linux/arch/sparc/kernel/smp_64.c
<<
>>
Prefs
   1/* smp.c: Sparc64 SMP support.
   2 *
   3 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
   4 */
   5
   6#include <linux/export.h>
   7#include <linux/kernel.h>
   8#include <linux/sched.h>
   9#include <linux/mm.h>
  10#include <linux/pagemap.h>
  11#include <linux/threads.h>
  12#include <linux/smp.h>
  13#include <linux/interrupt.h>
  14#include <linux/kernel_stat.h>
  15#include <linux/delay.h>
  16#include <linux/init.h>
  17#include <linux/spinlock.h>
  18#include <linux/fs.h>
  19#include <linux/seq_file.h>
  20#include <linux/cache.h>
  21#include <linux/jiffies.h>
  22#include <linux/profile.h>
  23#include <linux/bootmem.h>
  24#include <linux/vmalloc.h>
  25#include <linux/ftrace.h>
  26#include <linux/cpu.h>
  27#include <linux/slab.h>
  28#include <linux/kgdb.h>
  29
  30#include <asm/head.h>
  31#include <asm/ptrace.h>
  32#include <linux/atomic.h>
  33#include <asm/tlbflush.h>
  34#include <asm/mmu_context.h>
  35#include <asm/cpudata.h>
  36#include <asm/hvtramp.h>
  37#include <asm/io.h>
  38#include <asm/timer.h>
  39#include <asm/setup.h>
  40
  41#include <asm/irq.h>
  42#include <asm/irq_regs.h>
  43#include <asm/page.h>
  44#include <asm/pgtable.h>
  45#include <asm/oplib.h>
  46#include <asm/uaccess.h>
  47#include <asm/starfire.h>
  48#include <asm/tlb.h>
  49#include <asm/sections.h>
  50#include <asm/prom.h>
  51#include <asm/mdesc.h>
  52#include <asm/ldc.h>
  53#include <asm/hypervisor.h>
  54#include <asm/pcr.h>
  55
  56#include "cpumap.h"
  57#include "kernel.h"
  58
  59DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
  60cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
  61        { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
  62
  63EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
  64EXPORT_SYMBOL(cpu_core_map);
  65
  66static cpumask_t smp_commenced_mask;
  67
  68void smp_info(struct seq_file *m)
  69{
  70        int i;
  71        
  72        seq_printf(m, "State:\n");
  73        for_each_online_cpu(i)
  74                seq_printf(m, "CPU%d:\t\tonline\n", i);
  75}
  76
  77void smp_bogo(struct seq_file *m)
  78{
  79        int i;
  80        
  81        for_each_online_cpu(i)
  82                seq_printf(m,
  83                           "Cpu%dClkTck\t: %016lx\n",
  84                           i, cpu_data(i).clock_tick);
  85}
  86
  87extern void setup_sparc64_timer(void);
  88
  89static volatile unsigned long callin_flag = 0;
  90
  91void smp_callin(void)
  92{
  93        int cpuid = hard_smp_processor_id();
  94
  95        __local_per_cpu_offset = __per_cpu_offset(cpuid);
  96
  97        if (tlb_type == hypervisor)
  98                sun4v_ktsb_register();
  99
 100        __flush_tlb_all();
 101
 102        setup_sparc64_timer();
 103
 104        if (cheetah_pcache_forced_on)
 105                cheetah_enable_pcache();
 106
 107        callin_flag = 1;
 108        __asm__ __volatile__("membar #Sync\n\t"
 109                             "flush  %%g6" : : : "memory");
 110
 111        /* Clear this or we will die instantly when we
 112         * schedule back to this idler...
 113         */
 114        current_thread_info()->new_child = 0;
 115
 116        /* Attach to the address space of init_task. */
 117        atomic_inc(&init_mm.mm_count);
 118        current->active_mm = &init_mm;
 119
 120        /* inform the notifiers about the new cpu */
 121        notify_cpu_starting(cpuid);
 122
 123        while (!cpumask_test_cpu(cpuid, &smp_commenced_mask))
 124                rmb();
 125
 126        set_cpu_online(cpuid, true);
 127
 128        /* idle thread is expected to have preempt disabled */
 129        preempt_disable();
 130
 131        local_irq_enable();
 132
 133        cpu_startup_entry(CPUHP_ONLINE);
 134}
 135
 136void cpu_panic(void)
 137{
 138        printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
 139        panic("SMP bolixed\n");
 140}
 141
 142/* This tick register synchronization scheme is taken entirely from
 143 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
 144 *
 145 * The only change I've made is to rework it so that the master
 146 * initiates the synchonization instead of the slave. -DaveM
 147 */
 148
 149#define MASTER  0
 150#define SLAVE   (SMP_CACHE_BYTES/sizeof(unsigned long))
 151
 152#define NUM_ROUNDS      64      /* magic value */
 153#define NUM_ITERS       5       /* likewise */
 154
 155static DEFINE_RAW_SPINLOCK(itc_sync_lock);
 156static unsigned long go[SLAVE + 1];
 157
 158#define DEBUG_TICK_SYNC 0
 159
 160static inline long get_delta (long *rt, long *master)
 161{
 162        unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
 163        unsigned long tcenter, t0, t1, tm;
 164        unsigned long i;
 165
 166        for (i = 0; i < NUM_ITERS; i++) {
 167                t0 = tick_ops->get_tick();
 168                go[MASTER] = 1;
 169                membar_safe("#StoreLoad");
 170                while (!(tm = go[SLAVE]))
 171                        rmb();
 172                go[SLAVE] = 0;
 173                wmb();
 174                t1 = tick_ops->get_tick();
 175
 176                if (t1 - t0 < best_t1 - best_t0)
 177                        best_t0 = t0, best_t1 = t1, best_tm = tm;
 178        }
 179
 180        *rt = best_t1 - best_t0;
 181        *master = best_tm - best_t0;
 182
 183        /* average best_t0 and best_t1 without overflow: */
 184        tcenter = (best_t0/2 + best_t1/2);
 185        if (best_t0 % 2 + best_t1 % 2 == 2)
 186                tcenter++;
 187        return tcenter - best_tm;
 188}
 189
 190void smp_synchronize_tick_client(void)
 191{
 192        long i, delta, adj, adjust_latency = 0, done = 0;
 193        unsigned long flags, rt, master_time_stamp;
 194#if DEBUG_TICK_SYNC
 195        struct {
 196                long rt;        /* roundtrip time */
 197                long master;    /* master's timestamp */
 198                long diff;      /* difference between midpoint and master's timestamp */
 199                long lat;       /* estimate of itc adjustment latency */
 200        } t[NUM_ROUNDS];
 201#endif
 202
 203        go[MASTER] = 1;
 204
 205        while (go[MASTER])
 206                rmb();
 207
 208        local_irq_save(flags);
 209        {
 210                for (i = 0; i < NUM_ROUNDS; i++) {
 211                        delta = get_delta(&rt, &master_time_stamp);
 212                        if (delta == 0)
 213                                done = 1;       /* let's lock on to this... */
 214
