linux/drivers/usb/core/hcd.c
<<
>>
Prefs
   1/*
   2 * (C) Copyright Linus Torvalds 1999
   3 * (C) Copyright Johannes Erdfelt 1999-2001
   4 * (C) Copyright Andreas Gal 1999
   5 * (C) Copyright Gregory P. Smith 1999
   6 * (C) Copyright Deti Fliegl 1999
   7 * (C) Copyright Randy Dunlap 2000
   8 * (C) Copyright David Brownell 2000-2002
   9 *
  10 * This program is free software; you can redistribute it and/or modify it
  11 * under the terms of the GNU General Public License as published by the
  12 * Free Software Foundation; either version 2 of the License, or (at your
  13 * option) any later version.
  14 *
  15 * This program is distributed in the hope that it will be useful, but
  16 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
  17 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  18 * for more details.
  19 *
  20 * You should have received a copy of the GNU General Public License
  21 * along with this program; if not, write to the Free Software Foundation,
  22 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  23 */
  24
  25#include <linux/bcd.h>
  26#include <linux/module.h>
  27#include <linux/version.h>
  28#include <linux/kernel.h>
  29#include <linux/slab.h>
  30#include <linux/completion.h>
  31#include <linux/utsname.h>
  32#include <linux/mm.h>
  33#include <asm/io.h>
  34#include <linux/device.h>
  35#include <linux/dma-mapping.h>
  36#include <linux/mutex.h>
  37#include <asm/irq.h>
  38#include <asm/byteorder.h>
  39#include <asm/unaligned.h>
  40#include <linux/platform_device.h>
  41#include <linux/workqueue.h>
  42#include <linux/pm_runtime.h>
  43#include <linux/types.h>
  44
  45#include <linux/usb.h>
  46#include <linux/usb/hcd.h>
  47#include <linux/usb/phy.h>
  48
  49#include "usb.h"
  50
  51
  52/*-------------------------------------------------------------------------*/
  53
  54/*
  55 * USB Host Controller Driver framework
  56 *
  57 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
  58 * HCD-specific behaviors/bugs.
  59 *
  60 * This does error checks, tracks devices and urbs, and delegates to a
  61 * "hc_driver" only for code (and data) that really needs to know about
  62 * hardware differences.  That includes root hub registers, i/o queues,
  63 * and so on ... but as little else as possible.
  64 *
  65 * Shared code includes most of the "root hub" code (these are emulated,
  66 * though each HC's hardware works differently) and PCI glue, plus request
  67 * tracking overhead.  The HCD code should only block on spinlocks or on
  68 * hardware handshaking; blocking on software events (such as other kernel
  69 * threads releasing resources, or completing actions) is all generic.
  70 *
  71 * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
  72 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
  73 * only by the hub driver ... and that neither should be seen or used by
  74 * usb client device drivers.
  75 *
  76 * Contributors of ideas or unattributed patches include: David Brownell,
  77 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
  78 *
  79 * HISTORY:
  80 * 2002-02-21   Pull in most of the usb_bus support from usb.c; some
  81 *              associated cleanup.  "usb_hcd" still != "usb_bus".
  82 * 2001-12-12   Initial patch version for Linux 2.5.1 kernel.
  83 */
  84
  85/*-------------------------------------------------------------------------*/
  86
  87/* Keep track of which host controller drivers are loaded */
  88unsigned long usb_hcds_loaded;
  89EXPORT_SYMBOL_GPL(usb_hcds_loaded);
  90
  91/* host controllers we manage */
  92LIST_HEAD (usb_bus_list);
  93EXPORT_SYMBOL_GPL (usb_bus_list);
  94
  95/* used when allocating bus numbers */
  96#define USB_MAXBUS              64
  97static DECLARE_BITMAP(busmap, USB_MAXBUS);
  98
  99/* used when updating list of hcds */
 100DEFINE_MUTEX(usb_bus_list_lock);        /* exported only for usbfs */
 101EXPORT_SYMBOL_GPL (usb_bus_list_lock);
 102
 103/* used for controlling access to virtual root hubs */
 104static DEFINE_SPINLOCK(hcd_root_hub_lock);
 105
 106/* used when updating an endpoint's URB list */
 107static DEFINE_SPINLOCK(hcd_urb_list_lock);
 108
 109/* used to protect against unlinking URBs after the device is gone */
 110static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
 111
 112/* wait queue for synchronous unlinks */
 113DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
 114
 115static inline int is_root_hub(struct usb_device *udev)
 116{
 117        return (udev->parent == NULL);
 118}
 119
 120/*-------------------------------------------------------------------------*/
 121
 122/*
 123 * Sharable chunks of root hub code.
 124 */
 125
 126/*-------------------------------------------------------------------------*/
 127#define KERNEL_REL      bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff))
 128#define KERNEL_VER      bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff))
 129
 130/* usb 3.0 root hub device descriptor */
 131static const u8 usb3_rh_dev_descriptor[18] = {
 132        0x12,       /*  __u8  bLength; */
 133        0x01,       /*  __u8  bDescriptorType; Device */
 134        0x00, 0x03, /*  __le16 bcdUSB; v3.0 */
 135
 136        0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
 137        0x00,       /*  __u8  bDeviceSubClass; */
 138        0x03,       /*  __u8  bDeviceProtocol; USB 3.0 hub */
 139        0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
 140
 141        0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
 142        0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
 143        KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
 144
 145        0x03,       /*  __u8  iManufacturer; */
 146        0x02,       /*  __u8  iProduct; */
 147        0x01,       /*  __u8  iSerialNumber; */
 148        0x01        /*  __u8  bNumConfigurations; */
 149};
 150
 151/* usb 2.5 (wireless USB 1.0) root hub device descriptor */
 152static const u8 usb25_rh_dev_descriptor[18] = {
 153        0x12,       /*  __u8  bLength; */
 154        0x01,       /*  __u8  bDescriptorType; Device */
 155        0x50, 0x02, /*  __le16 bcdUSB; v2.5 */
 156
 157        0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
 158        0x00,       /*  __u8  bDeviceSubClass; */
 159        0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
 160        0xFF,       /*  __u8  bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */
 161
 162        0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
 163        0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
 164        KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
 165
 166        0x03,       /*  __u8  iManufacturer; */
 167        0x02,       /*  __u8  iProduct; */
 168        0x01,       /*  __u8  iSerialNumber; */
 169        0x01        /*  __u8  bNumConfigurations; */
 170};
 171
 172/* usb 2.0 root hub device descriptor */
 173static const u8 usb2_rh_dev_descriptor[18] = {
 174        0x12,       /*  __u8  bLength; */
 175        0x01,       /*  __u8  bDescriptorType; Device */
 176        0x00, 0x02, /*  __le16 bcdUSB; v2.0 */
 177
 178        0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
 179        0x00,       /*  __u8  bDeviceSubClass; */
 180        0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
 181        0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
 182
 183        0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
 184        0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
 185        KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
 186
 187        0x03,       /*  __u8  iManufacturer; */
 188        0x02,       /*  __u8  iProduct; */
 189        0x01,       /*  __u8  iSerialNumber; */
 190        0x01        /*  __u8  bNumConfigurations; */
 191};
 192
 193/* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
 194
 195/* usb 1.1 root hub device descriptor */
 196static const u8 usb11_rh_dev_descriptor[18] = {
 197        0x12,       /*  __u8  bLength; */
 198        0x01,       /*  __u8  bDescriptorType; Device */
 199        0x10, 0x01, /*  __le16 bcdUSB; v1.1 */
 200
 201        0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
 202        0x00,       /*  __u8  bDeviceSubClass; */
 203        0x00,       /*  __u8  bDeviceProtocol; [ low/full speeds only ] */
 204        0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
 205
 206        0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
 207        0x01, 0x00, /*  __le16 idProduct; device 0x0001 */
 208        KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
 209
 210        0x03,       /*  __u8  iManufacturer; */
 211        0x02,       /*  __u8  iProduct; */
 212        0x01,       /*  __u8  iSerialNumber; */
 213        0x01        /*  __u8  bNumConfigurations; */
 214};
 215
 216
 217/*-------------------------------------------------------------------------*/
 218
 219/* Configuration descriptors for our root hubs */
 220
 221static const u8 fs_rh_config_descriptor[] = {
 222
 223        /* one configuration */
 224        0x09,       /*  __u8  bLength; */
 225        0x02,       /*  __u8  bDescriptorType; Configuration */
 226        0x19, 0x00, /*  __le16 wTotalLength; */
 227        0x01,       /*  __u8  bNumInterfaces; (1) */
 228        0x01,       /*  __u8  bConfigurationValue; */
 229        0x00,       /*  __u8  iConfiguration; */
 230        0xc0,       /*  __u8  bmAttributes;
 231                                 Bit 7: must be set,
 232                                     6: Self-powered,
 233                                     5: Remote wakeup,
 234                                     4..0: resvd */
 235        0x00,       /*  __u8  MaxPower; */
 236
 237        /* USB 1.1:
 238         * USB 2.0, single TT organization (mandatory):
 239         *      one interface, protocol 0
 240         *
 241         * USB 2.0, multiple TT organization (optional):
 242         *      two interfaces, protocols 1 (like single TT)
 243         *      and 2 (multiple TT mode) ... config is
 244         *      sometimes settable
 245         *      NOT IMPLEMENTED
 246         */
 247
 248        /* one interface */
 249        0x09,       /*  __u8  if_bLength; */
 250        0x04,       /*  __u8  if_bDescriptorType; Interface */
 251        0x00,       /*  __u8  if_bInterfaceNumber; */
 252        0x00,       /*  __u8  if_bAlternateSetting; */
 253        0x01,       /*  __u8  if_bNumEndpoints; */
 254        0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
 255        0x00,       /*  __u8  if_bInterfaceSubClass; */
 256        0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
 257        0x00,       /*  __u8  if_iInterface; */
 258
 259        /* one endpoint (status change endpoint) */
 260        0x07,       /*  __u8  ep_bLength; */
 261        0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
 262        0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
 263        0x03,       /*  __u8  ep_bmAttributes; Interrupt */
