linux/arch/x86/mm/init.c
<<
>>
Prefs
   1#include <linux/gfp.h>
   2#include <linux/initrd.h>
   3#include <linux/ioport.h>
   4#include <linux/swap.h>
   5#include <linux/memblock.h>
   6#include <linux/bootmem.h>      /* for max_low_pfn */
   7
   8#include <asm/cacheflush.h>
   9#include <asm/e820.h>
  10#include <asm/init.h>
  11#include <asm/page.h>
  12#include <asm/page_types.h>
  13#include <asm/sections.h>
  14#include <asm/setup.h>
  15#include <asm/tlbflush.h>
  16#include <asm/tlb.h>
  17#include <asm/proto.h>
  18#include <asm/dma.h>            /* for MAX_DMA_PFN */
  19#include <asm/microcode.h>
  20
  21/*
  22 * We need to define the tracepoints somewhere, and tlb.c
  23 * is only compied when SMP=y.
  24 */
  25#define CREATE_TRACE_POINTS
  26#include <trace/events/tlb.h>
  27
  28#include "mm_internal.h"
  29
  30static unsigned long __initdata pgt_buf_start;
  31static unsigned long __initdata pgt_buf_end;
  32static unsigned long __initdata pgt_buf_top;
  33
  34static unsigned long min_pfn_mapped;
  35
  36static bool __initdata can_use_brk_pgt = true;
  37
  38/*
  39 * Pages returned are already directly mapped.
  40 *
  41 * Changing that is likely to break Xen, see commit:
  42 *
  43 *    279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
  44 *
  45 * for detailed information.
  46 */
  47__ref void *alloc_low_pages(unsigned int num)
  48{
  49        unsigned long pfn;
  50        int i;
  51
  52        if (after_bootmem) {
  53                unsigned int order;
  54
  55                order = get_order((unsigned long)num << PAGE_SHIFT);
  56                return (void *)__get_free_pages(GFP_ATOMIC | __GFP_NOTRACK |
  57                                                __GFP_ZERO, order);
  58        }
  59
  60        if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
  61                unsigned long ret;
  62                if (min_pfn_mapped >= max_pfn_mapped)
  63                        panic("alloc_low_pages: ran out of memory");
  64                ret = memblock_find_in_range(min_pfn_mapped << PAGE_SHIFT,
  65                                        max_pfn_mapped << PAGE_SHIFT,
  66                                        PAGE_SIZE * num , PAGE_SIZE);
  67                if (!ret)
  68                        panic("alloc_low_pages: can not alloc memory");
  69                memblock_reserve(ret, PAGE_SIZE * num);
  70                pfn = ret >> PAGE_SHIFT;
  71        } else {
  72                pfn = pgt_buf_end;
  73                pgt_buf_end += num;
  74                printk(KERN_DEBUG "BRK [%#010lx, %#010lx] PGTABLE\n",
  75                        pfn << PAGE_SHIFT, (pgt_buf_end << PAGE_SHIFT) - 1);
  76        }
  77
  78        for (i = 0; i < num; i++) {
  79                void *adr;
  80
  81                adr = __va((pfn + i) << PAGE_SHIFT);
  82                clear_page(adr);
  83        }
  84
  85        return __va(pfn << PAGE_SHIFT);
  86}
  87
  88/* need 3 4k for initial PMD_SIZE,  3 4k for 0-ISA_END_ADDRESS */
  89#define INIT_PGT_BUF_SIZE       (6 * PAGE_SIZE)
  90RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
  91void  __init early_alloc_pgt_buf(void)
  92{
  93        unsigned long tables = INIT_PGT_BUF_SIZE;
  94        phys_addr_t base;
  95
  96        base = __pa(extend_brk(tables, PAGE_SIZE));
  97
  98        pgt_buf_start = base >> PAGE_SHIFT;
  99        pgt_buf_end = pgt_buf_start;
 100        pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
 101}
 102
 103int after_bootmem;
 104
 105int direct_gbpages
 106#ifdef CONFIG_DIRECT_GBPAGES
 107                                = 1
 108#endif
 109;
 110
 111static void __init init_gbpages(void)
 112{
 113#ifdef CONFIG_X86_64
 114        if (direct_gbpages && cpu_has_gbpages)
 115                printk(KERN_INFO "Using GB pages for direct mapping\n");
 116        else
 117                direct_gbpages = 0;
 118#endif
 119}
 120
 121struct map_range {
 122        unsigned long start;
 123        unsigned long end;
 124        unsigned page_size_mask;
 125};
 126
 127static int page_size_mask;
 128
 129static void __init probe_page_size_mask(void)
 130{
 131        init_gbpages();
 132
 133#if !defined(CONFIG_DEBUG_PAGEALLOC) && !defined(CONFIG_KMEMCHECK)
 134        /*
 135         * For CONFIG_DEBUG_PAGEALLOC, identity mapping will use small pages.
