1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29#define DRV_NAME "starfire"
30#define DRV_VERSION "2.1"
31#define DRV_RELDATE "July 6, 2008"
32
33#include <linux/interrupt.h>
34#include <linux/module.h>
35#include <linux/kernel.h>
36#include <linux/pci.h>
37#include <linux/netdevice.h>
38#include <linux/etherdevice.h>
39#include <linux/init.h>
40#include <linux/delay.h>
41#include <linux/crc32.h>
42#include <linux/ethtool.h>
43#include <linux/mii.h>
44#include <linux/if_vlan.h>
45#include <linux/mm.h>
46#include <linux/firmware.h>
47#include <asm/processor.h>
48#include <asm/uaccess.h>
49#include <asm/io.h>
50
51
52
53
54
55#define HAS_BROKEN_FIRMWARE
56
57
58
59
60#ifdef HAS_BROKEN_FIRMWARE
61#define PADDING_MASK 3
62#endif
63
64
65
66
67#define ZEROCOPY
68
69#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
70#define VLAN_SUPPORT
71#endif
72
73
74
75
76
77static int intr_latency;
78static int small_frames;
79
80static int debug = 1;
81static int max_interrupt_work = 20;
82static int mtu;
83
84
85static const int multicast_filter_limit = 512;
86
87static int enable_hw_cksum = 1;
88
89#define PKT_BUF_SZ 1536
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104#if defined(__ia64__) || defined(__alpha__) || defined(__sparc__)
105static int rx_copybreak = PKT_BUF_SZ;
106#else
107static int rx_copybreak ;
108#endif
109
110
111#ifdef __sparc__
112#define DMA_BURST_SIZE 64
113#else
114#define DMA_BURST_SIZE 128
115#endif
116
117
118
119
120
121
122#define RX_RING_SIZE 256
123#define TX_RING_SIZE 32
124
125#define DONE_Q_SIZE 1024
126
127#define QUEUE_ALIGN 256
128
129#if RX_RING_SIZE > 256
130#define RX_Q_ENTRIES Rx2048QEntries
131#else
132#define RX_Q_ENTRIES Rx256QEntries
133#endif
134
135
136
137#define TX_TIMEOUT (2 * HZ)
138
139#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
140
141#define ADDR_64BITS
142#define netdrv_addr_t __le64
143#define cpu_to_dma(x) cpu_to_le64(x)
144#define dma_to_cpu(x) le64_to_cpu(x)
145#define RX_DESC_Q_ADDR_SIZE RxDescQAddr64bit
146#define TX_DESC_Q_ADDR_SIZE TxDescQAddr64bit
147#define RX_COMPL_Q_ADDR_SIZE RxComplQAddr64bit
148#define TX_COMPL_Q_ADDR_SIZE TxComplQAddr64bit
149#define RX_DESC_ADDR_SIZE RxDescAddr64bit
150#else
151#define netdrv_addr_t __le32
152#define cpu_to_dma(x) cpu_to_le32(x)
153#define dma_to_cpu(x) le32_to_cpu(x)
154#define RX_DESC_Q_ADDR_SIZE RxDescQAddr32bit
155#define TX_DESC_Q_ADDR_SIZE TxDescQAddr32bit
156#define RX_COMPL_Q_ADDR_SIZE RxComplQAddr32bit
157#define TX_COMPL_Q_ADDR_SIZE TxComplQAddr32bit
158#define RX_DESC_ADDR_SIZE RxDescAddr32bit
159#endif
160
161#define skb_first_frag_len(skb) skb_headlen(skb)
162#define skb_num_frags(skb) (skb_shinfo(skb)->nr_frags + 1)
163
164
165#define FIRMWARE_RX "adaptec/starfire_rx.bin"
166#define FIRMWARE_TX "adaptec/starfire_tx.bin"
167
168
169static const char version[] =
170KERN_INFO "starfire.c:v1.03 7/26/2000 Written by Donald Becker <becker@scyld.com>\n"
171" (unofficial 2.2/2.4 kernel port, version " DRV_VERSION ", " DRV_RELDATE ")\n";
172
173MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
174MODULE_DESCRIPTION("Adaptec Starfire Ethernet driver");
175MODULE_LICENSE("GPL");
176MODULE_VERSION(DRV_VERSION);
177MODULE_FIRMWARE(FIRMWARE_RX);
178MODULE_FIRMWARE(FIRMWARE_TX);
179
180module_param(max_interrupt_work, int, 0);
181module_param(mtu, int, 0);
182module_param(debug, int, 0);
183module_param(rx_copybreak, int, 0);
184module_param(intr_latency, int, 0);
185module_param(small_frames, int, 0);
186module_param(enable_hw_cksum, int, 0);
187MODULE_PARM_DESC(max_interrupt_work, "Maximum events handled per interrupt");
188MODULE_PARM_DESC(mtu, "MTU (all boards)");
189MODULE_PARM_DESC(debug, "Debug level (0-6)");
190MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
191MODULE_PARM_DESC(intr_latency, "Maximum interrupt latency, in microseconds");
192MODULE_PARM_DESC(small_frames, "Maximum size of receive frames that bypass interrupt latency (0,64,128,256,512)");
193MODULE_PARM_DESC(enable_hw_cksum, "Enable/disable hardware cksum support (0/1)");
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282enum chip_capability_flags {CanHaveMII=1, };
283
284enum chipset {
285 CH_6915 = 0,
286};
287
288static const struct pci_device_id starfire_pci_tbl[] = {
289 { PCI_VDEVICE(ADAPTEC, 0x6915), CH_6915 },
290 { 0, }
291};
292MODULE_DEVICE_TABLE(pci, starfire_pci_tbl);
293
294
295static const struct chip_info {
296 const char *name;
297 int drv_flags;
298} netdrv_tbl[] = {
299 { "Adaptec Starfire 6915", CanHaveMII },
300};
301
302
303
304
305
306
307
308
309
310
311enum register_offsets {
312 PCIDeviceConfig=0x50040, GenCtrl=0x50070, IntrTimerCtrl=0x50074,
313 IntrClear=0x50080, IntrStatus=0x50084, IntrEnable=0x50088,
314 MIICtrl=0x52000, TxStationAddr=0x50120, EEPROMCtrl=0x51000,
315 GPIOCtrl=0x5008C, TxDescCtrl=0x50090,
316 TxRingPtr=0x50098, HiPriTxRingPtr=0x50094,
317 TxRingHiAddr=0x5009C,
318 TxProducerIdx=0x500A0, TxConsumerIdx=0x500A4,
319 TxThreshold=0x500B0,
320 CompletionHiAddr=0x500B4, TxCompletionAddr=0x500B8,
321 RxCompletionAddr=0x500BC, RxCompletionQ2Addr=0x500C0,
322 CompletionQConsumerIdx=0x500C4, RxDMACtrl=0x500D0,
323 RxDescQCtrl=0x500D4, RxDescQHiAddr=0x500DC, RxDescQAddr=0x500E0,
324 RxDescQIdx=0x500E8, RxDMAStatus=0x500F0, RxFilterMode=0x500F4,
325 TxMode=0x55000, VlanType=0x55064,
326 PerfFilterTable=0x56000, HashTable=0x56100,
327 TxGfpMem=0x58000, RxGfpMem=0x5a000,
328};
329
330
331
332
333
334
335enum intr_status_bits {
336 IntrLinkChange=0xf0000000, IntrStatsMax=0x08000000,
337 IntrAbnormalSummary=0x02000000, IntrGeneralTimer=0x01000000,
338 IntrSoftware=0x800000, IntrRxComplQ1Low=0x400000,
339 IntrTxComplQLow=0x200000, IntrPCI=0x100000,
340 IntrDMAErr=0x080000, IntrTxDataLow=0x040000,
341 IntrRxComplQ2Low=0x020000, IntrRxDescQ1Low=0x010000,
342 IntrNormalSummary=0x8000, IntrTxDone=0x4000,
343 IntrTxDMADone=0x2000, IntrTxEmpty=0x1000,
344 IntrEarlyRxQ2=0x0800, IntrEarlyRxQ1=0x0400,
345 IntrRxQ2Done=0x0200, IntrRxQ1Done=0x0100,
346 IntrRxGFPDead=0x80, IntrRxDescQ2Low=0x40,
347 IntrNoTxCsum=0x20, IntrTxBadID=0x10,
348 IntrHiPriTxBadID=0x08, IntrRxGfp=0x04,
349 IntrTxGfp=0x02, IntrPCIPad=0x01,
350
351 IntrRxDone=IntrRxQ2Done | IntrRxQ1Done,
352 IntrRxEmpty=IntrRxDescQ1Low | IntrRxDescQ2Low,
353 IntrNormalMask=0xff00, IntrAbnormalMask=0x3ff00fe,
354};
355
356
357enum rx_mode_bits {
358 AcceptBroadcast=0x04, AcceptAllMulticast=0x02, AcceptAll=0x01,
359 AcceptMulticast=0x10, PerfectFilter=0x40, HashFilter=0x30,
360 PerfectFilterVlan=0x80, MinVLANPrio=0xE000, VlanMode=0x0200,
361 WakeupOnGFP=0x0800,
362};
363
364
365enum tx_mode_bits {
366 MiiSoftReset=0x8000, MIILoopback=0x4000,
367 TxFlowEnable=0x0800, RxFlowEnable=0x0400,
