linux/arch/x86/kernel/i387.c
<<
>>
Prefs
   1/*
   2 *  Copyright (C) 1994 Linus Torvalds
   3 *
   4 *  Pentium III FXSR, SSE support
   5 *  General FPU state handling cleanups
   6 *      Gareth Hughes <gareth@valinux.com>, May 2000
   7 */
   8#include <linux/module.h>
   9#include <linux/regset.h>
  10#include <linux/sched.h>
  11#include <linux/slab.h>
  12
  13#include <asm/sigcontext.h>
  14#include <asm/processor.h>
  15#include <asm/math_emu.h>
  16#include <asm/uaccess.h>
  17#include <asm/ptrace.h>
  18#include <asm/i387.h>
  19#include <asm/fpu-internal.h>
  20#include <asm/user.h>
  21
  22/*
  23 * Were we in an interrupt that interrupted kernel mode?
  24 *
  25 * On others, we can do a kernel_fpu_begin/end() pair *ONLY* if that
  26 * pair does nothing at all: the thread must not have fpu (so
  27 * that we don't try to save the FPU state), and TS must
  28 * be set (so that the clts/stts pair does nothing that is
  29 * visible in the interrupted kernel thread).
  30 *
  31 * Except for the eagerfpu case when we return 1 unless we've already
  32 * been eager and saved the state in kernel_fpu_begin().
  33 */
  34static inline bool interrupted_kernel_fpu_idle(void)
  35{
  36        if (use_eager_fpu())
  37                return __thread_has_fpu(current);
  38
  39        return !__thread_has_fpu(current) &&
  40                (read_cr0() & X86_CR0_TS);
  41}
  42
  43/*
  44 * Were we in user mode (or vm86 mode) when we were
  45 * interrupted?
  46 *
  47 * Doing kernel_fpu_begin/end() is ok if we are running
  48 * in an interrupt context from user mode - we'll just
  49 * save the FPU state as required.
  50 */
  51static inline bool interrupted_user_mode(void)
  52{
  53        struct pt_regs *regs = get_irq_regs();
  54        return regs && user_mode_vm(regs);
  55}
  56
  57/*
  58 * Can we use the FPU in kernel mode with the
  59 * whole "kernel_fpu_begin/end()" sequence?
  60 *
  61 * It's always ok in process context (ie "not interrupt")
  62 * but it is sometimes ok even from an irq.
  63 */
  64bool irq_fpu_usable(void)
  65{
  66        return !in_interrupt() ||
  67                interrupted_user_mode() ||
  68                interrupted_kernel_fpu_idle();
  69}
  70EXPORT_SYMBOL(irq_fpu_usable);
  71
  72void __kernel_fpu_begin(void)
  73{
  74        struct task_struct *me = current;
  75
  76        if (__thread_has_fpu(me)) {
  77                __thread_clear_has_fpu(me);
  78                __save_init_fpu(me);
  79                /* We do 'stts()' in __kernel_fpu_end() */
  80        } else if (!use_eager_fpu()) {
  81                this_cpu_write(fpu_owner_task, NULL);
  82                clts();
  83        }
  84}
  85EXPORT_SYMBOL(__kernel_fpu_begin);
  86
  87void __kernel_fpu_end(void)
  88{
  89        if (use_eager_fpu()) {
  90                /*
  91                 * For eager fpu, most the time, tsk_used_math() is true.
  92                 * Restore the user math as we are done with the kernel usage.
  93                 * At few instances during thread exit, signal handling etc,
  94                 * tsk_used_math() is false. Those few places will take proper
  95                 * actions, so we don't need to restore the math here.
