linux/drivers/net/ethernet/tundra/tsi108_eth.c
<<
>>
Prefs
   1/*******************************************************************************
   2
   3  Copyright(c) 2006 Tundra Semiconductor Corporation.
   4
   5  This program is free software; you can redistribute it and/or modify it
   6  under the terms of the GNU General Public License as published by the Free
   7  Software Foundation; either version 2 of the License, or (at your option)
   8  any later version.
   9
  10  This program is distributed in the hope that it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc., 59
  17  Temple Place - Suite 330, Boston, MA  02111-1307, USA.
  18
  19*******************************************************************************/
  20
  21/* This driver is based on the driver code originally developed
  22 * for the Intel IOC80314 (ForestLake) Gigabit Ethernet by
  23 * scott.wood@timesys.com  * Copyright (C) 2003 TimeSys Corporation
  24 *
  25 * Currently changes from original version are:
  26 * - porting to Tsi108-based platform and kernel 2.6 (kong.lai@tundra.com)
  27 * - modifications to handle two ports independently and support for
  28 *   additional PHY devices (alexandre.bounine@tundra.com)
  29 * - Get hardware information from platform device. (tie-fei.zang@freescale.com)
  30 *
  31 */
  32
  33#include <linux/module.h>
  34#include <linux/types.h>
  35#include <linux/interrupt.h>
  36#include <linux/net.h>
  37#include <linux/netdevice.h>
  38#include <linux/etherdevice.h>
  39#include <linux/ethtool.h>
  40#include <linux/skbuff.h>
  41#include <linux/spinlock.h>
  42#include <linux/delay.h>
  43#include <linux/crc32.h>
  44#include <linux/mii.h>
  45#include <linux/device.h>
  46#include <linux/pci.h>
  47#include <linux/rtnetlink.h>
  48#include <linux/timer.h>
  49#include <linux/platform_device.h>
  50#include <linux/gfp.h>
  51
  52#include <asm/io.h>
  53#include <asm/tsi108.h>
  54
  55#include "tsi108_eth.h"
  56
  57#define MII_READ_DELAY 10000    /* max link wait time in msec */
  58
  59#define TSI108_RXRING_LEN     256
  60
  61/* NOTE: The driver currently does not support receiving packets
  62 * larger than the buffer size, so don't decrease this (unless you
  63 * want to add such support).
  64 */
  65#define TSI108_RXBUF_SIZE     1536
  66
  67#define TSI108_TXRING_LEN     256
  68
  69#define TSI108_TX_INT_FREQ    64
  70
  71/* Check the phy status every half a second. */
  72#define CHECK_PHY_INTERVAL (HZ/2)
  73
  74static int tsi108_init_one(struct platform_device *pdev);
  75static int tsi108_ether_remove(struct platform_device *pdev);
  76
  77struct tsi108_prv_data {
  78        void  __iomem *regs;    /* Base of normal regs */
  79        void  __iomem *phyregs; /* Base of register bank used for PHY access */
  80
  81        struct net_device *dev;
  82        struct napi_struct napi;
  83
  84        unsigned int phy;               /* Index of PHY for this interface */
  85        unsigned int irq_num;
  86        unsigned int id;
  87        unsigned int phy_type;
  88
  89        struct timer_list timer;/* Timer that triggers the check phy function */
  90        unsigned int rxtail;    /* Next entry in rxring to read */
  91        unsigned int rxhead;    /* Next entry in rxring to give a new buffer */
  92        unsigned int rxfree;    /* Number of free, allocated RX buffers */
  93
  94        unsigned int rxpending; /* Non-zero if there are still descriptors
  95                                 * to be processed from a previous descriptor
  96                                 * interrupt condition that has been cleared */
  97
  98        unsigned int txtail;    /* Next TX descriptor to check status on */
  99        unsigned int txhead;    /* Next TX descriptor to use */
 100
 101        /* Number of free TX descriptors.  This could be calculated from
 102         * rxhead and rxtail if one descriptor were left unused to disambiguate
 103         * full and empty conditions, but it's simpler to just keep track
 104         * explicitly. */
 105
 106        unsigned int txfree;
 107
 108        unsigned int phy_ok;            /* The PHY is currently powered on. */
 109
 110        /* PHY status (duplex is 1 for half, 2 for full,
 111         * so that the default 0 indicates that neither has
 112         * yet been configured). */
 113
 114        unsigned int link_up;
 115        unsigned int speed;
 116        unsigned int duplex;
 117
 118        tx_desc *txring;
 119        rx_desc *rxring;
 120        struct sk_buff *txskbs[TSI108_TXRING_LEN];
 121        struct sk_buff *rxskbs[TSI108_RXRING_LEN];
 122
 123        dma_addr_t txdma, rxdma;
 124
 125        /* txlock nests in misclock and phy_lock */
 126
 127        spinlock_t txlock, misclock;
 128
 129        /* stats is used to hold the upper bits of each hardware counter,
 130         * and tmpstats is used to hold the full values for returning
 131         * to the caller of get_stats().  They must be separate in case
 132         * an overflow interrupt occurs before the stats are consumed.
 133         */
 134
 135        struct net_device_stats stats;
 136        struct net_device_stats tmpstats;
 137
 138        /* These stats are kept separate in hardware, thus require individual
 139         * fields for handling carry.  They are combined in get_stats.
 140         */
 141
 142        unsigned long rx_fcs;   /* Add to rx_frame_errors */
 143        unsigned long rx_short_fcs;     /* Add to rx_frame_errors */
 144        unsigned long rx_long_fcs;      /* Add to rx_frame_errors */
 145        unsigned long rx_underruns;     /* Add to rx_length_errors */
 146        unsigned long rx_overruns;      /* Add to rx_length_errors */
 147
 148        unsigned long tx_coll_abort;    /* Add to tx_aborted_errors/collisions */
 149        unsigned long tx_pause_drop;    /* Add to tx_aborted_errors */
 150
 151        unsigned long mc_hash[16];
 152        u32 msg_enable;                 /* debug message level */
 153        struct mii_if_info mii_if;
 154        unsigned int init_media;
 155};
 156
 157/* Structure for a device driver */
 158
 159static struct platform_driver tsi_eth_driver = {
 160        .probe = tsi108_init_one,
 161        .remove = tsi108_ether_remove,
 162        .driver = {
 163                .name = "tsi-ethernet",
 164                .owner = THIS_MODULE,
 165        },
 166};
 167
 168static void tsi108_timed_checker(unsigned long dev_ptr);
 169
 170static void dump_eth_one(struct net_device *dev)
 171{
 172        struct tsi108_prv_data *data = netdev_priv(dev);
 173
 174        printk("Dumping %s...\n", dev->name);
 175        printk("intstat %x intmask %x phy_ok %d"
 176               " link %d speed %d duplex %d\n",
 177               TSI_READ(TSI108_EC_INTSTAT),
 178               TSI_READ(TSI108_EC_INTMASK), data->phy_ok,
 179               data->link_up, data->speed, data->duplex);
 180
 181        printk("TX: head %d, tail %d, free %d, stat %x, estat %x, err %x\n",
 182               data->txhead, data->txtail, data->txfree,
 183               TSI_READ(TSI108_EC_TXSTAT),
 184               TSI_READ(TSI108_EC_TXESTAT),
 185               TSI_READ(TSI108_EC_TXERR));
 186
 187        printk("RX: head %d, tail %d, free %d, stat %x,"
 188               " estat %x, err %x, pending %d\n\n",
 189               data->rxhead, data->rxtail, data->rxfree,
 190               TSI_READ(TSI108_EC_RXSTAT),
 191               TSI_READ(TSI108_EC_RXESTAT),
 192               TSI_READ(TSI108_EC_RXERR), data->rxpending);
 193}
 194
 195/* Synchronization is needed between the thread and up/down events.
 196 * Note that the PHY is accessed through the same registers for both
 197 * interfaces, so this can't be made interface-specific.
