linux/drivers/net/wireless/rt2x00/rt2500usb.c
<<
>>
Prefs
   1/*
   2        Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
   3        <http://rt2x00.serialmonkey.com>
   4
   5        This program is free software; you can redistribute it and/or modify
   6        it under the terms of the GNU General Public License as published by
   7        the Free Software Foundation; either version 2 of the License, or
   8        (at your option) any later version.
   9
  10        This program is distributed in the hope that it will be useful,
  11        but WITHOUT ANY WARRANTY; without even the implied warranty of
  12        MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13        GNU General Public License for more details.
  14
  15        You should have received a copy of the GNU General Public License
  16        along with this program; if not, see <http://www.gnu.org/licenses/>.
  17 */
  18
  19/*
  20        Module: rt2500usb
  21        Abstract: rt2500usb device specific routines.
  22        Supported chipsets: RT2570.
  23 */
  24
  25#include <linux/delay.h>
  26#include <linux/etherdevice.h>
  27#include <linux/kernel.h>
  28#include <linux/module.h>
  29#include <linux/slab.h>
  30#include <linux/usb.h>
  31
  32#include "rt2x00.h"
  33#include "rt2x00usb.h"
  34#include "rt2500usb.h"
  35
  36/*
  37 * Allow hardware encryption to be disabled.
  38 */
  39static bool modparam_nohwcrypt;
  40module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
  41MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
  42
  43/*
  44 * Register access.
  45 * All access to the CSR registers will go through the methods
  46 * rt2500usb_register_read and rt2500usb_register_write.
  47 * BBP and RF register require indirect register access,
  48 * and use the CSR registers BBPCSR and RFCSR to achieve this.
  49 * These indirect registers work with busy bits,
  50 * and we will try maximal REGISTER_BUSY_COUNT times to access
  51 * the register while taking a REGISTER_BUSY_DELAY us delay
  52 * between each attampt. When the busy bit is still set at that time,
  53 * the access attempt is considered to have failed,
  54 * and we will print an error.
  55 * If the csr_mutex is already held then the _lock variants must
  56 * be used instead.
  57 */
  58static inline void rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
  59                                           const unsigned int offset,
  60                                           u16 *value)
  61{
  62        __le16 reg;
  63        rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
  64                                      USB_VENDOR_REQUEST_IN, offset,
  65                                      &reg, sizeof(reg), REGISTER_TIMEOUT);
  66        *value = le16_to_cpu(reg);
  67}
  68
  69static inline void rt2500usb_register_read_lock(struct rt2x00_dev *rt2x00dev,
  70                                                const unsigned int offset,
  71                                                u16 *value)
  72{
  73        __le16 reg;
  74        rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_READ,
  75                                       USB_VENDOR_REQUEST_IN, offset,
  76                                       &reg, sizeof(reg), REGISTER_TIMEOUT);
  77        *value = le16_to_cpu(reg);
  78}
  79
  80static inline void rt2500usb_register_multiread(struct rt2x00_dev *rt2x00dev,
  81                                                const unsigned int offset,
  82                                                void *value, const u16 length)
  83{
  84        rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
  85                                      USB_VENDOR_REQUEST_IN, offset,
  86                                      value, length,
  87                                      REGISTER_TIMEOUT16(length));
  88}
  89
  90static inline void rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
  91                                            const unsigned int offset,
  92                                            u16 value)
  93{
  94        __le16 reg = cpu_to_le16(value);
  95        rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
  96                                      USB_VENDOR_REQUEST_OUT, offset,
  97                                      &reg, sizeof(reg), REGISTER_TIMEOUT);
  98}
  99
 100static inline void rt2500usb_register_write_lock(struct rt2x00_dev *rt2x00dev,
 101                                                 const unsigned int offset,
 102                                                 u16 value)
 103{
 104        __le16 reg = cpu_to_le16(value);
 105        rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_WRITE,
 106                                       USB_VENDOR_REQUEST_OUT, offset,
 107                                       &reg, sizeof(reg), REGISTER_TIMEOUT);
 108}
 109
 110static inline void rt2500usb_register_multiwrite(struct rt2x00_dev *rt2x00dev,
 111                                                 const unsigned int offset,
 112                                                 void *value, const u16 length)
 113{
 114        rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
 115                                      USB_VENDOR_REQUEST_OUT, offset,
 116                                      value, length,
 117                                      REGISTER_TIMEOUT16(length));
 118}
 119
 120static int rt2500usb_regbusy_read(struct rt2x00_dev *rt2x00dev,
 121                                  const unsigned int offset,
 122                                  struct rt2x00_field16 field,
 123                                  u16 *reg)
 124{
 125        unsigned int i;
 126
 127        for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
 128                rt2500usb_register_read_lock(rt2x00dev, offset, reg);
 129                if (!rt2x00_get_field16(*reg, field))
 130                        return 1;
 131                udelay(REGISTER_BUSY_DELAY);
 132        }
 133
 134        rt2x00_err(rt2x00dev, "Indirect register access failed: offset=0x%.08x, value=0x%.08x\n",
 135                   offset, *reg);
 136        *reg = ~0;
 137
 138        return 0;
 139}
 140
 141#define WAIT_FOR_BBP(__dev, __reg) \
 142        rt2500usb_regbusy_read((__dev), PHY_CSR8, PHY_CSR8_BUSY, (__reg))
 143#define WAIT_FOR_RF(__dev, __reg) \
 144        rt2500usb_regbusy_read((__dev), PHY_CSR10, PHY_CSR10_RF_BUSY, (__reg))
 145
 146static void rt2500usb_bbp_write(struct rt2x00_dev *rt2x00dev,
 147                                const unsigned int word, const u8 value)
 148{
 149        u16 reg;
 150
 151        mutex_lock(&rt2x00dev->csr_mutex);
 152
 153        /*
 154         * Wait until the BBP becomes available, afterwards we
 155         * can safely write the new data into the register.
 156         */
 157        if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
 158                reg = 0;
 159                rt2x00_set_field16(&reg, PHY_CSR7_DATA, value);
 160                rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
 161                rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 0);
 162
 163                rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
 164        }
 165
 166        mutex_unlock(&rt2x00dev->csr_mutex);
 167}
 168
 169static void rt2500usb_bbp_read(struct rt2x00_dev *rt2x00dev,
 170                               const unsigned int word, u8 *value)
 171{
 172        u16 reg;
 173
 174        mutex_lock(&rt2x00dev->csr_mutex);
 175
 176        /*
 177         * Wait until the BBP becomes available, afterwards we
 178         * can safely write the read request into the register.
 179         * After the data has been written, we wait until hardware
 180         * returns the correct value, if at any time the register
 181         * doesn't become available in time, reg will be 0xffffffff
 182         * which means we return 0xff to the caller.
 183         */
 184        if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
 185                reg = 0;
 186                rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
 187                rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 1);
 188
 189                rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
 190
 191                if (WAIT_FOR_BBP(rt2x00dev, &reg))
 192                        rt2500usb_register_read_lock(rt2x00dev, PHY_CSR7, &reg);
 193        }
 194
 195        *value = rt2x00_get_field16(reg, PHY_CSR7_DATA);
 196
 197        mutex_unlock(&rt2x00dev->csr_mutex);
 198}
 199
 200static void rt2500usb_rf_write(struct rt2x00_dev *rt2x00dev,
 201                               const unsigned int word, const u32 value)
 202{
 203        u16 reg;
 204
 205        mutex_lock(&rt2x00dev->csr_mutex);
 206
 207        /*
 208         * Wait until the RF becomes available, afterwards we
 209         * can safely write the new data into the register.