 215                        if (!done) {
 216                                if (i > 0) {
 217                                        adjust_latency += -delta;
 218                                        adj = -delta + adjust_latency/4;
 219                                } else
 220                                        adj = -delta;
 221
 222                                tick_ops->add_tick(adj);
 223                        }
 224#if DEBUG_TICK_SYNC
 225                        t[i].rt = rt;
 226                        t[i].master = master_time_stamp;
 227                        t[i].diff = delta;
 228                        t[i].lat = adjust_latency/4;
 229#endif
 230                }
 231        }
 232        local_irq_restore(flags);
 233
 234#if DEBUG_TICK_SYNC
 235        for (i = 0; i < NUM_ROUNDS; i++)
 236                printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
 237                       t[i].rt, t[i].master, t[i].diff, t[i].lat);
 238#endif
 239
 240        printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
 241               "(last diff %ld cycles, maxerr %lu cycles)\n",
 242               smp_processor_id(), delta, rt);
 243}
 244
 245static void smp_start_sync_tick_client(int cpu);
 246
 247static void smp_synchronize_one_tick(int cpu)
 248{
 249        unsigned long flags, i;
 250
 251        go[MASTER] = 0;
 252
 253        smp_start_sync_tick_client(cpu);
 254
 255        /* wait for client to be ready */
 256        while (!go[MASTER])
 257                rmb();
 258
 259        /* now let the client proceed into his loop */
 260        go[MASTER] = 0;
 261        membar_safe("#StoreLoad");
 262
 263        raw_spin_lock_irqsave(&itc_sync_lock, flags);
 264        {
 265                for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
 266                        while (!go[MASTER])
 267                                rmb();
 268                        go[MASTER] = 0;
 269                        wmb();
 270                        go[SLAVE] = tick_ops->get_tick();
 271                        membar_safe("#StoreLoad");
 272                }
 273        }
 274        raw_spin_unlock_irqrestore(&itc_sync_lock, flags);
 275}
 276
 277#if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
 278static void ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg,
 279                                void **descrp)
 280{
 281        extern unsigned long sparc64_ttable_tl0;
 282        extern unsigned long kern_locked_tte_data;
 283        struct hvtramp_descr *hdesc;
 284        unsigned long trampoline_ra;
 285        struct trap_per_cpu *tb;
 286        u64 tte_vaddr, tte_data;
 287        unsigned long hv_err;
 288        int i;
 289
 290        hdesc = kzalloc(sizeof(*hdesc) +
 291                        (sizeof(struct hvtramp_mapping) *
 292                         num_kernel_image_mappings - 1),
 293                        GFP_KERNEL);
 294        if (!hdesc) {
 295                printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
 296                       "hvtramp_descr.\n");
 297                return;
 298        }
 299        *descrp = hdesc;
 300
 301        hdesc->cpu = cpu;
 302        hdesc->num_mappings = num_kernel_image_mappings;
 303
 304        tb = &trap_block[cpu];
 305
 306        hdesc->fault_info_va = (unsigned long) &tb->fault_info;
 307        hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
 308
 309        hdesc->thread_reg = thread_reg;
 310
 311        tte_vaddr = (unsigned long) KERNBASE;
 312        tte_data = kern_locked_tte_data;
 313
 314        for (i = 0; i < hdesc->num_mappings; i++) {
 315                hdesc->maps[i].vaddr = tte_vaddr;
 316                hdesc->maps[i].tte   = tte_data;
 317                tte_vaddr += 0x400000;
 318                tte_data  += 0x400000;
 319        }
 320
 321        trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
 322
 323        hv_err = sun4v_cpu_start(cpu, trampoline_ra,
 324                                 kimage_addr_to_ra(&sparc64_ttable_tl0),
 325                                 __pa(hdesc));
 326        if (hv_err)
 327                printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
 328                       "gives error %lu\n", hv_err);
 329}
 330#endif
 331
 332extern unsigned long sparc64_cpu_startup;
 333
 334/* The OBP cpu startup callback truncates the 3rd arg cookie to
 335 * 32-bits (I think) so to be safe we have it read the pointer
 336 * contained here so we work on >4GB machines. -DaveM
 337 */
 338static struct thread_info *cpu_new_thread = NULL;
 339
 340static int smp_boot_one_cpu(unsigned int cpu, struct task_struct *idle)
 341{
 342        unsigned long entry =
 343                (unsigned long)(&sparc64_cpu_startup);
 344        unsigned long cookie =
 345                (unsigned long)(&cpu_new_thread);
 346        void *descr = NULL;
 347        int timeout, ret;
 348
 349        callin_flag = 0;
 350        cpu_new_thread = task_thread_info(idle);
 351
 352        if (tlb_type == hypervisor) {
 353#if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
 354                if (ldom_domaining_enabled)
 355                        ldom_startcpu_cpuid(cpu,
 356                                            (unsigned long) cpu_new_thread,
 357                                            &descr);
 358                else
 359#endif
 360                        prom_startcpu_cpuid(cpu, entry, cookie);
 361        } else {
 362                struct device_node *dp = of_find_node_by_cpuid(cpu);
 363
 364                prom_startcpu(dp->phandle, entry, cookie);
 365        }
 366
 367        for (timeout = 0; timeout < 50000; timeout++) {
 368                if (callin_flag)
 369                        break;
 370                udelay(100);
 371        }
 372
 373        if (callin_flag) {
 374                ret = 0;
 375        } else {
 376                printk("Processor %d is stuck.\n", cpu);
 377                ret = -ENODEV;
 378        }
 379        cpu_new_thread = NULL;
 380
 381        kfree(descr);
 382
 383        return ret;
 384}
 385
 386static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
 387{
 388        u64 result, target;
 389        int stuck, tmp;
 390
 391        if (this_is_starfire) {
 392                /* map to real upaid */
 393                cpu = (((cpu & 0x3c) << 1) |
 394                        ((cpu & 0x40) >> 4) |
 395                        (cpu & 0x3));
 396        }
 397
 398        target = (cpu << 14) | 0x70;
 399again:
 400        /* Ok, this is the real Spitfire Errata #54.