368 PadEnable=0x04, FullDuplex=0x02, HugeFrame=0x01,
369};
370
371
372enum tx_ctrl_bits {
373 TxDescSpaceUnlim=0x00, TxDescSpace32=0x10, TxDescSpace64=0x20,
374 TxDescSpace128=0x30, TxDescSpace256=0x40,
375 TxDescType0=0x00, TxDescType1=0x01, TxDescType2=0x02,
376 TxDescType3=0x03, TxDescType4=0x04,
377 TxNoDMACompletion=0x08,
378 TxDescQAddr64bit=0x80, TxDescQAddr32bit=0,
379 TxHiPriFIFOThreshShift=24, TxPadLenShift=16,
380 TxDMABurstSizeShift=8,
381};
382
383
384enum rx_ctrl_bits {
385 RxBufferLenShift=16, RxMinDescrThreshShift=0,
386 RxPrefetchMode=0x8000, RxVariableQ=0x2000,
387 Rx2048QEntries=0x4000, Rx256QEntries=0,
388 RxDescAddr64bit=0x1000, RxDescAddr32bit=0,
389 RxDescQAddr64bit=0x0100, RxDescQAddr32bit=0,
390 RxDescSpace4=0x000, RxDescSpace8=0x100,
391 RxDescSpace16=0x200, RxDescSpace32=0x300,
392 RxDescSpace64=0x400, RxDescSpace128=0x500,
393 RxConsumerWrEn=0x80,
394};
395
396
397enum rx_dmactrl_bits {
398 RxReportBadFrames=0x80000000, RxDMAShortFrames=0x40000000,
399 RxDMABadFrames=0x20000000, RxDMACrcErrorFrames=0x10000000,
400 RxDMAControlFrame=0x08000000, RxDMAPauseFrame=0x04000000,
401 RxChecksumIgnore=0, RxChecksumRejectTCPUDP=0x02000000,
402 RxChecksumRejectTCPOnly=0x01000000,
403 RxCompletionQ2Enable=0x800000,
404 RxDMAQ2Disable=0, RxDMAQ2FPOnly=0x100000,
405 RxDMAQ2SmallPkt=0x200000, RxDMAQ2HighPrio=0x300000,
406 RxDMAQ2NonIP=0x400000,
407 RxUseBackupQueue=0x080000, RxDMACRC=0x040000,
408 RxEarlyIntThreshShift=12, RxHighPrioThreshShift=8,
409 RxBurstSizeShift=0,
410};
411
412
413enum rx_compl_bits {
414 RxComplQAddr64bit=0x80, RxComplQAddr32bit=0,
415 RxComplProducerWrEn=0x40,
416 RxComplType0=0x00, RxComplType1=0x10,
417 RxComplType2=0x20, RxComplType3=0x30,
418 RxComplThreshShift=0,
419};
420
421
422enum tx_compl_bits {
423 TxComplQAddr64bit=0x80, TxComplQAddr32bit=0,
424 TxComplProducerWrEn=0x40,
425 TxComplIntrStatus=0x20,
426 CommonQueueMode=0x10,
427 TxComplThreshShift=0,
428};
429
430
431enum gen_ctrl_bits {
432 RxEnable=0x05, TxEnable=0x0a,
433 RxGFPEnable=0x10, TxGFPEnable=0x20,
434};
435
436
437enum intr_ctrl_bits {
438 Timer10X=0x800, EnableIntrMasking=0x60, SmallFrameBypass=0x100,
439 SmallFrame64=0, SmallFrame128=0x200, SmallFrame256=0x400, SmallFrame512=0x600,
440 IntrLatencyMask=0x1f,
441};
442
443
444struct starfire_rx_desc {
445 netdrv_addr_t rxaddr;
446};
447enum rx_desc_bits {
448 RxDescValid=1, RxDescEndRing=2,
449};
450
451
452struct short_rx_done_desc {
453 __le32 status;
454};
455struct basic_rx_done_desc {
456 __le32 status;
457 __le16 vlanid;
458 __le16 status2;
459};
460struct csum_rx_done_desc {
461 __le32 status;
462 __le16 csum;
463 __le16 status2;
464};
465struct full_rx_done_desc {
466 __le32 status;
467 __le16 status3;
468 __le16 status2;
469 __le16 vlanid;
470 __le16 csum;
471 __le32 timestamp;
472};
473
474#ifdef VLAN_SUPPORT
475typedef struct full_rx_done_desc rx_done_desc;
476#define RxComplType RxComplType3
477#else
478typedef struct csum_rx_done_desc rx_done_desc;
479#define RxComplType RxComplType2
480#endif
481
482enum rx_done_bits {
483 RxOK=0x20000000, RxFIFOErr=0x10000000, RxBufQ2=0x08000000,
484};
485
486
487struct starfire_tx_desc_1 {
488 __le32 status;
489 __le32 addr;
490};
491
492
493struct starfire_tx_desc_2 {
494 __le32 status;
495 __le32 reserved;
496 __le64 addr;
497};
498
499#ifdef ADDR_64BITS
500typedef struct starfire_tx_desc_2 starfire_tx_desc;
501#define TX_DESC_TYPE TxDescType2
502#else
503typedef struct starfire_tx_desc_1 starfire_tx_desc;
504#define TX_DESC_TYPE TxDescType1
505#endif
506#define TX_DESC_SPACING TxDescSpaceUnlim
507
508enum tx_desc_bits {
509 TxDescID=0xB0000000,
510 TxCRCEn=0x01000000, TxDescIntr=0x08000000,
511 TxRingWrap=0x04000000, TxCalTCP=0x02000000,
512};
513struct tx_done_desc {
514 __le32 status;
515#if 0
516 __le32 intrstatus;
517#endif
518};
519
520struct rx_ring_info {
521 struct sk_buff *skb;
522 dma_addr_t mapping;
523};
524struct tx_ring_info {
525 struct sk_buff *skb;
526 dma_addr_t mapping;
527 unsigned int used_slots;
528};
529
530#define PHY_CNT 2
531struct netdev_private {
532
533 struct starfire_rx_desc *rx_ring;
534 starfire_tx_desc *tx_ring;
535 dma_addr_t rx_ring_dma;
536 dma_addr_t tx_ring_dma;
537
538 struct rx_ring_info rx_info[RX_RING_SIZE];
539 struct tx_ring_info tx_info[TX_RING_SIZE];
540
541 rx_done_desc *rx_done_q;
542 dma_addr_t rx_done_q_dma;
543 unsigned int rx_done;
544 struct tx_done_desc *tx_done_q;
545 dma_addr_t tx_done_q_dma;
546 unsigned int tx_done;
547 struct napi_struct napi;
548 struct net_device *dev;
549 struct pci_dev *pci_dev;
550#ifdef VLAN_SUPPORT
551 unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)];
552#endif
553 void *queue_mem;
554 dma_addr_t queue_mem_dma;
555 size_t queue_mem_size;
556
557
558 spinlock_t lock;
559 unsigned int cur_rx, dirty_rx;
560 unsigned int cur_tx, dirty_tx, reap_tx;
561 unsigned int rx_buf_sz;
562
563 int speed100;
564 u32 tx_mode;
565 u32 intr_timer_ctrl;
566 u8 tx_threshold;
567
568 struct mii_if_info mii_if;
569 int phy_cnt;
570 unsigned char phys[PHY_CNT];
571 void __iomem *base;
572};
573
574
575static int mdio_read(struct net_device *dev, int phy_id, int location);
576static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
577static int netdev_open(struct net_device *dev);
578static void check_duplex(struct net_device *dev);
579static void tx_timeout(struct net_device *dev);
580static void init_ring(struct net_device *dev);
581static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
582static irqreturn_t intr_handler(int irq, void *dev_instance);
583static void netdev_error(struct net_device *dev, int intr_status);
584static int __netdev_rx(struct net_device *dev, int *quota);
585static int netdev_poll(struct napi_struct *napi, int budget);
586static void refill_rx_ring(struct net_device *dev);
587static void netdev_error(struct net_device *dev, int intr_status);
588static void set_rx_mode(struct net_device *dev);
589static struct net_device_stats *get_stats(struct net_device *dev);
590static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
591static int netdev_close(struct net_device *dev);
592static void netdev_media_change(struct net_device *dev);
593static const struct ethtool_ops ethtool_ops;
594
595
596#ifdef VLAN_SUPPORT
597static int netdev_vlan_rx_add_vid(struct net_device *dev,
598 __be16 proto, u16 vid)
599{
600 struct netdev_private *np = netdev_priv(dev);
601
602 spin_lock(&np->lock);
603 if (debug > 1)
604 printk("%s: Adding vlanid %d to vlan filter\n", dev->name, vid);
605 set_bit(vid, np->active_vlans);
606 set_rx_mode(dev);
607 spin_unlock(&np->lock);
608
609 return 0;
610}
611
612static int netdev_vlan_rx_kill_vid(struct net_device *dev,
613 __be16 proto, u16 vid)
614{