 210         */
 211        if (WAIT_FOR_RF(rt2x00dev, &reg)) {
 212                reg = 0;
 213                rt2x00_set_field16(&reg, PHY_CSR9_RF_VALUE, value);
 214                rt2500usb_register_write_lock(rt2x00dev, PHY_CSR9, reg);
 215
 216                reg = 0;
 217                rt2x00_set_field16(&reg, PHY_CSR10_RF_VALUE, value >> 16);
 218                rt2x00_set_field16(&reg, PHY_CSR10_RF_NUMBER_OF_BITS, 20);
 219                rt2x00_set_field16(&reg, PHY_CSR10_RF_IF_SELECT, 0);
 220                rt2x00_set_field16(&reg, PHY_CSR10_RF_BUSY, 1);
 221
 222                rt2500usb_register_write_lock(rt2x00dev, PHY_CSR10, reg);
 223                rt2x00_rf_write(rt2x00dev, word, value);
 224        }
 225
 226        mutex_unlock(&rt2x00dev->csr_mutex);
 227}
 228
 229#ifdef CONFIG_RT2X00_LIB_DEBUGFS
 230static void _rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
 231                                     const unsigned int offset,
 232                                     u32 *value)
 233{
 234        rt2500usb_register_read(rt2x00dev, offset, (u16 *)value);
 235}
 236
 237static void _rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
 238                                      const unsigned int offset,
 239                                      u32 value)
 240{
 241        rt2500usb_register_write(rt2x00dev, offset, value);
 242}
 243
 244static const struct rt2x00debug rt2500usb_rt2x00debug = {
 245        .owner  = THIS_MODULE,
 246        .csr    = {
 247                .read           = _rt2500usb_register_read,
 248                .write          = _rt2500usb_register_write,
 249                .flags          = RT2X00DEBUGFS_OFFSET,
 250                .word_base      = CSR_REG_BASE,
 251                .word_size      = sizeof(u16),
 252                .word_count     = CSR_REG_SIZE / sizeof(u16),
 253        },
 254        .eeprom = {
 255                .read           = rt2x00_eeprom_read,
 256                .write          = rt2x00_eeprom_write,
 257                .word_base      = EEPROM_BASE,
 258                .word_size      = sizeof(u16),
 259                .word_count     = EEPROM_SIZE / sizeof(u16),
 260        },
 261        .bbp    = {
 262                .read           = rt2500usb_bbp_read,
 263                .write          = rt2500usb_bbp_write,
 264                .word_base      = BBP_BASE,
 265                .word_size      = sizeof(u8),
 266                .word_count     = BBP_SIZE / sizeof(u8),
 267        },
 268        .rf     = {
 269                .read           = rt2x00_rf_read,
 270                .write          = rt2500usb_rf_write,
 271                .word_base      = RF_BASE,
 272                .word_size      = sizeof(u32),
 273                .word_count     = RF_SIZE / sizeof(u32),
 274        },
 275};
 276#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
 277
 278static int rt2500usb_rfkill_poll(struct rt2x00_dev *rt2x00dev)
 279{
 280        u16 reg;
 281
 282        rt2500usb_register_read(rt2x00dev, MAC_CSR19, &reg);
 283        return rt2x00_get_field16(reg, MAC_CSR19_VAL7);
 284}
 285
 286#ifdef CONFIG_RT2X00_LIB_LEDS
 287static void rt2500usb_brightness_set(struct led_classdev *led_cdev,
 288                                     enum led_brightness brightness)
 289{
 290        struct rt2x00_led *led =
 291            container_of(led_cdev, struct rt2x00_led, led_dev);
 292        unsigned int enabled = brightness != LED_OFF;
 293        u16 reg;
 294
 295        rt2500usb_register_read(led->rt2x00dev, MAC_CSR20, &reg);
 296
 297        if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
 298                rt2x00_set_field16(&reg, MAC_CSR20_LINK, enabled);
 299        else if (led->type == LED_TYPE_ACTIVITY)
 300                rt2x00_set_field16(&reg, MAC_CSR20_ACTIVITY, enabled);
 301
 302        rt2500usb_register_write(led->rt2x00dev, MAC_CSR20, reg);
 303}
 304
 305static int rt2500usb_blink_set(struct led_classdev *led_cdev,
 306                               unsigned long *delay_on,
 307                               unsigned long *delay_off)
 308{
 309        struct rt2x00_led *led =
 310            container_of(led_cdev, struct rt2x00_led, led_dev);
 311        u16 reg;
 312
 313        rt2500usb_register_read(led->rt2x00dev, MAC_CSR21, &reg);
 314        rt2x00_set_field16(&reg, MAC_CSR21_ON_PERIOD, *delay_on);
 315        rt2x00_set_field16(&reg, MAC_CSR21_OFF_PERIOD, *delay_off);
 316        rt2500usb_register_write(led->rt2x00dev, MAC_CSR21, reg);
 317
 318        return 0;
 319}
 320
 321static void rt2500usb_init_led(struct rt2x00_dev *rt2x00dev,
 322                               struct rt2x00_led *led,
 323                               enum led_type type)
 324{
 325        led->rt2x00dev = rt2x00dev;
 326        led->type = type;
 327        led->led_dev.brightness_set = rt2500usb_brightness_set;
 328        led->led_dev.blink_set = rt2500usb_blink_set;
 329        led->flags = LED_INITIALIZED;
 330}
 331#endif /* CONFIG_RT2X00_LIB_LEDS */
 332
 333/*
 334 * Configuration handlers.
 335 */
 336
 337/*
 338 * rt2500usb does not differentiate between shared and pairwise
 339 * keys, so we should use the same function for both key types.
 340 */
 341static int rt2500usb_config_key(struct rt2x00_dev *rt2x00dev,
 342                                struct rt2x00lib_crypto *crypto,
 343                                struct ieee80211_key_conf *key)
 344{
 345        u32 mask;
 346        u16 reg;
 347        enum cipher curr_cipher;
 348
 349        if (crypto->cmd == SET_KEY) {
 350                /*
 351                 * Disallow to set WEP key other than with index 0,
 352                 * it is known that not work at least on some hardware.
 353                 * SW crypto will be used in that case.
 354                 */
 355                if ((key->cipher == WLAN_CIPHER_SUITE_WEP40 ||
 356                     key->cipher == WLAN_CIPHER_SUITE_WEP104) &&
 357                    key->keyidx != 0)
 358                        return -EOPNOTSUPP;
 359
 360                /*
 361                 * Pairwise key will always be entry 0, but this
 362                 * could collide with a shared key on the same
 363                 * position...
 364                 */
 365                mask = TXRX_CSR0_KEY_ID.bit_mask;
 366
 367                rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
 368                curr_cipher = rt2x00_get_field16(reg, TXRX_CSR0_ALGORITHM);
 369                reg &= mask;
 370
 371                if (reg && reg == mask)
 372                        return -ENOSPC;
 373
 374                reg = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
 375
 376                key->hw_key_idx += reg ? ffz(reg) : 0;
 377                /*
 378                 * Hardware requires that all keys use the same cipher
 379                 * (e.g. TKIP-only, AES-only, but not TKIP+AES).
 380                 * If this is not the first key, compare the cipher with the
 381                 * first one and fall back to SW crypto if not the same.
 382                 */
 383                if (key->hw_key_idx > 0 && crypto->cipher != curr_cipher)
 384                        return -EOPNOTSUPP;
 385
 386                rt2500usb_register_multiwrite(rt2x00dev, KEY_ENTRY(key->hw_key_idx),
 387                                              crypto->key, sizeof(crypto->key));
 388
 389                /*
 390                 * The driver does not support the IV/EIV generation
 391                 * in hardware. However it demands the data to be provided
 392                 * both separately as well as inside the frame.
 393                 * We already provided the CONFIG_CRYPTO_COPY_IV to rt2x00lib
 394                 * to ensure rt2x00lib will not strip the data from the
 395                 * frame after the copy, now we must tell mac80211
 396                 * to generate the IV/EIV data.
 397                 */
 398                key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
 399                key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
 400        }
 401
 402        /*
 403         * TXRX_CSR0_KEY_ID contains only single-bit fields to indicate
 404         * a particular key is valid.
 405         */
 406        rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
 407        rt2x00_set_field16(&reg, TXRX_CSR0_ALGORITHM, crypto->cipher);
 408        rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
 409
 410        mask = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
 411        if (crypto->cmd == SET_KEY)
 412                mask |= 1 << key->hw_key_idx;
 413        else if (crypto->cmd == DISABLE_KEY)
 414                mask &= ~(1 << key->hw_key_idx);
 415        rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, mask);
 416        rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
 417
 418        return 0;
 419}
 420
 421static void rt2500usb_config_filter(struct rt2x00_dev *rt2x00dev,
 422                                    const unsigned int filter_flags)
 423{
 424        u16 reg;
 425
 426        /*
 427         * Start configuration steps.
 428         * Note that the version error will always be dropped
 429         * and broadcast frames will always be accepted since
 430         * there is no filter for it at this time.
 431         */
 432        rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
 433        rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CRC,
 434                           !(filter_flags & FIF_FCSFAIL));
 435        rt2x00_set_field16(&reg, TXRX_CSR2_DROP_PHYSICAL,
 436                           !(filter_flags & FIF_PLCPFAIL));
 437        rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CONTROL,
 438                           !(filter_flags & FIF_CONTROL));
 439        rt2x00_set_field16(&reg, TXRX_CSR2_DROP_NOT_TO_ME,
 440                           !(filter_flags & FIF_PROMISC_IN_BSS));
 441        rt2x00_set_field16(&reg, TXRX_CSR2_DROP_TODS,
 442                           !(filter_flags & FIF_PROMISC_IN_BSS) &&
 443                           !rt2x00dev->intf_ap_count);
 444        rt2x00_set_field16(&reg, TXRX_CSR2_DROP_VERSION_ERROR, 1);
 445        rt2x00_set_field16(&reg, TXRX_CSR2_DROP_MULTICAST,
 446                           !(filter_flags & FIF_ALLMULTI));
 447        rt2x00_set_field16(&reg, TXRX_CSR2_DROP_BROADCAST, 0);
 448        rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
 449}
 450
 451static void rt2500usb_config_intf(struct rt2x00_dev *rt2x00dev,
 452                                  struct rt2x00_intf *intf,
 453                                  struct rt2x00intf_conf *conf,
 454                                  const unsigned int flags)
 455{
 456        unsigned int bcn_preload;
 457        u16 reg;
 458
 459        if (flags & CONFIG_UPDATE_TYPE) {
 460                /*
 461                 * Enable beacon config
 462                 */
 463                bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
 464                rt2500usb_register_read(rt2x00dev, TXRX_CSR20, &reg);
 465                rt2x00_set_field16(&reg, TXRX_CSR20_OFFSET, bcn_preload >> 6);
 466                rt2x00_set_field16(&reg, TXRX_CSR20_BCN_EXPECT_WINDOW,
 467                                   2 * (conf->type != NL80211_IFTYPE_STATION));
 468                rt2500usb_register_write(rt2x00dev, TXRX_CSR20, reg);
 469
 470                /*
 471                 * Enable synchronisation.
