linux/drivers/crypto/ccp/ccp-crypto-sha.c
<<
>>
Prefs
   1/*
   2 * AMD Cryptographic Coprocessor (CCP) SHA crypto API support
   3 *
   4 * Copyright (C) 2013 Advanced Micro Devices, Inc.
   5 *
   6 * Author: Tom Lendacky <thomas.lendacky@amd.com>
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License version 2 as
  10 * published by the Free Software Foundation.
  11 */
  12
  13#include <linux/module.h>
  14#include <linux/sched.h>
  15#include <linux/delay.h>
  16#include <linux/scatterlist.h>
  17#include <linux/crypto.h>
  18#include <crypto/algapi.h>
  19#include <crypto/hash.h>
  20#include <crypto/internal/hash.h>
  21#include <crypto/sha.h>
  22#include <crypto/scatterwalk.h>
  23
  24#include "ccp-crypto.h"
  25
  26
  27static int ccp_sha_complete(struct crypto_async_request *async_req, int ret)
  28{
  29        struct ahash_request *req = ahash_request_cast(async_req);
  30        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  31        struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
  32        unsigned int digest_size = crypto_ahash_digestsize(tfm);
  33
  34        if (ret)
  35                goto e_free;
  36
  37        if (rctx->hash_rem) {
  38                /* Save remaining data to buffer */
  39                unsigned int offset = rctx->nbytes - rctx->hash_rem;
  40                scatterwalk_map_and_copy(rctx->buf, rctx->src,
  41                                         offset, rctx->hash_rem, 0);
  42                rctx->buf_count = rctx->hash_rem;
  43        } else
  44                rctx->buf_count = 0;
  45
  46        /* Update result area if supplied */
  47        if (req->result)
  48                memcpy(req->result, rctx->ctx, digest_size);
  49
  50e_free:
  51        sg_free_table(&rctx->data_sg);
  52
  53        return ret;
  54}
  55
  56static int ccp_do_sha_update(struct ahash_request *req, unsigned int nbytes,
  57                             unsigned int final)
  58{
  59        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  60        struct ccp_ctx *ctx = crypto_ahash_ctx(tfm);
  61        struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
  62        struct scatterlist *sg;
  63        unsigned int block_size =
  64                crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
  65        unsigned int sg_count;
  66        gfp_t gfp;
  67        u64 len;
  68        int ret;
  69
  70        len = (u64)rctx->buf_count + (u64)nbytes;
  71
  72        if (!final && (len <= block_size)) {
  73                scatterwalk_map_and_copy(rctx->buf + rctx->buf_count, req->src,
  74                                         0, nbytes, 0);
  75                rctx->buf_count += nbytes;
  76
  77                return 0;
  78        }
  79
  80        rctx->src = req->src;
  81        rctx->nbytes = nbytes;
  82
  83        rctx->final = final;
  84        rctx->hash_rem = final ? 0 : len & (block_size - 1);
  85        rctx->hash_cnt = len - rctx->hash_rem;
  86        if (!final && !rctx->hash_rem) {
  87                /* CCP can't do zero length final, so keep some data around */
  88                rctx->hash_cnt -= block_size;
  89                rctx->hash_rem = block_size;
  90        }
  91
  92        /* Initialize the context scatterlist */
  93        sg_init_one(&rctx->ctx_sg, rctx->ctx, sizeof(rctx->ctx));
  94
  95        sg = NULL;
  96        if (rctx->buf_count && nbytes) {
  97                /* Build the data scatterlist table - allocate enough entries
  98                 * for both data pieces (buffer and input data)
  99                 */
 100                gfp = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
 101                        GFP_KERNEL : GFP_ATOMIC;
 102                sg_count = sg_nents(req->src) + 1;
 103                ret = sg_alloc_table(&rctx->data_sg, sg_count, gfp);
 104                if (ret)
 105                        return ret;
 106
 107                sg_init_one(&rctx->buf_sg, rctx->buf, rctx->buf_count);
 108                sg = ccp_crypto_sg_table_add(&rctx->data_sg, &rctx->buf_sg);
 109                sg = ccp_crypto_sg_table_add(&rctx->data_sg, req->src);
 110                sg_mark_end(sg);
 111
 112                sg = rctx->data_sg.sgl;
 113        } else if (rctx->buf_count) {
 114                sg_init_one(&rctx->buf_sg, rctx->buf, rctx->buf_count);
 115
 116                sg = &rctx->buf_sg;
 117        } else if (nbytes) {
 118                sg = req->src;
 119        }
 120
 121        rctx->msg_bits += (rctx->hash_cnt << 3);        /* Total in bits */
 122
 123        memset(&rctx->cmd, 0, sizeof(rctx->cmd));
 124        INIT_LIST_HEAD(&rctx->cmd.entry);
 125        rctx->cmd.engine = CCP_ENGINE_SHA;
 126        rctx->cmd.u.sha.type = rctx->type;
 127        rctx->cmd.u.sha.ctx = &rctx->ctx_sg;
 128        rctx->cmd.u.sha.ctx_len = sizeof(rctx->ctx);
 129        rctx->cmd.u.sha.src = sg;
 130        rctx->cmd.u.sha.src_len = rctx->hash_cnt;
 131        rctx->cmd.u.sha.opad = ctx->u.sha.key_len ?