 264        0x02, 0x00, /*  __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
 265        0xff        /*  __u8  ep_bInterval; (255ms -- usb 2.0 spec) */
 266};
 267
 268static const u8 hs_rh_config_descriptor[] = {
 269
 270        /* one configuration */
 271        0x09,       /*  __u8  bLength; */
 272        0x02,       /*  __u8  bDescriptorType; Configuration */
 273        0x19, 0x00, /*  __le16 wTotalLength; */
 274        0x01,       /*  __u8  bNumInterfaces; (1) */
 275        0x01,       /*  __u8  bConfigurationValue; */
 276        0x00,       /*  __u8  iConfiguration; */
 277        0xc0,       /*  __u8  bmAttributes;
 278                                 Bit 7: must be set,
 279                                     6: Self-powered,
 280                                     5: Remote wakeup,
 281                                     4..0: resvd */
 282        0x00,       /*  __u8  MaxPower; */
 283
 284        /* USB 1.1:
 285         * USB 2.0, single TT organization (mandatory):
 286         *      one interface, protocol 0
 287         *
 288         * USB 2.0, multiple TT organization (optional):
 289         *      two interfaces, protocols 1 (like single TT)
 290         *      and 2 (multiple TT mode) ... config is
 291         *      sometimes settable
 292         *      NOT IMPLEMENTED
 293         */
 294
 295        /* one interface */
 296        0x09,       /*  __u8  if_bLength; */
 297        0x04,       /*  __u8  if_bDescriptorType; Interface */
 298        0x00,       /*  __u8  if_bInterfaceNumber; */
 299        0x00,       /*  __u8  if_bAlternateSetting; */
 300        0x01,       /*  __u8  if_bNumEndpoints; */
 301        0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
 302        0x00,       /*  __u8  if_bInterfaceSubClass; */
 303        0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
 304        0x00,       /*  __u8  if_iInterface; */
 305
 306        /* one endpoint (status change endpoint) */
 307        0x07,       /*  __u8  ep_bLength; */
 308        0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
 309        0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
 310        0x03,       /*  __u8  ep_bmAttributes; Interrupt */
 311                    /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
 312                     * see hub.c:hub_configure() for details. */
 313        (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
 314        0x0c        /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
 315};
 316
 317static const u8 ss_rh_config_descriptor[] = {
 318        /* one configuration */
 319        0x09,       /*  __u8  bLength; */
 320        0x02,       /*  __u8  bDescriptorType; Configuration */
 321        0x1f, 0x00, /*  __le16 wTotalLength; */
 322        0x01,       /*  __u8  bNumInterfaces; (1) */
 323        0x01,       /*  __u8  bConfigurationValue; */
 324        0x00,       /*  __u8  iConfiguration; */
 325        0xc0,       /*  __u8  bmAttributes;
 326                                 Bit 7: must be set,
 327                                     6: Self-powered,
 328                                     5: Remote wakeup,
 329                                     4..0: resvd */
 330        0x00,       /*  __u8  MaxPower; */
 331
 332        /* one interface */
 333        0x09,       /*  __u8  if_bLength; */
 334        0x04,       /*  __u8  if_bDescriptorType; Interface */
 335        0x00,       /*  __u8  if_bInterfaceNumber; */
 336        0x00,       /*  __u8  if_bAlternateSetting; */
 337        0x01,       /*  __u8  if_bNumEndpoints; */
 338        0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
 339        0x00,       /*  __u8  if_bInterfaceSubClass; */
 340        0x00,       /*  __u8  if_bInterfaceProtocol; */
 341        0x00,       /*  __u8  if_iInterface; */
 342
 343        /* one endpoint (status change endpoint) */
 344        0x07,       /*  __u8  ep_bLength; */
 345        0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
 346        0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
 347        0x03,       /*  __u8  ep_bmAttributes; Interrupt */
 348                    /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
 349                     * see hub.c:hub_configure() for details. */
 350        (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
 351        0x0c,       /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
 352
 353        /* one SuperSpeed endpoint companion descriptor */
 354        0x06,        /* __u8 ss_bLength */
 355        0x30,        /* __u8 ss_bDescriptorType; SuperSpeed EP Companion */
 356        0x00,        /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
 357        0x00,        /* __u8 ss_bmAttributes; 1 packet per service interval */
 358        0x02, 0x00   /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
 359};
 360
 361/* authorized_default behaviour:
 362 * -1 is authorized for all devices except wireless (old behaviour)
 363 * 0 is unauthorized for all devices
 364 * 1 is authorized for all devices
 365 */
 366static int authorized_default = -1;
 367module_param(authorized_default, int, S_IRUGO|S_IWUSR);
 368MODULE_PARM_DESC(authorized_default,
 369                "Default USB device authorization: 0 is not authorized, 1 is "
 370                "authorized, -1 is authorized except for wireless USB (default, "
 371                "old behaviour");
 372/*-------------------------------------------------------------------------*/
 373
 374/**
 375 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
 376 * @s: Null-terminated ASCII (actually ISO-8859-1) string
 377 * @buf: Buffer for USB string descriptor (header + UTF-16LE)
 378 * @len: Length (in bytes; may be odd) of descriptor buffer.
 379 *
 380 * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
 381 * whichever is less.
 382 *
 383 * Note:
 384 * USB String descriptors can contain at most 126 characters; input
 385 * strings longer than that are truncated.
 386 */
 387static unsigned
 388ascii2desc(char const *s, u8 *buf, unsigned len)
 389{
 390        unsigned n, t = 2 + 2*strlen(s);
 391
 392        if (t > 254)
 393                t = 254;        /* Longest possible UTF string descriptor */
 394        if (len > t)
 395                len = t;
 396
 397        t += USB_DT_STRING << 8;        /* Now t is first 16 bits to store */
 398
 399        n = len;
 400        while (n--) {
 401                *buf++ = t;
 402                if (!n--)
 403                        break;
 404                *buf++ = t >> 8;
 405                t = (unsigned char)*s++;
 406        }
 407        return len;
 408}
 409
 410/**
 411 * rh_string() - provides string descriptors for root hub
 412 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
 413 * @hcd: the host controller for this root hub
 414 * @data: buffer for output packet
 415 * @len: length of the provided buffer
 416 *
 417 * Produces either a manufacturer, product or serial number string for the
 418 * virtual root hub device.
 419 *
 420 * Return: The number of bytes filled in: the length of the descriptor or
 421 * of the provided buffer, whichever is less.
 422 */
 423static unsigned
 424rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
 425{
 426        char buf[100];
 427        char const *s;
 428        static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
 429
 430        /* language ids */
 431        switch (id) {
 432        case 0:
 433                /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
 434                /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
 435                if (len > 4)
 436                        len = 4;
 437                memcpy(data, langids, len);
 438                return len;
 439        case 1:
 440                /* Serial number */
 441                s = hcd->self.bus_name;
 442                break;
 443        case 2:
 444                /* Product name */
 445                s = hcd->product_desc;
 446                break;
 447        case 3:
 448                /* Manufacturer */
 449                snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
 450                        init_utsname()->release, hcd->driver->description);
 451                s = buf;
 452                break;
 453        default:
 454                /* Can't happen; caller guarantees it */
 455                return 0;
 456        }
 457
 458        return ascii2desc(s, data, len);
 459}
 460
 461
 462/* Root hub control transfers execute synchronously */
 463static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
 464{
 465        struct usb_ctrlrequest *cmd;
 466        u16             typeReq, wValue, wIndex, wLength;
 467        u8              *ubuf = urb->transfer_buffer;
 468        unsigned        len = 0;
 469        int             status;
 470        u8              patch_wakeup = 0;
 471        u8              patch_protocol = 0;
 472        u16             tbuf_size;
 473        u8              *tbuf = NULL;
 474        const u8        *bufp;
 475
 476        might_sleep();
 477
 478        spin_lock_irq(&hcd_root_hub_lock);
 479        status = usb_hcd_link_urb_to_ep(hcd, urb);
 480        spin_unlock_irq(&hcd_root_hub_lock);
 481        if (status)
 482                return status;
 483        urb->hcpriv = hcd;      /* Indicate it's queued */
 484
 485        cmd = (struct usb_ctrlrequest *) urb->setup_packet;
 486        typeReq  = (cmd->bRequestType << 8) | cmd->bRequest;
 487        wValue   = le16_to_cpu (cmd->wValue);
 488        wIndex   = le16_to_cpu (cmd->wIndex);
 489        wLength  = le16_to_cpu (cmd->wLength);
 490
 491        if (wLength > urb->transfer_buffer_length)
 492                goto error;
 493
 494        /*
 495         * tbuf should be at least as big as the
 496         * USB hub descriptor.
 497         */
 498        tbuf_size =  max_t(u16, sizeof(struct usb_hub_descriptor), wLength);
 499        tbuf = kzalloc(tbuf_size, GFP_KERNEL);
 500        if (!tbuf)
 501                return -ENOMEM;
 502
 503        bufp = tbuf;
 504
 505
 506        urb->actual_length = 0;
 507        switch (typeReq) {
 508
 509        /* DEVICE REQUESTS */
 510
 511        /* The root hub's remote wakeup enable bit is implemented using
 512         * driver model wakeup flags.  If this system supports wakeup
 513         * through USB, userspace may change the default "allow wakeup"
 514         * policy through sysfs or these calls.
 515         *
 516         * Most root hubs support wakeup from downstream devices, for
 517         * runtime power management (disabling USB clocks and reducing
 518         * VBUS power usage).  However, not all of them do so; silicon,
 519         * board, and BIOS bugs here are not uncommon, so these can't
 520         * be treated quite like external hubs.
 521         *
 522         * Likewise, not all root hubs will pass wakeup events upstream,
 523         * to wake up the whole system.  So don't assume root hub and
 524         * controller capabilities are identical.
