linux/drivers/net/ethernet/adaptec/starfire.c
<<
>>
Prefs
   1/* starfire.c: Linux device driver for the Adaptec Starfire network adapter. */
   2/*
   3        Written 1998-2000 by Donald Becker.
   4
   5        Current maintainer is Ion Badulescu <ionut ta badula tod org>. Please
   6        send all bug reports to me, and not to Donald Becker, as this code
   7        has been heavily modified from Donald's original version.
   8
   9        This software may be used and distributed according to the terms of
  10        the GNU General Public License (GPL), incorporated herein by reference.
  11        Drivers based on or derived from this code fall under the GPL and must
  12        retain the authorship, copyright and license notice.  This file is not
  13        a complete program and may only be used when the entire operating
  14        system is licensed under the GPL.
  15
  16        The information below comes from Donald Becker's original driver:
  17
  18        The author may be reached as becker@scyld.com, or C/O
  19        Scyld Computing Corporation
  20        410 Severn Ave., Suite 210
  21        Annapolis MD 21403
  22
  23        Support and updates available at
  24        http://www.scyld.com/network/starfire.html
  25        [link no longer provides useful info -jgarzik]
  26
  27*/
  28
  29#define DRV_NAME        "starfire"
  30#define DRV_VERSION     "2.1"
  31#define DRV_RELDATE     "July  6, 2008"
  32
  33#include <linux/interrupt.h>
  34#include <linux/module.h>
  35#include <linux/kernel.h>
  36#include <linux/pci.h>
  37#include <linux/netdevice.h>
  38#include <linux/etherdevice.h>
  39#include <linux/init.h>
  40#include <linux/delay.h>
  41#include <linux/crc32.h>
  42#include <linux/ethtool.h>
  43#include <linux/mii.h>
  44#include <linux/if_vlan.h>
  45#include <linux/mm.h>
  46#include <linux/firmware.h>
  47#include <asm/processor.h>              /* Processor type for cache alignment. */
  48#include <asm/uaccess.h>
  49#include <asm/io.h>
  50
  51/*
  52 * The current frame processor firmware fails to checksum a fragment
  53 * of length 1. If and when this is fixed, the #define below can be removed.
  54 */
  55#define HAS_BROKEN_FIRMWARE
  56
  57/*
  58 * If using the broken firmware, data must be padded to the next 32-bit boundary.
  59 */
  60#ifdef HAS_BROKEN_FIRMWARE
  61#define PADDING_MASK 3
  62#endif
  63
  64/*
  65 * Define this if using the driver with the zero-copy patch
  66 */
  67#define ZEROCOPY
  68
  69#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
  70#define VLAN_SUPPORT
  71#endif
  72
  73/* The user-configurable values.
  74   These may be modified when a driver module is loaded.*/
  75
  76/* Used for tuning interrupt latency vs. overhead. */
  77static int intr_latency;
  78static int small_frames;
  79
  80static int debug = 1;                   /* 1 normal messages, 0 quiet .. 7 verbose. */
  81static int max_interrupt_work = 20;
  82static int mtu;
  83/* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
  84   The Starfire has a 512 element hash table based on the Ethernet CRC. */
  85static const int multicast_filter_limit = 512;
  86/* Whether to do TCP/UDP checksums in hardware */
  87static int enable_hw_cksum = 1;
  88
  89#define PKT_BUF_SZ      1536            /* Size of each temporary Rx buffer.*/
  90/*
  91 * Set the copy breakpoint for the copy-only-tiny-frames scheme.
  92 * Setting to > 1518 effectively disables this feature.
  93 *
  94 * NOTE:
  95 * The ia64 doesn't allow for unaligned loads even of integers being
  96 * misaligned on a 2 byte boundary. Thus always force copying of
  97 * packets as the starfire doesn't allow for misaligned DMAs ;-(
  98 * 23/10/2000 - Jes
  99 *
 100 * The Alpha and the Sparc don't like unaligned loads, either. On Sparc64,
 101 * at least, having unaligned frames leads to a rather serious performance
 102 * penalty. -Ion
 103 */
 104#if defined(__ia64__) || defined(__alpha__) || defined(__sparc__)
 105static int rx_copybreak = PKT_BUF_SZ;
 106#else
 107static int rx_copybreak /* = 0 */;
 108#endif
 109
 110/* PCI DMA burst size -- on sparc64 we want to force it to 64 bytes, on the others the default of 128 is fine. */
 111#ifdef __sparc__
 112#define DMA_BURST_SIZE 64
 113#else
 114#define DMA_BURST_SIZE 128
 115#endif
 116
 117/* Operational parameters that are set at compile time. */
 118
 119/* The "native" ring sizes are either 256 or 2048.
 120   However in some modes a descriptor may be marked to wrap the ring earlier.
 121*/
 122#define RX_RING_SIZE    256
 123#define TX_RING_SIZE    32
 124/* The completion queues are fixed at 1024 entries i.e. 4K or 8KB. */
 125#define DONE_Q_SIZE     1024
 126/* All queues must be aligned on a 256-byte boundary */
 127#define QUEUE_ALIGN     256
 128
 129#if RX_RING_SIZE > 256
 130#define RX_Q_ENTRIES Rx2048QEntries
 131#else
 132#define RX_Q_ENTRIES Rx256QEntries
 133#endif
 134
 135/* Operational parameters that usually are not changed. */
 136/* Time in jiffies before concluding the transmitter is hung. */
 137#define TX_TIMEOUT      (2 * HZ)
 138
 139#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
 140/* 64-bit dma_addr_t */
 141#define ADDR_64BITS     /* This chip uses 64 bit addresses. */
 142#define netdrv_addr_t __le64
 143#define cpu_to_dma(x) cpu_to_le64(x)
 144#define dma_to_cpu(x) le64_to_cpu(x)
 145#define RX_DESC_Q_ADDR_SIZE RxDescQAddr64bit
 146#define TX_DESC_Q_ADDR_SIZE TxDescQAddr64bit
 147#define RX_COMPL_Q_ADDR_SIZE RxComplQAddr64bit
 148#define TX_COMPL_Q_ADDR_SIZE TxComplQAddr64bit
 149#define RX_DESC_ADDR_SIZE RxDescAddr64bit
 150#else  /* 32-bit dma_addr_t */
 151#define netdrv_addr_t __le32
 152#define cpu_to_dma(x) cpu_to_le32(x)
 153#define dma_to_cpu(x) le32_to_cpu(x)
 154#define RX_DESC_Q_ADDR_SIZE RxDescQAddr32bit
 155#define TX_DESC_Q_ADDR_SIZE TxDescQAddr32bit
 156#define RX_COMPL_Q_ADDR_SIZE RxComplQAddr32bit
 157#define TX_COMPL_Q_ADDR_SIZE TxComplQAddr32bit
 158#define RX_DESC_ADDR_SIZE RxDescAddr32bit
 159#endif
 160
 161#define skb_first_frag_len(skb) skb_headlen(skb)
 162#define skb_num_frags(skb) (skb_shinfo(skb)->nr_frags + 1)
 163
 164/* Firmware names */
 165#define FIRMWARE_RX     "adaptec/starfire_rx.bin"
 166#define FIRMWARE_TX     "adaptec/starfire_tx.bin"
 167
 168/* These identify the driver base version and may not be removed. */
 169static const char version[] =
 170KERN_INFO "starfire.c:v1.03 7/26/2000  Written by Donald Becker <becker@scyld.com>\n"
 171" (unofficial 2.2/2.4 kernel port, version " DRV_VERSION ", " DRV_RELDATE ")\n";
 172
 173MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
 174MODULE_DESCRIPTION("Adaptec Starfire Ethernet driver");
 175MODULE_LICENSE("GPL");
 176MODULE_VERSION(DRV_VERSION);
 177MODULE_FIRMWARE(FIRMWARE_RX);
 178MODULE_FIRMWARE(FIRMWARE_TX);
 179
 180module_param(max_interrupt_work, int, 0);
 181module_param(mtu, int, 0);
 182module_param(debug, int, 0);
 183module_param(rx_copybreak, int, 0);
 184module_param(intr_latency, int, 0);
 185module_param(small_frames, int, 0);
 186module_param(enable_hw_cksum, int, 0);
 187MODULE_PARM_DESC(max_interrupt_work, "Maximum events handled per interrupt");
 188MODULE_PARM_DESC(mtu, "MTU (all boards)");
 189MODULE_PARM_DESC(debug, "Debug level (0-6)");
 190MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
 191MODULE_PARM_DESC(intr_latency, "Maximum interrupt latency, in microseconds");
 192MODULE_PARM_DESC(small_frames, "Maximum size of receive frames that bypass interrupt latency (0,64,128,256,512)");
 193MODULE_PARM_DESC(enable_hw_cksum, "Enable/disable hardware cksum support (0/1)");
 194
 195/*
 196                                Theory of Operation
 197
 198I. Board Compatibility
 199
 200This driver is for the Adaptec 6915 "Starfire" 64 bit PCI Ethernet adapter.
 201
 202II. Board-specific settings
 203
 204III. Driver operation
 205
 206IIIa. Ring buffers
 207
 208The Starfire hardware uses multiple fixed-size descriptor queues/rings.  The
 209ring sizes are set fixed by the hardware, but may optionally be wrapped
 210earlier by the END bit in the descriptor.
 211This driver uses that hardware queue size for the Rx ring, where a large
 212number of entries has no ill effect beyond increases the potential backlog.
 213The Tx ring is wrapped with the END bit, since a large hardware Tx queue
 214disables the queue layer priority ordering and we have no mechanism to
 215utilize the hardware two-level priority queue.  When modifying the
 216RX/TX_RING_SIZE pay close attention to page sizes and the ring-empty warning
 217levels.
 218
 219IIIb/c. Transmit/Receive Structure
 220
 221See the Adaptec manual for the many possible structures, and options for
 222each structure.  There are far too many to document all of them here.
 223
 224For transmit this driver uses type 0/1 transmit descriptors (depending
 225on the 32/64 bitness of the architecture), and relies on automatic
 226minimum-length padding.  It does not use the completion queue
 227consumer index, but instead checks for non-zero status entries.
 228
 229For receive this driver uses type 2/3 receive descriptors.  The driver
 230allocates full frame size skbuffs for the Rx ring buffers, so all frames
 231should fit in a single descriptor.  The driver does not use the completion
 232queue consumer index, but instead checks for non-zero status entries.
 233
 234When an incoming frame is less than RX_COPYBREAK bytes long, a fresh skbuff
 235is allocated and the frame is copied to the new skbuff.  When the incoming
 236frame is larger, the skbuff is passed directly up the protocol stack.
 237Buffers consumed this way are replaced by newly allocated skbuffs in a later
 238phase of receive.
 239
 240A notable aspect of operation is that unaligned buffers are not permitted by
 241the Starfire hardware.  Thus the IP header at offset 14 in an ethernet frame
 242isn't longword aligned, which may cause problems on some machine
 243e.g. Alphas and IA64. For these architectures, the driver is forced to copy
 244the frame into a new skbuff unconditionally. Copied frames are put into the
 245skbuff at an offset of "+2", thus 16-byte aligning the IP header.
