linux/drivers/block/drbd/drbd_main.c
<<
>>
Prefs
   1/*
   2   drbd.c
   3
   4   This file is part of DRBD by Philipp Reisner and Lars Ellenberg.
   5
   6   Copyright (C) 2001-2008, LINBIT Information Technologies GmbH.
   7   Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>.
   8   Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>.
   9
  10   Thanks to Carter Burden, Bart Grantham and Gennadiy Nerubayev
  11   from Logicworks, Inc. for making SDP replication support possible.
  12
  13   drbd is free software; you can redistribute it and/or modify
  14   it under the terms of the GNU General Public License as published by
  15   the Free Software Foundation; either version 2, or (at your option)
  16   any later version.
  17
  18   drbd is distributed in the hope that it will be useful,
  19   but WITHOUT ANY WARRANTY; without even the implied warranty of
  20   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  21   GNU General Public License for more details.
  22
  23   You should have received a copy of the GNU General Public License
  24   along with drbd; see the file COPYING.  If not, write to
  25   the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
  26
  27 */
  28
  29#define pr_fmt(fmt)     KBUILD_MODNAME ": " fmt
  30
  31#include <linux/module.h>
  32#include <linux/jiffies.h>
  33#include <linux/drbd.h>
  34#include <asm/uaccess.h>
  35#include <asm/types.h>
  36#include <net/sock.h>
  37#include <linux/ctype.h>
  38#include <linux/mutex.h>
  39#include <linux/fs.h>
  40#include <linux/file.h>
  41#include <linux/proc_fs.h>
  42#include <linux/init.h>
  43#include <linux/mm.h>
  44#include <linux/memcontrol.h>
  45#include <linux/mm_inline.h>
  46#include <linux/slab.h>
  47#include <linux/random.h>
  48#include <linux/reboot.h>
  49#include <linux/notifier.h>
  50#include <linux/kthread.h>
  51#include <linux/workqueue.h>
  52#define __KERNEL_SYSCALLS__
  53#include <linux/unistd.h>
  54#include <linux/vmalloc.h>
  55
  56#include <linux/drbd_limits.h>
  57#include "drbd_int.h"
  58#include "drbd_protocol.h"
  59#include "drbd_req.h" /* only for _req_mod in tl_release and tl_clear */
  60#include "drbd_vli.h"
  61#include "drbd_debugfs.h"
  62
  63static DEFINE_MUTEX(drbd_main_mutex);
  64static int drbd_open(struct block_device *bdev, fmode_t mode);
  65static void drbd_release(struct gendisk *gd, fmode_t mode);
  66static void md_sync_timer_fn(unsigned long data);
  67static int w_bitmap_io(struct drbd_work *w, int unused);
  68
  69MODULE_AUTHOR("Philipp Reisner <phil@linbit.com>, "
  70              "Lars Ellenberg <lars@linbit.com>");
  71MODULE_DESCRIPTION("drbd - Distributed Replicated Block Device v" REL_VERSION);
  72MODULE_VERSION(REL_VERSION);
  73MODULE_LICENSE("GPL");
  74MODULE_PARM_DESC(minor_count, "Approximate number of drbd devices ("
  75                 __stringify(DRBD_MINOR_COUNT_MIN) "-" __stringify(DRBD_MINOR_COUNT_MAX) ")");
  76MODULE_ALIAS_BLOCKDEV_MAJOR(DRBD_MAJOR);
  77
  78#include <linux/moduleparam.h>
  79/* allow_open_on_secondary */
  80MODULE_PARM_DESC(allow_oos, "DONT USE!");
  81/* thanks to these macros, if compiled into the kernel (not-module),
  82 * this becomes the boot parameter drbd.minor_count */
  83module_param(minor_count, uint, 0444);
  84module_param(disable_sendpage, bool, 0644);
  85module_param(allow_oos, bool, 0);
  86module_param(proc_details, int, 0644);
  87
  88#ifdef CONFIG_DRBD_FAULT_INJECTION
  89int enable_faults;
  90int fault_rate;
  91static int fault_count;
  92int fault_devs;
  93/* bitmap of enabled faults */
  94module_param(enable_faults, int, 0664);
  95/* fault rate % value - applies to all enabled faults */
  96module_param(fault_rate, int, 0664);
  97/* count of faults inserted */
  98module_param(fault_count, int, 0664);
  99/* bitmap of devices to insert faults on */
 100module_param(fault_devs, int, 0644);
 101#endif
 102
 103/* module parameter, defined */
 104unsigned int minor_count = DRBD_MINOR_COUNT_DEF;
 105bool disable_sendpage;
 106bool allow_oos;
 107int proc_details;       /* Detail level in proc drbd*/
 108
 109/* Module parameter for setting the user mode helper program
 110 * to run. Default is /sbin/drbdadm */
 111char usermode_helper[80] = "/sbin/drbdadm";
 112
 113module_param_string(usermode_helper, usermode_helper, sizeof(usermode_helper), 0644);
 114
 115/* in 2.6.x, our device mapping and config info contains our virtual gendisks
 116 * as member "struct gendisk *vdisk;"
 117 */
 118struct idr drbd_devices;
 119struct list_head drbd_resources;
 120
 121struct kmem_cache *drbd_request_cache;
 122struct kmem_cache *drbd_ee_cache;       /* peer requests */
 123struct kmem_cache *drbd_bm_ext_cache;   /* bitmap extents */
 124struct kmem_cache *drbd_al_ext_cache;   /* activity log extents */
 125mempool_t *drbd_request_mempool;
 126mempool_t *drbd_ee_mempool;
 127mempool_t *drbd_md_io_page_pool;
 128struct bio_set *drbd_md_io_bio_set;
 129
 130/* I do not use a standard mempool, because:
 131   1) I want to hand out the pre-allocated objects first.
 132   2) I want to be able to interrupt sleeping allocation with a signal.
 133   Note: This is a single linked list, the next pointer is the private
 134         member of struct page.
 135 */
 136struct page *drbd_pp_pool;
 137spinlock_t   drbd_pp_lock;
 138int          drbd_pp_vacant;
 139wait_queue_head_t drbd_pp_wait;
 140
 141DEFINE_RATELIMIT_STATE(drbd_ratelimit_state, 5 * HZ, 5);
 142
 143static const struct block_device_operations drbd_ops = {
 144        .owner =   THIS_MODULE,
 145        .open =    drbd_open,
 146        .release = drbd_release,
 147};
 148
 149struct bio *bio_alloc_drbd(gfp_t gfp_mask)
 150{
 151        struct bio *bio;
 152
 153        if (!drbd_md_io_bio_set)
 154                return bio_alloc(gfp_mask, 1);
 155
 156        bio = bio_alloc_bioset(gfp_mask, 1, drbd_md_io_bio_set);
 157        if (!bio)
 158                return NULL;
 159        return bio;
 160}
 161
 162#ifdef __CHECKER__
 163/* When checking with sparse, and this is an inline function, sparse will
 164   give tons of false positives. When this is a real functions sparse works.
 165 */
 166int _get_ldev_if_state(struct drbd_device *device, enum drbd_disk_state mins)
 167{
 168        int io_allowed;
 169
 170        atomic_inc(&device->local_cnt);
 171        io_allowed = (device->state.disk >= mins);
 172        if (!io_allowed) {
 173                if (atomic_dec_and_test(&device->local_cnt))
 174                        wake_up(&device->misc_wait);
 175        }
 176        return io_allowed;
 177}
 178
 179#endif
 180
 181/**
 182 * tl_release() - mark as BARRIER_ACKED all requests in the corresponding transfer log epoch
 183 * @connection: DRBD connection.
 184 * @barrier_nr: Expected identifier of the DRBD write barrier packet.
 185 * @set_size:   Expected number of requests before that barrier.
 186 *
 187 * In case the passed barrier_nr or set_size does not match the oldest
 188 * epoch of not yet barrier-acked requests, this function will cause a
 189 * termination of the connection.
 190 */
 191void tl_release(struct drbd_connection *connection, unsigned int barrier_nr,
 192                unsigned int set_size)
 193{
 194        struct drbd_request *r;
 195        struct drbd_request *req = NULL;
 196        int expect_epoch = 0;
 197        int expect_size = 0;
 198
 199        spin_lock_irq(&connection->resource->req_lock);
 200
 201        /* find oldest not yet barrier-acked write request,
 202         * count writes in its epoch. */
 203        list_for_each_entry(r, &connection->transfer_log, tl_requests) {
 204                const unsigned s = r->rq_state;
 205                if (!req) {
 206                        if (!(s & RQ_WRITE))
 207                                continue;
 208                        if (!(s & RQ_NET_MASK))
 209                                continue;
 210                        if (s & RQ_NET_DONE)
 211                                continue;
 212                        req = r;
 213                        expect_epoch = req->epoch;
 214                        expect_size ++;
 215                } else {
 216                        if (r->epoch != expect_epoch)
 217                                break;
 218                        if (!(s & RQ_WRITE))
 219                                continue;
 220                        /* if (s & RQ_DONE): not expected */
 221                        /* if (!(s & RQ_NET_MASK)): not expected */
 222                        expect_size++;
 223                }
 224        }
 225
 226        /* first some paranoia code */
 227        if (req == NULL) {
 228                drbd_err(connection, "BAD! BarrierAck #%u received, but no epoch in tl!?\n",
 229                         barrier_nr);
 230                goto bail;
 231        }
 232        if (expect_epoch != barrier_nr) {
 233                drbd_err(connection, "BAD! BarrierAck #%u received, expected #%u!\n",
 234                         barrier_nr, expect_epoch);
 235                goto bail;
 236        }
 237
 238        if (expect_size != set_size) {
 239                drbd_err(connection, "BAD! BarrierAck #%u received with n_writes=%u, expected n_writes=%u!\n",
 240                         barrier_nr, set_size, expect_size);
 241                goto bail;
 242        }
 243
 244        /* Clean up list of requests processed during current epoch. */
 245        /* this extra list walk restart is paranoia,
 246         * to catch requests being barrier-acked "unexpectedly".
 247         * It usually should find the same req again, or some READ preceding it. */
 248        list_for_each_entry(req, &connection->transfer_log, tl_requests)
 249                if (req->epoch == expect_epoch)
 250                        break;
 251        list_for_each_entry_safe_from(req, r, &connection->transfer_log, tl_requests) {
 252                if (req->epoch != expect_epoch)
 253                        break;
 254                _req_mod(req, BARRIER_ACKED);
 255        }
 256        spin_unlock_irq(&connection->resource->req_lock);
 257
 258        return;
 259
 260bail:
 261        spin_unlock_irq(&connection->resource->req_lock);
 262        conn_request_state(connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD);
 263}
 264
 265
 266/**
 267 * _tl_restart() - Walks the transfer log, and applies an action to all requests
 268 * @connection: DRBD connection to operate on.
 269 * @what:       The action/event to perform with all request objects
 270 *
 271 * @what might be one of CONNECTION_LOST_WHILE_PENDING, RESEND, FAIL_FROZEN_DISK_IO,
 272 * RESTART_FROZEN_DISK_IO.
 273 */
 274/* must hold resource->req_lock */
 275void _tl_restart(struct drbd_connection *connection, enum drbd_req_event what)
 276{
 277        struct drbd_request *req, *r;
 278
 279        list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests)
 280                _req_mod(req, what);
 281}
 282
 283void tl_restart(struct drbd_connection *connection, enum drbd_req_event what)
 284{
 285        spin_lock_irq(&connection->resource->req_lock);
 286        _tl_restart(connection, what);
 287        spin_unlock_irq(&connection->resource->req_lock);
 288}
 289
 290/**
 291 * tl_clear() - Clears all requests and &struct drbd_tl_epoch objects out of the TL
 292 * @device:     DRBD device.
 293 *
 294 * This is called after the connection to the peer was lost. The storage covered
 295 * by the requests on the transfer gets marked as our of sync. Called from the
 296 * receiver thread and the worker thread.
 297 */
 298void tl_clear(struct drbd_connection *connection)
 299{
 300        tl_restart(connection, CONNECTION_LOST_WHILE_PENDING);
 301}
 302
 303/**
 304 * tl_abort_disk_io() - Abort disk I/O for all requests for a certain device in the TL
 305 * @device:     DRBD device.
 306 */
 307void tl_abort_disk_io(struct drbd_device *device)
 308{
 309        struct drbd_connection *connection = first_peer_device(device)->connection;
 310        struct drbd_request *req, *r;
 311
 312        spin_lock_irq(&connection->resource->req_lock);
 313        list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests) {
 314                if (!(req->rq_state & RQ_LOCAL_PENDING))
 315                        continue;
 316                if (req->device != device)
 317                        continue;
 318                _req_mod(req, ABORT_DISK_IO);
 319        }
 320        spin_unlock_irq(&connection->resource->req_lock);
 321}
 322
 323static int drbd_thread_setup(void *arg)
 324{
 325        struct drbd_thread *thi = (struct drbd_thread *) arg;
 326        struct drbd_resource *resource = thi->resource;
 327        unsigned long flags;
 328        int retval;
 329
 330        snprintf(current->comm, sizeof(current->comm), "drbd_%c_%s",
 331                 thi->name[0],
 332                 resource->name);
 333
 334restart:
 335        retval = thi->function(thi);
 336
 337        spin_lock_irqsave(&thi->t_lock, flags);
 338
 339        /* if the receiver has been "EXITING", the last thing it did
 340         * was set the conn state to "StandAlone",
 341         * if now a re-connect request comes in, conn state goes C_UNCONNECTED,
 342         * and receiver thread will be "started".
 343         * drbd_thread_start needs to set "RESTARTING" in that case.
 344         * t_state check and assignment needs to be within the same spinlock,
 345         * so either thread_start sees EXITING, and can remap to RESTARTING,
 346         * or thread_start see NONE, and can proceed as normal.
 347         */
 348
 349        if (thi->t_state == RESTARTING) {
 350                drbd_info(resource, "Restarting %s thread\n", thi->name);
 351                thi->t_state = RUNNING;
 352                spin_unlock_irqrestore(&thi->t_lock, flags);
 353                goto restart;
 354        }
 355
 356        thi->task = NULL;
 357        thi->t_state = NONE;
 358        smp_mb();
 359        complete_all(&thi->stop);
 360        spin_unlock_irqrestore(&thi->t_lock, flags);
 361
 362        drbd_info(resource, "Terminating %s\n", current->comm);
 363
 364        /* Release mod reference taken when thread was started */
 365
 366        if (thi->connection)
 367                kref_put(&thi->connection->kref, drbd_destroy_connection);
 368        kref_put(&resource->kref, drbd_destroy_resource);
 369        module_put(THIS_MODULE);
 370        return retval;
 371}
 372
 373static void drbd_thread_init(struct drbd_resource *resource, struct drbd_thread *thi,
 374                             int (*func) (struct drbd_thread *), const char *name)
 375{
 376        spin_lock_init(&thi->t_lock);
 377        thi->task    = NULL;
 378        thi->t_state = NONE;
 379        thi->function = func;
 380        thi->resource = resource;
 381        thi->connection = NULL;
 382        thi->name = name;
 383}
 384
 385int drbd_thread_start(struct drbd_thread *thi)
 386{
 387        struct drbd_resource *resource = thi->resource;
 388        struct task_struct *nt;
 389        unsigned long flags;
 390
 391        /* is used from state engine doing drbd_thread_stop_nowait,
 392         * while holding the req lock irqsave */
 393        spin_lock_irqsave(&thi->t_lock, flags);
 394
 395        switch (thi->t_state) {
 396        case NONE:
 397                drbd_info(resource, "Starting %s thread (from %s [%d])\n",
 398                         thi->name, current->comm, current->pid);
 399
 400                /* Get ref on module for thread - this is released when thread exits */
 401                if (!try_module_get(THIS_MODULE)) {
 402                        drbd_err(resource, "Failed to get module reference in drbd_thread_start\n");
 403                        spin_unlock_irqrestore(&thi->t_lock, flags);
 404                        return false;
 405                }
 406
 407                kref_get(&resource->kref);
 408                if (thi->connection)
 409                        kref_get(&thi->connection->kref);
 410
 411                init_completion(&thi->stop);
 412                thi->reset_cpu_mask = 1;
 413                thi->t_state = RUNNING;
 414                spin_unlock_irqrestore(&thi->t_lock, flags);
 415                flush_signals(current); /* otherw. may get -ERESTARTNOINTR */
 416
 417                nt = kthread_create(drbd_thread_setup, (void *) thi,
 418                                    "drbd_%c_%s", thi->name[0], thi->resource->name);
 419
 420                if (IS_ERR(nt)) {
 421                        drbd_err(resource, "Couldn't start thread\n");
 422
 423                        if (thi->connection)
 424                                kref_put(&thi->connection->kref, drbd_destroy_connection);
 425                        kref_put(&resource->kref, drbd_destroy_resource);
 426                        module_put(THIS_MODULE);
 427                        return false;
 428                }
 429                spin_lock_irqsave(&thi->t_lock, flags);
 430                thi->task = nt;
 431                thi->t_state = RUNNING;
 432                spin_unlock_irqrestore(&thi->t_lock, flags);
 433                wake_up_process(nt);
 434                break;
 435        case EXITING:
 436                thi->t_state = RESTARTING;
 437                drbd_info(resource, "Restarting %s thread (from %s [%d])\n",
 438                                thi->name, current->comm, current->pid);
 439                /* fall through */
 440        case RUNNING:
 441        case RESTARTING:
 442        default:
 443                spin_unlock_irqrestore(&thi->t_lock, flags);
 444                break;
 445        }
 446
 447        return true;
 448}
 449
 450
 451void _drbd_thread_stop(struct drbd_thread *thi, int restart, int wait)
 452{
 453        unsigned long flags;
 454
 455        enum drbd_thread_state ns = restart ? RESTARTING : EXITING;
 456
 457        /* may be called from state engine, holding the req lock irqsave */
 458        spin_lock_irqsave(&thi->t_lock, flags);
 459
 460        if (thi->t_state == NONE) {
 461                spin_unlock_irqrestore(&thi->t_lock, flags);
 462                if (restart)
 463                        drbd_thread_start(thi);
 464                return;
 465        }
 466
 467        if (thi->t_state != ns) {
 468                if (thi->task == NULL) {
 469                        spin_unlock_irqrestore(&thi->t_lock, flags);
 470                        return;
 471                }
 472
 473                thi->t_state = ns;
 474                smp_mb();
 475                init_completion(&thi->stop);
 476                if (thi->task != current)
 477                        force_sig(DRBD_SIGKILL, thi->task);
 478        }
 479
 480        spin_unlock_irqrestore(&thi->t_lock, flags);
 481
 482        if (wait)
 483                wait_for_completion(&thi->stop);
 484}
 485
 486int conn_lowest_minor(struct drbd_connection *connection)
 487{
 488        struct drbd_peer_device *peer_device;
 489        int vnr = 0, minor = -1;
 490
 491        rcu_read_lock();
 492        peer_device = idr_get_next(&connection->peer_devices, &vnr);
 493        if (peer_device)
 494                minor = device_to_minor(peer_device->device);
 495        rcu_read_unlock();
 496
 497        return minor;
 498}
 499
 500#ifdef CONFIG_SMP
 501/**
 502 * drbd_calc_cpu_mask() - Generate CPU masks, spread over all CPUs
 503 *
 504 * Forces all threads of a resource onto the same CPU. This is beneficial for
 505 * DRBD's performance. May be overwritten by user's configuration.