 525         */
 526
 527        case DeviceRequest | USB_REQ_GET_STATUS:
 528                tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev)
 529                                        << USB_DEVICE_REMOTE_WAKEUP)
 530                                | (1 << USB_DEVICE_SELF_POWERED);
 531                tbuf[1] = 0;
 532                len = 2;
 533                break;
 534        case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
 535                if (wValue == USB_DEVICE_REMOTE_WAKEUP)
 536                        device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
 537                else
 538                        goto error;
 539                break;
 540        case DeviceOutRequest | USB_REQ_SET_FEATURE:
 541                if (device_can_wakeup(&hcd->self.root_hub->dev)
 542                                && wValue == USB_DEVICE_REMOTE_WAKEUP)
 543                        device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
 544                else
 545                        goto error;
 546                break;
 547        case DeviceRequest | USB_REQ_GET_CONFIGURATION:
 548                tbuf[0] = 1;
 549                len = 1;
 550                        /* FALLTHROUGH */
 551        case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
 552                break;
 553        case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
 554                switch (wValue & 0xff00) {
 555                case USB_DT_DEVICE << 8:
 556                        switch (hcd->speed) {
 557                        case HCD_USB3:
 558                                bufp = usb3_rh_dev_descriptor;
 559                                break;
 560                        case HCD_USB25:
 561                                bufp = usb25_rh_dev_descriptor;
 562                                break;
 563                        case HCD_USB2:
 564                                bufp = usb2_rh_dev_descriptor;
 565                                break;
 566                        case HCD_USB11:
 567                                bufp = usb11_rh_dev_descriptor;
 568                                break;
 569                        default:
 570                                goto error;
 571                        }
 572                        len = 18;
 573                        if (hcd->has_tt)
 574                                patch_protocol = 1;
 575                        break;
 576                case USB_DT_CONFIG << 8:
 577                        switch (hcd->speed) {
 578                        case HCD_USB3:
 579                                bufp = ss_rh_config_descriptor;
 580                                len = sizeof ss_rh_config_descriptor;
 581                                break;
 582                        case HCD_USB25:
 583                        case HCD_USB2:
 584                                bufp = hs_rh_config_descriptor;
 585                                len = sizeof hs_rh_config_descriptor;
 586                                break;
 587                        case HCD_USB11:
 588                                bufp = fs_rh_config_descriptor;
 589                                len = sizeof fs_rh_config_descriptor;
 590                                break;
 591                        default:
 592                                goto error;
 593                        }
 594                        if (device_can_wakeup(&hcd->self.root_hub->dev))
 595                                patch_wakeup = 1;
 596                        break;
 597                case USB_DT_STRING << 8:
 598                        if ((wValue & 0xff) < 4)
 599                                urb->actual_length = rh_string(wValue & 0xff,
 600                                                hcd, ubuf, wLength);
 601                        else /* unsupported IDs --> "protocol stall" */
 602                                goto error;
 603                        break;
 604                case USB_DT_BOS << 8:
 605                        goto nongeneric;
 606                default:
 607                        goto error;
 608                }
 609                break;
 610        case DeviceRequest | USB_REQ_GET_INTERFACE:
 611                tbuf[0] = 0;
 612                len = 1;
 613                        /* FALLTHROUGH */
 614        case DeviceOutRequest | USB_REQ_SET_INTERFACE:
 615                break;
 616        case DeviceOutRequest | USB_REQ_SET_ADDRESS:
 617                /* wValue == urb->dev->devaddr */
 618                dev_dbg (hcd->self.controller, "root hub device address %d\n",
 619                        wValue);
 620                break;
 621
 622        /* INTERFACE REQUESTS (no defined feature/status flags) */
 623
 624        /* ENDPOINT REQUESTS */
 625
 626        case EndpointRequest | USB_REQ_GET_STATUS:
 627                /* ENDPOINT_HALT flag */
 628                tbuf[0] = 0;
 629                tbuf[1] = 0;
 630                len = 2;
 631                        /* FALLTHROUGH */
 632        case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
 633        case EndpointOutRequest | USB_REQ_SET_FEATURE:
 634                dev_dbg (hcd->self.controller, "no endpoint features yet\n");
 635                break;
 636
 637        /* CLASS REQUESTS (and errors) */
 638
 639        default:
 640nongeneric:
 641                /* non-generic request */
 642                switch (typeReq) {
 643                case GetHubStatus:
 644                case GetPortStatus:
 645                        len = 4;
 646                        break;
 647                case GetHubDescriptor:
 648                        len = sizeof (struct usb_hub_descriptor);
 649                        break;
 650                case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
 651                        /* len is returned by hub_control */
 652                        break;
 653                }
 654                status = hcd->driver->hub_control (hcd,
 655                        typeReq, wValue, wIndex,
 656                        tbuf, wLength);
 657
 658                if (typeReq == GetHubDescriptor)
 659                        usb_hub_adjust_deviceremovable(hcd->self.root_hub,
 660                                (struct usb_hub_descriptor *)tbuf);
 661                break;
 662error:
 663                /* "protocol stall" on error */
 664                status = -EPIPE;
 665        }
 666
 667        if (status < 0) {
 668                len = 0;
 669                if (status != -EPIPE) {
 670                        dev_dbg (hcd->self.controller,
 671                                "CTRL: TypeReq=0x%x val=0x%x "
 672                                "idx=0x%x len=%d ==> %d\n",
 673                                typeReq, wValue, wIndex,
 674                                wLength, status);
 675                }
 676        } else if (status > 0) {
 677                /* hub_control may return the length of data copied. */
 678                len = status;
 679                status = 0;
 680        }
 681        if (len) {
 682                if (urb->transfer_buffer_length < len)
 683                        len = urb->transfer_buffer_length;
 684                urb->actual_length = len;
 685                /* always USB_DIR_IN, toward host */
 686                memcpy (ubuf, bufp, len);
 687
 688                /* report whether RH hardware supports remote wakeup */
 689                if (patch_wakeup &&
 690                                len > offsetof (struct usb_config_descriptor,
 691                                                bmAttributes))
 692                        ((struct usb_config_descriptor *)ubuf)->bmAttributes
 693                                |= USB_CONFIG_ATT_WAKEUP;
 694
 695                /* report whether RH hardware has an integrated TT */
 696                if (patch_protocol &&
 697                                len > offsetof(struct usb_device_descriptor,
 698                                                bDeviceProtocol))
 699                        ((struct usb_device_descriptor *) ubuf)->
 700                                bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
 701        }
 702
 703        kfree(tbuf);
 704
 705        /* any errors get returned through the urb completion */
 706        spin_lock_irq(&hcd_root_hub_lock);
 707        usb_hcd_unlink_urb_from_ep(hcd, urb);
 708        usb_hcd_giveback_urb(hcd, urb, status);
 709        spin_unlock_irq(&hcd_root_hub_lock);
 710        return 0;
 711}
 712
 713/*-------------------------------------------------------------------------*/
 714
 715/*
 716 * Root Hub interrupt transfers are polled using a timer if the
 717 * driver requests it; otherwise the driver is responsible for
 718 * calling usb_hcd_poll_rh_status() when an event occurs.
 719 *
 720 * Completions are called in_interrupt(), but they may or may not
 721 * be in_irq().
 722 */
 723void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
 724{
 725        struct urb      *urb;
 726        int             length;
 727        unsigned long   flags;
 728        char            buffer[6];      /* Any root hubs with > 31 ports? */
 729
 730        if (unlikely(!hcd->rh_pollable))
 731                return;
 732        if (!hcd->uses_new_polling && !hcd->status_urb)
 733                return;
 734
 735        length = hcd->driver->hub_status_data(hcd, buffer);
 736        if (length > 0) {
 737
 738                /* try to complete the status urb */
 739                spin_lock_irqsave(&hcd_root_hub_lock, flags);
 740                urb = hcd->status_urb;
 741                if (urb) {
 742                        clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
 743                        hcd->status_urb = NULL;
 744                        urb->actual_length = length;
 745                        memcpy(urb->transfer_buffer, buffer, length);
 746
 747                        usb_hcd_unlink_urb_from_ep(hcd, urb);
 748                        usb_hcd_giveback_urb(hcd, urb, 0);
 749                } else {
 750                        length = 0;
 751                        set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
 752                }
 753                spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
 754        }
 755
 756        /* The USB 2.0 spec says 256 ms.  This is close enough and won't
 757         * exceed that limit if HZ is 100. The math is more clunky than
 758         * maybe expected, this is to make sure that all timers for USB devices
 759         * fire at the same time to give the CPU a break in between */
 760        if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
 761                        (length == 0 && hcd->status_urb != NULL))
 762                mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
 763}
 764EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
 765
 766/* timer callback */
 767static void rh_timer_func (unsigned long _hcd)
 768{
 769        usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
 770}
 771
 772/*-------------------------------------------------------------------------*/
 773
 774static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
 775{
 776        int             retval;
 777        unsigned long   flags;
 778        unsigned        len = 1 + (urb->dev->maxchild / 8);
 779
 780        spin_lock_irqsave (&hcd_root_hub_lock, flags);
 781        if (hcd->status_urb || urb->transfer_buffer_length < len) {
 782                dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
 783                retval = -EINVAL;
 784                goto done;
 785        }
 786
 787        retval = usb_hcd_link_urb_to_ep(hcd, urb);
 788        if (retval)
 789                goto done;
 790
 791        hcd->status_urb = urb;
 792        urb->hcpriv = hcd;      /* indicate it's queued */
 793        if (!hcd->uses_new_polling)
 794                mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
 795
 796        /* If a status change has already occurred, report it ASAP */
 797        else if (HCD_POLL_PENDING(hcd))
 798                mod_timer(&hcd->rh_timer, jiffies);
 799        retval = 0;
 800 done:
 801        spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
 802        return retval;
 803}
 804
 805static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
 806{
 807        if (usb_endpoint_xfer_int(&urb->ep->desc))
 808                return rh_queue_status (hcd, urb);
 809        if (usb_endpoint_xfer_control(&urb->ep->desc))
 810                return rh_call_control (hcd, urb);
 811        return -EINVAL;
 812}
 813
 814/*-------------------------------------------------------------------------*/
 815
 816/* Unlinks of root-hub control URBs are legal, but they don't do anything
 817 * since these URBs always execute synchronously.
 818 */
 819static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
 820{
 821        unsigned long   flags;
 822        int             rc;
 823
 824        spin_lock_irqsave(&hcd_root_hub_lock, flags);
 825        rc = usb_hcd_check_unlink_urb(hcd, urb, status);
 826        if (rc)
 827                goto done;
 828
 829        if (usb_endpoint_num(&urb->ep->desc) == 0) {    /* Control URB */
 830                ;       /* Do nothing */
 831
 832        } else {                                /* Status URB */
 833                if (!hcd->uses_new_polling)
 834                        del_timer (&hcd->rh_timer);
 835                if (urb == hcd->status_urb) {
 836                        hcd->status_urb = NULL;
 837                        usb_hcd_unlink_urb_from_ep(hcd, urb);
 838                        usb_hcd_giveback_urb(hcd, urb, status);
 839                }
 840        }
 841 done:
 842        spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
 843        return rc;
 844}
 845
 846
 847
 848/*
 849 * Show & store the current value of authorized_default
 850 */
 851static ssize_t authorized_default_show(struct device *dev,
 852                                       struct device_attribute *attr, char *buf)
 853{
 854        struct usb_device *rh_usb_dev = to_usb_device(dev);
 855        struct usb_bus *usb_bus = rh_usb_dev->bus;
 856        struct usb_hcd *usb_hcd;
 857
 858        usb_hcd = bus_to_hcd(usb_bus);
 859        return snprintf(buf, PAGE_SIZE, "%u\n", usb_hcd->authorized_default);
 860}
 861
 862static ssize_t authorized_default_store(struct device *dev,
 863                                        struct device_attribute *attr,
 864                                        const char *buf, size_t size)
 865{
 866        ssize_t result;
 867        unsigned val;
 868        struct usb_device *rh_usb_dev = to_usb_device(dev);
 869        struct usb_bus *usb_bus = rh_usb_dev->bus;
 870        struct usb_hcd *usb_hcd;
 871
 872        usb_hcd = bus_to_hcd(usb_bus);
 873        result = sscanf(buf, "%u\n", &val);
 874        if (result == 1) {
 875                usb_hcd->authorized_default = val ? 1 : 0;
 876                result = size;
 877        } else {
 878                result = -EINVAL;
 879        }
 880        return result;
 881}
 882static DEVICE_ATTR_RW(authorized_default);
 883
 884/* Group all the USB bus attributes */
 885static struct attribute *usb_bus_attrs[] = {
 886                &dev_attr_authorized_default.attr,
 887                NULL,
 888};
 889
 890static struct attribute_group usb_bus_attr_group = {
 891        .name = NULL,   /* we want them in the same directory */
 892        .attrs = usb_bus_attrs,
 893};
 894
 895
 896
 897/*-------------------------------------------------------------------------*/
 898
 899/**
 900 * usb_bus_init - shared initialization code
 901 * @bus: the bus structure being initialized
 902 *
 903 * This code is used to initialize a usb_bus structure, memory for which is
 904 * separately managed.