 246
 247IIId. Synchronization
 248
 249The driver runs as two independent, single-threaded flows of control.  One
 250is the send-packet routine, which enforces single-threaded use by the
 251dev->tbusy flag.  The other thread is the interrupt handler, which is single
 252threaded by the hardware and interrupt handling software.
 253
 254The send packet thread has partial control over the Tx ring and the netif_queue
 255status. If the number of free Tx slots in the ring falls below a certain number
 256(currently hardcoded to 4), it signals the upper layer to stop the queue.
 257
 258The interrupt handler has exclusive control over the Rx ring and records stats
 259from the Tx ring.  After reaping the stats, it marks the Tx queue entry as
 260empty by incrementing the dirty_tx mark. Iff the netif_queue is stopped and the
 261number of free Tx slow is above the threshold, it signals the upper layer to
 262restart the queue.
 263
 264IV. Notes
 265
 266IVb. References
 267
 268The Adaptec Starfire manuals, available only from Adaptec.
 269http://www.scyld.com/expert/100mbps.html
 270http://www.scyld.com/expert/NWay.html
 271
 272IVc. Errata
 273
 274- StopOnPerr is broken, don't enable
 275- Hardware ethernet padding exposes random data, perform software padding
 276  instead (unverified -- works correctly for all the hardware I have)
 277
 278*/
 279
 280
 281
 282enum chip_capability_flags {CanHaveMII=1, };
 283
 284enum chipset {
 285        CH_6915 = 0,
 286};
 287
 288static const struct pci_device_id starfire_pci_tbl[] = {
 289        { PCI_VDEVICE(ADAPTEC, 0x6915), CH_6915 },
 290        { 0, }
 291};
 292MODULE_DEVICE_TABLE(pci, starfire_pci_tbl);
 293
 294/* A chip capabilities table, matching the CH_xxx entries in xxx_pci_tbl[] above. */
 295static const struct chip_info {
 296        const char *name;
 297        int drv_flags;
 298} netdrv_tbl[] = {
 299        { "Adaptec Starfire 6915", CanHaveMII },
 300};
 301
 302
 303/* Offsets to the device registers.
 304   Unlike software-only systems, device drivers interact with complex hardware.
 305   It's not useful to define symbolic names for every register bit in the
 306   device.  The name can only partially document the semantics and make
 307   the driver longer and more difficult to read.
 308   In general, only the important configuration values or bits changed
 309   multiple times should be defined symbolically.
 310*/
 311enum register_offsets {
 312        PCIDeviceConfig=0x50040, GenCtrl=0x50070, IntrTimerCtrl=0x50074,
 313        IntrClear=0x50080, IntrStatus=0x50084, IntrEnable=0x50088,
 314        MIICtrl=0x52000, TxStationAddr=0x50120, EEPROMCtrl=0x51000,
 315        GPIOCtrl=0x5008C, TxDescCtrl=0x50090,
 316        TxRingPtr=0x50098, HiPriTxRingPtr=0x50094, /* Low and High priority. */
 317        TxRingHiAddr=0x5009C,           /* 64 bit address extension. */
 318        TxProducerIdx=0x500A0, TxConsumerIdx=0x500A4,
 319        TxThreshold=0x500B0,
 320        CompletionHiAddr=0x500B4, TxCompletionAddr=0x500B8,
 321        RxCompletionAddr=0x500BC, RxCompletionQ2Addr=0x500C0,
 322        CompletionQConsumerIdx=0x500C4, RxDMACtrl=0x500D0,
 323        RxDescQCtrl=0x500D4, RxDescQHiAddr=0x500DC, RxDescQAddr=0x500E0,
 324        RxDescQIdx=0x500E8, RxDMAStatus=0x500F0, RxFilterMode=0x500F4,
 325        TxMode=0x55000, VlanType=0x55064,
 326        PerfFilterTable=0x56000, HashTable=0x56100,
 327        TxGfpMem=0x58000, RxGfpMem=0x5a000,
 328};
 329
 330/*
 331 * Bits in the interrupt status/mask registers.
 332 * Warning: setting Intr[Ab]NormalSummary in the IntrEnable register
 333 * enables all the interrupt sources that are or'ed into those status bits.
 334 */
 335enum intr_status_bits {
 336        IntrLinkChange=0xf0000000, IntrStatsMax=0x08000000,
 337        IntrAbnormalSummary=0x02000000, IntrGeneralTimer=0x01000000,
 338        IntrSoftware=0x800000, IntrRxComplQ1Low=0x400000,
 339        IntrTxComplQLow=0x200000, IntrPCI=0x100000,
 340        IntrDMAErr=0x080000, IntrTxDataLow=0x040000,
 341        IntrRxComplQ2Low=0x020000, IntrRxDescQ1Low=0x010000,
 342        IntrNormalSummary=0x8000, IntrTxDone=0x4000,
 343        IntrTxDMADone=0x2000, IntrTxEmpty=0x1000,
 344        IntrEarlyRxQ2=0x0800, IntrEarlyRxQ1=0x0400,
 345        IntrRxQ2Done=0x0200, IntrRxQ1Done=0x0100,
 346        IntrRxGFPDead=0x80, IntrRxDescQ2Low=0x40,
 347        IntrNoTxCsum=0x20, IntrTxBadID=0x10,
 348        IntrHiPriTxBadID=0x08, IntrRxGfp=0x04,
 349        IntrTxGfp=0x02, IntrPCIPad=0x01,
 350        /* not quite bits */
 351        IntrRxDone=IntrRxQ2Done | IntrRxQ1Done,
 352        IntrRxEmpty=IntrRxDescQ1Low | IntrRxDescQ2Low,
 353        IntrNormalMask=0xff00, IntrAbnormalMask=0x3ff00fe,
 354};
 355
 356/* Bits in the RxFilterMode register. */
 357enum rx_mode_bits {
 358        AcceptBroadcast=0x04, AcceptAllMulticast=0x02, AcceptAll=0x01,
 359        AcceptMulticast=0x10, PerfectFilter=0x40, HashFilter=0x30,
 360        PerfectFilterVlan=0x80, MinVLANPrio=0xE000, VlanMode=0x0200,
 361        WakeupOnGFP=0x0800,
 362};
 363
 364/* Bits in the TxMode register */
 365enum tx_mode_bits {
 366        MiiSoftReset=0x8000, MIILoopback=0x4000,
 367        TxFlowEnable=0x0800, RxFlowEnable=0x0400,
 368        PadEnable=0x04, FullDuplex=0x02, HugeFrame=0x01,
 369};
 370
 371/* Bits in the TxDescCtrl register. */
 372enum tx_ctrl_bits {
 373        TxDescSpaceUnlim=0x00, TxDescSpace32=0x10, TxDescSpace64=0x20,
 374        TxDescSpace128=0x30, TxDescSpace256=0x40,
 375        TxDescType0=0x00, TxDescType1=0x01, TxDescType2=0x02,
 376        TxDescType3=0x03, TxDescType4=0x04,
 377        TxNoDMACompletion=0x08,
 378        TxDescQAddr64bit=0x80, TxDescQAddr32bit=0,
 379        TxHiPriFIFOThreshShift=24, TxPadLenShift=16,
 380        TxDMABurstSizeShift=8,
 381};
 382
 383/* Bits in the RxDescQCtrl register. */
 384enum rx_ctrl_bits {
 385        RxBufferLenShift=16, RxMinDescrThreshShift=0,
 386        RxPrefetchMode=0x8000, RxVariableQ=0x2000,
 387        Rx2048QEntries=0x4000, Rx256QEntries=0,
 388        RxDescAddr64bit=0x1000, RxDescAddr32bit=0,
 389        RxDescQAddr64bit=0x0100, RxDescQAddr32bit=0,
 390        RxDescSpace4=0x000, RxDescSpace8=0x100,
 391        RxDescSpace16=0x200, RxDescSpace32=0x300,
 392        RxDescSpace64=0x400, RxDescSpace128=0x500,
 393        RxConsumerWrEn=0x80,
 394};
 395
 396/* Bits in the RxDMACtrl register. */
 397enum rx_dmactrl_bits {
 398        RxReportBadFrames=0x80000000, RxDMAShortFrames=0x40000000,
 399        RxDMABadFrames=0x20000000, RxDMACrcErrorFrames=0x10000000,
 400        RxDMAControlFrame=0x08000000, RxDMAPauseFrame=0x04000000,
 401        RxChecksumIgnore=0, RxChecksumRejectTCPUDP=0x02000000,
 402        RxChecksumRejectTCPOnly=0x01000000,
 403        RxCompletionQ2Enable=0x800000,
 404        RxDMAQ2Disable=0, RxDMAQ2FPOnly=0x100000,
 405        RxDMAQ2SmallPkt=0x200000, RxDMAQ2HighPrio=0x300000,
 406        RxDMAQ2NonIP=0x400000,
 407        RxUseBackupQueue=0x080000, RxDMACRC=0x040000,
 408        RxEarlyIntThreshShift=12, RxHighPrioThreshShift=8,
 409        RxBurstSizeShift=0,
 410};
 411
 412/* Bits in the RxCompletionAddr register */
 413enum rx_compl_bits {
 414        RxComplQAddr64bit=0x80, RxComplQAddr32bit=0,
 415        RxComplProducerWrEn=0x40,
 416        RxComplType0=0x00, RxComplType1=0x10,
 417        RxComplType2=0x20, RxComplType3=0x30,
 418        RxComplThreshShift=0,
 419};
 420
 421/* Bits in the TxCompletionAddr register */
 422enum tx_compl_bits {
 423        TxComplQAddr64bit=0x80, TxComplQAddr32bit=0,
 424        TxComplProducerWrEn=0x40,
 425        TxComplIntrStatus=0x20,
 426        CommonQueueMode=0x10,
 427        TxComplThreshShift=0,
 428};
 429
 430/* Bits in the GenCtrl register */
 431enum gen_ctrl_bits {
 432        RxEnable=0x05, TxEnable=0x0a,
 433        RxGFPEnable=0x10, TxGFPEnable=0x20,
 434};
 435
 436/* Bits in the IntrTimerCtrl register */
 437enum intr_ctrl_bits {
 438        Timer10X=0x800, EnableIntrMasking=0x60, SmallFrameBypass=0x100,
 439        SmallFrame64=0, SmallFrame128=0x200, SmallFrame256=0x400, SmallFrame512=0x600,
 440        IntrLatencyMask=0x1f,
 441};
 442
 443/* The Rx and Tx buffer descriptors. */
 444struct starfire_rx_desc {
 445        netdrv_addr_t rxaddr;
 446};
 447enum rx_desc_bits {
 448        RxDescValid=1, RxDescEndRing=2,
 449};
 450
 451/* Completion queue entry. */
 452struct short_rx_done_desc {
 453        __le32 status;                  /* Low 16 bits is length. */
 454};
 455struct basic_rx_done_desc {
 456        __le32 status;                  /* Low 16 bits is length. */
 457        __le16 vlanid;
 458        __le16 status2;
 459};
 460struct csum_rx_done_desc {
 461        __le32 status;                  /* Low 16 bits is length. */
 462        __le16 csum;                    /* Partial checksum */
 463        __le16 status2;
 464};
 465struct full_rx_done_desc {
 466        __le32 status;                  /* Low 16 bits is length. */
 467        __le16 status3;
 468        __le16 status2;
 469        __le16 vlanid;
 470        __le16 csum;                    /* partial checksum */
 471        __le32 timestamp;
 472};
 473/* XXX: this is ugly and I'm not sure it's worth the trouble -Ion */
 474#ifdef VLAN_SUPPORT
 475typedef struct full_rx_done_desc rx_done_desc;
 476#define RxComplType RxComplType3
 477#else  /* not VLAN_SUPPORT */
 478typedef struct csum_rx_done_desc rx_done_desc;
 479#define RxComplType RxComplType2
 480#endif /* not VLAN_SUPPORT */
 481
 482enum rx_done_bits {
 483        RxOK=0x20000000, RxFIFOErr=0x10000000, RxBufQ2=0x08000000,
 484};
 485
 486/* Type 1 Tx descriptor. */
 487struct starfire_tx_desc_1 {
 488        __le32 status;                  /* Upper bits are status, lower 16 length. */