  96                 */
  97                if (likely(tsk_used_math(current)))
  98                        math_state_restore();
  99        } else {
 100                stts();
 101        }
 102}
 103EXPORT_SYMBOL(__kernel_fpu_end);
 104
 105void unlazy_fpu(struct task_struct *tsk)
 106{
 107        preempt_disable();
 108        if (__thread_has_fpu(tsk)) {
 109                __save_init_fpu(tsk);
 110                __thread_fpu_end(tsk);
 111        } else
 112                tsk->thread.fpu_counter = 0;
 113        preempt_enable();
 114}
 115EXPORT_SYMBOL(unlazy_fpu);
 116
 117unsigned int mxcsr_feature_mask __read_mostly = 0xffffffffu;
 118unsigned int xstate_size;
 119EXPORT_SYMBOL_GPL(xstate_size);
 120static struct i387_fxsave_struct fx_scratch;
 121
 122static void mxcsr_feature_mask_init(void)
 123{
 124        unsigned long mask = 0;
 125
 126        if (cpu_has_fxsr) {
 127                memset(&fx_scratch, 0, sizeof(struct i387_fxsave_struct));
 128                asm volatile("fxsave %0" : "+m" (fx_scratch));
 129                mask = fx_scratch.mxcsr_mask;
 130                if (mask == 0)
 131                        mask = 0x0000ffbf;
 132        }
 133        mxcsr_feature_mask &= mask;
 134}
 135
 136static void init_thread_xstate(void)
 137{
 138        /*
 139         * Note that xstate_size might be overwriten later during
 140         * xsave_init().
 141         */
 142
 143        if (!cpu_has_fpu) {
 144                /*
 145                 * Disable xsave as we do not support it if i387
 146                 * emulation is enabled.
 147                 */
 148                setup_clear_cpu_cap(X86_FEATURE_XSAVE);
 149                setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
 150                xstate_size = sizeof(struct i387_soft_struct);
 151                return;
 152        }
 153
 154        if (cpu_has_fxsr)
 155                xstate_size = sizeof(struct i387_fxsave_struct);
 156        else
 157                xstate_size = sizeof(struct i387_fsave_struct);
 158}
 159
 160/*
 161 * Called at bootup to set up the initial FPU state that is later cloned
 162 * into all processes.
 163 */
 164
 165void fpu_init(void)
 166{
 167        unsigned long cr0;
 168        unsigned long cr4_mask = 0;
 169
 170#ifndef CONFIG_MATH_EMULATION
 171        if (!cpu_has_fpu) {
 172                pr_emerg("No FPU found and no math emulation present\n");
 173                pr_emerg("Giving up\n");
 174                for (;;)
 175                        asm volatile("hlt");
 176        }
 177#endif
 178        if (cpu_has_fxsr)
 179                cr4_mask |= X86_CR4_OSFXSR;
 180        if (cpu_has_xmm)
 181                cr4_mask |= X86_CR4_OSXMMEXCPT;
 182        if (cr4_mask)
 183                set_in_cr4(cr4_mask);
 184
 185        cr0 = read_cr0();
 186        cr0 &= ~(X86_CR0_TS|X86_CR0_EM); /* clear TS and EM */
 187        if (!cpu_has_fpu)
 188                cr0 |= X86_CR0_EM;
 189        write_cr0(cr0);
 190
 191        /*
 192         * init_thread_xstate is only called once to avoid overriding
 193         * xstate_size during boot time or during CPU hotplug.
 194         */
 195        if (xstate_size == 0)
 196                init_thread_xstate();
 197
 198        mxcsr_feature_mask_init();
 199        xsave_init();
 200        eager_fpu_init();
 201}
 202
 203void fpu_finit(struct fpu *fpu)
 204{
 205        if (!cpu_has_fpu) {
 206                finit_soft_fpu(&fpu->state->soft);
 207                return;
 208        }
 209
 210        if (cpu_has_fxsr) {
 211                fx_finit(&fpu->state->fxsave);
 212        } else {
 213                struct i387_fsave_struct *fp = &fpu->state->fsave;
 214                memset(fp, 0, xstate_size);
 215                fp->cwd = 0xffff037fu;
 216                fp->swd = 0xffff0000u;
 217                fp->twd = 0xffffffffu;
 218                fp->fos = 0xffff0000u;
 219        }
 220}
 221EXPORT_SYMBOL_GPL(fpu_finit);
 222
 223/*
 224 * The _current_ task is using the FPU for the first time
 225 * so initialize it and set the mxcsr to its default
 226 * value at reset if we support XMM instructions and then
 227 * remember the current task has used the FPU.