 136         * This will simplify cpa(), which otherwise needs to support splitting
 137         * large pages into small in interrupt context, etc.
 138         */
 139        if (direct_gbpages)
 140                page_size_mask |= 1 << PG_LEVEL_1G;
 141        if (cpu_has_pse)
 142                page_size_mask |= 1 << PG_LEVEL_2M;
 143#endif
 144
 145        /* Enable PSE if available */
 146        if (cpu_has_pse)
 147                set_in_cr4(X86_CR4_PSE);
 148
 149        /* Enable PGE if available */
 150        if (cpu_has_pge) {
 151                set_in_cr4(X86_CR4_PGE);
 152                __supported_pte_mask |= _PAGE_GLOBAL;
 153        }
 154}
 155
 156#ifdef CONFIG_X86_32
 157#define NR_RANGE_MR 3
 158#else /* CONFIG_X86_64 */
 159#define NR_RANGE_MR 5
 160#endif
 161
 162static int __meminit save_mr(struct map_range *mr, int nr_range,
 163                             unsigned long start_pfn, unsigned long end_pfn,
 164                             unsigned long page_size_mask)
 165{
 166        if (start_pfn < end_pfn) {
 167                if (nr_range >= NR_RANGE_MR)
 168                        panic("run out of range for init_memory_mapping\n");
 169                mr[nr_range].start = start_pfn<<PAGE_SHIFT;
 170                mr[nr_range].end   = end_pfn<<PAGE_SHIFT;
 171                mr[nr_range].page_size_mask = page_size_mask;
 172                nr_range++;
 173        }
 174
 175        return nr_range;
 176}
 177
 178/*
 179 * adjust the page_size_mask for small range to go with
 180 *      big page size instead small one if nearby are ram too.
 181 */
 182static void __init_refok adjust_range_page_size_mask(struct map_range *mr,
 183                                                         int nr_range)
 184{
 185        int i;
 186
 187        for (i = 0; i < nr_range; i++) {
 188                if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
 189                    !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
 190                        unsigned long start = round_down(mr[i].start, PMD_SIZE);
 191                        unsigned long end = round_up(mr[i].end, PMD_SIZE);
 192
 193#ifdef CONFIG_X86_32
 194                        if ((end >> PAGE_SHIFT) > max_low_pfn)
 195                                continue;
 196#endif
 197
 198                        if (memblock_is_region_memory(start, end - start))
 199                                mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
 200                }
 201                if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
 202                    !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
 203                        unsigned long start = round_down(mr[i].start, PUD_SIZE);
 204                        unsigned long end = round_up(mr[i].end, PUD_SIZE);
 205
 206                        if (memblock_is_region_memory(start, end - start))
 207                                mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
 208                }
 209        }
 210}
 211
 212static int __meminit split_mem_range(struct map_range *mr, int nr_range,
 213                                     unsigned long start,
 214                                     unsigned long end)
 215{
 216        unsigned long start_pfn, end_pfn, limit_pfn;
 217        unsigned long pfn;
 218        int i;
 219
 220        limit_pfn = PFN_DOWN(end);
 221
 222        /* head if not big page alignment ? */
 223        pfn = start_pfn = PFN_DOWN(start);
 224#ifdef CONFIG_X86_32
 225        /*
 226         * Don't use a large page for the first 2/4MB of memory
 227         * because there are often fixed size MTRRs in there
 228         * and overlapping MTRRs into large pages can cause
 229         * slowdowns.