 506 */
 507static void drbd_calc_cpu_mask(cpumask_var_t *cpu_mask)
 508{
 509        unsigned int *resources_per_cpu, min_index = ~0;
 510
 511        resources_per_cpu = kzalloc(nr_cpu_ids * sizeof(*resources_per_cpu), GFP_KERNEL);
 512        if (resources_per_cpu) {
 513                struct drbd_resource *resource;
 514                unsigned int cpu, min = ~0;
 515
 516                rcu_read_lock();
 517                for_each_resource_rcu(resource, &drbd_resources) {
 518                        for_each_cpu(cpu, resource->cpu_mask)
 519                                resources_per_cpu[cpu]++;
 520                }
 521                rcu_read_unlock();
 522                for_each_online_cpu(cpu) {
 523                        if (resources_per_cpu[cpu] < min) {
 524                                min = resources_per_cpu[cpu];
 525                                min_index = cpu;
 526                        }
 527                }
 528                kfree(resources_per_cpu);
 529        }
 530        if (min_index == ~0) {
 531                cpumask_setall(*cpu_mask);
 532                return;
 533        }
 534        cpumask_set_cpu(min_index, *cpu_mask);
 535}
 536
 537/**
 538 * drbd_thread_current_set_cpu() - modifies the cpu mask of the _current_ thread
 539 * @device:     DRBD device.
 540 * @thi:        drbd_thread object
 541 *
 542 * call in the "main loop" of _all_ threads, no need for any mutex, current won't die
 543 * prematurely.
 544 */
 545void drbd_thread_current_set_cpu(struct drbd_thread *thi)
 546{
 547        struct drbd_resource *resource = thi->resource;
 548        struct task_struct *p = current;
 549
 550        if (!thi->reset_cpu_mask)
 551                return;
 552        thi->reset_cpu_mask = 0;
 553        set_cpus_allowed_ptr(p, resource->cpu_mask);
 554}
 555#else
 556#define drbd_calc_cpu_mask(A) ({})
 557#endif
 558
 559/**
 560 * drbd_header_size  -  size of a packet header
 561 *
 562 * The header size is a multiple of 8, so any payload following the header is
 563 * word aligned on 64-bit architectures.  (The bitmap send and receive code
 564 * relies on this.)
 565 */
 566unsigned int drbd_header_size(struct drbd_connection *connection)
 567{
 568        if (connection->agreed_pro_version >= 100) {
 569                BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header100), 8));
 570                return sizeof(struct p_header100);
 571        } else {
 572                BUILD_BUG_ON(sizeof(struct p_header80) !=
 573                             sizeof(struct p_header95));
 574                BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header80), 8));
 575                return sizeof(struct p_header80);
 576        }
 577}
 578
 579static unsigned int prepare_header80(struct p_header80 *h, enum drbd_packet cmd, int size)
 580{
 581        h->magic   = cpu_to_be32(DRBD_MAGIC);
 582        h->command = cpu_to_be16(cmd);
 583        h->length  = cpu_to_be16(size);
 584        return sizeof(struct p_header80);
 585}
 586
 587static unsigned int prepare_header95(struct p_header95 *h, enum drbd_packet cmd, int size)
 588{
 589        h->magic   = cpu_to_be16(DRBD_MAGIC_BIG);
 590        h->command = cpu_to_be16(cmd);
 591        h->length = cpu_to_be32(size);
 592        return sizeof(struct p_header95);
 593}
 594
 595static unsigned int prepare_header100(struct p_header100 *h, enum drbd_packet cmd,
 596                                      int size, int vnr)
 597{
 598        h->magic = cpu_to_be32(DRBD_MAGIC_100);
 599        h->volume = cpu_to_be16(vnr);
 600        h->command = cpu_to_be16(cmd);
 601        h->length = cpu_to_be32(size);
 602        h->pad = 0;
 603        return sizeof(struct p_header100);
 604}
 605
 606static unsigned int prepare_header(struct drbd_connection *connection, int vnr,
 607                                   void *buffer, enum drbd_packet cmd, int size)
 608{
 609        if (connection->agreed_pro_version >= 100)
 610                return prepare_header100(buffer, cmd, size, vnr);
 611        else if (connection->agreed_pro_version >= 95 &&
 612                 size > DRBD_MAX_SIZE_H80_PACKET)
 613                return prepare_header95(buffer, cmd, size);
 614        else
 615                return prepare_header80(buffer, cmd, size);
 616}
 617
 618static void *__conn_prepare_command(struct drbd_connection *connection,
 619                                    struct drbd_socket *sock)
 620{
 621        if (!sock->socket)
 622                return NULL;
 623        return sock->sbuf + drbd_header_size(connection);
 624}
 625
 626void *conn_prepare_command(struct drbd_connection *connection, struct drbd_socket *sock)
 627{
 628        void *p;
 629
 630        mutex_lock(&sock->mutex);
 631        p = __conn_prepare_command(connection, sock);
 632        if (!p)
 633                mutex_unlock(&sock->mutex);
 634
 635        return p;
 636}
 637
 638void *drbd_prepare_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock)
 639{
 640        return conn_prepare_command(peer_device->connection, sock);
 641}
 642
 643static int __send_command(struct drbd_connection *connection, int vnr,
 644                          struct drbd_socket *sock, enum drbd_packet cmd,
 645                          unsigned int header_size, void *data,
 646                          unsigned int size)
 647{
 648        int msg_flags;
 649        int err;
 650
 651        /*
 652         * Called with @data == NULL and the size of the data blocks in @size
 653         * for commands that send data blocks.  For those commands, omit the
 654         * MSG_MORE flag: this will increase the likelihood that data blocks
 655         * which are page aligned on the sender will end up page aligned on the
 656         * receiver.
 657         */
 658        msg_flags = data ? MSG_MORE : 0;
 659
 660        header_size += prepare_header(connection, vnr, sock->sbuf, cmd,
 661                                      header_size + size);
 662        err = drbd_send_all(connection, sock->socket, sock->sbuf, header_size,
 663                            msg_flags);
 664        if (data && !err)
 665                err = drbd_send_all(connection, sock->socket, data, size, 0);
 666        /* DRBD protocol "pings" are latency critical.
 667         * This is supposed to trigger tcp_push_pending_frames() */
 668        if (!err && (cmd == P_PING || cmd == P_PING_ACK))
 669                drbd_tcp_nodelay(sock->socket);
 670
 671        return err;
 672}
 673
 674static int __conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock,
 675                               enum drbd_packet cmd, unsigned int header_size,
 676                               void *data, unsigned int size)
 677{
 678        return __send_command(connection, 0, sock, cmd, header_size, data, size);
 679}
 680
 681int conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock,
 682                      enum drbd_packet cmd, unsigned int header_size,
 683                      void *data, unsigned int size)
 684{
 685        int err;
 686
 687        err = __conn_send_command(connection, sock, cmd, header_size, data, size);
 688        mutex_unlock(&sock->mutex);
 689        return err;
 690}
 691
 692int drbd_send_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock,
 693                      enum drbd_packet cmd, unsigned int header_size,
 694                      void *data, unsigned int size)
 695{
 696        int err;
 697
 698        err = __send_command(peer_device->connection, peer_device->device->vnr,
 699                             sock, cmd, header_size, data, size);
 700        mutex_unlock(&sock->mutex);
 701        return err;
 702}
 703
 704int drbd_send_ping(struct drbd_connection *connection)
 705{
 706        struct drbd_socket *sock;
 707
 708        sock = &connection->meta;
 709        if (!conn_prepare_command(connection, sock))
 710                return -EIO;
 711        return conn_send_command(connection, sock, P_PING, 0, NULL, 0);
 712}
 713
 714int drbd_send_ping_ack(struct drbd_connection *connection)
 715{
 716        struct drbd_socket *sock;
 717
 718        sock = &connection->meta;
 719        if (!conn_prepare_command(connection, sock))
 720                return -EIO;
 721        return conn_send_command(connection, sock, P_PING_ACK, 0, NULL, 0);
 722}
 723
 724int drbd_send_sync_param(struct drbd_peer_device *peer_device)
 725{
 726        struct drbd_socket *sock;
 727        struct p_rs_param_95 *p;
 728        int size;
 729        const int apv = peer_device->connection->agreed_pro_version;
 730        enum drbd_packet cmd;
 731        struct net_conf *nc;
 732        struct disk_conf *dc;
 733
 734        sock = &peer_device->connection->data;
 735        p = drbd_prepare_command(peer_device, sock);
 736        if (!p)
 737                return -EIO;
 738
 739        rcu_read_lock();
 740        nc = rcu_dereference(peer_device->connection->net_conf);
 741
 742        size = apv <= 87 ? sizeof(struct p_rs_param)
 743                : apv == 88 ? sizeof(struct p_rs_param)
 744                        + strlen(nc->verify_alg) + 1
 745                : apv <= 94 ? sizeof(struct p_rs_param_89)
 746                : /* apv >= 95 */ sizeof(struct p_rs_param_95);
 747
 748        cmd = apv >= 89 ? P_SYNC_PARAM89 : P_SYNC_PARAM;
 749
 750        /* initialize verify_alg and csums_alg */
 751        memset(p->verify_alg, 0, 2 * SHARED_SECRET_MAX);
 752
 753        if (get_ldev(peer_device->device)) {
 754                dc = rcu_dereference(peer_device->device->ldev->disk_conf);
 755                p->resync_rate = cpu_to_be32(dc->resync_rate);
 756                p->c_plan_ahead = cpu_to_be32(dc->c_plan_ahead);
 757                p->c_delay_target = cpu_to_be32(dc->c_delay_target);
 758                p->c_fill_target = cpu_to_be32(dc->c_fill_target);
 759                p->c_max_rate = cpu_to_be32(dc->c_max_rate);
 760                put_ldev(peer_device->device);
 761        } else {
 762                p->resync_rate = cpu_to_be32(DRBD_RESYNC_RATE_DEF);
 763                p->c_plan_ahead = cpu_to_be32(DRBD_C_PLAN_AHEAD_DEF);
 764                p->c_delay_target = cpu_to_be32(DRBD_C_DELAY_TARGET_DEF);
 765                p->c_fill_target = cpu_to_be32(DRBD_C_FILL_TARGET_DEF);
 766                p->c_max_rate = cpu_to_be32(DRBD_C_MAX_RATE_DEF);
 767        }
 768
 769        if (apv >= 88)
 770                strcpy(p->verify_alg, nc->verify_alg);
 771        if (apv >= 89)
 772                strcpy(p->csums_alg, nc->csums_alg);
 773        rcu_read_unlock();
 774
 775        return drbd_send_command(peer_device, sock, cmd, size, NULL, 0);
 776}
 777
 778int __drbd_send_protocol(struct drbd_connection *connection, enum drbd_packet cmd)
 779{
 780        struct drbd_socket *sock;
 781        struct p_protocol *p;
 782        struct net_conf *nc;
 783        int size, cf;
 784
 785        sock = &connection->data;
 786        p = __conn_prepare_command(connection, sock);
 787        if (!p)
 788                return -EIO;
 789
 790        rcu_read_lock();
 791        nc = rcu_dereference(connection->net_conf);
 792
 793        if (nc->tentative && connection->agreed_pro_version < 92) {
 794                rcu_read_unlock();
 795                mutex_unlock(&sock->mutex);
 796                drbd_err(connection, "--dry-run is not supported by peer");
 797                return -EOPNOTSUPP;
 798        }
 799
 800        size = sizeof(*p);
 801        if (connection->agreed_pro_version >= 87)
 802                size += strlen(nc->integrity_alg) + 1;
 803
 804        p->protocol      = cpu_to_be32(nc->wire_protocol);
 805        p->after_sb_0p   = cpu_to_be32(nc->after_sb_0p);
 806        p->after_sb_1p   = cpu_to_be32(nc->after_sb_1p);
 807        p->after_sb_2p   = cpu_to_be32(nc->after_sb_2p);
 808        p->two_primaries = cpu_to_be32(nc->two_primaries);
 809        cf = 0;
 810        if (nc->discard_my_data)
 811                cf |= CF_DISCARD_MY_DATA;
 812        if (nc->tentative)
 813                cf |= CF_DRY_RUN;
 814        p->conn_flags    = cpu_to_be32(cf);
 815
 816        if (connection->agreed_pro_version >= 87)
 817                strcpy(p->integrity_alg, nc->integrity_alg);
 818        rcu_read_unlock();
 819
 820        return __conn_send_command(connection, sock, cmd, size, NULL, 0);
 821}
 822
 823int drbd_send_protocol(struct drbd_connection *connection)
 824{
 825        int err;
 826
 827        mutex_lock(&connection->data.mutex);
 828        err = __drbd_send_protocol(connection, P_PROTOCOL);
 829        mutex_unlock(&connection->data.mutex);
 830
 831        return err;
 832}
 833
 834static int _drbd_send_uuids(struct drbd_peer_device *peer_device, u64 uuid_flags)
 835{
 836        struct drbd_device *device = peer_device->device;
 837        struct drbd_socket *sock;
 838        struct p_uuids *p;
 839        int i;
 840
 841        if (!get_ldev_if_state(device, D_NEGOTIATING))
 842                return 0;
 843
 844        sock = &peer_device->connection->data;
 845        p = drbd_prepare_command(peer_device, sock);
 846        if (!p) {
 847                put_ldev(device);
 848                return -EIO;
 849        }
 850        spin_lock_irq(&device->ldev->md.uuid_lock);
 851        for (i = UI_CURRENT; i < UI_SIZE; i++)
 852                p->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]);
 853        spin_unlock_irq(&device->ldev->md.uuid_lock);
 854
 855        device->comm_bm_set = drbd_bm_total_weight(device);
 856        p->uuid[UI_SIZE] = cpu_to_be64(device->comm_bm_set);
 857        rcu_read_lock();
 858        uuid_flags |= rcu_dereference(peer_device->connection->net_conf)->discard_my_data ? 1 : 0;
 859        rcu_read_unlock();
 860        uuid_flags |= test_bit(CRASHED_PRIMARY, &device->flags) ? 2 : 0;
 861        uuid_flags |= device->new_state_tmp.disk == D_INCONSISTENT ? 4 : 0;
 862        p->uuid[UI_FLAGS] = cpu_to_be64(uuid_flags);
 863
 864        put_ldev(device);
 865        return drbd_send_command(peer_device, sock, P_UUIDS, sizeof(*p), NULL, 0);
 866}
 867
 868int drbd_send_uuids(struct drbd_peer_device *peer_device)
 869{
 870        return _drbd_send_uuids(peer_device, 0);
 871}
 872
 873int drbd_send_uuids_skip_initial_sync(struct drbd_peer_device *peer_device)
 874{
 875        return _drbd_send_uuids(peer_device, 8);
 876}
 877
 878void drbd_print_uuids(struct drbd_device *device, const char *text)
 879{
 880        if (get_ldev_if_state(device, D_NEGOTIATING)) {
 881                u64 *uuid = device->ldev->md.uuid;
 882                drbd_info(device, "%s %016llX:%016llX:%016llX:%016llX\n",
 883                     text,
 884                     (unsigned long long)uuid[UI_CURRENT],
 885                     (unsigned long long)uuid[UI_BITMAP],
 886                     (unsigned long long)uuid[UI_HISTORY_START],
 887                     (unsigned long long)uuid[UI_HISTORY_END]);
 888                put_ldev(device);
 889        } else {
 890                drbd_info(device, "%s effective data uuid: %016llX\n",
 891                                text,
 892                                (unsigned long long)device->ed_uuid);
 893        }
 894}
 895
 896void drbd_gen_and_send_sync_uuid(struct drbd_peer_device *peer_device)
 897{
 898        struct drbd_device *device = peer_device->device;
 899        struct drbd_socket *sock;
 900        struct p_rs_uuid *p;
 901        u64 uuid;
 902
 903        D_ASSERT(device, device->state.disk == D_UP_TO_DATE);
 904
 905        uuid = device->ldev->md.uuid[UI_BITMAP];
 906        if (uuid && uuid != UUID_JUST_CREATED)
 907                uuid = uuid + UUID_NEW_BM_OFFSET;
 908        else
 909                get_random_bytes(&uuid, sizeof(u64));
 910        drbd_uuid_set(device, UI_BITMAP, uuid);
 911        drbd_print_uuids(device, "updated sync UUID");
 912        drbd_md_sync(device);
 913
 914        sock = &peer_device->connection->data;
 915        p = drbd_prepare_command(peer_device, sock);
 916        if (p) {
 917                p->uuid = cpu_to_be64(uuid);
 918                drbd_send_command(peer_device, sock, P_SYNC_UUID, sizeof(*p), NULL, 0);
 919        }
 920}
 921
 922int drbd_send_sizes(struct drbd_peer_device *peer_device, int trigger_reply, enum dds_flags flags)
 923{
 924        struct drbd_device *device = peer_device->device;
 925        struct drbd_socket *sock;
 926        struct p_sizes *p;
 927        sector_t d_size, u_size;
 928        int q_order_type;
 929        unsigned int max_bio_size;
 930
 931        if (get_ldev_if_state(device, D_NEGOTIATING)) {
 932                D_ASSERT(device, device->ldev->backing_bdev);
 933                d_size = drbd_get_max_capacity(device->ldev);
 934                rcu_read_lock();
 935                u_size = rcu_dereference(device->ldev->disk_conf)->disk_size;
 936                rcu_read_unlock();
 937                q_order_type = drbd_queue_order_type(device);
 938                max_bio_size = queue_max_hw_sectors(device->ldev->backing_bdev->bd_disk->queue) << 9;
 939                max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE);
 940                put_ldev(device);
 941        } else {
 942                d_size = 0;
 943                u_size = 0;
 944                q_order_type = QUEUE_ORDERED_NONE;
 945                max_bio_size = DRBD_MAX_BIO_SIZE; /* ... multiple BIOs per peer_request */
 946        }
 947
 948        sock = &peer_device->connection->data;
 949        p = drbd_prepare_command(peer_device, sock);
 950        if (!p)
 951                return -EIO;
 952
 953        if (peer_device->connection->agreed_pro_version <= 94)
 954                max_bio_size = min(max_bio_size, DRBD_MAX_SIZE_H80_PACKET);
 955        else if (peer_device->connection->agreed_pro_version < 100)
 956                max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE_P95);
 957
 958        p->d_size = cpu_to_be64(d_size);
 959        p->u_size = cpu_to_be64(u_size);
 960        p->c_size = cpu_to_be64(trigger_reply ? 0 : drbd_get_capacity(device->this_bdev));
 961        p->max_bio_size = cpu_to_be32(max_bio_size);
 962        p->queue_order_type = cpu_to_be16(q_order_type);
 963        p->dds_flags = cpu_to_be16(flags);
 964        return drbd_send_command(peer_device, sock, P_SIZES, sizeof(*p), NULL, 0);
 965}
 966
 967/**
 968 * drbd_send_current_state() - Sends the drbd state to the peer
 969 * @peer_device:        DRBD peer device.