615 struct netdev_private *np = netdev_priv(dev);
616
617 spin_lock(&np->lock);
618 if (debug > 1)
619 printk("%s: removing vlanid %d from vlan filter\n", dev->name, vid);
620 clear_bit(vid, np->active_vlans);
621 set_rx_mode(dev);
622 spin_unlock(&np->lock);
623
624 return 0;
625}
626#endif
627
628
629static const struct net_device_ops netdev_ops = {
630 .ndo_open = netdev_open,
631 .ndo_stop = netdev_close,
632 .ndo_start_xmit = start_tx,
633 .ndo_tx_timeout = tx_timeout,
634 .ndo_get_stats = get_stats,
635 .ndo_set_rx_mode = set_rx_mode,
636 .ndo_do_ioctl = netdev_ioctl,
637 .ndo_change_mtu = eth_change_mtu,
638 .ndo_set_mac_address = eth_mac_addr,
639 .ndo_validate_addr = eth_validate_addr,
640#ifdef VLAN_SUPPORT
641 .ndo_vlan_rx_add_vid = netdev_vlan_rx_add_vid,
642 .ndo_vlan_rx_kill_vid = netdev_vlan_rx_kill_vid,
643#endif
644};
645
646static int starfire_init_one(struct pci_dev *pdev,
647 const struct pci_device_id *ent)
648{
649 struct device *d = &pdev->dev;
650 struct netdev_private *np;
651 int i, irq, chip_idx = ent->driver_data;
652 struct net_device *dev;
653 long ioaddr;
654 void __iomem *base;
655 int drv_flags, io_size;
656 int boguscnt;
657
658
659#ifndef MODULE
660 static int printed_version;
661 if (!printed_version++)
662 printk(version);
663#endif
664
665 if (pci_enable_device (pdev))
666 return -EIO;
667
668 ioaddr = pci_resource_start(pdev, 0);
669 io_size = pci_resource_len(pdev, 0);
670 if (!ioaddr || ((pci_resource_flags(pdev, 0) & IORESOURCE_MEM) == 0)) {
671 dev_err(d, "no PCI MEM resources, aborting\n");
672 return -ENODEV;
673 }
674
675 dev = alloc_etherdev(sizeof(*np));
676 if (!dev)
677 return -ENOMEM;
678
679 SET_NETDEV_DEV(dev, &pdev->dev);
680
681 irq = pdev->irq;
682
683 if (pci_request_regions (pdev, DRV_NAME)) {
684 dev_err(d, "cannot reserve PCI resources, aborting\n");
685 goto err_out_free_netdev;
686 }
687
688 base = ioremap(ioaddr, io_size);
689 if (!base) {
690 dev_err(d, "cannot remap %#x @ %#lx, aborting\n",
691 io_size, ioaddr);
692 goto err_out_free_res;
693 }
694
695 pci_set_master(pdev);
696
697
698 pci_try_set_mwi(pdev);
699
700#ifdef ZEROCOPY
701
702 if (enable_hw_cksum)
703 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
704#endif
705
706#ifdef VLAN_SUPPORT
707 dev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_FILTER;
708#endif
709#ifdef ADDR_64BITS
710 dev->features |= NETIF_F_HIGHDMA;
711#endif
712
713
714 for (i = 0; i < 6; i++)
715 dev->dev_addr[i] = readb(base + EEPROMCtrl + 20 - i);
716
717#if ! defined(final_version)
718 if (debug > 4)
719 for (i = 0; i < 0x20; i++)
720 printk("%2.2x%s",
721 (unsigned int)readb(base + EEPROMCtrl + i),
722 i % 16 != 15 ? " " : "\n");
723#endif
724
725
726 writel(MiiSoftReset, base + TxMode);
727 udelay(1000);
728 writel(0, base + TxMode);
729
730
731 writel(1, base + PCIDeviceConfig);
732 boguscnt = 1000;
733 while (--boguscnt > 0) {
734 udelay(10);
735 if ((readl(base + PCIDeviceConfig) & 1) == 0)
736 break;
737 }
738 if (boguscnt == 0)
739 printk("%s: chipset reset never completed!\n", dev->name);
740
741 udelay(1000);
742
743 np = netdev_priv(dev);
744 np->dev = dev;
745 np->base = base;
746 spin_lock_init(&np->lock);
747 pci_set_drvdata(pdev, dev);
748
749 np->pci_dev = pdev;
750
751 np->mii_if.dev = dev;
752 np->mii_if.mdio_read = mdio_read;
753 np->mii_if.mdio_write = mdio_write;
754 np->mii_if.phy_id_mask = 0x1f;
755 np->mii_if.reg_num_mask = 0x1f;
756
757 drv_flags = netdrv_tbl[chip_idx].drv_flags;
758
759 np->speed100 = 1;
760
761
762 np->intr_timer_ctrl = (((intr_latency * 10) / 1024) & IntrLatencyMask) |
763 Timer10X | EnableIntrMasking;
764
765 if (small_frames > 0) {
766 np->intr_timer_ctrl |= SmallFrameBypass;
767 switch (small_frames) {
768 case 1 ... 64:
769 np->intr_timer_ctrl |= SmallFrame64;
770 break;
771 case 65 ... 128:
772 np->intr_timer_ctrl |= SmallFrame128;
773 break;
774 case 129 ... 256:
775 np->intr_timer_ctrl |= SmallFrame256;
776 break;
777 default:
778 np->intr_timer_ctrl |= SmallFrame512;
779 if (small_frames > 512)
780 printk("Adjusting small_frames down to 512\n");
781 break;
782 }
783 }
784
785 dev->netdev_ops = &netdev_ops;
786 dev->watchdog_timeo = TX_TIMEOUT;
787 dev->ethtool_ops = ðtool_ops;
788
789 netif_napi_add(dev, &np->napi, netdev_poll, max_interrupt_work);
790
791 if (mtu)
792 dev->mtu = mtu;
793
794 if (register_netdev(dev))
795 goto err_out_cleardev;
796
797 printk(KERN_INFO "%s: %s at %p, %pM, IRQ %d.\n",
798 dev->name, netdrv_tbl[chip_idx].name, base,
799 dev->dev_addr, irq);
800
801 if (drv_flags & CanHaveMII) {
802 int phy, phy_idx = 0;
803 int mii_status;
804 for (phy = 0; phy < 32 && phy_idx < PHY_CNT; phy++) {
805 mdio_write(dev, phy, MII_BMCR, BMCR_RESET);
806 mdelay(100);
807 boguscnt = 1000;
808 while (--boguscnt > 0)
809 if ((mdio_read(dev, phy, MII_BMCR) & BMCR_RESET) == 0)
810 break;
811 if (boguscnt == 0) {
812 printk("%s: PHY#%d reset never completed!\n", dev->name, phy);
813 continue;
814 }
815 mii_status = mdio_read(dev, phy, MII_BMSR);
816 if (mii_status != 0) {
817 np->phys[phy_idx++] = phy;
818 np->mii_if.advertising = mdio_read(dev, phy, MII_ADVERTISE);
819 printk(KERN_INFO "%s: MII PHY found at address %d, status "
820 "%#4.4x advertising %#4.4x.\n",
821 dev->name, phy, mii_status, np->mii_if.advertising);
822
823 break;
824 }
825 }
826 np->phy_cnt = phy_idx;
827 if (np->phy_cnt > 0)
828 np->mii_if.phy_id = np->phys[0];
829 else
830 memset(&np->mii_if, 0, sizeof(np->mii_if));
831 }
832
833 printk(KERN_INFO "%s: scatter-gather and hardware TCP cksumming %s.\n",
834 dev->name, enable_hw_cksum ? "enabled" : "disabled");
835 return 0;
836
837err_out_cleardev:
838 iounmap(base);
839err_out_free_res:
840 pci_release_regions (pdev);
841err_out_free_netdev:
842 free_netdev(dev);
843 return -ENODEV;
844}
845
846
847
848static int mdio_read(struct net_device *dev, int phy_id, int location)
849{
850 struct netdev_private *np = netdev_priv(dev);
851 void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
852 int result, boguscnt=1000;
853
854 do {
855 result = readl(mdio_addr);
856 } while ((result & 0xC0000000) != 0x80000000 && --boguscnt > 0);
857 if (boguscnt == 0)
858 return 0;
859 if ((result & 0xffff) == 0xffff)
860 return 0;
861 return result & 0xffff;
862}
863
864
865static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
866{
867 struct netdev_private *np = netdev_priv(dev);
868 void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
869 writel(value, mdio_addr);
870
871}
872
873
874static int netdev_open(struct net_device *dev)
875{
876 const struct firmware *fw_rx, *fw_tx;
877 const __be32 *fw_rx_data, *fw_tx_data;
878 struct netdev_private *np = netdev_priv(dev);
879 void __iomem *ioaddr = np->base;