 198 */
 199
 200static DEFINE_SPINLOCK(phy_lock);
 201
 202static int tsi108_read_mii(struct tsi108_prv_data *data, int reg)
 203{
 204        unsigned i;
 205
 206        TSI_WRITE_PHY(TSI108_MAC_MII_ADDR,
 207                                (data->phy << TSI108_MAC_MII_ADDR_PHY) |
 208                                (reg << TSI108_MAC_MII_ADDR_REG));
 209        TSI_WRITE_PHY(TSI108_MAC_MII_CMD, 0);
 210        TSI_WRITE_PHY(TSI108_MAC_MII_CMD, TSI108_MAC_MII_CMD_READ);
 211        for (i = 0; i < 100; i++) {
 212                if (!(TSI_READ_PHY(TSI108_MAC_MII_IND) &
 213                      (TSI108_MAC_MII_IND_NOTVALID | TSI108_MAC_MII_IND_BUSY)))
 214                        break;
 215                udelay(10);
 216        }
 217
 218        if (i == 100)
 219                return 0xffff;
 220        else
 221                return TSI_READ_PHY(TSI108_MAC_MII_DATAIN);
 222}
 223
 224static void tsi108_write_mii(struct tsi108_prv_data *data,
 225                                int reg, u16 val)
 226{
 227        unsigned i = 100;
 228        TSI_WRITE_PHY(TSI108_MAC_MII_ADDR,
 229                                (data->phy << TSI108_MAC_MII_ADDR_PHY) |
 230                                (reg << TSI108_MAC_MII_ADDR_REG));
 231        TSI_WRITE_PHY(TSI108_MAC_MII_DATAOUT, val);
 232        while (i--) {
 233                if(!(TSI_READ_PHY(TSI108_MAC_MII_IND) &
 234                        TSI108_MAC_MII_IND_BUSY))
 235                        break;
 236                udelay(10);
 237        }
 238}
 239
 240static int tsi108_mdio_read(struct net_device *dev, int addr, int reg)
 241{
 242        struct tsi108_prv_data *data = netdev_priv(dev);
 243        return tsi108_read_mii(data, reg);
 244}
 245
 246static void tsi108_mdio_write(struct net_device *dev, int addr, int reg, int val)
 247{
 248        struct tsi108_prv_data *data = netdev_priv(dev);
 249        tsi108_write_mii(data, reg, val);
 250}
 251
 252static inline void tsi108_write_tbi(struct tsi108_prv_data *data,
 253                                        int reg, u16 val)
 254{
 255        unsigned i = 1000;
 256        TSI_WRITE(TSI108_MAC_MII_ADDR,
 257                             (0x1e << TSI108_MAC_MII_ADDR_PHY)
 258                             | (reg << TSI108_MAC_MII_ADDR_REG));
 259        TSI_WRITE(TSI108_MAC_MII_DATAOUT, val);
 260        while(i--) {
 261                if(!(TSI_READ(TSI108_MAC_MII_IND) & TSI108_MAC_MII_IND_BUSY))
 262                        return;
 263                udelay(10);
 264        }
 265        printk(KERN_ERR "%s function time out\n", __func__);
 266}
 267
 268static int mii_speed(struct mii_if_info *mii)
 269{
 270        int advert, lpa, val, media;
 271        int lpa2 = 0;
 272        int speed;
 273
 274        if (!mii_link_ok(mii))
 275                return 0;
 276
 277        val = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_BMSR);
 278        if ((val & BMSR_ANEGCOMPLETE) == 0)
 279                return 0;
 280
 281        advert = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_ADVERTISE);
 282        lpa = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_LPA);
 283        media = mii_nway_result(advert & lpa);
 284
 285        if (mii->supports_gmii)
 286                lpa2 = mii->mdio_read(mii->dev, mii->phy_id, MII_STAT1000);
 287
 288        speed = lpa2 & (LPA_1000FULL | LPA_1000HALF) ? 1000 :
 289                        (media & (ADVERTISE_100FULL | ADVERTISE_100HALF) ? 100 : 10);
 290        return speed;
 291}
 292
 293static void tsi108_check_phy(struct net_device *dev)
 294{
 295        struct tsi108_prv_data *data = netdev_priv(dev);
 296        u32 mac_cfg2_reg, portctrl_reg;
 297        u32 duplex;
 298        u32 speed;
 299        unsigned long flags;
 300
 301        spin_lock_irqsave(&phy_lock, flags);
 302
 303        if (!data->phy_ok)
 304                goto out;
 305
 306        duplex = mii_check_media(&data->mii_if, netif_msg_link(data), data->init_media);
 307        data->init_media = 0;
 308
 309        if (netif_carrier_ok(dev)) {
 310
 311                speed = mii_speed(&data->mii_if);
 312
 313                if ((speed != data->speed) || duplex) {
 314
 315                        mac_cfg2_reg = TSI_READ(TSI108_MAC_CFG2);
 316                        portctrl_reg = TSI_READ(TSI108_EC_PORTCTRL);
 317
 318                        mac_cfg2_reg &= ~TSI108_MAC_CFG2_IFACE_MASK;
 319
 320                        if (speed == 1000) {
 321                                mac_cfg2_reg |= TSI108_MAC_CFG2_GIG;
 322                                portctrl_reg &= ~TSI108_EC_PORTCTRL_NOGIG;
 323                        } else {
 324                                mac_cfg2_reg |= TSI108_MAC_CFG2_NOGIG;
 325                                portctrl_reg |= TSI108_EC_PORTCTRL_NOGIG;
 326                        }
 327
 328                        data->speed = speed;
 329
 330                        if (data->mii_if.full_duplex) {
 331                                mac_cfg2_reg |= TSI108_MAC_CFG2_FULLDUPLEX;
 332                                portctrl_reg &= ~TSI108_EC_PORTCTRL_HALFDUPLEX;
 333                                data->duplex = 2;
 334                        } else {
 335                                mac_cfg2_reg &= ~TSI108_MAC_CFG2_FULLDUPLEX;
 336                                portctrl_reg |= TSI108_EC_PORTCTRL_HALFDUPLEX;
 337                                data->duplex = 1;
 338                        }
 339
 340                        TSI_WRITE(TSI108_MAC_CFG2, mac_cfg2_reg);
 341                        TSI_WRITE(TSI108_EC_PORTCTRL, portctrl_reg);
 342                }
 343
 344                if (data->link_up == 0) {
 345                        /* The manual says it can take 3-4 usecs for the speed change
 346                         * to take effect.
 347                         */
 348                        udelay(5);
 349
 350                        spin_lock(&data->txlock);
 351                        if (is_valid_ether_addr(dev->dev_addr) && data->txfree)
 352                                netif_wake_queue(dev);
 353
 354                        data->link_up = 1;
 355                        spin_unlock(&data->txlock);
 356                }
 357        } else {
 358                if (data->link_up == 1) {
 359                        netif_stop_queue(dev);
 360                        data->link_up = 0;
 361                        printk(KERN_NOTICE "%s : link is down\n", dev->name);
 362                }
 363
 364                goto out;
 365        }
 366
 367
 368out:
 369        spin_unlock_irqrestore(&phy_lock, flags);
 370}
 371
 372static inline void
 373tsi108_stat_carry_one(int carry, int carry_bit, int carry_shift,
 374                      unsigned long *upper)
 375{
 376        if (carry & carry_bit)
 377                *upper += carry_shift;
 378}
 379
 380static void tsi108_stat_carry(struct net_device *dev)
 381{
 382        struct tsi108_prv_data *data = netdev_priv(dev);
 383        u32 carry1, carry2;
 384
 385        spin_lock_irq(&data->misclock);
 386
 387        carry1 = TSI_READ(TSI108_STAT_CARRY1);
 388        carry2 = TSI_READ(TSI108_STAT_CARRY2);
 389
 390        TSI_WRITE(TSI108_STAT_CARRY1, carry1);
 391        TSI_WRITE(TSI108_STAT_CARRY2, carry2);
 392
 393        tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXBYTES,
 394                              TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes);
 395
 396        tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXPKTS,
 397                              TSI108_STAT_RXPKTS_CARRY,
 398                              &data->stats.rx_packets);
 399
 400        tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFCS,
 401                              TSI108_STAT_RXFCS_CARRY, &data->rx_fcs);
 402
 403        tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXMCAST,
 404                              TSI108_STAT_RXMCAST_CARRY,
 405                              &data->stats.multicast);
 406
 407        tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXALIGN,
 408                              TSI108_STAT_RXALIGN_CARRY,
 409                              &data->stats.rx_frame_errors);
 410
 411        tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXLENGTH,
 412                              TSI108_STAT_RXLENGTH_CARRY,
 413                              &data->stats.rx_length_errors);
 414
 415        tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXRUNT,
 416                              TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns);
 417
 418        tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJUMBO,
 419                              TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns);
 420
 421        tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFRAG,
 422                              TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs);
 423
 424        tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJABBER,
 425                              TSI108_STAT_RXJABBER_CARRY, &data->rx_long_fcs);
 426
 427        tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXDROP,
 428                              TSI108_STAT_RXDROP_CARRY,
 429                              &data->stats.rx_missed_errors);
 430
 431        tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXBYTES,
 432                              TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes);
 433
 434        tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPKTS,
 435                              TSI108_STAT_TXPKTS_CARRY,
 436                              &data->stats.tx_packets);
 437
 438        tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXDEF,
 439                              TSI108_STAT_TXEXDEF_CARRY,
 440                              &data->stats.tx_aborted_errors);
 441
 442        tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXCOL,
 443                              TSI108_STAT_TXEXCOL_CARRY, &data->tx_coll_abort);
 444
 445        tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXTCOL,
 446                              TSI108_STAT_TXTCOL_CARRY,
 447                              &data->stats.collisions);
 448
 449        tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPAUSE,
 450                              TSI108_STAT_TXPAUSEDROP_CARRY,
 451                              &data->tx_pause_drop);
 452
 453        spin_unlock_irq(&data->misclock);
 454}
 455
 456/* Read a stat counter atomically with respect to carries.
