pfn_to_page(pfn);
2150                SetPageDirty(page);
2151                put_page(page);
2152        }
2153}
2154
2155static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
2156                                        struct kvm_memory_slot *dont)
2157{
2158        if (!dont || free->arch.rmap != dont->arch.rmap) {
2159                vfree(free->arch.rmap);
2160                free->arch.rmap = NULL;
2161        }
2162        if (!dont || free->arch.slot_phys != dont->arch.slot_phys) {
2163                unpin_slot(free);
2164                vfree(free->arch.slot_phys);
2165                free->arch.slot_phys = NULL;
2166        }
2167}
2168
2169static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
2170                                         unsigned long npages)
2171{
2172        slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
2173        if (!slot->arch.rmap)
2174                return -ENOMEM;
2175        slot->arch.slot_phys = NULL;
2176
2177        return 0;
2178}
2179
2180static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
2181                                        struct kvm_memory_slot *memslot,
2182                                        struct kvm_userspace_memory_region *mem)
2183{
2184        unsigned long *phys;
2185
2186        /* Allocate a slot_phys array if needed */
2187        phys = memslot->arch.slot_phys;
2188        if (!kvm->arch.using_mmu_notifiers && !phys && memslot->npages) {
2189                phys = vzalloc(memslot->npages * sizeof(unsigned long));
2190                if (!phys)
2191                        return -ENOMEM;
2192                memslot->arch.slot_phys = phys;
2193        }
2194
2195        return 0;
2196}
2197
2198static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
2199                                struct kvm_userspace_memory_region *mem,
2200                                const struct kvm_memory_slot *old)
2201{
2202        unsigned long npages = mem->memory_size >> PAGE_SHIFT;
2203        struct kvm_memory_slot *memslot;
2204
2205        if (npages && old->npages) {
2206                /*
2207                 * If modifying a memslot, reset all the rmap dirty bits.
2208                 * If this is a new memslot, we don't need to do anything
2209                 * since the rmap array starts out as all zeroes,
2210                 * i.e. no pages are dirty.
2211                 */
2212                memslot = id_to_memslot(kvm->memslots, mem->slot);
2213                kvmppc_hv_get_dirty_log(kvm, memslot, NULL);
2214        }
2215}
2216
2217/*
2218 * Update LPCR values in kvm->arch and in vcores.
2219 * Caller must hold kvm->lock.
2220 */
2221void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
2222{
2223        long int i;
2224        u32 cores_done = 0;
2225
2226        if ((kvm->arch.lpcr & mask) == lpcr)
2227                return;
2228
2229        kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
2230
2231        for (i = 0; i < KVM_MAX_VCORES; ++i) {
2232                struct kvmppc_vcore *vc = kvm->arch.vcores[i];
2233                if (!vc)
2234                        continue;
2235                spin_lock(&vc->lock);
2236                vc->lpcr = (vc->lpcr & ~mask) | lpcr;
2237                spin_unlock(&vc->lock);
2238                if (++cores_done >= kvm->arch.online_vcores)
2239                        break;
2240        }
2241}
2242
2243static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
2244{
2245        return;
2246}
2247
2248static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
2249{
2250        int err = 0;
2251        struct kvm *kvm = vcpu->kvm;
2252        struct kvm_rma_info *ri = NULL;
2253        unsigned long hva;
2254        struct kvm_memory_slot *memslot;
2255        struct vm_area_struct *vma;
2256        unsigned long lpcr = 0, senc;
2257        unsigned long lpcr_mask = 0;
2258        unsigned long psize, porder;
2259        unsigned long rma_size;
2260        unsigned long rmls;
2261        unsigned long *physp;