 401         * One must read back from a UDB internal register
 402         * after writes to the UDB interrupt dispatch, but
 403         * before the membar Sync for that write.
 404         * So we use the high UDB control register (ASI 0x7f,
 405         * ADDR 0x20) for the dummy read. -DaveM
 406         */
 407        tmp = 0x40;
 408        __asm__ __volatile__(
 409        "wrpr   %1, %2, %%pstate\n\t"
 410        "stxa   %4, [%0] %3\n\t"
 411        "stxa   %5, [%0+%8] %3\n\t"
 412        "add    %0, %8, %0\n\t"
 413        "stxa   %6, [%0+%8] %3\n\t"
 414        "membar #Sync\n\t"
 415        "stxa   %%g0, [%7] %3\n\t"
 416        "membar #Sync\n\t"
 417        "mov    0x20, %%g1\n\t"
 418        "ldxa   [%%g1] 0x7f, %%g0\n\t"
 419        "membar #Sync"
 420        : "=r" (tmp)
 421        : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
 422          "r" (data0), "r" (data1), "r" (data2), "r" (target),
 423          "r" (0x10), "0" (tmp)
 424        : "g1");
 425
 426        /* NOTE: PSTATE_IE is still clear. */
 427        stuck = 100000;
 428        do {
 429                __asm__ __volatile__("ldxa [%%g0] %1, %0"
 430                        : "=r" (result)
 431                        : "i" (ASI_INTR_DISPATCH_STAT));
 432                if (result == 0) {
 433                        __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 434                                             : : "r" (pstate));
 435                        return;
 436                }
 437                stuck -= 1;
 438                if (stuck == 0)
 439                        break;
 440        } while (result & 0x1);
 441        __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 442                             : : "r" (pstate));
 443        if (stuck == 0) {
 444                printk("CPU[%d]: mondo stuckage result[%016llx]\n",
 445                       smp_processor_id(), result);
 446        } else {
 447                udelay(2);
 448                goto again;
 449        }
 450}
 451
 452static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt)
 453{
 454        u64 *mondo, data0, data1, data2;
 455        u16 *cpu_list;
 456        u64 pstate;
 457        int i;
 458
 459        __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
 460        cpu_list = __va(tb->cpu_list_pa);
 461        mondo = __va(tb->cpu_mondo_block_pa);
 462        data0 = mondo[0];
 463        data1 = mondo[1];
 464        data2 = mondo[2];
 465        for (i = 0; i < cnt; i++)
 466                spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]);
 467}
 468
 469/* Cheetah now allows to send the whole 64-bytes of data in the interrupt
 470 * packet, but we have no use for that.  However we do take advantage of
 471 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
 472 */
 473static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt)
 474{
 475        int nack_busy_id, is_jbus, need_more;
 476        u64 *mondo, pstate, ver, busy_mask;
 477        u16 *cpu_list;
 478
 479        cpu_list = __va(tb->cpu_list_pa);
 480        mondo = __va(tb->cpu_mondo_block_pa);
 481
 482        /* Unfortunately, someone at Sun had the brilliant idea to make the
 483         * busy/nack fields hard-coded by ITID number for this Ultra-III
 484         * derivative processor.
 485         */
 486        __asm__ ("rdpr %%ver, %0" : "=r" (ver));
 487        is_jbus = ((ver >> 32) == __JALAPENO_ID ||
 488                   (ver >> 32) == __SERRANO_ID);
 489
 490        __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
 491
 492retry:
 493        need_more = 0;
 494        __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
 495                             : : "r" (pstate), "i" (PSTATE_IE));
 496
 497        /* Setup the dispatch data registers. */
 498        __asm__ __volatile__("stxa      %0, [%3] %6\n\t"
 499                             "stxa      %1, [%4] %6\n\t"
 500                             "stxa      %2, [%5] %6\n\t"
 501                             "membar    #Sync\n\t"
 502                             : /* no outputs */
 503                             : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]),
 504                               "r" (0x40), "r" (0x50), "r" (0x60),
 505                               "i" (ASI_INTR_W));
 506
 507        nack_busy_id = 0;
 508        busy_mask = 0;
 509        {
 510                int i;
 511
 512                for (i = 0; i < cnt; i++) {
 513                        u64 target, nr;
 514
 515                        nr = cpu_list[i];
 516                        if (nr == 0xffff)
 517                                continue;
 518
 519                        target = (nr << 14) | 0x70;
 520                        if (is_jbus) {
 521                                busy_mask |= (0x1UL << (nr * 2));
 522                        } else {
 523                                target |= (nack_busy_id << 24);
 524                                busy_mask |= (0x1UL <<
 525                                              (nack_busy_id * 2));
 526                        }
 527                        __asm__ __volatile__(
 528                                "stxa   %%g0, [%0] %1\n\t"
 529                                "membar #Sync\n\t"
 530                                : /* no outputs */
 531                                : "r" (target), "i" (ASI_INTR_W));
 532                        nack_busy_id++;
 533                        if (nack_busy_id == 32) {
 534                                need_more = 1;
 535                                break;
 536                        }
 537                }
 538        }
 539
 540        /* Now, poll for completion. */
 541        {
 542                u64 dispatch_stat, nack_mask;
 543                long stuck;
 544
 545                stuck = 100000 * nack_busy_id;
 546                nack_mask = busy_mask << 1;
 547                do {
 548                        __asm__ __volatile__("ldxa      [%%g0] %1, %0"
 549                                             : "=r" (dispatch_stat)
 550                                             : "i" (ASI_INTR_DISPATCH_STAT));
 551                        if (!(dispatch_stat & (busy_mask | nack_mask))) {
 552                                __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 553                                                     : : "r" (pstate));
 554                                if (unlikely(need_more)) {
 555                                        int i, this_cnt = 0;
 556                                        for (i = 0; i < cnt; i++) {
 557                                                if (cpu_list[i] == 0xffff)
 558                                                        continue;
 559                                                cpu_list[i] = 0xffff;
 560                                                this_cnt++;
 561                                                if (this_cnt == 32)
 562                                                        break;
 563                                        }
 564                                        goto retry;
 565                                }
 566                                return;
 567                        }
 568                        if (!--stuck)
 569                                break;
 570                } while (dispatch_stat & busy_mask);
 571
 572                __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 573                                     : : "r" (pstate));
 574
 575                if (dispatch_stat & busy_mask) {
 576                        /* Busy bits will not clear, continue instead
 577                         * of freezing up on this cpu.