 472                 */
 473                rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
 474                rt2x00_set_field16(&reg, TXRX_CSR18_OFFSET, 0);
 475                rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
 476
 477                rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
 478                rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, conf->sync);
 479                rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
 480        }
 481
 482        if (flags & CONFIG_UPDATE_MAC)
 483                rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR2, conf->mac,
 484                                              (3 * sizeof(__le16)));
 485
 486        if (flags & CONFIG_UPDATE_BSSID)
 487                rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR5, conf->bssid,
 488                                              (3 * sizeof(__le16)));
 489}
 490
 491static void rt2500usb_config_erp(struct rt2x00_dev *rt2x00dev,
 492                                 struct rt2x00lib_erp *erp,
 493                                 u32 changed)
 494{
 495        u16 reg;
 496
 497        if (changed & BSS_CHANGED_ERP_PREAMBLE) {
 498                rt2500usb_register_read(rt2x00dev, TXRX_CSR10, &reg);
 499                rt2x00_set_field16(&reg, TXRX_CSR10_AUTORESPOND_PREAMBLE,
 500                                   !!erp->short_preamble);
 501                rt2500usb_register_write(rt2x00dev, TXRX_CSR10, reg);
 502        }
 503
 504        if (changed & BSS_CHANGED_BASIC_RATES)
 505                rt2500usb_register_write(rt2x00dev, TXRX_CSR11,
 506                                         erp->basic_rates);
 507
 508        if (changed & BSS_CHANGED_BEACON_INT) {
 509                rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
 510                rt2x00_set_field16(&reg, TXRX_CSR18_INTERVAL,
 511                                   erp->beacon_int * 4);
 512                rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
 513        }
 514
 515        if (changed & BSS_CHANGED_ERP_SLOT) {
 516                rt2500usb_register_write(rt2x00dev, MAC_CSR10, erp->slot_time);
 517                rt2500usb_register_write(rt2x00dev, MAC_CSR11, erp->sifs);
 518                rt2500usb_register_write(rt2x00dev, MAC_CSR12, erp->eifs);
 519        }
 520}
 521
 522static void rt2500usb_config_ant(struct rt2x00_dev *rt2x00dev,
 523                                 struct antenna_setup *ant)
 524{
 525        u8 r2;
 526        u8 r14;
 527        u16 csr5;
 528        u16 csr6;
 529
 530        /*
 531         * We should never come here because rt2x00lib is supposed
 532         * to catch this and send us the correct antenna explicitely.
 533         */
 534        BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
 535               ant->tx == ANTENNA_SW_DIVERSITY);
 536
 537        rt2500usb_bbp_read(rt2x00dev, 2, &r2);
 538        rt2500usb_bbp_read(rt2x00dev, 14, &r14);
 539        rt2500usb_register_read(rt2x00dev, PHY_CSR5, &csr5);
 540        rt2500usb_register_read(rt2x00dev, PHY_CSR6, &csr6);
 541
 542        /*
 543         * Configure the TX antenna.
 544         */
 545        switch (ant->tx) {
 546        case ANTENNA_HW_DIVERSITY:
 547                rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 1);
 548                rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 1);
 549                rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 1);
 550                break;
 551        case ANTENNA_A:
 552                rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
 553                rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 0);
 554                rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 0);
 555                break;
 556        case ANTENNA_B:
 557        default:
 558                rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
 559                rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 2);
 560                rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 2);
 561                break;
 562        }
 563
 564        /*
 565         * Configure the RX antenna.
 566         */
 567        switch (ant->rx) {
 568        case ANTENNA_HW_DIVERSITY:
 569                rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 1);
 570                break;
 571        case ANTENNA_A:
 572                rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
 573                break;
 574        case ANTENNA_B:
 575        default:
 576                rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
 577                break;
 578        }
 579
 580        /*
 581         * RT2525E and RT5222 need to flip TX I/Q
 582         */
 583        if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) {
 584                rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
 585                rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 1);
 586                rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 1);
 587
 588                /*
 589                 * RT2525E does not need RX I/Q Flip.
 590                 */
 591                if (rt2x00_rf(rt2x00dev, RF2525E))
 592                        rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
 593        } else {
 594                rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 0);
 595                rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 0);
 596        }
 597
 598        rt2500usb_bbp_write(rt2x00dev, 2, r2);
 599        rt2500usb_bbp_write(rt2x00dev, 14, r14);
 600        rt2500usb_register_write(rt2x00dev, PHY_CSR5, csr5);
 601        rt2500usb_register_write(rt2x00dev, PHY_CSR6, csr6);
 602}
 603
 604static void rt2500usb_config_channel(struct rt2x00_dev *rt2x00dev,
 605                                     struct rf_channel *rf, const int txpower)
 606{
 607        /*
 608         * Set TXpower.
 609         */
 610        rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
 611
 612        /*
 613         * For RT2525E we should first set the channel to half band higher.
 614         */
 615        if (rt2x00_rf(rt2x00dev, RF2525E)) {
 616                static const u32 vals[] = {
 617                        0x000008aa, 0x000008ae, 0x000008ae, 0x000008b2,
 618                        0x000008b2, 0x000008b6, 0x000008b6, 0x000008ba,
 619                        0x000008ba, 0x000008be, 0x000008b7, 0x00000902,
 620                        0x00000902, 0x00000906
 621                };
 622
 623                rt2500usb_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
 624                if (rf->rf4)
 625                        rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
 626        }
 627
 628        rt2500usb_rf_write(rt2x00dev, 1, rf->rf1);
 629        rt2500usb_rf_write(rt2x00dev, 2, rf->rf2);
 630        rt2500usb_rf_write(rt2x00dev, 3, rf->rf3);
 631        if (rf->rf4)
 632                rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
 633}
 634
 635static void rt2500usb_config_txpower(struct rt2x00_dev *rt2x00dev,
 636                                     const int txpower)
 637{
 638        u32 rf3;
 639
 640        rt2x00_rf_read(rt2x00dev, 3, &rf3);
 641        rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
 642        rt2500usb_rf_write(rt2x00dev, 3, rf3);
 643}
 644
 645static void rt2500usb_config_ps(struct rt2x00_dev *rt2x00dev,
 646                                struct rt2x00lib_conf *libconf)
 647{
 648        enum dev_state state =
 649            (libconf->conf->flags & IEEE80211_CONF_PS) ?
 650                STATE_SLEEP : STATE_AWAKE;
 651        u16 reg;
 652
 653        if (state == STATE_SLEEP) {
 654                rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
 655                rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON,
 656                                   rt2x00dev->beacon_int - 20);
 657                rt2x00_set_field16(&reg, MAC_CSR18_BEACONS_BEFORE_WAKEUP,
 658                                   libconf->conf->listen_interval - 1);
 659
 660                /* We must first disable autowake before it can be enabled */
 661                rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 0);
 662                rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
 663
 664                rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 1);
 665                rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
 666        } else {
 667                rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
 668                rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 0);
 669                rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
 670        }
 671
 672        rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
 673}
 674
 675static void rt2500usb_config(struct rt2x00_dev *rt2x00dev,
 676                             struct rt2x00lib_conf *libconf,
 677                             const unsigned int flags)
 678{
 679        if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
 680                rt2500usb_config_channel(rt2x00dev, &libconf->rf,
 681                                         libconf->conf->power_level);
 682        if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
 683            !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
 684                rt2500usb_config_txpower(rt2x00dev,
 685                                         libconf->conf->power_level);
 686        if (flags & IEEE80211_CONF_CHANGE_PS)
 687                rt2500usb_config_ps(rt2x00dev, libconf);
 688}
 689
 690/*
 691 * Link tuning
 692 */
 693static void rt2500usb_link_stats(struct rt2x00_dev *rt2x00dev,
 694                                 struct link_qual *qual)
 695{
 696        u16 reg;
 697
 698        /*
 699         * Update FCS error count from register.
 700         */
 701        rt2500usb_register_read(rt2x00dev, STA_CSR0, &reg);
 702        qual->rx_failed = rt2x00_get_field16(reg, STA_CSR0_FCS_ERROR);
 703
 704        /*
 705         * Update False CCA count from register.