 905 */
 906static void usb_bus_init (struct usb_bus *bus)
 907{
 908        memset (&bus->devmap, 0, sizeof(struct usb_devmap));
 909
 910        bus->devnum_next = 1;
 911
 912        bus->root_hub = NULL;
 913        bus->busnum = -1;
 914        bus->bandwidth_allocated = 0;
 915        bus->bandwidth_int_reqs  = 0;
 916        bus->bandwidth_isoc_reqs = 0;
 917        mutex_init(&bus->usb_address0_mutex);
 918
 919        INIT_LIST_HEAD (&bus->bus_list);
 920}
 921
 922/*-------------------------------------------------------------------------*/
 923
 924/**
 925 * usb_register_bus - registers the USB host controller with the usb core
 926 * @bus: pointer to the bus to register
 927 * Context: !in_interrupt()
 928 *
 929 * Assigns a bus number, and links the controller into usbcore data
 930 * structures so that it can be seen by scanning the bus list.
 931 *
 932 * Return: 0 if successful. A negative error code otherwise.
 933 */
 934static int usb_register_bus(struct usb_bus *bus)
 935{
 936        int result = -E2BIG;
 937        int busnum;
 938
 939        mutex_lock(&usb_bus_list_lock);
 940        busnum = find_next_zero_bit(busmap, USB_MAXBUS, 1);
 941        if (busnum >= USB_MAXBUS) {
 942                printk (KERN_ERR "%s: too many buses\n", usbcore_name);
 943                goto error_find_busnum;
 944        }
 945        set_bit(busnum, busmap);
 946        bus->busnum = busnum;
 947
 948        /* Add it to the local list of buses */
 949        list_add (&bus->bus_list, &usb_bus_list);
 950        mutex_unlock(&usb_bus_list_lock);
 951
 952        usb_notify_add_bus(bus);
 953
 954        dev_info (bus->controller, "new USB bus registered, assigned bus "
 955                  "number %d\n", bus->busnum);
 956        return 0;
 957
 958error_find_busnum:
 959        mutex_unlock(&usb_bus_list_lock);
 960        return result;
 961}
 962
 963/**
 964 * usb_deregister_bus - deregisters the USB host controller
 965 * @bus: pointer to the bus to deregister
 966 * Context: !in_interrupt()
 967 *
 968 * Recycles the bus number, and unlinks the controller from usbcore data
 969 * structures so that it won't be seen by scanning the bus list.
 970 */
 971static void usb_deregister_bus (struct usb_bus *bus)
 972{
 973        dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
 974
 975        /*
 976         * NOTE: make sure that all the devices are removed by the
 977         * controller code, as well as having it call this when cleaning
 978         * itself up
 979         */
 980        mutex_lock(&usb_bus_list_lock);
 981        list_del (&bus->bus_list);
 982        mutex_unlock(&usb_bus_list_lock);
 983
 984        usb_notify_remove_bus(bus);
 985
 986        clear_bit(bus->busnum, busmap);
 987}
 988
 989/**
 990 * register_root_hub - called by usb_add_hcd() to register a root hub
 991 * @hcd: host controller for this root hub
 992 *
 993 * This function registers the root hub with the USB subsystem.  It sets up
 994 * the device properly in the device tree and then calls usb_new_device()
 995 * to register the usb device.  It also assigns the root hub's USB address
 996 * (always 1).
 997 *
 998 * Return: 0 if successful. A negative error code otherwise.
 999 */
1000static int register_root_hub(struct usb_hcd *hcd)
1001{
1002        struct device *parent_dev = hcd->self.controller;
1003        struct usb_device *usb_dev = hcd->self.root_hub;
1004        const int devnum = 1;
1005        int retval;
1006
1007        usb_dev->devnum = devnum;
1008        usb_dev->bus->devnum_next = devnum + 1;
1009        memset (&usb_dev->bus->devmap.devicemap, 0,
1010                        sizeof usb_dev->bus->devmap.devicemap);
1011        set_bit (devnum, usb_dev->bus->devmap.devicemap);
1012        usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
1013
1014        mutex_lock(&usb_bus_list_lock);
1015
1016        usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
1017        retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
1018        if (retval != sizeof usb_dev->descriptor) {
1019                mutex_unlock(&usb_bus_list_lock);
1020                dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
1021                                dev_name(&usb_dev->dev), retval);
1022                return (retval < 0) ? retval : -EMSGSIZE;
1023        }
1024        if (usb_dev->speed == USB_SPEED_SUPER) {
1025                retval = usb_get_bos_descriptor(usb_dev);
1026                if (retval < 0) {
1027                        mutex_unlock(&usb_bus_list_lock);
1028                        dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
1029                                        dev_name(&usb_dev->dev), retval);
1030                        return retval;
1031                }
1032        }
1033
1034        retval = usb_new_device (usb_dev);
1035        if (retval) {
1036                dev_err (parent_dev, "can't register root hub for %s, %d\n",
1037                                dev_name(&usb_dev->dev), retval);
1038        } else {
1039                spin_lock_irq (&hcd_root_hub_lock);
1040                hcd->rh_registered = 1;
1041                spin_unlock_irq (&hcd_root_hub_lock);
1042
1043                /* Did the HC die before the root hub was registered? */
1044                if (HCD_DEAD(hcd))
1045                        usb_hc_died (hcd);      /* This time clean up */
1046        }
1047        mutex_unlock(&usb_bus_list_lock);
1048
1049        return retval;
1050}
1051
1052/*
1053 * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1054 * @bus: the bus which the root hub belongs to
1055 * @portnum: the port which is being resumed
1056 *
1057 * HCDs should call this function when they know that a resume signal is
1058 * being sent to a root-hub port.  The root hub will be prevented from
1059 * going into autosuspend until usb_hcd_end_port_resume() is called.
1060 *
1061 * The bus's private lock must be held by the caller.
1062 */
1063void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum)
1064{
1065        unsigned bit = 1 << portnum;
1066
1067        if (!(bus->resuming_ports & bit)) {
1068                bus->resuming_ports |= bit;
1069                pm_runtime_get_noresume(&bus->root_hub->dev);
1070        }
1071}
1072EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume);
1073
1074/*
1075 * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1076 * @bus: the bus which the root hub belongs to
1077 * @portnum: the port which is being resumed
1078 *
1079 * HCDs should call this function when they know that a resume signal has
1080 * stopped being sent to a root-hub port.  The root hub will be allowed to
1081 * autosuspend again.
1082 *
1083 * The bus's private lock must be held by the caller.
1084 */
1085void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum)
1086{
1087        unsigned bit = 1 << portnum;
1088
1089        if (bus->resuming_ports & bit) {
1090                bus->resuming_ports &= ~bit;
1091                pm_runtime_put_noidle(&bus->root_hub->dev);
1092        }
1093}
1094EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
1095
1096/*-------------------------------------------------------------------------*/
1097
1098/**
1099 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1100 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1101 * @is_input: true iff the transaction sends data to the host
1102 * @isoc: true for isochronous transactions, false for interrupt ones
1103 * @bytecount: how many bytes in the transaction.
1104 *
1105 * Return: Approximate bus time in nanoseconds for a periodic transaction.
1106 *
1107 * Note:
1108 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1109 * scheduled in software, this function is only used for such scheduling.
1110 */
1111long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1112{
1113        unsigned long   tmp;
1114
1115        switch (speed) {
1116        case USB_SPEED_LOW:     /* INTR only */
1117                if (is_input) {
1118                        tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1119                        return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1120                } else {
1121                        tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1122                        return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1123                }
1124        case USB_SPEED_FULL:    /* ISOC or INTR */
1125                if (isoc) {
1126                        tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1127                        return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp;
1128                } else {
1129                        tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1130                        return 9107L + BW_HOST_DELAY + tmp;
1131                }
1132        case USB_SPEED_HIGH:    /* ISOC or INTR */
1133                /* FIXME adjust for input vs output */
1134                if (isoc)
1135                        tmp = HS_NSECS_ISO (bytecount);
1136                else
1137                        tmp = HS_NSECS (bytecount);
1138                return tmp;
1139        default:
1140                pr_debug ("%s: bogus device speed!\n", usbcore_name);
1141                return -1;
1142        }
1143}
1144EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1145
1146
1147/*-------------------------------------------------------------------------*/
1148
1149/*
1150 * Generic HC operations.
1151 */
1152
1153/*-------------------------------------------------------------------------*/
1154
1155/**
1156 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1157 * @hcd: host controller to which @urb was submitted
1158 * @urb: URB being submitted
1159 *
1160 * Host controller drivers should call this routine in their enqueue()
1161 * method.  The HCD's private spinlock must be held and interrupts must
1162 * be disabled.  The actions carried out here are required for URB
1163 * submission, as well as for endpoint shutdown and for usb_kill_urb.
1164 *
1165 * Return: 0 for no error, otherwise a negative error code (in which case
1166 * the enqueue() method must fail).  If no error occurs but enqueue() fails
1167 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1168 * the private spinlock and returning.
1169 */
1170int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1171{
1172        int             rc = 0;
1173
1174        spin_lock(&hcd_urb_list_lock);
1175
1176        /* Check that the URB isn't being killed */
1177        if (unlikely(atomic_read(&urb->reject))) {
1178                rc = -EPERM;
1179                goto done;
1180        }
1181
1182        if (unlikely(!urb->ep->enabled)) {
1183                rc = -ENOENT;
1184                goto done;
1185        }
1186
1187        if (unlikely(!urb->dev->can_submit)) {
1188                rc = -EHOSTUNREACH;
1189                goto done;
1190        }
1191
1192        /*
1193         * Check the host controller's state and add the URB to the
1194         * endpoint's queue.
1195         */
1196        if (HCD_RH_RUNNING(hcd)) {
1197                urb->unlinked = 0;
1198                list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1199        } else {
1200                rc = -ESHUTDOWN;
1201                goto done;
1202        }
1203 done:
1204        spin_unlock(&hcd_urb_list_lock);
1205        return rc;
1206}
1207EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1208
1209/**
1210 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1211 * @hcd: host controller to which @urb was submitted
1212 * @urb: URB being checked for unlinkability
1213 * @status: error code to store in @urb if the unlink succeeds
1214 *
1215 * Host controller drivers should call this routine in their dequeue()
1216 * method.  The HCD's private spinlock must be held and interrupts must
1217 * be disabled.  The actions carried out here are required for making
1218 * sure than an unlink is valid.
1219 *
1220 * Return: 0 for no error, otherwise a negative error code (in which case
1221 * the dequeue() method must fail).  The possible error codes are:
1222 *
1223 *      -EIDRM: @urb was not submitted or has already completed.
1224 *              The completion function may not have been called yet.
1225 *
1226 *      -EBUSY: @urb has already been unlinked.
1227 */
1228int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1229                int status)
1230{
1231        struct list_head        *tmp;
1232
1233        /* insist the urb is still queued */
1234        list_for_each(tmp, &urb->ep->urb_list) {
1235                if (tmp == &urb->urb_list)
1236                        break;
1237        }
1238        if (tmp != &urb->urb_list)
1239                return -EIDRM;
1240
1241        /* Any status except -EINPROGRESS means something already started to
1242         * unlink this URB from the hardware.  So there's no more work to do.
1243         */
1244        if (urb->unlinked)
1245                return -EBUSY;
1246        urb->unlinked = status;
1247        return 0;
1248}
1249EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1250
1251/**
1252 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1253 * @hcd: host controller to which @urb was submitted
1254 * @urb: URB being unlinked
1255 *
1256 * Host controller drivers should call this routine before calling
1257 * usb_hcd_giveback_urb().  The HCD's private spinlock must be held and
1258 * interrupts must be disabled.  The actions carried out here are required
1259 * for URB completion.