2262        unsigned long i, npages;
2263        int srcu_idx;
2264
2265        mutex_lock(&kvm->lock);
2266        if (kvm->arch.rma_setup_done)
2267                goto out;       /* another vcpu beat us to it */
2268
2269        /* Allocate hashed page table (if not done already) and reset it */
2270        if (!kvm->arch.hpt_virt) {
2271                err = kvmppc_alloc_hpt(kvm, NULL);
2272                if (err) {
2273                        pr_err("KVM: Couldn't alloc HPT\n");
2274                        goto out;
2275                }
2276        }
2277
2278        /* Look up the memslot for guest physical address 0 */
2279        srcu_idx = srcu_read_lock(&kvm->srcu);
2280        memslot = gfn_to_memslot(kvm, 0);
2281
2282        /* We must have some memory at 0 by now */
2283        err = -EINVAL;
2284        if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
2285                goto out_srcu;
2286
2287        /* Look up the VMA for the start of this memory slot */
2288        hva = memslot->userspace_addr;
2289        down_read(&current->mm->mmap_sem);
2290        vma = find_vma(current->mm, hva);
2291        if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
2292                goto up_out;
2293
2294        psize = vma_kernel_pagesize(vma);
2295        porder = __ilog2(psize);
2296
2297        /* Is this one of our preallocated RMAs? */
2298        if (vma->vm_file && vma->vm_file->f_op == &kvm_rma_fops &&
2299            hva == vma->vm_start)
2300                ri = vma->vm_file->private_data;
2301
2302        up_read(&current->mm->mmap_sem);
2303
2304        if (!ri) {
2305                /* On POWER7, use VRMA; on PPC970, give up */
2306                err = -EPERM;
2307                if (cpu_has_feature(CPU_FTR_ARCH_201)) {
2308                        pr_err("KVM: CPU requires an RMO\n");
2309                        goto out_srcu;
2310                }
2311
2312                /* We can handle 4k, 64k or 16M pages in the VRMA */
2313                err = -EINVAL;
2314                if (!(psize == 0x1000 || psize == 0x10000 ||
2315                      psize == 0x1000000))
2316                        goto out_srcu;
2317
2318                /* Update VRMASD field in the LPCR */
2319                senc = slb_pgsize_encoding(psize);
2320                kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
2321                        (VRMA_VSID << SLB_VSID_SHIFT_1T);
2322                lpcr_mask = LPCR_VRMASD;
2323                /* the -4 is to account for senc values starting at 0x10 */
2324                lpcr = senc << (LPCR_VRMASD_SH - 4);
2325
2326                /* Create HPTEs in the hash page table for the VRMA */
2327                kvmppc_map_vrma(vcpu, memslot, porder);
2328
2329        } else {
2330                /* Set up to use an RMO region */
2331                rma_size = kvm_rma_pages;
2332                if (rma_size > memslot->npages)
2333                        rma_size = memslot->npages;
2334                rma_size <<= PAGE_SHIFT;
2335                rmls = lpcr_rmls(rma_size);
2336                err = -EINVAL;
2337                if ((long)rmls < 0) {
2338                        pr_err("KVM: Can't use RMA of 0x%lx bytes\n", rma_size);
2339                        goto out_srcu;
2340                }
2341                atomic_inc(&ri->use_count);
2342                kvm->arch.rma = ri;
2343
2344                /* Update LPCR and RMOR */
2345                if (cpu_has_feature(CPU_FTR_ARCH_201)) {
2346                        /* PPC970; insert RMLS value (split field) in HID4 */
2347                        lpcr_mask = (1ul << HID4_RMLS0_SH) |
2348                                (3ul << HID4_RMLS2_SH) | HID4_RMOR;
2349                        lpcr = ((rmls >> 2) << HID4_RMLS0_SH) |
2350                                ((rmls & 3) << HID4_RMLS2_SH);
2351                        /* RMOR is also in HID4 */
2352                        lpcr |= ((ri->base_pfn >> (26 - PAGE_SHIFT)) & 0xffff)
2353                                << HID4_RMOR_SH;