 706         */
 707        rt2500usb_register_read(rt2x00dev, STA_CSR3, &reg);
 708        qual->false_cca = rt2x00_get_field16(reg, STA_CSR3_FALSE_CCA_ERROR);
 709}
 710
 711static void rt2500usb_reset_tuner(struct rt2x00_dev *rt2x00dev,
 712                                  struct link_qual *qual)
 713{
 714        u16 eeprom;
 715        u16 value;
 716
 717        rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &eeprom);
 718        value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R24_LOW);
 719        rt2500usb_bbp_write(rt2x00dev, 24, value);
 720
 721        rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &eeprom);
 722        value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R25_LOW);
 723        rt2500usb_bbp_write(rt2x00dev, 25, value);
 724
 725        rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &eeprom);
 726        value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R61_LOW);
 727        rt2500usb_bbp_write(rt2x00dev, 61, value);
 728
 729        rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &eeprom);
 730        value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_VGCUPPER);
 731        rt2500usb_bbp_write(rt2x00dev, 17, value);
 732
 733        qual->vgc_level = value;
 734}
 735
 736/*
 737 * Queue handlers.
 738 */
 739static void rt2500usb_start_queue(struct data_queue *queue)
 740{
 741        struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
 742        u16 reg;
 743
 744        switch (queue->qid) {
 745        case QID_RX:
 746                rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
 747                rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 0);
 748                rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
 749                break;
 750        case QID_BEACON:
 751                rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
 752                rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
 753                rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
 754                rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
 755                rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
 756                break;
 757        default:
 758                break;
 759        }
 760}
 761
 762static void rt2500usb_stop_queue(struct data_queue *queue)
 763{
 764        struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
 765        u16 reg;
 766
 767        switch (queue->qid) {
 768        case QID_RX:
 769                rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
 770                rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
 771                rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
 772                break;
 773        case QID_BEACON:
 774                rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
 775                rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
 776                rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
 777                rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
 778                rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
 779                break;
 780        default:
 781                break;
 782        }
 783}
 784
 785/*
 786 * Initialization functions.
 787 */
 788static int rt2500usb_init_registers(struct rt2x00_dev *rt2x00dev)
 789{
 790        u16 reg;
 791
 792        rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0x0001,
 793                                    USB_MODE_TEST, REGISTER_TIMEOUT);
 794        rt2x00usb_vendor_request_sw(rt2x00dev, USB_SINGLE_WRITE, 0x0308,
 795                                    0x00f0, REGISTER_TIMEOUT);
 796
 797        rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
 798        rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
 799        rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
 800
 801        rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x1111);
 802        rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x1e11);
 803
 804        rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
 805        rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 1);
 806        rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 1);
 807        rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
 808        rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
 809
 810        rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
 811        rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
 812        rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
 813        rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
 814        rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
 815
 816        rt2500usb_register_read(rt2x00dev, TXRX_CSR5, &reg);
 817        rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0, 13);
 818        rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0_VALID, 1);
 819        rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1, 12);
 820        rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1_VALID, 1);
 821        rt2500usb_register_write(rt2x00dev, TXRX_CSR5, reg);
 822
 823        rt2500usb_register_read(rt2x00dev, TXRX_CSR6, &reg);
 824        rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0, 10);
 825        rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0_VALID, 1);
 826        rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1, 11);
 827        rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1_VALID, 1);
 828        rt2500usb_register_write(rt2x00dev, TXRX_CSR6, reg);
 829
 830        rt2500usb_register_read(rt2x00dev, TXRX_CSR7, &reg);
 831        rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0, 7);
 832        rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0_VALID, 1);
 833        rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1, 6);
 834        rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1_VALID, 1);
 835        rt2500usb_register_write(rt2x00dev, TXRX_CSR7, reg);
 836
 837        rt2500usb_register_read(rt2x00dev, TXRX_CSR8, &reg);
 838        rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0, 5);
 839        rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0_VALID, 1);
 840        rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1, 0);
 841        rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1_VALID, 0);
 842        rt2500usb_register_write(rt2x00dev, TXRX_CSR8, reg);
 843
 844        rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
 845        rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
 846        rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, 0);
 847        rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
 848        rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
 849        rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
 850
 851        rt2500usb_register_write(rt2x00dev, TXRX_CSR21, 0xe78f);
 852        rt2500usb_register_write(rt2x00dev, MAC_CSR9, 0xff1d);
 853
 854        if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
 855                return -EBUSY;
 856
 857        rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
 858        rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
 859        rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
 860        rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 1);
 861        rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
 862
 863        if (rt2x00_rev(rt2x00dev) >= RT2570_VERSION_C) {
 864                rt2500usb_register_read(rt2x00dev, PHY_CSR2, &reg);
 865                rt2x00_set_field16(&reg, PHY_CSR2_LNA, 0);
 866        } else {
 867                reg = 0;
 868                rt2x00_set_field16(&reg, PHY_CSR2_LNA, 1);
 869                rt2x00_set_field16(&reg, PHY_CSR2_LNA_MODE, 3);
 870        }
 871        rt2500usb_register_write(rt2x00dev, PHY_CSR2, reg);
 872
 873        rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x0002);
 874        rt2500usb_register_write(rt2x00dev, MAC_CSR22, 0x0053);
 875        rt2500usb_register_write(rt2x00dev, MAC_CSR15, 0x01ee);
 876        rt2500usb_register_write(rt2x00dev, MAC_CSR16, 0x0000);
 877
 878        rt2500usb_register_read(rt2x00dev, MAC_CSR8, &reg);
 879        rt2x00_set_field16(&reg, MAC_CSR8_MAX_FRAME_UNIT,
 880                           rt2x00dev->rx->data_size);
 881        rt2500usb_register_write(rt2x00dev, MAC_CSR8, reg);
 882
 883        rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
 884        rt2x00_set_field16(&reg, TXRX_CSR0_ALGORITHM, CIPHER_NONE);
 885        rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
 886        rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, 0);
 887        rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
 888
 889        rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
 890        rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON, 90);
 891        rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
 892
 893        rt2500usb_register_read(rt2x00dev, PHY_CSR4, &reg);
 894        rt2x00_set_field16(&reg, PHY_CSR4_LOW_RF_LE, 1);
 895        rt2500usb_register_write(rt2x00dev, PHY_CSR4, reg);
 896
 897        rt2500usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
 898        rt2x00_set_field16(&reg, TXRX_CSR1_AUTO_SEQUENCE, 1);
 899        rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
 900
 901        return 0;
 902}
 903
 904static int rt2500usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
 905{
 906        unsigned int i;
 907        u8 value;
 908
 909        for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
 910                rt2500usb_bbp_read(rt2x00dev, 0, &value);
 911                if ((value != 0xff) && (value != 0x00))
 912                        return 0;
 913                udelay(REGISTER_BUSY_DELAY);
 914        }
 915
 916        rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
 917        return -EACCES;
 918}
 919
 920static int rt2500usb_init_bbp(struct rt2x00_dev *rt2x00dev)
 921{
 922        unsigned int i;
 923        u16 eeprom;
 924        u8 value;
 925        u8 reg_id;
 926
 927        if (unlikely(rt2500usb_wait_bbp_ready(rt2x00dev)))
 928                return -EACCES;
 929
 930        rt2500usb_bbp_write(rt2x00dev, 3, 0x02);
 931        rt2500usb_bbp_write(rt2x00dev, 4, 0x19);
 932        rt2500usb_bbp_write(rt2x00dev, 14, 0x1c);
 933        rt2500usb_bbp_write(rt2x00dev, 15, 0x30);
 934        rt2500usb_bbp_write(rt2x00dev, 16, 0xac);
 935        rt2500usb_bbp_write(rt2x00dev, 18, 0x18);
 936        rt2500usb_bbp_write(rt2x00dev, 19, 0xff);
 937        rt2500usb_bbp_write(rt2x00dev, 20, 0x1e);
 938        rt2500usb_bbp_write(rt2x00dev, 21, 0x08);
 939        rt2500usb_bbp_write(rt2x00dev, 22, 0x08);
 940        rt2500usb_bbp_write(rt2x00dev, 23, 0x08);
 941        rt2500usb_bbp_write(rt2x00dev, 24, 0x80);
 942        rt2500usb_bbp_write(rt2x00dev, 25, 0x50);
 943        rt2500usb_bbp_write(rt2x00dev, 26, 0x08);
 944        rt2500usb_bbp_write(rt2x00dev, 27, 0x23);
 945        rt2500usb_bbp_write(rt2x00dev, 30, 0x10);
 946        rt2500usb_bbp_write(rt2x00dev, 31, 0x2b);
 947        rt2500usb_bbp_write(rt2x00dev, 32, 0xb9);
 948        rt2500usb_bbp_write(rt2x00dev, 34, 0x12);
 949        rt2500usb_bbp_write(rt2x00dev, 35, 0x50);
 950        rt2500usb_bbp_write(rt2x00dev, 39, 0xc4);
 951        rt2500usb_bbp_write(rt2x00dev, 40, 0x02);
 952        rt2500usb_bbp_write(rt2x00dev, 41, 0x60);
 953        rt2500usb_bbp_write(rt2x00dev, 53, 0x10);
 954        rt2500usb_bbp_write(rt2x00dev, 54, 0x18);
 955        rt2500usb_bbp_write(rt2x00dev, 56, 0x08);
 956        rt2500usb_bbp_write(rt2x00dev, 57, 0x10);
 957        rt2500usb_bbp_write(rt2x00dev, 58, 0x08);
 958        rt2500usb_bbp_write(rt2x00dev, 61, 0x60);
 959        rt2500usb_bbp_write(rt2x00dev, 62, 0x10);
 960        rt2500usb_bbp_write(rt2x00dev, 75, 0xff);
 961
 962        for (i = 0; i < EEPROM_BBP_SIZE; i++) {
 963                rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
 964
 965                if (eeprom != 0xffff && eeprom != 0x0000) {
 966                        reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
 967                        value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
 968                        rt2500usb_bbp_write(rt2x00dev, reg_id, value);
 969                }
 970        }
 971
 972        return 0;
 973}
 974
 975/*
 976 * Device state switch handlers.