 230         */
 231        if (pfn == 0)
 232                end_pfn = PFN_DOWN(PMD_SIZE);
 233        else
 234                end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
 235#else /* CONFIG_X86_64 */
 236        end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
 237#endif
 238        if (end_pfn > limit_pfn)
 239                end_pfn = limit_pfn;
 240        if (start_pfn < end_pfn) {
 241                nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
 242                pfn = end_pfn;
 243        }
 244
 245        /* big page (2M) range */
 246        start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
 247#ifdef CONFIG_X86_32
 248        end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
 249#else /* CONFIG_X86_64 */
 250        end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
 251        if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
 252                end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
 253#endif
 254
 255        if (start_pfn < end_pfn) {
 256                nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
 257                                page_size_mask & (1<<PG_LEVEL_2M));
 258                pfn = end_pfn;
 259        }
 260
 261#ifdef CONFIG_X86_64
 262        /* big page (1G) range */
 263        start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
 264        end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
 265        if (start_pfn < end_pfn) {
 266                nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
 267                                page_size_mask &
 268                                 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
 269                pfn = end_pfn;
 270        }
 271
 272        /* tail is not big page (1G) alignment */
 273        start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
 274        end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
 275        if (start_pfn < end_pfn) {
 276                nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
 277                                page_size_mask & (1<<PG_LEVEL_2M));
 278                pfn = end_pfn;
 279        }
 280#endif
 281
 282        /* tail is not big page (2M) alignment */
 283        start_pfn = pfn;
 284        end_pfn = limit_pfn;
 285        nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
 286
 287        if (!after_bootmem)
 288                adjust_range_page_size_mask(mr, nr_range);
 289
 290        /* try to merge same page size and continuous */
 291        for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
 292                unsigned long old_start;
 293                if (mr[i].end != mr[i+1].start ||
 294                    mr[i].page_size_mask != mr[i+1].page_size_mask)
 295                        continue;
 296                /* move it */
 297                old_start = mr[i].start;
 298                memmove(&mr[i], &mr[i+1],
 299                        (nr_range - 1 - i) * sizeof(struct map_range));
 300                mr[i--].start = old_start;
 301                nr_range--;
 302        }
 303
 304        for (i = 0; i < nr_range; i++)
 305                printk(KERN_DEBUG " [mem %#010lx-%#010lx] page %s\n",
 306                                mr[i].start, mr[i].end - 1,
 307                        (mr[i].page_size_mask & (1<<PG_LEVEL_1G))?"1G":(
 308                         (mr[i].page_size_mask & (1<<PG_LEVEL_2M))?"2M":"4k"));
 309
 310        return nr_range;
 311}
 312
 313struct range pfn_mapped[E820_X_MAX];
 314int nr_pfn_mapped;
 315
 316static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
 317{
 318        nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_X_MAX,
 319                                             nr_pfn_mapped, start_pfn, end_pfn);
 320        nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_X_MAX);
 321
 322        max_pfn_mapped = max(max_pfn_mapped, end_pfn);
 323
 324        if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
 325                max_low_pfn_mapped = max(max_low_pfn_mapped,
 326                                         min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
 327}
 328
 329bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
 330{
 331        int i;
 332
 333        for (i = 0; i < nr_pfn_mapped; i++)
 334                if ((start_pfn >= pfn_mapped[i].start) &&
 335                    (end_pfn <= pfn_mapped[i].end))
 336                        return true;
 337
 338        return false;
 339}
 340
 341/*
 342 * Setup the direct mapping of the physical memory at PAGE_OFFSET.
 343 * This runs before bootmem is initialized and gets pages directly from
 344 * the physical memory. To access them they are temporarily mapped.
