linux/drivers/net/ethernet/sfc/net_driver.h
<<
>>
Prefs
   1/****************************************************************************
   2 * Driver for Solarflare network controllers and boards
   3 * Copyright 2005-2006 Fen Systems Ltd.
   4 * Copyright 2005-2013 Solarflare Communications Inc.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published
   8 * by the Free Software Foundation, incorporated herein by reference.
   9 */
  10
  11/* Common definitions for all Efx net driver code */
  12
  13#ifndef EFX_NET_DRIVER_H
  14#define EFX_NET_DRIVER_H
  15
  16#include <linux/netdevice.h>
  17#include <linux/etherdevice.h>
  18#include <linux/ethtool.h>
  19#include <linux/if_vlan.h>
  20#include <linux/timer.h>
  21#include <linux/mdio.h>
  22#include <linux/list.h>
  23#include <linux/pci.h>
  24#include <linux/device.h>
  25#include <linux/highmem.h>
  26#include <linux/workqueue.h>
  27#include <linux/mutex.h>
  28#include <linux/vmalloc.h>
  29#include <linux/i2c.h>
  30#include <linux/mtd/mtd.h>
  31#include <net/busy_poll.h>
  32
  33#include "enum.h"
  34#include "bitfield.h"
  35#include "filter.h"
  36
  37/**************************************************************************
  38 *
  39 * Build definitions
  40 *
  41 **************************************************************************/
  42
  43#define EFX_DRIVER_VERSION      "4.0"
  44
  45#ifdef DEBUG
  46#define EFX_BUG_ON_PARANOID(x) BUG_ON(x)
  47#define EFX_WARN_ON_PARANOID(x) WARN_ON(x)
  48#else
  49#define EFX_BUG_ON_PARANOID(x) do {} while (0)
  50#define EFX_WARN_ON_PARANOID(x) do {} while (0)
  51#endif
  52
  53/**************************************************************************
  54 *
  55 * Efx data structures
  56 *
  57 **************************************************************************/
  58
  59#define EFX_MAX_CHANNELS 32U
  60#define EFX_MAX_RX_QUEUES EFX_MAX_CHANNELS
  61#define EFX_EXTRA_CHANNEL_IOV   0
  62#define EFX_EXTRA_CHANNEL_PTP   1
  63#define EFX_MAX_EXTRA_CHANNELS  2U
  64
  65/* Checksum generation is a per-queue option in hardware, so each
  66 * queue visible to the networking core is backed by two hardware TX
  67 * queues. */
  68#define EFX_MAX_TX_TC           2
  69#define EFX_MAX_CORE_TX_QUEUES  (EFX_MAX_TX_TC * EFX_MAX_CHANNELS)
  70#define EFX_TXQ_TYPE_OFFLOAD    1       /* flag */
  71#define EFX_TXQ_TYPE_HIGHPRI    2       /* flag */
  72#define EFX_TXQ_TYPES           4
  73#define EFX_MAX_TX_QUEUES       (EFX_TXQ_TYPES * EFX_MAX_CHANNELS)
  74
  75/* Maximum possible MTU the driver supports */
  76#define EFX_MAX_MTU (9 * 1024)
  77
  78/* Size of an RX scatter buffer.  Small enough to pack 2 into a 4K page,
  79 * and should be a multiple of the cache line size.
  80 */
  81#define EFX_RX_USR_BUF_SIZE     (2048 - 256)
  82
  83/* If possible, we should ensure cache line alignment at start and end
  84 * of every buffer.  Otherwise, we just need to ensure 4-byte
  85 * alignment of the network header.
  86 */
  87#if NET_IP_ALIGN == 0
  88#define EFX_RX_BUF_ALIGNMENT    L1_CACHE_BYTES
  89#else
  90#define EFX_RX_BUF_ALIGNMENT    4
  91#endif
  92
  93/* Forward declare Precision Time Protocol (PTP) support structure. */
  94struct efx_ptp_data;
  95struct hwtstamp_config;
  96
  97struct efx_self_tests;
  98
  99/**
 100 * struct efx_buffer - A general-purpose DMA buffer
 101 * @addr: host base address of the buffer
 102 * @dma_addr: DMA base address of the buffer
 103 * @len: Buffer length, in bytes
 104 *
 105 * The NIC uses these buffers for its interrupt status registers and
 106 * MAC stats dumps.
 107 */
 108struct efx_buffer {
 109        void *addr;
 110        dma_addr_t dma_addr;
 111        unsigned int len;
 112};
 113
 114/**
 115 * struct efx_special_buffer - DMA buffer entered into buffer table
 116 * @buf: Standard &struct efx_buffer
 117 * @index: Buffer index within controller;s buffer table
 118 * @entries: Number of buffer table entries
 119 *
 120 * The NIC has a buffer table that maps buffers of size %EFX_BUF_SIZE.
 121 * Event and descriptor rings are addressed via one or more buffer
 122 * table entries (and so can be physically non-contiguous, although we
 123 * currently do not take advantage of that).  On Falcon and Siena we
 124 * have to take care of allocating and initialising the entries
 125 * ourselves.  On later hardware this is managed by the firmware and
 126 * @index and @entries are left as 0.
 127 */
 128struct efx_special_buffer {
 129        struct efx_buffer buf;
 130        unsigned int index;
 131        unsigned int entries;
 132};
 133
 134/**
 135 * struct efx_tx_buffer - buffer state for a TX descriptor
 136 * @skb: When @flags & %EFX_TX_BUF_SKB, the associated socket buffer to be
 137 *      freed when descriptor completes
 138 * @heap_buf: When @flags & %EFX_TX_BUF_HEAP, the associated heap buffer to be
 139 *      freed when descriptor completes.
 140 * @option: When @flags & %EFX_TX_BUF_OPTION, a NIC-specific option descriptor.
 141 * @dma_addr: DMA address of the fragment.
 142 * @flags: Flags for allocation and DMA mapping type
 143 * @len: Length of this fragment.
 144 *      This field is zero when the queue slot is empty.
 145 * @unmap_len: Length of this fragment to unmap
 146 * @dma_offset: Offset of @dma_addr from the address of the backing DMA mapping.
 147 * Only valid if @unmap_len != 0.
 148 */
 149struct efx_tx_buffer {
 150        union {
 151                const struct sk_buff *skb;
 152                void *heap_buf;
 153        };
 154        union {
 155                efx_qword_t option;
 156                dma_addr_t dma_addr;
 157        };
 158        unsigned short flags;
 159        unsigned short len;
 160        unsigned short unmap_len;
 161        unsigned short dma_offset;
 162};
 163#define EFX_TX_BUF_CONT         1       /* not last descriptor of packet */
 164#define EFX_TX_BUF_SKB          2       /* buffer is last part of skb */
 165#define EFX_TX_BUF_HEAP         4       /* buffer was allocated with kmalloc() */
 166#define EFX_TX_BUF_MAP_SINGLE   8       /* buffer was mapped with dma_map_single() */
 167#define EFX_TX_BUF_OPTION       0x10    /* empty buffer for option descriptor */
 168
 169/**
 170 * struct efx_tx_queue - An Efx TX queue
 171 *
 172 * This is a ring buffer of TX fragments.
 173 * Since the TX completion path always executes on the same
 174 * CPU and the xmit path can operate on different CPUs,
 175 * performance is increased by ensuring that the completion
 176 * path and the xmit path operate on different cache lines.
 177 * This is particularly important if the xmit path is always
 178 * executing on one CPU which is different from the completion
 179 * path.  There is also a cache line for members which are
 180 * read but not written on the fast path.
 181 *
 182 * @efx: The associated Efx NIC
 183 * @queue: DMA queue number
 184 * @channel: The associated channel
 185 * @core_txq: The networking core TX queue structure
 186 * @buffer: The software buffer ring
 187 * @tsoh_page: Array of pages of TSO header buffers
 188 * @txd: The hardware descriptor ring
 189 * @ptr_mask: The size of the ring minus 1.
 190 * @piobuf: PIO buffer region for this TX queue (shared with its partner).
 191 *      Size of the region is efx_piobuf_size.
 192 * @piobuf_offset: Buffer offset to be specified in PIO descriptors
 193 * @initialised: Has hardware queue been initialised?
 194 * @read_count: Current read pointer.
 195 *      This is the number of buffers that have been removed from both rings.
 196 * @old_write_count: The value of @write_count when last checked.
 197 *      This is here for performance reasons.  The xmit path will
 198 *      only get the up-to-date value of @write_count if this
 199 *      variable indicates that the queue is empty.  This is to
 200 *      avoid cache-line ping-pong between the xmit path and the
 201 *      completion path.
 202 * @merge_events: Number of TX merged completion events
 203 * @insert_count: Current insert pointer
 204 *      This is the number of buffers that have been added to the
 205 *      software ring.
 206 * @write_count: Current write pointer
 207 *      This is the number of buffers that have been added to the
 208 *      hardware ring.
 209 * @old_read_count: The value of read_count when last checked.