 977 */
 978static int rt2500usb_enable_radio(struct rt2x00_dev *rt2x00dev)
 979{
 980        /*
 981         * Initialize all registers.
 982         */
 983        if (unlikely(rt2500usb_init_registers(rt2x00dev) ||
 984                     rt2500usb_init_bbp(rt2x00dev)))
 985                return -EIO;
 986
 987        return 0;
 988}
 989
 990static void rt2500usb_disable_radio(struct rt2x00_dev *rt2x00dev)
 991{
 992        rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x2121);
 993        rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x2121);
 994
 995        /*
 996         * Disable synchronisation.
 997         */
 998        rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
 999
1000        rt2x00usb_disable_radio(rt2x00dev);
1001}
1002
1003static int rt2500usb_set_state(struct rt2x00_dev *rt2x00dev,
1004                               enum dev_state state)
1005{
1006        u16 reg;
1007        u16 reg2;
1008        unsigned int i;
1009        char put_to_sleep;
1010        char bbp_state;
1011        char rf_state;
1012
1013        put_to_sleep = (state != STATE_AWAKE);
1014
1015        reg = 0;
1016        rt2x00_set_field16(&reg, MAC_CSR17_BBP_DESIRE_STATE, state);
1017        rt2x00_set_field16(&reg, MAC_CSR17_RF_DESIRE_STATE, state);
1018        rt2x00_set_field16(&reg, MAC_CSR17_PUT_TO_SLEEP, put_to_sleep);
1019        rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1020        rt2x00_set_field16(&reg, MAC_CSR17_SET_STATE, 1);
1021        rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1022
1023        /*
1024         * Device is not guaranteed to be in the requested state yet.
1025         * We must wait until the register indicates that the
1026         * device has entered the correct state.
1027         */
1028        for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1029                rt2500usb_register_read(rt2x00dev, MAC_CSR17, &reg2);
1030                bbp_state = rt2x00_get_field16(reg2, MAC_CSR17_BBP_CURR_STATE);
1031                rf_state = rt2x00_get_field16(reg2, MAC_CSR17_RF_CURR_STATE);
1032                if (bbp_state == state && rf_state == state)
1033                        return 0;
1034                rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1035                msleep(30);
1036        }
1037
1038        return -EBUSY;
1039}
1040
1041static int rt2500usb_set_device_state(struct rt2x00_dev *rt2x00dev,
1042                                      enum dev_state state)
1043{
1044        int retval = 0;
1045
1046        switch (state) {
1047        case STATE_RADIO_ON:
1048                retval = rt2500usb_enable_radio(rt2x00dev);
1049                break;
1050        case STATE_RADIO_OFF:
1051                rt2500usb_disable_radio(rt2x00dev);
1052                break;
1053        case STATE_RADIO_IRQ_ON:
1054        case STATE_RADIO_IRQ_OFF:
1055                /* No support, but no error either */
1056                break;
1057        case STATE_DEEP_SLEEP:
1058        case STATE_SLEEP:
1059        case STATE_STANDBY:
1060        case STATE_AWAKE:
1061                retval = rt2500usb_set_state(rt2x00dev, state);
1062                break;
1063        default:
1064                retval = -ENOTSUPP;
1065                break;
1066        }
1067
1068        if (unlikely(retval))
1069                rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
1070                           state, retval);
1071
1072        return retval;
1073}
1074
1075/*
1076 * TX descriptor initialization
1077 */
1078static void rt2500usb_write_tx_desc(struct queue_entry *entry,
1079                                    struct txentry_desc *txdesc)
1080{
1081        struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1082        __le32 *txd = (__le32 *) entry->skb->data;
1083        u32 word;
1084
1085        /*
1086         * Start writing the descriptor words.
1087         */
1088        rt2x00_desc_read(txd, 0, &word);
1089        rt2x00_set_field32(&word, TXD_W0_RETRY_LIMIT, txdesc->retry_limit);
1090        rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1091                           test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1092        rt2x00_set_field32(&word, TXD_W0_ACK,
1093                           test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1094        rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1095                           test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1096        rt2x00_set_field32(&word, TXD_W0_OFDM,
1097                           (txdesc->rate_mode == RATE_MODE_OFDM));
1098        rt2x00_set_field32(&word, TXD_W0_NEW_SEQ,
1099                           test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags));
1100        rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1101        rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1102        rt2x00_set_field32(&word, TXD_W0_CIPHER, !!txdesc->cipher);
1103        rt2x00_set_field32(&word, TXD_W0_KEY_ID, txdesc->key_idx);
1104        rt2x00_desc_write(txd, 0, word);
1105
1106        rt2x00_desc_read(txd, 1, &word);
1107        rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1108        rt2x00_set_field32(&word, TXD_W1_AIFS, entry->queue->aifs);
1109        rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min);
1110        rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max);
1111        rt2x00_desc_write(txd, 1, word);
1112
1113        rt2x00_desc_read(txd, 2, &word);
1114        rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal);
1115        rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service);
1116        rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW,
1117                           txdesc->u.plcp.length_low);
1118        rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH,
1119                           txdesc->u.plcp.length_high);
1120        rt2x00_desc_write(txd, 2, word);
1121
1122        if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1123                _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1124                _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1125        }
1126
1127        /*
1128         * Register descriptor details in skb frame descriptor.
1129         */
1130        skbdesc->flags |= SKBDESC_DESC_IN_SKB;
1131        skbdesc->desc = txd;
1132        skbdesc->desc_len = TXD_DESC_SIZE;
1133}
1134
1135/*
1136 * TX data initialization
1137 */
1138static void rt2500usb_beacondone(struct urb *urb);
1139
1140static void rt2500usb_write_beacon(struct queue_entry *entry,
1141                                   struct txentry_desc *txdesc)
1142{
1143        struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1144        struct usb_device *usb_dev = to_usb_device_intf(rt2x00dev->dev);
1145        struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1146        int pipe = usb_sndbulkpipe(usb_dev, entry->queue->usb_endpoint);
1147        int length;
1148        u16 reg, reg0;
1149
1150        /*
1151         * Disable beaconing while we are reloading the beacon data,
1152         * otherwise we might be sending out invalid data.
1153         */
1154        rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
1155        rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
1156        rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1157
1158        /*
1159         * Add space for the descriptor in front of the skb.
1160         */
1161        skb_push(entry->skb, TXD_DESC_SIZE);
1162        memset(entry->skb->data, 0, TXD_DESC_SIZE);
1163
1164        /*
1165         * Write the TX descriptor for the beacon.
1166         */
1167        rt2500usb_write_tx_desc(entry, txdesc);
1168
1169        /*
1170         * Dump beacon to userspace through debugfs.
1171         */
1172        rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
1173
1174        /*
1175         * USB devices cannot blindly pass the skb->len as the
1176         * length of the data to usb_fill_bulk_urb. Pass the skb
1177         * to the driver to determine what the length should be.
1178         */
1179        length = rt2x00dev->ops->lib->get_tx_data_len(entry);
1180
1181        usb_fill_bulk_urb(bcn_priv->urb, usb_dev, pipe,
1182                          entry->skb->data, length, rt2500usb_beacondone,
1183                          entry);
1184
1185        /*
1186         * Second we need to create the guardian byte.
1187         * We only need a single byte, so lets recycle
1188         * the 'flags' field we are not using for beacons.
1189         */
1190        bcn_priv->guardian_data = 0;
1191        usb_fill_bulk_urb(bcn_priv->guardian_urb, usb_dev, pipe,
1192                          &bcn_priv->guardian_data, 1, rt2500usb_beacondone,
1193                          entry);
1194
1195        /*
1196         * Send out the guardian byte.
1197         */
1198        usb_submit_urb(bcn_priv->guardian_urb, GFP_ATOMIC);
1199
1200        /*
1201         * Enable beaconing again.
1202         */
1203        rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
1204        rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
1205        reg0 = reg;
1206        rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
1207        /*
1208         * Beacon generation will fail initially.
1209         * To prevent this we need to change the TXRX_CSR19
1210         * register several times (reg0 is the same as reg
1211         * except for TXRX_CSR19_BEACON_GEN, which is 0 in reg0
1212         * and 1 in reg).