880 const int irq = np->pci_dev->irq;
881 int i, retval;
882 size_t tx_size, rx_size;
883 size_t tx_done_q_size, rx_done_q_size, tx_ring_size, rx_ring_size;
884
885
886
887 retval = request_irq(irq, intr_handler, IRQF_SHARED, dev->name, dev);
888 if (retval)
889 return retval;
890
891
892 writel(0, ioaddr + GenCtrl);
893 writel(1, ioaddr + PCIDeviceConfig);
894 if (debug > 1)
895 printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
896 dev->name, irq);
897
898
899 if (!np->queue_mem) {
900 tx_done_q_size = ((sizeof(struct tx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
901 rx_done_q_size = ((sizeof(rx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
902 tx_ring_size = ((sizeof(starfire_tx_desc) * TX_RING_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
903 rx_ring_size = sizeof(struct starfire_rx_desc) * RX_RING_SIZE;
904 np->queue_mem_size = tx_done_q_size + rx_done_q_size + tx_ring_size + rx_ring_size;
905 np->queue_mem = pci_alloc_consistent(np->pci_dev, np->queue_mem_size, &np->queue_mem_dma);
906 if (np->queue_mem == NULL) {
907 free_irq(irq, dev);
908 return -ENOMEM;
909 }
910
911 np->tx_done_q = np->queue_mem;
912 np->tx_done_q_dma = np->queue_mem_dma;
913 np->rx_done_q = (void *) np->tx_done_q + tx_done_q_size;
914 np->rx_done_q_dma = np->tx_done_q_dma + tx_done_q_size;
915 np->tx_ring = (void *) np->rx_done_q + rx_done_q_size;
916 np->tx_ring_dma = np->rx_done_q_dma + rx_done_q_size;
917 np->rx_ring = (void *) np->tx_ring + tx_ring_size;
918 np->rx_ring_dma = np->tx_ring_dma + tx_ring_size;
919 }
920
921
922 netif_carrier_off(dev);
923 init_ring(dev);
924
925 writel((np->rx_buf_sz << RxBufferLenShift) |
926 (0 << RxMinDescrThreshShift) |
927 RxPrefetchMode | RxVariableQ |
928 RX_Q_ENTRIES |
929 RX_DESC_Q_ADDR_SIZE | RX_DESC_ADDR_SIZE |
930 RxDescSpace4,
931 ioaddr + RxDescQCtrl);
932
933
934 writel(RxChecksumIgnore |
935 (0 << RxEarlyIntThreshShift) |
936 (6 << RxHighPrioThreshShift) |
937 ((DMA_BURST_SIZE / 32) << RxBurstSizeShift),
938 ioaddr + RxDMACtrl);
939
940
941 writel((2 << TxHiPriFIFOThreshShift) |
942 (0 << TxPadLenShift) |
943 ((DMA_BURST_SIZE / 32) << TxDMABurstSizeShift) |
944 TX_DESC_Q_ADDR_SIZE |
945 TX_DESC_SPACING | TX_DESC_TYPE,
946 ioaddr + TxDescCtrl);
947
948 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + RxDescQHiAddr);
949 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + TxRingHiAddr);
950 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + CompletionHiAddr);
951 writel(np->rx_ring_dma, ioaddr + RxDescQAddr);
952 writel(np->tx_ring_dma, ioaddr + TxRingPtr);
953
954 writel(np->tx_done_q_dma, ioaddr + TxCompletionAddr);
955 writel(np->rx_done_q_dma |
956 RxComplType |
957 (0 << RxComplThreshShift),
958 ioaddr + RxCompletionAddr);
959
960 if (debug > 1)
961 printk(KERN_DEBUG "%s: Filling in the station address.\n", dev->name);
962
963
964 for (i = 0; i < 6; i++)
965 writeb(dev->dev_addr[i], ioaddr + TxStationAddr + 5 - i);
966
967
968 writew(0, ioaddr + PerfFilterTable);
969 writew(0, ioaddr + PerfFilterTable + 4);
970 writew(0, ioaddr + PerfFilterTable + 8);
971 for (i = 1; i < 16; i++) {
972 __be16 *eaddrs = (__be16 *)dev->dev_addr;
973 void __iomem *setup_frm = ioaddr + PerfFilterTable + i * 16;
974 writew(be16_to_cpu(eaddrs[2]), setup_frm); setup_frm += 4;
975 writew(be16_to_cpu(eaddrs[1]), setup_frm); setup_frm += 4;
976 writew(be16_to_cpu(eaddrs[0]), setup_frm); setup_frm += 8;
977 }
978
979
980
981 np->tx_mode = TxFlowEnable|RxFlowEnable|PadEnable;
982 writel(MiiSoftReset | np->tx_mode, ioaddr + TxMode);
983 udelay(1000);
984 writel(np->tx_mode, ioaddr + TxMode);
985 np->tx_threshold = 4;
986 writel(np->tx_threshold, ioaddr + TxThreshold);
987
988 writel(np->intr_timer_ctrl, ioaddr + IntrTimerCtrl);
989
990 napi_enable(&np->napi);
991
992 netif_start_queue(dev);
993
994 if (debug > 1)
995 printk(KERN_DEBUG "%s: Setting the Rx and Tx modes.\n", dev->name);
996 set_rx_mode(dev);
997
998 np->mii_if.advertising = mdio_read(dev, np->phys[0], MII_ADVERTISE);
999 check_duplex(dev);
1000
1001
1002 writel(0x0f00ff00, ioaddr + GPIOCtrl);
1003
1004
1005 writel(IntrRxDone | IntrRxEmpty | IntrDMAErr |
1006 IntrTxDMADone | IntrStatsMax | IntrLinkChange |
1007 IntrRxGFPDead | IntrNoTxCsum | IntrTxBadID,
1008 ioaddr + IntrEnable);
1009
1010 writel(0x00800000 | readl(ioaddr + PCIDeviceConfig),
1011 ioaddr + PCIDeviceConfig);
1012
1013#ifdef VLAN_SUPPORT
1014
1015 writel(ETH_P_8021Q, ioaddr + VlanType);
1016#endif
1017
1018 retval = request_firmware(&fw_rx, FIRMWARE_RX, &np->pci_dev->dev);
1019 if (retval) {
1020 printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
1021 FIRMWARE_RX);
1022 goto out_init;
1023 }
1024 if (fw_rx->size % 4) {
1025 printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
1026 fw_rx->size, FIRMWARE_RX);
1027 retval = -EINVAL;
1028 goto out_rx;
1029 }
1030 retval = request_firmware(&fw_tx, FIRMWARE_TX, &np->pci_dev->dev);
1031 if (retval) {
1032 printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
1033 FIRMWARE_TX);
1034 goto out_rx;
1035 }
1036 if (fw_tx->size % 4) {
1037 printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
1038 fw_tx->size, FIRMWARE_TX);
1039 retval = -EINVAL;
1040 goto out_tx;
1041 }
1042 fw_rx_data = (const __be32 *)&fw_rx->data[0];
1043 fw_tx_data = (const __be32 *)&fw_tx->data[0];
1044 rx_size = fw_rx->size / 4;
1045 tx_size = fw_tx->size / 4;
1046
1047
1048 for (i = 0; i < rx_size; i++)
1049 writel(be32_to_cpup(&fw_rx_data[i]), ioaddr + RxGfpMem + i * 4);
1050 for (i = 0; i < tx_size; i++)
1051 writel(be32_to_cpup(&fw_tx_data[i]), ioaddr + TxGfpMem + i * 4);
1052 if (enable_hw_cksum)
1053
1054 writel(TxEnable|TxGFPEnable|RxEnable|RxGFPEnable, ioaddr + GenCtrl);
1055 else
1056
1057 writel(TxEnable|RxEnable, ioaddr + GenCtrl);
1058
1059 if (debug > 1)
1060 printk(KERN_DEBUG "%s: Done netdev_open().\n",
1061 dev->name);
1062
1063out_tx:
1064 release_firmware(fw_tx);
1065out_rx:
1066 release_firmware(fw_rx);
1067out_init:
1068 if (retval)
1069 netdev_close(dev);
1070 return retval;
1071}
1072
1073
1074static void check_duplex(struct net_device *dev)
1075{
1076 struct netdev_private *np = netdev_priv(dev);
1077 u16 reg0;
1078 int silly_count = 1000;
1079
1080 mdio_write(dev, np->phys[0], MII_ADVERTISE, np->mii_if.advertising);
1081 mdio_write(dev, np->phys[0], MII_BMCR, BMCR_RESET);
1082 udelay(500);
1083 while (--silly_count && mdio_read(dev, np->phys[0], MII_BMCR) & BMCR_RESET)
1084 ;
1085 if (!silly_count) {
1086 printk("%s: MII reset failed!\n", dev->name);
1087 return;
1088 }
1089
1090 reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1091
1092 if (!np->mii_if.force_media) {
1093 reg0 |= BMCR_ANENABLE | BMCR_ANRESTART;
1094 } else {