 210 *      This is here for performance reasons.  The xmit path will
 211 *      only get the up-to-date value of read_count if this
 212 *      variable indicates that the queue is full.  This is to
 213 *      avoid cache-line ping-pong between the xmit path and the
 214 *      completion path.
 215 * @tso_bursts: Number of times TSO xmit invoked by kernel
 216 * @tso_long_headers: Number of packets with headers too long for standard
 217 *      blocks
 218 * @tso_packets: Number of packets via the TSO xmit path
 219 * @pushes: Number of times the TX push feature has been used
 220 * @pio_packets: Number of times the TX PIO feature has been used
 221 * @empty_read_count: If the completion path has seen the queue as empty
 222 *      and the transmission path has not yet checked this, the value of
 223 *      @read_count bitwise-added to %EFX_EMPTY_COUNT_VALID; otherwise 0.
 224 */
 225struct efx_tx_queue {
 226        /* Members which don't change on the fast path */
 227        struct efx_nic *efx ____cacheline_aligned_in_smp;
 228        unsigned queue;
 229        struct efx_channel *channel;
 230        struct netdev_queue *core_txq;
 231        struct efx_tx_buffer *buffer;
 232        struct efx_buffer *tsoh_page;
 233        struct efx_special_buffer txd;
 234        unsigned int ptr_mask;
 235        void __iomem *piobuf;
 236        unsigned int piobuf_offset;
 237        bool initialised;
 238
 239        /* Members used mainly on the completion path */
 240        unsigned int read_count ____cacheline_aligned_in_smp;
 241        unsigned int old_write_count;
 242        unsigned int merge_events;
 243
 244        /* Members used only on the xmit path */
 245        unsigned int insert_count ____cacheline_aligned_in_smp;
 246        unsigned int write_count;
 247        unsigned int old_read_count;
 248        unsigned int tso_bursts;
 249        unsigned int tso_long_headers;
 250        unsigned int tso_packets;
 251        unsigned int pushes;
 252        unsigned int pio_packets;
 253        /* Statistics to supplement MAC stats */
 254        unsigned long tx_packets;
 255
 256        /* Members shared between paths and sometimes updated */
 257        unsigned int empty_read_count ____cacheline_aligned_in_smp;
 258#define EFX_EMPTY_COUNT_VALID 0x80000000
 259        atomic_t flush_outstanding;
 260};
 261
 262/**
 263 * struct efx_rx_buffer - An Efx RX data buffer
 264 * @dma_addr: DMA base address of the buffer
 265 * @page: The associated page buffer.
 266 *      Will be %NULL if the buffer slot is currently free.
 267 * @page_offset: If pending: offset in @page of DMA base address.
 268 *      If completed: offset in @page of Ethernet header.
 269 * @len: If pending: length for DMA descriptor.
 270 *      If completed: received length, excluding hash prefix.
 271 * @flags: Flags for buffer and packet state.  These are only set on the
 272 *      first buffer of a scattered packet.
 273 */
 274struct efx_rx_buffer {
 275        dma_addr_t dma_addr;
 276        struct page *page;
 277        u16 page_offset;
 278        u16 len;
 279        u16 flags;
 280};
 281#define EFX_RX_BUF_LAST_IN_PAGE 0x0001
 282#define EFX_RX_PKT_CSUMMED      0x0002
 283#define EFX_RX_PKT_DISCARD      0x0004
 284#define EFX_RX_PKT_TCP          0x0040
 285#define EFX_RX_PKT_PREFIX_LEN   0x0080  /* length is in prefix only */
 286
 287/**
 288 * struct efx_rx_page_state - Page-based rx buffer state
 289 *
 290 * Inserted at the start of every page allocated for receive buffers.
 291 * Used to facilitate sharing dma mappings between recycled rx buffers
 292 * and those passed up to the kernel.
 293 *
 294 * @dma_addr: The dma address of this page.
 295 */
 296struct efx_rx_page_state {
 297        dma_addr_t dma_addr;
 298
 299        unsigned int __pad[0] ____cacheline_aligned;
 300};
 301
 302/**
 303 * struct efx_rx_queue - An Efx RX queue
 304 * @efx: The associated Efx NIC
 305 * @core_index:  Index of network core RX queue.  Will be >= 0 iff this
 306 *      is associated with a real RX queue.
 307 * @buffer: The software buffer ring
 308 * @rxd: The hardware descriptor ring
 309 * @ptr_mask: The size of the ring minus 1.
 310 * @refill_enabled: Enable refill whenever fill level is low
 311 * @flush_pending: Set when a RX flush is pending. Has the same lifetime as
 312 *      @rxq_flush_pending.
 313 * @added_count: Number of buffers added to the receive queue.
 314 * @notified_count: Number of buffers given to NIC (<= @added_count).
 315 * @removed_count: Number of buffers removed from the receive queue.
 316 * @scatter_n: Used by NIC specific receive code.
 317 * @scatter_len: Used by NIC specific receive code.
 318 * @page_ring: The ring to store DMA mapped pages for reuse.
 319 * @page_add: Counter to calculate the write pointer for the recycle ring.
 320 * @page_remove: Counter to calculate the read pointer for the recycle ring.
 321 * @page_recycle_count: The number of pages that have been recycled.
 322 * @page_recycle_failed: The number of pages that couldn't be recycled because
 323 *      the kernel still held a reference to them.
 324 * @page_recycle_full: The number of pages that were released because the
 325 *      recycle ring was full.
 326 * @page_ptr_mask: The number of pages in the RX recycle ring minus 1.
 327 * @max_fill: RX descriptor maximum fill level (<= ring size)
 328 * @fast_fill_trigger: RX descriptor fill level that will trigger a fast fill
 329 *      (<= @max_fill)
 330 * @min_fill: RX descriptor minimum non-zero fill level.
 331 *      This records the minimum fill level observed when a ring
 332 *      refill was triggered.
 333 * @recycle_count: RX buffer recycle counter.
 334 * @slow_fill: Timer used to defer efx_nic_generate_fill_event().
 335 */
 336struct efx_rx_queue {
 337        struct efx_nic *efx;
 338        int core_index;
 339        struct efx_rx_buffer *buffer;
 340        struct efx_special_buffer rxd;
 341        unsigned int ptr_mask;
 342        bool refill_enabled;
 343        bool flush_pending;
 344
 345        unsigned int added_count;
 346        unsigned int notified_count;
 347        unsigned int removed_count;
 348        unsigned int scatter_n;
 349        unsigned int scatter_len;
 350        struct page **page_ring;
 351        unsigned int page_add;
 352        unsigned int page_remove;
 353        unsigned int page_recycle_count;
 354        unsigned int page_recycle_failed;
 355        unsigned int page_recycle_full;
 356        unsigned int page_ptr_mask;
 357        unsigned int max_fill;
 358        unsigned int fast_fill_trigger;
 359        unsigned int min_fill;
 360        unsigned int min_overfill;
 361        unsigned int recycle_count;
 362        struct timer_list slow_fill;
 363        unsigned int slow_fill_count;
 364        /* Statistics to supplement MAC stats */
 365        unsigned long rx_packets;
 366};
 367
 368enum efx_sync_events_state {
 369        SYNC_EVENTS_DISABLED = 0,
 370        SYNC_EVENTS_QUIESCENT,
 371        SYNC_EVENTS_REQUESTED,
 372        SYNC_EVENTS_VALID,
 373};
 374
 375/**
 376 * struct efx_channel - An Efx channel
 377 *
 378 * A channel comprises an event queue, at least one TX queue, at least
 379 * one RX queue, and an associated tasklet for processing the event
 380 * queue.