1260 */
1261void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1262{
1263        /* clear all state linking urb to this dev (and hcd) */
1264        spin_lock(&hcd_urb_list_lock);
1265        list_del_init(&urb->urb_list);
1266        spin_unlock(&hcd_urb_list_lock);
1267}
1268EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1269
1270/*
1271 * Some usb host controllers can only perform dma using a small SRAM area.
1272 * The usb core itself is however optimized for host controllers that can dma
1273 * using regular system memory - like pci devices doing bus mastering.
1274 *
1275 * To support host controllers with limited dma capabilites we provide dma
1276 * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1277 * For this to work properly the host controller code must first use the
1278 * function dma_declare_coherent_memory() to point out which memory area
1279 * that should be used for dma allocations.
1280 *
1281 * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1282 * dma using dma_alloc_coherent() which in turn allocates from the memory
1283 * area pointed out with dma_declare_coherent_memory().
1284 *
1285 * So, to summarize...
1286 *
1287 * - We need "local" memory, canonical example being
1288 *   a small SRAM on a discrete controller being the
1289 *   only memory that the controller can read ...
1290 *   (a) "normal" kernel memory is no good, and
1291 *   (b) there's not enough to share
1292 *
1293 * - The only *portable* hook for such stuff in the
1294 *   DMA framework is dma_declare_coherent_memory()
1295 *
1296 * - So we use that, even though the primary requirement
1297 *   is that the memory be "local" (hence addressable
1298 *   by that device), not "coherent".
1299 *
1300 */
1301
1302static int hcd_alloc_coherent(struct usb_bus *bus,
1303                              gfp_t mem_flags, dma_addr_t *dma_handle,
1304                              void **vaddr_handle, size_t size,
1305                              enum dma_data_direction dir)
1306{
1307        unsigned char *vaddr;
1308
1309        if (*vaddr_handle == NULL) {
1310                WARN_ON_ONCE(1);
1311                return -EFAULT;
1312        }
1313
1314        vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1315                                 mem_flags, dma_handle);
1316        if (!vaddr)
1317                return -ENOMEM;
1318
1319        /*
1320         * Store the virtual address of the buffer at the end
1321         * of the allocated dma buffer. The size of the buffer
1322         * may be uneven so use unaligned functions instead
1323         * of just rounding up. It makes sense to optimize for
1324         * memory footprint over access speed since the amount
1325         * of memory available for dma may be limited.
1326         */
1327        put_unaligned((unsigned long)*vaddr_handle,
1328                      (unsigned long *)(vaddr + size));
1329
1330        if (dir == DMA_TO_DEVICE)
1331                memcpy(vaddr, *vaddr_handle, size);
1332
1333        *vaddr_handle = vaddr;
1334        return 0;
1335}
1336
1337static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1338                              void **vaddr_handle, size_t size,
1339                              enum dma_data_direction dir)
1340{
1341        unsigned char *vaddr = *vaddr_handle;
1342
1343        vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1344
1345        if (dir == DMA_FROM_DEVICE)
1346                memcpy(vaddr, *vaddr_handle, size);
1347
1348        hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1349
1350        *vaddr_handle = vaddr;
1351        *dma_handle = 0;
1352}
1353
1354void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1355{
1356        if (urb->transfer_flags & URB_SETUP_MAP_SINGLE)
1357                dma_unmap_single(hcd->self.controller,
1358                                urb->setup_dma,
1359                                sizeof(struct usb_ctrlrequest),
1360                                DMA_TO_DEVICE);
1361        else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1362                hcd_free_coherent(urb->dev->bus,
1363                                &urb->setup_dma,
1364                                (void **) &urb->setup_packet,
1365                                sizeof(struct usb_ctrlrequest),
1366                                DMA_TO_DEVICE);
1367
1368        /* Make it safe to call this routine more than once */
1369        urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1370}
1371EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1372
1373static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1374{
1375        if (hcd->driver->unmap_urb_for_dma)
1376                hcd->driver->unmap_urb_for_dma(hcd, urb);
1377        else
1378                usb_hcd_unmap_urb_for_dma(hcd, urb);
1379}
1380
1381void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1382{
1383        enum dma_data_direction dir;
1384
1385        usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1386
1387        dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1388        if (urb->transfer_flags & URB_DMA_MAP_SG)
1389                dma_unmap_sg(hcd->self.controller,
1390                                urb->sg,
1391                                urb->num_sgs,
1392                                dir);
1393        else if (urb->transfer_flags & URB_DMA_MAP_PAGE)
1394                dma_unmap_page(hcd->self.controller,
1395                                urb->transfer_dma,
1396                                urb->transfer_buffer_length,
1397                                dir);
1398        else if (urb->transfer_flags & URB_DMA_MAP_SINGLE)
1399                dma_unmap_single(hcd->self.controller,
1400                                urb->transfer_dma,
1401                                urb->transfer_buffer_length,
1402                                dir);
1403        else if (urb->transfer_flags & URB_MAP_LOCAL)
1404                hcd_free_coherent(urb->dev->bus,
1405                                &urb->transfer_dma,
1406                                &urb->transfer_buffer,
1407                                urb->transfer_buffer_length,
1408                                dir);
1409
1410        /* Make it safe to call this routine more than once */
1411        urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1412                        URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1413}
1414EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1415
1416static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1417                           gfp_t mem_flags)
1418{
1419        if (hcd->driver->map_urb_for_dma)
1420                return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1421        else
1422                return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1423}
1424
1425int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1426                            gfp_t mem_flags)
1427{
1428        enum dma_data_direction dir;
1429        int ret = 0;
1430
1431        /* Map the URB's buffers for DMA access.
1432         * Lower level HCD code should use *_dma exclusively,
1433         * unless it uses pio or talks to another transport,
1434         * or uses the provided scatter gather list for bulk.
1435         */
1436
1437        if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1438                if (hcd->self.uses_pio_for_control)
1439                        return ret;
1440                if (hcd->self.uses_dma) {
1441                        urb->setup_dma = dma_map_single(
1442                                        hcd->self.controller,
1443                                        urb->setup_packet,
1444                                        sizeof(struct usb_ctrlrequest),
1445                                        DMA_TO_DEVICE);
1446                        if (dma_mapping_error(hcd->self.controller,
1447                                                urb->setup_dma))
1448                                return -EAGAIN;
1449                        urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1450                } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1451                        ret = hcd_alloc_coherent(
1452                                        urb->dev->bus, mem_flags,
1453                                        &urb->setup_dma,
1454                                        (void **)&urb->setup_packet,
1455                                        sizeof(struct usb_ctrlrequest),
1456                                        DMA_TO_DEVICE);
1457                        if (ret)
1458                                return ret;
1459                        urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1460                }
1461        }
1462
1463        dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1464        if (urb->transfer_buffer_length != 0
1465            && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1466                if (hcd->self.uses_dma) {
1467                        if (urb->num_sgs) {
1468                                int n;
1469
1470                                /* We don't support sg for isoc transfers ! */
1471                                if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1472                                        WARN_ON(1);
1473                                        return -EINVAL;
1474                                }
1475
1476                                n = dma_map_sg(
1477                                                hcd->self.controller,
1478                                                urb->sg,
1479                                                urb->num_sgs,
1480                                                dir);
1481                                if (n <= 0)
1482                                        ret = -EAGAIN;
1483                                else
1484                                        urb->transfer_flags |= URB_DMA_MAP_SG;
1485                                urb->num_mapped_sgs = n;
1486                                if (n != urb->num_sgs)
1487                                        urb->transfer_flags |=
1488                                                        URB_DMA_SG_COMBINED;
1489                        } else if (urb->sg) {
1490                                struct scatterlist *sg = urb->sg;
1491                                urb->transfer_dma = dma_map_page(
1492                                                hcd->self.controller,
1493                                                sg_page(sg),
1494                                                sg->offset,
1495                                                urb->transfer_buffer_length,
1496                                                dir);
1497                                if (dma_mapping_error(hcd->self.controller,
1498                                                urb->transfer_dma))
1499                                        ret = -EAGAIN;
1500                                else
1501                                        urb->transfer_flags |= URB_DMA_MAP_PAGE;
1502                        } else if (is_vmalloc_addr(urb->transfer_buffer)) {
1503                                WARN_ONCE(1, "transfer buffer not dma capable\n");
1504                                ret = -EAGAIN;
1505                        } else {
1506                                urb->transfer_dma = dma_map_single(
1507                                                hcd->self.controller,
1508                                                urb->transfer_buffer,
1509                                                urb->transfer_buffer_length,
1510                                                dir);
1511                                if (dma_mapping_error(hcd->self.controller,
1512                                                urb->transfer_dma))
1513                                        ret = -EAGAIN;
1514                                else
1515                                        urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1516                        }
1517                } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1518                        ret = hcd_alloc_coherent(
1519                                        urb->dev->bus, mem_flags,
1520                                        &urb->transfer_dma,
1521                                        &urb->transfer_buffer,
1522                                        urb->transfer_buffer_length,
1523                                        dir);
1524                        if (ret == 0)
1525                                urb->transfer_flags |= URB_MAP_LOCAL;
1526                }
1527                if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1528                                URB_SETUP_MAP_LOCAL)))
1529                        usb_hcd_unmap_urb_for_dma(hcd, urb);
1530        }
1531        return ret;
1532}
1533EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1534
1535/*-------------------------------------------------------------------------*/
1536
1537/* may be called in any context with a valid urb->dev usecount
1538 * caller surrenders "ownership" of urb
1539 * expects usb_submit_urb() to have sanity checked and conditioned all
1540 * inputs in the urb
1541 */
1542int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1543{
1544        int                     status;
1545        struct usb_hcd          *hcd = bus_to_hcd(urb->dev->bus);
1546
1547        /* increment urb's reference count as part of giving it to the HCD
1548         * (which will control it).  HCD guarantees that it either returns
1549         * an error or calls giveback(), but not both.
1550         */
1551        usb_get_urb(urb);
1552        atomic_inc(&urb->use_count);
1553        atomic_inc(&urb->dev->urbnum);
1554        usbmon_urb_submit(&hcd->self, urb);
1555
1556        /* NOTE requirements on root-hub callers (usbfs and the hub
1557         * driver, for now):  URBs' urb->transfer_buffer must be
1558         * valid and usb_buffer_{sync,unmap}() not be needed, since
1559         * they could clobber root hub response data.  Also, control
1560         * URBs must be submitted in process context with interrupts
1561         * enabled.