2354                } else {
2355                        /* POWER7 */
2356                        lpcr_mask = LPCR_VPM0 | LPCR_VRMA_L | LPCR_RMLS;
2357                        lpcr = rmls << LPCR_RMLS_SH;
2358                        kvm->arch.rmor = ri->base_pfn << PAGE_SHIFT;
2359                }
2360                pr_info("KVM: Using RMO at %lx size %lx (LPCR = %lx)\n",
2361                        ri->base_pfn << PAGE_SHIFT, rma_size, lpcr);
2362
2363                /* Initialize phys addrs of pages in RMO */
2364                npages = kvm_rma_pages;
2365                porder = __ilog2(npages);
2366                physp = memslot->arch.slot_phys;
2367                if (physp) {
2368                        if (npages > memslot->npages)
2369                                npages = memslot->npages;
2370                        spin_lock(&kvm->arch.slot_phys_lock);
2371                        for (i = 0; i < npages; ++i)
2372                                physp[i] = ((ri->base_pfn + i) << PAGE_SHIFT) +
2373                                        porder;
2374                        spin_unlock(&kvm->arch.slot_phys_lock);
2375                }
2376        }
2377
2378        kvmppc_update_lpcr(kvm, lpcr, lpcr_mask);
2379
2380        /* Order updates to kvm->arch.lpcr etc. vs. rma_setup_done */
2381        smp_wmb();
2382        kvm->arch.rma_setup_done = 1;
2383        err = 0;
2384 out_srcu:
2385        srcu_read_unlock(&kvm->srcu, srcu_idx);
2386 out:
2387        mutex_unlock(&kvm->lock);
2388        return err;
2389
2390 up_out:
2391        up_read(&current->mm->mmap_sem);
2392        goto out_srcu;
2393}
2394
2395static int kvmppc_core_init_vm_hv(struct kvm *kvm)
2396{
2397        unsigned long lpcr, lpid;
2398
2399        /* Allocate the guest's logical partition ID */
2400
2401        lpid = kvmppc_alloc_lpid();
2402        if ((long)lpid < 0)
2403                return -ENOMEM;
2404        kvm->arch.lpid = lpid;
2405
2406        /*
2407         * Since we don't flush the TLB when tearing down a VM,
2408         * and this lpid might have previously been used,
2409         * make sure we flush on each core before running the new VM.
2410         */
2411        cpumask_setall(&kvm->arch.need_tlb_flush);
2412
2413        /* Start out with the default set of hcalls enabled */
2414        memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
2415               sizeof(kvm->arch.enabled_hcalls));
2416
2417        kvm->arch.rma = NULL;
2418
2419        kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
2420
2421        if (cpu_has_feature(CPU_FTR_ARCH_201)) {
2422                /* PPC970; HID4 is effectively the LPCR */
2423                kvm->arch.host_lpid = 0;
2424                kvm->arch.host_lpcr = lpcr = mfspr(SPRN_HID4);
2425                lpcr &= ~((3 << HID4_LPID1_SH) | (0xful << HID4_LPID5_SH));
2426                lpcr |= ((lpid >> 4) << HID4_LPID1_SH) |
2427                        ((lpid & 0xf) << HID4_LPID5_SH);
2428        } else {
2429                /* POWER7; init LPCR for virtual RMA mode */
2430                kvm->arch.host_lpid = mfspr(SPRN_LPID);
2431                kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
2432                lpcr &= LPCR_PECE | LPCR_LPES;
2433                lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
2434                        LPCR_VPM0 | LPCR_VPM1;
2435                kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
2436                        (VRMA_VSID << SLB_VSID_SHIFT_1T);
2437                /* On POWER8 turn on online bit to enable PURR/SPURR */
2438                if (cpu_has_feature(CPU_FTR_ARCH_207S))
2439                        lpcr |= LPCR_ONL;
2440        }
2441        kvm->arch.lpcr = lpcr;
2442
2443        kvm->arch.using_mmu_notifiers = !!cpu_has_feature(CPU_FTR_ARCH_206);
2444        spin_lock_init(&kvm->arch.slot_phys_lock);
2445
2446        /*
2447         * Track that we now have a HV mode VM active. This blocks secondary
2448         * CPU threads from coming online.