 457 * data->misclock must be held.
 458 */
 459static inline unsigned long
 460tsi108_read_stat(struct tsi108_prv_data * data, int reg, int carry_bit,
 461                 int carry_shift, unsigned long *upper)
 462{
 463        int carryreg;
 464        unsigned long val;
 465
 466        if (reg < 0xb0)
 467                carryreg = TSI108_STAT_CARRY1;
 468        else
 469                carryreg = TSI108_STAT_CARRY2;
 470
 471      again:
 472        val = TSI_READ(reg) | *upper;
 473
 474        /* Check to see if it overflowed, but the interrupt hasn't
 475         * been serviced yet.  If so, handle the carry here, and
 476         * try again.
 477         */
 478
 479        if (unlikely(TSI_READ(carryreg) & carry_bit)) {
 480                *upper += carry_shift;
 481                TSI_WRITE(carryreg, carry_bit);
 482                goto again;
 483        }
 484
 485        return val;
 486}
 487
 488static struct net_device_stats *tsi108_get_stats(struct net_device *dev)
 489{
 490        unsigned long excol;
 491
 492        struct tsi108_prv_data *data = netdev_priv(dev);
 493        spin_lock_irq(&data->misclock);
 494
 495        data->tmpstats.rx_packets =
 496            tsi108_read_stat(data, TSI108_STAT_RXPKTS,
 497                             TSI108_STAT_CARRY1_RXPKTS,
 498                             TSI108_STAT_RXPKTS_CARRY, &data->stats.rx_packets);
 499
 500        data->tmpstats.tx_packets =
 501            tsi108_read_stat(data, TSI108_STAT_TXPKTS,
 502                             TSI108_STAT_CARRY2_TXPKTS,
 503                             TSI108_STAT_TXPKTS_CARRY, &data->stats.tx_packets);
 504
 505        data->tmpstats.rx_bytes =
 506            tsi108_read_stat(data, TSI108_STAT_RXBYTES,
 507                             TSI108_STAT_CARRY1_RXBYTES,
 508                             TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes);
 509
 510        data->tmpstats.tx_bytes =
 511            tsi108_read_stat(data, TSI108_STAT_TXBYTES,
 512                             TSI108_STAT_CARRY2_TXBYTES,
 513                             TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes);
 514
 515        data->tmpstats.multicast =
 516            tsi108_read_stat(data, TSI108_STAT_RXMCAST,
 517                             TSI108_STAT_CARRY1_RXMCAST,
 518                             TSI108_STAT_RXMCAST_CARRY, &data->stats.multicast);
 519
 520        excol = tsi108_read_stat(data, TSI108_STAT_TXEXCOL,
 521                                 TSI108_STAT_CARRY2_TXEXCOL,
 522                                 TSI108_STAT_TXEXCOL_CARRY,
 523                                 &data->tx_coll_abort);
 524
 525        data->tmpstats.collisions =
 526            tsi108_read_stat(data, TSI108_STAT_TXTCOL,
 527                             TSI108_STAT_CARRY2_TXTCOL,
 528                             TSI108_STAT_TXTCOL_CARRY, &data->stats.collisions);
 529
 530        data->tmpstats.collisions += excol;
 531
 532        data->tmpstats.rx_length_errors =
 533            tsi108_read_stat(data, TSI108_STAT_RXLENGTH,
 534                             TSI108_STAT_CARRY1_RXLENGTH,
 535                             TSI108_STAT_RXLENGTH_CARRY,
 536                             &data->stats.rx_length_errors);
 537
 538        data->tmpstats.rx_length_errors +=
 539            tsi108_read_stat(data, TSI108_STAT_RXRUNT,
 540                             TSI108_STAT_CARRY1_RXRUNT,
 541                             TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns);
 542
 543        data->tmpstats.rx_length_errors +=
 544            tsi108_read_stat(data, TSI108_STAT_RXJUMBO,
 545                             TSI108_STAT_CARRY1_RXJUMBO,
 546                             TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns);
 547
 548        data->tmpstats.rx_frame_errors =
 549            tsi108_read_stat(data, TSI108_STAT_RXALIGN,
 550                             TSI108_STAT_CARRY1_RXALIGN,
 551                             TSI108_STAT_RXALIGN_CARRY,
 552                             &data->stats.rx_frame_errors);
 553
 554        data->tmpstats.rx_frame_errors +=
 555            tsi108_read_stat(data, TSI108_STAT_RXFCS,
 556                             TSI108_STAT_CARRY1_RXFCS, TSI108_STAT_RXFCS_CARRY,
 557                             &data->rx_fcs);
 558
 559        data->tmpstats.rx_frame_errors +=
 560            tsi108_read_stat(data, TSI108_STAT_RXFRAG,
 561                             TSI108_STAT_CARRY1_RXFRAG,
 562                             TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs);
 563
 564        data->tmpstats.rx_missed_errors =
 565            tsi108_read_stat(data, TSI108_STAT_RXDROP,
 566                             TSI108_STAT_CARRY1_RXDROP,
 567                             TSI108_STAT_RXDROP_CARRY,
 568                             &data->stats.rx_missed_errors);
 569
 570        /* These three are maintained by software. */
 571        data->tmpstats.rx_fifo_errors = data->stats.rx_fifo_errors;
 572        data->tmpstats.rx_crc_errors = data->stats.rx_crc_errors;
 573
 574        data->tmpstats.tx_aborted_errors =
 575            tsi108_read_stat(data, TSI108_STAT_TXEXDEF,
 576                             TSI108_STAT_CARRY2_TXEXDEF,
 577                             TSI108_STAT_TXEXDEF_CARRY,
 578                             &data->stats.tx_aborted_errors);
 579
 580        data->tmpstats.tx_aborted_errors +=
 581            tsi108_read_stat(data, TSI108_STAT_TXPAUSEDROP,
 582                             TSI108_STAT_CARRY2_TXPAUSE,
 583                             TSI108_STAT_TXPAUSEDROP_CARRY,
 584                             &data->tx_pause_drop);
 585
 586        data->tmpstats.tx_aborted_errors += excol;
 587
 588        data->tmpstats.tx_errors = data->tmpstats.tx_aborted_errors;
 589        data->tmpstats.rx_errors = data->tmpstats.rx_length_errors +
 590            data->tmpstats.rx_crc_errors +
 591            data->tmpstats.rx_frame_errors +
 592            data->tmpstats.rx_fifo_errors + data->tmpstats.rx_missed_errors;
 593
 594        spin_unlock_irq(&data->misclock);
 595        return &data->tmpstats;
 596}
 597
 598static void tsi108_restart_rx(struct tsi108_prv_data * data, struct net_device *dev)
 599{
 600        TSI_WRITE(TSI108_EC_RXQ_PTRHIGH,
 601                             TSI108_EC_RXQ_PTRHIGH_VALID);
 602
 603        TSI_WRITE(TSI108_EC_RXCTRL, TSI108_EC_RXCTRL_GO
 604                             | TSI108_EC_RXCTRL_QUEUE0);
 605}
 606
 607static void tsi108_restart_tx(struct tsi108_prv_data * data)
 608{
 609        TSI_WRITE(TSI108_EC_TXQ_PTRHIGH,
 610                             TSI108_EC_TXQ_PTRHIGH_VALID);
 611
 612        TSI_WRITE(TSI108_EC_TXCTRL, TSI108_EC_TXCTRL_IDLEINT |
 613                             TSI108_EC_TXCTRL_GO | TSI108_EC_TXCTRL_QUEUE0);
 614}
 615
 616/* txlock must be held by caller, with IRQs disabled, and
 617 * with permission to re-enable them when the lock is dropped.