 578                         */
 579                        printk("CPU[%d]: mondo stuckage result[%016llx]\n",
 580                               smp_processor_id(), dispatch_stat);
 581                } else {
 582                        int i, this_busy_nack = 0;
 583
 584                        /* Delay some random time with interrupts enabled
 585                         * to prevent deadlock.
 586                         */
 587                        udelay(2 * nack_busy_id);
 588
 589                        /* Clear out the mask bits for cpus which did not
 590                         * NACK us.
 591                         */
 592                        for (i = 0; i < cnt; i++) {
 593                                u64 check_mask, nr;
 594
 595                                nr = cpu_list[i];
 596                                if (nr == 0xffff)
 597                                        continue;
 598
 599                                if (is_jbus)
 600                                        check_mask = (0x2UL << (2*nr));
 601                                else
 602                                        check_mask = (0x2UL <<
 603                                                      this_busy_nack);
 604                                if ((dispatch_stat & check_mask) == 0)
 605                                        cpu_list[i] = 0xffff;
 606                                this_busy_nack += 2;
 607                                if (this_busy_nack == 64)
 608                                        break;
 609                        }
 610
 611                        goto retry;
 612                }
 613        }
 614}
 615
 616/* Multi-cpu list version.  */
 617static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt)
 618{
 619        int retries, this_cpu, prev_sent, i, saw_cpu_error;
 620        unsigned long status;
 621        u16 *cpu_list;
 622
 623        this_cpu = smp_processor_id();
 624
 625        cpu_list = __va(tb->cpu_list_pa);
 626
 627        saw_cpu_error = 0;
 628        retries = 0;
 629        prev_sent = 0;
 630        do {
 631                int forward_progress, n_sent;
 632
 633                status = sun4v_cpu_mondo_send(cnt,
 634                                              tb->cpu_list_pa,
 635                                              tb->cpu_mondo_block_pa);
 636
 637                /* HV_EOK means all cpus received the xcall, we're done.  */
 638                if (likely(status == HV_EOK))
 639                        break;
 640
 641                /* First, see if we made any forward progress.
 642                 *
 643                 * The hypervisor indicates successful sends by setting
 644                 * cpu list entries to the value 0xffff.
 645                 */
 646                n_sent = 0;
 647                for (i = 0; i < cnt; i++) {
 648                        if (likely(cpu_list[i] == 0xffff))
 649                                n_sent++;
 650                }
 651
 652                forward_progress = 0;
 653                if (n_sent > prev_sent)
 654                        forward_progress = 1;
 655
 656                prev_sent = n_sent;
 657
 658                /* If we get a HV_ECPUERROR, then one or more of the cpus
 659                 * in the list are in error state.  Use the cpu_state()
 660                 * hypervisor call to find out which cpus are in error state.
 661                 */
 662                if (unlikely(status == HV_ECPUERROR)) {
 663                        for (i = 0; i < cnt; i++) {
 664                                long err;
 665                                u16 cpu;
 666
 667                                cpu = cpu_list[i];
 668                                if (cpu == 0xffff)
 669                                        continue;
 670
 671                                err = sun4v_cpu_state(cpu);
 672                                if (err == HV_CPU_STATE_ERROR) {
 673                                        saw_cpu_error = (cpu + 1);
 674                                        cpu_list[i] = 0xffff;
 675                                }
 676                        }
 677                } else if (unlikely(status != HV_EWOULDBLOCK))
 678                        goto fatal_mondo_error;
 679
 680                /* Don't bother rewriting the CPU list, just leave the
 681                 * 0xffff and non-0xffff entries in there and the
 682                 * hypervisor will do the right thing.
 683                 *
 684                 * Only advance timeout state if we didn't make any
 685                 * forward progress.
 686                 */
 687                if (unlikely(!forward_progress)) {
 688                        if (unlikely(++retries > 10000))
 689                                goto fatal_mondo_timeout;
 690
 691                        /* Delay a little bit to let other cpus catch up
 692                         * on their cpu mondo queue work.
 693                         */
 694                        udelay(2 * cnt);
 695                }
 696        } while (1);
 697
 698        if (unlikely(saw_cpu_error))
 699                goto fatal_mondo_cpu_error;
 700
 701        return;
 702
 703fatal_mondo_cpu_error:
 704        printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
 705               "(including %d) were in error state\n",
 706               this_cpu, saw_cpu_error - 1);
 707        return;
 708
 709fatal_mondo_timeout:
 710        printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
 711               " progress after %d retries.\n",
 712               this_cpu, retries);
 713        goto dump_cpu_list_and_out;
 714
 715fatal_mondo_error:
 716        printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
 717               this_cpu, status);
 718        printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
 719               "mondo_block_pa(%lx)\n",
 720               this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
 721
 722dump_cpu_list_and_out:
 723        printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
 724        for (i = 0; i < cnt; i++)
 725                printk("%u ", cpu_list[i]);
 726        printk("]\n");
 727}
 728
 729static void (*xcall_deliver_impl)(struct trap_per_cpu *, int);
 730
 731static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
 732{
 733        struct trap_per_cpu *tb;
 734        int this_cpu, i, cnt;
 735        unsigned long flags;
 736        u16 *cpu_list;
 737        u64 *mondo;
 738
 739        /* We have to do this whole thing with interrupts fully disabled.
 740         * Otherwise if we send an xcall from interrupt context it will
 741         * corrupt both our mondo block and cpu list state.
 742         *
 743         * One consequence of this is that we cannot use timeout mechanisms
 744         * that depend upon interrupts being delivered locally.  So, for
 745         * example, we cannot sample jiffies and expect it to advance.
 746         *
 747         * Fortunately, udelay() uses %stick/%tick so we can use that.