2449         */
2450        kvm_hv_vm_activated();
2451
2452        return 0;
2453}
2454
2455static void kvmppc_free_vcores(struct kvm *kvm)
2456{
2457        long int i;
2458
2459        for (i = 0; i < KVM_MAX_VCORES; ++i) {
2460                if (kvm->arch.vcores[i] && kvm->arch.vcores[i]->mpp_buffer) {
2461                        struct kvmppc_vcore *vc = kvm->arch.vcores[i];
2462                        free_pages((unsigned long)vc->mpp_buffer,
2463                                   MPP_BUFFER_ORDER);
2464                }
2465                kfree(kvm->arch.vcores[i]);
2466        }
2467        kvm->arch.online_vcores = 0;
2468}
2469
2470static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
2471{
2472        kvm_hv_vm_deactivated();
2473
2474        kvmppc_free_vcores(kvm);
2475        if (kvm->arch.rma) {
2476                kvm_release_rma(kvm->arch.rma);
2477                kvm->arch.rma = NULL;
2478        }
2479
2480        kvmppc_free_hpt(kvm);
2481}
2482
2483/* We don't need to emulate any privileged instructions or dcbz */
2484static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
2485                                     unsigned int inst, int *advance)
2486{
2487        return EMULATE_FAIL;
2488}
2489
2490static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
2491                                        ulong spr_val)
2492{
2493        return EMULATE_FAIL;
2494}
2495
2496static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
2497                                        ulong *spr_val)
2498{
2499        return EMULATE_FAIL;
2500}
2501
2502static int kvmppc_core_check_processor_compat_hv(void)
2503{
2504        if (!cpu_has_feature(CPU_FTR_HVMODE))
2505                return -EIO;
2506        return 0;
2507}
2508
2509static long kvm_arch_vm_ioctl_hv(struct file *filp,
2510                                 unsigned int ioctl, unsigned long arg)
2511{
2512        struct kvm *kvm __maybe_unused = filp->private_data;
2513        void __user *argp = (void __user *)arg;
2514        long r;
2515
2516        switch (ioctl) {
2517
2518        case KVM_ALLOCATE_RMA: {
2519                struct kvm_allocate_rma rma;
2520                struct kvm *kvm = filp->private_data;
2521
2522                r = kvm_vm_ioctl_allocate_rma(kvm, &rma);
2523                if (r >= 0 && copy_to_user(argp, &rma, sizeof(rma)))
2524                        r = -EFAULT;
2525                break;
2526        }
2527
2528        case KVM_PPC_ALLOCATE_HTAB: {
2529                u32 htab_order;
2530
2531                r = -EFAULT;
2532                if (get_user(htab_order, (u32 __user *)argp))
2533                        break;
2534                r = kvmppc_alloc_reset_hpt(kvm, &htab_order);
2535                if (r)
2536                        break;
2537                r = -EFAULT;
2538                if (put_user(htab_order, (u32 __user *)argp))
2539                        break;
2540                r = 0;
2541                break;
2542        }
2543
2544        case KVM_PPC_GET_HTAB_FD: {
2545                struct kvm_get_htab_fd ghf;
2546
2547                r = -EFAULT;
2548                if (copy_from_user(&ghf, argp, sizeof(ghf)))
2549                        break;
2550                r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
2551                break;
2552        }
2553
2554        default:
2555                r = -ENOTTY;
2556        }
2557
2558        return r;
2559}
2560
2561/*
2562 * List of hcall numbers to enable by default.
2563 * For compatibility with old userspace, we enable by default
2564 * all hcalls that were implemented before the hcall-enabling
2565 * facility was added.  Note this list should not include H_RTAS.