 618 */
 619static void tsi108_complete_tx(struct net_device *dev)
 620{
 621        struct tsi108_prv_data *data = netdev_priv(dev);
 622        int tx;
 623        struct sk_buff *skb;
 624        int release = 0;
 625
 626        while (!data->txfree || data->txhead != data->txtail) {
 627                tx = data->txtail;
 628
 629                if (data->txring[tx].misc & TSI108_TX_OWN)
 630                        break;
 631
 632                skb = data->txskbs[tx];
 633
 634                if (!(data->txring[tx].misc & TSI108_TX_OK))
 635                        printk("%s: bad tx packet, misc %x\n",
 636                               dev->name, data->txring[tx].misc);
 637
 638                data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN;
 639                data->txfree++;
 640
 641                if (data->txring[tx].misc & TSI108_TX_EOF) {
 642                        dev_kfree_skb_any(skb);
 643                        release++;
 644                }
 645        }
 646
 647        if (release) {
 648                if (is_valid_ether_addr(dev->dev_addr) && data->link_up)
 649                        netif_wake_queue(dev);
 650        }
 651}
 652
 653static int tsi108_send_packet(struct sk_buff * skb, struct net_device *dev)
 654{
 655        struct tsi108_prv_data *data = netdev_priv(dev);
 656        int frags = skb_shinfo(skb)->nr_frags + 1;
 657        int i;
 658
 659        if (!data->phy_ok && net_ratelimit())
 660                printk(KERN_ERR "%s: Transmit while PHY is down!\n", dev->name);
 661
 662        if (!data->link_up) {
 663                printk(KERN_ERR "%s: Transmit while link is down!\n",
 664                       dev->name);
 665                netif_stop_queue(dev);
 666                return NETDEV_TX_BUSY;
 667        }
 668
 669        if (data->txfree < MAX_SKB_FRAGS + 1) {
 670                netif_stop_queue(dev);
 671
 672                if (net_ratelimit())
 673                        printk(KERN_ERR "%s: Transmit with full tx ring!\n",
 674                               dev->name);
 675                return NETDEV_TX_BUSY;
 676        }
 677
 678        if (data->txfree - frags < MAX_SKB_FRAGS + 1) {
 679                netif_stop_queue(dev);
 680        }
 681
 682        spin_lock_irq(&data->txlock);
 683
 684        for (i = 0; i < frags; i++) {
 685                int misc = 0;
 686                int tx = data->txhead;
 687
 688                /* This is done to mark every TSI108_TX_INT_FREQ tx buffers with
 689                 * the interrupt bit.  TX descriptor-complete interrupts are
 690                 * enabled when the queue fills up, and masked when there is
 691                 * still free space.  This way, when saturating the outbound
 692                 * link, the tx interrupts are kept to a reasonable level.
 693                 * When the queue is not full, reclamation of skbs still occurs
 694                 * as new packets are transmitted, or on a queue-empty
 695                 * interrupt.
 696                 */
 697
 698                if ((tx % TSI108_TX_INT_FREQ == 0) &&
 699                    ((TSI108_TXRING_LEN - data->txfree) >= TSI108_TX_INT_FREQ))
 700                        misc = TSI108_TX_INT;
 701
 702                data->txskbs[tx] = skb;
 703
 704                if (i == 0) {
 705                        data->txring[tx].buf0 = dma_map_single(NULL, skb->data,
 706                                        skb_headlen(skb), DMA_TO_DEVICE);
 707                        data->txring[tx].len = skb_headlen(skb);
 708                        misc |= TSI108_TX_SOF;
 709                } else {
 710                        const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
 711
 712                        data->txring[tx].buf0 = skb_frag_dma_map(NULL, frag,
 713                                                                 0,
 714                                                                 skb_frag_size(frag),
 715                                                                 DMA_TO_DEVICE);
 716                        data->txring[tx].len = skb_frag_size(frag);
 717                }
 718
 719                if (i == frags - 1)
 720                        misc |= TSI108_TX_EOF;
 721
 722                if (netif_msg_pktdata(data)) {
 723                        int i;
 724                        printk("%s: Tx Frame contents (%d)\n", dev->name,
 725                               skb->len);
 726                        for (i = 0; i < skb->len; i++)
 727                                printk(" %2.2x", skb->data[i]);
 728                        printk(".\n");
 729                }
 730                data->txring[tx].misc = misc | TSI108_TX_OWN;
 731
 732                data->txhead = (data->txhead + 1) % TSI108_TXRING_LEN;
 733                data->txfree--;
 734        }
 735
 736        tsi108_complete_tx(dev);
 737
 738        /* This must be done after the check for completed tx descriptors,
 739         * so that the tail pointer is correct.
 740         */
 741
 742        if (!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_QUEUE0))
 743                tsi108_restart_tx(data);
 744
 745        spin_unlock_irq(&data->txlock);
 746        return NETDEV_TX_OK;
 747}
 748
 749static int tsi108_complete_rx(struct net_device *dev, int budget)
 750{
 751        struct tsi108_prv_data *data = netdev_priv(dev);
 752        int done = 0;
 753
 754        while (data->rxfree && done != budget) {
 755                int rx = data->rxtail;
 756                struct sk_buff *skb;
 757
 758                if (data->rxring[rx].misc & TSI108_RX_OWN)
 759                        break;
 760
 761                skb = data->rxskbs[rx];
 762                data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN;
 763                data->rxfree--;
 764                done++;
 765
 766                if (data->rxring[rx].misc & TSI108_RX_BAD) {
 767                        spin_lock_irq(&data->misclock);
 768
 769                        if (data->rxring[rx].misc & TSI108_RX_CRC)
 770                                data->stats.rx_crc_errors++;
 771                        if (data->rxring[rx].misc & TSI108_RX_OVER)
 772                                data->stats.rx_fifo_errors++;
 773
 774                        spin_unlock_irq(&data->misclock);
 775
 776                        dev_kfree_skb_any(skb);
 777                        continue;
 778                }
 779                if (netif_msg_pktdata(data)) {
 780                        int i;
 781                        printk("%s: Rx Frame contents (%d)\n",
 782                               dev->name, data->rxring[rx].len);
 783                        for (i = 0; i < data->rxring[rx].len; i++)
 784                                printk(" %2.2x", skb->data[i]);
 785                        printk(".\n");
 786                }
 787
 788                skb_put(skb, data->rxring[rx].len);
 789                skb->protocol = eth_type_trans(skb, dev);
 790                netif_receive_skb(skb);
 791        }
 792
 793        return done;
 794}
 795
 796static int tsi108_refill_rx(struct net_device *dev, int budget)
 797{
 798        struct tsi108_prv_data *data = netdev_priv(dev);
 799        int done = 0;
 800
 801        while (data->rxfree != TSI108_RXRING_LEN && done != budget) {
 802                int rx = data->rxhead;
 803                struct sk_buff *skb;
 804
 805                skb = netdev_alloc_skb_ip_align(dev, TSI108_RXBUF_SIZE);
 806                data->rxskbs[rx] = skb;
 807                if (!skb)
 808                        break;
 809
 810                data->rxring[rx].buf0 = dma_map_single(NULL, skb->data,
 811                                                        TSI108_RX_SKB_SIZE,
 812                                                        DMA_FROM_DEVICE);
 813
 814                /* Sometimes the hardware sets blen to zero after packet
 815                 * reception, even though the manual says that it's only ever
 816                 * modified by the driver.
 817                 */
 818
 819                data->rxring[rx].blen = TSI108_RX_SKB_SIZE;
 820                data->rxring[rx].misc = TSI108_RX_OWN | TSI108_RX_INT;
 821
 822                data->rxhead = (data->rxhead + 1) % TSI108_RXRING_LEN;
 823                data->rxfree++;
 824                done++;
 825        }
 826
 827        if (done != 0 && !(TSI_READ(TSI108_EC_RXSTAT) &
 828                           TSI108_EC_RXSTAT_QUEUE0))
 829                tsi108_restart_rx(data, dev);
 830
 831        return done;
 832}
 833
 834static int tsi108_poll(struct napi_struct *napi, int budget)
 835{
 836        struct tsi108_prv_data *data = container_of(napi, struct tsi108_prv_data, napi);
 837        struct net_device *dev = data->dev;
 838        u32 estat = TSI_READ(TSI108_EC_RXESTAT);
 839        u32 intstat = TSI_READ(TSI108_EC_INTSTAT);
 840        int num_received = 0, num_filled = 0;
 841
 842        intstat &= TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH |
 843            TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR | TSI108_INT_RXWAIT;
 844
 845        TSI_WRITE(TSI108_EC_RXESTAT, estat);
 846        TSI_WRITE(TSI108_EC_INTSTAT, intstat);
 847
 848        if (data->rxpending || (estat & TSI108_EC_RXESTAT_Q0_DESCINT))
 849                num_received = tsi108_complete_rx(dev, budget);
 850
 851        /* This should normally fill no more slots than the number of
 852         * packets received in tsi108_complete_rx().  The exception
 853         * is when we previously ran out of memory for RX SKBs.  In that
 854         * case, it's helpful to obey the budget, not only so that the
 855         * CPU isn't hogged, but so that memory (which may still be low)
 856         * is not hogged by one device.
 857         *
 858         * A work unit is considered to be two SKBs to allow us to catch
 859         * up when the ring has shrunk due to out-of-memory but we're
 860         * still removing the full budget's worth of packets each time.