 970 */
 971int drbd_send_current_state(struct drbd_peer_device *peer_device)
 972{
 973        struct drbd_socket *sock;
 974        struct p_state *p;
 975
 976        sock = &peer_device->connection->data;
 977        p = drbd_prepare_command(peer_device, sock);
 978        if (!p)
 979                return -EIO;
 980        p->state = cpu_to_be32(peer_device->device->state.i); /* Within the send mutex */
 981        return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0);
 982}
 983
 984/**
 985 * drbd_send_state() - After a state change, sends the new state to the peer
 986 * @peer_device:      DRBD peer device.
 987 * @state:     the state to send, not necessarily the current state.
 988 *
 989 * Each state change queues an "after_state_ch" work, which will eventually
 990 * send the resulting new state to the peer. If more state changes happen
 991 * between queuing and processing of the after_state_ch work, we still
 992 * want to send each intermediary state in the order it occurred.
 993 */
 994int drbd_send_state(struct drbd_peer_device *peer_device, union drbd_state state)
 995{
 996        struct drbd_socket *sock;
 997        struct p_state *p;
 998
 999        sock = &peer_device->connection->data;
1000        p = drbd_prepare_command(peer_device, sock);
1001        if (!p)
1002                return -EIO;
1003        p->state = cpu_to_be32(state.i); /* Within the send mutex */
1004        return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0);
1005}
1006
1007int drbd_send_state_req(struct drbd_peer_device *peer_device, union drbd_state mask, union drbd_state val)
1008{
1009        struct drbd_socket *sock;
1010        struct p_req_state *p;
1011
1012        sock = &peer_device->connection->data;
1013        p = drbd_prepare_command(peer_device, sock);
1014        if (!p)
1015                return -EIO;
1016        p->mask = cpu_to_be32(mask.i);
1017        p->val = cpu_to_be32(val.i);
1018        return drbd_send_command(peer_device, sock, P_STATE_CHG_REQ, sizeof(*p), NULL, 0);
1019}
1020
1021int conn_send_state_req(struct drbd_connection *connection, union drbd_state mask, union drbd_state val)
1022{
1023        enum drbd_packet cmd;
1024        struct drbd_socket *sock;
1025        struct p_req_state *p;
1026
1027        cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REQ : P_CONN_ST_CHG_REQ;
1028        sock = &connection->data;
1029        p = conn_prepare_command(connection, sock);
1030        if (!p)
1031                return -EIO;
1032        p->mask = cpu_to_be32(mask.i);
1033        p->val = cpu_to_be32(val.i);
1034        return conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0);
1035}
1036
1037void drbd_send_sr_reply(struct drbd_peer_device *peer_device, enum drbd_state_rv retcode)
1038{
1039        struct drbd_socket *sock;
1040        struct p_req_state_reply *p;
1041
1042        sock = &peer_device->connection->meta;
1043        p = drbd_prepare_command(peer_device, sock);
1044        if (p) {
1045                p->retcode = cpu_to_be32(retcode);
1046                drbd_send_command(peer_device, sock, P_STATE_CHG_REPLY, sizeof(*p), NULL, 0);
1047        }
1048}
1049
1050void conn_send_sr_reply(struct drbd_connection *connection, enum drbd_state_rv retcode)
1051{
1052        struct drbd_socket *sock;
1053        struct p_req_state_reply *p;
1054        enum drbd_packet cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REPLY : P_CONN_ST_CHG_REPLY;
1055
1056        sock = &connection->meta;
1057        p = conn_prepare_command(connection, sock);
1058        if (p) {
1059                p->retcode = cpu_to_be32(retcode);
1060                conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0);
1061        }
1062}
1063
1064static void dcbp_set_code(struct p_compressed_bm *p, enum drbd_bitmap_code code)
1065{
1066        BUG_ON(code & ~0xf);
1067        p->encoding = (p->encoding & ~0xf) | code;
1068}
1069
1070static void dcbp_set_start(struct p_compressed_bm *p, int set)
1071{
1072        p->encoding = (p->encoding & ~0x80) | (set ? 0x80 : 0);
1073}
1074
1075static void dcbp_set_pad_bits(struct p_compressed_bm *p, int n)
1076{
1077        BUG_ON(n & ~0x7);
1078        p->encoding = (p->encoding & (~0x7 << 4)) | (n << 4);
1079}
1080
1081static int fill_bitmap_rle_bits(struct drbd_device *device,
1082                         struct p_compressed_bm *p,
1083                         unsigned int size,
1084                         struct bm_xfer_ctx *c)
1085{
1086        struct bitstream bs;
1087        unsigned long plain_bits;
1088        unsigned long tmp;
1089        unsigned long rl;
1090        unsigned len;
1091        unsigned toggle;
1092        int bits, use_rle;
1093
1094        /* may we use this feature? */
1095        rcu_read_lock();
1096        use_rle = rcu_dereference(first_peer_device(device)->connection->net_conf)->use_rle;
1097        rcu_read_unlock();
1098        if (!use_rle || first_peer_device(device)->connection->agreed_pro_version < 90)
1099                return 0;
1100
1101        if (c->bit_offset >= c->bm_bits)
1102                return 0; /* nothing to do. */
1103
1104        /* use at most thus many bytes */
1105        bitstream_init(&bs, p->code, size, 0);
1106        memset(p->code, 0, size);
1107        /* plain bits covered in this code string */
1108        plain_bits = 0;
1109
1110        /* p->encoding & 0x80 stores whether the first run length is set.
1111         * bit offset is implicit.
1112         * start with toggle == 2 to be able to tell the first iteration */
1113        toggle = 2;
1114
1115        /* see how much plain bits we can stuff into one packet
1116         * using RLE and VLI. */
1117        do {
1118                tmp = (toggle == 0) ? _drbd_bm_find_next_zero(device, c->bit_offset)
1119                                    : _drbd_bm_find_next(device, c->bit_offset);
1120                if (tmp == -1UL)
1121                        tmp = c->bm_bits;
1122                rl = tmp - c->bit_offset;
1123
1124                if (toggle == 2) { /* first iteration */
1125                        if (rl == 0) {
1126                                /* the first checked bit was set,
1127                                 * store start value, */
1128                                dcbp_set_start(p, 1);
1129                                /* but skip encoding of zero run length */
1130                                toggle = !toggle;
1131                                continue;
1132                        }
1133                        dcbp_set_start(p, 0);
1134                }
1135
1136                /* paranoia: catch zero runlength.
1137                 * can only happen if bitmap is modified while we scan it. */
1138                if (rl == 0) {
1139                        drbd_err(device, "unexpected zero runlength while encoding bitmap "
1140                            "t:%u bo:%lu\n", toggle, c->bit_offset);
1141                        return -1;
1142                }
1143
1144                bits = vli_encode_bits(&bs, rl);
1145                if (bits == -ENOBUFS) /* buffer full */
1146                        break;
1147                if (bits <= 0) {
1148                        drbd_err(device, "error while encoding bitmap: %d\n", bits);
1149                        return 0;
1150                }
1151
1152                toggle = !toggle;
1153                plain_bits += rl;
1154                c->bit_offset = tmp;
1155        } while (c->bit_offset < c->bm_bits);
1156
1157        len = bs.cur.b - p->code + !!bs.cur.bit;
1158
1159        if (plain_bits < (len << 3)) {
1160                /* incompressible with this method.
1161                 * we need to rewind both word and bit position. */
1162                c->bit_offset -= plain_bits;
1163                bm_xfer_ctx_bit_to_word_offset(c);
1164                c->bit_offset = c->word_offset * BITS_PER_LONG;
1165                return 0;
1166        }
1167
1168        /* RLE + VLI was able to compress it just fine.
1169         * update c->word_offset. */
1170        bm_xfer_ctx_bit_to_word_offset(c);
1171
1172        /* store pad_bits */
1173        dcbp_set_pad_bits(p, (8 - bs.cur.bit) & 0x7);
1174
1175        return len;
1176}
1177
1178/**
1179 * send_bitmap_rle_or_plain
1180 *
1181 * Return 0 when done, 1 when another iteration is needed, and a negative error
1182 * code upon failure.
1183 */
1184static int
1185send_bitmap_rle_or_plain(struct drbd_device *device, struct bm_xfer_ctx *c)
1186{
1187        struct drbd_socket *sock = &first_peer_device(device)->connection->data;
1188        unsigned int header_size = drbd_header_size(first_peer_device(device)->connection);
1189        struct p_compressed_bm *p = sock->sbuf + header_size;
1190        int len, err;
1191
1192        len = fill_bitmap_rle_bits(device, p,
1193                        DRBD_SOCKET_BUFFER_SIZE - header_size - sizeof(*p), c);
1194        if (len < 0)
1195                return -EIO;
1196
1197        if (len) {
1198                dcbp_set_code(p, RLE_VLI_Bits);
1199                err = __send_command(first_peer_device(device)->connection, device->vnr, sock,
1200                                     P_COMPRESSED_BITMAP, sizeof(*p) + len,
1201                                     NULL, 0);
1202                c->packets[0]++;
1203                c->bytes[0] += header_size + sizeof(*p) + len;
1204
1205                if (c->bit_offset >= c->bm_bits)
1206                        len = 0; /* DONE */
1207        } else {
1208                /* was not compressible.
1209                 * send a buffer full of plain text bits instead. */
1210                unsigned int data_size;
1211                unsigned long num_words;
1212                unsigned long *p = sock->sbuf + header_size;
1213
1214                data_size = DRBD_SOCKET_BUFFER_SIZE - header_size;
1215                num_words = min_t(size_t, data_size / sizeof(*p),
1216                                  c->bm_words - c->word_offset);
1217                len = num_words * sizeof(*p);
1218                if (len)
1219                        drbd_bm_get_lel(device, c->word_offset, num_words, p);
1220                err = __send_command(first_peer_device(device)->connection, device->vnr, sock, P_BITMAP, len, NULL, 0);
1221                c->word_offset += num_words;
1222                c->bit_offset = c->word_offset * BITS_PER_LONG;
1223
1224                c->packets[1]++;
1225                c->bytes[1] += header_size + len;
1226
1227                if (c->bit_offset > c->bm_bits)
1228                        c->bit_offset = c->bm_bits;
1229        }
1230        if (!err) {
1231                if (len == 0) {
1232                        INFO_bm_xfer_stats(device, "send", c);
1233                        return 0;
1234                } else
1235                        return 1;
1236        }
1237        return -EIO;
1238}
1239
1240/* See the comment at receive_bitmap() */
1241static int _drbd_send_bitmap(struct drbd_device *device)
1242{
1243        struct bm_xfer_ctx c;
1244        int err;
1245
1246        if (!expect(device->bitmap))
1247                return false;
1248
1249        if (get_ldev(device)) {
1250                if (drbd_md_test_flag(device->ldev, MDF_FULL_SYNC)) {
1251                        drbd_info(device, "Writing the whole bitmap, MDF_FullSync was set.\n");
1252                        drbd_bm_set_all(device);
1253                        if (drbd_bm_write(device)) {
1254                                /* write_bm did fail! Leave full sync flag set in Meta P_DATA
1255                                 * but otherwise process as per normal - need to tell other
1256                                 * side that a full resync is required! */
1257                                drbd_err(device, "Failed to write bitmap to disk!\n");
1258                        } else {
1259                                drbd_md_clear_flag(device, MDF_FULL_SYNC);
1260                                drbd_md_sync(device);
1261                        }
1262                }
1263                put_ldev(device);
1264        }
1265
1266        c = (struct bm_xfer_ctx) {
1267                .bm_bits = drbd_bm_bits(device),
1268                .bm_words = drbd_bm_words(device),
1269        };
1270
1271        do {
1272                err = send_bitmap_rle_or_plain(device, &c);
1273        } while (err > 0);
1274
1275        return err == 0;
1276}
1277
1278int drbd_send_bitmap(struct drbd_device *device)
1279{
1280        struct drbd_socket *sock = &first_peer_device(device)->connection->data;
1281        int err = -1;
1282
1283        mutex_lock(&sock->mutex);
1284        if (sock->socket)
1285                err = !_drbd_send_bitmap(device);
1286        mutex_unlock(&sock->mutex);
1287        return err;
1288}
1289
1290void drbd_send_b_ack(struct drbd_connection *connection, u32 barrier_nr, u32 set_size)
1291{
1292        struct drbd_socket *sock;
1293        struct p_barrier_ack *p;
1294
1295        if (connection->cstate < C_WF_REPORT_PARAMS)
1296                return;
1297
1298        sock = &connection->meta;
1299        p = conn_prepare_command(connection, sock);
1300        if (!p)
1301                return;
1302        p->barrier = barrier_nr;
1303        p->set_size = cpu_to_be32(set_size);
1304        conn_send_command(connection, sock, P_BARRIER_ACK, sizeof(*p), NULL, 0);
1305}
1306
1307/**
1308 * _drbd_send_ack() - Sends an ack packet
1309 * @device:     DRBD device.
1310 * @cmd:        Packet command code.
1311 * @sector:     sector, needs to be in big endian byte order
1312 * @blksize:    size in byte, needs to be in big endian byte order
1313 * @block_id:   Id, big endian byte order
1314 */
1315static int _drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1316                          u64 sector, u32 blksize, u64 block_id)
1317{
1318        struct drbd_socket *sock;
1319        struct p_block_ack *p;
1320
1321        if (peer_device->device->state.conn < C_CONNECTED)
1322                return -EIO;
1323
1324        sock = &peer_device->connection->meta;
1325        p = drbd_prepare_command(peer_device, sock);
1326        if (!p)
1327                return -EIO;
1328        p->sector = sector;
1329        p->block_id = block_id;
1330        p->blksize = blksize;
1331        p->seq_num = cpu_to_be32(atomic_inc_return(&peer_device->device->packet_seq));
1332        return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0);
1333}
1334
1335/* dp->sector and dp->block_id already/still in network byte order,
1336 * data_size is payload size according to dp->head,
1337 * and may need to be corrected for digest size. */
1338void drbd_send_ack_dp(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1339                      struct p_data *dp, int data_size)
1340{
1341        if (peer_device->connection->peer_integrity_tfm)
1342                data_size -= crypto_hash_digestsize(peer_device->connection->peer_integrity_tfm);
1343        _drbd_send_ack(peer_device, cmd, dp->sector, cpu_to_be32(data_size),
1344                       dp->block_id);
1345}
1346
1347void drbd_send_ack_rp(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1348                      struct p_block_req *rp)
1349{
1350        _drbd_send_ack(peer_device, cmd, rp->sector, rp->blksize, rp->block_id);
1351}
1352
1353/**
1354 * drbd_send_ack() - Sends an ack packet
1355 * @device:     DRBD device
1356 * @cmd:        packet command code
1357 * @peer_req:   peer request
1358 */
1359int drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1360                  struct drbd_peer_request *peer_req)
1361{
1362        return _drbd_send_ack(peer_device, cmd,
1363                              cpu_to_be64(peer_req->i.sector),
1364                              cpu_to_be32(peer_req->i.size),
1365                              peer_req->block_id);
1366}
1367
1368/* This function misuses the block_id field to signal if the blocks
1369 * are is sync or not. */
1370int drbd_send_ack_ex(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1371                     sector_t sector, int blksize, u64 block_id)
1372{
1373        return _drbd_send_ack(peer_device, cmd,
1374                              cpu_to_be64(sector),
1375                              cpu_to_be32(blksize),
1376                              cpu_to_be64(block_id));
1377}
1378
1379int drbd_send_drequest(struct drbd_peer_device *peer_device, int cmd,
1380                       sector_t sector, int size, u64 block_id)
1381{
1382        struct drbd_socket *sock;
1383        struct p_block_req *p;
1384
1385        sock = &peer_device->connection->data;
1386        p = drbd_prepare_command(peer_device, sock);
1387        if (!p)
1388                return -EIO;
1389        p->sector = cpu_to_be64(sector);
1390        p->block_id = block_id;
1391        p->blksize = cpu_to_be32(size);
1392        return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0);
1393}
1394
1395int drbd_send_drequest_csum(struct drbd_peer_device *peer_device, sector_t sector, int size,
1396                            void *digest, int digest_size, enum drbd_packet cmd)
1397{
1398        struct drbd_socket *sock;
1399        struct p_block_req *p;
1400
1401        /* FIXME: Put the digest into the preallocated socket buffer.  */
1402
1403        sock = &peer_device->connection->data;
1404        p = drbd_prepare_command(peer_device, sock);
1405        if (!p)
1406                return -EIO;
1407        p->sector = cpu_to_be64(sector);
1408        p->block_id = ID_SYNCER /* unused */;
1409        p->blksize = cpu_to_be32(size);
1410        return drbd_send_command(peer_device, sock, cmd, sizeof(*p), digest, digest_size);
1411}
1412
1413int drbd_send_ov_request(struct drbd_peer_device *peer_device, sector_t sector, int size)
1414{
1415        struct drbd_socket *sock;
1416        struct p_block_req *p;
1417
1418        sock = &peer_device->connection->data;
1419        p = drbd_prepare_command(peer_device, sock);
1420        if (!p)
1421                return -EIO;
1422        p->sector = cpu_to_be64(sector);
1423        p->block_id = ID_SYNCER /* unused */;
1424        p->blksize = cpu_to_be32(size);
1425        return drbd_send_command(peer_device, sock, P_OV_REQUEST, sizeof(*p), NULL, 0);
1426}
1427
1428/* called on sndtimeo
1429 * returns false if we should retry,
1430 * true if we think connection is dead
1431 */
1432static int we_should_drop_the_connection(struct drbd_connection *connection, struct socket *sock)
1433{
1434        int drop_it;
1435        /* long elapsed = (long)(jiffies - device->last_received); */
1436
1437        drop_it =   connection->meta.socket == sock
1438                || !connection->asender.task
1439                || get_t_state(&connection->asender) != RUNNING
1440                || connection->cstate < C_WF_REPORT_PARAMS;
1441
1442        if (drop_it)
1443                return true;
1444
1445        drop_it = !--connection->ko_count;
1446        if (!drop_it) {
1447                drbd_err(connection, "[%s/%d] sock_sendmsg time expired, ko = %u\n",
1448                         current->comm, current->pid, connection->ko_count);
1449                request_ping(connection);
1450        }
1451
1452        return drop_it; /* && (device->state == R_PRIMARY) */;
1453}
1454
1455static void drbd_update_congested(struct drbd_connection *connection)
1456{
1457        struct sock *sk = connection->data.socket->sk;
1458        if (sk->sk_wmem_queued > sk->sk_sndbuf * 4 / 5)
1459                set_bit(NET_CONGESTED, &connection->flags);
1460}
1461
1462/* The idea of sendpage seems to be to put some kind of reference
1463 * to the page into the skb, and to hand it over to the NIC. In
1464 * this process get_page() gets called.
1465 *
1466 * As soon as the page was really sent over the network put_page()
1467 * gets called by some part of the network layer. [ NIC driver? ]
1468 *
1469 * [ get_page() / put_page() increment/decrement the count. If count
1470 *   reaches 0 the page will be freed. ]
1471 *
1472 * This works nicely with pages from FSs.