1213         */
1214        rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1215        rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
1216        rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1217        rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
1218        rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1219}
1220
1221static int rt2500usb_get_tx_data_len(struct queue_entry *entry)
1222{
1223        int length;
1224
1225        /*
1226         * The length _must_ be a multiple of 2,
1227         * but it must _not_ be a multiple of the USB packet size.
1228         */
1229        length = roundup(entry->skb->len, 2);
1230        length += (2 * !(length % entry->queue->usb_maxpacket));
1231
1232        return length;
1233}
1234
1235/*
1236 * RX control handlers
1237 */
1238static void rt2500usb_fill_rxdone(struct queue_entry *entry,
1239                                  struct rxdone_entry_desc *rxdesc)
1240{
1241        struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1242        struct queue_entry_priv_usb *entry_priv = entry->priv_data;
1243        struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1244        __le32 *rxd =
1245            (__le32 *)(entry->skb->data +
1246                       (entry_priv->urb->actual_length -
1247                        entry->queue->desc_size));
1248        u32 word0;
1249        u32 word1;
1250
1251        /*
1252         * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
1253         * frame data in rt2x00usb.
1254         */
1255        memcpy(skbdesc->desc, rxd, skbdesc->desc_len);
1256        rxd = (__le32 *)skbdesc->desc;
1257
1258        /*
1259         * It is now safe to read the descriptor on all architectures.
1260         */
1261        rt2x00_desc_read(rxd, 0, &word0);
1262        rt2x00_desc_read(rxd, 1, &word1);
1263
1264        if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1265                rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1266        if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1267                rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1268
1269        rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER);
1270        if (rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR))
1271                rxdesc->cipher_status = RX_CRYPTO_FAIL_KEY;
1272
1273        if (rxdesc->cipher != CIPHER_NONE) {
1274                _rt2x00_desc_read(rxd, 2, &rxdesc->iv[0]);
1275                _rt2x00_desc_read(rxd, 3, &rxdesc->iv[1]);
1276                rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
1277
1278                /* ICV is located at the end of frame */
1279
1280                rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
1281                if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
1282                        rxdesc->flags |= RX_FLAG_DECRYPTED;
1283                else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
1284                        rxdesc->flags |= RX_FLAG_MMIC_ERROR;
1285        }
1286
1287        /*
1288         * Obtain the status about this packet.
1289         * When frame was received with an OFDM bitrate,
1290         * the signal is the PLCP value. If it was received with
1291         * a CCK bitrate the signal is the rate in 100kbit/s.
1292         */
1293        rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1294        rxdesc->rssi =
1295            rt2x00_get_field32(word1, RXD_W1_RSSI) - rt2x00dev->rssi_offset;
1296        rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1297
1298        if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1299                rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1300        else
1301                rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1302        if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1303                rxdesc->dev_flags |= RXDONE_MY_BSS;
1304
1305        /*
1306         * Adjust the skb memory window to the frame boundaries.
1307         */
1308        skb_trim(entry->skb, rxdesc->size);
1309}
1310
1311/*
1312 * Interrupt functions.
1313 */
1314static void rt2500usb_beacondone(struct urb *urb)
1315{
1316        struct queue_entry *entry = (struct queue_entry *)urb->context;
1317        struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1318
1319        if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &entry->queue->rt2x00dev->flags))
1320                return;
1321
1322        /*
1323         * Check if this was the guardian beacon,
1324         * if that was the case we need to send the real beacon now.
1325         * Otherwise we should free the sk_buffer, the device
1326         * should be doing the rest of the work now.
1327         */
1328        if (bcn_priv->guardian_urb == urb) {
1329                usb_submit_urb(bcn_priv->urb, GFP_ATOMIC);
1330        } else if (bcn_priv->urb == urb) {
1331                dev_kfree_skb(entry->skb);
1332                entry->skb = NULL;
1333        }
1334}
1335
1336/*
1337 * Device probe functions.
1338 */
1339static int rt2500usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1340{
1341        u16 word;
1342        u8 *mac;
1343        u8 bbp;
1344
1345        rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
1346
1347        /*
1348         * Start validation of the data that has been read.
1349         */
1350        mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1351        if (!is_valid_ether_addr(mac)) {
1352                eth_random_addr(mac);
1353                rt2x00_eeprom_dbg(rt2x00dev, "MAC: %pM\n", mac);
1354        }
1355
1356        rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1357        if (word == 0xffff) {
1358                rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1359                rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1360                                   ANTENNA_SW_DIVERSITY);
1361                rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1362                                   ANTENNA_SW_DIVERSITY);
1363                rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1364                                   LED_MODE_DEFAULT);
1365                rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1366                rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1367                rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1368                rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1369                rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word);
1370        }
1371
1372        rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1373        if (word == 0xffff) {
1374                rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1375                rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1376                rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1377                rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1378                rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word);
1379        }
1380
1381        rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1382        if (word == 0xffff) {
1383                rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1384                                   DEFAULT_RSSI_OFFSET);
1385                rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1386                rt2x00_eeprom_dbg(rt2x00dev, "Calibrate offset: 0x%04x\n",
1387                                  word);
1388        }
1389
1390        rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &word);
1391        if (word == 0xffff) {
1392                rt2x00_set_field16(&word, EEPROM_BBPTUNE_THRESHOLD, 45);
1393                rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE, word);
1394                rt2x00_eeprom_dbg(rt2x00dev, "BBPtune: 0x%04x\n", word);
1395        }
1396
1397        /*
1398         * Switch lower vgc bound to current BBP R17 value,
1399         * lower the value a bit for better quality.
1400         */
1401        rt2500usb_bbp_read(rt2x00dev, 17, &bbp);
1402        bbp -= 6;
1403
1404        rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &word);
1405        if (word == 0xffff) {
1406                rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCUPPER, 0x40);
1407                rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1408                rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1409                rt2x00_eeprom_dbg(rt2x00dev, "BBPtune vgc: 0x%04x\n", word);
1410        } else {
1411                rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1412                rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1413        }
1414
1415        rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &word);
1416        if (word == 0xffff) {
1417                rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_LOW, 0x48);
1418                rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_HIGH, 0x41);
1419                rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R17, word);
1420                rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r17: 0x%04x\n", word);
1421        }
1422
1423        rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &word);
1424        if (word == 0xffff) {
1425                rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_LOW, 0x40);
1426                rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_HIGH, 0x80);
1427                rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R24, word);
1428                rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r24: 0x%04x\n", word);
1429        }
1430
1431        rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &word);
1432        if (word == 0xffff) {
1433                rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_LOW, 0x40);
1434                rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_HIGH, 0x50);
1435                rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R25, word);
1436                rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r25: 0x%04x\n", word);
1437        }
1438
1439        rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &word);
1440        if (word == 0xffff) {
1441                rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_LOW, 0x60);
1442                rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_HIGH, 0x6d);
1443                rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R61, word);
1444                rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r61: 0x%04x\n", word);
1445        }
1446
1447        return 0;
1448}
1449
1450static int rt2500usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
1451{
1452        u16 reg;
1453        u16 value;
1454        u16 eeprom;
1455
1456        /*
1457         * Read EEPROM word for configuration.
1458         */
1459        rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1460
1461        /*
1462         * Identify RF chipset.
1463         */
1464        value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1465        rt2500usb_register_read(rt2x00dev, MAC_CSR0, &reg);
1466        rt2x00_set_chip(rt2x00dev, RT2570, value, reg);
1467
1468        if (((reg & 0xfff0) != 0) || ((reg & 0x0000000f) == 0)) {
1469                rt2x00_err(rt2x00dev, "Invalid RT chipset detected\n");
1470                return -ENODEV;
1471        }
1472
1473        if (!rt2x00_rf(rt2x00dev, RF2522) &&
1474            !rt2x00_rf(rt2x00dev, RF2523) &&
1475            !rt2x00_rf(rt2x00dev, RF2524) &&
1476            !rt2x00_rf(rt2x00dev, RF2525) &&
1477            !rt2x00_rf(rt2x00dev, RF2525E) &&
1478            !rt2x00_rf(rt2x00dev, RF5222)) {
1479                rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
1480                return -ENODEV;
1481        }
1482
1483        /*
1484         * Identify default antenna configuration.
1485         */
1486        rt2x00dev->default_ant.tx =
1487            rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1488        rt2x00dev->default_ant.rx =
1489            rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1490
1491        /*
1492         * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1493         * I am not 100% sure about this, but the legacy drivers do not
1494         * indicate antenna swapping in software is required when
1495         * diversity is enabled.
1496         */
1497        if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1498                rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1499        if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1500                rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1501
1502        /*
1503         * Store led mode, for correct led behaviour.
1504         */
1505#ifdef CONFIG_RT2X00_LIB_LEDS
1506        value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1507
1508        rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1509        if (value == LED_MODE_TXRX_ACTIVITY ||
1510            value == LED_MODE_DEFAULT ||
1511            value == LED_MODE_ASUS)
1512                rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_qual,
1513                                   LED_TYPE_ACTIVITY);
1514#endif /* CONFIG_RT2X00_LIB_LEDS */
1515
1516        /*
1517         * Detect if this device has an hardware controlled radio.