1562         */
1563
1564        if (is_root_hub(urb->dev)) {
1565                status = rh_urb_enqueue(hcd, urb);
1566        } else {
1567                status = map_urb_for_dma(hcd, urb, mem_flags);
1568                if (likely(status == 0)) {
1569                        status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1570                        if (unlikely(status))
1571                                unmap_urb_for_dma(hcd, urb);
1572                }
1573        }
1574
1575        if (unlikely(status)) {
1576                usbmon_urb_submit_error(&hcd->self, urb, status);
1577                urb->hcpriv = NULL;
1578                INIT_LIST_HEAD(&urb->urb_list);
1579                atomic_dec(&urb->use_count);
1580                atomic_dec(&urb->dev->urbnum);
1581                if (atomic_read(&urb->reject))
1582                        wake_up(&usb_kill_urb_queue);
1583                usb_put_urb(urb);
1584        }
1585        return status;
1586}
1587
1588/*-------------------------------------------------------------------------*/
1589
1590/* this makes the hcd giveback() the urb more quickly, by kicking it
1591 * off hardware queues (which may take a while) and returning it as
1592 * soon as practical.  we've already set up the urb's return status,
1593 * but we can't know if the callback completed already.
1594 */
1595static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1596{
1597        int             value;
1598
1599        if (is_root_hub(urb->dev))
1600                value = usb_rh_urb_dequeue(hcd, urb, status);
1601        else {
1602
1603                /* The only reason an HCD might fail this call is if
1604                 * it has not yet fully queued the urb to begin with.
1605                 * Such failures should be harmless. */
1606                value = hcd->driver->urb_dequeue(hcd, urb, status);
1607        }
1608        return value;
1609}
1610
1611/*
1612 * called in any context
1613 *
1614 * caller guarantees urb won't be recycled till both unlink()
1615 * and the urb's completion function return
1616 */
1617int usb_hcd_unlink_urb (struct urb *urb, int status)
1618{
1619        struct usb_hcd          *hcd;
1620        int                     retval = -EIDRM;
1621        unsigned long           flags;
1622
1623        /* Prevent the device and bus from going away while
1624         * the unlink is carried out.  If they are already gone
1625         * then urb->use_count must be 0, since disconnected
1626         * devices can't have any active URBs.
1627         */
1628        spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1629        if (atomic_read(&urb->use_count) > 0) {
1630                retval = 0;
1631                usb_get_dev(urb->dev);
1632        }
1633        spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1634        if (retval == 0) {
1635                hcd = bus_to_hcd(urb->dev->bus);
1636                retval = unlink1(hcd, urb, status);
1637                usb_put_dev(urb->dev);
1638        }
1639
1640        if (retval == 0)
1641                retval = -EINPROGRESS;
1642        else if (retval != -EIDRM && retval != -EBUSY)
1643                dev_dbg(&urb->dev->dev, "hcd_unlink_urb %p fail %d\n",
1644                                urb, retval);
1645        return retval;
1646}
1647
1648/*-------------------------------------------------------------------------*/
1649
1650static void __usb_hcd_giveback_urb(struct urb *urb)
1651{
1652        struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1653        struct usb_anchor *anchor = urb->anchor;
1654        int status = urb->unlinked;
1655        unsigned long flags;
1656
1657        urb->hcpriv = NULL;
1658        if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1659            urb->actual_length < urb->transfer_buffer_length &&
1660            !status))
1661                status = -EREMOTEIO;
1662
1663        unmap_urb_for_dma(hcd, urb);
1664        usbmon_urb_complete(&hcd->self, urb, status);
1665        usb_anchor_suspend_wakeups(anchor);
1666        usb_unanchor_urb(urb);
1667
1668        /* pass ownership to the completion handler */
1669        urb->status = status;
1670
1671        /*
1672         * We disable local IRQs here avoid possible deadlock because
1673         * drivers may call spin_lock() to hold lock which might be
1674         * acquired in one hard interrupt handler.
1675         *
1676         * The local_irq_save()/local_irq_restore() around complete()
1677         * will be removed if current USB drivers have been cleaned up
1678         * and no one may trigger the above deadlock situation when
1679         * running complete() in tasklet.
1680         */
1681        local_irq_save(flags);
1682        urb->complete(urb);
1683        local_irq_restore(flags);
1684
1685        usb_anchor_resume_wakeups(anchor);
1686        atomic_dec(&urb->use_count);
1687        if (unlikely(atomic_read(&urb->reject)))
1688                wake_up(&usb_kill_urb_queue);
1689        usb_put_urb(urb);
1690}
1691
1692static void usb_giveback_urb_bh(unsigned long param)
1693{
1694        struct giveback_urb_bh *bh = (struct giveback_urb_bh *)param;
1695        struct list_head local_list;
1696
1697        spin_lock_irq(&bh->lock);
1698        bh->running = true;
1699 restart:
1700        list_replace_init(&bh->head, &local_list);
1701        spin_unlock_irq(&bh->lock);
1702
1703        while (!list_empty(&local_list)) {
1704                struct urb *urb;
1705
1706                urb = list_entry(local_list.next, struct urb, urb_list);
1707                list_del_init(&urb->urb_list);
1708                bh->completing_ep = urb->ep;
1709                __usb_hcd_giveback_urb(urb);
1710                bh->completing_ep = NULL;
1711        }
1712
1713        /* check if there are new URBs to giveback */
1714        spin_lock_irq(&bh->lock);
1715        if (!list_empty(&bh->head))
1716                goto restart;
1717        bh->running = false;
1718        spin_unlock_irq(&bh->lock);
1719}
1720
1721/**
1722 * usb_hcd_giveback_urb - return URB from HCD to device driver
1723 * @hcd: host controller returning the URB
1724 * @urb: urb being returned to the USB device driver.
1725 * @status: completion status code for the URB.
1726 * Context: in_interrupt()
1727 *
1728 * This hands the URB from HCD to its USB device driver, using its
1729 * completion function.  The HCD has freed all per-urb resources
1730 * (and is done using urb->hcpriv).  It also released all HCD locks;
1731 * the device driver won't cause problems if it frees, modifies,
1732 * or resubmits this URB.
1733 *
1734 * If @urb was unlinked, the value of @status will be overridden by
1735 * @urb->unlinked.  Erroneous short transfers are detected in case
1736 * the HCD hasn't checked for them.
1737 */
1738void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1739{
1740        struct giveback_urb_bh *bh;
1741        bool running, high_prio_bh;
1742
1743        /* pass status to tasklet via unlinked */
1744        if (likely(!urb->unlinked))
1745                urb->unlinked = status;
1746
1747        if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) {
1748                __usb_hcd_giveback_urb(urb);
1749                return;
1750        }
1751
1752        if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe)) {
1753                bh = &hcd->high_prio_bh;
1754                high_prio_bh = true;
1755        } else {
1756                bh = &hcd->low_prio_bh;
1757                high_prio_bh = false;
1758        }
1759
1760        spin_lock(&bh->lock);
1761        list_add_tail(&urb->urb_list, &bh->head);
1762        running = bh->running;
1763        spin_unlock(&bh->lock);
1764
1765        if (running)
1766                ;
1767        else if (high_prio_bh)
1768                tasklet_hi_schedule(&bh->bh);
1769        else
1770                tasklet_schedule(&bh->bh);
1771}
1772EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1773
1774/*-------------------------------------------------------------------------*/
1775
1776/* Cancel all URBs pending on this endpoint and wait for the endpoint's
1777 * queue to drain completely.  The caller must first insure that no more
1778 * URBs can be submitted for this endpoint.
1779 */
1780void usb_hcd_flush_endpoint(struct usb_device *udev,
1781                struct usb_host_endpoint *ep)
1782{
1783        struct usb_hcd          *hcd;
1784        struct urb              *urb;
1785
1786        if (!ep)
1787                return;
1788        might_sleep();
1789        hcd = bus_to_hcd(udev->bus);
1790
1791        /* No more submits can occur */
1792        spin_lock_irq(&hcd_urb_list_lock);
1793rescan:
1794        list_for_each_entry (urb, &ep->urb_list, urb_list) {
1795                int     is_in;
1796
1797                if (urb->unlinked)
1798                        continue;
1799                usb_get_urb (urb);
1800                is_in = usb_urb_dir_in(urb);
1801                spin_unlock(&hcd_urb_list_lock);
1802
1803                /* kick hcd */
1804                unlink1(hcd, urb, -ESHUTDOWN);
1805                dev_dbg (hcd->self.controller,
1806                        "shutdown urb %p ep%d%s%s\n",
1807                        urb, usb_endpoint_num(&ep->desc),
1808                        is_in ? "in" : "out",
1809                        ({      char *s;
1810
1811                                 switch (usb_endpoint_type(&ep->desc)) {
1812                                 case USB_ENDPOINT_XFER_CONTROL:
1813                                        s = ""; break;
1814                                 case USB_ENDPOINT_XFER_BULK:
1815                                        s = "-bulk"; break;
1816                                 case USB_ENDPOINT_XFER_INT:
1817                                        s = "-intr"; break;
1818                                 default:
1819                                        s = "-iso"; break;
1820                                };
1821                                s;
1822                        }));
1823                usb_put_urb (urb);
1824
1825                /* list contents may have changed */
1826                spin_lock(&hcd_urb_list_lock);
1827                goto rescan;
1828        }
1829        spin_unlock_irq(&hcd_urb_list_lock);
1830
1831        /* Wait until the endpoint queue is completely empty */
1832        while (!list_empty (&ep->urb_list)) {
1833                spin_lock_irq(&hcd_urb_list_lock);
1834
1835                /* The list may have changed while we acquired the spinlock */
1836                urb = NULL;
1837                if (!list_empty (&ep->urb_list)) {
1838                        urb = list_entry (ep->urb_list.prev, struct urb,
1839                                        urb_list);
1840                        usb_get_urb (urb);
1841                }
1842                spin_unlock_irq(&hcd_urb_list_lock);
1843
1844                if (urb) {
1845                        usb_kill_urb (urb);
1846                        usb_put_urb (urb);
1847                }
1848        }
1849}
1850
1851/**
1852 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1853 *                              the bus bandwidth
1854 * @udev: target &usb_device
1855 * @new_config: new configuration to install
1856 * @cur_alt: the current alternate interface setting
1857 * @new_alt: alternate interface setting that is being installed
1858 *
1859 * To change configurations, pass in the new configuration in new_config,
1860 * and pass NULL for cur_alt and new_alt.
1861 *
1862 * To reset a device's configuration (put the device in the ADDRESSED state),
1863 * pass in NULL for new_config, cur_alt, and new_alt.
1864 *
1865 * To change alternate interface settings, pass in NULL for new_config,
1866 * pass in the current alternate interface setting in cur_alt,
1867 * and pass in the new alternate interface setting in new_alt.
1868 *
1869 * Return: An error if the requested bandwidth change exceeds the
1870 * bus bandwidth or host controller internal resources.