1473 * But this means that in protocol A we might signal IO completion too early!
1474 *
1475 * In order not to corrupt data during a resync we must make sure
1476 * that we do not reuse our own buffer pages (EEs) to early, therefore
1477 * we have the net_ee list.
1478 *
1479 * XFS seems to have problems, still, it submits pages with page_count == 0!
1480 * As a workaround, we disable sendpage on pages
1481 * with page_count == 0 or PageSlab.
1482 */
1483static int _drbd_no_send_page(struct drbd_peer_device *peer_device, struct page *page,
1484                              int offset, size_t size, unsigned msg_flags)
1485{
1486        struct socket *socket;
1487        void *addr;
1488        int err;
1489
1490        socket = peer_device->connection->data.socket;
1491        addr = kmap(page) + offset;
1492        err = drbd_send_all(peer_device->connection, socket, addr, size, msg_flags);
1493        kunmap(page);
1494        if (!err)
1495                peer_device->device->send_cnt += size >> 9;
1496        return err;
1497}
1498
1499static int _drbd_send_page(struct drbd_peer_device *peer_device, struct page *page,
1500                    int offset, size_t size, unsigned msg_flags)
1501{
1502        struct socket *socket = peer_device->connection->data.socket;
1503        mm_segment_t oldfs = get_fs();
1504        int len = size;
1505        int err = -EIO;
1506
1507        /* e.g. XFS meta- & log-data is in slab pages, which have a
1508         * page_count of 0 and/or have PageSlab() set.
1509         * we cannot use send_page for those, as that does get_page();
1510         * put_page(); and would cause either a VM_BUG directly, or
1511         * __page_cache_release a page that would actually still be referenced
1512         * by someone, leading to some obscure delayed Oops somewhere else. */
1513        if (disable_sendpage || (page_count(page) < 1) || PageSlab(page))
1514                return _drbd_no_send_page(peer_device, page, offset, size, msg_flags);
1515
1516        msg_flags |= MSG_NOSIGNAL;
1517        drbd_update_congested(peer_device->connection);
1518        set_fs(KERNEL_DS);
1519        do {
1520                int sent;
1521
1522                sent = socket->ops->sendpage(socket, page, offset, len, msg_flags);
1523                if (sent <= 0) {
1524                        if (sent == -EAGAIN) {
1525                                if (we_should_drop_the_connection(peer_device->connection, socket))
1526                                        break;
1527                                continue;
1528                        }
1529                        drbd_warn(peer_device->device, "%s: size=%d len=%d sent=%d\n",
1530                             __func__, (int)size, len, sent);
1531                        if (sent < 0)
1532                                err = sent;
1533                        break;
1534                }
1535                len    -= sent;
1536                offset += sent;
1537        } while (len > 0 /* THINK && device->cstate >= C_CONNECTED*/);
1538        set_fs(oldfs);
1539        clear_bit(NET_CONGESTED, &peer_device->connection->flags);
1540
1541        if (len == 0) {
1542                err = 0;
1543                peer_device->device->send_cnt += size >> 9;
1544        }
1545        return err;
1546}
1547
1548static int _drbd_send_bio(struct drbd_peer_device *peer_device, struct bio *bio)
1549{
1550        struct bio_vec bvec;
1551        struct bvec_iter iter;
1552
1553        /* hint all but last page with MSG_MORE */
1554        bio_for_each_segment(bvec, bio, iter) {
1555                int err;
1556
1557                err = _drbd_no_send_page(peer_device, bvec.bv_page,
1558                                         bvec.bv_offset, bvec.bv_len,
1559                                         bio_iter_last(bvec, iter)
1560                                         ? 0 : MSG_MORE);
1561                if (err)
1562                        return err;
1563        }
1564        return 0;
1565}
1566
1567static int _drbd_send_zc_bio(struct drbd_peer_device *peer_device, struct bio *bio)
1568{
1569        struct bio_vec bvec;
1570        struct bvec_iter iter;
1571
1572        /* hint all but last page with MSG_MORE */
1573        bio_for_each_segment(bvec, bio, iter) {
1574                int err;
1575
1576                err = _drbd_send_page(peer_device, bvec.bv_page,
1577                                      bvec.bv_offset, bvec.bv_len,
1578                                      bio_iter_last(bvec, iter) ? 0 : MSG_MORE);
1579                if (err)
1580                        return err;
1581        }
1582        return 0;
1583}
1584
1585static int _drbd_send_zc_ee(struct drbd_peer_device *peer_device,
1586                            struct drbd_peer_request *peer_req)
1587{
1588        struct page *page = peer_req->pages;
1589        unsigned len = peer_req->i.size;
1590        int err;
1591
1592        /* hint all but last page with MSG_MORE */
1593        page_chain_for_each(page) {
1594                unsigned l = min_t(unsigned, len, PAGE_SIZE);
1595
1596                err = _drbd_send_page(peer_device, page, 0, l,
1597                                      page_chain_next(page) ? MSG_MORE : 0);
1598                if (err)
1599                        return err;
1600                len -= l;
1601        }
1602        return 0;
1603}
1604
1605static u32 bio_flags_to_wire(struct drbd_connection *connection, unsigned long bi_rw)
1606{
1607        if (connection->agreed_pro_version >= 95)
1608                return  (bi_rw & REQ_SYNC ? DP_RW_SYNC : 0) |
1609                        (bi_rw & REQ_FUA ? DP_FUA : 0) |
1610                        (bi_rw & REQ_FLUSH ? DP_FLUSH : 0) |
1611                        (bi_rw & REQ_DISCARD ? DP_DISCARD : 0);
1612        else
1613                return bi_rw & REQ_SYNC ? DP_RW_SYNC : 0;
1614}
1615
1616/* Used to send write or TRIM aka REQ_DISCARD requests
1617 * R_PRIMARY -> Peer    (P_DATA, P_TRIM)
1618 */
1619int drbd_send_dblock(struct drbd_peer_device *peer_device, struct drbd_request *req)
1620{
1621        struct drbd_device *device = peer_device->device;
1622        struct drbd_socket *sock;
1623        struct p_data *p;
1624        unsigned int dp_flags = 0;
1625        int dgs;
1626        int err;
1627
1628        sock = &peer_device->connection->data;
1629        p = drbd_prepare_command(peer_device, sock);
1630        dgs = peer_device->connection->integrity_tfm ?
1631              crypto_hash_digestsize(peer_device->connection->integrity_tfm) : 0;
1632
1633        if (!p)
1634                return -EIO;
1635        p->sector = cpu_to_be64(req->i.sector);
1636        p->block_id = (unsigned long)req;
1637        p->seq_num = cpu_to_be32(atomic_inc_return(&device->packet_seq));
1638        dp_flags = bio_flags_to_wire(peer_device->connection, req->master_bio->bi_rw);
1639        if (device->state.conn >= C_SYNC_SOURCE &&
1640            device->state.conn <= C_PAUSED_SYNC_T)
1641                dp_flags |= DP_MAY_SET_IN_SYNC;
1642        if (peer_device->connection->agreed_pro_version >= 100) {
1643                if (req->rq_state & RQ_EXP_RECEIVE_ACK)
1644                        dp_flags |= DP_SEND_RECEIVE_ACK;
1645                /* During resync, request an explicit write ack,
1646                 * even in protocol != C */
1647                if (req->rq_state & RQ_EXP_WRITE_ACK
1648                || (dp_flags & DP_MAY_SET_IN_SYNC))
1649                        dp_flags |= DP_SEND_WRITE_ACK;
1650        }
1651        p->dp_flags = cpu_to_be32(dp_flags);
1652
1653        if (dp_flags & DP_DISCARD) {
1654                struct p_trim *t = (struct p_trim*)p;
1655                t->size = cpu_to_be32(req->i.size);
1656                err = __send_command(peer_device->connection, device->vnr, sock, P_TRIM, sizeof(*t), NULL, 0);
1657                goto out;
1658        }
1659
1660        /* our digest is still only over the payload.
1661         * TRIM does not carry any payload. */
1662        if (dgs)
1663                drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, p + 1);
1664        err = __send_command(peer_device->connection, device->vnr, sock, P_DATA, sizeof(*p) + dgs, NULL, req->i.size);
1665        if (!err) {
1666                /* For protocol A, we have to memcpy the payload into
1667                 * socket buffers, as we may complete right away
1668                 * as soon as we handed it over to tcp, at which point the data
1669                 * pages may become invalid.
1670                 *
1671                 * For data-integrity enabled, we copy it as well, so we can be
1672                 * sure that even if the bio pages may still be modified, it
1673                 * won't change the data on the wire, thus if the digest checks
1674                 * out ok after sending on this side, but does not fit on the
1675                 * receiving side, we sure have detected corruption elsewhere.
1676                 */
1677                if (!(req->rq_state & (RQ_EXP_RECEIVE_ACK | RQ_EXP_WRITE_ACK)) || dgs)
1678                        err = _drbd_send_bio(peer_device, req->master_bio);
1679                else
1680                        err = _drbd_send_zc_bio(peer_device, req->master_bio);
1681
1682                /* double check digest, sometimes buffers have been modified in flight. */
1683                if (dgs > 0 && dgs <= 64) {
1684                        /* 64 byte, 512 bit, is the largest digest size
1685                         * currently supported in kernel crypto. */
1686                        unsigned char digest[64];
1687                        drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest);
1688                        if (memcmp(p + 1, digest, dgs)) {
1689                                drbd_warn(device,
1690                                        "Digest mismatch, buffer modified by upper layers during write: %llus +%u\n",
1691                                        (unsigned long long)req->i.sector, req->i.size);
1692                        }
1693                } /* else if (dgs > 64) {
1694                     ... Be noisy about digest too large ...
1695                } */
1696        }
1697out:
1698        mutex_unlock(&sock->mutex);  /* locked by drbd_prepare_command() */
1699
1700        return err;
1701}
1702
1703/* answer packet, used to send data back for read requests:
1704 *  Peer       -> (diskless) R_PRIMARY   (P_DATA_REPLY)
1705 *  C_SYNC_SOURCE -> C_SYNC_TARGET         (P_RS_DATA_REPLY)
1706 */
1707int drbd_send_block(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1708                    struct drbd_peer_request *peer_req)
1709{
1710        struct drbd_device *device = peer_device->device;
1711        struct drbd_socket *sock;
1712        struct p_data *p;
1713        int err;
1714        int dgs;
1715
1716        sock = &peer_device->connection->data;
1717        p = drbd_prepare_command(peer_device, sock);
1718
1719        dgs = peer_device->connection->integrity_tfm ?
1720              crypto_hash_digestsize(peer_device->connection->integrity_tfm) : 0;
1721
1722        if (!p)
1723                return -EIO;
1724        p->sector = cpu_to_be64(peer_req->i.sector);
1725        p->block_id = peer_req->block_id;
1726        p->seq_num = 0;  /* unused */
1727        p->dp_flags = 0;
1728        if (dgs)
1729                drbd_csum_ee(peer_device->connection->integrity_tfm, peer_req, p + 1);
1730        err = __send_command(peer_device->connection, device->vnr, sock, cmd, sizeof(*p) + dgs, NULL, peer_req->i.size);
1731        if (!err)
1732                err = _drbd_send_zc_ee(peer_device, peer_req);
1733        mutex_unlock(&sock->mutex);  /* locked by drbd_prepare_command() */
1734
1735        return err;
1736}
1737
1738int drbd_send_out_of_sync(struct drbd_peer_device *peer_device, struct drbd_request *req)
1739{
1740        struct drbd_socket *sock;
1741        struct p_block_desc *p;
1742
1743        sock = &peer_device->connection->data;
1744        p = drbd_prepare_command(peer_device, sock);
1745        if (!p)
1746                return -EIO;
1747        p->sector = cpu_to_be64(req->i.sector);
1748        p->blksize = cpu_to_be32(req->i.size);
1749        return drbd_send_command(peer_device, sock, P_OUT_OF_SYNC, sizeof(*p), NULL, 0);
1750}
1751
1752/*
1753  drbd_send distinguishes two cases:
1754
1755  Packets sent via the data socket "sock"
1756  and packets sent via the meta data socket "msock"
1757
1758                    sock                      msock
1759  -----------------+-------------------------+------------------------------
1760  timeout           conf.timeout / 2          conf.timeout / 2
1761  timeout action    send a ping via msock     Abort communication
1762                                              and close all sockets
1763*/
1764
1765/*
1766 * you must have down()ed the appropriate [m]sock_mutex elsewhere!
1767 */
1768int drbd_send(struct drbd_connection *connection, struct socket *sock,
1769              void *buf, size_t size, unsigned msg_flags)
1770{
1771        struct kvec iov;
1772        struct msghdr msg;
1773        int rv, sent = 0;
1774
1775        if (!sock)
1776                return -EBADR;
1777
1778        /* THINK  if (signal_pending) return ... ? */
1779
1780        iov.iov_base = buf;
1781        iov.iov_len  = size;
1782
1783        msg.msg_name       = NULL;
1784        msg.msg_namelen    = 0;
1785        msg.msg_control    = NULL;
1786        msg.msg_controllen = 0;
1787        msg.msg_flags      = msg_flags | MSG_NOSIGNAL;
1788
1789        if (sock == connection->data.socket) {
1790                rcu_read_lock();
1791                connection->ko_count = rcu_dereference(connection->net_conf)->ko_count;
1792                rcu_read_unlock();
1793                drbd_update_congested(connection);
1794        }
1795        do {
1796                /* STRANGE
1797                 * tcp_sendmsg does _not_ use its size parameter at all ?
1798                 *
1799                 * -EAGAIN on timeout, -EINTR on signal.
1800                 */
1801/* THINK
1802 * do we need to block DRBD_SIG if sock == &meta.socket ??
1803 * otherwise wake_asender() might interrupt some send_*Ack !
1804 */
1805                rv = kernel_sendmsg(sock, &msg, &iov, 1, size);
1806                if (rv == -EAGAIN) {
1807                        if (we_should_drop_the_connection(connection, sock))
1808                                break;
1809                        else
1810                                continue;
1811                }
1812                if (rv == -EINTR) {
1813                        flush_signals(current);
1814                        rv = 0;
1815                }
1816                if (rv < 0)
1817                        break;
1818                sent += rv;
1819                iov.iov_base += rv;
1820                iov.iov_len  -= rv;
1821        } while (sent < size);
1822
1823        if (sock == connection->data.socket)
1824                clear_bit(NET_CONGESTED, &connection->flags);
1825
1826        if (rv <= 0) {
1827                if (rv != -EAGAIN) {
1828                        drbd_err(connection, "%s_sendmsg returned %d\n",
1829                                 sock == connection->meta.socket ? "msock" : "sock",
1830                                 rv);
1831                        conn_request_state(connection, NS(conn, C_BROKEN_PIPE), CS_HARD);
1832                } else
1833                        conn_request_state(connection, NS(conn, C_TIMEOUT), CS_HARD);
1834        }
1835
1836        return sent;
1837}
1838
1839/**
1840 * drbd_send_all  -  Send an entire buffer
1841 *
1842 * Returns 0 upon success and a negative error value otherwise.
1843 */
1844int drbd_send_all(struct drbd_connection *connection, struct socket *sock, void *buffer,
1845                  size_t size, unsigned msg_flags)
1846{
1847        int err;
1848
1849        err = drbd_send(connection, sock, buffer, size, msg_flags);
1850        if (err < 0)
1851                return err;
1852        if (err != size)
1853                return -EIO;
1854        return 0;
1855}
1856
1857static int drbd_open(struct block_device *bdev, fmode_t mode)
1858{
1859        struct drbd_device *device = bdev->bd_disk->private_data;
1860        unsigned long flags;
1861        int rv = 0;
1862
1863        mutex_lock(&drbd_main_mutex);
1864        spin_lock_irqsave(&device->resource->req_lock, flags);
1865        /* to have a stable device->state.role
1866         * and no race with updating open_cnt */
1867
1868        if (device->state.role != R_PRIMARY) {
1869                if (mode & FMODE_WRITE)
1870                        rv = -EROFS;
1871                else if (!allow_oos)
1872                        rv = -EMEDIUMTYPE;
1873        }
1874
1875        if (!rv)
1876                device->open_cnt++;
1877        spin_unlock_irqrestore(&device->resource->req_lock, flags);
1878        mutex_unlock(&drbd_main_mutex);
1879
1880        return rv;
1881}
1882
1883static void drbd_release(struct gendisk *gd, fmode_t mode)
1884{
1885        struct drbd_device *device = gd->private_data;
1886        mutex_lock(&drbd_main_mutex);
1887        device->open_cnt--;
1888        mutex_unlock(&drbd_main_mutex);
1889}
1890
1891static void drbd_set_defaults(struct drbd_device *device)
1892{
1893        /* Beware! The actual layout differs
1894         * between big endian and little endian */
1895        device->state = (union drbd_dev_state) {
1896                { .role = R_SECONDARY,
1897                  .peer = R_UNKNOWN,
1898                  .conn = C_STANDALONE,
1899                  .disk = D_DISKLESS,
1900                  .pdsk = D_UNKNOWN,
1901                } };
1902}
1903
1904void drbd_init_set_defaults(struct drbd_device *device)
1905{
1906        /* the memset(,0,) did most of this.