 748         */
 749        local_irq_save(flags);
 750
 751        this_cpu = smp_processor_id();
 752        tb = &trap_block[this_cpu];
 753
 754        mondo = __va(tb->cpu_mondo_block_pa);
 755        mondo[0] = data0;
 756        mondo[1] = data1;
 757        mondo[2] = data2;
 758        wmb();
 759
 760        cpu_list = __va(tb->cpu_list_pa);
 761
 762        /* Setup the initial cpu list.  */
 763        cnt = 0;
 764        for_each_cpu(i, mask) {
 765                if (i == this_cpu || !cpu_online(i))
 766                        continue;
 767                cpu_list[cnt++] = i;
 768        }
 769
 770        if (cnt)
 771                xcall_deliver_impl(tb, cnt);
 772
 773        local_irq_restore(flags);
 774}
 775
 776/* Send cross call to all processors mentioned in MASK_P
 777 * except self.  Really, there are only two cases currently,
 778 * "cpu_online_mask" and "mm_cpumask(mm)".
 779 */
 780static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask)
 781{
 782        u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
 783
 784        xcall_deliver(data0, data1, data2, mask);
 785}
 786
 787/* Send cross call to all processors except self. */
 788static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2)
 789{
 790        smp_cross_call_masked(func, ctx, data1, data2, cpu_online_mask);
 791}
 792
 793extern unsigned long xcall_sync_tick;
 794
 795static void smp_start_sync_tick_client(int cpu)
 796{
 797        xcall_deliver((u64) &xcall_sync_tick, 0, 0,
 798                      cpumask_of(cpu));
 799}
 800
 801extern unsigned long xcall_call_function;
 802
 803void arch_send_call_function_ipi_mask(const struct cpumask *mask)
 804{
 805        xcall_deliver((u64) &xcall_call_function, 0, 0, mask);
 806}
 807
 808extern unsigned long xcall_call_function_single;
 809
 810void arch_send_call_function_single_ipi(int cpu)
 811{
 812        xcall_deliver((u64) &xcall_call_function_single, 0, 0,
 813                      cpumask_of(cpu));
 814}
 815
 816void __irq_entry smp_call_function_client(int irq, struct pt_regs *regs)
 817{
 818        clear_softint(1 << irq);
 819        generic_smp_call_function_interrupt();
 820}
 821
 822void __irq_entry smp_call_function_single_client(int irq, struct pt_regs *regs)
 823{
 824        clear_softint(1 << irq);
 825        generic_smp_call_function_single_interrupt();
 826}
 827
 828static void tsb_sync(void *info)
 829{
 830        struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
 831        struct mm_struct *mm = info;
 832
 833        /* It is not valid to test "current->active_mm == mm" here.
 834         *
 835         * The value of "current" is not changed atomically with
 836         * switch_mm().  But that's OK, we just need to check the
 837         * current cpu's trap block PGD physical address.
 838         */
 839        if (tp->pgd_paddr == __pa(mm->pgd))
 840                tsb_context_switch(mm);
 841}
 842
 843void smp_tsb_sync(struct mm_struct *mm)
 844{
 845        smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1);
 846}
 847
 848extern unsigned long xcall_flush_tlb_mm;
 849extern unsigned long xcall_flush_tlb_page;
 850extern unsigned long xcall_flush_tlb_kernel_range;
 851extern unsigned long xcall_fetch_glob_regs;
 852extern unsigned long xcall_fetch_glob_pmu;
 853extern unsigned long xcall_fetch_glob_pmu_n4;
 854extern unsigned long xcall_receive_signal;
 855extern unsigned long xcall_new_mmu_context_version;
 856#ifdef CONFIG_KGDB
 857extern unsigned long xcall_kgdb_capture;
 858#endif
 859
 860#ifdef DCACHE_ALIASING_POSSIBLE
 861extern unsigned long xcall_flush_dcache_page_cheetah;
 862#endif
 863extern unsigned long xcall_flush_dcache_page_spitfire;
 864
 865static inline void __local_flush_dcache_page(struct page *page)
 866{
 867#ifdef DCACHE_ALIASING_POSSIBLE
 868        __flush_dcache_page(page_address(page),
 869                            ((tlb_type == spitfire) &&
 870                             page_mapping(page) != NULL));
 871#else
 872        if (page_mapping(page) != NULL &&
 873            tlb_type == spitfire)
 874                __flush_icache_page(__pa(page_address(page)));
 875#endif
 876}
 877
 878void smp_flush_dcache_page_impl(struct page *page, int cpu)
 879{
 880        int this_cpu;
 881
 882        if (tlb_type == hypervisor)
 883                return;
 884
 885#ifdef CONFIG_DEBUG_DCFLUSH
 886        atomic_inc(&dcpage_flushes);
 887#endif
 888
 889        this_cpu = get_cpu();
 890
 891        if (cpu == this_cpu) {
 892                __local_flush_dcache_page(page);
 893        } else if (cpu_online(cpu)) {
 894                void *pg_addr = page_address(page);
 895                u64 data0 = 0;
 896
 897                if (tlb_type == spitfire) {
 898                        data0 = ((u64)&xcall_flush_dcache_page_spitfire);
 899                        if (page_mapping(page) != NULL)
 900                                data0 |= ((u64)1 << 32);
 901                } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
 902#ifdef DCACHE_ALIASING_POSSIBLE
 903                        data0 = ((u64)&xcall_flush_dcache_page_cheetah);
 904#endif
 905                }
 906                if (data0) {
 907                        xcall_deliver(data0, __pa(pg_addr),
 908                                      (u64) pg_addr, cpumask_of(cpu));
 909#ifdef CONFIG_DEBUG_DCFLUSH
 910                        atomic_inc(&dcpage_flushes_xcall);
 911#endif
 912                }
 913        }
 914
 915        put_cpu();
 916}
 917
 918void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
 919{
 920        void *pg_addr;
 921        u64 data0;
 922
 923        if (tlb_type == hypervisor)
 924                return;
 925
 926        preempt_disable();
 927
 928#ifdef CONFIG_DEBUG_DCFLUSH
 929        atomic_inc(&dcpage_flushes);
 930#endif
 931        data0 = 0;
 932        pg_addr = page_address(page);
 933        if (tlb_type == spitfire) {
 934                data0 = ((u64)&xcall_flush_dcache_page_spitfire);
 935                if (page_mapping(page) != NULL)
 936                        data0 |= ((u64)1 << 32);
 937        } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
 938#ifdef DCACHE_ALIASING_POSSIBLE
 939                data0 = ((u64)&xcall_flush_dcache_page_cheetah);
 940#endif
 941        }
 942        if (data0) {
 943                xcall_deliver(data0, __pa(pg_addr),
 944                              (u64) pg_addr, cpu_online_mask);
 945#ifdef CONFIG_DEBUG_DCFLUSH
 946                atomic_inc(&dcpage_flushes_xcall);
 947#endif
 948        }
 949        __local_flush_dcache_page(page);
 950
 951        preempt_enable();
 952}
 953
 954void __irq_entry smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
 955{
 956        struct mm_struct *mm;
 957        unsigned long flags;
 958
 959        clear_softint(1 << irq);
 960
 961        /* See if we need to allocate a new TLB context because
 962         * the version of the one we are using is now out of date.