 489        __le32 addr;
 490};
 491
 492/* Type 2 Tx descriptor. */
 493struct starfire_tx_desc_2 {
 494        __le32 status;                  /* Upper bits are status, lower 16 length. */
 495        __le32 reserved;
 496        __le64 addr;
 497};
 498
 499#ifdef ADDR_64BITS
 500typedef struct starfire_tx_desc_2 starfire_tx_desc;
 501#define TX_DESC_TYPE TxDescType2
 502#else  /* not ADDR_64BITS */
 503typedef struct starfire_tx_desc_1 starfire_tx_desc;
 504#define TX_DESC_TYPE TxDescType1
 505#endif /* not ADDR_64BITS */
 506#define TX_DESC_SPACING TxDescSpaceUnlim
 507
 508enum tx_desc_bits {
 509        TxDescID=0xB0000000,
 510        TxCRCEn=0x01000000, TxDescIntr=0x08000000,
 511        TxRingWrap=0x04000000, TxCalTCP=0x02000000,
 512};
 513struct tx_done_desc {
 514        __le32 status;                  /* timestamp, index. */
 515#if 0
 516        __le32 intrstatus;              /* interrupt status */
 517#endif
 518};
 519
 520struct rx_ring_info {
 521        struct sk_buff *skb;
 522        dma_addr_t mapping;
 523};
 524struct tx_ring_info {
 525        struct sk_buff *skb;
 526        dma_addr_t mapping;
 527        unsigned int used_slots;
 528};
 529
 530#define PHY_CNT         2
 531struct netdev_private {
 532        /* Descriptor rings first for alignment. */
 533        struct starfire_rx_desc *rx_ring;
 534        starfire_tx_desc *tx_ring;
 535        dma_addr_t rx_ring_dma;
 536        dma_addr_t tx_ring_dma;
 537        /* The addresses of rx/tx-in-place skbuffs. */
 538        struct rx_ring_info rx_info[RX_RING_SIZE];
 539        struct tx_ring_info tx_info[TX_RING_SIZE];
 540        /* Pointers to completion queues (full pages). */
 541        rx_done_desc *rx_done_q;
 542        dma_addr_t rx_done_q_dma;
 543        unsigned int rx_done;
 544        struct tx_done_desc *tx_done_q;
 545        dma_addr_t tx_done_q_dma;
 546        unsigned int tx_done;
 547        struct napi_struct napi;
 548        struct net_device *dev;
 549        struct pci_dev *pci_dev;
 550#ifdef VLAN_SUPPORT
 551        unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)];
 552#endif
 553        void *queue_mem;
 554        dma_addr_t queue_mem_dma;
 555        size_t queue_mem_size;
 556
 557        /* Frequently used values: keep some adjacent for cache effect. */
 558        spinlock_t lock;
 559        unsigned int cur_rx, dirty_rx;  /* Producer/consumer ring indices */
 560        unsigned int cur_tx, dirty_tx, reap_tx;
 561        unsigned int rx_buf_sz;         /* Based on MTU+slack. */
 562        /* These values keep track of the transceiver/media in use. */
 563        int speed100;                   /* Set if speed == 100MBit. */
 564        u32 tx_mode;
 565        u32 intr_timer_ctrl;
 566        u8 tx_threshold;
 567        /* MII transceiver section. */
 568        struct mii_if_info mii_if;              /* MII lib hooks/info */
 569        int phy_cnt;                    /* MII device addresses. */
 570        unsigned char phys[PHY_CNT];    /* MII device addresses. */
 571        void __iomem *base;
 572};
 573
 574
 575static int      mdio_read(struct net_device *dev, int phy_id, int location);
 576static void     mdio_write(struct net_device *dev, int phy_id, int location, int value);
 577static int      netdev_open(struct net_device *dev);
 578static void     check_duplex(struct net_device *dev);
 579static void     tx_timeout(struct net_device *dev);
 580static void     init_ring(struct net_device *dev);
 581static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
 582static irqreturn_t intr_handler(int irq, void *dev_instance);
 583static void     netdev_error(struct net_device *dev, int intr_status);
 584static int      __netdev_rx(struct net_device *dev, int *quota);
 585static int      netdev_poll(struct napi_struct *napi, int budget);
 586static void     refill_rx_ring(struct net_device *dev);
 587static void     netdev_error(struct net_device *dev, int intr_status);
 588static void     set_rx_mode(struct net_device *dev);
 589static struct net_device_stats *get_stats(struct net_device *dev);
 590static int      netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
 591static int      netdev_close(struct net_device *dev);
 592static void     netdev_media_change(struct net_device *dev);
 593static const struct ethtool_ops ethtool_ops;
 594
 595
 596#ifdef VLAN_SUPPORT
 597static int netdev_vlan_rx_add_vid(struct net_device *dev,
 598                                  __be16 proto, u16 vid)
 599{
 600        struct netdev_private *np = netdev_priv(dev);
 601
 602        spin_lock(&np->lock);
 603        if (debug > 1)
 604                printk("%s: Adding vlanid %d to vlan filter\n", dev->name, vid);
 605        set_bit(vid, np->active_vlans);
 606        set_rx_mode(dev);
 607        spin_unlock(&np->lock);
 608
 609        return 0;
 610}
 611
 612static int netdev_vlan_rx_kill_vid(struct net_device *dev,
 613                                   __be16 proto, u16 vid)
 614{
 615        struct netdev_private *np = netdev_priv(dev);
 616
 617        spin_lock(&np->lock);
 618        if (debug > 1)
 619                printk("%s: removing vlanid %d from vlan filter\n", dev->name, vid);
 620        clear_bit(vid, np->active_vlans);
 621        set_rx_mode(dev);
 622        spin_unlock(&np->lock);
 623
 624        return 0;
 625}
 626#endif /* VLAN_SUPPORT */
 627
 628
 629static const struct net_device_ops netdev_ops = {
 630        .ndo_open               = netdev_open,
 631        .ndo_stop               = netdev_close,
 632        .ndo_start_xmit         = start_tx,
 633        .ndo_tx_timeout         = tx_timeout,
 634        .ndo_get_stats          = get_stats,
 635        .ndo_set_rx_mode        = set_rx_mode,
 636        .ndo_do_ioctl           = netdev_ioctl,
 637        .ndo_change_mtu         = eth_change_mtu,
 638        .ndo_set_mac_address    = eth_mac_addr,
 639        .ndo_validate_addr      = eth_validate_addr,
 640#ifdef VLAN_SUPPORT
 641        .ndo_vlan_rx_add_vid    = netdev_vlan_rx_add_vid,
 642        .ndo_vlan_rx_kill_vid   = netdev_vlan_rx_kill_vid,
 643#endif
 644};
 645
 646static int starfire_init_one(struct pci_dev *pdev,
 647                             const struct pci_device_id *ent)
 648{
 649        struct device *d = &pdev->dev;
 650        struct netdev_private *np;
 651        int i, irq, chip_idx = ent->driver_data;
 652        struct net_device *dev;
 653        long ioaddr;
 654        void __iomem *base;
 655        int drv_flags, io_size;
 656        int boguscnt;
 657
 658/* when built into the kernel, we only print version if device is found */
 659#ifndef MODULE
 660        static int printed_version;
 661        if (!printed_version++)
 662                printk(version);
 663#endif
 664
 665        if (pci_enable_device (pdev))
 666                return -EIO;
 667
 668        ioaddr = pci_resource_start(pdev, 0);
 669        io_size = pci_resource_len(pdev, 0);
 670        if (!ioaddr || ((pci_resource_flags(pdev, 0) & IORESOURCE_MEM) == 0)) {
 671                dev_err(d, "no PCI MEM resources, aborting\n");
 672                return -ENODEV;
 673        }
 674
 675        dev = alloc_etherdev(sizeof(*np));
 676        if (!dev)
 677                return -ENOMEM;
 678
 679        SET_NETDEV_DEV(dev, &pdev->dev);
 680
 681        irq = pdev->irq;
 682
 683        if (pci_request_regions (pdev, DRV_NAME)) {
 684                dev_err(d, "cannot reserve PCI resources, aborting\n");
 685                goto err_out_free_netdev;
 686        }
 687
 688        base = ioremap(ioaddr, io_size);
 689        if (!base) {
 690                dev_err(d, "cannot remap %#x @ %#lx, aborting\n",
 691                        io_size, ioaddr);
 692                goto err_out_free_res;
 693        }
 694
 695        pci_set_master(pdev);
 696
 697        /* enable MWI -- it vastly improves Rx performance on sparc64 */
 698        pci_try_set_mwi(pdev);
 699
 700#ifdef ZEROCOPY
 701        /* Starfire can do TCP/UDP checksumming */
 702        if (enable_hw_cksum)
 703                dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
 704#endif /* ZEROCOPY */
 705
 706#ifdef VLAN_SUPPORT
 707        dev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_FILTER;
 708#endif /* VLAN_RX_KILL_VID */
 709#ifdef ADDR_64BITS
 710        dev->features |= NETIF_F_HIGHDMA;
 711#endif /* ADDR_64BITS */
 712
 713        /* Serial EEPROM reads are hidden by the hardware. */
 714        for (i = 0; i < 6; i++)
 715                dev->dev_addr[i] = readb(base + EEPROMCtrl + 20 - i);
 716
 717#if ! defined(final_version) /* Dump the EEPROM contents during development. */
 718        if (debug > 4)
 719                for (i = 0; i < 0x20; i++)
 720                        printk("%2.2x%s",
 721                               (unsigned int)readb(base + EEPROMCtrl + i),
 722                               i % 16 != 15 ? " " : "\n");
 723#endif
 724
 725        /* Issue soft reset */
 726        writel(MiiSoftReset, base + TxMode);
 727        udelay(1000);
 728        writel(0, base + TxMode);
 729
 730        /* Reset the chip to erase previous misconfiguration. */
 731        writel(1, base + PCIDeviceConfig);
 732        boguscnt = 1000;
 733        while (--boguscnt > 0) {
 734                udelay(10);
 735                if ((readl(base + PCIDeviceConfig) & 1) == 0)
 736                        break;
 737        }
 738        if (boguscnt == 0)
 739                printk("%s: chipset reset never completed!\n", dev->name);
 740        /* wait a little longer */
 741        udelay(1000);
 742
 743        np = netdev_priv(dev);
 744        np->dev = dev;
 745        np->base = base;