1518         */
1519        if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1520                __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
1521
1522        /*
1523         * Read the RSSI <-> dBm offset information.
1524         */
1525        rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1526        rt2x00dev->rssi_offset =
1527            rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1528
1529        return 0;
1530}
1531
1532/*
1533 * RF value list for RF2522
1534 * Supports: 2.4 GHz
1535 */
1536static const struct rf_channel rf_vals_bg_2522[] = {
1537        { 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
1538        { 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
1539        { 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
1540        { 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
1541        { 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
1542        { 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
1543        { 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
1544        { 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
1545        { 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
1546        { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1547        { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1548        { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1549        { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1550        { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1551};
1552
1553/*
1554 * RF value list for RF2523
1555 * Supports: 2.4 GHz
1556 */
1557static const struct rf_channel rf_vals_bg_2523[] = {
1558        { 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1559        { 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1560        { 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1561        { 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1562        { 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1563        { 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1564        { 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1565        { 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1566        { 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1567        { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1568        { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1569        { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1570        { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1571        { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1572};
1573
1574/*
1575 * RF value list for RF2524
1576 * Supports: 2.4 GHz
1577 */
1578static const struct rf_channel rf_vals_bg_2524[] = {
1579        { 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1580        { 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1581        { 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1582        { 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1583        { 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1584        { 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1585        { 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1586        { 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1587        { 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1588        { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1589        { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1590        { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1591        { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1592        { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1593};
1594
1595/*
1596 * RF value list for RF2525
1597 * Supports: 2.4 GHz
1598 */
1599static const struct rf_channel rf_vals_bg_2525[] = {
1600        { 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1601        { 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1602        { 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1603        { 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1604        { 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1605        { 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1606        { 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1607        { 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1608        { 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1609        { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1610        { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1611        { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1612        { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1613        { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1614};
1615
1616/*
1617 * RF value list for RF2525e
1618 * Supports: 2.4 GHz
1619 */
1620static const struct rf_channel rf_vals_bg_2525e[] = {
1621        { 1,  0x00022010, 0x0000089a, 0x00060111, 0x00000e1b },
1622        { 2,  0x00022010, 0x0000089e, 0x00060111, 0x00000e07 },
1623        { 3,  0x00022010, 0x0000089e, 0x00060111, 0x00000e1b },
1624        { 4,  0x00022010, 0x000008a2, 0x00060111, 0x00000e07 },
1625        { 5,  0x00022010, 0x000008a2, 0x00060111, 0x00000e1b },
1626        { 6,  0x00022010, 0x000008a6, 0x00060111, 0x00000e07 },
1627        { 7,  0x00022010, 0x000008a6, 0x00060111, 0x00000e1b },
1628        { 8,  0x00022010, 0x000008aa, 0x00060111, 0x00000e07 },
1629        { 9,  0x00022010, 0x000008aa, 0x00060111, 0x00000e1b },
1630        { 10, 0x00022010, 0x000008ae, 0x00060111, 0x00000e07 },
1631        { 11, 0x00022010, 0x000008ae, 0x00060111, 0x00000e1b },
1632        { 12, 0x00022010, 0x000008b2, 0x00060111, 0x00000e07 },
1633        { 13, 0x00022010, 0x000008b2, 0x00060111, 0x00000e1b },
1634        { 14, 0x00022010, 0x000008b6, 0x00060111, 0x00000e23 },
1635};
1636
1637/*
1638 * RF value list for RF5222
1639 * Supports: 2.4 GHz & 5.2 GHz
1640 */
1641static const struct rf_channel rf_vals_5222[] = {
1642        { 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1643        { 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1644        { 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1645        { 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1646        { 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1647        { 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1648        { 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1649        { 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1650        { 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1651        { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1652        { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1653        { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1654        { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1655        { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1656
1657        /* 802.11 UNI / HyperLan 2 */
1658        { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1659        { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1660        { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1661        { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1662        { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1663        { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1664        { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1665        { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1666
1667        /* 802.11 HyperLan 2 */
1668        { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1669        { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1670        { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1671        { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1672        { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1673        { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1674        { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1675        { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1676        { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1677        { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1678
1679        /* 802.11 UNII */
1680        { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1681        { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1682        { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1683        { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1684        { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1685};
1686
1687static int rt2500usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1688{
1689        struct hw_mode_spec *spec = &rt2x00dev->spec;
1690        struct channel_info *info;
1691        char *tx_power;
1692        unsigned int i;
1693
1694        /*
1695         * Initialize all hw fields.
1696         *
1697         * Don't set IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING unless we are
1698         * capable of sending the buffered frames out after the DTIM
1699         * transmission using rt2x00lib_beacondone. This will send out
1700         * multicast and broadcast traffic immediately instead of buffering it
1701         * infinitly and thus dropping it after some time.
1702         */
1703        rt2x00dev->hw->flags =
1704            IEEE80211_HW_RX_INCLUDES_FCS |
1705            IEEE80211_HW_SIGNAL_DBM |
1706            IEEE80211_HW_SUPPORTS_PS |
1707            IEEE80211_HW_PS_NULLFUNC_STACK;
1708
1709        /*
1710         * Disable powersaving as default.
1711         */
1712        rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
1713
1714        SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1715        SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1716                                rt2x00_eeprom_addr(rt2x00dev,
1717                                                   EEPROM_MAC_ADDR_0));
1718
1719        /*
1720         * Initialize hw_mode information.
1721         */
1722        spec->supported_bands = SUPPORT_BAND_2GHZ;
1723        spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1724
1725        if (rt2x00_rf(rt2x00dev, RF2522)) {
1726                spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1727                spec->channels = rf_vals_bg_2522;
1728        } else if (rt2x00_rf(rt2x00dev, RF2523)) {
1729                spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1730                spec->channels = rf_vals_bg_2523;
1731        } else if (rt2x00_rf(rt2x00dev, RF2524)) {
1732                spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1733                spec->channels = rf_vals_bg_2524;
1734        } else if (rt2x00_rf(rt2x00dev, RF2525)) {
1735                spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1736                spec->channels = rf_vals_bg_2525;
1737        } else if (rt2x00_rf(rt2x00dev, RF2525E)) {
1738                spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1739                spec->channels = rf_vals_bg_2525e;
1740        } else if (rt2x00_rf(rt2x00dev, RF5222)) {
1741                spec->supported_bands |= SUPPORT_BAND_5GHZ;
1742                spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1743                spec->channels = rf_vals_5222;
1744        }
1745
1746        /*
1747         * Create channel information array
1748         */
1749        info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
1750        if (!info)
1751                return -ENOMEM;
1752
1753        spec->channels_info = info;
1754
1755        tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1756        for (i = 0; i < 14; i++) {
1757                info[i].max_power = MAX_TXPOWER;
1758                info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1759        }
1760
1761        if (spec->num_channels > 14) {
1762                for (i = 14; i < spec->num_channels; i++) {
1763                        info[i].max_power = MAX_TXPOWER;
1764                        info[i].default_power1 = DEFAULT_TXPOWER;
1765                }
1766        }
1767
1768        return 0;
1769}
1770
1771static int rt2500usb_probe_hw(struct rt2x00_dev *rt2x00dev)
1772{
1773        int retval;
1774        u16 reg;
1775
1776        /*
1777         * Allocate eeprom data.
1778         */
1779        retval = rt2500usb_validate_eeprom(rt2x00dev);
1780        if (retval)
1781                return retval;
1782
1783        retval = rt2500usb_init_eeprom(rt2x00dev);
1784        if (retval)
1785                return retval;
1786
1787        /*
1788         * Enable rfkill polling by setting GPIO direction of the
1789         * rfkill switch GPIO pin correctly.
1790         */
1791        rt2500usb_register_read(rt2x00dev, MAC_CSR19, &reg);
1792        rt2x00_set_field16(&reg, MAC_CSR19_DIR0, 0);
1793        rt2500usb_register_write(rt2x00dev, MAC_CSR19, reg);
1794
1795        /*
1796         * Initialize hw specifications.
1797         */
1798        retval = rt2500usb_probe_hw_mode(rt2x00dev);
1799        if (retval)
1800                return retval;
1801
1802        /*
1803         * This device requires the atim queue
1804         */
1805        __set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
1806        __set_bit(REQUIRE_BEACON_GUARD, &rt2x00dev->cap_flags);
1807        if (!modparam_nohwcrypt) {
1808                __set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
1809                __set_bit(REQUIRE_COPY_IV, &rt2x00dev->cap_flags);
1810        }
1811        __set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags);
1812        __set_bit(REQUIRE_PS_AUTOWAKE, &rt2x00dev->cap_flags);
1813
1814        /*
1815         * Set the rssi offset.