 963         */
 964        mm = current->active_mm;
 965        if (unlikely(!mm || (mm == &init_mm)))
 966                return;
 967
 968        spin_lock_irqsave(&mm->context.lock, flags);
 969
 970        if (unlikely(!CTX_VALID(mm->context)))
 971                get_new_mmu_context(mm);
 972
 973        spin_unlock_irqrestore(&mm->context.lock, flags);
 974
 975        load_secondary_context(mm);
 976        __flush_tlb_mm(CTX_HWBITS(mm->context),
 977                       SECONDARY_CONTEXT);
 978}
 979
 980void smp_new_mmu_context_version(void)
 981{
 982        smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
 983}
 984
 985#ifdef CONFIG_KGDB
 986void kgdb_roundup_cpus(unsigned long flags)
 987{
 988        smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
 989}
 990#endif
 991
 992void smp_fetch_global_regs(void)
 993{
 994        smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
 995}
 996
 997void smp_fetch_global_pmu(void)
 998{
 999        if (tlb_type == hypervisor &&
1000            sun4v_chip_type >= SUN4V_CHIP_NIAGARA4)
1001                smp_cross_call(&xcall_fetch_glob_pmu_n4, 0, 0, 0);
1002        else
1003                smp_cross_call(&xcall_fetch_glob_pmu, 0, 0, 0);
1004}
1005
1006/* We know that the window frames of the user have been flushed
1007 * to the stack before we get here because all callers of us
1008 * are flush_tlb_*() routines, and these run after flush_cache_*()
1009 * which performs the flushw.
1010 *
1011 * The SMP TLB coherency scheme we use works as follows:
1012 *
1013 * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1014 *    space has (potentially) executed on, this is the heuristic
1015 *    we use to avoid doing cross calls.
1016 *
1017 *    Also, for flushing from kswapd and also for clones, we
1018 *    use cpu_vm_mask as the list of cpus to make run the TLB.
1019 *
1020 * 2) TLB context numbers are shared globally across all processors
1021 *    in the system, this allows us to play several games to avoid
1022 *    cross calls.
1023 *
1024 *    One invariant is that when a cpu switches to a process, and
1025 *    that processes tsk->active_mm->cpu_vm_mask does not have the
1026 *    current cpu's bit set, that tlb context is flushed locally.
1027 *
1028 *    If the address space is non-shared (ie. mm->count == 1) we avoid
1029 *    cross calls when we want to flush the currently running process's
1030 *    tlb state.  This is done by clearing all cpu bits except the current
1031 *    processor's in current->mm->cpu_vm_mask and performing the
1032 *    flush locally only.  This will force any subsequent cpus which run
1033 *    this task to flush the context from the local tlb if the process
1034 *    migrates to another cpu (again).
1035 *
1036 * 3) For shared address spaces (threads) and swapping we bite the
1037 *    bullet for most cases and perform the cross call (but only to
1038 *    the cpus listed in cpu_vm_mask).
1039 *
1040 *    The performance gain from "optimizing" away the cross call for threads is
1041 *    questionable (in theory the big win for threads is the massive sharing of
1042 *    address space state across processors).
1043 */
1044
1045/* This currently is only used by the hugetlb arch pre-fault
1046 * hook on UltraSPARC-III+ and later when changing the pagesize
1047 * bits of the context register for an address space.
1048 */
1049void smp_flush_tlb_mm(struct mm_struct *mm)
1050{
1051        u32 ctx = CTX_HWBITS(mm->context);
1052        int cpu = get_cpu();
1053
1054        if (atomic_read(&mm->mm_users) == 1) {
1055                cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1056                goto local_flush_and_out;
1057        }
1058
1059        smp_cross_call_masked(&xcall_flush_tlb_mm,
1060                              ctx, 0, 0,
1061                              mm_cpumask(mm));
1062
1063local_flush_and_out:
1064        __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1065
1066        put_cpu();
1067}
1068
1069struct tlb_pending_info {
1070        unsigned long ctx;
1071        unsigned long nr;
1072        unsigned long *vaddrs;
1073};
1074
1075static void tlb_pending_func(void *info)
1076{
1077        struct tlb_pending_info *t = info;
1078
1079        __flush_tlb_pending(t->ctx, t->nr, t->vaddrs);
1080}
1081
1082void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1083{
1084        u32 ctx = CTX_HWBITS(mm->context);
1085        struct tlb_pending_info info;
1086        int cpu = get_cpu();
1087
1088        info.ctx = ctx;
1089        info.nr = nr;
1090        info.vaddrs = vaddrs;
1091
1092        if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1093                cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1094        else
1095                smp_call_function_many(mm_cpumask(mm), tlb_pending_func,
1096                                       &info, 1);
1097
1098        __flush_tlb_pending(ctx, nr, vaddrs);
1099
1100        put_cpu();
1101}
1102
1103void smp_flush_tlb_page(struct mm_struct *mm, unsigned long vaddr)
1104{
1105        unsigned long context = CTX_HWBITS(mm->context);
1106        int cpu = get_cpu();
1107
1108        if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1109                cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1110        else
1111                smp_cross_call_masked(&xcall_flush_tlb_page,
1112                                      context, vaddr, 0,
1113                                      mm_cpumask(mm));
1114        __flush_tlb_page(context, vaddr);
1115
1116        put_cpu();
1117}
1118
1119void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1120{
1121        start &= PAGE_MASK;
1122        end    = PAGE_ALIGN(end);
1123        if (start != end) {
1124                smp_cross_call(&xcall_flush_tlb_kernel_range,
1125                               0, start, end);
1126
1127                __flush_tlb_kernel_range(start, end);
1128        }
1129}
1130
1131/* CPU capture. */
1132/* #define CAPTURE_DEBUG */
1133extern unsigned long xcall_capture;
1134
1135static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1136static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1137static unsigned long penguins_are_doing_time;
1138
1139void smp_capture(void)
1140{
1141        int result = atomic_add_ret(1, &smp_capture_depth);
1142
1143        if (result == 1) {
1144                int ncpus = num_online_cpus();
1145
1146#ifdef CAPTURE_DEBUG
1147                printk("CPU[%d]: Sending penguins to jail...",
1148                       smp_processor_id());
1149#endif
1150                penguins_are_doing_time = 1;
1151                atomic_inc(&smp_capture_registry);
1152                smp_cross_call(&xcall_capture, 0, 0, 0);
1153                while (atomic_read(&smp_capture_registry) != ncpus)
1154                        rmb();
1155#ifdef CAPTURE_DEBUG
1156                printk("done\n");
1157#endif
1158        }
1159}
1160
1161void smp_release(void)
1162{
1163        if (atomic_dec_and_test(&smp_capture_depth)) {
1164#ifdef CAPTURE_DEBUG
1165                printk("CPU[%d]: Giving pardon to "
1166                       "imprisoned penguins\n",
1167                       smp_processor_id());
1168#endif
1169                penguins_are_doing_time = 0;
1170                membar_safe("#StoreLoad");
1171                atomic_dec(&smp_capture_registry);
1172        }
1173}
1174
1175/* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE
1176 * set, so they can service tlb flush xcalls...