 381 *
 382 * @efx: Associated Efx NIC
 383 * @channel: Channel instance number
 384 * @type: Channel type definition
 385 * @eventq_init: Event queue initialised flag
 386 * @enabled: Channel enabled indicator
 387 * @irq: IRQ number (MSI and MSI-X only)
 388 * @irq_moderation: IRQ moderation value (in hardware ticks)
 389 * @napi_dev: Net device used with NAPI
 390 * @napi_str: NAPI control structure
 391 * @state: state for NAPI vs busy polling
 392 * @state_lock: lock protecting @state
 393 * @eventq: Event queue buffer
 394 * @eventq_mask: Event queue pointer mask
 395 * @eventq_read_ptr: Event queue read pointer
 396 * @event_test_cpu: Last CPU to handle interrupt or test event for this channel
 397 * @irq_count: Number of IRQs since last adaptive moderation decision
 398 * @irq_mod_score: IRQ moderation score
 399 * @n_rx_tobe_disc: Count of RX_TOBE_DISC errors
 400 * @n_rx_ip_hdr_chksum_err: Count of RX IP header checksum errors
 401 * @n_rx_tcp_udp_chksum_err: Count of RX TCP and UDP checksum errors
 402 * @n_rx_mcast_mismatch: Count of unmatched multicast frames
 403 * @n_rx_frm_trunc: Count of RX_FRM_TRUNC errors
 404 * @n_rx_overlength: Count of RX_OVERLENGTH errors
 405 * @n_skbuff_leaks: Count of skbuffs leaked due to RX overrun
 406 * @n_rx_nodesc_trunc: Number of RX packets truncated and then dropped due to
 407 *      lack of descriptors
 408 * @n_rx_merge_events: Number of RX merged completion events
 409 * @n_rx_merge_packets: Number of RX packets completed by merged events
 410 * @rx_pkt_n_frags: Number of fragments in next packet to be delivered by
 411 *      __efx_rx_packet(), or zero if there is none
 412 * @rx_pkt_index: Ring index of first buffer for next packet to be delivered
 413 *      by __efx_rx_packet(), if @rx_pkt_n_frags != 0
 414 * @rx_queue: RX queue for this channel
 415 * @tx_queue: TX queues for this channel
 416 * @sync_events_state: Current state of sync events on this channel
 417 * @sync_timestamp_major: Major part of the last ptp sync event
 418 * @sync_timestamp_minor: Minor part of the last ptp sync event
 419 */
 420struct efx_channel {
 421        struct efx_nic *efx;
 422        int channel;
 423        const struct efx_channel_type *type;
 424        bool eventq_init;
 425        bool enabled;
 426        int irq;
 427        unsigned int irq_moderation;
 428        struct net_device *napi_dev;
 429        struct napi_struct napi_str;
 430#ifdef CONFIG_NET_RX_BUSY_POLL
 431        unsigned int state;
 432        spinlock_t state_lock;
 433#define EFX_CHANNEL_STATE_IDLE          0
 434#define EFX_CHANNEL_STATE_NAPI          (1 << 0)  /* NAPI owns this channel */
 435#define EFX_CHANNEL_STATE_POLL          (1 << 1)  /* poll owns this channel */
 436#define EFX_CHANNEL_STATE_DISABLED      (1 << 2)  /* channel is disabled */
 437#define EFX_CHANNEL_STATE_NAPI_YIELD    (1 << 3)  /* NAPI yielded this channel */
 438#define EFX_CHANNEL_STATE_POLL_YIELD    (1 << 4)  /* poll yielded this channel */
 439#define EFX_CHANNEL_OWNED \
 440        (EFX_CHANNEL_STATE_NAPI | EFX_CHANNEL_STATE_POLL)
 441#define EFX_CHANNEL_LOCKED \
 442        (EFX_CHANNEL_OWNED | EFX_CHANNEL_STATE_DISABLED)
 443#define EFX_CHANNEL_USER_PEND \
 444        (EFX_CHANNEL_STATE_POLL | EFX_CHANNEL_STATE_POLL_YIELD)
 445#endif /* CONFIG_NET_RX_BUSY_POLL */
 446        struct efx_special_buffer eventq;
 447        unsigned int eventq_mask;
 448        unsigned int eventq_read_ptr;
 449        int event_test_cpu;
 450
 451        unsigned int irq_count;
 452        unsigned int irq_mod_score;
 453#ifdef CONFIG_RFS_ACCEL
 454        unsigned int rfs_filters_added;
 455#endif
 456
 457        unsigned n_rx_tobe_disc;
 458        unsigned n_rx_ip_hdr_chksum_err;
 459        unsigned n_rx_tcp_udp_chksum_err;
 460        unsigned n_rx_mcast_mismatch;
 461        unsigned n_rx_frm_trunc;
 462        unsigned n_rx_overlength;
 463        unsigned n_skbuff_leaks;
 464        unsigned int n_rx_nodesc_trunc;
 465        unsigned int n_rx_merge_events;
 466        unsigned int n_rx_merge_packets;
 467
 468        unsigned int rx_pkt_n_frags;
 469        unsigned int rx_pkt_index;
 470
 471        struct efx_rx_queue rx_queue;
 472        struct efx_tx_queue tx_queue[EFX_TXQ_TYPES];
 473
 474        enum efx_sync_events_state sync_events_state;
 475        u32 sync_timestamp_major;
 476        u32 sync_timestamp_minor;
 477};
 478
 479#ifdef CONFIG_NET_RX_BUSY_POLL
 480static inline void efx_channel_init_lock(struct efx_channel *channel)
 481{
 482        spin_lock_init(&channel->state_lock);
 483}
 484
 485/* Called from the device poll routine to get ownership of a channel. */
 486static inline bool efx_channel_lock_napi(struct efx_channel *channel)
 487{
 488        bool rc = true;
 489
 490        spin_lock_bh(&channel->state_lock);
 491        if (channel->state & EFX_CHANNEL_LOCKED) {
 492                WARN_ON(channel->state & EFX_CHANNEL_STATE_NAPI);
 493                channel->state |= EFX_CHANNEL_STATE_NAPI_YIELD;
 494                rc = false;
 495        } else {
 496                /* we don't care if someone yielded */
 497                channel->state = EFX_CHANNEL_STATE_NAPI;
 498        }
 499        spin_unlock_bh(&channel->state_lock);
 500        return rc;
 501}
 502
 503static inline void efx_channel_unlock_napi(struct efx_channel *channel)
 504{
 505        spin_lock_bh(&channel->state_lock);
 506        WARN_ON(channel->state &
 507                (EFX_CHANNEL_STATE_POLL | EFX_CHANNEL_STATE_NAPI_YIELD));
 508
 509        channel->state &= EFX_CHANNEL_STATE_DISABLED;
 510        spin_unlock_bh(&channel->state_lock);
 511}
 512
 513/* Called from efx_busy_poll(). */
 514static inline bool efx_channel_lock_poll(struct efx_channel *channel)
 515{
 516        bool rc = true;
 517
 518        spin_lock_bh(&channel->state_lock);
 519        if ((channel->state & EFX_CHANNEL_LOCKED)) {
 520                channel->state |= EFX_CHANNEL_STATE_POLL_YIELD;
 521                rc = false;
 522        } else {
 523                /* preserve yield marks */
 524                channel->state |= EFX_CHANNEL_STATE_POLL;
 525        }
 526        spin_unlock_bh(&channel->state_lock);
 527        return rc;
 528}
 529
 530/* Returns true if NAPI tried to get the channel while it was locked. */
 531static inline void efx_channel_unlock_poll(struct efx_channel *channel)
 532{
 533        spin_lock_bh(&channel->state_lock);
 534        WARN_ON(channel->state & EFX_CHANNEL_STATE_NAPI);
 535
 536        /* will reset state to idle, unless channel is disabled */
 537        channel->state &= EFX_CHANNEL_STATE_DISABLED;
 538        spin_unlock_bh(&channel->state_lock);
 539}
 540
 541/* True if a socket is polling, even if it did not get the lock. */
 542static inline bool efx_channel_busy_polling(struct efx_channel *channel)
 543{
 544        WARN_ON(!(channel->state & EFX_CHANNEL_OWNED));
 545        return channel->state & EFX_CHANNEL_USER_PEND;
 546}
 547
 548static inline void efx_channel_enable(struct efx_channel *channel)
 549{
 550        spin_lock_bh(&channel->state_lock);
 551        channel->state = EFX_CHANNEL_STATE_IDLE;
 552        spin_unlock_bh(&channel->state_lock);
 553}
 554
 555/* False if the channel is currently owned. */
 556static inline bool efx_channel_disable(struct efx_channel *channel)
 557{
 558        bool rc = true;
 559
 560        spin_lock_bh(&channel->state_lock);
 561        if (channel->state & EFX_CHANNEL_OWNED)
 562                rc = false;
 563        channel->state |= EFX_CHANNEL_STATE_DISABLED;
 564        spin_unlock_bh(&channel->state_lock);
 565
 566        return rc;
 567}
 568
 569#else /* CONFIG_NET_RX_BUSY_POLL */
 570
 571static inline void efx_channel_init_lock(struct efx_channel *channel)
 572{
 573}
 574
 575static inline bool efx_channel_lock_napi(struct efx_channel *channel)
 576{
 577        return true;
 578}
 579
 580static inline void efx_channel_unlock_napi(struct efx_channel *channel)
 581{
 582}
 583
 584static inline bool efx_channel_lock_poll(struct efx_channel *channel)
 585{
 586        return false;
 587}
 588
 589static inline void efx_channel_unlock_poll(struct efx_channel *channel)
 590{
 591}
 592
 593static inline bool efx_channel_busy_polling(struct efx_channel *channel)
 594{
 595        return false;
 596}
 597
 598static inline void efx_channel_enable(struct efx_channel *channel)
 599{
 600}
 601
 602static inline bool efx_channel_disable(struct efx_channel *channel)
 603{
 604        return true;
 605}
 606#endif /* CONFIG_NET_RX_BUSY_POLL */
 607
 608/**
 609 * struct efx_msi_context - Context for each MSI
 610 * @efx: The associated NIC
 611 * @index: Index of the channel/IRQ
 612 * @name: Name of the channel/IRQ
 613 *
 614 * Unlike &struct efx_channel, this is never reallocated and is always
 615 * safe for the IRQ handler to access.