 132                &ctx->u.sha.opad_sg : NULL;
 133        rctx->cmd.u.sha.opad_len = ctx->u.sha.key_len ?
 134                ctx->u.sha.opad_count : 0;
 135        rctx->cmd.u.sha.first = rctx->first;
 136        rctx->cmd.u.sha.final = rctx->final;
 137        rctx->cmd.u.sha.msg_bits = rctx->msg_bits;
 138
 139        rctx->first = 0;
 140
 141        ret = ccp_crypto_enqueue_request(&req->base, &rctx->cmd);
 142
 143        return ret;
 144}
 145
 146static int ccp_sha_init(struct ahash_request *req)
 147{
 148        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 149        struct ccp_ctx *ctx = crypto_ahash_ctx(tfm);
 150        struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
 151        struct ccp_crypto_ahash_alg *alg =
 152                ccp_crypto_ahash_alg(crypto_ahash_tfm(tfm));
 153        unsigned int block_size =
 154                crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
 155
 156        memset(rctx, 0, sizeof(*rctx));
 157
 158        rctx->type = alg->type;
 159        rctx->first = 1;
 160
 161        if (ctx->u.sha.key_len) {
 162                /* Buffer the HMAC key for first update */
 163                memcpy(rctx->buf, ctx->u.sha.ipad, block_size);
 164                rctx->buf_count = block_size;
 165        }
 166
 167        return 0;
 168}
 169
 170static int ccp_sha_update(struct ahash_request *req)
 171{
 172        return ccp_do_sha_update(req, req->nbytes, 0);
 173}
 174
 175static int ccp_sha_final(struct ahash_request *req)
 176{
 177        return ccp_do_sha_update(req, 0, 1);
 178}
 179
 180static int ccp_sha_finup(struct ahash_request *req)
 181{
 182        return ccp_do_sha_update(req, req->nbytes, 1);
 183}
 184
 185static int ccp_sha_digest(struct ahash_request *req)
 186{
 187        int ret;
 188
 189        ret = ccp_sha_init(req);
 190        if (ret)
 191                return ret;
 192
 193        return ccp_sha_finup(req);
 194}
 195
 196static int ccp_sha_setkey(struct crypto_ahash *tfm, const u8 *key,
 197                          unsigned int key_len)
 198{
 199        struct ccp_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
 200        struct crypto_shash *shash = ctx->u.sha.hmac_tfm;
 201        struct {
 202                struct shash_desc sdesc;
 203                char ctx[crypto_shash_descsize(shash)];
 204        } desc;
 205        unsigned int block_size = crypto_shash_blocksize(shash);
 206        unsigned int digest_size = crypto_shash_digestsize(shash);
 207        int i, ret;
 208
 209        /* Set to zero until complete */
 210        ctx->u.sha.key_len = 0;
 211
 212        /* Clear key area to provide zero padding for keys smaller
 213         * than the block size
 214         */
 215        memset(ctx->u.sha.key, 0, sizeof(ctx->u.sha.key));
 216
 217        if (key_len > block_size) {
 218                /* Must hash the input key */
 219                desc.sdesc.tfm = shash;
 220                desc.sdesc.flags = crypto_ahash_get_flags(tfm) &
 221                        CRYPTO_TFM_REQ_MAY_SLEEP;
 222
 223                ret = crypto_shash_digest(&desc.sdesc, key, key_len,
 224                                          ctx->u.sha.key);
 225                if (ret) {
 226                        crypto_ahash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
 227                        return -EINVAL;
 228                }
 229
 230                key_len = digest_size;
 231        } else