 861         */
 862
 863        if (data->rxfree < TSI108_RXRING_LEN)
 864                num_filled = tsi108_refill_rx(dev, budget * 2);
 865
 866        if (intstat & TSI108_INT_RXERROR) {
 867                u32 err = TSI_READ(TSI108_EC_RXERR);
 868                TSI_WRITE(TSI108_EC_RXERR, err);
 869
 870                if (err) {
 871                        if (net_ratelimit())
 872                                printk(KERN_DEBUG "%s: RX error %x\n",
 873                                       dev->name, err);
 874
 875                        if (!(TSI_READ(TSI108_EC_RXSTAT) &
 876                              TSI108_EC_RXSTAT_QUEUE0))
 877                                tsi108_restart_rx(data, dev);
 878                }
 879        }
 880
 881        if (intstat & TSI108_INT_RXOVERRUN) {
 882                spin_lock_irq(&data->misclock);
 883                data->stats.rx_fifo_errors++;
 884                spin_unlock_irq(&data->misclock);
 885        }
 886
 887        if (num_received < budget) {
 888                data->rxpending = 0;
 889                napi_complete(napi);
 890
 891                TSI_WRITE(TSI108_EC_INTMASK,
 892                                     TSI_READ(TSI108_EC_INTMASK)
 893                                     & ~(TSI108_INT_RXQUEUE0
 894                                         | TSI108_INT_RXTHRESH |
 895                                         TSI108_INT_RXOVERRUN |
 896                                         TSI108_INT_RXERROR |
 897                                         TSI108_INT_RXWAIT));
 898        } else {
 899                data->rxpending = 1;
 900        }
 901
 902        return num_received;
 903}
 904
 905static void tsi108_rx_int(struct net_device *dev)
 906{
 907        struct tsi108_prv_data *data = netdev_priv(dev);
 908
 909        /* A race could cause dev to already be scheduled, so it's not an
 910         * error if that happens (and interrupts shouldn't be re-masked,
 911         * because that can cause harmful races, if poll has already
 912         * unmasked them but not cleared LINK_STATE_SCHED).
 913         *
 914         * This can happen if this code races with tsi108_poll(), which masks
 915         * the interrupts after tsi108_irq_one() read the mask, but before
 916         * napi_schedule is called.  It could also happen due to calls
 917         * from tsi108_check_rxring().
 918         */
 919
 920        if (napi_schedule_prep(&data->napi)) {
 921                /* Mask, rather than ack, the receive interrupts.  The ack
 922                 * will happen in tsi108_poll().
 923                 */
 924
 925                TSI_WRITE(TSI108_EC_INTMASK,
 926                                     TSI_READ(TSI108_EC_INTMASK) |
 927                                     TSI108_INT_RXQUEUE0
 928                                     | TSI108_INT_RXTHRESH |
 929                                     TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR |
 930                                     TSI108_INT_RXWAIT);
 931                __napi_schedule(&data->napi);
 932        } else {
 933                if (!netif_running(dev)) {
 934                        /* This can happen if an interrupt occurs while the
 935                         * interface is being brought down, as the START
 936                         * bit is cleared before the stop function is called.
 937                         *
 938                         * In this case, the interrupts must be masked, or
 939                         * they will continue indefinitely.
 940                         *
 941                         * There's a race here if the interface is brought down
 942                         * and then up in rapid succession, as the device could
 943                         * be made running after the above check and before
 944                         * the masking below.  This will only happen if the IRQ
 945                         * thread has a lower priority than the task brining
 946                         * up the interface.  Fixing this race would likely
 947                         * require changes in generic code.
 948                         */
 949
 950                        TSI_WRITE(TSI108_EC_INTMASK,
 951                                             TSI_READ
 952                                             (TSI108_EC_INTMASK) |
 953                                             TSI108_INT_RXQUEUE0 |
 954                                             TSI108_INT_RXTHRESH |
 955                                             TSI108_INT_RXOVERRUN |
 956                                             TSI108_INT_RXERROR |
 957                                             TSI108_INT_RXWAIT);
 958                }
 959        }
 960}
 961
 962/* If the RX ring has run out of memory, try periodically
 963 * to allocate some more, as otherwise poll would never
 964 * get called (apart from the initial end-of-queue condition).
 965 *
 966 * This is called once per second (by default) from the thread.
 967 */
 968
 969static void tsi108_check_rxring(struct net_device *dev)
 970{
 971        struct tsi108_prv_data *data = netdev_priv(dev);
 972
 973        /* A poll is scheduled, as opposed to caling tsi108_refill_rx
 974         * directly, so as to keep the receive path single-threaded
 975         * (and thus not needing a lock).
 976         */
 977
 978        if (netif_running(dev) && data->rxfree < TSI108_RXRING_LEN / 4)
 979                tsi108_rx_int(dev);
 980}
 981
 982static void tsi108_tx_int(struct net_device *dev)
 983{
 984        struct tsi108_prv_data *data = netdev_priv(dev);
 985        u32 estat = TSI_READ(TSI108_EC_TXESTAT);
 986
 987        TSI_WRITE(TSI108_EC_TXESTAT, estat);
 988        TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_TXQUEUE0 |
 989                             TSI108_INT_TXIDLE | TSI108_INT_TXERROR);
 990        if (estat & TSI108_EC_TXESTAT_Q0_ERR) {
 991                u32 err = TSI_READ(TSI108_EC_TXERR);
 992                TSI_WRITE(TSI108_EC_TXERR, err);
 993
 994                if (err && net_ratelimit())
 995                        printk(KERN_ERR "%s: TX error %x\n", dev->name, err);
 996        }
 997
 998        if (estat & (TSI108_EC_TXESTAT_Q0_DESCINT | TSI108_EC_TXESTAT_Q0_EOQ)) {
 999                spin_lock(&data->txlock);
1000                tsi108_complete_tx(dev);
1001                spin_unlock(&data->txlock);
1002        }
1003}
1004
1005
1006static irqreturn_t tsi108_irq(int irq, void *dev_id)
1007{
1008        struct net_device *dev = dev_id;
1009        struct tsi108_prv_data *data = netdev_priv(dev);
1010        u32 stat = TSI_READ(TSI108_EC_INTSTAT);
1011
1012        if (!(stat & TSI108_INT_ANY))
1013                return IRQ_NONE;        /* Not our interrupt */
1014
1015        stat &= ~TSI_READ(TSI108_EC_INTMASK);
1016
1017        if (stat & (TSI108_INT_TXQUEUE0 | TSI108_INT_TXIDLE |
1018                    TSI108_INT_TXERROR))
1019                tsi108_tx_int(dev);
1020        if (stat & (TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH |
1021                    TSI108_INT_RXWAIT | TSI108_INT_RXOVERRUN |
1022                    TSI108_INT_RXERROR))
1023                tsi108_rx_int(dev);
1024
1025        if (stat & TSI108_INT_SFN) {
1026                if (net_ratelimit())
1027                        printk(KERN_DEBUG "%s: SFN error\n", dev->name);
1028                TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_SFN);
1029        }
1030
1031        if (stat & TSI108_INT_STATCARRY) {
1032                tsi108_stat_carry(dev);
1033                TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_STATCARRY);
1034        }
1035
1036        return IRQ_HANDLED;
1037}
1038
1039static void tsi108_stop_ethernet(struct net_device *dev)
1040{
1041        struct tsi108_prv_data *data = netdev_priv(dev);
1042        int i = 1000;
1043        /* Disable all TX and RX queues ... */
1044        TSI_WRITE(TSI108_EC_TXCTRL, 0);
1045        TSI_WRITE(TSI108_EC_RXCTRL, 0);
1046
1047        /* ...and wait for them to become idle */
1048        while(i--) {
1049                if(!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_ACTIVE))
1050                        break;
1051                udelay(10);
1052        }
1053        i = 1000;
1054        while(i--){
1055                if(!(TSI_READ(TSI108_EC_RXSTAT) & TSI108_EC_RXSTAT_ACTIVE))
1056                        return;
1057                udelay(10);
1058        }
1059        printk(KERN_ERR "%s function time out\n", __func__);
1060}
1061
1062static void tsi108_reset_ether(struct tsi108_prv_data * data)
1063{
1064        TSI_WRITE(TSI108_MAC_CFG1, TSI108_MAC_CFG1_SOFTRST);
1065        udelay(100);
1066        TSI_WRITE(TSI108_MAC_CFG1, 0);
1067
1068        TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATRST);
1069        udelay(100);
1070        TSI_WRITE(TSI108_EC_PORTCTRL,
1071                             TSI_READ(TSI108_EC_PORTCTRL) &
1072                             ~TSI108_EC_PORTCTRL_STATRST);
1073
1074        TSI_WRITE(TSI108_EC_TXCFG, TSI108_EC_TXCFG_RST);
1075        udelay(100);
1076        TSI_WRITE(TSI108_EC_TXCFG,
1077                             TSI_READ(TSI108_EC_TXCFG) &
1078                             ~TSI108_EC_TXCFG_RST);
1079
1080        TSI_WRITE(TSI108_EC_RXCFG, TSI108_EC_RXCFG_RST);
1081        udelay(100);
1082        TSI_WRITE(TSI108_EC_RXCFG,
1083                             TSI_READ(TSI108_EC_RXCFG) &
1084                             ~TSI108_EC_RXCFG_RST);
1085
1086        TSI_WRITE(TSI108_MAC_MII_MGMT_CFG,
1087                             TSI_READ(TSI108_MAC_MII_MGMT_CFG) |
1088                             TSI108_MAC_MII_MGMT_RST);
1089        udelay(100);
1090        TSI_WRITE(TSI108_MAC_MII_MGMT_CFG,
1091                             (TSI_READ(TSI108_MAC_MII_MGMT_CFG) &
1092                             ~(TSI108_MAC_MII_MGMT_RST |
1093                               TSI108_MAC_MII_MGMT_CLK)) | 0x07);
1094}
1095
1096static int tsi108_get_mac(struct net_device *dev)
1097{
1098        struct tsi108_prv_data *data = netdev_priv(dev);
1099        u32 word1 = TSI_READ(TSI108_MAC_ADDR1);
1100        u32 word2 = TSI_READ(TSI108_MAC_ADDR2);
1101
1102        /* Note that the octets are reversed from what the manual says,
1103         * producing an even weirder ordering...