 616 */
 617struct efx_msi_context {
 618        struct efx_nic *efx;
 619        unsigned int index;
 620        char name[IFNAMSIZ + 6];
 621};
 622
 623/**
 624 * struct efx_channel_type - distinguishes traffic and extra channels
 625 * @handle_no_channel: Handle failure to allocate an extra channel
 626 * @pre_probe: Set up extra state prior to initialisation
 627 * @post_remove: Tear down extra state after finalisation, if allocated.
 628 *      May be called on channels that have not been probed.
 629 * @get_name: Generate the channel's name (used for its IRQ handler)
 630 * @copy: Copy the channel state prior to reallocation.  May be %NULL if
 631 *      reallocation is not supported.
 632 * @receive_skb: Handle an skb ready to be passed to netif_receive_skb()
 633 * @keep_eventq: Flag for whether event queue should be kept initialised
 634 *      while the device is stopped
 635 */
 636struct efx_channel_type {
 637        void (*handle_no_channel)(struct efx_nic *);
 638        int (*pre_probe)(struct efx_channel *);
 639        void (*post_remove)(struct efx_channel *);
 640        void (*get_name)(struct efx_channel *, char *buf, size_t len);
 641        struct efx_channel *(*copy)(const struct efx_channel *);
 642        bool (*receive_skb)(struct efx_channel *, struct sk_buff *);
 643        bool keep_eventq;
 644};
 645
 646enum efx_led_mode {
 647        EFX_LED_OFF     = 0,
 648        EFX_LED_ON      = 1,
 649        EFX_LED_DEFAULT = 2
 650};
 651
 652#define STRING_TABLE_LOOKUP(val, member) \
 653        ((val) < member ## _max) ? member ## _names[val] : "(invalid)"
 654
 655extern const char *const efx_loopback_mode_names[];
 656extern const unsigned int efx_loopback_mode_max;
 657#define LOOPBACK_MODE(efx) \
 658        STRING_TABLE_LOOKUP((efx)->loopback_mode, efx_loopback_mode)
 659
 660extern const char *const efx_reset_type_names[];
 661extern const unsigned int efx_reset_type_max;
 662#define RESET_TYPE(type) \
 663        STRING_TABLE_LOOKUP(type, efx_reset_type)
 664
 665enum efx_int_mode {
 666        /* Be careful if altering to correct macro below */
 667        EFX_INT_MODE_MSIX = 0,
 668        EFX_INT_MODE_MSI = 1,
 669        EFX_INT_MODE_LEGACY = 2,
 670        EFX_INT_MODE_MAX        /* Insert any new items before this */
 671};
 672#define EFX_INT_MODE_USE_MSI(x) (((x)->interrupt_mode) <= EFX_INT_MODE_MSI)
 673
 674enum nic_state {
 675        STATE_UNINIT = 0,       /* device being probed/removed or is frozen */
 676        STATE_READY = 1,        /* hardware ready and netdev registered */
 677        STATE_DISABLED = 2,     /* device disabled due to hardware errors */
 678        STATE_RECOVERY = 3,     /* device recovering from PCI error */
 679};
 680
 681/* Forward declaration */
 682struct efx_nic;
 683
 684/* Pseudo bit-mask flow control field */
 685#define EFX_FC_RX       FLOW_CTRL_RX
 686#define EFX_FC_TX       FLOW_CTRL_TX
 687#define EFX_FC_AUTO     4
 688
 689/**
 690 * struct efx_link_state - Current state of the link
 691 * @up: Link is up
 692 * @fd: Link is full-duplex
 693 * @fc: Actual flow control flags
 694 * @speed: Link speed (Mbps)
 695 */
 696struct efx_link_state {
 697        bool up;
 698        bool fd;
 699        u8 fc;
 700        unsigned int speed;
 701};
 702
 703static inline bool efx_link_state_equal(const struct efx_link_state *left,
 704                                        const struct efx_link_state *right)
 705{
 706        return left->up == right->up && left->fd == right->fd &&
 707                left->fc == right->fc && left->speed == right->speed;
 708}
 709
 710/**
 711 * struct efx_phy_operations - Efx PHY operations table
 712 * @probe: Probe PHY and initialise efx->mdio.mode_support, efx->mdio.mmds,
 713 *      efx->loopback_modes.
 714 * @init: Initialise PHY
 715 * @fini: Shut down PHY
 716 * @reconfigure: Reconfigure PHY (e.g. for new link parameters)
 717 * @poll: Update @link_state and report whether it changed.
 718 *      Serialised by the mac_lock.
 719 * @get_settings: Get ethtool settings. Serialised by the mac_lock.
 720 * @set_settings: Set ethtool settings. Serialised by the mac_lock.
 721 * @set_npage_adv: Set abilities advertised in (Extended) Next Page
 722 *      (only needed where AN bit is set in mmds)
 723 * @test_alive: Test that PHY is 'alive' (online)
 724 * @test_name: Get the name of a PHY-specific test/result
 725 * @run_tests: Run tests and record results as appropriate (offline).
 726 *      Flags are the ethtool tests flags.
 727 */
 728struct efx_phy_operations {
 729        int (*probe) (struct efx_nic *efx);
 730        int (*init) (struct efx_nic *efx);
 731        void (*fini) (struct efx_nic *efx);
 732        void (*remove) (struct efx_nic *efx);
 733        int (*reconfigure) (struct efx_nic *efx);
 734        bool (*poll) (struct efx_nic *efx);
 735        void (*get_settings) (struct efx_nic *efx,
 736                              struct ethtool_cmd *ecmd);
 737        int (*set_settings) (struct efx_nic *efx,
 738                             struct ethtool_cmd *ecmd);
 739        void (*set_npage_adv) (struct efx_nic *efx, u32);
 740        int (*test_alive) (struct efx_nic *efx);
 741        const char *(*test_name) (struct efx_nic *efx, unsigned int index);
 742        int (*run_tests) (struct efx_nic *efx, int *results, unsigned flags);
 743        int (*get_module_eeprom) (struct efx_nic *efx,
 744                               struct ethtool_eeprom *ee,
 745                               u8 *data);
 746        int (*get_module_info) (struct efx_nic *efx,
 747                                struct ethtool_modinfo *modinfo);
 748};
 749
 750/**
 751 * enum efx_phy_mode - PHY operating mode flags
 752 * @PHY_MODE_NORMAL: on and should pass traffic
 753 * @PHY_MODE_TX_DISABLED: on with TX disabled
 754 * @PHY_MODE_LOW_POWER: set to low power through MDIO
 755 * @PHY_MODE_OFF: switched off through external control
 756 * @PHY_MODE_SPECIAL: on but will not pass traffic
 757 */
 758enum efx_phy_mode {
 759        PHY_MODE_NORMAL         = 0,
 760        PHY_MODE_TX_DISABLED    = 1,
 761        PHY_MODE_LOW_POWER      = 2,
 762        PHY_MODE_OFF            = 4,
 763        PHY_MODE_SPECIAL        = 8,
 764};
 765
 766static inline bool efx_phy_mode_disabled(enum efx_phy_mode mode)
 767{
 768        return !!(mode & ~PHY_MODE_TX_DISABLED);
 769}
 770
 771/**
 772 * struct efx_hw_stat_desc - Description of a hardware statistic
 773 * @name: Name of the statistic as visible through ethtool, or %NULL if
 774 *      it should not be exposed
 775 * @dma_width: Width in bits (0 for non-DMA statistics)
 776 * @offset: Offset within stats (ignored for non-DMA statistics)
 777 */
 778struct efx_hw_stat_desc {
 779        const char *name;
 780        u16 dma_width;
 781        u16 offset;
 782};
 783
 784/* Number of bits used in a multicast filter hash address */
 785#define EFX_MCAST_HASH_BITS 8
 786
 787/* Number of (single-bit) entries in a multicast filter hash */
 788#define EFX_MCAST_HASH_ENTRIES (1 << EFX_MCAST_HASH_BITS)
 789
 790/* An Efx multicast filter hash */
 791union efx_multicast_hash {
 792        u8 byte[EFX_MCAST_HASH_ENTRIES / 8];
 793        efx_oword_t oword[EFX_MCAST_HASH_ENTRIES / sizeof(efx_oword_t) / 8];
 794};
 795
 796struct efx_vf;
 797struct vfdi_status;
 798
 799/**
 800 * struct efx_nic - an Efx NIC
 801 * @name: Device name (net device name or bus id before net device registered)
 802 * @pci_dev: The PCI device
 803 * @node: List node for maintaning primary/secondary function lists
 804 * @primary: &struct efx_nic instance for the primary function of this
 805 *      controller.  May be the same structure, and may be %NULL if no
 806 *      primary function is bound.  Serialised by rtnl_lock.
 807 * @secondary_list: List of &struct efx_nic instances for the secondary PCI
 808 *      functions of the controller, if this is for the primary function.
 809 *      Serialised by rtnl_lock.
 810 * @type: Controller type attributes
 811 * @legacy_irq: IRQ number
 812 * @workqueue: Workqueue for port reconfigures and the HW monitor.
 813 *      Work items do not hold and must not acquire RTNL.