1907         * note: only assignments, no allocation in here */
1908
1909        drbd_set_defaults(device);
1910
1911        atomic_set(&device->ap_bio_cnt, 0);
1912        atomic_set(&device->ap_actlog_cnt, 0);
1913        atomic_set(&device->ap_pending_cnt, 0);
1914        atomic_set(&device->rs_pending_cnt, 0);
1915        atomic_set(&device->unacked_cnt, 0);
1916        atomic_set(&device->local_cnt, 0);
1917        atomic_set(&device->pp_in_use_by_net, 0);
1918        atomic_set(&device->rs_sect_in, 0);
1919        atomic_set(&device->rs_sect_ev, 0);
1920        atomic_set(&device->ap_in_flight, 0);
1921        atomic_set(&device->md_io.in_use, 0);
1922
1923        mutex_init(&device->own_state_mutex);
1924        device->state_mutex = &device->own_state_mutex;
1925
1926        spin_lock_init(&device->al_lock);
1927        spin_lock_init(&device->peer_seq_lock);
1928
1929        INIT_LIST_HEAD(&device->active_ee);
1930        INIT_LIST_HEAD(&device->sync_ee);
1931        INIT_LIST_HEAD(&device->done_ee);
1932        INIT_LIST_HEAD(&device->read_ee);
1933        INIT_LIST_HEAD(&device->net_ee);
1934        INIT_LIST_HEAD(&device->resync_reads);
1935        INIT_LIST_HEAD(&device->resync_work.list);
1936        INIT_LIST_HEAD(&device->unplug_work.list);
1937        INIT_LIST_HEAD(&device->bm_io_work.w.list);
1938        INIT_LIST_HEAD(&device->pending_master_completion[0]);
1939        INIT_LIST_HEAD(&device->pending_master_completion[1]);
1940        INIT_LIST_HEAD(&device->pending_completion[0]);
1941        INIT_LIST_HEAD(&device->pending_completion[1]);
1942
1943        device->resync_work.cb  = w_resync_timer;
1944        device->unplug_work.cb  = w_send_write_hint;
1945        device->bm_io_work.w.cb = w_bitmap_io;
1946
1947        init_timer(&device->resync_timer);
1948        init_timer(&device->md_sync_timer);
1949        init_timer(&device->start_resync_timer);
1950        init_timer(&device->request_timer);
1951        device->resync_timer.function = resync_timer_fn;
1952        device->resync_timer.data = (unsigned long) device;
1953        device->md_sync_timer.function = md_sync_timer_fn;
1954        device->md_sync_timer.data = (unsigned long) device;
1955        device->start_resync_timer.function = start_resync_timer_fn;
1956        device->start_resync_timer.data = (unsigned long) device;
1957        device->request_timer.function = request_timer_fn;
1958        device->request_timer.data = (unsigned long) device;
1959
1960        init_waitqueue_head(&device->misc_wait);
1961        init_waitqueue_head(&device->state_wait);
1962        init_waitqueue_head(&device->ee_wait);
1963        init_waitqueue_head(&device->al_wait);
1964        init_waitqueue_head(&device->seq_wait);
1965
1966        device->resync_wenr = LC_FREE;
1967        device->peer_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
1968        device->local_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
1969}
1970
1971void drbd_device_cleanup(struct drbd_device *device)
1972{
1973        int i;
1974        if (first_peer_device(device)->connection->receiver.t_state != NONE)
1975                drbd_err(device, "ASSERT FAILED: receiver t_state == %d expected 0.\n",
1976                                first_peer_device(device)->connection->receiver.t_state);
1977
1978        device->al_writ_cnt  =
1979        device->bm_writ_cnt  =
1980        device->read_cnt     =
1981        device->recv_cnt     =
1982        device->send_cnt     =
1983        device->writ_cnt     =
1984        device->p_size       =
1985        device->rs_start     =
1986        device->rs_total     =
1987        device->rs_failed    = 0;
1988        device->rs_last_events = 0;
1989        device->rs_last_sect_ev = 0;
1990        for (i = 0; i < DRBD_SYNC_MARKS; i++) {
1991                device->rs_mark_left[i] = 0;
1992                device->rs_mark_time[i] = 0;
1993        }
1994        D_ASSERT(device, first_peer_device(device)->connection->net_conf == NULL);
1995
1996        drbd_set_my_capacity(device, 0);
1997        if (device->bitmap) {
1998                /* maybe never allocated. */
1999                drbd_bm_resize(device, 0, 1);
2000                drbd_bm_cleanup(device);
2001        }
2002
2003        drbd_free_ldev(device->ldev);
2004        device->ldev = NULL;
2005
2006        clear_bit(AL_SUSPENDED, &device->flags);
2007
2008        D_ASSERT(device, list_empty(&device->active_ee));
2009        D_ASSERT(device, list_empty(&device->sync_ee));
2010        D_ASSERT(device, list_empty(&device->done_ee));
2011        D_ASSERT(device, list_empty(&device->read_ee));
2012        D_ASSERT(device, list_empty(&device->net_ee));
2013        D_ASSERT(device, list_empty(&device->resync_reads));
2014        D_ASSERT(device, list_empty(&first_peer_device(device)->connection->sender_work.q));
2015        D_ASSERT(device, list_empty(&device->resync_work.list));
2016        D_ASSERT(device, list_empty(&device->unplug_work.list));
2017
2018        drbd_set_defaults(device);
2019}
2020
2021
2022static void drbd_destroy_mempools(void)
2023{
2024        struct page *page;
2025
2026        while (drbd_pp_pool) {
2027                page = drbd_pp_pool;
2028                drbd_pp_pool = (struct page *)page_private(page);
2029                __free_page(page);
2030                drbd_pp_vacant--;
2031        }
2032
2033        /* D_ASSERT(device, atomic_read(&drbd_pp_vacant)==0); */
2034
2035        if (drbd_md_io_bio_set)
2036                bioset_free(drbd_md_io_bio_set);
2037        if (drbd_md_io_page_pool)
2038                mempool_destroy(drbd_md_io_page_pool);
2039        if (drbd_ee_mempool)
2040                mempool_destroy(drbd_ee_mempool);
2041        if (drbd_request_mempool)
2042                mempool_destroy(drbd_request_mempool);
2043        if (drbd_ee_cache)
2044                kmem_cache_destroy(drbd_ee_cache);
2045        if (drbd_request_cache)
2046                kmem_cache_destroy(drbd_request_cache);
2047        if (drbd_bm_ext_cache)
2048                kmem_cache_destroy(drbd_bm_ext_cache);
2049        if (drbd_al_ext_cache)
2050                kmem_cache_destroy(drbd_al_ext_cache);
2051
2052        drbd_md_io_bio_set   = NULL;
2053        drbd_md_io_page_pool = NULL;
2054        drbd_ee_mempool      = NULL;
2055        drbd_request_mempool = NULL;
2056        drbd_ee_cache        = NULL;
2057        drbd_request_cache   = NULL;
2058        drbd_bm_ext_cache    = NULL;
2059        drbd_al_ext_cache    = NULL;
2060
2061        return;
2062}
2063
2064static int drbd_create_mempools(void)
2065{
2066        struct page *page;
2067        const int number = (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * minor_count;
2068        int i;
2069
2070        /* prepare our caches and mempools */
2071        drbd_request_mempool = NULL;
2072        drbd_ee_cache        = NULL;
2073        drbd_request_cache   = NULL;
2074        drbd_bm_ext_cache    = NULL;
2075        drbd_al_ext_cache    = NULL;
2076        drbd_pp_pool         = NULL;
2077        drbd_md_io_page_pool = NULL;
2078        drbd_md_io_bio_set   = NULL;
2079
2080        /* caches */
2081        drbd_request_cache = kmem_cache_create(
2082                "drbd_req", sizeof(struct drbd_request), 0, 0, NULL);
2083        if (drbd_request_cache == NULL)
2084                goto Enomem;
2085
2086        drbd_ee_cache = kmem_cache_create(
2087                "drbd_ee", sizeof(struct drbd_peer_request), 0, 0, NULL);
2088        if (drbd_ee_cache == NULL)
2089                goto Enomem;
2090
2091        drbd_bm_ext_cache = kmem_cache_create(
2092                "drbd_bm", sizeof(struct bm_extent), 0, 0, NULL);
2093        if (drbd_bm_ext_cache == NULL)
2094                goto Enomem;
2095
2096        drbd_al_ext_cache = kmem_cache_create(
2097                "drbd_al", sizeof(struct lc_element), 0, 0, NULL);
2098        if (drbd_al_ext_cache == NULL)
2099                goto Enomem;
2100
2101        /* mempools */
2102        drbd_md_io_bio_set = bioset_create(DRBD_MIN_POOL_PAGES, 0);
2103        if (drbd_md_io_bio_set == NULL)
2104                goto Enomem;
2105
2106        drbd_md_io_page_pool = mempool_create_page_pool(DRBD_MIN_POOL_PAGES, 0);
2107        if (drbd_md_io_page_pool == NULL)
2108                goto Enomem;
2109
2110        drbd_request_mempool = mempool_create(number,
2111                mempool_alloc_slab, mempool_free_slab, drbd_request_cache);
2112        if (drbd_request_mempool == NULL)
2113                goto Enomem;
2114
2115        drbd_ee_mempool = mempool_create(number,
2116                mempool_alloc_slab, mempool_free_slab, drbd_ee_cache);
2117        if (drbd_ee_mempool == NULL)
2118                goto Enomem;
2119
2120        /* drbd's page pool */
2121        spin_lock_init(&drbd_pp_lock);
2122
2123        for (i = 0; i < number; i++) {
2124                page = alloc_page(GFP_HIGHUSER);
2125                if (!page)
2126                        goto Enomem;
2127                set_page_private(page, (unsigned long)drbd_pp_pool);
2128                drbd_pp_pool = page;
2129        }
2130        drbd_pp_vacant = number;
2131
2132        return 0;
2133
2134Enomem:
2135        drbd_destroy_mempools(); /* in case we allocated some */
2136        return -ENOMEM;
2137}
2138
2139static void drbd_release_all_peer_reqs(struct drbd_device *device)
2140{
2141        int rr;
2142
2143        rr = drbd_free_peer_reqs(device, &device->active_ee);
2144        if (rr)
2145                drbd_err(device, "%d EEs in active list found!\n", rr);
2146
2147        rr = drbd_free_peer_reqs(device, &device->sync_ee);
2148        if (rr)
2149                drbd_err(device, "%d EEs in sync list found!\n", rr);
2150
2151        rr = drbd_free_peer_reqs(device, &device->read_ee);
2152        if (rr)
2153                drbd_err(device, "%d EEs in read list found!\n", rr);
2154
2155        rr = drbd_free_peer_reqs(device, &device->done_ee);
2156        if (rr)
2157                drbd_err(device, "%d EEs in done list found!\n", rr);
2158
2159        rr = drbd_free_peer_reqs(device, &device->net_ee);
2160        if (rr)
2161                drbd_err(device, "%d EEs in net list found!\n", rr);
2162}
2163
2164/* caution. no locking. */
2165void drbd_destroy_device(struct kref *kref)
2166{
2167        struct drbd_device *device = container_of(kref, struct drbd_device, kref);
2168        struct drbd_resource *resource = device->resource;
2169        struct drbd_peer_device *peer_device, *tmp_peer_device;
2170
2171        del_timer_sync(&device->request_timer);
2172
2173        /* paranoia asserts */
2174        D_ASSERT(device, device->open_cnt == 0);
2175        /* end paranoia asserts */
2176
2177        /* cleanup stuff that may have been allocated during
2178         * device (re-)configuration or state changes */
2179
2180        if (device->this_bdev)
2181                bdput(device->this_bdev);
2182
2183        drbd_free_ldev(device->ldev);
2184        device->ldev = NULL;
2185
2186        drbd_release_all_peer_reqs(device);
2187
2188        lc_destroy(device->act_log);
2189        lc_destroy(device->resync);
2190
2191        kfree(device->p_uuid);
2192        /* device->p_uuid = NULL; */
2193
2194        if (device->bitmap) /* should no longer be there. */
2195                drbd_bm_cleanup(device);
2196        __free_page(device->md_io.page);
2197        put_disk(device->vdisk);
2198        blk_cleanup_queue(device->rq_queue);
2199        kfree(device->rs_plan_s);
2200
2201        /* not for_each_connection(connection, resource):
2202         * those may have been cleaned up and disassociated already.
2203         */
2204        for_each_peer_device_safe(peer_device, tmp_peer_device, device) {
2205                kref_put(&peer_device->connection->kref, drbd_destroy_connection);
2206                kfree(peer_device);
2207        }
2208        memset(device, 0xfd, sizeof(*device));
2209        kfree(device);
2210        kref_put(&resource->kref, drbd_destroy_resource);
2211}
2212
2213/* One global retry thread, if we need to push back some bio and have it
2214 * reinserted through our make request function.
2215 */
2216static struct retry_worker {
2217        struct workqueue_struct *wq;
2218        struct work_struct worker;
2219
2220        spinlock_t lock;
2221        struct list_head writes;
2222} retry;
2223
2224static void do_retry(struct work_struct *ws)
2225{
2226        struct retry_worker *retry = container_of(ws, struct retry_worker, worker);
2227        LIST_HEAD(writes);
2228        struct drbd_request *req, *tmp;
2229
2230        spin_lock_irq(&retry->lock);
2231        list_splice_init(&retry->writes, &writes);
2232        spin_unlock_irq(&retry->lock);
2233
2234        list_for_each_entry_safe(req, tmp, &writes, tl_requests) {
2235                struct drbd_device *device = req->device;
2236                struct bio *bio = req->master_bio;
2237                unsigned long start_jif = req->start_jif;
2238                bool expected;
2239
2240                expected =
2241                        expect(atomic_read(&req->completion_ref) == 0) &&
2242                        expect(req->rq_state & RQ_POSTPONED) &&
2243                        expect((req->rq_state & RQ_LOCAL_PENDING) == 0 ||
2244                                (req->rq_state & RQ_LOCAL_ABORTED) != 0);
2245
2246                if (!expected)
2247                        drbd_err(device, "req=%p completion_ref=%d rq_state=%x\n",
2248                                req, atomic_read(&req->completion_ref),
2249                                req->rq_state);
2250
2251                /* We still need to put one kref associated with the
2252                 * "completion_ref" going zero in the code path that queued it
2253                 * here.  The request object may still be referenced by a
2254                 * frozen local req->private_bio, in case we force-detached.
2255                 */
2256                kref_put(&req->kref, drbd_req_destroy);
2257
2258                /* A single suspended or otherwise blocking device may stall
2259                 * all others as well.  Fortunately, this code path is to
2260                 * recover from a situation that "should not happen":
2261                 * concurrent writes in multi-primary setup.
2262                 * In a "normal" lifecycle, this workqueue is supposed to be
2263                 * destroyed without ever doing anything.
2264                 * If it turns out to be an issue anyways, we can do per
2265                 * resource (replication group) or per device (minor) retry
2266                 * workqueues instead.
2267                 */
2268
2269                /* We are not just doing generic_make_request(),
2270                 * as we want to keep the start_time information. */
2271                inc_ap_bio(device);
2272                __drbd_make_request(device, bio, start_jif);
2273        }
2274}
2275
2276/* called via drbd_req_put_completion_ref(),
2277 * holds resource->req_lock */
2278void drbd_restart_request(struct drbd_request *req)
2279{
2280        unsigned long flags;
2281        spin_lock_irqsave(&retry.lock, flags);
2282        list_move_tail(&req->tl_requests, &retry.writes);
2283        spin_unlock_irqrestore(&retry.lock, flags);
2284
2285        /* Drop the extra reference that would otherwise
2286         * have been dropped by complete_master_bio.
2287         * do_retry() needs to grab a new one. */
2288        dec_ap_bio(req->device);
2289
2290        queue_work(retry.wq, &retry.worker);
2291}
2292
2293void drbd_destroy_resource(struct kref *kref)
2294{
2295        struct drbd_resource *resource =
2296                container_of(kref, struct drbd_resource, kref);
2297
2298        idr_destroy(&resource->devices);
2299        free_cpumask_var(resource->cpu_mask);
2300        kfree(resource->name);
2301        memset(resource, 0xf2, sizeof(*resource));
2302        kfree(resource);
2303}
2304
2305void drbd_free_resource(struct drbd_resource *resource)
2306{
2307        struct drbd_connection *connection, *tmp;
2308
2309        for_each_connection_safe(connection, tmp, resource) {
2310                list_del(&connection->connections);
2311                drbd_debugfs_connection_cleanup(connection);
2312                kref_put(&connection->kref, drbd_destroy_connection);
2313        }
2314        drbd_debugfs_resource_cleanup(resource);
2315        kref_put(&resource->kref, drbd_destroy_resource);
2316}
2317
2318static void drbd_cleanup(void)
2319{
2320        unsigned int i;
2321        struct drbd_device *device;
2322        struct drbd_resource *resource, *tmp;
2323
2324        /* first remove proc,
2325         * drbdsetup uses it's presence to detect
2326         * whether DRBD is loaded.
2327         * If we would get stuck in proc removal,
2328         * but have netlink already deregistered,
2329         * some drbdsetup commands may wait forever
2330         * for an answer.
2331         */
2332        if (drbd_proc)
2333                remove_proc_entry("drbd", NULL);
2334
2335        if (retry.wq)
2336                destroy_workqueue(retry.wq);
2337
2338        drbd_genl_unregister();
2339        drbd_debugfs_cleanup();
2340
2341        idr_for_each_entry(&drbd_devices, device, i)
2342                drbd_delete_device(device);
2343
2344        /* not _rcu since, no other updater anymore. Genl already unregistered */
2345        for_each_resource_safe(resource, tmp, &drbd_resources) {
2346                list_del(&resource->resources);
2347                drbd_free_resource(resource);
2348        }
2349
2350        drbd_destroy_mempools();
2351        unregister_blkdev(DRBD_MAJOR, "drbd");
2352
2353        idr_destroy(&drbd_devices);
2354
2355        pr_info("module cleanup done.\n");
2356}
2357
2358/**
2359 * drbd_congested() - Callback for the flusher thread
2360 * @congested_data:     User data
2361 * @bdi_bits:           Bits the BDI flusher thread is currently interested in
2362 *
2363 * Returns 1<<BDI_async_congested and/or 1<<BDI_sync_congested if we are congested.
2364 */
2365static int drbd_congested(void *congested_data, int bdi_bits)
2366{
2367        struct drbd_device *device = congested_data;
2368        struct request_queue *q;
2369        char reason = '-';
2370        int r = 0;
2371
2372        if (!may_inc_ap_bio(device)) {
2373                /* DRBD has frozen IO */
2374                r = bdi_bits;
2375                reason = 'd';
2376                goto out;
2377        }
2378
2379        if (test_bit(CALLBACK_PENDING, &first_peer_device(device)->connection->flags)) {
2380                r |= (1 << BDI_async_congested);
2381                /* Without good local data, we would need to read from remote,
2382                 * and that would need the worker thread as well, which is
2383                 * currently blocked waiting for that usermode helper to
2384                 * finish.