1095 reg0 &= ~(BMCR_ANENABLE | BMCR_ANRESTART);
1096 if (np->speed100)
1097 reg0 |= BMCR_SPEED100;
1098 if (np->mii_if.full_duplex)
1099 reg0 |= BMCR_FULLDPLX;
1100 printk(KERN_DEBUG "%s: Link forced to %sMbit %s-duplex\n",
1101 dev->name,
1102 np->speed100 ? "100" : "10",
1103 np->mii_if.full_duplex ? "full" : "half");
1104 }
1105 mdio_write(dev, np->phys[0], MII_BMCR, reg0);
1106}
1107
1108
1109static void tx_timeout(struct net_device *dev)
1110{
1111 struct netdev_private *np = netdev_priv(dev);
1112 void __iomem *ioaddr = np->base;
1113 int old_debug;
1114
1115 printk(KERN_WARNING "%s: Transmit timed out, status %#8.8x, "
1116 "resetting...\n", dev->name, (int) readl(ioaddr + IntrStatus));
1117
1118
1119
1120
1121
1122
1123
1124 old_debug = debug;
1125 debug = 2;
1126 netdev_close(dev);
1127 netdev_open(dev);
1128 debug = old_debug;
1129
1130
1131
1132 dev->trans_start = jiffies;
1133 dev->stats.tx_errors++;
1134 netif_wake_queue(dev);
1135}
1136
1137
1138
1139static void init_ring(struct net_device *dev)
1140{
1141 struct netdev_private *np = netdev_priv(dev);
1142 int i;
1143
1144 np->cur_rx = np->cur_tx = np->reap_tx = 0;
1145 np->dirty_rx = np->dirty_tx = np->rx_done = np->tx_done = 0;
1146
1147 np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1148
1149
1150 for (i = 0; i < RX_RING_SIZE; i++) {
1151 struct sk_buff *skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1152 np->rx_info[i].skb = skb;
1153 if (skb == NULL)
1154 break;
1155 np->rx_info[i].mapping = pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1156
1157 np->rx_ring[i].rxaddr = cpu_to_dma(np->rx_info[i].mapping | RxDescValid);
1158 }
1159 writew(i - 1, np->base + RxDescQIdx);
1160 np->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1161
1162
1163 for ( ; i < RX_RING_SIZE; i++) {
1164 np->rx_ring[i].rxaddr = 0;
1165 np->rx_info[i].skb = NULL;
1166 np->rx_info[i].mapping = 0;
1167 }
1168
1169 np->rx_ring[RX_RING_SIZE - 1].rxaddr |= cpu_to_dma(RxDescEndRing);
1170
1171
1172 for (i = 0; i < DONE_Q_SIZE; i++) {
1173 np->rx_done_q[i].status = 0;
1174 np->tx_done_q[i].status = 0;
1175 }
1176
1177 for (i = 0; i < TX_RING_SIZE; i++)
1178 memset(&np->tx_info[i], 0, sizeof(np->tx_info[i]));
1179}
1180
1181
1182static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev)
1183{
1184 struct netdev_private *np = netdev_priv(dev);
1185 unsigned int entry;
1186 u32 status;
1187 int i;
1188
1189
1190
1191
1192
1193 if ((np->cur_tx - np->dirty_tx) + skb_num_frags(skb) * 2 > TX_RING_SIZE) {
1194 netif_stop_queue(dev);
1195 return NETDEV_TX_BUSY;
1196 }
1197
1198#if defined(ZEROCOPY) && defined(HAS_BROKEN_FIRMWARE)
1199 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1200 if (skb_padto(skb, (skb->len + PADDING_MASK) & ~PADDING_MASK))
1201 return NETDEV_TX_OK;
1202 }
1203#endif
1204
1205 entry = np->cur_tx % TX_RING_SIZE;
1206 for (i = 0; i < skb_num_frags(skb); i++) {
1207 int wrap_ring = 0;
1208 status = TxDescID;
1209
1210 if (i == 0) {
1211 np->tx_info[entry].skb = skb;
1212 status |= TxCRCEn;
1213 if (entry >= TX_RING_SIZE - skb_num_frags(skb)) {
1214 status |= TxRingWrap;
1215 wrap_ring = 1;
1216 }
1217 if (np->reap_tx) {
1218 status |= TxDescIntr;
1219 np->reap_tx = 0;
1220 }
1221 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1222 status |= TxCalTCP;
1223 dev->stats.tx_compressed++;
1224 }
1225 status |= skb_first_frag_len(skb) | (skb_num_frags(skb) << 16);
1226
1227 np->tx_info[entry].mapping =
1228 pci_map_single(np->pci_dev, skb->data, skb_first_frag_len(skb), PCI_DMA_TODEVICE);
1229 } else {
1230 const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[i - 1];
1231 status |= skb_frag_size(this_frag);
1232 np->tx_info[entry].mapping =
1233 pci_map_single(np->pci_dev,
1234 skb_frag_address(this_frag),
1235 skb_frag_size(this_frag),
1236 PCI_DMA_TODEVICE);
1237 }
1238
1239 np->tx_ring[entry].addr = cpu_to_dma(np->tx_info[entry].mapping);
1240 np->tx_ring[entry].status = cpu_to_le32(status);
1241 if (debug > 3)
1242 printk(KERN_DEBUG "%s: Tx #%d/#%d slot %d status %#8.8x.\n",
1243 dev->name, np->cur_tx, np->dirty_tx,
1244 entry, status);
1245 if (wrap_ring) {
1246 np->tx_info[entry].used_slots = TX_RING_SIZE - entry;
1247 np->cur_tx += np->tx_info[entry].used_slots;
1248 entry = 0;
1249 } else {
1250 np->tx_info[entry].used_slots = 1;
1251 np->cur_tx += np->tx_info[entry].used_slots;
1252 entry++;
1253 }
1254
1255 if (np->cur_tx % (TX_RING_SIZE / 2) == 0)
1256 np->reap_tx = 1;
1257 }
1258
1259
1260
1261
1262 wmb();
1263
1264
1265 writel(entry * (sizeof(starfire_tx_desc) / 8), np->base + TxProducerIdx);
1266
1267
1268 if ((np->cur_tx - np->dirty_tx) + 4 > TX_RING_SIZE)
1269 netif_stop_queue(dev);
1270
1271 return NETDEV_TX_OK;
1272}
1273
1274
1275
1276
1277static irqreturn_t intr_handler(int irq, void *dev_instance)
1278{
1279 struct net_device *dev = dev_instance;
1280 struct netdev_private *np = netdev_priv(dev);
1281 void __iomem *ioaddr = np->base;
1282 int boguscnt = max_interrupt_work;
1283 int consumer;
1284 int tx_status;
1285 int handled = 0;
1286
1287 do {
1288 u32 intr_status = readl(ioaddr + IntrClear);
1289
1290 if (debug > 4)
1291 printk(KERN_DEBUG "%s: Interrupt status %#8.8x.\n",
1292 dev->name, intr_status);
1293
1294 if (intr_status == 0 || intr_status == (u32) -1)
1295 break;
1296
1297 handled = 1;
1298
1299 if (intr_status & (IntrRxDone | IntrRxEmpty)) {
1300 u32 enable;
1301
1302 if (likely(napi_schedule_prep(&np->napi))) {
1303 __napi_schedule(&np->napi);
1304 enable = readl(ioaddr + IntrEnable);
1305 enable &= ~(IntrRxDone | IntrRxEmpty);
1306 writel(enable, ioaddr + IntrEnable);
1307
1308 readl(ioaddr + IntrEnable);
1309 } else {
1310
1311 enable = readl(ioaddr + IntrEnable);
1312 if (enable & (IntrRxDone | IntrRxEmpty)) {
1313 printk(KERN_INFO
1314 "%s: interrupt while in poll!\n",
1315 dev->name);
1316 enable &= ~(IntrRxDone | IntrRxEmpty);
1317 writel(enable, ioaddr + IntrEnable);
1318 }
1319 }
1320 }
1321
1322
1323
1324
1325 consumer = readl(ioaddr + TxConsumerIdx);
1326 if (debug > 3)
1327 printk(KERN_DEBUG "%s: Tx Consumer index is %d.\n",
1328 dev->name, consumer);
1329
1330 while ((tx_status = le32_to_cpu(np->tx_done_q[np->tx_done].status)) != 0) {
1331 if (debug > 3)
1332 printk(KERN_DEBUG "%s: Tx completion #%d entry %d is %#8.8x.\n",
1333 dev->name, np->dirty_tx, np->tx_done, tx_status);
1334 if ((tx_status & 0xe0000000) == 0xa0000000) {
1335 dev->stats.tx_packets++;
1336 } else if ((tx_status & 0xe0000000) == 0x80000000) {
1337 u16 entry = (tx_status & 0x7fff) / sizeof(starfire_tx_desc);
1338 struct sk_buff *skb = np->tx_info[entry].skb;
1339 np->tx_info[entry].skb = NULL;
1340 pci_unmap_single(np->pci_dev,
1341 np->tx_info[entry].mapping,
1342 skb_first_frag_len(skb),