1816         */
1817        rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1818
1819        return 0;
1820}
1821
1822static const struct ieee80211_ops rt2500usb_mac80211_ops = {
1823        .tx                     = rt2x00mac_tx,
1824        .start                  = rt2x00mac_start,
1825        .stop                   = rt2x00mac_stop,
1826        .add_interface          = rt2x00mac_add_interface,
1827        .remove_interface       = rt2x00mac_remove_interface,
1828        .config                 = rt2x00mac_config,
1829        .configure_filter       = rt2x00mac_configure_filter,
1830        .set_tim                = rt2x00mac_set_tim,
1831        .set_key                = rt2x00mac_set_key,
1832        .sw_scan_start          = rt2x00mac_sw_scan_start,
1833        .sw_scan_complete       = rt2x00mac_sw_scan_complete,
1834        .get_stats              = rt2x00mac_get_stats,
1835        .bss_info_changed       = rt2x00mac_bss_info_changed,
1836        .conf_tx                = rt2x00mac_conf_tx,
1837        .rfkill_poll            = rt2x00mac_rfkill_poll,
1838        .flush                  = rt2x00mac_flush,
1839        .set_antenna            = rt2x00mac_set_antenna,
1840        .get_antenna            = rt2x00mac_get_antenna,
1841        .get_ringparam          = rt2x00mac_get_ringparam,
1842        .tx_frames_pending      = rt2x00mac_tx_frames_pending,
1843};
1844
1845static const struct rt2x00lib_ops rt2500usb_rt2x00_ops = {
1846        .probe_hw               = rt2500usb_probe_hw,
1847        .initialize             = rt2x00usb_initialize,
1848        .uninitialize           = rt2x00usb_uninitialize,
1849        .clear_entry            = rt2x00usb_clear_entry,
1850        .set_device_state       = rt2500usb_set_device_state,
1851        .rfkill_poll            = rt2500usb_rfkill_poll,
1852        .link_stats             = rt2500usb_link_stats,
1853        .reset_tuner            = rt2500usb_reset_tuner,
1854        .watchdog               = rt2x00usb_watchdog,
1855        .start_queue            = rt2500usb_start_queue,
1856        .kick_queue             = rt2x00usb_kick_queue,
1857        .stop_queue             = rt2500usb_stop_queue,
1858        .flush_queue            = rt2x00usb_flush_queue,
1859        .write_tx_desc          = rt2500usb_write_tx_desc,
1860        .write_beacon           = rt2500usb_write_beacon,
1861        .get_tx_data_len        = rt2500usb_get_tx_data_len,
1862        .fill_rxdone            = rt2500usb_fill_rxdone,
1863        .config_shared_key      = rt2500usb_config_key,
1864        .config_pairwise_key    = rt2500usb_config_key,
1865        .config_filter          = rt2500usb_config_filter,
1866        .config_intf            = rt2500usb_config_intf,
1867        .config_erp             = rt2500usb_config_erp,
1868        .config_ant             = rt2500usb_config_ant,
1869        .config                 = rt2500usb_config,
1870};
1871
1872static void rt2500usb_queue_init(struct data_queue *queue)
1873{
1874        switch (queue->qid) {
1875        case QID_RX:
1876                queue->limit = 32;
1877                queue->data_size = DATA_FRAME_SIZE;
1878                queue->desc_size = RXD_DESC_SIZE;
1879                queue->priv_size = sizeof(struct queue_entry_priv_usb);
1880                break;
1881
1882        case QID_AC_VO:
1883        case QID_AC_VI:
1884        case QID_AC_BE:
1885        case QID_AC_BK:
1886                queue->limit = 32;
1887                queue->data_size = DATA_FRAME_SIZE;
1888                queue->desc_size = TXD_DESC_SIZE;
1889                queue->priv_size = sizeof(struct queue_entry_priv_usb);
1890                break;
1891
1892        case QID_BEACON:
1893                queue->limit = 1;
1894                queue->data_size = MGMT_FRAME_SIZE;
1895                queue->desc_size = TXD_DESC_SIZE;
1896                queue->priv_size = sizeof(struct queue_entry_priv_usb_bcn);
1897                break;
1898
1899        case QID_ATIM:
1900                queue->limit = 8;
1901                queue->data_size = DATA_FRAME_SIZE;
1902                queue->desc_size = TXD_DESC_SIZE;
1903                queue->priv_size = sizeof(struct queue_entry_priv_usb);
1904                break;
1905
1906        default:
1907                BUG();
1908                break;
1909        }
1910}
1911
1912static const struct rt2x00_ops rt2500usb_ops = {
1913        .name                   = KBUILD_MODNAME,
1914        .max_ap_intf            = 1,
1915        .eeprom_size            = EEPROM_SIZE,
1916        .rf_size                = RF_SIZE,
1917        .tx_queues              = NUM_TX_QUEUES,
1918        .queue_init             = rt2500usb_queue_init,
1919        .lib                    = &rt2500usb_rt2x00_ops,
1920        .hw                     = &rt2500usb_mac80211_ops,
1921#ifdef CONFIG_RT2X00_LIB_DEBUGFS
1922        .debugfs                = &rt2500usb_rt2x00debug,
1923#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1924};
1925
1926/*
1927 * rt2500usb module information.
1928 */
1929static struct usb_device_id rt2500usb_device_table[] = {
1930        /* ASUS */
1931        { USB_DEVICE(0x0b05, 0x1706) },
1932        { USB_DEVICE(0x0b05, 0x1707) },
1933        /* Belkin */
1934        { USB_DEVICE(0x050d, 0x7050) }, /* FCC ID: K7SF5D7050A ver. 2.x */
1935        { USB_DEVICE(0x050d, 0x7051) },
1936        /* Cisco Systems */
1937        { USB_DEVICE(0x13b1, 0x000d) },
1938        { USB_DEVICE(0x13b1, 0x0011) },
1939        { USB_DEVICE(0x13b1, 0x001a) },
1940        /* Conceptronic */
1941        { USB_DEVICE(0x14b2, 0x3c02) },
1942        /* D-LINK */
1943        { USB_DEVICE(0x2001, 0x3c00) },
1944        /* Gigabyte */
1945        { USB_DEVICE(0x1044, 0x8001) },
1946        { USB_DEVICE(0x1044, 0x8007) },
1947        /* Hercules */
1948        { USB_DEVICE(0x06f8, 0xe000) },
1949        /* Melco */
1950        { USB_DEVICE(0x0411, 0x005e) },
1951        { USB_DEVICE(0x0411, 0x0066) },
1952        { USB_DEVICE(0x0411, 0x0067) },
1953        { USB_DEVICE(0x0411, 0x008b) },
1954        { USB_DEVICE(0x0411, 0x0097) },
1955        /* MSI */
1956        { USB_DEVICE(0x0db0, 0x6861) },
1957        { USB_DEVICE(0x0db0, 0x6865) },
1958        { USB_DEVICE(0x0db0, 0x6869) },
1959        /* Ralink */
1960        { USB_DEVICE(0x148f, 0x1706) },
1961        { USB_DEVICE(0x148f, 0x2570) },
1962        { USB_DEVICE(0x148f, 0x9020) },
1963        /* Sagem */
1964        { USB_DEVICE(0x079b, 0x004b) },
1965        /* Siemens */
1966        { USB_DEVICE(0x0681, 0x3c06) },
1967        /* SMC */
1968        { USB_DEVICE(0x0707, 0xee13) },
1969        /* Spairon */
1970        { USB_DEVICE(0x114b, 0x0110) },
1971        /* SURECOM */
1972        { USB_DEVICE(0x0769, 0x11f3) },
1973        /* Trust */
1974        { USB_DEVICE(0x0eb0, 0x9020) },
1975        /* VTech */
1976        { USB_DEVICE(0x0f88, 0x3012) },
1977        /* Zinwell */
1978        { USB_DEVICE(0x5a57, 0x0260) },
1979        { 0, }
1980};
1981
1982MODULE_AUTHOR(DRV_PROJECT);
1983MODULE_VERSION(DRV_VERSION);
1984MODULE_DESCRIPTION("Ralink RT2500 USB Wireless LAN driver.");
1985MODULE_SUPPORTED_DEVICE("Ralink RT2570 USB chipset based cards");
1986MODULE_DEVICE_TABLE(usb, rt2500usb_device_table);
1987MODULE_LICENSE("GPL");
1988
1989static int rt2500usb_probe(struct usb_interface *usb_intf,
1990                           const struct usb_device_id *id)
1991{
1992        return rt2x00usb_probe(usb_intf, &rt2500usb_ops);
1993}
1994
1995static struct usb_driver rt2500usb_driver = {
1996        .name           = KBUILD_MODNAME,
1997        .id_table       = rt2500usb_device_table,
1998        .probe          = rt2500usb_probe,
1999        .disconnect     = rt2x00usb_disconnect,
2000        .suspend        = rt2x00usb_suspend,
2001        .resume         = rt2x00usb_resume,
2002        .reset_resume   = rt2x00usb_resume,
2003        .disable_hub_initiated_lpm = 1,
2004};
2005
2006module_usb_driver(rt2500usb_driver);
2007