 746        spin_lock_init(&np->lock);
 747        pci_set_drvdata(pdev, dev);
 748
 749        np->pci_dev = pdev;
 750
 751        np->mii_if.dev = dev;
 752        np->mii_if.mdio_read = mdio_read;
 753        np->mii_if.mdio_write = mdio_write;
 754        np->mii_if.phy_id_mask = 0x1f;
 755        np->mii_if.reg_num_mask = 0x1f;
 756
 757        drv_flags = netdrv_tbl[chip_idx].drv_flags;
 758
 759        np->speed100 = 1;
 760
 761        /* timer resolution is 128 * 0.8us */
 762        np->intr_timer_ctrl = (((intr_latency * 10) / 1024) & IntrLatencyMask) |
 763                Timer10X | EnableIntrMasking;
 764
 765        if (small_frames > 0) {
 766                np->intr_timer_ctrl |= SmallFrameBypass;
 767                switch (small_frames) {
 768                case 1 ... 64:
 769                        np->intr_timer_ctrl |= SmallFrame64;
 770                        break;
 771                case 65 ... 128:
 772                        np->intr_timer_ctrl |= SmallFrame128;
 773                        break;
 774                case 129 ... 256:
 775                        np->intr_timer_ctrl |= SmallFrame256;
 776                        break;
 777                default:
 778                        np->intr_timer_ctrl |= SmallFrame512;
 779                        if (small_frames > 512)
 780                                printk("Adjusting small_frames down to 512\n");
 781                        break;
 782                }
 783        }
 784
 785        dev->netdev_ops = &netdev_ops;
 786        dev->watchdog_timeo = TX_TIMEOUT;
 787        dev->ethtool_ops = &ethtool_ops;
 788
 789        netif_napi_add(dev, &np->napi, netdev_poll, max_interrupt_work);
 790
 791        if (mtu)
 792                dev->mtu = mtu;
 793
 794        if (register_netdev(dev))
 795                goto err_out_cleardev;
 796
 797        printk(KERN_INFO "%s: %s at %p, %pM, IRQ %d.\n",
 798               dev->name, netdrv_tbl[chip_idx].name, base,
 799               dev->dev_addr, irq);
 800
 801        if (drv_flags & CanHaveMII) {
 802                int phy, phy_idx = 0;
 803                int mii_status;
 804                for (phy = 0; phy < 32 && phy_idx < PHY_CNT; phy++) {
 805                        mdio_write(dev, phy, MII_BMCR, BMCR_RESET);
 806                        mdelay(100);
 807                        boguscnt = 1000;
 808                        while (--boguscnt > 0)
 809                                if ((mdio_read(dev, phy, MII_BMCR) & BMCR_RESET) == 0)
 810                                        break;
 811                        if (boguscnt == 0) {
 812                                printk("%s: PHY#%d reset never completed!\n", dev->name, phy);
 813                                continue;
 814                        }
 815                        mii_status = mdio_read(dev, phy, MII_BMSR);
 816                        if (mii_status != 0) {
 817                                np->phys[phy_idx++] = phy;
 818                                np->mii_if.advertising = mdio_read(dev, phy, MII_ADVERTISE);
 819                                printk(KERN_INFO "%s: MII PHY found at address %d, status "
 820                                           "%#4.4x advertising %#4.4x.\n",
 821                                           dev->name, phy, mii_status, np->mii_if.advertising);
 822                                /* there can be only one PHY on-board */
 823                                break;
 824                        }
 825                }
 826                np->phy_cnt = phy_idx;
 827                if (np->phy_cnt > 0)
 828                        np->mii_if.phy_id = np->phys[0];
 829                else
 830                        memset(&np->mii_if, 0, sizeof(np->mii_if));
 831        }
 832
 833        printk(KERN_INFO "%s: scatter-gather and hardware TCP cksumming %s.\n",
 834               dev->name, enable_hw_cksum ? "enabled" : "disabled");
 835        return 0;
 836
 837err_out_cleardev:
 838        iounmap(base);
 839err_out_free_res:
 840        pci_release_regions (pdev);
 841err_out_free_netdev:
 842        free_netdev(dev);
 843        return -ENODEV;
 844}
 845
 846
 847/* Read the MII Management Data I/O (MDIO) interfaces. */
 848static int mdio_read(struct net_device *dev, int phy_id, int location)
 849{
 850        struct netdev_private *np = netdev_priv(dev);
 851        void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
 852        int result, boguscnt=1000;
 853        /* ??? Should we add a busy-wait here? */
 854        do {
 855                result = readl(mdio_addr);
 856        } while ((result & 0xC0000000) != 0x80000000 && --boguscnt > 0);
 857        if (boguscnt == 0)
 858                return 0;
 859        if ((result & 0xffff) == 0xffff)
 860                return 0;
 861        return result & 0xffff;
 862}
 863
 864
 865static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
 866{
 867        struct netdev_private *np = netdev_priv(dev);
 868        void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
 869        writel(value, mdio_addr);
 870        /* The busy-wait will occur before a read. */
 871}
 872
 873
 874static int netdev_open(struct net_device *dev)
 875{
 876        const struct firmware *fw_rx, *fw_tx;
 877        const __be32 *fw_rx_data, *fw_tx_data;
 878        struct netdev_private *np = netdev_priv(dev);
 879        void __iomem *ioaddr = np->base;
 880        const int irq = np->pci_dev->irq;
 881        int i, retval;
 882        size_t tx_size, rx_size;
 883        size_t tx_done_q_size, rx_done_q_size, tx_ring_size, rx_ring_size;
 884
 885        /* Do we ever need to reset the chip??? */
 886
 887        retval = request_irq(irq, intr_handler, IRQF_SHARED, dev->name, dev);
 888        if (retval)
 889                return retval;
 890
 891        /* Disable the Rx and Tx, and reset the chip. */
 892        writel(0, ioaddr + GenCtrl);
 893        writel(1, ioaddr + PCIDeviceConfig);
 894        if (debug > 1)
 895                printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
 896                       dev->name, irq);
 897
 898        /* Allocate the various queues. */
 899        if (!np->queue_mem) {
 900                tx_done_q_size = ((sizeof(struct tx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
 901                rx_done_q_size = ((sizeof(rx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
 902                tx_ring_size = ((sizeof(starfire_tx_desc) * TX_RING_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
 903                rx_ring_size = sizeof(struct starfire_rx_desc) * RX_RING_SIZE;
 904                np->queue_mem_size = tx_done_q_size + rx_done_q_size + tx_ring_size + rx_ring_size;
 905                np->queue_mem = pci_alloc_consistent(np->pci_dev, np->queue_mem_size, &np->queue_mem_dma);
 906                if (np->queue_mem == NULL) {
 907                        free_irq(irq, dev);
 908                        return -ENOMEM;
 909                }
 910
 911                np->tx_done_q     = np->queue_mem;
 912                np->tx_done_q_dma = np->queue_mem_dma;
 913                np->rx_done_q     = (void *) np->tx_done_q + tx_done_q_size;
 914                np->rx_done_q_dma = np->tx_done_q_dma + tx_done_q_size;
 915                np->tx_ring       = (void *) np->rx_done_q + rx_done_q_size;
 916                np->tx_ring_dma   = np->rx_done_q_dma + rx_done_q_size;
 917                np->rx_ring       = (void *) np->tx_ring + tx_ring_size;
 918                np->rx_ring_dma   = np->tx_ring_dma + tx_ring_size;
 919        }
 920
 921        /* Start with no carrier, it gets adjusted later */
 922        netif_carrier_off(dev);
 923        init_ring(dev);
 924        /* Set the size of the Rx buffers. */
 925        writel((np->rx_buf_sz << RxBufferLenShift) |
 926               (0 << RxMinDescrThreshShift) |
 927               RxPrefetchMode | RxVariableQ |
 928               RX_Q_ENTRIES |
 929               RX_DESC_Q_ADDR_SIZE | RX_DESC_ADDR_SIZE |
 930               RxDescSpace4,
 931               ioaddr + RxDescQCtrl);
 932
 933        /* Set up the Rx DMA controller. */
 934        writel(RxChecksumIgnore |
 935               (0 << RxEarlyIntThreshShift) |
 936               (6 << RxHighPrioThreshShift) |
 937               ((DMA_BURST_SIZE / 32) << RxBurstSizeShift),
 938               ioaddr + RxDMACtrl);
 939
 940        /* Set Tx descriptor */
 941        writel((2 << TxHiPriFIFOThreshShift) |
 942               (0 << TxPadLenShift) |
 943               ((DMA_BURST_SIZE / 32) << TxDMABurstSizeShift) |
 944               TX_DESC_Q_ADDR_SIZE |
 945               TX_DESC_SPACING | TX_DESC_TYPE,
 946               ioaddr + TxDescCtrl);
 947
 948        writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + RxDescQHiAddr);
 949        writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + TxRingHiAddr);
 950        writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + CompletionHiAddr);
 951        writel(np->rx_ring_dma, ioaddr + RxDescQAddr);
 952        writel(np->tx_ring_dma, ioaddr + TxRingPtr);
 953
 954        writel(np->tx_done_q_dma, ioaddr + TxCompletionAddr);
 955        writel(np->rx_done_q_dma |
 956               RxComplType |
 957               (0 << RxComplThreshShift),
 958               ioaddr + RxCompletionAddr);
 959
 960        if (debug > 1)
 961                printk(KERN_DEBUG "%s: Filling in the station address.\n", dev->name);
 962
 963        /* Fill both the Tx SA register and the Rx perfect filter. */
 964        for (i = 0; i < 6; i++)
 965                writeb(dev->dev_addr[i], ioaddr + TxStationAddr + 5 - i);
 966        /* The first entry is special because it bypasses the VLAN filter.