 232                memcpy(ctx->u.sha.key, key, key_len);
 233
 234        for (i = 0; i < block_size; i++) {
 235                ctx->u.sha.ipad[i] = ctx->u.sha.key[i] ^ 0x36;
 236                ctx->u.sha.opad[i] = ctx->u.sha.key[i] ^ 0x5c;
 237        }
 238
 239        sg_init_one(&ctx->u.sha.opad_sg, ctx->u.sha.opad, block_size);
 240        ctx->u.sha.opad_count = block_size;
 241
 242        ctx->u.sha.key_len = key_len;
 243
 244        return 0;
 245}
 246
 247static int ccp_sha_cra_init(struct crypto_tfm *tfm)
 248{
 249        struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
 250        struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
 251
 252        ctx->complete = ccp_sha_complete;
 253        ctx->u.sha.key_len = 0;
 254
 255        crypto_ahash_set_reqsize(ahash, sizeof(struct ccp_sha_req_ctx));
 256
 257        return 0;
 258}
 259
 260static void ccp_sha_cra_exit(struct crypto_tfm *tfm)
 261{
 262}
 263
 264static int ccp_hmac_sha_cra_init(struct crypto_tfm *tfm)
 265{
 266        struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
 267        struct ccp_crypto_ahash_alg *alg = ccp_crypto_ahash_alg(tfm);
 268        struct crypto_shash *hmac_tfm;
 269
 270        hmac_tfm = crypto_alloc_shash(alg->child_alg, 0, 0);
 271        if (IS_ERR(hmac_tfm)) {
 272                pr_warn("could not load driver %s need for HMAC support\n",
 273                        alg->child_alg);
 274                return PTR_ERR(hmac_tfm);
 275        }
 276
 277        ctx->u.sha.hmac_tfm = hmac_tfm;
 278
 279        return ccp_sha_cra_init(tfm);
 280}
 281
 282static void ccp_hmac_sha_cra_exit(struct crypto_tfm *tfm)
 283{
 284        struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
 285
 286        if (ctx->u.sha.hmac_tfm)
 287                crypto_free_shash(ctx->u.sha.hmac_tfm);
 288
 289        ccp_sha_cra_exit(tfm);
 290}
 291
 292struct ccp_sha_def {
 293        const char *name;
 294        const char *drv_name;
 295        enum ccp_sha_type type;
 296        u32 digest_size;
 297        u32 block_size;
 298};
 299
 300static struct ccp_sha_def sha_algs[] = {
 301        {
 302                .name           = "sha1",
 303                .drv_name       = "sha1-ccp",
 304                .type           = CCP_SHA_TYPE_1,
 305                .digest_size    = SHA1_DIGEST_SIZE,
 306                .block_size     = SHA1_BLOCK_SIZE,
 307        },
 308        {
 309                .name           = "sha224",
 310                .drv_name       = "sha224-ccp",
 311                .type           = CCP_SHA_TYPE_224,
 312                .digest_size    = SHA224_DIGEST_SIZE,
 313                .block_size     = SHA224_BLOCK_SIZE,
 314        },
 315        {
 316                .name           = "sha256",
 317                .drv_name       = "sha256-ccp",
 318                .type           = CCP_SHA_TYPE_256,
 319                .digest_size    = SHA256_DIGEST_SIZE,
 320                .block_size     = SHA256_BLOCK_SIZE,
 321        },
 322};
 323
 324static int ccp_register_hmac_alg(struct list_head *head,
 325                                 const struct ccp_sha_def *def,
 326                                 const struct ccp_crypto_ahash_alg *base_alg)
 327{
 328        struct ccp_crypto_ahash_alg *ccp_alg;
 329        struct ahash_alg *alg;
 330        struct hash_alg_common *halg;
 331        struct crypto_alg *base;
 332        int ret;
 333
 334        ccp_alg = kzalloc(sizeof(*ccp_alg), GFP_KERNEL);
 335        if (!ccp_alg)