 345 */
 346unsigned long __init_refok init_memory_mapping(unsigned long start,
 347                                               unsigned long end)
 348{
 349        struct map_range mr[NR_RANGE_MR];
 350        unsigned long ret = 0;
 351        int nr_range, i;
 352
 353        pr_info("init_memory_mapping: [mem %#010lx-%#010lx]\n",
 354               start, end - 1);
 355
 356        memset(mr, 0, sizeof(mr));
 357        nr_range = split_mem_range(mr, 0, start, end);
 358
 359        for (i = 0; i < nr_range; i++)
 360                ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
 361                                                   mr[i].page_size_mask);
 362
 363        add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
 364
 365        return ret >> PAGE_SHIFT;
 366}
 367
 368/*
 369 * We need to iterate through the E820 memory map and create direct mappings
 370 * for only E820_RAM and E820_KERN_RESERVED regions. We cannot simply
 371 * create direct mappings for all pfns from [0 to max_low_pfn) and
 372 * [4GB to max_pfn) because of possible memory holes in high addresses
 373 * that cannot be marked as UC by fixed/variable range MTRRs.
 374 * Depending on the alignment of E820 ranges, this may possibly result
 375 * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
 376 *
 377 * init_mem_mapping() calls init_range_memory_mapping() with big range.
 378 * That range would have hole in the middle or ends, and only ram parts
 379 * will be mapped in init_range_memory_mapping().
 380 */
 381static unsigned long __init init_range_memory_mapping(
 382                                           unsigned long r_start,
 383                                           unsigned long r_end)
 384{
 385        unsigned long start_pfn, end_pfn;
 386        unsigned long mapped_ram_size = 0;
 387        int i;
 388
 389        for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
 390                u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
 391                u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
 392                if (start >= end)
 393                        continue;
 394
 395                /*
 396                 * if it is overlapping with brk pgt, we need to
 397                 * alloc pgt buf from memblock instead.
 398                 */
 399                can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
 400                                    min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
 401                init_memory_mapping(start, end);
 402                mapped_ram_size += end - start;
 403                can_use_brk_pgt = true;
 404        }
 405
 406        return mapped_ram_size;
 407}
 408
 409static unsigned long __init get_new_step_size(unsigned long step_size)
 410{
 411        /*
 412         * Explain why we shift by 5 and why we don't have to worry about
 413         * 'step_size << 5' overflowing:
 414         *
 415         * initial mapped size is PMD_SIZE (2M).
 416         * We can not set step_size to be PUD_SIZE (1G) yet.
 417         * In worse case, when we cross the 1G boundary, and
 418         * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
 419         * to map 1G range with PTE. Use 5 as shift for now.
 420         *
 421         * Don't need to worry about overflow, on 32bit, when step_size
 422         * is 0, round_down() returns 0 for start, and that turns it
 423         * into 0x100000000ULL.
 424         */
 425        return step_size << 5;
 426}
 427
 428/**
 429 * memory_map_top_down - Map [map_start, map_end) top down
 430 * @map_start: start address of the target memory range
 431 * @map_end: end address of the target memory range
 432 *
 433 * This function will setup direct mapping for memory range
 434 * [map_start, map_end) in top-down. That said, the page tables
 435 * will be allocated at the end of the memory, and we map the
 436 * memory in top-down.
 437 */
 438static void __init memory_map_top_down(unsigned long map_start,
 439                                       unsigned long map_end)
 440{
 441        unsigned long real_end, start, last_start;
 442        unsigned long step_size;
 443        unsigned long addr;
 444        unsigned long mapped_ram_size = 0;
 445        unsigned long new_mapped_ram_size;
 446
 447        /* xen has big range in reserved near end of ram, skip it at first.*/
 448        addr = memblock_find_in_range(map_start, map_end, PMD_SIZE, PMD_SIZE);
 449        real_end = addr + PMD_SIZE;
 450
 451        /* step_size need to be small so pgt_buf from BRK could cover it */
 452        step_size = PMD_SIZE;
 453        max_pfn_mapped = 0; /* will get exact value next */
 454        min_pfn_mapped = real_end >> PAGE_SHIFT;
 455        last_start = start = real_end;
 456
 457        /*
 458         * We start from the top (end of memory) and go to the bottom.
 459         * The memblock_find_in_range() gets us a block of RAM from the
 460         * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
 461         * for page table.