 967           Don't use it. */
 968        writew(0, ioaddr + PerfFilterTable);
 969        writew(0, ioaddr + PerfFilterTable + 4);
 970        writew(0, ioaddr + PerfFilterTable + 8);
 971        for (i = 1; i < 16; i++) {
 972                __be16 *eaddrs = (__be16 *)dev->dev_addr;
 973                void __iomem *setup_frm = ioaddr + PerfFilterTable + i * 16;
 974                writew(be16_to_cpu(eaddrs[2]), setup_frm); setup_frm += 4;
 975                writew(be16_to_cpu(eaddrs[1]), setup_frm); setup_frm += 4;
 976                writew(be16_to_cpu(eaddrs[0]), setup_frm); setup_frm += 8;
 977        }
 978
 979        /* Initialize other registers. */
 980        /* Configure the PCI bus bursts and FIFO thresholds. */
 981        np->tx_mode = TxFlowEnable|RxFlowEnable|PadEnable;      /* modified when link is up. */
 982        writel(MiiSoftReset | np->tx_mode, ioaddr + TxMode);
 983        udelay(1000);
 984        writel(np->tx_mode, ioaddr + TxMode);
 985        np->tx_threshold = 4;
 986        writel(np->tx_threshold, ioaddr + TxThreshold);
 987
 988        writel(np->intr_timer_ctrl, ioaddr + IntrTimerCtrl);
 989
 990        napi_enable(&np->napi);
 991
 992        netif_start_queue(dev);
 993
 994        if (debug > 1)
 995                printk(KERN_DEBUG "%s: Setting the Rx and Tx modes.\n", dev->name);
 996        set_rx_mode(dev);
 997
 998        np->mii_if.advertising = mdio_read(dev, np->phys[0], MII_ADVERTISE);
 999        check_duplex(dev);
1000
1001        /* Enable GPIO interrupts on link change */
1002        writel(0x0f00ff00, ioaddr + GPIOCtrl);
1003
1004        /* Set the interrupt mask */
1005        writel(IntrRxDone | IntrRxEmpty | IntrDMAErr |
1006               IntrTxDMADone | IntrStatsMax | IntrLinkChange |
1007               IntrRxGFPDead | IntrNoTxCsum | IntrTxBadID,
1008               ioaddr + IntrEnable);
1009        /* Enable PCI interrupts. */
1010        writel(0x00800000 | readl(ioaddr + PCIDeviceConfig),
1011               ioaddr + PCIDeviceConfig);
1012
1013#ifdef VLAN_SUPPORT
1014        /* Set VLAN type to 802.1q */
1015        writel(ETH_P_8021Q, ioaddr + VlanType);
1016#endif /* VLAN_SUPPORT */
1017
1018        retval = request_firmware(&fw_rx, FIRMWARE_RX, &np->pci_dev->dev);
1019        if (retval) {
1020                printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
1021                       FIRMWARE_RX);
1022                goto out_init;
1023        }
1024        if (fw_rx->size % 4) {
1025                printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
1026                       fw_rx->size, FIRMWARE_RX);
1027                retval = -EINVAL;
1028                goto out_rx;
1029        }
1030        retval = request_firmware(&fw_tx, FIRMWARE_TX, &np->pci_dev->dev);
1031        if (retval) {
1032                printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
1033                       FIRMWARE_TX);
1034                goto out_rx;
1035        }
1036        if (fw_tx->size % 4) {
1037                printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
1038                       fw_tx->size, FIRMWARE_TX);
1039                retval = -EINVAL;
1040                goto out_tx;
1041        }
1042        fw_rx_data = (const __be32 *)&fw_rx->data[0];
1043        fw_tx_data = (const __be32 *)&fw_tx->data[0];
1044        rx_size = fw_rx->size / 4;
1045        tx_size = fw_tx->size / 4;
1046
1047        /* Load Rx/Tx firmware into the frame processors */
1048        for (i = 0; i < rx_size; i++)
1049                writel(be32_to_cpup(&fw_rx_data[i]), ioaddr + RxGfpMem + i * 4);
1050        for (i = 0; i < tx_size; i++)
1051                writel(be32_to_cpup(&fw_tx_data[i]), ioaddr + TxGfpMem + i * 4);
1052        if (enable_hw_cksum)
1053                /* Enable the Rx and Tx units, and the Rx/Tx frame processors. */
1054                writel(TxEnable|TxGFPEnable|RxEnable|RxGFPEnable, ioaddr + GenCtrl);
1055        else
1056                /* Enable the Rx and Tx units only. */
1057                writel(TxEnable|RxEnable, ioaddr + GenCtrl);
1058
1059        if (debug > 1)
1060                printk(KERN_DEBUG "%s: Done netdev_open().\n",
1061                       dev->name);
1062
1063out_tx:
1064        release_firmware(fw_tx);
1065out_rx:
1066        release_firmware(fw_rx);
1067out_init:
1068        if (retval)
1069                netdev_close(dev);
1070        return retval;
1071}
1072
1073
1074static void check_duplex(struct net_device *dev)
1075{
1076        struct netdev_private *np = netdev_priv(dev);
1077        u16 reg0;
1078        int silly_count = 1000;
1079
1080        mdio_write(dev, np->phys[0], MII_ADVERTISE, np->mii_if.advertising);
1081        mdio_write(dev, np->phys[0], MII_BMCR, BMCR_RESET);
1082        udelay(500);
1083        while (--silly_count && mdio_read(dev, np->phys[0], MII_BMCR) & BMCR_RESET)
1084                /* do nothing */;
1085        if (!silly_count) {
1086                printk("%s: MII reset failed!\n", dev->name);
1087                return;
1088        }
1089
1090        reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1091
1092        if (!np->mii_if.force_media) {
1093                reg0 |= BMCR_ANENABLE | BMCR_ANRESTART;
1094        } else {
1095                reg0 &= ~(BMCR_ANENABLE | BMCR_ANRESTART);
1096                if (np->speed100)
1097                        reg0 |= BMCR_SPEED100;
1098                if (np->mii_if.full_duplex)
1099                        reg0 |= BMCR_FULLDPLX;
1100                printk(KERN_DEBUG "%s: Link forced to %sMbit %s-duplex\n",
1101                       dev->name,
1102                       np->speed100 ? "100" : "10",
1103                       np->mii_if.full_duplex ? "full" : "half");
1104        }
1105        mdio_write(dev, np->phys[0], MII_BMCR, reg0);
1106}
1107
1108
1109static void tx_timeout(struct net_device *dev)
1110{
1111        struct netdev_private *np = netdev_priv(dev);
1112        void __iomem *ioaddr = np->base;
1113        int old_debug;
1114
1115        printk(KERN_WARNING "%s: Transmit timed out, status %#8.8x, "
1116               "resetting...\n", dev->name, (int) readl(ioaddr + IntrStatus));
1117
1118        /* Perhaps we should reinitialize the hardware here. */
1119
1120        /*
1121         * Stop and restart the interface.
1122         * Cheat and increase the debug level temporarily.
1123         */
1124        old_debug = debug;
1125        debug = 2;
1126        netdev_close(dev);
1127        netdev_open(dev);
1128        debug = old_debug;
1129
1130        /* Trigger an immediate transmit demand. */
1131
1132        dev->trans_start = jiffies; /* prevent tx timeout */
1133        dev->stats.tx_errors++;
1134        netif_wake_queue(dev);
1135}
1136
1137
1138/* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1139static void init_ring(struct net_device *dev)
1140{
1141        struct netdev_private *np = netdev_priv(dev);
1142        int i;
1143
1144        np->cur_rx = np->cur_tx = np->reap_tx = 0;
1145        np->dirty_rx = np->dirty_tx = np->rx_done = np->tx_done = 0;
1146
1147        np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1148
1149        /* Fill in the Rx buffers.  Handle allocation failure gracefully. */
1150        for (i = 0; i < RX_RING_SIZE; i++) {
1151                struct sk_buff *skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1152                np->rx_info[i].skb = skb;
1153                if (skb == NULL)
1154                        break;
1155                np->rx_info[i].mapping = pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1156                /* Grrr, we cannot offset to correctly align the IP header. */
1157                np->rx_ring[i].rxaddr = cpu_to_dma(np->rx_info[i].mapping | RxDescValid);
1158        }
1159        writew(i - 1, np->base + RxDescQIdx);
1160        np->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1161
1162        /* Clear the remainder of the Rx buffer ring. */
1163        for (  ; i < RX_RING_SIZE; i++) {
1164                np->rx_ring[i].rxaddr = 0;
1165                np->rx_info[i].skb = NULL;
1166                np->rx_info[i].mapping = 0;
1167        }
1168        /* Mark the last entry as wrapping the ring. */
1169        np->rx_ring[RX_RING_SIZE - 1].rxaddr |= cpu_to_dma(RxDescEndRing);
1170
1171        /* Clear the completion rings. */
1172        for (i = 0; i < DONE_Q_SIZE; i++) {
1173                np->rx_done_q[i].status = 0;
1174                np->tx_done_q[i].status = 0;
1175        }
1176
1177        for (i = 0; i < TX_RING_SIZE; i++)
1178                memset(&np->tx_info[i], 0, sizeof(np->tx_info[i]));
1179}
1180
1181
1182static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev)
1183{
1184        struct netdev_private *np = netdev_priv(dev);
1185        unsigned int entry;
1186        u32 status;
1187        int i;
1188
1189        /*
1190         * be cautious here, wrapping the queue has weird semantics
1191         * and we may not have enough slots even when it seems we do.