 814 * @workqueue_name: Name of workqueue
 815 * @reset_work: Scheduled reset workitem
 816 * @membase_phys: Memory BAR value as physical address
 817 * @membase: Memory BAR value
 818 * @interrupt_mode: Interrupt mode
 819 * @timer_quantum_ns: Interrupt timer quantum, in nanoseconds
 820 * @irq_rx_adaptive: Adaptive IRQ moderation enabled for RX event queues
 821 * @irq_rx_moderation: IRQ moderation time for RX event queues
 822 * @msg_enable: Log message enable flags
 823 * @state: Device state number (%STATE_*). Serialised by the rtnl_lock.
 824 * @reset_pending: Bitmask for pending resets
 825 * @tx_queue: TX DMA queues
 826 * @rx_queue: RX DMA queues
 827 * @channel: Channels
 828 * @msi_context: Context for each MSI
 829 * @extra_channel_types: Types of extra (non-traffic) channels that
 830 *      should be allocated for this NIC
 831 * @rxq_entries: Size of receive queues requested by user.
 832 * @txq_entries: Size of transmit queues requested by user.
 833 * @txq_stop_thresh: TX queue fill level at or above which we stop it.
 834 * @txq_wake_thresh: TX queue fill level at or below which we wake it.
 835 * @tx_dc_base: Base qword address in SRAM of TX queue descriptor caches
 836 * @rx_dc_base: Base qword address in SRAM of RX queue descriptor caches
 837 * @sram_lim_qw: Qword address limit of SRAM
 838 * @next_buffer_table: First available buffer table id
 839 * @n_channels: Number of channels in use
 840 * @n_rx_channels: Number of channels used for RX (= number of RX queues)
 841 * @n_tx_channels: Number of channels used for TX
 842 * @rx_ip_align: RX DMA address offset to have IP header aligned in
 843 *      in accordance with NET_IP_ALIGN
 844 * @rx_dma_len: Current maximum RX DMA length
 845 * @rx_buffer_order: Order (log2) of number of pages for each RX buffer
 846 * @rx_buffer_truesize: Amortised allocation size of an RX buffer,
 847 *      for use in sk_buff::truesize
 848 * @rx_prefix_size: Size of RX prefix before packet data
 849 * @rx_packet_hash_offset: Offset of RX flow hash from start of packet data
 850 *      (valid only if @rx_prefix_size != 0; always negative)
 851 * @rx_packet_len_offset: Offset of RX packet length from start of packet data
 852 *      (valid only for NICs that set %EFX_RX_PKT_PREFIX_LEN; always negative)
 853 * @rx_packet_ts_offset: Offset of timestamp from start of packet data
 854 *      (valid only if channel->sync_timestamps_enabled; always negative)
 855 * @rx_hash_key: Toeplitz hash key for RSS
 856 * @rx_indir_table: Indirection table for RSS
 857 * @rx_scatter: Scatter mode enabled for receives
 858 * @int_error_count: Number of internal errors seen recently
 859 * @int_error_expire: Time at which error count will be expired
 860 * @irq_soft_enabled: Are IRQs soft-enabled? If not, IRQ handler will
 861 *      acknowledge but do nothing else.
 862 * @irq_status: Interrupt status buffer
 863 * @irq_zero_count: Number of legacy IRQs seen with queue flags == 0
 864 * @irq_level: IRQ level/index for IRQs not triggered by an event queue
 865 * @selftest_work: Work item for asynchronous self-test
 866 * @mtd_list: List of MTDs attached to the NIC
 867 * @nic_data: Hardware dependent state
 868 * @mcdi: Management-Controller-to-Driver Interface state
 869 * @mac_lock: MAC access lock. Protects @port_enabled, @phy_mode,
 870 *      efx_monitor() and efx_reconfigure_port()
 871 * @port_enabled: Port enabled indicator.
 872 *      Serialises efx_stop_all(), efx_start_all(), efx_monitor() and
 873 *      efx_mac_work() with kernel interfaces. Safe to read under any
 874 *      one of the rtnl_lock, mac_lock, or netif_tx_lock, but all three must
 875 *      be held to modify it.
 876 * @port_initialized: Port initialized?
 877 * @net_dev: Operating system network device. Consider holding the rtnl lock
 878 * @stats_buffer: DMA buffer for statistics
 879 * @phy_type: PHY type
 880 * @phy_op: PHY interface
 881 * @phy_data: PHY private data (including PHY-specific stats)
 882 * @mdio: PHY MDIO interface
 883 * @mdio_bus: PHY MDIO bus ID (only used by Siena)
 884 * @phy_mode: PHY operating mode. Serialised by @mac_lock.
 885 * @link_advertising: Autonegotiation advertising flags
 886 * @link_state: Current state of the link
 887 * @n_link_state_changes: Number of times the link has changed state
 888 * @unicast_filter: Flag for Falcon-arch simple unicast filter.
 889 *      Protected by @mac_lock.
 890 * @multicast_hash: Multicast hash table for Falcon-arch.
 891 *      Protected by @mac_lock.
 892 * @wanted_fc: Wanted flow control flags
 893 * @fc_disable: When non-zero flow control is disabled. Typically used to
 894 *      ensure that network back pressure doesn't delay dma queue flushes.
 895 *      Serialised by the rtnl lock.
 896 * @mac_work: Work item for changing MAC promiscuity and multicast hash
 897 * @loopback_mode: Loopback status
 898 * @loopback_modes: Supported loopback mode bitmask
 899 * @loopback_selftest: Offline self-test private state
 900 * @filter_lock: Filter table lock
 901 * @filter_state: Architecture-dependent filter table state
 902 * @rps_flow_id: Flow IDs of filters allocated for accelerated RFS,
 903 *      indexed by filter ID
 904 * @rps_expire_index: Next index to check for expiry in @rps_flow_id
 905 * @active_queues: Count of RX and TX queues that haven't been flushed and drained.
 906 * @rxq_flush_pending: Count of number of receive queues that need to be flushed.
 907 *      Decremented when the efx_flush_rx_queue() is called.
 908 * @rxq_flush_outstanding: Count of number of RX flushes started but not yet
 909 *      completed (either success or failure). Not used when MCDI is used to
 910 *      flush receive queues.
 911 * @flush_wq: wait queue used by efx_nic_flush_queues() to wait for flush completions.
 912 * @vf: Array of &struct efx_vf objects.
 913 * @vf_count: Number of VFs intended to be enabled.
 914 * @vf_init_count: Number of VFs that have been fully initialised.
 915 * @vi_scale: log2 number of vnics per VF.
 916 * @vf_buftbl_base: The zeroth buffer table index used to back VF queues.
 917 * @vfdi_status: Common VFDI status page to be dmad to VF address space.
 918 * @local_addr_list: List of local addresses. Protected by %local_lock.
 919 * @local_page_list: List of DMA addressable pages used to broadcast
 920 *      %local_addr_list. Protected by %local_lock.
 921 * @local_lock: Mutex protecting %local_addr_list and %local_page_list.
 922 * @peer_work: Work item to broadcast peer addresses to VMs.
 923 * @ptp_data: PTP state data
 924 * @vpd_sn: Serial number read from VPD
 925 * @monitor_work: Hardware monitor workitem
 926 * @biu_lock: BIU (bus interface unit) lock
 927 * @last_irq_cpu: Last CPU to handle a possible test interrupt.  This
 928 *      field is used by efx_test_interrupts() to verify that an
 929 *      interrupt has occurred.
 930 * @stats_lock: Statistics update lock. Must be held when calling
 931 *      efx_nic_type::{update,start,stop}_stats.
 932 * @n_rx_noskb_drops: Count of RX packets dropped due to failure to allocate an skb
 933 *
 934 * This is stored in the private area of the &struct net_device.