 228 */
 229int init_fpu(struct task_struct *tsk)
 230{
 231        int ret;
 232
 233        if (tsk_used_math(tsk)) {
 234                if (cpu_has_fpu && tsk == current)
 235                        unlazy_fpu(tsk);
 236                tsk->thread.fpu.last_cpu = ~0;
 237                return 0;
 238        }
 239
 240        /*
 241         * Memory allocation at the first usage of the FPU and other state.
 242         */
 243        ret = fpu_alloc(&tsk->thread.fpu);
 244        if (ret)
 245                return ret;
 246
 247        fpu_finit(&tsk->thread.fpu);
 248
 249        set_stopped_child_used_math(tsk);
 250        return 0;
 251}
 252EXPORT_SYMBOL_GPL(init_fpu);
 253
 254/*
 255 * The xstateregs_active() routine is the same as the fpregs_active() routine,
 256 * as the "regset->n" for the xstate regset will be updated based on the feature
 257 * capabilites supported by the xsave.
 258 */
 259int fpregs_active(struct task_struct *target, const struct user_regset *regset)
 260{
 261        return tsk_used_math(target) ? regset->n : 0;
 262}
 263
 264int xfpregs_active(struct task_struct *target, const struct user_regset *regset)
 265{
 266        return (cpu_has_fxsr && tsk_used_math(target)) ? regset->n : 0;
 267}
 268
 269int xfpregs_get(struct task_struct *target, const struct user_regset *regset,
 270                unsigned int pos, unsigned int count,
 271                void *kbuf, void __user *ubuf)
 272{
 273        int ret;
 274
 275        if (!cpu_has_fxsr)
 276                return -ENODEV;
 277
 278        ret = init_fpu(target);
 279        if (ret)
 280                return ret;
 281
 282        sanitize_i387_state(target);
 283
 284        return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
 285                                   &target->thread.fpu.state->fxsave, 0, -1);
 286}
 287
 288int xfpregs_set(struct task_struct *target, const struct user_regset *regset,
 289                unsigned int pos, unsigned int count,
 290                const void *kbuf, const void __user *ubuf)
 291{
 292        int ret;
 293
 294        if (!cpu_has_fxsr)
 295                return -ENODEV;
 296
 297        ret = init_fpu(target);
 298        if (ret)
 299                return ret;
 300
 301        sanitize_i387_state(target);
 302
 303        ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
 304                                 &target->thread.fpu.state->fxsave, 0, -1);
 305
 306        /*
 307         * mxcsr reserved bits must be masked to zero for security reasons.
 308         */
 309        target->thread.fpu.state->fxsave.mxcsr &= mxcsr_feature_mask;
 310
 311        /*
 312         * update the header bits in the xsave header, indicating the
 313         * presence of FP and SSE state.
 314         */
 315        if (cpu_has_xsave)
 316                target->thread.fpu.state->xsave.xsave_hdr.xstate_bv |= XSTATE_FPSSE;
 317
 318        return ret;
 319}
 320
 321int xstateregs_get(struct task_struct *target, const struct user_regset *regset,
 322                unsigned int pos, unsigned int count,
 323                void *kbuf, void __user *ubuf)
 324{
 325        int ret;
 326
 327        if (!cpu_has_xsave)
 328                return -ENODEV;
 329
 330        ret = init_fpu(target);
 331        if (ret)
 332                return ret;
 333
 334        /*
 335         * Copy the 48bytes defined by the software first into the xstate
 336         * memory layout in the thread struct, so that we can copy the entire
 337         * xstateregs to the user using one user_regset_copyout().