1192         */
1193        if ((np->cur_tx - np->dirty_tx) + skb_num_frags(skb) * 2 > TX_RING_SIZE) {
1194                netif_stop_queue(dev);
1195                return NETDEV_TX_BUSY;
1196        }
1197
1198#if defined(ZEROCOPY) && defined(HAS_BROKEN_FIRMWARE)
1199        if (skb->ip_summed == CHECKSUM_PARTIAL) {
1200                if (skb_padto(skb, (skb->len + PADDING_MASK) & ~PADDING_MASK))
1201                        return NETDEV_TX_OK;
1202        }
1203#endif /* ZEROCOPY && HAS_BROKEN_FIRMWARE */
1204
1205        entry = np->cur_tx % TX_RING_SIZE;
1206        for (i = 0; i < skb_num_frags(skb); i++) {
1207                int wrap_ring = 0;
1208                status = TxDescID;
1209
1210                if (i == 0) {
1211                        np->tx_info[entry].skb = skb;
1212                        status |= TxCRCEn;
1213                        if (entry >= TX_RING_SIZE - skb_num_frags(skb)) {
1214                                status |= TxRingWrap;
1215                                wrap_ring = 1;
1216                        }
1217                        if (np->reap_tx) {
1218                                status |= TxDescIntr;
1219                                np->reap_tx = 0;
1220                        }
1221                        if (skb->ip_summed == CHECKSUM_PARTIAL) {
1222                                status |= TxCalTCP;
1223                                dev->stats.tx_compressed++;
1224                        }
1225                        status |= skb_first_frag_len(skb) | (skb_num_frags(skb) << 16);
1226
1227                        np->tx_info[entry].mapping =
1228                                pci_map_single(np->pci_dev, skb->data, skb_first_frag_len(skb), PCI_DMA_TODEVICE);
1229                } else {
1230                        const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[i - 1];
1231                        status |= skb_frag_size(this_frag);
1232                        np->tx_info[entry].mapping =
1233                                pci_map_single(np->pci_dev,
1234                                               skb_frag_address(this_frag),
1235                                               skb_frag_size(this_frag),
1236                                               PCI_DMA_TODEVICE);
1237                }
1238
1239                np->tx_ring[entry].addr = cpu_to_dma(np->tx_info[entry].mapping);
1240                np->tx_ring[entry].status = cpu_to_le32(status);
1241                if (debug > 3)
1242                        printk(KERN_DEBUG "%s: Tx #%d/#%d slot %d status %#8.8x.\n",
1243                               dev->name, np->cur_tx, np->dirty_tx,
1244                               entry, status);
1245                if (wrap_ring) {
1246                        np->tx_info[entry].used_slots = TX_RING_SIZE - entry;
1247                        np->cur_tx += np->tx_info[entry].used_slots;
1248                        entry = 0;
1249                } else {
1250                        np->tx_info[entry].used_slots = 1;
1251                        np->cur_tx += np->tx_info[entry].used_slots;
1252                        entry++;
1253                }
1254                /* scavenge the tx descriptors twice per TX_RING_SIZE */
1255                if (np->cur_tx % (TX_RING_SIZE / 2) == 0)
1256                        np->reap_tx = 1;
1257        }
1258
1259        /* Non-x86: explicitly flush descriptor cache lines here. */
1260        /* Ensure all descriptors are written back before the transmit is
1261           initiated. - Jes */
1262        wmb();
1263
1264        /* Update the producer index. */
1265        writel(entry * (sizeof(starfire_tx_desc) / 8), np->base + TxProducerIdx);
1266
1267        /* 4 is arbitrary, but should be ok */
1268        if ((np->cur_tx - np->dirty_tx) + 4 > TX_RING_SIZE)
1269                netif_stop_queue(dev);
1270
1271        return NETDEV_TX_OK;
1272}
1273
1274
1275/* The interrupt handler does all of the Rx thread work and cleans up
1276   after the Tx thread. */
1277static irqreturn_t intr_handler(int irq, void *dev_instance)
1278{
1279        struct net_device *dev = dev_instance;
1280        struct netdev_private *np = netdev_priv(dev);
1281        void __iomem *ioaddr = np->base;
1282        int boguscnt = max_interrupt_work;
1283        int consumer;
1284        int tx_status;
1285        int handled = 0;
1286
1287        do {
1288                u32 intr_status = readl(ioaddr + IntrClear);
1289
1290                if (debug > 4)
1291                        printk(KERN_DEBUG "%s: Interrupt status %#8.8x.\n",
1292                               dev->name, intr_status);
1293
1294                if (intr_status == 0 || intr_status == (u32) -1)
1295                        break;
1296
1297                handled = 1;
1298
1299                if (intr_status & (IntrRxDone | IntrRxEmpty)) {
1300                        u32 enable;
1301
1302                        if (likely(napi_schedule_prep(&np->napi))) {
1303                                __napi_schedule(&np->napi);
1304                                enable = readl(ioaddr + IntrEnable);
1305                                enable &= ~(IntrRxDone | IntrRxEmpty);
1306                                writel(enable, ioaddr + IntrEnable);
1307                                /* flush PCI posting buffers */
1308                                readl(ioaddr + IntrEnable);
1309                        } else {
1310                                /* Paranoia check */
1311                                enable = readl(ioaddr + IntrEnable);
1312                                if (enable & (IntrRxDone | IntrRxEmpty)) {
1313                                        printk(KERN_INFO
1314                                               "%s: interrupt while in poll!\n",
1315                                               dev->name);
1316                                        enable &= ~(IntrRxDone | IntrRxEmpty);
1317                                        writel(enable, ioaddr + IntrEnable);
1318                                }
1319                        }
1320                }
1321
1322                /* Scavenge the skbuff list based on the Tx-done queue.
1323                   There are redundant checks here that may be cleaned up
1324                   after the driver has proven to be reliable. */
1325                consumer = readl(ioaddr + TxConsumerIdx);
1326                if (debug > 3)
1327                        printk(KERN_DEBUG "%s: Tx Consumer index is %d.\n",
1328                               dev->name, consumer);
1329
1330                while ((tx_status = le32_to_cpu(np->tx_done_q[np->tx_done].status)) != 0) {
1331                        if (debug > 3)
1332                                printk(KERN_DEBUG "%s: Tx completion #%d entry %d is %#8.8x.\n",
1333                                       dev->name, np->dirty_tx, np->tx_done, tx_status);
1334                        if ((tx_status & 0xe0000000) == 0xa0000000) {
1335                                dev->stats.tx_packets++;
1336                        } else if ((tx_status & 0xe0000000) == 0x80000000) {
1337                                u16 entry = (tx_status & 0x7fff) / sizeof(starfire_tx_desc);
1338                                struct sk_buff *skb = np->tx_info[entry].skb;
1339                                np->tx_info[entry].skb = NULL;
1340                                pci_unmap_single(np->pci_dev,
1341                                                 np->tx_info[entry].mapping,
1342                                                 skb_first_frag_len(skb),
1343                                                 PCI_DMA_TODEVICE);
1344                                np->tx_info[entry].mapping = 0;
1345                                np->dirty_tx += np->tx_info[entry].used_slots;
1346                                entry = (entry + np->tx_info[entry].used_slots) % TX_RING_SIZE;
1347                                {
1348                                        int i;
1349                                        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1350                                                pci_unmap_single(np->pci_dev,
1351                                                                 np->tx_info[entry].mapping,
1352                                                                 skb_frag_size(&skb_shinfo(skb)->frags[i]),
1353                                                                 PCI_DMA_TODEVICE);
1354                                                np->dirty_tx++;
1355                                                entry++;
1356                                        }
1357                                }
1358
1359                                dev_kfree_skb_irq(skb);
1360                        }
1361                        np->tx_done_q[np->tx_done].status = 0;
1362                        np->tx_done = (np->tx_done + 1) % DONE_Q_SIZE;
1363                }
1364                writew(np->tx_done, ioaddr + CompletionQConsumerIdx + 2);
1365
1366                if (netif_queue_stopped(dev) &&
1367                    (np->cur_tx - np->dirty_tx + 4 < TX_RING_SIZE)) {
1368                        /* The ring is no longer full, wake the queue. */
1369                        netif_wake_queue(dev);
1370                }
1371
1372                /* Stats overflow */
1373                if (intr_status & IntrStatsMax)
1374                        get_stats(dev);
1375
1376                /* Media change interrupt. */
1377                if (intr_status & IntrLinkChange)
1378                        netdev_media_change(dev);
1379
1380                /* Abnormal error summary/uncommon events handlers. */
1381                if (intr_status & IntrAbnormalSummary)
1382                        netdev_error(dev, intr_status);
1383
1384                if (--boguscnt < 0) {
1385                        if (debug > 1)
1386                                printk(KERN_WARNING "%s: Too much work at interrupt, "
1387                                       "status=%#8.8x.\n",
1388                                       dev->name, intr_status);
1389                        break;
1390                }
1391        } while (1);
1392
1393        if (debug > 4)
1394                printk(KERN_DEBUG "%s: exiting interrupt, status=%#8.8x.\n",
1395                       dev->name, (int) readl(ioaddr + IntrStatus));
1396        return IRQ_RETVAL(handled);
1397}
1398
1399
1400/*
1401 * This routine is logically part of the interrupt/poll handler, but separated
1402 * for clarity and better register allocation.
1403 */
1404static int __netdev_rx(struct net_device *dev, int *quota)
1405{
1406        struct netdev_private *np = netdev_priv(dev);
1407        u32 desc_status;
1408        int retcode = 0;
1409
1410        /* If EOP is set on the next entry, it's a new packet. Send it up. */
1411        while ((desc_status = le32_to_cpu(np->rx_done_q[np->rx_done].status)) != 0) {
1412                struct sk_buff *skb;
1413                u16 pkt_len;
1414                int entry;
1415                rx_done_desc *desc = &np->rx_done_q[np->rx_done];
1416
1417                if (debug > 4)
1418                        printk(KERN_DEBUG "  netdev_rx() status of %d was %#8.8x.\n", np->rx_done, desc_status);
1419                if (!(desc_status & RxOK)) {
1420                        /* There was an error. */
1421                        if (debug > 2)
1422                                printk(KERN_DEBUG "  netdev_rx() Rx error was %#8.8x.\n", desc_status);
1423                        dev->stats.rx_errors++;
1424                        if (desc_status & RxFIFOErr)
1425                                dev->stats.rx_fifo_errors++;
1426                        goto next_rx;
1427                }
1428
1429                if (*quota <= 0) {      /* out of rx quota */
1430                        retcode = 1;
1431                        goto out;
1432                }
1433                (*quota)--;
1434
1435                pkt_len = desc_status;  /* Implicitly Truncate */
1436                entry = (desc_status >> 16) & 0x7ff;
1437
1438                if (debug > 4)
1439                        printk(KERN_DEBUG "  netdev_rx() normal Rx pkt length %d, quota %d.\n", pkt_len, *quota);
1440                /* Check if the packet is long enough to accept without copying
1441                   to a minimally-sized skbuff. */
1442                if (pkt_len < rx_copybreak &&
1443                    (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
1444                        skb_reserve(skb, 2);    /* 16 byte align the IP header */
1445                        pci_dma_sync_single_for_cpu(np->pci_dev,
1446                                                    np->rx_info[entry].mapping,
1447                                                    pkt_len, PCI_DMA_FROMDEVICE);
1448                        skb_copy_to_linear_data(skb, np->rx_info[entry].skb->data, pkt_len);
1449                        pci_dma_sync_single_for_device(np->pci_dev,
1450                                                       np->rx_info[entry].mapping,
1451                                                       pkt_len, PCI_DMA_FROMDEVICE);
1452                        skb_put(skb, pkt_len);
1453                } else {
1454                        pci_unmap_single(np->pci_dev, np->rx_info[entry].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1455                        skb = np->rx_info[entry].skb;
1456                        skb_put(skb, pkt_len);
1457                        np->rx_info[entry].skb = NULL;
1458                        np->rx_info[entry].mapping = 0;
1459                }
1460#ifndef final_version                   /* Remove after testing. */
1461                /* You will want this info for the initial debug. */
1462                if (debug > 5) {
1463                        printk(KERN_DEBUG "  Rx data %pM %pM %2.2x%2.2x.\n",
1464                               skb->data, skb->data + 6,
1465                               skb->data[12], skb->data[13]);
1466                }
1467#endif
1468
1469                skb->protocol = eth_type_trans(skb, dev);
1470#ifdef VLAN_SUPPORT
1471                if (debug > 4)
1472                        printk(KERN_DEBUG "  netdev_rx() status2 of %d was %#4.4x.\n", np->rx_done, le16_to_cpu(desc->status2));
1473#endif
1474                if (le16_to_cpu(desc->status2) & 0x0100) {
1475                        skb->ip_summed = CHECKSUM_UNNECESSARY;
1476                        dev->stats.rx_compressed++;
1477                }
1478                /*
1479                 * This feature doesn't seem to be working, at least
1480                 * with the two firmware versions I have. If the GFP sees
1481                 * an IP fragment, it either ignores it completely, or reports
1482                 * "bad checksum" on it.
1483                 *
1484                 * Maybe I missed something -- corrections are welcome.