1343 PCI_DMA_TODEVICE);
1344 np->tx_info[entry].mapping = 0;
1345 np->dirty_tx += np->tx_info[entry].used_slots;
1346 entry = (entry + np->tx_info[entry].used_slots) % TX_RING_SIZE;
1347 {
1348 int i;
1349 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1350 pci_unmap_single(np->pci_dev,
1351 np->tx_info[entry].mapping,
1352 skb_frag_size(&skb_shinfo(skb)->frags[i]),
1353 PCI_DMA_TODEVICE);
1354 np->dirty_tx++;
1355 entry++;
1356 }
1357 }
1358
1359 dev_kfree_skb_irq(skb);
1360 }
1361 np->tx_done_q[np->tx_done].status = 0;
1362 np->tx_done = (np->tx_done + 1) % DONE_Q_SIZE;
1363 }
1364 writew(np->tx_done, ioaddr + CompletionQConsumerIdx + 2);
1365
1366 if (netif_queue_stopped(dev) &&
1367 (np->cur_tx - np->dirty_tx + 4 < TX_RING_SIZE)) {
1368
1369 netif_wake_queue(dev);
1370 }
1371
1372
1373 if (intr_status & IntrStatsMax)
1374 get_stats(dev);
1375
1376
1377 if (intr_status & IntrLinkChange)
1378 netdev_media_change(dev);
1379
1380
1381 if (intr_status & IntrAbnormalSummary)
1382 netdev_error(dev, intr_status);
1383
1384 if (--boguscnt < 0) {
1385 if (debug > 1)
1386 printk(KERN_WARNING "%s: Too much work at interrupt, "
1387 "status=%#8.8x.\n",
1388 dev->name, intr_status);
1389 break;
1390 }
1391 } while (1);
1392
1393 if (debug > 4)
1394 printk(KERN_DEBUG "%s: exiting interrupt, status=%#8.8x.\n",
1395 dev->name, (int) readl(ioaddr + IntrStatus));
1396 return IRQ_RETVAL(handled);
1397}
1398
1399
1400
1401
1402
1403
1404static int __netdev_rx(struct net_device *dev, int *quota)
1405{
1406 struct netdev_private *np = netdev_priv(dev);
1407 u32 desc_status;
1408 int retcode = 0;
1409
1410
1411 while ((desc_status = le32_to_cpu(np->rx_done_q[np->rx_done].status)) != 0) {
1412 struct sk_buff *skb;
1413 u16 pkt_len;
1414 int entry;
1415 rx_done_desc *desc = &np->rx_done_q[np->rx_done];
1416
1417 if (debug > 4)
1418 printk(KERN_DEBUG " netdev_rx() status of %d was %#8.8x.\n", np->rx_done, desc_status);
1419 if (!(desc_status & RxOK)) {
1420
1421 if (debug > 2)
1422 printk(KERN_DEBUG " netdev_rx() Rx error was %#8.8x.\n", desc_status);
1423 dev->stats.rx_errors++;
1424 if (desc_status & RxFIFOErr)
1425 dev->stats.rx_fifo_errors++;
1426 goto next_rx;
1427 }
1428
1429 if (*quota <= 0) {
1430 retcode = 1;
1431 goto out;
1432 }
1433 (*quota)--;
1434
1435 pkt_len = desc_status;
1436 entry = (desc_status >> 16) & 0x7ff;
1437
1438 if (debug > 4)
1439 printk(KERN_DEBUG " netdev_rx() normal Rx pkt length %d, quota %d.\n", pkt_len, *quota);
1440
1441
1442 if (pkt_len < rx_copybreak &&
1443 (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
1444 skb_reserve(skb, 2);
1445 pci_dma_sync_single_for_cpu(np->pci_dev,
1446 np->rx_info[entry].mapping,
1447 pkt_len, PCI_DMA_FROMDEVICE);
1448 skb_copy_to_linear_data(skb, np->rx_info[entry].skb->data, pkt_len);
1449 pci_dma_sync_single_for_device(np->pci_dev,
1450 np->rx_info[entry].mapping,
1451 pkt_len, PCI_DMA_FROMDEVICE);
1452 skb_put(skb, pkt_len);
1453 } else {
1454 pci_unmap_single(np->pci_dev, np->rx_info[entry].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1455 skb = np->rx_info[entry].skb;
1456 skb_put(skb, pkt_len);
1457 np->rx_info[entry].skb = NULL;
1458 np->rx_info[entry].mapping = 0;
1459 }
1460#ifndef final_version
1461
1462 if (debug > 5) {
1463 printk(KERN_DEBUG " Rx data %pM %pM %2.2x%2.2x.\n",
1464 skb->data, skb->data + 6,
1465 skb->data[12], skb->data[13]);
1466 }
1467#endif
1468
1469 skb->protocol = eth_type_trans(skb, dev);
1470#ifdef VLAN_SUPPORT
1471 if (debug > 4)
1472 printk(KERN_DEBUG " netdev_rx() status2 of %d was %#4.4x.\n", np->rx_done, le16_to_cpu(desc->status2));
1473#endif
1474 if (le16_to_cpu(desc->status2) & 0x0100) {
1475 skb->ip_summed = CHECKSUM_UNNECESSARY;
1476 dev->stats.rx_compressed++;
1477 }
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487 else if (le16_to_cpu(desc->status2) & 0x0040) {
1488 skb->ip_summed = CHECKSUM_COMPLETE;
1489 skb->csum = le16_to_cpu(desc->csum);
1490 printk(KERN_DEBUG "%s: checksum_hw, status2 = %#x\n", dev->name, le16_to_cpu(desc->status2));
1491 }
1492#ifdef VLAN_SUPPORT
1493 if (le16_to_cpu(desc->status2) & 0x0200) {
1494 u16 vlid = le16_to_cpu(desc->vlanid);
1495
1496 if (debug > 4) {
1497 printk(KERN_DEBUG " netdev_rx() vlanid = %d\n",
1498 vlid);
1499 }
1500 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlid);
1501 }
1502#endif
1503 netif_receive_skb(skb);
1504 dev->stats.rx_packets++;
1505
1506 next_rx:
1507 np->cur_rx++;
1508 desc->status = 0;
1509 np->rx_done = (np->rx_done + 1) % DONE_Q_SIZE;
1510 }
1511
1512 if (*quota == 0) {
1513 retcode = 1;
1514 goto out;
1515 }
1516 writew(np->rx_done, np->base + CompletionQConsumerIdx);
1517
1518 out:
1519 refill_rx_ring(dev);
1520 if (debug > 5)
1521 printk(KERN_DEBUG " exiting netdev_rx(): %d, status of %d was %#8.8x.\n",
1522 retcode, np->rx_done, desc_status);
1523 return retcode;
1524}
1525
1526static int netdev_poll(struct napi_struct *napi, int budget)
1527{
1528 struct netdev_private *np = container_of(napi, struct netdev_private, napi);
1529 struct net_device *dev = np->dev;
1530 u32 intr_status;
1531 void __iomem *ioaddr = np->base;
1532 int quota = budget;
1533
1534 do {
1535 writel(IntrRxDone | IntrRxEmpty, ioaddr + IntrClear);
1536
1537 if (__netdev_rx(dev, "a))
1538 goto out;
1539
1540 intr_status = readl(ioaddr + IntrStatus);
1541 } while (intr_status & (IntrRxDone | IntrRxEmpty));
1542
1543 napi_complete(napi);
1544 intr_status = readl(ioaddr + IntrEnable);
1545 intr_status |= IntrRxDone | IntrRxEmpty;
1546 writel(intr_status, ioaddr + IntrEnable);
1547
1548 out:
1549 if (debug > 5)
1550 printk(KERN_DEBUG " exiting netdev_poll(): %d.\n",
1551 budget - quota);
1552
1553
1554 return budget - quota;
1555}
1556
1557static void refill_rx_ring(struct net_device *dev)
1558{
1559 struct netdev_private *np = netdev_priv(dev);
1560 struct sk_buff *skb;
1561 int entry = -1;
1562
1563
1564 for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1565 entry = np->dirty_rx % RX_RING_SIZE;
1566 if (np->rx_info[entry].skb == NULL) {
1567 skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1568 np->rx_info[entry].skb = skb;
1569 if (skb == NULL)
1570 break;
1571 np->rx_info[entry].mapping =
1572 pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1573 np->rx_ring[entry].rxaddr =
1574 cpu_to_dma(np->rx_info[entry].mapping | RxDescValid);
1575 }
1576 if (entry == RX_RING_SIZE - 1)
1577 np->rx_ring[entry].rxaddr |= cpu_to_dma(RxDescEndRing);
1578 }
1579 if (entry >= 0)
1580 writew(entry, np->base + RxDescQIdx);
1581}
1582
1583
1584static void netdev_media_change(struct net_device *dev)
1585{
1586 struct netdev_private *np = netdev_priv(dev);
1587 void __iomem *ioaddr = np->base;
1588 u16 reg0, reg1, reg4, reg5;