 336                return -ENOMEM;
 337
 338        /* Copy the base algorithm and only change what's necessary */
 339        *ccp_alg = *base_alg;
 340        INIT_LIST_HEAD(&ccp_alg->entry);
 341
 342        strncpy(ccp_alg->child_alg, def->name, CRYPTO_MAX_ALG_NAME);
 343
 344        alg = &ccp_alg->alg;
 345        alg->setkey = ccp_sha_setkey;
 346
 347        halg = &alg->halg;
 348
 349        base = &halg->base;
 350        snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", def->name);
 351        snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s",
 352                 def->drv_name);
 353        base->cra_init = ccp_hmac_sha_cra_init;
 354        base->cra_exit = ccp_hmac_sha_cra_exit;
 355
 356        ret = crypto_register_ahash(alg);
 357        if (ret) {
 358                pr_err("%s ahash algorithm registration error (%d)\n",
 359                        base->cra_name, ret);
 360                kfree(ccp_alg);
 361                return ret;
 362        }
 363
 364        list_add(&ccp_alg->entry, head);
 365
 366        return ret;
 367}
 368
 369static int ccp_register_sha_alg(struct list_head *head,
 370                                const struct ccp_sha_def *def)
 371{
 372        struct ccp_crypto_ahash_alg *ccp_alg;
 373        struct ahash_alg *alg;
 374        struct hash_alg_common *halg;
 375        struct crypto_alg *base;
 376        int ret;
 377
 378        ccp_alg = kzalloc(sizeof(*ccp_alg), GFP_KERNEL);
 379        if (!ccp_alg)
 380                return -ENOMEM;
 381
 382        INIT_LIST_HEAD(&ccp_alg->entry);
 383
 384        ccp_alg->type = def->type;
 385
 386        alg = &ccp_alg->alg;
 387        alg->init = ccp_sha_init;
 388        alg->update = ccp_sha_update;
 389        alg->final = ccp_sha_final;
 390        alg->finup = ccp_sha_finup;
 391        alg->digest = ccp_sha_digest;
 392
 393        halg = &alg->halg;
 394        halg->digestsize = def->digest_size;
 395
 396        base = &halg->base;
 397        snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", def->name);
 398        snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
 399                 def->drv_name);
 400        base->cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC |
 401                          CRYPTO_ALG_KERN_DRIVER_ONLY |
 402                          CRYPTO_ALG_NEED_FALLBACK;
 403        base->cra_blocksize = def->block_size;
 404        base->cra_ctxsize = sizeof(struct ccp_ctx);
 405        base->cra_priority = CCP_CRA_PRIORITY;
 406        base->cra_type = &crypto_ahash_type;
 407        base->cra_init = ccp_sha_cra_init;
 408        base->cra_exit = ccp_sha_cra_exit;
 409        base->cra_module = THIS_MODULE;
 410
 411        ret = crypto_register_ahash(alg);
 412        if (ret) {
 413                pr_err("%s ahash algorithm registration error (%d)\n",
 414                        base->cra_name, ret);
 415                kfree(ccp_alg);
 416                return ret;
 417        }
 418
 419        list_add(&ccp_alg->entry, head);
 420
 421        ret = ccp_register_hmac_alg(head, def, ccp_alg);
 422
 423        return ret;
 424}
 425
 426int ccp_register_sha_algs(struct list_head *head)
 427{
 428        int i, ret;
 429
 430        for (i = 0; i < ARRAY_SIZE(sha_algs); i++) {
 431                ret = ccp_register_sha_alg(head, &sha_algs[i]);
 432                if (ret)
 433                        return ret;
 434        }
 435
 436        return 0;
 437}
 438