1485                 * Until then, the printk stays. :-) -Ion
1486                 */
1487                else if (le16_to_cpu(desc->status2) & 0x0040) {
1488                        skb->ip_summed = CHECKSUM_COMPLETE;
1489                        skb->csum = le16_to_cpu(desc->csum);
1490                        printk(KERN_DEBUG "%s: checksum_hw, status2 = %#x\n", dev->name, le16_to_cpu(desc->status2));
1491                }
1492#ifdef VLAN_SUPPORT
1493                if (le16_to_cpu(desc->status2) & 0x0200) {
1494                        u16 vlid = le16_to_cpu(desc->vlanid);
1495
1496                        if (debug > 4) {
1497                                printk(KERN_DEBUG "  netdev_rx() vlanid = %d\n",
1498                                       vlid);
1499                        }
1500                        __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlid);
1501                }
1502#endif /* VLAN_SUPPORT */
1503                netif_receive_skb(skb);
1504                dev->stats.rx_packets++;
1505
1506        next_rx:
1507                np->cur_rx++;
1508                desc->status = 0;
1509                np->rx_done = (np->rx_done + 1) % DONE_Q_SIZE;
1510        }
1511
1512        if (*quota == 0) {      /* out of rx quota */
1513                retcode = 1;
1514                goto out;
1515        }
1516        writew(np->rx_done, np->base + CompletionQConsumerIdx);
1517
1518 out:
1519        refill_rx_ring(dev);
1520        if (debug > 5)
1521                printk(KERN_DEBUG "  exiting netdev_rx(): %d, status of %d was %#8.8x.\n",
1522                       retcode, np->rx_done, desc_status);
1523        return retcode;
1524}
1525
1526static int netdev_poll(struct napi_struct *napi, int budget)
1527{
1528        struct netdev_private *np = container_of(napi, struct netdev_private, napi);
1529        struct net_device *dev = np->dev;
1530        u32 intr_status;
1531        void __iomem *ioaddr = np->base;
1532        int quota = budget;
1533
1534        do {
1535                writel(IntrRxDone | IntrRxEmpty, ioaddr + IntrClear);
1536
1537                if (__netdev_rx(dev, &quota))
1538                        goto out;
1539
1540                intr_status = readl(ioaddr + IntrStatus);
1541        } while (intr_status & (IntrRxDone | IntrRxEmpty));
1542
1543        napi_complete(napi);
1544        intr_status = readl(ioaddr + IntrEnable);
1545        intr_status |= IntrRxDone | IntrRxEmpty;
1546        writel(intr_status, ioaddr + IntrEnable);
1547
1548 out:
1549        if (debug > 5)
1550                printk(KERN_DEBUG "  exiting netdev_poll(): %d.\n",
1551                       budget - quota);
1552
1553        /* Restart Rx engine if stopped. */
1554        return budget - quota;
1555}
1556
1557static void refill_rx_ring(struct net_device *dev)
1558{
1559        struct netdev_private *np = netdev_priv(dev);
1560        struct sk_buff *skb;
1561        int entry = -1;
1562
1563        /* Refill the Rx ring buffers. */
1564        for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1565                entry = np->dirty_rx % RX_RING_SIZE;
1566                if (np->rx_info[entry].skb == NULL) {
1567                        skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1568                        np->rx_info[entry].skb = skb;
1569                        if (skb == NULL)
1570                                break;  /* Better luck next round. */
1571                        np->rx_info[entry].mapping =
1572                                pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1573                        np->rx_ring[entry].rxaddr =
1574                                cpu_to_dma(np->rx_info[entry].mapping | RxDescValid);
1575                }
1576                if (entry == RX_RING_SIZE - 1)
1577                        np->rx_ring[entry].rxaddr |= cpu_to_dma(RxDescEndRing);
1578        }
1579        if (entry >= 0)
1580                writew(entry, np->base + RxDescQIdx);
1581}
1582
1583
1584static void netdev_media_change(struct net_device *dev)
1585{
1586        struct netdev_private *np = netdev_priv(dev);
1587        void __iomem *ioaddr = np->base;
1588        u16 reg0, reg1, reg4, reg5;
1589        u32 new_tx_mode;
1590        u32 new_intr_timer_ctrl;
1591
1592        /* reset status first */
1593        mdio_read(dev, np->phys[0], MII_BMCR);
1594        mdio_read(dev, np->phys[0], MII_BMSR);
1595
1596        reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1597        reg1 = mdio_read(dev, np->phys[0], MII_BMSR);
1598
1599        if (reg1 & BMSR_LSTATUS) {
1600                /* link is up */
1601                if (reg0 & BMCR_ANENABLE) {
1602                        /* autonegotiation is enabled */
1603                        reg4 = mdio_read(dev, np->phys[0], MII_ADVERTISE);
1604                        reg5 = mdio_read(dev, np->phys[0], MII_LPA);
1605                        if (reg4 & ADVERTISE_100FULL && reg5 & LPA_100FULL) {
1606                                np->speed100 = 1;
1607                                np->mii_if.full_duplex = 1;
1608                        } else if (reg4 & ADVERTISE_100HALF && reg5 & LPA_100HALF) {
1609                                np->speed100 = 1;
1610                                np->mii_if.full_duplex = 0;
1611                        } else if (reg4 & ADVERTISE_10FULL && reg5 & LPA_10FULL) {
1612                                np->speed100 = 0;
1613                                np->mii_if.full_duplex = 1;
1614                        } else {
1615                                np->speed100 = 0;
1616                                np->mii_if.full_duplex = 0;
1617                        }
1618                } else {
1619                        /* autonegotiation is disabled */
1620                        if (reg0 & BMCR_SPEED100)
1621                                np->speed100 = 1;
1622                        else
1623                                np->speed100 = 0;
1624                        if (reg0 & BMCR_FULLDPLX)
1625                                np->mii_if.full_duplex = 1;
1626                        else
1627                                np->mii_if.full_duplex = 0;
1628                }
1629                netif_carrier_on(dev);
1630                printk(KERN_DEBUG "%s: Link is up, running at %sMbit %s-duplex\n",
1631                       dev->name,
1632                       np->speed100 ? "100" : "10",
1633                       np->mii_if.full_duplex ? "full" : "half");
1634
1635                new_tx_mode = np->tx_mode & ~FullDuplex;        /* duplex setting */
1636                if (np->mii_if.full_duplex)
1637                        new_tx_mode |= FullDuplex;
1638                if (np->tx_mode != new_tx_mode) {
1639                        np->tx_mode = new_tx_mode;
1640                        writel(np->tx_mode | MiiSoftReset, ioaddr + TxMode);
1641                        udelay(1000);
1642                        writel(np->tx_mode, ioaddr + TxMode);
1643                }
1644
1645                new_intr_timer_ctrl = np->intr_timer_ctrl & ~Timer10X;
1646                if (np->speed100)
1647                        new_intr_timer_ctrl |= Timer10X;
1648                if (np->intr_timer_ctrl != new_intr_timer_ctrl) {
1649                        np->intr_timer_ctrl = new_intr_timer_ctrl;
1650                        writel(new_intr_timer_ctrl, ioaddr + IntrTimerCtrl);
1651                }
1652        } else {
1653                netif_carrier_off(dev);
1654                printk(KERN_DEBUG "%s: Link is down\n", dev->name);
1655        }
1656}
1657
1658
1659static void netdev_error(struct net_device *dev, int intr_status)
1660{
1661        struct netdev_private *np = netdev_priv(dev);
1662
1663        /* Came close to underrunning the Tx FIFO, increase threshold. */
1664        if (intr_status & IntrTxDataLow) {
1665                if (np->tx_threshold <= PKT_BUF_SZ / 16) {
1666                        writel(++np->tx_threshold, np->base + TxThreshold);
1667                        printk(KERN_NOTICE "%s: PCI bus congestion, increasing Tx FIFO threshold to %d bytes\n",
1668                               dev->name, np->tx_threshold * 16);
1669                } else
1670                        printk(KERN_WARNING "%s: PCI Tx underflow -- adapter is probably malfunctioning\n", dev->name);
1671        }
1672        if (intr_status & IntrRxGFPDead) {
1673                dev->stats.rx_fifo_errors++;
1674                dev->stats.rx_errors++;
1675        }
1676        if (intr_status & (IntrNoTxCsum | IntrDMAErr)) {
1677                dev->stats.tx_fifo_errors++;
1678                dev->stats.tx_errors++;
1679        }
1680        if ((intr_status & ~(IntrNormalMask | IntrAbnormalSummary | IntrLinkChange | IntrStatsMax | IntrTxDataLow | IntrRxGFPDead | IntrNoTxCsum | IntrPCIPad)) && debug)
1681                printk(KERN_ERR "%s: Something Wicked happened! %#8.8x.\n",
1682                       dev->name, intr_status);
1683}
1684
1685
1686static struct net_device_stats *get_stats(struct net_device *dev)
1687{
1688        struct netdev_private *np = netdev_priv(dev);
1689        void __iomem *ioaddr = np->base;
1690
1691        /* This adapter architecture needs no SMP locks. */
1692        dev->stats.tx_bytes = readl(ioaddr + 0x57010);
1693        dev->stats.rx_bytes = readl(ioaddr + 0x57044);
1694        dev->stats.tx_packets = readl(ioaddr + 0x57000);
1695        dev->stats.tx_aborted_errors =
1696                readl(ioaddr + 0x57024) + readl(ioaddr + 0x57028);
1697        dev->stats.tx_window_errors = readl(ioaddr + 0x57018);
1698        dev->stats.collisions =
1699                readl(ioaddr + 0x57004) + readl(ioaddr + 0x57008);
1700
1701        /* The chip only need report frame silently dropped. */
1702        dev->stats.rx_dropped += readw(ioaddr + RxDMAStatus);
1703        writew(0, ioaddr + RxDMAStatus);
1704        dev->stats.rx_crc_errors = readl(ioaddr + 0x5703C);
1705        dev->stats.rx_frame_errors = readl(ioaddr + 0x57040);
1706        dev->stats.rx_length_errors = readl(ioaddr + 0x57058);
1707        dev->stats.rx_missed_errors = readl(ioaddr + 0x5707C);
1708
1709        return &dev->stats;
1710}
1711
1712#ifdef VLAN_SUPPORT
1713static u32 set_vlan_mode(struct netdev_private *np)
1714{
1715        u32 ret = VlanMode;
1716        u16 vid;
1717        void __iomem *filter_addr = np->base + HashTable + 8;
1718        int vlan_count = 0;
1719
1720        for_each_set_bit(vid, np->active_vlans, VLAN_N_VID) {
1721                if (vlan_count == 32)
1722                        break;
1723                writew(vid, filter_addr);
1724                filter_addr += 16;
1725                vlan_count++;
1726        }
1727        if (vlan_count == 32) {
1728                ret |= PerfectFilterVlan;
1729                while (vlan_count < 32) {
1730                        writew(0, filter_addr);
1731                        filter_addr += 16;
1732                        vlan_count++;
1733                }
1734        }
1735        return ret;
1736}
1737#endif /* VLAN_SUPPORT */
1738
1739static void set_rx_mode(struct net_device *dev)
1740{
1741        struct netdev_private *np = netdev_priv(dev);
1742        void __iomem *ioaddr = np->base;
1743        u32 rx_mode = MinVLANPrio;
1744        struct netdev_hw_addr *ha;
1745        int i;
1746
1747#ifdef VLAN_SUPPORT
1748        rx_mode |= set_vlan_mode(np);
1749#endif /* VLAN_SUPPORT */
1750
1751        if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1752                rx_mode |= AcceptAll;