 935 */
 936struct efx_nic {
 937        /* The following fields should be written very rarely */
 938
 939        char name[IFNAMSIZ];
 940        struct list_head node;
 941        struct efx_nic *primary;
 942        struct list_head secondary_list;
 943        struct pci_dev *pci_dev;
 944        unsigned int port_num;
 945        const struct efx_nic_type *type;
 946        int legacy_irq;
 947        bool eeh_disabled_legacy_irq;
 948        struct workqueue_struct *workqueue;
 949        char workqueue_name[16];
 950        struct work_struct reset_work;
 951        resource_size_t membase_phys;
 952        void __iomem *membase;
 953
 954        enum efx_int_mode interrupt_mode;
 955        unsigned int timer_quantum_ns;
 956        bool irq_rx_adaptive;
 957        unsigned int irq_rx_moderation;
 958        u32 msg_enable;
 959
 960        enum nic_state state;
 961        unsigned long reset_pending;
 962
 963        struct efx_channel *channel[EFX_MAX_CHANNELS];
 964        struct efx_msi_context msi_context[EFX_MAX_CHANNELS];
 965        const struct efx_channel_type *
 966        extra_channel_type[EFX_MAX_EXTRA_CHANNELS];
 967
 968        unsigned rxq_entries;
 969        unsigned txq_entries;
 970        unsigned int txq_stop_thresh;
 971        unsigned int txq_wake_thresh;
 972
 973        unsigned tx_dc_base;
 974        unsigned rx_dc_base;
 975        unsigned sram_lim_qw;
 976        unsigned next_buffer_table;
 977
 978        unsigned int max_channels;
 979        unsigned n_channels;
 980        unsigned n_rx_channels;
 981        unsigned rss_spread;
 982        unsigned tx_channel_offset;
 983        unsigned n_tx_channels;
 984        unsigned int rx_ip_align;
 985        unsigned int rx_dma_len;
 986        unsigned int rx_buffer_order;
 987        unsigned int rx_buffer_truesize;
 988        unsigned int rx_page_buf_step;
 989        unsigned int rx_bufs_per_page;
 990        unsigned int rx_pages_per_batch;
 991        unsigned int rx_prefix_size;
 992        int rx_packet_hash_offset;
 993        int rx_packet_len_offset;
 994        int rx_packet_ts_offset;
 995        u8 rx_hash_key[40];
 996        u32 rx_indir_table[128];
 997        bool rx_scatter;
 998
 999        unsigned int_error_count;
1000        unsigned long int_error_expire;
1001
1002        bool irq_soft_enabled;
1003        struct efx_buffer irq_status;
1004        unsigned irq_zero_count;
1005        unsigned irq_level;
1006        struct delayed_work selftest_work;
1007
1008#ifdef CONFIG_SFC_MTD
1009        struct list_head mtd_list;
1010#endif
1011
1012        void *nic_data;
1013        struct efx_mcdi_data *mcdi;
1014
1015        struct mutex mac_lock;
1016        struct work_struct mac_work;
1017        bool port_enabled;
1018
1019        bool mc_bist_for_other_fn;
1020        bool port_initialized;
1021        struct net_device *net_dev;
1022
1023        struct efx_buffer stats_buffer;
1024        u64 rx_nodesc_drops_total;
1025        u64 rx_nodesc_drops_while_down;
1026        bool rx_nodesc_drops_prev_state;
1027
1028        unsigned int phy_type;
1029        const struct efx_phy_operations *phy_op;
1030        void *phy_data;
1031        struct mdio_if_info mdio;
1032        unsigned int mdio_bus;
1033        enum efx_phy_mode phy_mode;
1034
1035        u32 link_advertising;
1036        struct efx_link_state link_state;
1037        unsigned int n_link_state_changes;
1038
1039        bool unicast_filter;
1040        union efx_multicast_hash multicast_hash;
1041        u8 wanted_fc;
1042        unsigned fc_disable;
1043
1044        atomic_t rx_reset;
1045        enum efx_loopback_mode loopback_mode;
1046        u64 loopback_modes;
1047
1048        void *loopback_selftest;
1049
1050        spinlock_t filter_lock;
1051        void *filter_state;
1052#ifdef CONFIG_RFS_ACCEL
1053        u32 *rps_flow_id;
1054        unsigned int rps_expire_index;
1055#endif
1056
1057        atomic_t active_queues;
1058        atomic_t rxq_flush_pending;
1059        atomic_t rxq_flush_outstanding;
1060        wait_queue_head_t flush_wq;
1061
1062#ifdef CONFIG_SFC_SRIOV
1063        struct efx_channel *vfdi_channel;
1064        struct efx_vf *vf;
1065        unsigned vf_count;
1066        unsigned vf_init_count;
1067        unsigned vi_scale;
1068        unsigned vf_buftbl_base;
1069        struct efx_buffer vfdi_status;
1070        struct list_head local_addr_list;
1071        struct list_head local_page_list;
1072        struct mutex local_lock;
1073        struct work_struct peer_work;
1074#endif
1075
1076        struct efx_ptp_data *ptp_data;
1077
1078        char *vpd_sn;
1079
1080        /* The following fields may be written more often */
1081
1082        struct delayed_work monitor_work ____cacheline_aligned_in_smp;
1083        spinlock_t biu_lock;
1084        int last_irq_cpu;
1085        spinlock_t stats_lock;
1086        atomic_t n_rx_noskb_drops;
1087};
1088
1089static inline int efx_dev_registered(struct efx_nic *efx)
1090{
1091        return efx->net_dev->reg_state == NETREG_REGISTERED;
1092}
1093
1094static inline unsigned int efx_port_num(struct efx_nic *efx)
1095{
1096        return efx->port_num;
1097}
1098
1099struct efx_mtd_partition {
1100        struct list_head node;
1101        struct mtd_info mtd;
1102        const char *dev_type_name;
1103        const char *type_name;
1104        char name[IFNAMSIZ + 20];
1105};
1106
1107/**
1108 * struct efx_nic_type - Efx device type definition
1109 * @mem_map_size: Get memory BAR mapped size
1110 * @probe: Probe the controller
1111 * @remove: Free resources allocated by probe()
1112 * @init: Initialise the controller
1113 * @dimension_resources: Dimension controller resources (buffer table,
1114 *      and VIs once the available interrupt resources are clear)
1115 * @fini: Shut down the controller
1116 * @monitor: Periodic function for polling link state and hardware monitor
1117 * @map_reset_reason: Map ethtool reset reason to a reset method
1118 * @map_reset_flags: Map ethtool reset flags to a reset method, if possible
1119 * @reset: Reset the controller hardware and possibly the PHY.  This will
1120 *      be called while the controller is uninitialised.
1121 * @probe_port: Probe the MAC and PHY
1122 * @remove_port: Free resources allocated by probe_port()
1123 * @handle_global_event: Handle a "global" event (may be %NULL)
1124 * @fini_dmaq: Flush and finalise DMA queues (RX and TX queues)
1125 * @prepare_flush: Prepare the hardware for flushing the DMA queues
1126 *      (for Falcon architecture)
1127 * @finish_flush: Clean up after flushing the DMA queues (for Falcon
1128 *      architecture)
1129 * @prepare_flr: Prepare for an FLR
1130 * @finish_flr: Clean up after an FLR
1131 * @describe_stats: Describe statistics for ethtool
1132 * @update_stats: Update statistics not provided by event handling.
1133 *      Either argument may be %NULL.
1134 * @start_stats: Start the regular fetching of statistics
1135 * @pull_stats: Pull stats from the NIC and wait until they arrive.
1136 * @stop_stats: Stop the regular fetching of statistics
1137 * @set_id_led: Set state of identifying LED or revert to automatic function
1138 * @push_irq_moderation: Apply interrupt moderation value
1139 * @reconfigure_port: Push loopback/power/txdis changes to the MAC and PHY
1140 * @prepare_enable_fc_tx: Prepare MAC to enable pause frame TX (may be %NULL)
1141 * @reconfigure_mac: Push MAC address, MTU, flow control and filter settings
1142 *      to the hardware.  Serialised by the mac_lock.
1143 * @check_mac_fault: Check MAC fault state. True if fault present.
1144 * @get_wol: Get WoL configuration from driver state
1145 * @set_wol: Push WoL configuration to the NIC
1146 * @resume_wol: Synchronise WoL state between driver and MC (e.g. after resume)
1147 * @test_chip: Test registers.  May use efx_farch_test_registers(), and is
1148 *      expected to reset the NIC.
1149 * @test_nvram: Test validity of NVRAM contents
1150 * @mcdi_request: Send an MCDI request with the given header and SDU.
1151 *      The SDU length may be any value from 0 up to the protocol-
1152 *      defined maximum, but its buffer will be padded to a multiple
1153 *      of 4 bytes.
1154 * @mcdi_poll_response: Test whether an MCDI response is available.
1155 * @mcdi_read_response: Read the MCDI response PDU.  The offset will
1156 *      be a multiple of 4.  The length may not be, but the buffer
1157 *      will be padded so it is safe to round up.
1158 * @mcdi_poll_reboot: Test whether the MCDI has rebooted.  If so,
1159 *      return an appropriate error code for aborting any current
1160 *      request; otherwise return 0.
1161 * @irq_enable_master: Enable IRQs on the NIC.  Each event queue must
1162 *      be separately enabled after this.
1163 * @irq_test_generate: Generate a test IRQ
1164 * @irq_disable_non_ev: Disable non-event IRQs on the NIC.  Each event
1165 *      queue must be separately disabled before this.
1166 * @irq_handle_msi: Handle MSI for a channel.  The @dev_id argument is
1167 *      a pointer to the &struct efx_msi_context for the channel.
1168 * @irq_handle_legacy: Handle legacy interrupt.  The @dev_id argument
1169 *      is a pointer to the &struct efx_nic.