1177 */
1178extern void prom_world(int);
1179
1180void __irq_entry smp_penguin_jailcell(int irq, struct pt_regs *regs)
1181{
1182        clear_softint(1 << irq);
1183
1184        preempt_disable();
1185
1186        __asm__ __volatile__("flushw");
1187        prom_world(1);
1188        atomic_inc(&smp_capture_registry);
1189        membar_safe("#StoreLoad");
1190        while (penguins_are_doing_time)
1191                rmb();
1192        atomic_dec(&smp_capture_registry);
1193        prom_world(0);
1194
1195        preempt_enable();
1196}
1197
1198/* /proc/profile writes can call this, don't __init it please. */
1199int setup_profiling_timer(unsigned int multiplier)
1200{
1201        return -EINVAL;
1202}
1203
1204void __init smp_prepare_cpus(unsigned int max_cpus)
1205{
1206}
1207
1208void smp_prepare_boot_cpu(void)
1209{
1210}
1211
1212void __init smp_setup_processor_id(void)
1213{
1214        if (tlb_type == spitfire)
1215                xcall_deliver_impl = spitfire_xcall_deliver;
1216        else if (tlb_type == cheetah || tlb_type == cheetah_plus)
1217                xcall_deliver_impl = cheetah_xcall_deliver;
1218        else
1219                xcall_deliver_impl = hypervisor_xcall_deliver;
1220}
1221
1222void smp_fill_in_sib_core_maps(void)
1223{
1224        unsigned int i;
1225
1226        for_each_present_cpu(i) {
1227                unsigned int j;
1228
1229                cpumask_clear(&cpu_core_map[i]);
1230                if (cpu_data(i).core_id == 0) {
1231                        cpumask_set_cpu(i, &cpu_core_map[i]);
1232                        continue;
1233                }
1234
1235                for_each_present_cpu(j) {
1236                        if (cpu_data(i).core_id ==
1237                            cpu_data(j).core_id)
1238                                cpumask_set_cpu(j, &cpu_core_map[i]);
1239                }
1240        }
1241
1242        for_each_present_cpu(i) {
1243                unsigned int j;
1244
1245                cpumask_clear(&per_cpu(cpu_sibling_map, i));
1246                if (cpu_data(i).proc_id == -1) {
1247                        cpumask_set_cpu(i, &per_cpu(cpu_sibling_map, i));
1248                        continue;
1249                }
1250
1251                for_each_present_cpu(j) {
1252                        if (cpu_data(i).proc_id ==
1253                            cpu_data(j).proc_id)
1254                                cpumask_set_cpu(j, &per_cpu(cpu_sibling_map, i));
1255                }
1256        }
1257}
1258
1259int __cpu_up(unsigned int cpu, struct task_struct *tidle)
1260{
1261        int ret = smp_boot_one_cpu(cpu, tidle);
1262
1263        if (!ret) {
1264                cpumask_set_cpu(cpu, &smp_commenced_mask);
1265                while (!cpu_online(cpu))
1266                        mb();
1267                if (!cpu_online(cpu)) {
1268                        ret = -ENODEV;
1269                } else {
1270                        /* On SUN4V, writes to %tick and %stick are
1271                         * not allowed.