 338         */
 339        memcpy(&target->thread.fpu.state->fxsave.sw_reserved,
 340               xstate_fx_sw_bytes, sizeof(xstate_fx_sw_bytes));
 341
 342        /*
 343         * Copy the xstate memory layout.
 344         */
 345        ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
 346                                  &target->thread.fpu.state->xsave, 0, -1);
 347        return ret;
 348}
 349
 350int xstateregs_set(struct task_struct *target, const struct user_regset *regset,
 351                  unsigned int pos, unsigned int count,
 352                  const void *kbuf, const void __user *ubuf)
 353{
 354        int ret;
 355        struct xsave_hdr_struct *xsave_hdr;
 356
 357        if (!cpu_has_xsave)
 358                return -ENODEV;
 359
 360        ret = init_fpu(target);
 361        if (ret)
 362                return ret;
 363
 364        ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
 365                                 &target->thread.fpu.state->xsave, 0, -1);
 366
 367        /*
 368         * mxcsr reserved bits must be masked to zero for security reasons.
 369         */
 370        target->thread.fpu.state->fxsave.mxcsr &= mxcsr_feature_mask;
 371
 372        xsave_hdr = &target->thread.fpu.state->xsave.xsave_hdr;
 373
 374        xsave_hdr->xstate_bv &= pcntxt_mask;
 375        /*
 376         * These bits must be zero.
 377         */
 378        memset(xsave_hdr->reserved, 0, 48);
 379
 380        return ret;
 381}
 382
 383#if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION
 384
 385/*
 386 * FPU tag word conversions.
 387 */
 388
 389static inline unsigned short twd_i387_to_fxsr(unsigned short twd)
 390{
 391        unsigned int tmp; /* to avoid 16 bit prefixes in the code */
 392
 393        /* Transform each pair of bits into 01 (valid) or 00 (empty) */
 394        tmp = ~twd;
 395        tmp = (tmp | (tmp>>1)) & 0x5555; /* 0V0V0V0V0V0V0V0V */
 396        /* and move the valid bits to the lower byte. */
 397        tmp = (tmp | (tmp >> 1)) & 0x3333; /* 00VV00VV00VV00VV */
 398        tmp = (tmp | (tmp >> 2)) & 0x0f0f; /* 0000VVVV0000VVVV */
 399        tmp = (tmp | (tmp >> 4)) & 0x00ff; /* 00000000VVVVVVVV */
 400
 401        return tmp;
 402}
 403
 404#define FPREG_ADDR(f, n)        ((void *)&(f)->st_space + (n) * 16)
 405#define FP_EXP_TAG_VALID        0
 406#define FP_EXP_TAG_ZERO         1
 407#define FP_EXP_TAG_SPECIAL      2
 408#define FP_EXP_TAG_EMPTY        3
 409
 410static inline u32 twd_fxsr_to_i387(struct i387_fxsave_struct *fxsave)
 411{
 412        struct _fpxreg *st;
 413        u32 tos = (fxsave->swd >> 11) & 7;
 414        u32 twd = (unsigned long) fxsave->twd;
 415        u32 tag;
 416        u32 ret = 0xffff0000u;
 417        int i;
 418
 419        for (i = 0; i < 8; i++, twd >>= 1) {
 420                if (twd & 0x1) {
 421                        st = FPREG_ADDR(fxsave, (i - tos) & 7);
 422
 423                        switch (st->exponent & 0x7fff) {
 424                        case 0x7fff:
 425                                tag = FP_EXP_TAG_SPECIAL;
 426                                break;
 427                        case 0x0000:
 428                                if (!st->significand[0] &&
 429                                    !st->significand[1] &&
 430                                    !st->significand[2] &&
 431                                    !st->significand[3])
 432                                        tag = FP_EXP_TAG_ZERO;
 433                                else
 434                                        tag = FP_EXP_TAG_SPECIAL;
 435                                break;
 436                        default:
 437                                if (st->significand[3] & 0x8000)
 438                                        tag = FP_EXP_TAG_VALID;
 439                                else
 440                                        tag = FP_EXP_TAG_SPECIAL;
 441                                break;
 442                        }
 443                } else {
 444                        tag = FP_EXP_TAG_EMPTY;
 445                }
 446                ret |= tag << (2 * i);
 447        }
 448        return ret;
 449}
 450
 451/*
 452 * FXSR floating point environment conversions.