1753        } else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
1754                   (dev->flags & IFF_ALLMULTI)) {
1755                /* Too many to match, or accept all multicasts. */
1756                rx_mode |= AcceptBroadcast|AcceptAllMulticast|PerfectFilter;
1757        } else if (netdev_mc_count(dev) <= 14) {
1758                /* Use the 16 element perfect filter, skip first two entries. */
1759                void __iomem *filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1760                __be16 *eaddrs;
1761                netdev_for_each_mc_addr(ha, dev) {
1762                        eaddrs = (__be16 *) ha->addr;
1763                        writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 4;
1764                        writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1765                        writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 8;
1766                }
1767                eaddrs = (__be16 *)dev->dev_addr;
1768                i = netdev_mc_count(dev) + 2;
1769                while (i++ < 16) {
1770                        writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1771                        writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1772                        writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1773                }
1774                rx_mode |= AcceptBroadcast|PerfectFilter;
1775        } else {
1776                /* Must use a multicast hash table. */
1777                void __iomem *filter_addr;
1778                __be16 *eaddrs;
1779                __le16 mc_filter[32] __attribute__ ((aligned(sizeof(long))));   /* Multicast hash filter */
1780
1781                memset(mc_filter, 0, sizeof(mc_filter));
1782                netdev_for_each_mc_addr(ha, dev) {
1783                        /* The chip uses the upper 9 CRC bits
1784                           as index into the hash table */
1785                        int bit_nr = ether_crc_le(ETH_ALEN, ha->addr) >> 23;
1786                        __le32 *fptr = (__le32 *) &mc_filter[(bit_nr >> 4) & ~1];
1787
1788                        *fptr |= cpu_to_le32(1 << (bit_nr & 31));
1789                }
1790                /* Clear the perfect filter list, skip first two entries. */
1791                filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1792                eaddrs = (__be16 *)dev->dev_addr;
1793                for (i = 2; i < 16; i++) {
1794                        writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1795                        writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1796                        writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1797                }
1798                for (filter_addr = ioaddr + HashTable, i = 0; i < 32; filter_addr+= 16, i++)
1799                        writew(mc_filter[i], filter_addr);
1800                rx_mode |= AcceptBroadcast|PerfectFilter|HashFilter;
1801        }
1802        writel(rx_mode, ioaddr + RxFilterMode);
1803}
1804
1805static int check_if_running(struct net_device *dev)
1806{
1807        if (!netif_running(dev))
1808                return -EINVAL;
1809        return 0;
1810}
1811
1812static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1813{
1814        struct netdev_private *np = netdev_priv(dev);
1815        strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1816        strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1817        strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
1818}
1819
1820static int get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1821{
1822        struct netdev_private *np = netdev_priv(dev);
1823        spin_lock_irq(&np->lock);
1824        mii_ethtool_gset(&np->mii_if, ecmd);
1825        spin_unlock_irq(&np->lock);
1826        return 0;
1827}
1828
1829static int set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1830{
1831        struct netdev_private *np = netdev_priv(dev);
1832        int res;
1833        spin_lock_irq(&np->lock);
1834        res = mii_ethtool_sset(&np->mii_if, ecmd);
1835        spin_unlock_irq(&np->lock);
1836        check_duplex(dev);
1837        return res;
1838}
1839
1840static int nway_reset(struct net_device *dev)
1841{
1842        struct netdev_private *np = netdev_priv(dev);
1843        return mii_nway_restart(&np->mii_if);
1844}
1845
1846static u32 get_link(struct net_device *dev)
1847{
1848        struct netdev_private *np = netdev_priv(dev);
1849        return mii_link_ok(&np->mii_if);
1850}
1851
1852static u32 get_msglevel(struct net_device *dev)
1853{
1854        return debug;
1855}
1856
1857static void set_msglevel(struct net_device *dev, u32 val)
1858{
1859        debug = val;
1860}
1861
1862static const struct ethtool_ops ethtool_ops = {
1863        .begin = check_if_running,
1864        .get_drvinfo = get_drvinfo,
1865        .get_settings = get_settings,
1866        .set_settings = set_settings,
1867        .nway_reset = nway_reset,
1868        .get_link = get_link,
1869        .get_msglevel = get_msglevel,
1870        .set_msglevel = set_msglevel,
1871};
1872
1873static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1874{
1875        struct netdev_private *np = netdev_priv(dev);
1876        struct mii_ioctl_data *data = if_mii(rq);
1877        int rc;
1878
1879        if (!netif_running(dev))
1880                return -EINVAL;
1881
1882        spin_lock_irq(&np->lock);
1883        rc = generic_mii_ioctl(&np->mii_if, data, cmd, NULL);
1884        spin_unlock_irq(&np->lock);
1885
1886        if ((cmd == SIOCSMIIREG) && (data->phy_id == np->phys[0]))
1887                check_duplex(dev);
1888
1889        return rc;
1890}
1891
1892static int netdev_close(struct net_device *dev)
1893{
1894        struct netdev_private *np = netdev_priv(dev);
1895        void __iomem *ioaddr = np->base;
1896        int i;
1897
1898        netif_stop_queue(dev);
1899
1900        napi_disable(&np->napi);
1901
1902        if (debug > 1) {
1903                printk(KERN_DEBUG "%s: Shutting down ethercard, Intr status %#8.8x.\n",
1904                           dev->name, (int) readl(ioaddr + IntrStatus));
1905                printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
1906                       dev->name, np->cur_tx, np->dirty_tx,
1907                       np->cur_rx, np->dirty_rx);
1908        }
1909
1910        /* Disable interrupts by clearing the interrupt mask. */
1911        writel(0, ioaddr + IntrEnable);
1912
1913        /* Stop the chip's Tx and Rx processes. */
1914        writel(0, ioaddr + GenCtrl);
1915        readl(ioaddr + GenCtrl);
1916
1917        if (debug > 5) {
1918                printk(KERN_DEBUG"  Tx ring at %#llx:\n",
1919                       (long long) np->tx_ring_dma);
1920                for (i = 0; i < 8 /* TX_RING_SIZE is huge! */; i++)
1921                        printk(KERN_DEBUG " #%d desc. %#8.8x %#llx -> %#8.8x.\n",
1922                               i, le32_to_cpu(np->tx_ring[i].status),
1923                               (long long) dma_to_cpu(np->tx_ring[i].addr),
1924                               le32_to_cpu(np->tx_done_q[i].status));
1925                printk(KERN_DEBUG "  Rx ring at %#llx -> %p:\n",
1926                       (long long) np->rx_ring_dma, np->rx_done_q);
1927                if (np->rx_done_q)
1928                        for (i = 0; i < 8 /* RX_RING_SIZE */; i++) {
1929                                printk(KERN_DEBUG " #%d desc. %#llx -> %#8.8x\n",
1930                                       i, (long long) dma_to_cpu(np->rx_ring[i].rxaddr), le32_to_cpu(np->rx_done_q[i].status));
1931                }
1932        }
1933
1934        free_irq(np->pci_dev->irq, dev);
1935
1936        /* Free all the skbuffs in the Rx queue. */
1937        for (i = 0; i < RX_RING_SIZE; i++) {
1938                np->rx_ring[i].rxaddr = cpu_to_dma(0xBADF00D0); /* An invalid address. */
1939                if (np->rx_info[i].skb != NULL) {
1940                        pci_unmap_single(np->pci_dev, np->rx_info[i].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1941                        dev_kfree_skb(np->rx_info[i].skb);
1942                }
1943                np->rx_info[i].skb = NULL;
1944                np->rx_info[i].mapping = 0;
1945        }
1946        for (i = 0; i < TX_RING_SIZE; i++) {
1947                struct sk_buff *skb = np->tx_info[i].skb;
1948                if (skb == NULL)
1949                        continue;
1950                pci_unmap_single(np->pci_dev,
1951                                 np->tx_info[i].mapping,
1952                                 skb_first_frag_len(skb), PCI_DMA_TODEVICE);
1953                np->tx_info[i].mapping = 0;
1954                dev_kfree_skb(skb);
1955                np->tx_info[i].skb = NULL;
1956        }
1957
1958        return 0;
1959}
1960
1961#ifdef CONFIG_PM
1962static int starfire_suspend(struct pci_dev *pdev, pm_message_t state)
1963{
1964        struct net_device *dev = pci_get_drvdata(pdev);
1965
1966        if (netif_running(dev)) {
1967                netif_device_detach(dev);
1968                netdev_close(dev);
1969        }
1970
1971        pci_save_state(pdev);
1972        pci_set_power_state(pdev, pci_choose_state(pdev,state));
1973
1974        return 0;
1975}
1976
1977static int starfire_resume(struct pci_dev *pdev)
1978{
1979        struct net_device *dev = pci_get_drvdata(pdev);
1980
1981        pci_set_power_state(pdev, PCI_D0);
1982        pci_restore_state(pdev);
1983
1984        if (netif_running(dev)) {
1985                netdev_open(dev);
1986                netif_device_attach(dev);
1987        }
1988
1989        return 0;
1990}
1991#endif /* CONFIG_PM */
1992
1993
1994static void starfire_remove_one(struct pci_dev *pdev)
1995{
1996        struct net_device *dev = pci_get_drvdata(pdev);
1997        struct netdev_private *np = netdev_priv(dev);
1998
1999        BUG_ON(!dev);
2000
2001        unregister_netdev(dev);
2002
2003        if (np->queue_mem)
2004                pci_free_consistent(pdev, np->queue_mem_size, np->queue_mem, np->queue_mem_dma);
2005
2006
2007        /* XXX: add wakeup code -- requires firmware for MagicPacket */
2008        pci_set_power_state(pdev, PCI_D3hot);   /* go to sleep in D3 mode */
2009        pci_disable_device(pdev);
2010
2011        iounmap(np->base);
2012        pci_release_regions(pdev);
2013
2014        free_netdev(dev);                       /* Will also free np!! */
2015}
2016
2017
2018static struct pci_driver starfire_driver = {
2019        .name           = DRV_NAME,
2020        .probe          = starfire_init_one,
2021        .remove         = starfire_remove_one,
2022#ifdef CONFIG_PM
2023        .suspend        = starfire_suspend,
2024        .resume         = starfire_resume,
2025#endif /* CONFIG_PM */
2026        .id_table       = starfire_pci_tbl,
2027};
2028
2029
2030static int __init starfire_init (void)
2031{
2032/* when a module, this is printed whether or not devices are found in probe */
2033#ifdef MODULE
2034        printk(version);
2035
2036        printk(KERN_INFO DRV_NAME ": polling (NAPI) enabled\n");
2037#endif
2038
2039        BUILD_BUG_ON(sizeof(dma_addr_t) != sizeof(netdrv_addr_t));
2040
2041        return pci_register_driver(&starfire_driver);
2042}
2043
2044
2045static void __exit starfire_cleanup (void)
2046{
2047        pci_unregister_driver (&starfire_driver);
2048}
2049
2050
2051module_init(starfire_init);
2052module_exit(starfire_cleanup);
2053
2054
2055/*
2056 * Local variables:
2057 *  c-basic-offset: 8
2058 *  tab-width: 8
2059 * End:
2060 */
2061