 462         */
 463        while (last_start > map_start) {
 464                if (last_start > step_size) {
 465                        start = round_down(last_start - 1, step_size);
 466                        if (start < map_start)
 467                                start = map_start;
 468                } else
 469                        start = map_start;
 470                new_mapped_ram_size = init_range_memory_mapping(start,
 471                                                        last_start);
 472                last_start = start;
 473                min_pfn_mapped = last_start >> PAGE_SHIFT;
 474                /* only increase step_size after big range get mapped */
 475                if (new_mapped_ram_size > mapped_ram_size)
 476                        step_size = get_new_step_size(step_size);
 477                mapped_ram_size += new_mapped_ram_size;
 478        }
 479
 480        if (real_end < map_end)
 481                init_range_memory_mapping(real_end, map_end);
 482}
 483
 484/**
 485 * memory_map_bottom_up - Map [map_start, map_end) bottom up
 486 * @map_start: start address of the target memory range
 487 * @map_end: end address of the target memory range
 488 *
 489 * This function will setup direct mapping for memory range
 490 * [map_start, map_end) in bottom-up. Since we have limited the
 491 * bottom-up allocation above the kernel, the page tables will
 492 * be allocated just above the kernel and we map the memory
 493 * in [map_start, map_end) in bottom-up.
 494 */
 495static void __init memory_map_bottom_up(unsigned long map_start,
 496                                        unsigned long map_end)
 497{
 498        unsigned long next, new_mapped_ram_size, start;
 499        unsigned long mapped_ram_size = 0;
 500        /* step_size need to be small so pgt_buf from BRK could cover it */
 501        unsigned long step_size = PMD_SIZE;
 502
 503        start = map_start;
 504        min_pfn_mapped = start >> PAGE_SHIFT;
 505
 506        /*
 507         * We start from the bottom (@map_start) and go to the top (@map_end).
 508         * The memblock_find_in_range() gets us a block of RAM from the
 509         * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
 510         * for page table.
 511         */
 512        while (start < map_end) {
 513                if (map_end - start > step_size) {
 514                        next = round_up(start + 1, step_size);
 515                        if (next > map_end)
 516                                next = map_end;
 517                } else
 518                        next = map_end;
 519
 520                new_mapped_ram_size = init_range_memory_mapping(start, next);
 521                start = next;
 522
 523                if (new_mapped_ram_size > mapped_ram_size)
 524                        step_size = get_new_step_size(step_size);
 525                mapped_ram_size += new_mapped_ram_size;
 526        }
 527}
 528
 529void __init init_mem_mapping(void)
 530{
 531        unsigned long end;
 532
 533        probe_page_size_mask();
 534
 535#ifdef CONFIG_X86_64
 536        end = max_pfn << PAGE_SHIFT;
 537#else
 538        end = max_low_pfn << PAGE_SHIFT;
 539#endif
 540
 541        /* the ISA range is always mapped regardless of memory holes */
 542        init_memory_mapping(0, ISA_END_ADDRESS);
 543
 544        /*
 545         * If the allocation is in bottom-up direction, we setup direct mapping
 546         * in bottom-up, otherwise we setup direct mapping in top-down.
 547         */
 548        if (memblock_bottom_up()) {
 549                unsigned long kernel_end = __pa_symbol(_end);
 550
 551                /*
 552                 * we need two separate calls here. This is because we want to
 553                 * allocate page tables above the kernel. So we first map
 554                 * [kernel_end, end) to make memory above the kernel be mapped
 555                 * as soon as possible. And then use page tables allocated above
 556                 * the kernel to map [ISA_END_ADDRESS, kernel_end).
 557                 */
 558                memory_map_bottom_up(kernel_end, end);
 559                memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
 560        } else {
 561                memory_map_top_down(ISA_END_ADDRESS, end);
 562        }
 563
 564#ifdef CONFIG_X86_64
 565        if (max_pfn > max_low_pfn) {
 566                /* can we preseve max_low_pfn ?*/
 567                max_low_pfn = max_pfn;
 568        }
 569#else
 570        early_ioremap_page_table_range_init();
 571#endif
 572
 573        load_cr3(swapper_pg_dir);
 574        __flush_tlb_all();
 575
 576        early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
 577}
 578
 579/*
 580 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
 581 * is valid. The argument is a physical page number.