 453 */
 454
 455void
 456convert_from_fxsr(struct user_i387_ia32_struct *env, struct task_struct *tsk)
 457{
 458        struct i387_fxsave_struct *fxsave = &tsk->thread.fpu.state->fxsave;
 459        struct _fpreg *to = (struct _fpreg *) &env->st_space[0];
 460        struct _fpxreg *from = (struct _fpxreg *) &fxsave->st_space[0];
 461        int i;
 462
 463        env->cwd = fxsave->cwd | 0xffff0000u;
 464        env->swd = fxsave->swd | 0xffff0000u;
 465        env->twd = twd_fxsr_to_i387(fxsave);
 466
 467#ifdef CONFIG_X86_64
 468        env->fip = fxsave->rip;
 469        env->foo = fxsave->rdp;
 470        /*
 471         * should be actually ds/cs at fpu exception time, but
 472         * that information is not available in 64bit mode.
 473         */
 474        env->fcs = task_pt_regs(tsk)->cs;
 475        if (tsk == current) {
 476                savesegment(ds, env->fos);
 477        } else {
 478                env->fos = tsk->thread.ds;
 479        }
 480        env->fos |= 0xffff0000;
 481#else
 482        env->fip = fxsave->fip;
 483        env->fcs = (u16) fxsave->fcs | ((u32) fxsave->fop << 16);
 484        env->foo = fxsave->foo;
 485        env->fos = fxsave->fos;
 486#endif
 487
 488        for (i = 0; i < 8; ++i)
 489                memcpy(&to[i], &from[i], sizeof(to[0]));
 490}
 491
 492void convert_to_fxsr(struct task_struct *tsk,
 493                     const struct user_i387_ia32_struct *env)
 494
 495{
 496        struct i387_fxsave_struct *fxsave = &tsk->thread.fpu.state->fxsave;
 497        struct _fpreg *from = (struct _fpreg *) &env->st_space[0];
 498        struct _fpxreg *to = (struct _fpxreg *) &fxsave->st_space[0];
 499        int i;
 500
 501        fxsave->cwd = env->cwd;
 502        fxsave->swd = env->swd;
 503        fxsave->twd = twd_i387_to_fxsr(env->twd);
 504        fxsave->fop = (u16) ((u32) env->fcs >> 16);
 505#ifdef CONFIG_X86_64
 506        fxsave->rip = env->fip;
 507        fxsave->rdp = env->foo;
 508        /* cs and ds ignored */
 509#else
 510        fxsave->fip = env->fip;
 511        fxsave->fcs = (env->fcs & 0xffff);
 512        fxsave->foo = env->foo;
 513        fxsave->fos = env->fos;
 514#endif
 515
 516        for (i = 0; i < 8; ++i)
 517                memcpy(&to[i], &from[i], sizeof(from[0]));
 518}
 519
 520int fpregs_get(struct task_struct *target, const struct user_regset *regset,
 521               unsigned int pos, unsigned int count,
 522               void *kbuf, void __user *ubuf)
 523{
 524        struct user_i387_ia32_struct env;
 525        int ret;
 526
 527        ret = init_fpu(target);
 528        if (ret)
 529                return ret;
 530
 531        if (!static_cpu_has(X86_FEATURE_FPU))
 532                return fpregs_soft_get(target, regset, pos, count, kbuf, ubuf);
 533
 534        if (!cpu_has_fxsr)
 535                return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
 536                                           &target->thread.fpu.state->fsave, 0,
 537                                           -1);
 538
 539        sanitize_i387_state(target);
 540
 541        if (kbuf && pos == 0 && count == sizeof(env)) {
 542                convert_from_fxsr(kbuf, target);