2385                 */
2386                if (!get_ldev_if_state(device, D_UP_TO_DATE))
2387                        r |= (1 << BDI_sync_congested);
2388                else
2389                        put_ldev(device);
2390                r &= bdi_bits;
2391                reason = 'c';
2392                goto out;
2393        }
2394
2395        if (get_ldev(device)) {
2396                q = bdev_get_queue(device->ldev->backing_bdev);
2397                r = bdi_congested(&q->backing_dev_info, bdi_bits);
2398                put_ldev(device);
2399                if (r)
2400                        reason = 'b';
2401        }
2402
2403        if (bdi_bits & (1 << BDI_async_congested) &&
2404            test_bit(NET_CONGESTED, &first_peer_device(device)->connection->flags)) {
2405                r |= (1 << BDI_async_congested);
2406                reason = reason == 'b' ? 'a' : 'n';
2407        }
2408
2409out:
2410        device->congestion_reason = reason;
2411        return r;
2412}
2413
2414static void drbd_init_workqueue(struct drbd_work_queue* wq)
2415{
2416        spin_lock_init(&wq->q_lock);
2417        INIT_LIST_HEAD(&wq->q);
2418        init_waitqueue_head(&wq->q_wait);
2419}
2420
2421struct completion_work {
2422        struct drbd_work w;
2423        struct completion done;
2424};
2425
2426static int w_complete(struct drbd_work *w, int cancel)
2427{
2428        struct completion_work *completion_work =
2429                container_of(w, struct completion_work, w);
2430
2431        complete(&completion_work->done);
2432        return 0;
2433}
2434
2435void drbd_flush_workqueue(struct drbd_work_queue *work_queue)
2436{
2437        struct completion_work completion_work;
2438
2439        completion_work.w.cb = w_complete;
2440        init_completion(&completion_work.done);
2441        drbd_queue_work(work_queue, &completion_work.w);
2442        wait_for_completion(&completion_work.done);
2443}
2444
2445struct drbd_resource *drbd_find_resource(const char *name)
2446{
2447        struct drbd_resource *resource;
2448
2449        if (!name || !name[0])
2450                return NULL;
2451
2452        rcu_read_lock();
2453        for_each_resource_rcu(resource, &drbd_resources) {
2454                if (!strcmp(resource->name, name)) {
2455                        kref_get(&resource->kref);
2456                        goto found;
2457                }
2458        }
2459        resource = NULL;
2460found:
2461        rcu_read_unlock();
2462        return resource;
2463}
2464
2465struct drbd_connection *conn_get_by_addrs(void *my_addr, int my_addr_len,
2466                                     void *peer_addr, int peer_addr_len)
2467{
2468        struct drbd_resource *resource;
2469        struct drbd_connection *connection;
2470
2471        rcu_read_lock();
2472        for_each_resource_rcu(resource, &drbd_resources) {
2473                for_each_connection_rcu(connection, resource) {
2474                        if (connection->my_addr_len == my_addr_len &&
2475                            connection->peer_addr_len == peer_addr_len &&
2476                            !memcmp(&connection->my_addr, my_addr, my_addr_len) &&
2477                            !memcmp(&connection->peer_addr, peer_addr, peer_addr_len)) {
2478                                kref_get(&connection->kref);
2479                                goto found;
2480                        }
2481                }
2482        }
2483        connection = NULL;
2484found:
2485        rcu_read_unlock();
2486        return connection;
2487}
2488
2489static int drbd_alloc_socket(struct drbd_socket *socket)
2490{
2491        socket->rbuf = (void *) __get_free_page(GFP_KERNEL);
2492        if (!socket->rbuf)
2493                return -ENOMEM;
2494        socket->sbuf = (void *) __get_free_page(GFP_KERNEL);
2495        if (!socket->sbuf)
2496                return -ENOMEM;
2497        return 0;
2498}
2499
2500static void drbd_free_socket(struct drbd_socket *socket)
2501{
2502        free_page((unsigned long) socket->sbuf);
2503        free_page((unsigned long) socket->rbuf);
2504}
2505
2506void conn_free_crypto(struct drbd_connection *connection)
2507{
2508        drbd_free_sock(connection);
2509
2510        crypto_free_hash(connection->csums_tfm);
2511        crypto_free_hash(connection->verify_tfm);
2512        crypto_free_hash(connection->cram_hmac_tfm);
2513        crypto_free_hash(connection->integrity_tfm);
2514        crypto_free_hash(connection->peer_integrity_tfm);
2515        kfree(connection->int_dig_in);
2516        kfree(connection->int_dig_vv);
2517
2518        connection->csums_tfm = NULL;
2519        connection->verify_tfm = NULL;
2520        connection->cram_hmac_tfm = NULL;
2521        connection->integrity_tfm = NULL;
2522        connection->peer_integrity_tfm = NULL;
2523        connection->int_dig_in = NULL;
2524        connection->int_dig_vv = NULL;
2525}
2526
2527int set_resource_options(struct drbd_resource *resource, struct res_opts *res_opts)
2528{
2529        struct drbd_connection *connection;
2530        cpumask_var_t new_cpu_mask;
2531        int err;
2532
2533        if (!zalloc_cpumask_var(&new_cpu_mask, GFP_KERNEL))
2534                return -ENOMEM;
2535                /*
2536                retcode = ERR_NOMEM;
2537                drbd_msg_put_info("unable to allocate cpumask");
2538                */
2539
2540        /* silently ignore cpu mask on UP kernel */
2541        if (nr_cpu_ids > 1 && res_opts->cpu_mask[0] != 0) {
2542                err = bitmap_parse(res_opts->cpu_mask, DRBD_CPU_MASK_SIZE,
2543                                   cpumask_bits(new_cpu_mask), nr_cpu_ids);
2544                if (err == -EOVERFLOW) {
2545                        /* So what. mask it out. */
2546                        cpumask_var_t tmp_cpu_mask;
2547                        if (zalloc_cpumask_var(&tmp_cpu_mask, GFP_KERNEL)) {
2548                                cpumask_setall(tmp_cpu_mask);
2549                                cpumask_and(new_cpu_mask, new_cpu_mask, tmp_cpu_mask);
2550                                drbd_warn(resource, "Overflow in bitmap_parse(%.12s%s), truncating to %u bits\n",
2551                                        res_opts->cpu_mask,
2552                                        strlen(res_opts->cpu_mask) > 12 ? "..." : "",
2553                                        nr_cpu_ids);
2554                                free_cpumask_var(tmp_cpu_mask);
2555                                err = 0;
2556                        }
2557                }
2558                if (err) {
2559                        drbd_warn(resource, "bitmap_parse() failed with %d\n", err);
2560                        /* retcode = ERR_CPU_MASK_PARSE; */
2561                        goto fail;
2562                }
2563        }
2564        resource->res_opts = *res_opts;
2565        if (cpumask_empty(new_cpu_mask))
2566                drbd_calc_cpu_mask(&new_cpu_mask);
2567        if (!cpumask_equal(resource->cpu_mask, new_cpu_mask)) {
2568                cpumask_copy(resource->cpu_mask, new_cpu_mask);
2569                for_each_connection_rcu(connection, resource) {
2570                        connection->receiver.reset_cpu_mask = 1;
2571                        connection->asender.reset_cpu_mask = 1;
2572                        connection->worker.reset_cpu_mask = 1;
2573                }
2574        }
2575        err = 0;
2576
2577fail:
2578        free_cpumask_var(new_cpu_mask);
2579        return err;
2580
2581}
2582
2583struct drbd_resource *drbd_create_resource(const char *name)
2584{
2585        struct drbd_resource *resource;
2586
2587        resource = kzalloc(sizeof(struct drbd_resource), GFP_KERNEL);
2588        if (!resource)
2589                goto fail;
2590        resource->name = kstrdup(name, GFP_KERNEL);
2591        if (!resource->name)
2592                goto fail_free_resource;
2593        if (!zalloc_cpumask_var(&resource->cpu_mask, GFP_KERNEL))
2594                goto fail_free_name;
2595        kref_init(&resource->kref);
2596        idr_init(&resource->devices);
2597        INIT_LIST_HEAD(&resource->connections);
2598        resource->write_ordering = WO_bdev_flush;
2599        list_add_tail_rcu(&resource->resources, &drbd_resources);
2600        mutex_init(&resource->conf_update);
2601        mutex_init(&resource->adm_mutex);
2602        spin_lock_init(&resource->req_lock);
2603        drbd_debugfs_resource_add(resource);
2604        return resource;
2605
2606fail_free_name:
2607        kfree(resource->name);
2608fail_free_resource:
2609        kfree(resource);
2610fail:
2611        return NULL;
2612}
2613
2614/* caller must be under adm_mutex */
2615struct drbd_connection *conn_create(const char *name, struct res_opts *res_opts)
2616{
2617        struct drbd_resource *resource;
2618        struct drbd_connection *connection;
2619
2620        connection = kzalloc(sizeof(struct drbd_connection), GFP_KERNEL);
2621        if (!connection)
2622                return NULL;
2623
2624        if (drbd_alloc_socket(&connection->data))
2625                goto fail;
2626        if (drbd_alloc_socket(&connection->meta))
2627                goto fail;
2628
2629        connection->current_epoch = kzalloc(sizeof(struct drbd_epoch), GFP_KERNEL);
2630        if (!connection->current_epoch)
2631                goto fail;
2632
2633        INIT_LIST_HEAD(&connection->transfer_log);
2634
2635        INIT_LIST_HEAD(&connection->current_epoch->list);
2636        connection->epochs = 1;
2637        spin_lock_init(&connection->epoch_lock);
2638
2639        connection->send.seen_any_write_yet = false;
2640        connection->send.current_epoch_nr = 0;
2641        connection->send.current_epoch_writes = 0;
2642
2643        resource = drbd_create_resource(name);
2644        if (!resource)
2645                goto fail;
2646
2647        connection->cstate = C_STANDALONE;
2648        mutex_init(&connection->cstate_mutex);
2649        init_waitqueue_head(&connection->ping_wait);
2650        idr_init(&connection->peer_devices);
2651
2652        drbd_init_workqueue(&connection->sender_work);
2653        mutex_init(&connection->data.mutex);
2654        mutex_init(&connection->meta.mutex);
2655
2656        drbd_thread_init(resource, &connection->receiver, drbd_receiver, "receiver");
2657        connection->receiver.connection = connection;
2658        drbd_thread_init(resource, &connection->worker, drbd_worker, "worker");
2659        connection->worker.connection = connection;
2660        drbd_thread_init(resource, &connection->asender, drbd_asender, "asender");
2661        connection->asender.connection = connection;
2662
2663        kref_init(&connection->kref);
2664
2665        connection->resource = resource;
2666
2667        if (set_resource_options(resource, res_opts))
2668                goto fail_resource;
2669
2670        kref_get(&resource->kref);
2671        list_add_tail_rcu(&connection->connections, &resource->connections);
2672        drbd_debugfs_connection_add(connection);
2673        return connection;
2674
2675fail_resource:
2676        list_del(&resource->resources);
2677        drbd_free_resource(resource);
2678fail:
2679        kfree(connection->current_epoch);
2680        drbd_free_socket(&connection->meta);
2681        drbd_free_socket(&connection->data);
2682        kfree(connection);
2683        return NULL;
2684}
2685
2686void drbd_destroy_connection(struct kref *kref)
2687{
2688        struct drbd_connection *connection = container_of(kref, struct drbd_connection, kref);
2689        struct drbd_resource *resource = connection->resource;
2690
2691        if (atomic_read(&connection->current_epoch->epoch_size) !=  0)
2692                drbd_err(connection, "epoch_size:%d\n", atomic_read(&connection->current_epoch->epoch_size));
2693        kfree(connection->current_epoch);
2694
2695        idr_destroy(&connection->peer_devices);
2696
2697        drbd_free_socket(&connection->meta);
2698        drbd_free_socket(&connection->data);
2699        kfree(connection->int_dig_in);
2700        kfree(connection->int_dig_vv);
2701        memset(connection, 0xfc, sizeof(*connection));
2702        kfree(connection);
2703        kref_put(&resource->kref, drbd_destroy_resource);
2704}
2705
2706static int init_submitter(struct drbd_device *device)
2707{
2708        /* opencoded create_singlethread_workqueue(),
2709         * to be able to say "drbd%d", ..., minor */
2710        device->submit.wq = alloc_workqueue("drbd%u_submit",
2711                        WQ_UNBOUND | WQ_MEM_RECLAIM, 1, device->minor);
2712        if (!device->submit.wq)
2713                return -ENOMEM;
2714
2715        INIT_WORK(&device->submit.worker, do_submit);
2716        INIT_LIST_HEAD(&device->submit.writes);
2717        return 0;
2718}
2719
2720enum drbd_ret_code drbd_create_device(struct drbd_config_context *adm_ctx, unsigned int minor)
2721{
2722        struct drbd_resource *resource = adm_ctx->resource;
2723        struct drbd_connection *connection;
2724        struct drbd_device *device;
2725        struct drbd_peer_device *peer_device, *tmp_peer_device;
2726        struct gendisk *disk;
2727        struct request_queue *q;
2728        int id;
2729        int vnr = adm_ctx->volume;
2730        enum drbd_ret_code err = ERR_NOMEM;
2731
2732        device = minor_to_device(minor);
2733        if (device)
2734                return ERR_MINOR_EXISTS;
2735
2736        /* GFP_KERNEL, we are outside of all write-out paths */
2737        device = kzalloc(sizeof(struct drbd_device), GFP_KERNEL);
2738        if (!device)
2739                return ERR_NOMEM;
2740        kref_init(&device->kref);
2741
2742        kref_get(&resource->kref);
2743        device->resource = resource;
2744        device->minor = minor;
2745        device->vnr = vnr;
2746
2747        drbd_init_set_defaults(device);
2748
2749        q = blk_alloc_queue(GFP_KERNEL);
2750        if (!q)
2751                goto out_no_q;
2752        device->rq_queue = q;
2753        q->queuedata   = device;
2754
2755        disk = alloc_disk(1);
2756        if (!disk)
2757                goto out_no_disk;
2758        device->vdisk = disk;
2759
2760        set_disk_ro(disk, true);
2761
2762        disk->queue = q;
2763        disk->major = DRBD_MAJOR;
2764        disk->first_minor = minor;
2765        disk->fops = &drbd_ops;
2766        sprintf(disk->disk_name, "drbd%d", minor);
2767        disk->private_data = device;
2768
2769        device->this_bdev = bdget(MKDEV(DRBD_MAJOR, minor));
2770        /* we have no partitions. we contain only ourselves. */
2771        device->this_bdev->bd_contains = device->this_bdev;
2772
2773        q->backing_dev_info.congested_fn = drbd_congested;
2774        q->backing_dev_info.congested_data = device;
2775
2776        blk_queue_make_request(q, drbd_make_request);
2777        blk_queue_flush(q, REQ_FLUSH | REQ_FUA);
2778        /* Setting the max_hw_sectors to an odd value of 8kibyte here
2779           This triggers a max_bio_size message upon first attach or connect */
2780        blk_queue_max_hw_sectors(q, DRBD_MAX_BIO_SIZE_SAFE >> 8);
2781        blk_queue_bounce_limit(q, BLK_BOUNCE_ANY);
2782        blk_queue_merge_bvec(q, drbd_merge_bvec);
2783        q->queue_lock = &resource->req_lock;
2784
2785        device->md_io.page = alloc_page(GFP_KERNEL);
2786        if (!device->md_io.page)
2787                goto out_no_io_page;
2788
2789        if (drbd_bm_init(device))
2790                goto out_no_bitmap;
2791        device->read_requests = RB_ROOT;
2792        device->write_requests = RB_ROOT;
2793
2794        id = idr_alloc(&drbd_devices, device, minor, minor + 1, GFP_KERNEL);
2795        if (id < 0) {
2796                if (id == -ENOSPC) {
2797                        err = ERR_MINOR_EXISTS;
2798                        drbd_msg_put_info(adm_ctx->reply_skb, "requested minor exists already");
2799                }
2800                goto out_no_minor_idr;
2801        }
2802        kref_get(&device->kref);
2803
2804        id = idr_alloc(&resource->devices, device, vnr, vnr + 1, GFP_KERNEL);
2805        if (id < 0) {
2806                if (id == -ENOSPC) {
2807                        err = ERR_MINOR_EXISTS;
2808                        drbd_msg_put_info(adm_ctx->reply_skb, "requested minor exists already");
2809                }
2810                goto out_idr_remove_minor;
2811        }
2812        kref_get(&device->kref);
2813
2814        INIT_LIST_HEAD(&device->peer_devices);
2815        INIT_LIST_HEAD(&device->pending_bitmap_io);
2816        for_each_connection(connection, resource) {
2817                peer_device = kzalloc(sizeof(struct drbd_peer_device), GFP_KERNEL);
2818                if (!peer_device)
2819                        goto out_idr_remove_from_resource;
2820                peer_device->connection = connection;
2821                peer_device->device = device;
2822
2823                list_add(&peer_device->peer_devices, &device->peer_devices);
2824                kref_get(&device->kref);
2825
2826                id = idr_alloc(&connection->peer_devices, peer_device, vnr, vnr + 1, GFP_KERNEL);
2827                if (id < 0) {
2828                        if (id == -ENOSPC) {
2829                                err = ERR_INVALID_REQUEST;
2830                                drbd_msg_put_info(adm_ctx->reply_skb, "requested volume exists already");
2831                        }
2832                        goto out_idr_remove_from_resource;
2833                }
2834                kref_get(&connection->kref);
2835        }
2836
2837        if (init_submitter(device)) {
2838                err = ERR_NOMEM;
2839                drbd_msg_put_info(adm_ctx->reply_skb, "unable to create submit workqueue");
2840                goto out_idr_remove_vol;
2841        }
2842
2843        add_disk(disk);
2844
2845        /* inherit the connection state */
2846        device->state.conn = first_connection(resource)->cstate;
2847        if (device->state.conn == C_WF_REPORT_PARAMS) {
2848                for_each_peer_device(peer_device, device)
2849                        drbd_connected(peer_device);
2850        }
2851        /* move to create_peer_device() */
2852        for_each_peer_device(peer_device, device)
2853                drbd_debugfs_peer_device_add(peer_device);
2854        drbd_debugfs_device_add(device);
2855        return NO_ERROR;
2856
2857out_idr_remove_vol:
2858        idr_remove(&connection->peer_devices, vnr);
2859out_idr_remove_from_resource:
2860        for_each_connection(connection, resource) {
2861                peer_device = idr_find(&connection->peer_devices, vnr);
2862                if (peer_device) {
2863                        idr_remove(&connection->peer_devices, vnr);
2864                        kref_put(&connection->kref, drbd_destroy_connection);
2865                }
2866        }
2867        for_each_peer_device_safe(peer_device, tmp_peer_device, device) {
2868                list_del(&peer_device->peer_devices);
2869                kfree(peer_device);
2870        }
2871        idr_remove(&resource->devices, vnr);
2872out_idr_remove_minor:
2873        idr_remove(&drbd_devices, minor);
2874        synchronize_rcu();
2875out_no_minor_idr:
2876        drbd_bm_cleanup(device);
2877out_no_bitmap:
2878        __free_page(device->md_io.page);
2879out_no_io_page:
2880        put_disk(disk);
2881out_no_disk:
2882        blk_cleanup_queue(q);
2883out_no_q:
2884        kref_put(&resource->kref, drbd_destroy_resource);
2885        kfree(device);
2886        return err;
2887}
2888
2889void drbd_delete_device(struct drbd_device *device)