1170 * @tx_probe: Allocate resources for TX queue
1171 * @tx_init: Initialise TX queue on the NIC
1172 * @tx_remove: Free resources for TX queue
1173 * @tx_write: Write TX descriptors and doorbell
1174 * @rx_push_rss_config: Write RSS hash key and indirection table to the NIC
1175 * @rx_probe: Allocate resources for RX queue
1176 * @rx_init: Initialise RX queue on the NIC
1177 * @rx_remove: Free resources for RX queue
1178 * @rx_write: Write RX descriptors and doorbell
1179 * @rx_defer_refill: Generate a refill reminder event
1180 * @ev_probe: Allocate resources for event queue
1181 * @ev_init: Initialise event queue on the NIC
1182 * @ev_fini: Deinitialise event queue on the NIC
1183 * @ev_remove: Free resources for event queue
1184 * @ev_process: Process events for a queue, up to the given NAPI quota
1185 * @ev_read_ack: Acknowledge read events on a queue, rearming its IRQ
1186 * @ev_test_generate: Generate a test event
1187 * @filter_table_probe: Probe filter capabilities and set up filter software state
1188 * @filter_table_restore: Restore filters removed from hardware
1189 * @filter_table_remove: Remove filters from hardware and tear down software state
1190 * @filter_update_rx_scatter: Update filters after change to rx scatter setting
1191 * @filter_insert: add or replace a filter
1192 * @filter_remove_safe: remove a filter by ID, carefully
1193 * @filter_get_safe: retrieve a filter by ID, carefully
1194 * @filter_clear_rx: Remove all RX filters whose priority is less than or
1195 *      equal to the given priority and is not %EFX_FILTER_PRI_AUTO
1196 * @filter_count_rx_used: Get the number of filters in use at a given priority
1197 * @filter_get_rx_id_limit: Get maximum value of a filter id, plus 1
1198 * @filter_get_rx_ids: Get list of RX filters at a given priority
1199 * @filter_rfs_insert: Add or replace a filter for RFS.  This must be
1200 *      atomic.  The hardware change may be asynchronous but should
1201 *      not be delayed for long.  It may fail if this can't be done
1202 *      atomically.
1203 * @filter_rfs_expire_one: Consider expiring a filter inserted for RFS.
1204 *      This must check whether the specified table entry is used by RFS
1205 *      and that rps_may_expire_flow() returns true for it.
1206 * @mtd_probe: Probe and add MTD partitions associated with this net device,
1207 *       using efx_mtd_add()
1208 * @mtd_rename: Set an MTD partition name using the net device name
1209 * @mtd_read: Read from an MTD partition
1210 * @mtd_erase: Erase part of an MTD partition
1211 * @mtd_write: Write to an MTD partition
1212 * @mtd_sync: Wait for write-back to complete on MTD partition.  This
1213 *      also notifies the driver that a writer has finished using this
1214 *      partition.
1215 * @ptp_write_host_time: Send host time to MC as part of sync protocol
1216 * @ptp_set_ts_sync_events: Enable or disable sync events for inline RX
1217 *      timestamping, possibly only temporarily for the purposes of a reset.
1218 * @ptp_set_ts_config: Set hardware timestamp configuration.  The flags
1219 *      and tx_type will already have been validated but this operation
1220 *      must validate and update rx_filter.
1221 * @revision: Hardware architecture revision
1222 * @txd_ptr_tbl_base: TX descriptor ring base address
1223 * @rxd_ptr_tbl_base: RX descriptor ring base address
1224 * @buf_tbl_base: Buffer table base address
1225 * @evq_ptr_tbl_base: Event queue pointer table base address
1226 * @evq_rptr_tbl_base: Event queue read-pointer table base address
1227 * @max_dma_mask: Maximum possible DMA mask
1228 * @rx_prefix_size: Size of RX prefix before packet data
1229 * @rx_hash_offset: Offset of RX flow hash within prefix
1230 * @rx_ts_offset: Offset of timestamp within prefix
1231 * @rx_buffer_padding: Size of padding at end of RX packet
1232 * @can_rx_scatter: NIC is able to scatter packets to multiple buffers
1233 * @always_rx_scatter: NIC will always scatter packets to multiple buffers
1234 * @max_interrupt_mode: Highest capability interrupt mode supported
1235 *      from &enum efx_init_mode.
1236 * @timer_period_max: Maximum period of interrupt timer (in ticks)
1237 * @offload_features: net_device feature flags for protocol offload
1238 *      features implemented in hardware
1239 * @mcdi_max_ver: Maximum MCDI version supported
1240 * @hwtstamp_filters: Mask of hardware timestamp filter types supported
1241 */
1242struct efx_nic_type {
1243        unsigned int (*mem_map_size)(struct efx_nic *efx);
1244        int (*probe)(struct efx_nic *efx);
1245        void (*remove)(struct efx_nic *efx);
1246        int (*init)(struct efx_nic *efx);
1247        int (*dimension_resources)(struct efx_nic *efx);
1248        void (*fini)(struct efx_nic *efx);
1249        void (*monitor)(struct efx_nic *efx);
1250        enum reset_type (*map_reset_reason)(enum reset_type reason);
1251        int (*map_reset_flags)(u32 *flags);
1252        int (*reset)(struct efx_nic *efx, enum reset_type method);
1253        int (*probe_port)(struct efx_nic *efx);
1254        void (*remove_port)(struct efx_nic *efx);
1255        bool (*handle_global_event)(struct efx_channel *channel, efx_qword_t *);
1256        int (*fini_dmaq)(struct efx_nic *efx);
1257        void (*prepare_flush)(struct efx_nic *efx);
1258        void (*finish_flush)(struct efx_nic *efx);
1259        void (*prepare_flr)(struct efx_nic *efx);
1260        void (*finish_flr)(struct efx_nic *efx);
1261        size_t (*describe_stats)(struct efx_nic *efx, u8 *names);
1262        size_t (*update_stats)(struct efx_nic *efx, u64 *full_stats,
1263                               struct rtnl_link_stats64 *core_stats);
1264        void (*start_stats)(struct efx_nic *efx);
1265        void (*pull_stats)(struct efx_nic *efx);
1266        void (*stop_stats)(struct efx_nic *efx);
1267        void (*set_id_led)(struct efx_nic *efx, enum efx_led_mode mode);
1268        void (*push_irq_moderation)(struct efx_channel *channel);
1269        int (*reconfigure_port)(struct efx_nic *efx);
1270        void (*prepare_enable_fc_tx)(struct efx_nic *efx);
1271        int (*reconfigure_mac)(struct efx_nic *efx);
1272        bool (*check_mac_fault)(struct efx_nic *efx);
1273        void (*get_wol)(struct efx_nic *efx, struct ethtool_wolinfo *wol);
1274        int (*set_wol)(struct efx_nic *efx, u32 type);
1275        void (*resume_wol)(struct efx_nic *efx);
1276        int (*test_chip)(struct efx_nic *efx, struct efx_self_tests *tests);
1277        int (*test_nvram)(struct efx_nic *efx);
1278        void (*mcdi_request)(struct efx_nic *efx,
1279                             const efx_dword_t *hdr, size_t hdr_len,
1280                             const efx_dword_t *sdu, size_t sdu_len);
1281        bool (*mcdi_poll_response)(struct efx_nic *efx);
1282        void (*mcdi_read_response)(struct efx_nic *efx, efx_dword_t *pdu,
1283                                   size_t pdu_offset, size_t pdu_len);
1284        int (*mcdi_poll_reboot)(struct efx_nic *efx);
1285        void (*irq_enable_master)(struct efx_nic *efx);
1286        void (*irq_test_generate)(struct efx_nic *efx);
1287        void (*irq_disable_non_ev)(struct efx_nic *efx);
1288        irqreturn_t (*irq_handle_msi)(int irq, void *dev_id);
1289        irqreturn_t (*irq_handle_legacy)(int irq, void *dev_id);
1290        int (*tx_probe)(struct efx_tx_queue *tx_queue);
1291        void (*tx_init)(struct efx_tx_queue *tx_queue);
1292        void (*tx_remove)(struct efx_tx_queue *tx_queue);
1293        void (*tx_write)(struct efx_tx_queue *tx_queue);
1294        void (*rx_push_rss_config)(struct efx_nic *efx);
1295        int (*rx_probe)(struct efx_rx_queue *rx_queue);
1296        void (*rx_init)(struct efx_rx_queue *rx_queue);
1297        void (*rx_remove)(struct efx_rx_queue *rx_queue);
1298        void (*rx_write)(struct efx_rx_queue *rx_queue);
1299        void (*rx_defer_refill)(struct efx_rx_queue *rx_queue);
1300        int (*ev_probe)(struct efx_channel *channel);
1301        int (*ev_init)(struct efx_channel *channel);
1302        void (*ev_fini)(struct efx_channel *channel);
1303        void (*ev_remove)(struct efx_channel *channel);
1304        int (*ev_process)(struct efx_channel *channel, int quota);
1305        void (*ev_read_ack)(struct efx_channel *channel);
1306        void (*ev_test_generate)(struct efx_channel *channel);
1307        int (*filter_table_probe)(struct efx_nic *efx);
1308        void (*filter_table_restore)(struct efx_nic *efx);
1309        void (*filter_table_remove)(struct efx_nic *efx);
1310        void (*filter_update_rx_scatter)(struct efx_nic *efx);
1311        s32 (*filter_insert)(struct efx_nic *efx,
1312                             struct efx_filter_spec *spec, bool replace);
1313        int (*filter_remove_safe)(struct efx_nic *efx,
1314                                  enum efx_filter_priority priority,
1315                                  u32 filter_id);
1316        int (*filter_get_safe)(struct efx_nic *efx,