1104         */
1105        if (word2 == 0 && word1 == 0) {
1106                dev->dev_addr[0] = 0x00;
1107                dev->dev_addr[1] = 0x06;
1108                dev->dev_addr[2] = 0xd2;
1109                dev->dev_addr[3] = 0x00;
1110                dev->dev_addr[4] = 0x00;
1111                if (0x8 == data->phy)
1112                        dev->dev_addr[5] = 0x01;
1113                else
1114                        dev->dev_addr[5] = 0x02;
1115
1116                word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24);
1117
1118                word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) |
1119                    (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24);
1120
1121                TSI_WRITE(TSI108_MAC_ADDR1, word1);
1122                TSI_WRITE(TSI108_MAC_ADDR2, word2);
1123        } else {
1124                dev->dev_addr[0] = (word2 >> 16) & 0xff;
1125                dev->dev_addr[1] = (word2 >> 24) & 0xff;
1126                dev->dev_addr[2] = (word1 >> 0) & 0xff;
1127                dev->dev_addr[3] = (word1 >> 8) & 0xff;
1128                dev->dev_addr[4] = (word1 >> 16) & 0xff;
1129                dev->dev_addr[5] = (word1 >> 24) & 0xff;
1130        }
1131
1132        if (!is_valid_ether_addr(dev->dev_addr)) {
1133                printk(KERN_ERR
1134                       "%s: Invalid MAC address. word1: %08x, word2: %08x\n",
1135                       dev->name, word1, word2);
1136                return -EINVAL;
1137        }
1138
1139        return 0;
1140}
1141
1142static int tsi108_set_mac(struct net_device *dev, void *addr)
1143{
1144        struct tsi108_prv_data *data = netdev_priv(dev);
1145        u32 word1, word2;
1146        int i;
1147
1148        if (!is_valid_ether_addr(addr))
1149                return -EADDRNOTAVAIL;
1150
1151        for (i = 0; i < 6; i++)
1152                /* +2 is for the offset of the HW addr type */
1153                dev->dev_addr[i] = ((unsigned char *)addr)[i + 2];
1154
1155        word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24);
1156
1157        word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) |
1158            (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24);
1159
1160        spin_lock_irq(&data->misclock);
1161        TSI_WRITE(TSI108_MAC_ADDR1, word1);
1162        TSI_WRITE(TSI108_MAC_ADDR2, word2);
1163        spin_lock(&data->txlock);
1164
1165        if (data->txfree && data->link_up)
1166                netif_wake_queue(dev);
1167
1168        spin_unlock(&data->txlock);
1169        spin_unlock_irq(&data->misclock);
1170        return 0;
1171}
1172
1173/* Protected by dev->xmit_lock. */
1174static void tsi108_set_rx_mode(struct net_device *dev)
1175{
1176        struct tsi108_prv_data *data = netdev_priv(dev);
1177        u32 rxcfg = TSI_READ(TSI108_EC_RXCFG);
1178
1179        if (dev->flags & IFF_PROMISC) {
1180                rxcfg &= ~(TSI108_EC_RXCFG_UC_HASH | TSI108_EC_RXCFG_MC_HASH);
1181                rxcfg |= TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE;
1182                goto out;
1183        }
1184
1185        rxcfg &= ~(TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE);
1186
1187        if (dev->flags & IFF_ALLMULTI || !netdev_mc_empty(dev)) {
1188                int i;
1189                struct netdev_hw_addr *ha;
1190                rxcfg |= TSI108_EC_RXCFG_MFE | TSI108_EC_RXCFG_MC_HASH;
1191
1192                memset(data->mc_hash, 0, sizeof(data->mc_hash));
1193
1194                netdev_for_each_mc_addr(ha, dev) {
1195                        u32 hash, crc;
1196
1197                        crc = ether_crc(6, ha->addr);
1198                        hash = crc >> 23;
1199                        __set_bit(hash, &data->mc_hash[0]);
1200                }
1201
1202                TSI_WRITE(TSI108_EC_HASHADDR,
1203                                     TSI108_EC_HASHADDR_AUTOINC |
1204                                     TSI108_EC_HASHADDR_MCAST);
1205
1206                for (i = 0; i < 16; i++) {
1207                        /* The manual says that the hardware may drop
1208                         * back-to-back writes to the data register.
1209                         */
1210                        udelay(1);
1211                        TSI_WRITE(TSI108_EC_HASHDATA,
1212                                             data->mc_hash[i]);
1213                }
1214        }
1215
1216      out:
1217        TSI_WRITE(TSI108_EC_RXCFG, rxcfg);
1218}
1219
1220static void tsi108_init_phy(struct net_device *dev)
1221{
1222        struct tsi108_prv_data *data = netdev_priv(dev);
1223        u32 i = 0;
1224        u16 phyval = 0;
1225        unsigned long flags;
1226
1227        spin_lock_irqsave(&phy_lock, flags);
1228
1229        tsi108_write_mii(data, MII_BMCR, BMCR_RESET);
1230        while (--i) {
1231                if(!(tsi108_read_mii(data, MII_BMCR) & BMCR_RESET))
1232                        break;
1233                udelay(10);
1234        }
1235        if (i == 0)
1236                printk(KERN_ERR "%s function time out\n", __func__);
1237
1238        if (data->phy_type == TSI108_PHY_BCM54XX) {
1239                tsi108_write_mii(data, 0x09, 0x0300);
1240                tsi108_write_mii(data, 0x10, 0x1020);
1241                tsi108_write_mii(data, 0x1c, 0x8c00);
1242        }
1243
1244        tsi108_write_mii(data,
1245                         MII_BMCR,
1246                         BMCR_ANENABLE | BMCR_ANRESTART);
1247        while (tsi108_read_mii(data, MII_BMCR) & BMCR_ANRESTART)
1248                cpu_relax();
1249
1250        /* Set G/MII mode and receive clock select in TBI control #2.  The
1251         * second port won't work if this isn't done, even though we don't
1252         * use TBI mode.
1253         */
1254
1255        tsi108_write_tbi(data, 0x11, 0x30);
1256
1257        /* FIXME: It seems to take more than 2 back-to-back reads to the
1258         * PHY_STAT register before the link up status bit is set.