1589 u32 new_tx_mode;
1590 u32 new_intr_timer_ctrl;
1591
1592
1593 mdio_read(dev, np->phys[0], MII_BMCR);
1594 mdio_read(dev, np->phys[0], MII_BMSR);
1595
1596 reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1597 reg1 = mdio_read(dev, np->phys[0], MII_BMSR);
1598
1599 if (reg1 & BMSR_LSTATUS) {
1600
1601 if (reg0 & BMCR_ANENABLE) {
1602
1603 reg4 = mdio_read(dev, np->phys[0], MII_ADVERTISE);
1604 reg5 = mdio_read(dev, np->phys[0], MII_LPA);
1605 if (reg4 & ADVERTISE_100FULL && reg5 & LPA_100FULL) {
1606 np->speed100 = 1;
1607 np->mii_if.full_duplex = 1;
1608 } else if (reg4 & ADVERTISE_100HALF && reg5 & LPA_100HALF) {
1609 np->speed100 = 1;
1610 np->mii_if.full_duplex = 0;
1611 } else if (reg4 & ADVERTISE_10FULL && reg5 & LPA_10FULL) {
1612 np->speed100 = 0;
1613 np->mii_if.full_duplex = 1;
1614 } else {
1615 np->speed100 = 0;
1616 np->mii_if.full_duplex = 0;
1617 }
1618 } else {
1619
1620 if (reg0 & BMCR_SPEED100)
1621 np->speed100 = 1;
1622 else
1623 np->speed100 = 0;
1624 if (reg0 & BMCR_FULLDPLX)
1625 np->mii_if.full_duplex = 1;
1626 else
1627 np->mii_if.full_duplex = 0;
1628 }
1629 netif_carrier_on(dev);
1630 printk(KERN_DEBUG "%s: Link is up, running at %sMbit %s-duplex\n",
1631 dev->name,
1632 np->speed100 ? "100" : "10",
1633 np->mii_if.full_duplex ? "full" : "half");
1634
1635 new_tx_mode = np->tx_mode & ~FullDuplex;
1636 if (np->mii_if.full_duplex)
1637 new_tx_mode |= FullDuplex;
1638 if (np->tx_mode != new_tx_mode) {
1639 np->tx_mode = new_tx_mode;
1640 writel(np->tx_mode | MiiSoftReset, ioaddr + TxMode);
1641 udelay(1000);
1642 writel(np->tx_mode, ioaddr + TxMode);
1643 }
1644
1645 new_intr_timer_ctrl = np->intr_timer_ctrl & ~Timer10X;
1646 if (np->speed100)
1647 new_intr_timer_ctrl |= Timer10X;
1648 if (np->intr_timer_ctrl != new_intr_timer_ctrl) {
1649 np->intr_timer_ctrl = new_intr_timer_ctrl;
1650 writel(new_intr_timer_ctrl, ioaddr + IntrTimerCtrl);
1651 }
1652 } else {
1653 netif_carrier_off(dev);
1654 printk(KERN_DEBUG "%s: Link is down\n", dev->name);
1655 }
1656}
1657
1658
1659static void netdev_error(struct net_device *dev, int intr_status)
1660{
1661 struct netdev_private *np = netdev_priv(dev);
1662
1663
1664 if (intr_status & IntrTxDataLow) {
1665 if (np->tx_threshold <= PKT_BUF_SZ / 16) {
1666 writel(++np->tx_threshold, np->base + TxThreshold);
1667 printk(KERN_NOTICE "%s: PCI bus congestion, increasing Tx FIFO threshold to %d bytes\n",
1668 dev->name, np->tx_threshold * 16);
1669 } else
1670 printk(KERN_WARNING "%s: PCI Tx underflow -- adapter is probably malfunctioning\n", dev->name);
1671 }
1672 if (intr_status & IntrRxGFPDead) {
1673 dev->stats.rx_fifo_errors++;
1674 dev->stats.rx_errors++;
1675 }
1676 if (intr_status & (IntrNoTxCsum | IntrDMAErr)) {
1677 dev->stats.tx_fifo_errors++;
1678 dev->stats.tx_errors++;
1679 }
1680 if ((intr_status & ~(IntrNormalMask | IntrAbnormalSummary | IntrLinkChange | IntrStatsMax | IntrTxDataLow | IntrRxGFPDead | IntrNoTxCsum | IntrPCIPad)) && debug)
1681 printk(KERN_ERR "%s: Something Wicked happened! %#8.8x.\n",
1682 dev->name, intr_status);
1683}
1684
1685
1686static struct net_device_stats *get_stats(struct net_device *dev)
1687{
1688 struct netdev_private *np = netdev_priv(dev);
1689 void __iomem *ioaddr = np->base;
1690
1691
1692 dev->stats.tx_bytes = readl(ioaddr + 0x57010);
1693 dev->stats.rx_bytes = readl(ioaddr + 0x57044);
1694 dev->stats.tx_packets = readl(ioaddr + 0x57000);
1695 dev->stats.tx_aborted_errors =
1696 readl(ioaddr + 0x57024) + readl(ioaddr + 0x57028);
1697 dev->stats.tx_window_errors = readl(ioaddr + 0x57018);
1698 dev->stats.collisions =
1699 readl(ioaddr + 0x57004) + readl(ioaddr + 0x57008);
1700
1701
1702 dev->stats.rx_dropped += readw(ioaddr + RxDMAStatus);
1703 writew(0, ioaddr + RxDMAStatus);
1704 dev->stats.rx_crc_errors = readl(ioaddr + 0x5703C);
1705 dev->stats.rx_frame_errors = readl(ioaddr + 0x57040);
1706 dev->stats.rx_length_errors = readl(ioaddr + 0x57058);
1707 dev->stats.rx_missed_errors = readl(ioaddr + 0x5707C);
1708
1709 return &dev->stats;
1710}
1711
1712#ifdef VLAN_SUPPORT
1713static u32 set_vlan_mode(struct netdev_private *np)
1714{
1715 u32 ret = VlanMode;
1716 u16 vid;
1717 void __iomem *filter_addr = np->base + HashTable + 8;
1718 int vlan_count = 0;
1719
1720 for_each_set_bit(vid, np->active_vlans, VLAN_N_VID) {
1721 if (vlan_count == 32)
1722 break;
1723 writew(vid, filter_addr);
1724 filter_addr += 16;
1725 vlan_count++;
1726 }
1727 if (vlan_count == 32) {
1728 ret |= PerfectFilterVlan;
1729 while (vlan_count < 32) {
1730 writew(0, filter_addr);
1731 filter_addr += 16;
1732 vlan_count++;
1733 }
1734 }
1735 return ret;
1736}
1737#endif
1738
1739static void set_rx_mode(struct net_device *dev)
1740{
1741 struct netdev_private *np = netdev_priv(dev);
1742 void __iomem *ioaddr = np->base;
1743 u32 rx_mode = MinVLANPrio;
1744 struct netdev_hw_addr *ha;
1745 int i;
1746
1747#ifdef VLAN_SUPPORT
1748 rx_mode |= set_vlan_mode(np);
1749#endif
1750
1751 if (dev->flags & IFF_PROMISC) {
1752 rx_mode |= AcceptAll;
1753 } else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
1754 (dev->flags & IFF_ALLMULTI)) {
1755
1756 rx_mode |= AcceptBroadcast|AcceptAllMulticast|PerfectFilter;
1757 } else if (netdev_mc_count(dev) <= 14) {
1758
1759 void __iomem *filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1760 __be16 *eaddrs;
1761 netdev_for_each_mc_addr(ha, dev) {
1762 eaddrs = (__be16 *) ha->addr;
1763 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 4;
1764 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1765 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 8;
1766 }
1767 eaddrs = (__be16 *)dev->dev_addr;
1768 i = netdev_mc_count(dev) + 2;
1769 while (i++ < 16) {
1770 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1771 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1772 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1773 }
1774 rx_mode |= AcceptBroadcast|PerfectFilter;
1775 } else {
1776
1777 void __iomem *filter_addr;
1778 __be16 *eaddrs;
1779 __le16 mc_filter[32] __attribute__ ((aligned(sizeof(long))));
1780
1781 memset(mc_filter, 0, sizeof(mc_filter));
1782 netdev_for_each_mc_addr(ha, dev) {
1783
1784
1785 int bit_nr = ether_crc_le(ETH_ALEN, ha->addr) >> 23;
1786 __le32 *fptr = (__le32 *) &mc_filter[(bit_nr >> 4) & ~1];
1787
1788 *fptr |= cpu_to_le32(1 << (bit_nr & 31));
1789 }
1790
1791 filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1792 eaddrs = (__be16 *)dev->dev_addr;
1793 for (i = 2; i < 16; i++) {
1794 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1795 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1796 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1797 }