1317                               enum efx_filter_priority priority,
1318                               u32 filter_id, struct efx_filter_spec *);
1319        int (*filter_clear_rx)(struct efx_nic *efx,
1320                               enum efx_filter_priority priority);
1321        u32 (*filter_count_rx_used)(struct efx_nic *efx,
1322                                    enum efx_filter_priority priority);
1323        u32 (*filter_get_rx_id_limit)(struct efx_nic *efx);
1324        s32 (*filter_get_rx_ids)(struct efx_nic *efx,
1325                                 enum efx_filter_priority priority,
1326                                 u32 *buf, u32 size);
1327#ifdef CONFIG_RFS_ACCEL
1328        s32 (*filter_rfs_insert)(struct efx_nic *efx,
1329                                 struct efx_filter_spec *spec);
1330        bool (*filter_rfs_expire_one)(struct efx_nic *efx, u32 flow_id,
1331                                      unsigned int index);
1332#endif
1333#ifdef CONFIG_SFC_MTD
1334        int (*mtd_probe)(struct efx_nic *efx);
1335        void (*mtd_rename)(struct efx_mtd_partition *part);
1336        int (*mtd_read)(struct mtd_info *mtd, loff_t start, size_t len,
1337                        size_t *retlen, u8 *buffer);
1338        int (*mtd_erase)(struct mtd_info *mtd, loff_t start, size_t len);
1339        int (*mtd_write)(struct mtd_info *mtd, loff_t start, size_t len,
1340                         size_t *retlen, const u8 *buffer);
1341        int (*mtd_sync)(struct mtd_info *mtd);
1342#endif
1343        void (*ptp_write_host_time)(struct efx_nic *efx, u32 host_time);
1344        int (*ptp_set_ts_sync_events)(struct efx_nic *efx, bool en, bool temp);
1345        int (*ptp_set_ts_config)(struct efx_nic *efx,
1346                                 struct hwtstamp_config *init);
1347
1348        int revision;
1349        unsigned int txd_ptr_tbl_base;
1350        unsigned int rxd_ptr_tbl_base;
1351        unsigned int buf_tbl_base;
1352        unsigned int evq_ptr_tbl_base;
1353        unsigned int evq_rptr_tbl_base;
1354        u64 max_dma_mask;
1355        unsigned int rx_prefix_size;
1356        unsigned int rx_hash_offset;
1357        unsigned int rx_ts_offset;
1358        unsigned int rx_buffer_padding;
1359        bool can_rx_scatter;
1360        bool always_rx_scatter;
1361        unsigned int max_interrupt_mode;
1362        unsigned int timer_period_max;
1363        netdev_features_t offload_features;
1364        int mcdi_max_ver;
1365        unsigned int max_rx_ip_filters;
1366        u32 hwtstamp_filters;
1367};
1368
1369/**************************************************************************
1370 *
1371 * Prototypes and inline functions
1372 *
1373 *************************************************************************/
1374
1375static inline struct efx_channel *
1376efx_get_channel(struct efx_nic *efx, unsigned index)
1377{
1378        EFX_BUG_ON_PARANOID(index >= efx->n_channels);
1379        return efx->channel[index];
1380}
1381
1382/* Iterate over all used channels */
1383#define efx_for_each_channel(_channel, _efx)                            \
1384        for (_channel = (_efx)->channel[0];                             \
1385             _channel;                                                  \
1386             _channel = (_channel->channel + 1 < (_efx)->n_channels) ?  \
1387                     (_efx)->channel[_channel->channel + 1] : NULL)
1388
1389/* Iterate over all used channels in reverse */
1390#define efx_for_each_channel_rev(_channel, _efx)                        \
1391        for (_channel = (_efx)->channel[(_efx)->n_channels - 1];        \
1392             _channel;                                                  \
1393             _channel = _channel->channel ?                             \
1394                     (_efx)->channel[_channel->channel - 1] : NULL)
1395
1396static inline struct efx_tx_queue *
1397efx_get_tx_queue(struct efx_nic *efx, unsigned index, unsigned type)
1398{
1399        EFX_BUG_ON_PARANOID(index >= efx->n_tx_channels ||
1400                            type >= EFX_TXQ_TYPES);
1401        return &efx->channel[efx->tx_channel_offset + index]->tx_queue[type];
1402}
1403
1404static inline bool efx_channel_has_tx_queues(struct efx_channel *channel)
1405{
1406        return channel->channel - channel->efx->tx_channel_offset <
1407                channel->efx->n_tx_channels;
1408}
1409
1410static inline struct efx_tx_queue *
1411efx_channel_get_tx_queue(struct efx_channel *channel, unsigned type)
1412{
1413        EFX_BUG_ON_PARANOID(!efx_channel_has_tx_queues(channel) ||
1414                            type >= EFX_TXQ_TYPES);
1415        return &channel->tx_queue[type];
1416}
1417
1418static inline bool efx_tx_queue_used(struct efx_tx_queue *tx_queue)
1419{
1420        return !(tx_queue->efx->net_dev->num_tc < 2 &&
1421                 tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI);
1422}
1423
1424/* Iterate over all TX queues belonging to a channel */
1425#define efx_for_each_channel_tx_queue(_tx_queue, _channel)              \
1426        if (!efx_channel_has_tx_queues(_channel))                       \
1427                ;                                                       \
1428        else                                                            \
1429                for (_tx_queue = (_channel)->tx_queue;                  \
1430                     _tx_queue < (_channel)->tx_queue + EFX_TXQ_TYPES && \
1431                             efx_tx_queue_used(_tx_queue);              \
1432                     _tx_queue++)
1433
1434/* Iterate over all possible TX queues belonging to a channel */
1435#define efx_for_each_possible_channel_tx_queue(_tx_queue, _channel)     \
1436        if (!efx_channel_has_tx_queues(_channel))                       \
1437                ;                                                       \
1438        else                                                            \
1439                for (_tx_queue = (_channel)->tx_queue;                  \
1440                     _tx_queue < (_channel)->tx_queue + EFX_TXQ_TYPES;  \
1441                     _tx_queue++)
1442
1443static inline bool efx_channel_has_rx_queue(struct efx_channel *channel)
1444{
1445        return channel->rx_queue.core_index >= 0;
1446}
1447
1448static inline struct efx_rx_queue *
1449efx_channel_get_rx_queue(struct efx_channel *channel)
1450{
1451        EFX_BUG_ON_PARANOID(!efx_channel_has_rx_queue(channel));
1452        return &channel->rx_queue;
1453}
1454
1455/* Iterate over all RX queues belonging to a channel */
1456#define efx_for_each_channel_rx_queue(_rx_queue, _channel)              \
1457        if (!efx_channel_has_rx_queue(_channel))                        \
1458                ;                                                       \
1459        else                                                            \
1460                for (_rx_queue = &(_channel)->rx_queue;                 \
1461                     _rx_queue;                                         \
1462                     _rx_queue = NULL)
1463
1464static inline struct efx_channel *
1465efx_rx_queue_channel(struct efx_rx_queue *rx_queue)
1466{
1467        return container_of(rx_queue, struct efx_channel, rx_queue);
1468}
1469
1470static inline int efx_rx_queue_index(struct efx_rx_queue *rx_queue)
1471{
1472        return efx_rx_queue_channel(rx_queue)->channel;
1473}
1474
1475/* Returns a pointer to the specified receive buffer in the RX
1476 * descriptor queue.
1477 */
1478static inline struct efx_rx_buffer *efx_rx_buffer(struct efx_rx_queue *rx_queue,
1479                                                  unsigned int index)
1480{
1481        return &rx_queue->buffer[index];
1482}
1483
1484/**
1485 * EFX_MAX_FRAME_LEN - calculate maximum frame length
1486 *
1487 * This calculates the maximum frame length that will be used for a
1488 * given MTU.  The frame length will be equal to the MTU plus a
1489 * constant amount of header space and padding.  This is the quantity
1490 * that the net driver will program into the MAC as the maximum frame
1491 * length.
1492 *
1493 * The 10G MAC requires 8-byte alignment on the frame
1494 * length, so we round up to the nearest 8.
1495 *
1496 * Re-clocking by the XGXS on RX can reduce an IPG to 32 bits (half an
1497 * XGMII cycle).  If the frame length reaches the maximum value in the
1498 * same cycle, the XMAC can miss the IPG altogether.  We work around
1499 * this by adding a further 16 bytes.
1500 */
1501#define EFX_MAX_FRAME_LEN(mtu) \
1502        ((((mtu) + ETH_HLEN + VLAN_HLEN + 4/* FCS */ + 7) & ~7) + 16)
1503
1504static inline bool efx_xmit_with_hwtstamp(struct sk_buff *skb)
1505{
1506        return skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP;
1507}
1508static inline void efx_xmit_hwtstamp_pending(struct sk_buff *skb)
1509{
1510        skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1511}
1512
1513#endif /* EFX_NET_DRIVER_H */
1514