1871 */
1872int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1873                struct usb_host_config *new_config,
1874                struct usb_host_interface *cur_alt,
1875                struct usb_host_interface *new_alt)
1876{
1877        int num_intfs, i, j;
1878        struct usb_host_interface *alt = NULL;
1879        int ret = 0;
1880        struct usb_hcd *hcd;
1881        struct usb_host_endpoint *ep;
1882
1883        hcd = bus_to_hcd(udev->bus);
1884        if (!hcd->driver->check_bandwidth)
1885                return 0;
1886
1887        /* Configuration is being removed - set configuration 0 */
1888        if (!new_config && !cur_alt) {
1889                for (i = 1; i < 16; ++i) {
1890                        ep = udev->ep_out[i];
1891                        if (ep)
1892                                hcd->driver->drop_endpoint(hcd, udev, ep);
1893                        ep = udev->ep_in[i];
1894                        if (ep)
1895                                hcd->driver->drop_endpoint(hcd, udev, ep);
1896                }
1897                hcd->driver->check_bandwidth(hcd, udev);
1898                return 0;
1899        }
1900        /* Check if the HCD says there's enough bandwidth.  Enable all endpoints
1901         * each interface's alt setting 0 and ask the HCD to check the bandwidth
1902         * of the bus.  There will always be bandwidth for endpoint 0, so it's
1903         * ok to exclude it.
1904         */
1905        if (new_config) {
1906                num_intfs = new_config->desc.bNumInterfaces;
1907                /* Remove endpoints (except endpoint 0, which is always on the
1908                 * schedule) from the old config from the schedule
1909                 */
1910                for (i = 1; i < 16; ++i) {
1911                        ep = udev->ep_out[i];
1912                        if (ep) {
1913                                ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1914                                if (ret < 0)
1915                                        goto reset;
1916                        }
1917                        ep = udev->ep_in[i];
1918                        if (ep) {
1919                                ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1920                                if (ret < 0)
1921                                        goto reset;
1922                        }
1923                }
1924                for (i = 0; i < num_intfs; ++i) {
1925                        struct usb_host_interface *first_alt;
1926                        int iface_num;
1927
1928                        first_alt = &new_config->intf_cache[i]->altsetting[0];
1929                        iface_num = first_alt->desc.bInterfaceNumber;
1930                        /* Set up endpoints for alternate interface setting 0 */
1931                        alt = usb_find_alt_setting(new_config, iface_num, 0);
1932                        if (!alt)
1933                                /* No alt setting 0? Pick the first setting. */
1934                                alt = first_alt;
1935
1936                        for (j = 0; j < alt->desc.bNumEndpoints; j++) {
1937                                ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
1938                                if (ret < 0)
1939                                        goto reset;
1940                        }
1941                }
1942        }
1943        if (cur_alt && new_alt) {
1944                struct usb_interface *iface = usb_ifnum_to_if(udev,
1945                                cur_alt->desc.bInterfaceNumber);
1946
1947                if (!iface)
1948                        return -EINVAL;
1949                if (iface->resetting_device) {
1950                        /*
1951                         * The USB core just reset the device, so the xHCI host
1952                         * and the device will think alt setting 0 is installed.
1953                         * However, the USB core will pass in the alternate
1954                         * setting installed before the reset as cur_alt.  Dig
1955                         * out the alternate setting 0 structure, or the first
1956                         * alternate setting if a broken device doesn't have alt
1957                         * setting 0.
1958                         */
1959                        cur_alt = usb_altnum_to_altsetting(iface, 0);
1960                        if (!cur_alt)
1961                                cur_alt = &iface->altsetting[0];
1962                }
1963
1964                /* Drop all the endpoints in the current alt setting */
1965                for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
1966                        ret = hcd->driver->drop_endpoint(hcd, udev,
1967                                        &cur_alt->endpoint[i]);
1968                        if (ret < 0)
1969                                goto reset;
1970                }
1971                /* Add all the endpoints in the new alt setting */
1972                for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
1973                        ret = hcd->driver->add_endpoint(hcd, udev,
1974                                        &new_alt->endpoint[i]);
1975                        if (ret < 0)
1976                                goto reset;
1977                }
1978        }
1979        ret = hcd->driver->check_bandwidth(hcd, udev);
1980reset:
1981        if (ret < 0)
1982                hcd->driver->reset_bandwidth(hcd, udev);
1983        return ret;
1984}
1985
1986/* Disables the endpoint: synchronizes with the hcd to make sure all
1987 * endpoint state is gone from hardware.  usb_hcd_flush_endpoint() must
1988 * have been called previously.  Use for set_configuration, set_interface,
1989 * driver removal, physical disconnect.
1990 *
1991 * example:  a qh stored in ep->hcpriv, holding state related to endpoint
1992 * type, maxpacket size, toggle, halt status, and scheduling.
1993 */
1994void usb_hcd_disable_endpoint(struct usb_device *udev,
1995                struct usb_host_endpoint *ep)
1996{
1997        struct usb_hcd          *hcd;
1998
1999        might_sleep();
2000        hcd = bus_to_hcd(udev->bus);
2001        if (hcd->driver->endpoint_disable)
2002                hcd->driver->endpoint_disable(hcd, ep);
2003}
2004
2005/**
2006 * usb_hcd_reset_endpoint - reset host endpoint state
2007 * @udev: USB device.
2008 * @ep:   the endpoint to reset.
2009 *
2010 * Resets any host endpoint state such as the toggle bit, sequence
2011 * number and current window.
2012 */
2013void usb_hcd_reset_endpoint(struct usb_device *udev,
2014                            struct usb_host_endpoint *ep)
2015{
2016        struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2017
2018        if (hcd->driver->endpoint_reset)
2019                hcd->driver->endpoint_reset(hcd, ep);
2020        else {
2021                int epnum = usb_endpoint_num(&ep->desc);
2022                int is_out = usb_endpoint_dir_out(&ep->desc);
2023                int is_control = usb_endpoint_xfer_control(&ep->desc);
2024
2025                usb_settoggle(udev, epnum, is_out, 0);
2026                if (is_control)
2027                        usb_settoggle(udev, epnum, !is_out, 0);
2028        }
2029}
2030
2031/**
2032 * usb_alloc_streams - allocate bulk endpoint stream IDs.
2033 * @interface:          alternate setting that includes all endpoints.
2034 * @eps:                array of endpoints that need streams.
2035 * @num_eps:            number of endpoints in the array.
2036 * @num_streams:        number of streams to allocate.
2037 * @mem_flags:          flags hcd should use to allocate memory.
2038 *
2039 * Sets up a group of bulk endpoints to have @num_streams stream IDs available.
2040 * Drivers may queue multiple transfers to different stream IDs, which may
2041 * complete in a different order than they were queued.
2042 *
2043 * Return: On success, the number of allocated streams. On failure, a negative
2044 * error code.
2045 */
2046int usb_alloc_streams(struct usb_interface *interface,
2047                struct usb_host_endpoint **eps, unsigned int num_eps,
2048                unsigned int num_streams, gfp_t mem_flags)
2049{
2050        struct usb_hcd *hcd;
2051        struct usb_device *dev;
2052        int i, ret;
2053
2054        dev = interface_to_usbdev(interface);
2055        hcd = bus_to_hcd(dev->bus);
2056        if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
2057                return -EINVAL;
2058        if (dev->speed != USB_SPEED_SUPER)
2059                return -EINVAL;
2060
2061        for (i = 0; i < num_eps; i++) {
2062                /* Streams only apply to bulk endpoints. */
2063                if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
2064                        return -EINVAL;
2065                /* Re-alloc is not allowed */
2066                if (eps[i]->streams)
2067                        return -EINVAL;
2068        }
2069
2070        ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
2071                        num_streams, mem_flags);
2072        if (ret < 0)
2073                return ret;
2074
2075        for (i = 0; i < num_eps; i++)
2076                eps[i]->streams = ret;
2077
2078        return ret;
2079}
2080EXPORT_SYMBOL_GPL(usb_alloc_streams);
2081
2082/**
2083 * usb_free_streams - free bulk endpoint stream IDs.
2084 * @interface:  alternate setting that includes all endpoints.
2085 * @eps:        array of endpoints to remove streams from.
2086 * @num_eps:    number of endpoints in the array.
2087 * @mem_flags:  flags hcd should use to allocate memory.
2088 *
2089 * Reverts a group of bulk endpoints back to not using stream IDs.
2090 * Can fail if we are given bad arguments, or HCD is broken.
2091 *
2092 * Return: 0 on success. On failure, a negative error code.
2093 */
2094int usb_free_streams(struct usb_interface *interface,
2095                struct usb_host_endpoint **eps, unsigned int num_eps,
2096                gfp_t mem_flags)
2097{
2098        struct usb_hcd *hcd;
2099        struct usb_device *dev;
2100        int i, ret;
2101
2102        dev = interface_to_usbdev(interface);
2103        hcd = bus_to_hcd(dev->bus);
2104        if (dev->speed != USB_SPEED_SUPER)
2105                return -EINVAL;
2106
2107        /* Double-free is not allowed */
2108        for (i = 0; i < num_eps; i++)
2109                if (!eps[i] || !eps[i]->streams)
2110                        return -EINVAL;
2111
2112        ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
2113        if (ret < 0)
2114                return ret;
2115
2116        for (i = 0; i < num_eps; i++)
2117                eps[i]->streams = 0;
2118
2119        return ret;
2120}
2121EXPORT_SYMBOL_GPL(usb_free_streams);
2122
2123/* Protect against drivers that try to unlink URBs after the device
2124 * is gone, by waiting until all unlinks for @udev are finished.
2125 * Since we don't currently track URBs by device, simply wait until
2126 * nothing is running in the locked region of usb_hcd_unlink_urb().
2127 */
2128void usb_hcd_synchronize_unlinks(struct usb_device *udev)
2129{
2130        spin_lock_irq(&hcd_urb_unlink_lock);
2131        spin_unlock_irq(&hcd_urb_unlink_lock);
2132}
2133
2134/*-------------------------------------------------------------------------*/
2135
2136/* called in any context */
2137int usb_hcd_get_frame_number (struct usb_device *udev)
2138{
2139        struct usb_hcd  *hcd = bus_to_hcd(udev->bus);
2140
2141        if (!HCD_RH_RUNNING(hcd))
2142                return -ESHUTDOWN;
2143        return hcd->driver->get_frame_number (hcd);
2144}
2145
2146/*-------------------------------------------------------------------------*/
2147
2148#ifdef  CONFIG_PM
2149
2150int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
2151{
2152        struct usb_hcd  *hcd = container_of(rhdev->bus, struct usb_hcd, self);
2153        int             status;
2154        int             old_state = hcd->state;
2155
2156        dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
2157                        (PMSG_IS_AUTO(msg) ? "auto-" : ""),
2158                        rhdev->do_remote_wakeup);
2159        if (HCD_DEAD(hcd)) {
2160                dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
2161                return 0;
2162        }
2163
2164        if (!hcd->driver->bus_suspend) {
2165                status = -ENOENT;
2166        } else {
2167                clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2168                hcd->state = HC_STATE_QUIESCING;
2169                status = hcd->driver->bus_suspend(hcd);
2170        }
2171        if (status == 0) {
2172                usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
2173                hcd->state = HC_STATE_SUSPENDED;
2174
2175                /* Did we race with a root-hub wakeup event? */
2176                if (rhdev->do_remote_wakeup) {
2177                        char    buffer[6];
2178
2179                        status = hcd->driver->hub_status_data(hcd, buffer);
2180                        if (status != 0) {
2181                                dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2182                                hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2183                                status = -EBUSY;
2184                        }
2185                }
2186        } else {
2187                spin_lock_irq(&hcd_root_hub_lock);
2188                if (!HCD_DEAD(hcd)) {
2189                        set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2190                        hcd->state = old_state;
2191                }
2192                spin_unlock_irq(&hcd_root_hub_lock);
2193                dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2194                                "suspend", status);
2195        }
2196        return status;
2197}
2198
2199int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2200{
2201        struct usb_hcd  *hcd = container_of(rhdev->bus, struct usb_hcd, self);
2202        int             status;
2203        int             old_state = hcd->state;
2204
2205        dev_dbg(&rhdev->dev, "usb %sresume\n",
2206                        (PMSG_IS_AUTO(msg) ? "auto-" : ""));
2207        if (HCD_DEAD(hcd)) {
2208                dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2209                return 0;
2210        }
2211        if (!hcd->driver->bus_resume)
2212                return -ENOENT;
2213        if (HCD_RH_RUNNING(hcd))
2214                return 0;
2215
2216        hcd->state = HC_STATE_RESUMING;
2217        status = hcd->driver->bus_resume(hcd);
2218        clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2219        if (status == 0) {
2220                struct usb_device *udev;
2221                int port1;
2222
2223                spin_lock_irq(&hcd_root_hub_lock);
2224                if (!HCD_DEAD(hcd)) {
2225                        usb_set_device_state(rhdev, rhdev->actconfig
2226                                        ? USB_STATE_CONFIGURED
2227                                        : USB_STATE_ADDRESS);
2228                        set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2229                        hcd->state = HC_STATE_RUNNING;
2230                }
2231                spin_unlock_irq(&hcd_root_hub_lock);
2232
2233                /*
2234                 * Check whether any of the enabled ports on the root hub are
2235                 * unsuspended.  If they are then a TRSMRCY delay is needed
2236                 * (this is what the USB-2 spec calls a "global resume").