 582 *
 583 *
 584 * On x86, access has to be given to the first megabyte of ram because that area
 585 * contains bios code and data regions used by X and dosemu and similar apps.
 586 * Access has to be given to non-kernel-ram areas as well, these contain the PCI
 587 * mmio resources as well as potential bios/acpi data regions.
 588 */
 589int devmem_is_allowed(unsigned long pagenr)
 590{
 591        if (pagenr < 256)
 592                return 1;
 593        if (iomem_is_exclusive(pagenr << PAGE_SHIFT))
 594                return 0;
 595        if (!page_is_ram(pagenr))
 596                return 1;
 597        return 0;
 598}
 599
 600void free_init_pages(char *what, unsigned long begin, unsigned long end)
 601{
 602        unsigned long begin_aligned, end_aligned;
 603
 604        /* Make sure boundaries are page aligned */
 605        begin_aligned = PAGE_ALIGN(begin);
 606        end_aligned   = end & PAGE_MASK;
 607
 608        if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
 609                begin = begin_aligned;
 610                end   = end_aligned;
 611        }
 612
 613        if (begin >= end)
 614                return;
 615
 616        /*
 617         * If debugging page accesses then do not free this memory but
 618         * mark them not present - any buggy init-section access will
 619         * create a kernel page fault:
 620         */
 621#ifdef CONFIG_DEBUG_PAGEALLOC
 622        printk(KERN_INFO "debug: unmapping init [mem %#010lx-%#010lx]\n",
 623                begin, end - 1);
 624        set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
 625#else
 626        /*
 627         * We just marked the kernel text read only above, now that
 628         * we are going to free part of that, we need to make that
 629         * writeable and non-executable first.
 630         */
 631        set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
 632        set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
 633
 634        free_reserved_area((void *)begin, (void *)end, POISON_FREE_INITMEM, what);
 635#endif
 636}
 637
 638void free_initmem(void)
 639{
 640        free_init_pages("unused kernel",
 641                        (unsigned long)(&__init_begin),
 642                        (unsigned long)(&__init_end));
 643}
 644
 645#ifdef CONFIG_BLK_DEV_INITRD
 646void __init free_initrd_mem(unsigned long start, unsigned long end)
 647{
 648#ifdef CONFIG_MICROCODE_EARLY
 649        /*
 650         * Remember, initrd memory may contain microcode or other useful things.
 651         * Before we lose initrd mem, we need to find a place to hold them
 652         * now that normal virtual memory is enabled.
 653         */
 654        save_microcode_in_initrd();
 655#endif
 656
 657        /*
 658         * end could be not aligned, and We can not align that,
 659         * decompresser could be confused by aligned initrd_end
 660         * We already reserve the end partial page before in
 661         *   - i386_start_kernel()
 662         *   - x86_64_start_kernel()
 663         *   - relocate_initrd()
 664         * So here We can do PAGE_ALIGN() safely to get partial page to be freed
 665         */
 666        free_init_pages("initrd", start, PAGE_ALIGN(end));
 667}
 668#endif
 669
 670void __init zone_sizes_init(void)
 671{
 672        unsigned long max_zone_pfns[MAX_NR_ZONES];
 673
 674        memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
 675
 676#ifdef CONFIG_ZONE_DMA
 677        max_zone_pfns[ZONE_DMA]         = MAX_DMA_PFN;
 678#endif
 679#ifdef CONFIG_ZONE_DMA32
 680        max_zone_pfns[ZONE_DMA32]       = MAX_DMA32_PFN;
 681#endif
 682        max_zone_pfns[ZONE_NORMAL]      = max_low_pfn;
 683#ifdef CONFIG_HIGHMEM
 684        max_zone_pfns[ZONE_HIGHMEM]     = max_pfn;
 685#endif
 686
 687        free_area_init_nodes(max_zone_pfns);
 688}
 689
 690