 543                return 0;
 544        }
 545
 546        convert_from_fxsr(&env, target);
 547
 548        return user_regset_copyout(&pos, &count, &kbuf, &ubuf, &env, 0, -1);
 549}
 550
 551int fpregs_set(struct task_struct *target, const struct user_regset *regset,
 552               unsigned int pos, unsigned int count,
 553               const void *kbuf, const void __user *ubuf)
 554{
 555        struct user_i387_ia32_struct env;
 556        int ret;
 557
 558        ret = init_fpu(target);
 559        if (ret)
 560                return ret;
 561
 562        sanitize_i387_state(target);
 563
 564        if (!static_cpu_has(X86_FEATURE_FPU))
 565                return fpregs_soft_set(target, regset, pos, count, kbuf, ubuf);
 566
 567        if (!cpu_has_fxsr)
 568                return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
 569                                          &target->thread.fpu.state->fsave, 0,
 570                                          -1);
 571
 572        if (pos > 0 || count < sizeof(env))
 573                convert_from_fxsr(&env, target);
 574
 575        ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &env, 0, -1);
 576        if (!ret)
 577                convert_to_fxsr(target, &env);
 578
 579        /*
 580         * update the header bit in the xsave header, indicating the
 581         * presence of FP.
 582         */
 583        if (cpu_has_xsave)
 584                target->thread.fpu.state->xsave.xsave_hdr.xstate_bv |= XSTATE_FP;
 585        return ret;
 586}
 587
 588/*
 589 * FPU state for core dumps.
 590 * This is only used for a.out dumps now.
 591 * It is declared generically using elf_fpregset_t (which is
 592 * struct user_i387_struct) but is in fact only used for 32-bit
 593 * dumps, so on 64-bit it is really struct user_i387_ia32_struct.
 594 */
 595int dump_fpu(struct pt_regs *regs, struct user_i387_struct *fpu)
 596{
 597        struct task_struct *tsk = current;
 598        int fpvalid;
 599
 600        fpvalid = !!used_math();
 601        if (fpvalid)
 602                fpvalid = !fpregs_get(tsk, NULL,
 603                                      0, sizeof(struct user_i387_ia32_struct),
 604                                      fpu, NULL);
 605
 606        return fpvalid;
 607}
 608EXPORT_SYMBOL(dump_fpu);
 609
 610#endif  /* CONFIG_X86_32 || CONFIG_IA32_EMULATION */
 611
 612static int __init no_387(char *s)
 613{
 614        setup_clear_cpu_cap(X86_FEATURE_FPU);
 615        return 1;
 616}
 617
 618__setup("no387", no_387);
 619
 620void fpu_detect(struct cpuinfo_x86 *c)
 621{
 622        unsigned long cr0;
 623        u16 fsw, fcw;
 624
 625        fsw = fcw = 0xffff;
 626
 627        cr0 = read_cr0();
 628        cr0 &= ~(X86_CR0_TS | X86_CR0_EM);
 629        write_cr0(cr0);
 630
 631        asm volatile("fninit ; fnstsw %0 ; fnstcw %1"
 632                     : "+m" (fsw), "+m" (fcw));
 633
 634        if (fsw == 0 && (fcw & 0x103f) == 0x003f)
 635                set_cpu_cap(c, X86_FEATURE_FPU);
 636        else
 637                clear_cpu_cap(c, X86_FEATURE_FPU);
 638
 639        /* The final cr0 value is set in fpu_init() */
 640}
 641