1259         */
1260
1261        data->link_up = 0;
1262
1263        while (!((phyval = tsi108_read_mii(data, MII_BMSR)) &
1264                 BMSR_LSTATUS)) {
1265                if (i++ > (MII_READ_DELAY / 10)) {
1266                        break;
1267                }
1268                spin_unlock_irqrestore(&phy_lock, flags);
1269                msleep(10);
1270                spin_lock_irqsave(&phy_lock, flags);
1271        }
1272
1273        data->mii_if.supports_gmii = mii_check_gmii_support(&data->mii_if);
1274        printk(KERN_DEBUG "PHY_STAT reg contains %08x\n", phyval);
1275        data->phy_ok = 1;
1276        data->init_media = 1;
1277        spin_unlock_irqrestore(&phy_lock, flags);
1278}
1279
1280static void tsi108_kill_phy(struct net_device *dev)
1281{
1282        struct tsi108_prv_data *data = netdev_priv(dev);
1283        unsigned long flags;
1284
1285        spin_lock_irqsave(&phy_lock, flags);
1286        tsi108_write_mii(data, MII_BMCR, BMCR_PDOWN);
1287        data->phy_ok = 0;
1288        spin_unlock_irqrestore(&phy_lock, flags);
1289}
1290
1291static int tsi108_open(struct net_device *dev)
1292{
1293        int i;
1294        struct tsi108_prv_data *data = netdev_priv(dev);
1295        unsigned int rxring_size = TSI108_RXRING_LEN * sizeof(rx_desc);
1296        unsigned int txring_size = TSI108_TXRING_LEN * sizeof(tx_desc);
1297
1298        i = request_irq(data->irq_num, tsi108_irq, 0, dev->name, dev);
1299        if (i != 0) {
1300                printk(KERN_ERR "tsi108_eth%d: Could not allocate IRQ%d.\n",
1301                       data->id, data->irq_num);
1302                return i;
1303        } else {
1304                dev->irq = data->irq_num;
1305                printk(KERN_NOTICE
1306                       "tsi108_open : Port %d Assigned IRQ %d to %s\n",
1307                       data->id, dev->irq, dev->name);
1308        }
1309
1310        data->rxring = dma_zalloc_coherent(NULL, rxring_size, &data->rxdma,
1311                                           GFP_KERNEL);
1312        if (!data->rxring)
1313                return -ENOMEM;
1314
1315        data->txring = dma_zalloc_coherent(NULL, txring_size, &data->txdma,
1316                                           GFP_KERNEL);
1317        if (!data->txring) {
1318                pci_free_consistent(0, rxring_size, data->rxring, data->rxdma);
1319                return -ENOMEM;
1320        }
1321
1322        for (i = 0; i < TSI108_RXRING_LEN; i++) {
1323                data->rxring[i].next0 = data->rxdma + (i + 1) * sizeof(rx_desc);
1324                data->rxring[i].blen = TSI108_RXBUF_SIZE;
1325                data->rxring[i].vlan = 0;
1326        }
1327
1328        data->rxring[TSI108_RXRING_LEN - 1].next0 = data->rxdma;
1329
1330        data->rxtail = 0;
1331        data->rxhead = 0;
1332
1333        for (i = 0; i < TSI108_RXRING_LEN; i++) {
1334                struct sk_buff *skb;
1335
1336                skb = netdev_alloc_skb_ip_align(dev, TSI108_RXBUF_SIZE);
1337                if (!skb) {
1338                        /* Bah.  No memory for now, but maybe we'll get
1339                         * some more later.
1340                         * For now, we'll live with the smaller ring.
1341                         */
1342                        printk(KERN_WARNING
1343                               "%s: Could only allocate %d receive skb(s).\n",
1344                               dev->name, i);
1345                        data->rxhead = i;
1346                        break;
1347                }
1348
1349                data->rxskbs[i] = skb;
1350                data->rxring[i].buf0 = virt_to_phys(data->rxskbs[i]->data);
1351                data->rxring[i].misc = TSI108_RX_OWN | TSI108_RX_INT;
1352        }
1353
1354        data->rxfree = i;
1355        TSI_WRITE(TSI108_EC_RXQ_PTRLOW, data->rxdma);
1356
1357        for (i = 0; i < TSI108_TXRING_LEN; i++) {
1358                data->txring[i].next0 = data->txdma + (i + 1) * sizeof(tx_desc);
1359                data->txring[i].misc = 0;
1360        }
1361
1362        data->txring[TSI108_TXRING_LEN - 1].next0 = data->txdma;
1363        data->txtail = 0;
1364        data->txhead = 0;
1365        data->txfree = TSI108_TXRING_LEN;
1366        TSI_WRITE(TSI108_EC_TXQ_PTRLOW, data->txdma);
1367        tsi108_init_phy(dev);
1368
1369        napi_enable(&data->napi);
1370
1371        setup_timer(&data->timer, tsi108_timed_checker, (unsigned long)dev);
1372        mod_timer(&data->timer, jiffies + 1);
1373
1374        tsi108_restart_rx(data, dev);
1375
1376        TSI_WRITE(TSI108_EC_INTSTAT, ~0);
1377
1378        TSI_WRITE(TSI108_EC_INTMASK,
1379                             ~(TSI108_INT_TXQUEUE0 | TSI108_INT_RXERROR |
1380                               TSI108_INT_RXTHRESH | TSI108_INT_RXQUEUE0 |
1381                               TSI108_INT_RXOVERRUN | TSI108_INT_RXWAIT |
1382                               TSI108_INT_SFN | TSI108_INT_STATCARRY));
1383
1384        TSI_WRITE(TSI108_MAC_CFG1,
1385                             TSI108_MAC_CFG1_RXEN | TSI108_MAC_CFG1_TXEN);
1386        netif_start_queue(dev);
1387        return 0;
1388}
1389
1390static int tsi108_close(struct net_device *dev)
1391{
1392        struct tsi108_prv_data *data = netdev_priv(dev);
1393
1394        netif_stop_queue(dev);
1395        napi_disable(&data->napi);
1396
1397        del_timer_sync(&data->timer);
1398
1399        tsi108_stop_ethernet(dev);
1400        tsi108_kill_phy(dev);
1401        TSI_WRITE(TSI108_EC_INTMASK, ~0);
1402        TSI_WRITE(TSI108_MAC_CFG1, 0);
1403
1404        /* Check for any pending TX packets, and drop them. */
1405
1406        while (!data->txfree || data->txhead != data->txtail) {
1407                int tx = data->txtail;
1408                struct sk_buff *skb;
1409                skb = data->txskbs[tx];
1410                data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN;
1411                data->txfree++;
1412                dev_kfree_skb(skb);
1413        }
1414
1415        free_irq(data->irq_num, dev);
1416
1417        /* Discard the RX ring. */
1418
1419        while (data->rxfree) {
1420                int rx = data->rxtail;
1421                struct sk_buff *skb;
1422
1423                skb = data->rxskbs[rx];
1424                data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN;
1425                data->rxfree--;
1426                dev_kfree_skb(skb);
1427        }
1428
1429        dma_free_coherent(0,
1430                            TSI108_RXRING_LEN * sizeof(rx_desc),
1431                            data->rxring, data->rxdma);
1432        dma_free_coherent(0,
1433                            TSI108_TXRING_LEN * sizeof(tx_desc),
1434                            data->txring, data->txdma);
1435
1436        return 0;
1437}
1438
1439static void tsi108_init_mac(struct net_device *dev)
1440{
1441        struct tsi108_prv_data *data = netdev_priv(dev);
1442
1443        TSI_WRITE(TSI108_MAC_CFG2, TSI108_MAC_CFG2_DFLT_PREAMBLE |
1444                             TSI108_MAC_CFG2_PADCRC);
1445
1446        TSI_WRITE(TSI108_EC_TXTHRESH,
1447                             (192 << TSI108_EC_TXTHRESH_STARTFILL) |
1448                             (192 << TSI108_EC_TXTHRESH_STOPFILL));
1449
1450        TSI_WRITE(TSI108_STAT_CARRYMASK1,
1451                             ~(TSI108_STAT_CARRY1_RXBYTES |
1452                               TSI108_STAT_CARRY1_RXPKTS |
1453                               TSI108_STAT_CARRY1_RXFCS |
1454                               TSI108_STAT_CARRY1_RXMCAST |
1455                               TSI108_STAT_CARRY1_RXALIGN |
1456                               TSI108_STAT_CARRY1_RXLENGTH |
1457                               TSI108_STAT_CARRY1_RXRUNT |
1458                               TSI108_STAT_CARRY1_RXJUMBO |
1459                               TSI108_STAT_CARRY1_RXFRAG |
1460                               TSI108_STAT_CARRY1_RXJABBER |
1461                               TSI108_STAT_CARRY1_RXDROP));
1462
1463        TSI_WRITE(TSI108_STAT_CARRYMASK2,
1464                             ~(TSI108_STAT_CARRY2_TXBYTES |
1465                               TSI108_STAT_CARRY2_TXPKTS |
1466                               TSI108_STAT_CARRY2_TXEXDEF |
1467                               TSI108_STAT_CARRY2_TXEXCOL |
1468                               TSI108_STAT_CARRY2_TXTCOL |