1272                         */
1273                        if (tlb_type != hypervisor)
1274                                smp_synchronize_one_tick(cpu);
1275                }
1276        }
1277        return ret;
1278}
1279
1280#ifdef CONFIG_HOTPLUG_CPU
1281void cpu_play_dead(void)
1282{
1283        int cpu = smp_processor_id();
1284        unsigned long pstate;
1285
1286        idle_task_exit();
1287
1288        if (tlb_type == hypervisor) {
1289                struct trap_per_cpu *tb = &trap_block[cpu];
1290
1291                sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
1292                                tb->cpu_mondo_pa, 0);
1293                sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
1294                                tb->dev_mondo_pa, 0);
1295                sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
1296                                tb->resum_mondo_pa, 0);
1297                sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
1298                                tb->nonresum_mondo_pa, 0);
1299        }
1300
1301        cpumask_clear_cpu(cpu, &smp_commenced_mask);
1302        membar_safe("#Sync");
1303
1304        local_irq_disable();
1305
1306        __asm__ __volatile__(
1307                "rdpr   %%pstate, %0\n\t"
1308                "wrpr   %0, %1, %%pstate"
1309                : "=r" (pstate)
1310                : "i" (PSTATE_IE));
1311
1312        while (1)
1313                barrier();
1314}
1315
1316int __cpu_disable(void)
1317{
1318        int cpu = smp_processor_id();
1319        cpuinfo_sparc *c;
1320        int i;
1321
1322        for_each_cpu(i, &cpu_core_map[cpu])
1323                cpumask_clear_cpu(cpu, &cpu_core_map[i]);
1324        cpumask_clear(&cpu_core_map[cpu]);
1325
1326        for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu))
1327                cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i));
1328        cpumask_clear(&per_cpu(cpu_sibling_map, cpu));
1329
1330        c = &cpu_data(cpu);
1331
1332        c->core_id = 0;
1333        c->proc_id = -1;
1334
1335        smp_wmb();
1336
1337        /* Make sure no interrupts point to this cpu.  */
1338        fixup_irqs();
1339
1340        local_irq_enable();
1341        mdelay(1);
1342        local_irq_disable();
1343
1344        set_cpu_online(cpu, false);
1345
1346        cpu_map_rebuild();
1347
1348        return 0;
1349}
1350
1351void __cpu_die(unsigned int cpu)
1352{
1353        int i;
1354
1355        for (i = 0; i < 100; i++) {
1356                smp_rmb();
1357                if (!cpumask_test_cpu(cpu, &smp_commenced_mask))
1358                        break;
1359                msleep(100);
1360        }
1361        if (cpumask_test_cpu(cpu, &smp_commenced_mask)) {
1362                printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1363        } else {
1364#if defined(CONFIG_SUN_LDOMS)
1365                unsigned long hv_err;
1366                int limit = 100;
1367
1368                do {
1369                        hv_err = sun4v_cpu_stop(cpu);
1370                        if (hv_err == HV_EOK) {
1371                                set_cpu_present(cpu, false);
1372                                break;
1373                        }
1374                } while (--limit > 0);
1375                if (limit <= 0) {
1376                        printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
1377                               hv_err);
1378                }
1379#endif
1380        }
1381}
1382#endif
1383
1384void __init smp_cpus_done(unsigned int max_cpus)
1385{
1386}
1387
1388void smp_send_reschedule(int cpu)
1389{
1390        if (cpu == smp_processor_id()) {
1391                WARN_ON_ONCE(preemptible());
1392                set_softint(1 << PIL_SMP_RECEIVE_SIGNAL);
1393        } else {
1394                xcall_deliver((u64) &xcall_receive_signal,
1395                              0, 0, cpumask_of(cpu));
1396        }
1397}
1398
1399void __irq_entry smp_receive_signal_client(int irq, struct pt_regs *regs)
1400{
1401        clear_softint(1 << irq);
1402        scheduler_ipi();
1403}
1404
1405/* This is a nop because we capture all other cpus
1406 * anyways when making the PROM active.
1407 */
1408void smp_send_stop(void)
1409{
1410}
1411
1412/**
1413 * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu
1414 * @cpu: cpu to allocate for
1415 * @size: size allocation in bytes
1416 * @align: alignment
1417 *
1418 * Allocate @size bytes aligned at @align for cpu @cpu.  This wrapper
1419 * does the right thing for NUMA regardless of the current
1420 * configuration.
1421 *
1422 * RETURNS:
1423 * Pointer to the allocated area on success, NULL on failure.
1424 */
1425static void * __init pcpu_alloc_bootmem(unsigned int cpu, size_t size,
1426                                        size_t align)
1427{
1428        const unsigned long goal = __pa(MAX_DMA_ADDRESS);
1429#ifdef CONFIG_NEED_MULTIPLE_NODES
1430        int node = cpu_to_node(cpu);
1431        void *ptr;
1432
1433        if (!node_online(node) || !NODE_DATA(node)) {
1434                ptr = __alloc_bootmem(size, align, goal);
1435                pr_info("cpu %d has no node %d or node-local memory\n",
1436                        cpu, node);
1437                pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n",
1438                         cpu, size, __pa(ptr));
1439        } else {
1440                ptr = __alloc_bootmem_node(NODE_DATA(node),
1441                                           size, align, goal);
1442                pr_debug("per cpu data for cpu%d %lu bytes on node%d at "
1443                         "%016lx\n", cpu, size, node, __pa(ptr));
1444        }
1445        return ptr;
1446#else
1447        return __alloc_bootmem(size, align, goal);
1448#endif
1449}
1450
1451static void __init pcpu_free_bootmem(void *ptr, size_t size)
1452{
1453        free_bootmem(__pa(ptr), size);
1454}
1455
1456static int __init pcpu_cpu_distance(unsigned int from, unsigned int to)
1457{
1458        if (cpu_to_node(from) == cpu_to_node(to))
1459                return LOCAL_DISTANCE;
1460        else
1461                return REMOTE_DISTANCE;
1462}
1463
1464static void __init pcpu_populate_pte(unsigned long addr)
1465{
1466        pgd_t *pgd = pgd_offset_k(addr);
1467        pud_t *pud;
1468        pmd_t *pmd;
1469
1470        pud = pud_offset(pgd, addr);
1471        if (pud_none(*pud)) {
1472                pmd_t *new;
1473
1474                new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1475                pud_populate(&init_mm, pud, new);
1476        }
1477
1478        pmd = pmd_offset(pud, addr);
1479        if (!pmd_present(*pmd)) {
1480                pte_t *new;
1481
1482                new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1483                pmd_populate_kernel(&init_mm, pmd, new);
1484        }
1485}
1486
1487void __init setup_per_cpu_areas(void)
1488{
1489        unsigned long delta;
1490        unsigned int cpu;
1491        int rc = -EINVAL;
1492
1493        if (pcpu_chosen_fc != PCPU_FC_PAGE) {
1494                rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
1495                                            PERCPU_DYNAMIC_RESERVE, 4 << 20,
1496                                            pcpu_cpu_distance,
1497                                            pcpu_alloc_bootmem,
1498                                            pcpu_free_bootmem);
1499                if (rc)
1500                        pr_warning("PERCPU: %s allocator failed (%d), "
1501                                   "falling back to page size\n",
1502                                   pcpu_fc_names[pcpu_chosen_fc], rc);
1503        }
1504        if (rc < 0)
1505                rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE,
1506                                           pcpu_alloc_bootmem,
1507                                           pcpu_free_bootmem,
1508                                           pcpu_populate_pte);
1509        if (rc < 0)
1510                panic("cannot initialize percpu area (err=%d)", rc);
1511
1512        delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1513        for_each_possible_cpu(cpu)
1514                __per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu];
1515
1516        /* Setup %g5 for the boot cpu.  */
1517        __local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1518
1519        of_fill_in_cpu_data();
1520        if (tlb_type == hypervisor)
1521                mdesc_fill_in_cpu_data(cpu_all_mask);
1522}
1523