2890{
2891        struct drbd_resource *resource = device->resource;
2892        struct drbd_connection *connection;
2893        struct drbd_peer_device *peer_device;
2894        int refs = 3;
2895
2896        /* move to free_peer_device() */
2897        for_each_peer_device(peer_device, device)
2898                drbd_debugfs_peer_device_cleanup(peer_device);
2899        drbd_debugfs_device_cleanup(device);
2900        for_each_connection(connection, resource) {
2901                idr_remove(&connection->peer_devices, device->vnr);
2902                refs++;
2903        }
2904        idr_remove(&resource->devices, device->vnr);
2905        idr_remove(&drbd_devices, device_to_minor(device));
2906        del_gendisk(device->vdisk);
2907        synchronize_rcu();
2908        kref_sub(&device->kref, refs, drbd_destroy_device);
2909}
2910
2911static int __init drbd_init(void)
2912{
2913        int err;
2914
2915        if (minor_count < DRBD_MINOR_COUNT_MIN || minor_count > DRBD_MINOR_COUNT_MAX) {
2916                pr_err("invalid minor_count (%d)\n", minor_count);
2917#ifdef MODULE
2918                return -EINVAL;
2919#else
2920                minor_count = DRBD_MINOR_COUNT_DEF;
2921#endif
2922        }
2923
2924        err = register_blkdev(DRBD_MAJOR, "drbd");
2925        if (err) {
2926                pr_err("unable to register block device major %d\n",
2927                       DRBD_MAJOR);
2928                return err;
2929        }
2930
2931        /*
2932         * allocate all necessary structs
2933         */
2934        init_waitqueue_head(&drbd_pp_wait);
2935
2936        drbd_proc = NULL; /* play safe for drbd_cleanup */
2937        idr_init(&drbd_devices);
2938
2939        rwlock_init(&global_state_lock);
2940        INIT_LIST_HEAD(&drbd_resources);
2941
2942        err = drbd_genl_register();
2943        if (err) {
2944                pr_err("unable to register generic netlink family\n");
2945                goto fail;
2946        }
2947
2948        err = drbd_create_mempools();
2949        if (err)
2950                goto fail;
2951
2952        err = -ENOMEM;
2953        drbd_proc = proc_create_data("drbd", S_IFREG | S_IRUGO , NULL, &drbd_proc_fops, NULL);
2954        if (!drbd_proc) {
2955                pr_err("unable to register proc file\n");
2956                goto fail;
2957        }
2958
2959        retry.wq = create_singlethread_workqueue("drbd-reissue");
2960        if (!retry.wq) {
2961                pr_err("unable to create retry workqueue\n");
2962                goto fail;
2963        }
2964        INIT_WORK(&retry.worker, do_retry);
2965        spin_lock_init(&retry.lock);
2966        INIT_LIST_HEAD(&retry.writes);
2967
2968        if (drbd_debugfs_init())
2969                pr_notice("failed to initialize debugfs -- will not be available\n");
2970
2971        pr_info("initialized. "
2972               "Version: " REL_VERSION " (api:%d/proto:%d-%d)\n",
2973               API_VERSION, PRO_VERSION_MIN, PRO_VERSION_MAX);
2974        pr_info("%s\n", drbd_buildtag());
2975        pr_info("registered as block device major %d\n", DRBD_MAJOR);
2976        return 0; /* Success! */
2977
2978fail:
2979        drbd_cleanup();
2980        if (err == -ENOMEM)
2981                pr_err("ran out of memory\n");
2982        else
2983                pr_err("initialization failure\n");
2984        return err;
2985}
2986
2987void drbd_free_ldev(struct drbd_backing_dev *ldev)
2988{
2989        if (ldev == NULL)
2990                return;
2991
2992        blkdev_put(ldev->backing_bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2993        blkdev_put(ldev->md_bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2994
2995        kfree(ldev->disk_conf);
2996        kfree(ldev);
2997}
2998
2999static void drbd_free_one_sock(struct drbd_socket *ds)
3000{
3001        struct socket *s;
3002        mutex_lock(&ds->mutex);
3003        s = ds->socket;
3004        ds->socket = NULL;
3005        mutex_unlock(&ds->mutex);
3006        if (s) {
3007                /* so debugfs does not need to mutex_lock() */
3008                synchronize_rcu();
3009                kernel_sock_shutdown(s, SHUT_RDWR);
3010                sock_release(s);
3011        }
3012}
3013
3014void drbd_free_sock(struct drbd_connection *connection)
3015{
3016        if (connection->data.socket)
3017                drbd_free_one_sock(&connection->data);
3018        if (connection->meta.socket)
3019                drbd_free_one_sock(&connection->meta);
3020}
3021
3022/* meta data management */
3023
3024void conn_md_sync(struct drbd_connection *connection)
3025{
3026        struct drbd_peer_device *peer_device;
3027        int vnr;
3028
3029        rcu_read_lock();
3030        idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
3031                struct drbd_device *device = peer_device->device;
3032
3033                kref_get(&device->kref);
3034                rcu_read_unlock();
3035                drbd_md_sync(device);
3036                kref_put(&device->kref, drbd_destroy_device);
3037                rcu_read_lock();
3038        }
3039        rcu_read_unlock();
3040}
3041
3042/* aligned 4kByte */
3043struct meta_data_on_disk {
3044        u64 la_size_sect;      /* last agreed size. */
3045        u64 uuid[UI_SIZE];   /* UUIDs. */
3046        u64 device_uuid;
3047        u64 reserved_u64_1;
3048        u32 flags;             /* MDF */
3049        u32 magic;
3050        u32 md_size_sect;
3051        u32 al_offset;         /* offset to this block */
3052        u32 al_nr_extents;     /* important for restoring the AL (userspace) */
3053              /* `-- act_log->nr_elements <-- ldev->dc.al_extents */
3054        u32 bm_offset;         /* offset to the bitmap, from here */
3055        u32 bm_bytes_per_bit;  /* BM_BLOCK_SIZE */
3056        u32 la_peer_max_bio_size;   /* last peer max_bio_size */
3057
3058        /* see al_tr_number_to_on_disk_sector() */
3059        u32 al_stripes;
3060        u32 al_stripe_size_4k;
3061
3062        u8 reserved_u8[4096 - (7*8 + 10*4)];
3063} __packed;
3064
3065
3066
3067void drbd_md_write(struct drbd_device *device, void *b)
3068{
3069        struct meta_data_on_disk *buffer = b;
3070        sector_t sector;
3071        int i;
3072
3073        memset(buffer, 0, sizeof(*buffer));
3074
3075        buffer->la_size_sect = cpu_to_be64(drbd_get_capacity(device->this_bdev));
3076        for (i = UI_CURRENT; i < UI_SIZE; i++)
3077                buffer->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]);
3078        buffer->flags = cpu_to_be32(device->ldev->md.flags);
3079        buffer->magic = cpu_to_be32(DRBD_MD_MAGIC_84_UNCLEAN);
3080
3081        buffer->md_size_sect  = cpu_to_be32(device->ldev->md.md_size_sect);
3082        buffer->al_offset     = cpu_to_be32(device->ldev->md.al_offset);
3083        buffer->al_nr_extents = cpu_to_be32(device->act_log->nr_elements);
3084        buffer->bm_bytes_per_bit = cpu_to_be32(BM_BLOCK_SIZE);
3085        buffer->device_uuid = cpu_to_be64(device->ldev->md.device_uuid);
3086
3087        buffer->bm_offset = cpu_to_be32(device->ldev->md.bm_offset);
3088        buffer->la_peer_max_bio_size = cpu_to_be32(device->peer_max_bio_size);
3089
3090        buffer->al_stripes = cpu_to_be32(device->ldev->md.al_stripes);
3091        buffer->al_stripe_size_4k = cpu_to_be32(device->ldev->md.al_stripe_size_4k);
3092
3093        D_ASSERT(device, drbd_md_ss(device->ldev) == device->ldev->md.md_offset);
3094        sector = device->ldev->md.md_offset;
3095
3096        if (drbd_md_sync_page_io(device, device->ldev, sector, WRITE)) {
3097                /* this was a try anyways ... */
3098                drbd_err(device, "meta data update failed!\n");
3099                drbd_chk_io_error(device, 1, DRBD_META_IO_ERROR);
3100        }
3101}
3102
3103/**
3104 * drbd_md_sync() - Writes the meta data super block if the MD_DIRTY flag bit is set
3105 * @device:     DRBD device.
3106 */
3107void drbd_md_sync(struct drbd_device *device)
3108{
3109        struct meta_data_on_disk *buffer;
3110
3111        /* Don't accidentally change the DRBD meta data layout. */
3112        BUILD_BUG_ON(UI_SIZE != 4);
3113        BUILD_BUG_ON(sizeof(struct meta_data_on_disk) != 4096);
3114
3115        del_timer(&device->md_sync_timer);
3116        /* timer may be rearmed by drbd_md_mark_dirty() now. */
3117        if (!test_and_clear_bit(MD_DIRTY, &device->flags))
3118                return;
3119
3120        /* We use here D_FAILED and not D_ATTACHING because we try to write
3121         * metadata even if we detach due to a disk failure! */
3122        if (!get_ldev_if_state(device, D_FAILED))
3123                return;
3124
3125        buffer = drbd_md_get_buffer(device, __func__);
3126        if (!buffer)
3127                goto out;
3128
3129        drbd_md_write(device, buffer);
3130
3131        /* Update device->ldev->md.la_size_sect,
3132         * since we updated it on metadata. */
3133        device->ldev->md.la_size_sect = drbd_get_capacity(device->this_bdev);
3134
3135        drbd_md_put_buffer(device);
3136out:
3137        put_ldev(device);
3138}
3139
3140static int check_activity_log_stripe_size(struct drbd_device *device,
3141                struct meta_data_on_disk *on_disk,
3142                struct drbd_md *in_core)
3143{
3144        u32 al_stripes = be32_to_cpu(on_disk->al_stripes);
3145        u32 al_stripe_size_4k = be32_to_cpu(on_disk->al_stripe_size_4k);
3146        u64 al_size_4k;
3147
3148        /* both not set: default to old fixed size activity log */
3149        if (al_stripes == 0 && al_stripe_size_4k == 0) {
3150                al_stripes = 1;
3151                al_stripe_size_4k = MD_32kB_SECT/8;
3152        }
3153
3154        /* some paranoia plausibility checks */
3155
3156        /* we need both values to be set */
3157        if (al_stripes == 0 || al_stripe_size_4k == 0)
3158                goto err;
3159
3160        al_size_4k = (u64)al_stripes * al_stripe_size_4k;
3161
3162        /* Upper limit of activity log area, to avoid potential overflow
3163         * problems in al_tr_number_to_on_disk_sector(). As right now, more
3164         * than 72 * 4k blocks total only increases the amount of history,
3165         * limiting this arbitrarily to 16 GB is not a real limitation ;-)  */
3166        if (al_size_4k > (16 * 1024 * 1024/4))
3167                goto err;
3168
3169        /* Lower limit: we need at least 8 transaction slots (32kB)
3170         * to not break existing setups */
3171        if (al_size_4k < MD_32kB_SECT/8)
3172                goto err;
3173
3174        in_core->al_stripe_size_4k = al_stripe_size_4k;
3175        in_core->al_stripes = al_stripes;
3176        in_core->al_size_4k = al_size_4k;
3177
3178        return 0;
3179err:
3180        drbd_err(device, "invalid activity log striping: al_stripes=%u, al_stripe_size_4k=%u\n",
3181                        al_stripes, al_stripe_size_4k);
3182        return -EINVAL;
3183}
3184
3185static int check_offsets_and_sizes(struct drbd_device *device, struct drbd_backing_dev *bdev)
3186{
3187        sector_t capacity = drbd_get_capacity(bdev->md_bdev);
3188        struct drbd_md *in_core = &bdev->md;
3189        s32 on_disk_al_sect;
3190        s32 on_disk_bm_sect;
3191
3192        /* The on-disk size of the activity log, calculated from offsets, and
3193         * the size of the activity log calculated from the stripe settings,
3194         * should match.
3195         * Though we could relax this a bit: it is ok, if the striped activity log
3196         * fits in the available on-disk activity log size.
3197         * Right now, that would break how resize is implemented.
3198         * TODO: make drbd_determine_dev_size() (and the drbdmeta tool) aware
3199         * of possible unused padding space in the on disk layout. */
3200        if (in_core->al_offset < 0) {
3201                if (in_core->bm_offset > in_core->al_offset)
3202                        goto err;
3203                on_disk_al_sect = -in_core->al_offset;
3204                on_disk_bm_sect = in_core->al_offset - in_core->bm_offset;
3205        } else {
3206                if (in_core->al_offset != MD_4kB_SECT)
3207                        goto err;
3208                if (in_core->bm_offset < in_core->al_offset + in_core->al_size_4k * MD_4kB_SECT)
3209                        goto err;
3210
3211                on_disk_al_sect = in_core->bm_offset - MD_4kB_SECT;
3212                on_disk_bm_sect = in_core->md_size_sect - in_core->bm_offset;
3213        }
3214
3215        /* old fixed size meta data is exactly that: fixed. */
3216        if (in_core->meta_dev_idx >= 0) {
3217                if (in_core->md_size_sect != MD_128MB_SECT
3218                ||  in_core->al_offset != MD_4kB_SECT
3219                ||  in_core->bm_offset != MD_4kB_SECT + MD_32kB_SECT
3220                ||  in_core->al_stripes != 1
3221                ||  in_core->al_stripe_size_4k != MD_32kB_SECT/8)
3222                        goto err;
3223        }
3224
3225        if (capacity < in_core->md_size_sect)
3226                goto err;
3227        if (capacity - in_core->md_size_sect < drbd_md_first_sector(bdev))
3228                goto err;
3229
3230        /* should be aligned, and at least 32k */
3231        if ((on_disk_al_sect & 7) || (on_disk_al_sect < MD_32kB_SECT))
3232                goto err;
3233
3234        /* should fit (for now: exactly) into the available on-disk space;
3235         * overflow prevention is in check_activity_log_stripe_size() above. */
3236        if (on_disk_al_sect != in_core->al_size_4k * MD_4kB_SECT)
3237                goto err;
3238
3239        /* again, should be aligned */
3240        if (in_core->bm_offset & 7)
3241                goto err;
3242
3243        /* FIXME check for device grow with flex external meta data? */
3244
3245        /* can the available bitmap space cover the last agreed device size? */
3246        if (on_disk_bm_sect < (in_core->la_size_sect+7)/MD_4kB_SECT/8/512)
3247                goto err;
3248
3249        return 0;
3250
3251err:
3252        drbd_err(device, "meta data offsets don't make sense: idx=%d "
3253                        "al_s=%u, al_sz4k=%u, al_offset=%d, bm_offset=%d, "
3254                        "md_size_sect=%u, la_size=%llu, md_capacity=%llu\n",
3255                        in_core->meta_dev_idx,
3256                        in_core->al_stripes, in_core->al_stripe_size_4k,
3257                        in_core->al_offset, in_core->bm_offset, in_core->md_size_sect,
3258                        (unsigned long long)in_core->la_size_sect,
3259                        (unsigned long long)capacity);
3260
3261        return -EINVAL;
3262}
3263
3264
3265/**
3266 * drbd_md_read() - Reads in the meta data super block
3267 * @device:     DRBD device.
3268 * @bdev:       Device from which the meta data should be read in.
3269 *
3270 * Return NO_ERROR on success, and an enum drbd_ret_code in case
3271 * something goes wrong.
3272 *
3273 * Called exactly once during drbd_adm_attach(), while still being D_DISKLESS,
3274 * even before @bdev is assigned to @device->ldev.
3275 */
3276int drbd_md_read(struct drbd_device *device, struct drbd_backing_dev *bdev)
3277{
3278        struct meta_data_on_disk *buffer;
3279        u32 magic, flags;
3280        int i, rv = NO_ERROR;
3281
3282        if (device->state.disk != D_DISKLESS)
3283                return ERR_DISK_CONFIGURED;
3284
3285        buffer = drbd_md_get_buffer(device, __func__);
3286        if (!buffer)
3287                return ERR_NOMEM;
3288
3289        /* First, figure out where our meta data superblock is located,
3290         * and read it. */
3291        bdev->md.meta_dev_idx = bdev->disk_conf->meta_dev_idx;
3292        bdev->md.md_offset = drbd_md_ss(bdev);
3293
3294        if (drbd_md_sync_page_io(device, bdev, bdev->md.md_offset, READ)) {
3295                /* NOTE: can't do normal error processing here as this is
3296                   called BEFORE disk is attached */
3297                drbd_err(device, "Error while reading metadata.\n");
3298                rv = ERR_IO_MD_DISK;
3299                goto err;
3300        }
3301
3302        magic = be32_to_cpu(buffer->magic);
3303        flags = be32_to_cpu(buffer->flags);
3304        if (magic == DRBD_MD_MAGIC_84_UNCLEAN ||
3305            (magic == DRBD_MD_MAGIC_08 && !(flags & MDF_AL_CLEAN))) {
3306                        /* btw: that's Activity Log clean, not "all" clean. */
3307                drbd_err(device, "Found unclean meta data. Did you \"drbdadm apply-al\"?\n");
3308                rv = ERR_MD_UNCLEAN;
3309                goto err;
3310        }
3311
3312        rv = ERR_MD_INVALID;
3313        if (magic != DRBD_MD_MAGIC_08) {
3314                if (magic == DRBD_MD_MAGIC_07)
3315                        drbd_err(device, "Found old (0.7) meta data magic. Did you \"drbdadm create-md\"?\n");
3316                else
3317                        drbd_err(device, "Meta data magic not found. Did you \"drbdadm create-md\"?\n");
3318                goto err;
3319        }
3320
3321        if (be32_to_cpu(buffer->bm_bytes_per_bit) != BM_BLOCK_SIZE) {
3322                drbd_err(device, "unexpected bm_bytes_per_bit: %u (expected %u)\n",
3323                    be32_to_cpu(buffer->bm_bytes_per_bit), BM_BLOCK_SIZE);
3324                goto err;
3325        }
3326
3327
3328        /* convert to in_core endian */
3329        bdev->md.la_size_sect = be64_to_cpu(buffer->la_size_sect);
3330        for (i = UI_CURRENT; i < UI_SIZE; i++)
3331                bdev->md.uuid[i] = be64_to_cpu(buffer->uuid[i]);
3332        bdev->md.flags = be32_to_cpu(buffer->flags);
3333        bdev->md.device_uuid = be64_to_cpu(buffer->device_uuid);
3334
3335        bdev->md.md_size_sect = be32_to_cpu(buffer->md_size_sect);
3336        bdev->md.al_offset = be32_to_cpu(buffer->al_offset);
3337        bdev->md.bm_offset = be32_to_cpu(buffer->bm_offset);
3338
3339        if (check_activity_log_stripe_size(device, buffer, &bdev->md))
3340                goto err;
3341        if (check_offsets_and_sizes(device, bdev))
3342                goto err;
3343
3344        if (be32_to_cpu(buffer->bm_offset) != bdev->md.bm_offset) {
3345                drbd_err(device, "unexpected bm_offset: %d (expected %d)\n",
3346                    be32_to_cpu(buffer->bm_offset), bdev->md.bm_offset);
3347                goto err;
3348        }
3349        if (be32_to_cpu(buffer->md_size_sect) != bdev->md.md_size_sect) {
3350                drbd_err(device, "unexpected md_size: %u (expected %u)\n",
3351                    be32_to_cpu(buffer->md_size_sect), bdev->md.md_size_sect);
3352                goto err;
3353        }
3354
3355        rv = NO_ERROR;
3356
3357        spin_lock_irq(&device->resource->req_lock);
3358        if (device->state.conn < C_CONNECTED) {
3359                unsigned int peer;
3360                peer = be32_to_cpu(buffer->la_peer_max_bio_size);
3361                peer = max(peer, DRBD_MAX_BIO_SIZE_SAFE);
3362                device->peer_max_bio_size = peer;
3363        }
3364        spin_unlock_irq(&device->resource->req_lock);
3365
3366 err:
3367        drbd_md_put_buffer(device);
3368
3369        return rv;
3370}
3371
3372/**
3373 * drbd_md_mark_dirty() - Mark meta data super block as dirty
3374 * @device:     DRBD device.
3375 *
3376 * Call this function if you change anything that should be written to
3377 * the meta-data super block. This function sets MD_DIRTY, and starts a
3378 * timer that ensures that within five seconds you have to call drbd_md_sync().