1469                               TSI108_STAT_CARRY2_TXPAUSE));
1470
1471        TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATEN);
1472        TSI_WRITE(TSI108_MAC_CFG1, 0);
1473
1474        TSI_WRITE(TSI108_EC_RXCFG,
1475                             TSI108_EC_RXCFG_SE | TSI108_EC_RXCFG_BFE);
1476
1477        TSI_WRITE(TSI108_EC_TXQ_CFG, TSI108_EC_TXQ_CFG_DESC_INT |
1478                             TSI108_EC_TXQ_CFG_EOQ_OWN_INT |
1479                             TSI108_EC_TXQ_CFG_WSWP | (TSI108_PBM_PORT <<
1480                                                TSI108_EC_TXQ_CFG_SFNPORT));
1481
1482        TSI_WRITE(TSI108_EC_RXQ_CFG, TSI108_EC_RXQ_CFG_DESC_INT |
1483                             TSI108_EC_RXQ_CFG_EOQ_OWN_INT |
1484                             TSI108_EC_RXQ_CFG_WSWP | (TSI108_PBM_PORT <<
1485                                                TSI108_EC_RXQ_CFG_SFNPORT));
1486
1487        TSI_WRITE(TSI108_EC_TXQ_BUFCFG,
1488                             TSI108_EC_TXQ_BUFCFG_BURST256 |
1489                             TSI108_EC_TXQ_BUFCFG_BSWP | (TSI108_PBM_PORT <<
1490                                                TSI108_EC_TXQ_BUFCFG_SFNPORT));
1491
1492        TSI_WRITE(TSI108_EC_RXQ_BUFCFG,
1493                             TSI108_EC_RXQ_BUFCFG_BURST256 |
1494                             TSI108_EC_RXQ_BUFCFG_BSWP | (TSI108_PBM_PORT <<
1495                                                TSI108_EC_RXQ_BUFCFG_SFNPORT));
1496
1497        TSI_WRITE(TSI108_EC_INTMASK, ~0);
1498}
1499
1500static int tsi108_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1501{
1502        struct tsi108_prv_data *data = netdev_priv(dev);
1503        unsigned long flags;
1504        int rc;
1505
1506        spin_lock_irqsave(&data->txlock, flags);
1507        rc = mii_ethtool_gset(&data->mii_if, cmd);
1508        spin_unlock_irqrestore(&data->txlock, flags);
1509
1510        return rc;
1511}
1512
1513static int tsi108_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1514{
1515        struct tsi108_prv_data *data = netdev_priv(dev);
1516        unsigned long flags;
1517        int rc;
1518
1519        spin_lock_irqsave(&data->txlock, flags);
1520        rc = mii_ethtool_sset(&data->mii_if, cmd);
1521        spin_unlock_irqrestore(&data->txlock, flags);
1522
1523        return rc;
1524}
1525
1526static int tsi108_do_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1527{
1528        struct tsi108_prv_data *data = netdev_priv(dev);
1529        if (!netif_running(dev))
1530                return -EINVAL;
1531        return generic_mii_ioctl(&data->mii_if, if_mii(rq), cmd, NULL);
1532}
1533
1534static const struct ethtool_ops tsi108_ethtool_ops = {
1535        .get_link       = ethtool_op_get_link,
1536        .get_settings   = tsi108_get_settings,
1537        .set_settings   = tsi108_set_settings,
1538};
1539
1540static const struct net_device_ops tsi108_netdev_ops = {
1541        .ndo_open               = tsi108_open,
1542        .ndo_stop               = tsi108_close,
1543        .ndo_start_xmit         = tsi108_send_packet,
1544        .ndo_set_rx_mode        = tsi108_set_rx_mode,
1545        .ndo_get_stats          = tsi108_get_stats,
1546        .ndo_do_ioctl           = tsi108_do_ioctl,
1547        .ndo_set_mac_address    = tsi108_set_mac,
1548        .ndo_validate_addr      = eth_validate_addr,
1549        .ndo_change_mtu         = eth_change_mtu,
1550};
1551
1552static int
1553tsi108_init_one(struct platform_device *pdev)
1554{
1555        struct net_device *dev = NULL;
1556        struct tsi108_prv_data *data = NULL;
1557        hw_info *einfo;
1558        int err = 0;
1559
1560        einfo = dev_get_platdata(&pdev->dev);
1561
1562        if (NULL == einfo) {
1563                printk(KERN_ERR "tsi-eth %d: Missing additional data!\n",
1564                       pdev->id);
1565                return -ENODEV;
1566        }
1567
1568        /* Create an ethernet device instance */
1569
1570        dev = alloc_etherdev(sizeof(struct tsi108_prv_data));
1571        if (!dev)
1572                return -ENOMEM;
1573
1574        printk("tsi108_eth%d: probe...\n", pdev->id);
1575        data = netdev_priv(dev);
1576        data->dev = dev;
1577
1578        pr_debug("tsi108_eth%d:regs:phyresgs:phy:irq_num=0x%x:0x%x:0x%x:0x%x\n",
1579                        pdev->id, einfo->regs, einfo->phyregs,
1580                        einfo->phy, einfo->irq_num);
1581
1582        data->regs = ioremap(einfo->regs, 0x400);
1583        if (NULL == data->regs) {
1584                err = -ENOMEM;
1585                goto regs_fail;
1586        }
1587
1588        data->phyregs = ioremap(einfo->phyregs, 0x400);
1589        if (NULL == data->phyregs) {
1590                err = -ENOMEM;
1591                goto phyregs_fail;
1592        }
1593/* MII setup */
1594        data->mii_if.dev = dev;
1595        data->mii_if.mdio_read = tsi108_mdio_read;
1596        data->mii_if.mdio_write = tsi108_mdio_write;
1597        data->mii_if.phy_id = einfo->phy;
1598        data->mii_if.phy_id_mask = 0x1f;
1599        data->mii_if.reg_num_mask = 0x1f;
1600
1601        data->phy = einfo->phy;
1602        data->phy_type = einfo->phy_type;
1603        data->irq_num = einfo->irq_num;
1604        data->id = pdev->id;
1605        netif_napi_add(dev, &data->napi, tsi108_poll, 64);
1606        dev->netdev_ops = &tsi108_netdev_ops;
1607        dev->ethtool_ops = &tsi108_ethtool_ops;
1608
1609        /* Apparently, the Linux networking code won't use scatter-gather
1610         * if the hardware doesn't do checksums.  However, it's faster
1611         * to checksum in place and use SG, as (among other reasons)
1612         * the cache won't be dirtied (which then has to be flushed
1613         * before DMA).  The checksumming is done by the driver (via
1614         * a new function skb_csum_dev() in net/core/skbuff.c).
1615         */
1616
1617        dev->features = NETIF_F_HIGHDMA;
1618
1619        spin_lock_init(&data->txlock);
1620        spin_lock_init(&data->misclock);
1621
1622        tsi108_reset_ether(data);
1623        tsi108_kill_phy(dev);
1624
1625        if ((err = tsi108_get_mac(dev)) != 0) {
1626                printk(KERN_ERR "%s: Invalid MAC address.  Please correct.\n",
1627                       dev->name);
1628                goto register_fail;
1629        }
1630
1631        tsi108_init_mac(dev);
1632        err = register_netdev(dev);
1633        if (err) {
1634                printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
1635                                dev->name);
1636                goto register_fail;
1637        }
1638
1639        platform_set_drvdata(pdev, dev);
1640        printk(KERN_INFO "%s: Tsi108 Gigabit Ethernet, MAC: %pM\n",
1641               dev->name, dev->dev_addr);
1642#ifdef DEBUG
1643        data->msg_enable = DEBUG;
1644        dump_eth_one(dev);
1645#endif
1646
1647        return 0;
1648
1649register_fail:
1650        iounmap(data->phyregs);
1651
1652phyregs_fail:
1653        iounmap(data->regs);
1654
1655regs_fail:
1656        free_netdev(dev);
1657        return err;
1658}
1659
1660/* There's no way to either get interrupts from the PHY when
1661 * something changes, or to have the Tsi108 automatically communicate
1662 * with the PHY to reconfigure itself.
1663 *
1664 * Thus, we have to do it using a timer.
1665 */
1666
1667static void tsi108_timed_checker(unsigned long dev_ptr)
1668{
1669        struct net_device *dev = (struct net_device *)dev_ptr;
1670        struct tsi108_prv_data *data = netdev_priv(dev);
1671
1672        tsi108_check_phy(dev);
1673        tsi108_check_rxring(dev);
1674        mod_timer(&data->timer, jiffies + CHECK_PHY_INTERVAL);
1675}
1676
1677static int tsi108_ether_remove(struct platform_device *pdev)
1678{
1679        struct net_device *dev = platform_get_drvdata(pdev);
1680        struct tsi108_prv_data *priv = netdev_priv(dev);
1681
1682        unregister_netdev(dev);
1683        tsi108_stop_ethernet(dev);
1684        iounmap(priv->regs);
1685        iounmap(priv->phyregs);
1686        free_netdev(dev);
1687
1688        return 0;
1689}
1690module_platform_driver(tsi_eth_driver);
1691
1692MODULE_AUTHOR("Tundra Semiconductor Corporation");
1693MODULE_DESCRIPTION("Tsi108 Gigabit Ethernet driver");
1694MODULE_LICENSE("GPL");
1695MODULE_ALIAS("platform:tsi-ethernet");
1696