2566 */
2567static unsigned int default_hcall_list[] = {
2568        H_REMOVE,
2569        H_ENTER,
2570        H_READ,
2571        H_PROTECT,
2572        H_BULK_REMOVE,
2573        H_GET_TCE,
2574        H_PUT_TCE,
2575        H_SET_DABR,
2576        H_SET_XDABR,
2577        H_CEDE,
2578        H_PROD,
2579        H_CONFER,
2580        H_REGISTER_VPA,
2581#ifdef CONFIG_KVM_XICS
2582        H_EOI,
2583        H_CPPR,
2584        H_IPI,
2585        H_IPOLL,
2586        H_XIRR,
2587        H_XIRR_X,
2588#endif
2589        0
2590};
2591
2592static void init_default_hcalls(void)
2593{
2594        int i;
2595        unsigned int hcall;
2596
2597        for (i = 0; default_hcall_list[i]; ++i) {
2598                hcall = default_hcall_list[i];
2599                WARN_ON(!kvmppc_hcall_impl_hv(hcall));
2600                __set_bit(hcall / 4, default_enabled_hcalls);
2601        }
2602}
2603
2604static struct kvmppc_ops kvm_ops_hv = {
2605        .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
2606        .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
2607        .get_one_reg = kvmppc_get_one_reg_hv,
2608        .set_one_reg = kvmppc_set_one_reg_hv,
2609        .vcpu_load   = kvmppc_core_vcpu_load_hv,
2610        .vcpu_put    = kvmppc_core_vcpu_put_hv,
2611        .set_msr     = kvmppc_set_msr_hv,
2612        .vcpu_run    = kvmppc_vcpu_run_hv,
2613        .vcpu_create = kvmppc_core_vcpu_create_hv,
2614        .vcpu_free   = kvmppc_core_vcpu_free_hv,
2615        .check_requests = kvmppc_core_check_requests_hv,
2616        .get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
2617        .flush_memslot  = kvmppc_core_flush_memslot_hv,
2618        .prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
2619        .commit_memory_region  = kvmppc_core_commit_memory_region_hv,
2620        .unmap_hva = kvm_unmap_hva_hv,
2621        .unmap_hva_range = kvm_unmap_hva_range_hv,
2622        .age_hva  = kvm_age_hva_hv,
2623        .test_age_hva = kvm_test_age_hva_hv,
2624        .set_spte_hva = kvm_set_spte_hva_hv,
2625        .mmu_destroy  = kvmppc_mmu_destroy_hv,
2626        .free_memslot = kvmppc_core_free_memslot_hv,
2627        .create_memslot = kvmppc_core_create_memslot_hv,
2628        .init_vm =  kvmppc_core_init_vm_hv,
2629        .destroy_vm = kvmppc_core_destroy_vm_hv,
2630        .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
2631        .emulate_op = kvmppc_core_emulate_op_hv,
2632        .emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
2633        .emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
2634        .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
2635        .arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
2636        .hcall_implemented = kvmppc_hcall_impl_hv,
2637};
2638
2639static int kvmppc_book3s_init_hv(void)
2640{
2641        int r;
2642        /*
2643         * FIXME!! Do we need to check on all cpus ?
2644         */
2645        r = kvmppc_core_check_processor_compat_hv();
2646        if (r < 0)
2647                return -ENODEV;
2648
2649        kvm_ops_hv.owner = THIS_MODULE;
2650        kvmppc_hv_ops = &kvm_ops_hv;
2651
2652        init_default_hcalls();
2653
2654        r = kvmppc_mmu_hv_init();
2655        return r;
2656}
2657
2658static void kvmppc_book3s_exit_hv(void)
2659{
2660        kvmppc_hv_ops = NULL;
2661}
2662
2663module_init(kvmppc_book3s_init_hv);
2664module_exit(kvmppc_book3s_exit_hv);
2665MODULE_LICENSE("GPL");
2666MODULE_ALIAS_MISCDEV(KVM_MINOR);
2667MODULE_ALIAS("devname:kvm");
2668