3379 */
3380#ifdef DEBUG
3381void drbd_md_mark_dirty_(struct drbd_device *device, unsigned int line, const char *func)
3382{
3383        if (!test_and_set_bit(MD_DIRTY, &device->flags)) {
3384                mod_timer(&device->md_sync_timer, jiffies + HZ);
3385                device->last_md_mark_dirty.line = line;
3386                device->last_md_mark_dirty.func = func;
3387        }
3388}
3389#else
3390void drbd_md_mark_dirty(struct drbd_device *device)
3391{
3392        if (!test_and_set_bit(MD_DIRTY, &device->flags))
3393                mod_timer(&device->md_sync_timer, jiffies + 5*HZ);
3394}
3395#endif
3396
3397void drbd_uuid_move_history(struct drbd_device *device) __must_hold(local)
3398{
3399        int i;
3400
3401        for (i = UI_HISTORY_START; i < UI_HISTORY_END; i++)
3402                device->ldev->md.uuid[i+1] = device->ldev->md.uuid[i];
3403}
3404
3405void __drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3406{
3407        if (idx == UI_CURRENT) {
3408                if (device->state.role == R_PRIMARY)
3409                        val |= 1;
3410                else
3411                        val &= ~((u64)1);
3412
3413                drbd_set_ed_uuid(device, val);
3414        }
3415
3416        device->ldev->md.uuid[idx] = val;
3417        drbd_md_mark_dirty(device);
3418}
3419
3420void _drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3421{
3422        unsigned long flags;
3423        spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3424        __drbd_uuid_set(device, idx, val);
3425        spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3426}
3427
3428void drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3429{
3430        unsigned long flags;
3431        spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3432        if (device->ldev->md.uuid[idx]) {
3433                drbd_uuid_move_history(device);
3434                device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[idx];
3435        }
3436        __drbd_uuid_set(device, idx, val);
3437        spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3438}
3439
3440/**
3441 * drbd_uuid_new_current() - Creates a new current UUID
3442 * @device:     DRBD device.
3443 *
3444 * Creates a new current UUID, and rotates the old current UUID into
3445 * the bitmap slot. Causes an incremental resync upon next connect.
3446 */
3447void drbd_uuid_new_current(struct drbd_device *device) __must_hold(local)
3448{
3449        u64 val;
3450        unsigned long long bm_uuid;
3451
3452        get_random_bytes(&val, sizeof(u64));
3453
3454        spin_lock_irq(&device->ldev->md.uuid_lock);
3455        bm_uuid = device->ldev->md.uuid[UI_BITMAP];
3456
3457        if (bm_uuid)
3458                drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid);
3459
3460        device->ldev->md.uuid[UI_BITMAP] = device->ldev->md.uuid[UI_CURRENT];
3461        __drbd_uuid_set(device, UI_CURRENT, val);
3462        spin_unlock_irq(&device->ldev->md.uuid_lock);
3463
3464        drbd_print_uuids(device, "new current UUID");
3465        /* get it to stable storage _now_ */
3466        drbd_md_sync(device);
3467}
3468
3469void drbd_uuid_set_bm(struct drbd_device *device, u64 val) __must_hold(local)
3470{
3471        unsigned long flags;
3472        if (device->ldev->md.uuid[UI_BITMAP] == 0 && val == 0)
3473                return;
3474
3475        spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3476        if (val == 0) {
3477                drbd_uuid_move_history(device);
3478                device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[UI_BITMAP];
3479                device->ldev->md.uuid[UI_BITMAP] = 0;
3480        } else {
3481                unsigned long long bm_uuid = device->ldev->md.uuid[UI_BITMAP];
3482                if (bm_uuid)
3483                        drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid);
3484
3485                device->ldev->md.uuid[UI_BITMAP] = val & ~((u64)1);
3486        }
3487        spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3488
3489        drbd_md_mark_dirty(device);
3490}
3491
3492/**
3493 * drbd_bmio_set_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3494 * @device:     DRBD device.
3495 *
3496 * Sets all bits in the bitmap and writes the whole bitmap to stable storage.
3497 */
3498int drbd_bmio_set_n_write(struct drbd_device *device) __must_hold(local)
3499{
3500        int rv = -EIO;
3501
3502        drbd_md_set_flag(device, MDF_FULL_SYNC);
3503        drbd_md_sync(device);
3504        drbd_bm_set_all(device);
3505
3506        rv = drbd_bm_write(device);
3507
3508        if (!rv) {
3509                drbd_md_clear_flag(device, MDF_FULL_SYNC);
3510                drbd_md_sync(device);
3511        }
3512
3513        return rv;
3514}
3515
3516/**
3517 * drbd_bmio_clear_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3518 * @device:     DRBD device.
3519 *
3520 * Clears all bits in the bitmap and writes the whole bitmap to stable storage.
3521 */
3522int drbd_bmio_clear_n_write(struct drbd_device *device) __must_hold(local)
3523{
3524        drbd_resume_al(device);
3525        drbd_bm_clear_all(device);
3526        return drbd_bm_write(device);
3527}
3528
3529static int w_bitmap_io(struct drbd_work *w, int unused)
3530{
3531        struct drbd_device *device =
3532                container_of(w, struct drbd_device, bm_io_work.w);
3533        struct bm_io_work *work = &device->bm_io_work;
3534        int rv = -EIO;
3535
3536        D_ASSERT(device, atomic_read(&device->ap_bio_cnt) == 0);
3537
3538        if (get_ldev(device)) {
3539                drbd_bm_lock(device, work->why, work->flags);
3540                rv = work->io_fn(device);
3541                drbd_bm_unlock(device);
3542                put_ldev(device);
3543        }
3544
3545        clear_bit_unlock(BITMAP_IO, &device->flags);
3546        wake_up(&device->misc_wait);
3547
3548        if (work->done)
3549                work->done(device, rv);
3550
3551        clear_bit(BITMAP_IO_QUEUED, &device->flags);
3552        work->why = NULL;
3553        work->flags = 0;
3554
3555        return 0;
3556}
3557
3558/**
3559 * drbd_queue_bitmap_io() - Queues an IO operation on the whole bitmap
3560 * @device:     DRBD device.
3561 * @io_fn:      IO callback to be called when bitmap IO is possible
3562 * @done:       callback to be called after the bitmap IO was performed
3563 * @why:        Descriptive text of the reason for doing the IO
3564 *
3565 * While IO on the bitmap happens we freeze application IO thus we ensure
3566 * that drbd_set_out_of_sync() can not be called. This function MAY ONLY be
3567 * called from worker context. It MUST NOT be used while a previous such
3568 * work is still pending!
3569 *
3570 * Its worker function encloses the call of io_fn() by get_ldev() and
3571 * put_ldev().
3572 */
3573void drbd_queue_bitmap_io(struct drbd_device *device,
3574                          int (*io_fn)(struct drbd_device *),
3575                          void (*done)(struct drbd_device *, int),
3576                          char *why, enum bm_flag flags)
3577{
3578        D_ASSERT(device, current == first_peer_device(device)->connection->worker.task);
3579
3580        D_ASSERT(device, !test_bit(BITMAP_IO_QUEUED, &device->flags));
3581        D_ASSERT(device, !test_bit(BITMAP_IO, &device->flags));
3582        D_ASSERT(device, list_empty(&device->bm_io_work.w.list));
3583        if (device->bm_io_work.why)
3584                drbd_err(device, "FIXME going to queue '%s' but '%s' still pending?\n",
3585                        why, device->bm_io_work.why);
3586
3587        device->bm_io_work.io_fn = io_fn;
3588        device->bm_io_work.done = done;
3589        device->bm_io_work.why = why;
3590        device->bm_io_work.flags = flags;
3591
3592        spin_lock_irq(&device->resource->req_lock);
3593        set_bit(BITMAP_IO, &device->flags);
3594        if (atomic_read(&device->ap_bio_cnt) == 0) {
3595                if (!test_and_set_bit(BITMAP_IO_QUEUED, &device->flags))
3596                        drbd_queue_work(&first_peer_device(device)->connection->sender_work,
3597                                        &device->bm_io_work.w);
3598        }
3599        spin_unlock_irq(&device->resource->req_lock);
3600}
3601
3602/**
3603 * drbd_bitmap_io() -  Does an IO operation on the whole bitmap
3604 * @device:     DRBD device.
3605 * @io_fn:      IO callback to be called when bitmap IO is possible
3606 * @why:        Descriptive text of the reason for doing the IO
3607 *
3608 * freezes application IO while that the actual IO operations runs. This
3609 * functions MAY NOT be called from worker context.
3610 */
3611int drbd_bitmap_io(struct drbd_device *device, int (*io_fn)(struct drbd_device *),
3612                char *why, enum bm_flag flags)
3613{
3614        int rv;
3615
3616        D_ASSERT(device, current != first_peer_device(device)->connection->worker.task);
3617
3618        if ((flags & BM_LOCKED_SET_ALLOWED) == 0)
3619                drbd_suspend_io(device);
3620
3621        drbd_bm_lock(device, why, flags);
3622        rv = io_fn(device);
3623        drbd_bm_unlock(device);
3624
3625        if ((flags & BM_LOCKED_SET_ALLOWED) == 0)
3626                drbd_resume_io(device);
3627
3628        return rv;
3629}
3630
3631void drbd_md_set_flag(struct drbd_device *device, int flag) __must_hold(local)
3632{
3633        if ((device->ldev->md.flags & flag) != flag) {
3634                drbd_md_mark_dirty(device);
3635                device->ldev->md.flags |= flag;
3636        }
3637}
3638
3639void drbd_md_clear_flag(struct drbd_device *device, int flag) __must_hold(local)
3640{
3641        if ((device->ldev->md.flags & flag) != 0) {
3642                drbd_md_mark_dirty(device);
3643                device->ldev->md.flags &= ~flag;
3644        }
3645}
3646int drbd_md_test_flag(struct drbd_backing_dev *bdev, int flag)
3647{
3648        return (bdev->md.flags & flag) != 0;
3649}
3650
3651static void md_sync_timer_fn(unsigned long data)
3652{
3653        struct drbd_device *device = (struct drbd_device *) data;
3654        drbd_device_post_work(device, MD_SYNC);
3655}
3656
3657const char *cmdname(enum drbd_packet cmd)
3658{
3659        /* THINK may need to become several global tables
3660         * when we want to support more than
3661         * one PRO_VERSION */
3662        static const char *cmdnames[] = {
3663                [P_DATA]                = "Data",
3664                [P_DATA_REPLY]          = "DataReply",
3665                [P_RS_DATA_REPLY]       = "RSDataReply",
3666                [P_BARRIER]             = "Barrier",
3667                [P_BITMAP]              = "ReportBitMap",
3668                [P_BECOME_SYNC_TARGET]  = "BecomeSyncTarget",
3669                [P_BECOME_SYNC_SOURCE]  = "BecomeSyncSource",
3670                [P_UNPLUG_REMOTE]       = "UnplugRemote",
3671                [P_DATA_REQUEST]        = "DataRequest",
3672                [P_RS_DATA_REQUEST]     = "RSDataRequest",
3673                [P_SYNC_PARAM]          = "SyncParam",
3674                [P_SYNC_PARAM89]        = "SyncParam89",
3675                [P_PROTOCOL]            = "ReportProtocol",
3676                [P_UUIDS]               = "ReportUUIDs",
3677                [P_SIZES]               = "ReportSizes",
3678                [P_STATE]               = "ReportState",
3679                [P_SYNC_UUID]           = "ReportSyncUUID",
3680                [P_AUTH_CHALLENGE]      = "AuthChallenge",
3681                [P_AUTH_RESPONSE]       = "AuthResponse",
3682                [P_PING]                = "Ping",
3683                [P_PING_ACK]            = "PingAck",
3684                [P_RECV_ACK]            = "RecvAck",
3685                [P_WRITE_ACK]           = "WriteAck",
3686                [P_RS_WRITE_ACK]        = "RSWriteAck",
3687                [P_SUPERSEDED]          = "Superseded",
3688                [P_NEG_ACK]             = "NegAck",
3689                [P_NEG_DREPLY]          = "NegDReply",
3690                [P_NEG_RS_DREPLY]       = "NegRSDReply",
3691                [P_BARRIER_ACK]         = "BarrierAck",
3692                [P_STATE_CHG_REQ]       = "StateChgRequest",
3693                [P_STATE_CHG_REPLY]     = "StateChgReply",
3694                [P_OV_REQUEST]          = "OVRequest",
3695                [P_OV_REPLY]            = "OVReply",
3696                [P_OV_RESULT]           = "OVResult",
3697                [P_CSUM_RS_REQUEST]     = "CsumRSRequest",
3698                [P_RS_IS_IN_SYNC]       = "CsumRSIsInSync",
3699                [P_COMPRESSED_BITMAP]   = "CBitmap",
3700                [P_DELAY_PROBE]         = "DelayProbe",
3701                [P_OUT_OF_SYNC]         = "OutOfSync",
3702                [P_RETRY_WRITE]         = "RetryWrite",
3703                [P_RS_CANCEL]           = "RSCancel",
3704                [P_CONN_ST_CHG_REQ]     = "conn_st_chg_req",
3705                [P_CONN_ST_CHG_REPLY]   = "conn_st_chg_reply",
3706                [P_RETRY_WRITE]         = "retry_write",
3707                [P_PROTOCOL_UPDATE]     = "protocol_update",
3708
3709                /* enum drbd_packet, but not commands - obsoleted flags:
3710                 *      P_MAY_IGNORE
3711                 *      P_MAX_OPT_CMD
3712                 */
3713        };
3714
3715        /* too big for the array: 0xfffX */
3716        if (cmd == P_INITIAL_META)
3717                return "InitialMeta";
3718        if (cmd == P_INITIAL_DATA)
3719                return "InitialData";
3720        if (cmd == P_CONNECTION_FEATURES)
3721                return "ConnectionFeatures";
3722        if (cmd >= ARRAY_SIZE(cmdnames))
3723                return "Unknown";
3724        return cmdnames[cmd];
3725}
3726
3727/**
3728 * drbd_wait_misc  -  wait for a request to make progress
3729 * @device:     device associated with the request
3730 * @i:          the struct drbd_interval embedded in struct drbd_request or
3731 *              struct drbd_peer_request
3732 */
3733int drbd_wait_misc(struct drbd_device *device, struct drbd_interval *i)
3734{
3735        struct net_conf *nc;
3736        DEFINE_WAIT(wait);
3737        long timeout;
3738
3739        rcu_read_lock();
3740        nc = rcu_dereference(first_peer_device(device)->connection->net_conf);
3741        if (!nc) {
3742                rcu_read_unlock();
3743                return -ETIMEDOUT;
3744        }
3745        timeout = nc->ko_count ? nc->timeout * HZ / 10 * nc->ko_count : MAX_SCHEDULE_TIMEOUT;
3746        rcu_read_unlock();
3747
3748        /* Indicate to wake up device->misc_wait on progress.  */
3749        i->waiting = true;
3750        prepare_to_wait(&device->misc_wait, &wait, TASK_INTERRUPTIBLE);
3751        spin_unlock_irq(&device->resource->req_lock);
3752        timeout = schedule_timeout(timeout);
3753        finish_wait(&device->misc_wait, &wait);
3754        spin_lock_irq(&device->resource->req_lock);
3755        if (!timeout || device->state.conn < C_CONNECTED)
3756                return -ETIMEDOUT;
3757        if (signal_pending(current))
3758                return -ERESTARTSYS;
3759        return 0;
3760}
3761
3762#ifdef CONFIG_DRBD_FAULT_INJECTION
3763/* Fault insertion support including random number generator shamelessly
3764 * stolen from kernel/rcutorture.c */
3765struct fault_random_state {
3766        unsigned long state;
3767        unsigned long count;
3768};
3769
3770#define FAULT_RANDOM_MULT 39916801  /* prime */
3771#define FAULT_RANDOM_ADD        479001701 /* prime */
3772#define FAULT_RANDOM_REFRESH 10000
3773
3774/*
3775 * Crude but fast random-number generator.  Uses a linear congruential
3776 * generator, with occasional help from get_random_bytes().
3777 */
3778static unsigned long
3779_drbd_fault_random(struct fault_random_state *rsp)
3780{
3781        long refresh;
3782
3783        if (!rsp->count--) {
3784                get_random_bytes(&refresh, sizeof(refresh));
3785                rsp->state += refresh;
3786                rsp->count = FAULT_RANDOM_REFRESH;
3787        }
3788        rsp->state = rsp->state * FAULT_RANDOM_MULT + FAULT_RANDOM_ADD;
3789        return swahw32(rsp->state);
3790}
3791
3792static char *
3793_drbd_fault_str(unsigned int type) {
3794        static char *_faults[] = {
3795                [DRBD_FAULT_MD_WR] = "Meta-data write",
3796                [DRBD_FAULT_MD_RD] = "Meta-data read",
3797                [DRBD_FAULT_RS_WR] = "Resync write",
3798                [DRBD_FAULT_RS_RD] = "Resync read",
3799                [DRBD_FAULT_DT_WR] = "Data write",
3800                [DRBD_FAULT_DT_RD] = "Data read",
3801                [DRBD_FAULT_DT_RA] = "Data read ahead",
3802                [DRBD_FAULT_BM_ALLOC] = "BM allocation",
3803                [DRBD_FAULT_AL_EE] = "EE allocation",
3804                [DRBD_FAULT_RECEIVE] = "receive data corruption",
3805        };
3806
3807        return (type < DRBD_FAULT_MAX) ? _faults[type] : "**Unknown**";
3808}
3809
3810unsigned int
3811_drbd_insert_fault(struct drbd_device *device, unsigned int type)
3812{
3813        static struct fault_random_state rrs = {0, 0};
3814
3815        unsigned int ret = (
3816                (fault_devs == 0 ||
3817                        ((1 << device_to_minor(device)) & fault_devs) != 0) &&
3818                (((_drbd_fault_random(&rrs) % 100) + 1) <= fault_rate));
3819
3820        if (ret) {
3821                fault_count++;
3822
3823                if (__ratelimit(&drbd_ratelimit_state))
3824                        drbd_warn(device, "***Simulating %s failure\n",
3825                                _drbd_fault_str(type));
3826        }
3827
3828        return ret;
3829}
3830#endif
3831
3832const char *drbd_buildtag(void)
3833{
3834        /* DRBD built from external sources has here a reference to the
3835           git hash of the source code. */
3836
3837        static char buildtag[38] = "\0uilt-in";
3838
3839        if (buildtag[0] == 0) {
3840#ifdef MODULE
3841                sprintf(buildtag, "srcversion: %-24s", THIS_MODULE->srcversion);
3842#else
3843                buildtag[0] = 'b';
3844#endif
3845        }
3846
3847        return buildtag;
3848}
3849
3850module_init(drbd_init)
3851module_exit(drbd_cleanup)
3852
3853EXPORT_SYMBOL(drbd_conn_str);
3854EXPORT_SYMBOL(drbd_role_str);
3855EXPORT_SYMBOL(drbd_disk_str);
3856EXPORT_SYMBOL(drbd_set_st_err_str);
3857