1798 for (filter_addr = ioaddr + HashTable, i = 0; i < 32; filter_addr+= 16, i++)
1799 writew(mc_filter[i], filter_addr);
1800 rx_mode |= AcceptBroadcast|PerfectFilter|HashFilter;
1801 }
1802 writel(rx_mode, ioaddr + RxFilterMode);
1803}
1804
1805static int check_if_running(struct net_device *dev)
1806{
1807 if (!netif_running(dev))
1808 return -EINVAL;
1809 return 0;
1810}
1811
1812static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1813{
1814 struct netdev_private *np = netdev_priv(dev);
1815 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1816 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1817 strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
1818}
1819
1820static int get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1821{
1822 struct netdev_private *np = netdev_priv(dev);
1823 spin_lock_irq(&np->lock);
1824 mii_ethtool_gset(&np->mii_if, ecmd);
1825 spin_unlock_irq(&np->lock);
1826 return 0;
1827}
1828
1829static int set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1830{
1831 struct netdev_private *np = netdev_priv(dev);
1832 int res;
1833 spin_lock_irq(&np->lock);
1834 res = mii_ethtool_sset(&np->mii_if, ecmd);
1835 spin_unlock_irq(&np->lock);
1836 check_duplex(dev);
1837 return res;
1838}
1839
1840static int nway_reset(struct net_device *dev)
1841{
1842 struct netdev_private *np = netdev_priv(dev);
1843 return mii_nway_restart(&np->mii_if);
1844}
1845
1846static u32 get_link(struct net_device *dev)
1847{
1848 struct netdev_private *np = netdev_priv(dev);
1849 return mii_link_ok(&np->mii_if);
1850}
1851
1852static u32 get_msglevel(struct net_device *dev)
1853{
1854 return debug;
1855}
1856
1857static void set_msglevel(struct net_device *dev, u32 val)
1858{
1859 debug = val;
1860}
1861
1862static const struct ethtool_ops ethtool_ops = {
1863 .begin = check_if_running,
1864 .get_drvinfo = get_drvinfo,
1865 .get_settings = get_settings,
1866 .set_settings = set_settings,
1867 .nway_reset = nway_reset,
1868 .get_link = get_link,
1869 .get_msglevel = get_msglevel,
1870 .set_msglevel = set_msglevel,
1871};
1872
1873static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1874{
1875 struct netdev_private *np = netdev_priv(dev);
1876 struct mii_ioctl_data *data = if_mii(rq);
1877 int rc;
1878
1879 if (!netif_running(dev))
1880 return -EINVAL;
1881
1882 spin_lock_irq(&np->lock);
1883 rc = generic_mii_ioctl(&np->mii_if, data, cmd, NULL);
1884 spin_unlock_irq(&np->lock);
1885
1886 if ((cmd == SIOCSMIIREG) && (data->phy_id == np->phys[0]))
1887 check_duplex(dev);
1888
1889 return rc;
1890}
1891
1892static int netdev_close(struct net_device *dev)
1893{
1894 struct netdev_private *np = netdev_priv(dev);
1895 void __iomem *ioaddr = np->base;
1896 int i;
1897
1898 netif_stop_queue(dev);
1899
1900 napi_disable(&np->napi);
1901
1902 if (debug > 1) {
1903 printk(KERN_DEBUG "%s: Shutting down ethercard, Intr status %#8.8x.\n",
1904 dev->name, (int) readl(ioaddr + IntrStatus));
1905 printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
1906 dev->name, np->cur_tx, np->dirty_tx,
1907 np->cur_rx, np->dirty_rx);
1908 }
1909
1910
1911 writel(0, ioaddr + IntrEnable);
1912
1913
1914 writel(0, ioaddr + GenCtrl);
1915 readl(ioaddr + GenCtrl);
1916
1917 if (debug > 5) {
1918 printk(KERN_DEBUG" Tx ring at %#llx:\n",
1919 (long long) np->tx_ring_dma);
1920 for (i = 0; i < 8 ; i++)
1921 printk(KERN_DEBUG " #%d desc. %#8.8x %#llx -> %#8.8x.\n",
1922 i, le32_to_cpu(np->tx_ring[i].status),
1923 (long long) dma_to_cpu(np->tx_ring[i].addr),
1924 le32_to_cpu(np->tx_done_q[i].status));
1925 printk(KERN_DEBUG " Rx ring at %#llx -> %p:\n",
1926 (long long) np->rx_ring_dma, np->rx_done_q);
1927 if (np->rx_done_q)
1928 for (i = 0; i < 8 ; i++) {
1929 printk(KERN_DEBUG " #%d desc. %#llx -> %#8.8x\n",
1930 i, (long long) dma_to_cpu(np->rx_ring[i].rxaddr), le32_to_cpu(np->rx_done_q[i].status));
1931 }
1932 }
1933
1934 free_irq(np->pci_dev->irq, dev);
1935
1936
1937 for (i = 0; i < RX_RING_SIZE; i++) {
1938 np->rx_ring[i].rxaddr = cpu_to_dma(0xBADF00D0);
1939 if (np->rx_info[i].skb != NULL) {
1940 pci_unmap_single(np->pci_dev, np->rx_info[i].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1941 dev_kfree_skb(np->rx_info[i].skb);
1942 }
1943 np->rx_info[i].skb = NULL;
1944 np->rx_info[i].mapping = 0;
1945 }
1946 for (i = 0; i < TX_RING_SIZE; i++) {
1947 struct sk_buff *skb = np->tx_info[i].skb;
1948 if (skb == NULL)
1949 continue;
1950 pci_unmap_single(np->pci_dev,
1951 np->tx_info[i].mapping,
1952 skb_first_frag_len(skb), PCI_DMA_TODEVICE);
1953 np->tx_info[i].mapping = 0;
1954 dev_kfree_skb(skb);
1955 np->tx_info[i].skb = NULL;
1956 }
1957
1958 return 0;
1959}
1960
1961#ifdef CONFIG_PM
1962static int starfire_suspend(struct pci_dev *pdev, pm_message_t state)
1963{
1964 struct net_device *dev = pci_get_drvdata(pdev);
1965
1966 if (netif_running(dev)) {
1967 netif_device_detach(dev);
1968 netdev_close(dev);
1969 }
1970
1971 pci_save_state(pdev);
1972 pci_set_power_state(pdev, pci_choose_state(pdev,state));
1973
1974 return 0;
1975}
1976
1977static int starfire_resume(struct pci_dev *pdev)
1978{
1979 struct net_device *dev = pci_get_drvdata(pdev);
1980
1981 pci_set_power_state(pdev, PCI_D0);
1982 pci_restore_state(pdev);
1983
1984 if (netif_running(dev)) {
1985 netdev_open(dev);
1986 netif_device_attach(dev);
1987 }
1988
1989 return 0;
1990}
1991#endif
1992
1993
1994static void starfire_remove_one(struct pci_dev *pdev)
1995{
1996 struct net_device *dev = pci_get_drvdata(pdev);
1997 struct netdev_private *np = netdev_priv(dev);
1998
1999 BUG_ON(!dev);
2000
2001 unregister_netdev(dev);
2002
2003 if (np->queue_mem)
2004 pci_free_consistent(pdev, np->queue_mem_size, np->queue_mem, np->queue_mem_dma);
2005
2006
2007
2008 pci_set_power_state(pdev, PCI_D3hot);
2009 pci_disable_device(pdev);
2010
2011 iounmap(np->base);
2012 pci_release_regions(pdev);
2013
2014 free_netdev(dev);
2015}
2016
2017
2018static struct pci_driver starfire_driver = {
2019 .name = DRV_NAME,
2020 .probe = starfire_init_one,
2021 .remove = starfire_remove_one,
2022#ifdef CONFIG_PM
2023 .suspend = starfire_suspend,
2024 .resume = starfire_resume,
2025#endif
2026 .id_table = starfire_pci_tbl,
2027};
2028
2029
2030static int __init starfire_init (void)
2031{
2032
2033#ifdef MODULE
2034 printk(version);
2035
2036 printk(KERN_INFO DRV_NAME ": polling (NAPI) enabled\n");
2037#endif
2038
2039 BUILD_BUG_ON(sizeof(dma_addr_t) != sizeof(netdrv_addr_t));
2040
2041 return pci_register_driver(&starfire_driver);
2042}
2043
2044
2045static void __exit starfire_cleanup (void)
2046{
2047 pci_unregister_driver (&starfire_driver);
2048}
2049
2050
2051module_init(starfire_init);
2052module_exit(starfire_cleanup);
2053
2054
2055
2056
2057
2058
2059
2060
2061