2237                 * Otherwise we can skip the delay.
2238                 */
2239                usb_hub_for_each_child(rhdev, port1, udev) {
2240                        if (udev->state != USB_STATE_NOTATTACHED &&
2241                                        !udev->port_is_suspended) {
2242                                usleep_range(10000, 11000);     /* TRSMRCY */
2243                                break;
2244                        }
2245                }
2246        } else {
2247                hcd->state = old_state;
2248                dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2249                                "resume", status);
2250                if (status != -ESHUTDOWN)
2251                        usb_hc_died(hcd);
2252        }
2253        return status;
2254}
2255
2256#endif  /* CONFIG_PM */
2257
2258#ifdef  CONFIG_PM_RUNTIME
2259
2260/* Workqueue routine for root-hub remote wakeup */
2261static void hcd_resume_work(struct work_struct *work)
2262{
2263        struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2264        struct usb_device *udev = hcd->self.root_hub;
2265
2266        usb_remote_wakeup(udev);
2267}
2268
2269/**
2270 * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2271 * @hcd: host controller for this root hub
2272 *
2273 * The USB host controller calls this function when its root hub is
2274 * suspended (with the remote wakeup feature enabled) and a remote
2275 * wakeup request is received.  The routine submits a workqueue request
2276 * to resume the root hub (that is, manage its downstream ports again).
2277 */
2278void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2279{
2280        unsigned long flags;
2281
2282        spin_lock_irqsave (&hcd_root_hub_lock, flags);
2283        if (hcd->rh_registered) {
2284                set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2285                queue_work(pm_wq, &hcd->wakeup_work);
2286        }
2287        spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2288}
2289EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2290
2291#endif  /* CONFIG_PM_RUNTIME */
2292
2293/*-------------------------------------------------------------------------*/
2294
2295#ifdef  CONFIG_USB_OTG
2296
2297/**
2298 * usb_bus_start_enum - start immediate enumeration (for OTG)
2299 * @bus: the bus (must use hcd framework)
2300 * @port_num: 1-based number of port; usually bus->otg_port
2301 * Context: in_interrupt()
2302 *
2303 * Starts enumeration, with an immediate reset followed later by
2304 * khubd identifying and possibly configuring the device.
2305 * This is needed by OTG controller drivers, where it helps meet
2306 * HNP protocol timing requirements for starting a port reset.
2307 *
2308 * Return: 0 if successful.
2309 */
2310int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2311{
2312        struct usb_hcd          *hcd;
2313        int                     status = -EOPNOTSUPP;
2314
2315        /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2316         * boards with root hubs hooked up to internal devices (instead of
2317         * just the OTG port) may need more attention to resetting...
2318         */
2319        hcd = container_of (bus, struct usb_hcd, self);
2320        if (port_num && hcd->driver->start_port_reset)
2321                status = hcd->driver->start_port_reset(hcd, port_num);
2322
2323        /* run khubd shortly after (first) root port reset finishes;
2324         * it may issue others, until at least 50 msecs have passed.
2325         */
2326        if (status == 0)
2327                mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2328        return status;
2329}
2330EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2331
2332#endif
2333
2334/*-------------------------------------------------------------------------*/
2335
2336/**
2337 * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2338 * @irq: the IRQ being raised
2339 * @__hcd: pointer to the HCD whose IRQ is being signaled
2340 *
2341 * If the controller isn't HALTed, calls the driver's irq handler.
2342 * Checks whether the controller is now dead.
2343 *
2344 * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
2345 */
2346irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2347{
2348        struct usb_hcd          *hcd = __hcd;
2349        irqreturn_t             rc;
2350
2351        if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2352                rc = IRQ_NONE;
2353        else if (hcd->driver->irq(hcd) == IRQ_NONE)
2354                rc = IRQ_NONE;
2355        else
2356                rc = IRQ_HANDLED;
2357
2358        return rc;
2359}
2360EXPORT_SYMBOL_GPL(usb_hcd_irq);
2361
2362/*-------------------------------------------------------------------------*/
2363
2364/**
2365 * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2366 * @hcd: pointer to the HCD representing the controller
2367 *
2368 * This is called by bus glue to report a USB host controller that died
2369 * while operations may still have been pending.  It's called automatically
2370 * by the PCI glue, so only glue for non-PCI busses should need to call it.
2371 *
2372 * Only call this function with the primary HCD.
2373 */
2374void usb_hc_died (struct usb_hcd *hcd)
2375{
2376        unsigned long flags;
2377
2378        dev_err (hcd->self.controller, "HC died; cleaning up\n");
2379
2380        spin_lock_irqsave (&hcd_root_hub_lock, flags);
2381        clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2382        set_bit(HCD_FLAG_DEAD, &hcd->flags);
2383        if (hcd->rh_registered) {
2384                clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2385
2386                /* make khubd clean up old urbs and devices */
2387                usb_set_device_state (hcd->self.root_hub,
2388                                USB_STATE_NOTATTACHED);
2389                usb_kick_khubd (hcd->self.root_hub);
2390        }
2391        if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2392                hcd = hcd->shared_hcd;
2393                if (hcd->rh_registered) {
2394                        clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2395
2396                        /* make khubd clean up old urbs and devices */
2397                        usb_set_device_state(hcd->self.root_hub,
2398                                        USB_STATE_NOTATTACHED);
2399                        usb_kick_khubd(hcd->self.root_hub);
2400                }
2401        }
2402        spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2403        /* Make sure that the other roothub is also deallocated. */
2404}
2405EXPORT_SYMBOL_GPL (usb_hc_died);
2406
2407/*-------------------------------------------------------------------------*/
2408
2409static void init_giveback_urb_bh(struct giveback_urb_bh *bh)
2410{
2411
2412        spin_lock_init(&bh->lock);
2413        INIT_LIST_HEAD(&bh->head);
2414        tasklet_init(&bh->bh, usb_giveback_urb_bh, (unsigned long)bh);
2415}
2416
2417/**
2418 * usb_create_shared_hcd - create and initialize an HCD structure
2419 * @driver: HC driver that will use this hcd
2420 * @dev: device for this HC, stored in hcd->self.controller
2421 * @bus_name: value to store in hcd->self.bus_name
2422 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2423 *              PCI device.  Only allocate certain resources for the primary HCD
2424 * Context: !in_interrupt()
2425 *
2426 * Allocate a struct usb_hcd, with extra space at the end for the
2427 * HC driver's private data.  Initialize the generic members of the
2428 * hcd structure.
2429 *
2430 * Return: On success, a pointer to the created and initialized HCD structure.
2431 * On failure (e.g. if memory is unavailable), %NULL.
2432 */
2433struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2434                struct device *dev, const char *bus_name,
2435                struct usb_hcd *primary_hcd)
2436{
2437        struct usb_hcd *hcd;
2438
2439        hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2440        if (!hcd) {
2441                dev_dbg (dev, "hcd alloc failed\n");
2442                return NULL;
2443        }
2444        if (primary_hcd == NULL) {
2445                hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2446                                GFP_KERNEL);
2447                if (!hcd->bandwidth_mutex) {
2448                        kfree(hcd);
2449                        dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2450                        return NULL;
2451                }
2452                mutex_init(hcd->bandwidth_mutex);
2453                dev_set_drvdata(dev, hcd);
2454        } else {
2455                mutex_lock(&usb_port_peer_mutex);
2456                hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2457                hcd->primary_hcd = primary_hcd;
2458                primary_hcd->primary_hcd = primary_hcd;
2459                hcd->shared_hcd = primary_hcd;
2460                primary_hcd->shared_hcd = hcd;
2461                mutex_unlock(&usb_port_peer_mutex);
2462        }
2463
2464        kref_init(&hcd->kref);
2465
2466        usb_bus_init(&hcd->self);
2467        hcd->self.controller = dev;
2468        hcd->self.bus_name = bus_name;
2469        hcd->self.uses_dma = (dev->dma_mask != NULL);
2470
2471        init_timer(&hcd->rh_timer);
2472        hcd->rh_timer.function = rh_timer_func;
2473        hcd->rh_timer.data = (unsigned long) hcd;
2474#ifdef CONFIG_PM_RUNTIME
2475        INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2476#endif
2477
2478        hcd->driver = driver;
2479        hcd->speed = driver->flags & HCD_MASK;
2480        hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2481                        "USB Host Controller";
2482        return hcd;
2483}
2484EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2485
2486/**
2487 * usb_create_hcd - create and initialize an HCD structure
2488 * @driver: HC driver that will use this hcd
2489 * @dev: device for this HC, stored in hcd->self.controller
2490 * @bus_name: value to store in hcd->self.bus_name
2491 * Context: !in_interrupt()
2492 *
2493 * Allocate a struct usb_hcd, with extra space at the end for the
2494 * HC driver's private data.  Initialize the generic members of the
2495 * hcd structure.
2496 *
2497 * Return: On success, a pointer to the created and initialized HCD
2498 * structure. On failure (e.g. if memory is unavailable), %NULL.
2499 */
2500struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2501                struct device *dev, const char *bus_name)
2502{
2503        return usb_create_shared_hcd(driver, dev, bus_name, NULL);
2504}
2505EXPORT_SYMBOL_GPL(usb_create_hcd);
2506
2507/*
2508 * Roothubs that share one PCI device must also share the bandwidth mutex.
2509 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2510 * deallocated.
2511 *
2512 * Make sure to only deallocate the bandwidth_mutex when the primary HCD is
2513 * freed.  When hcd_release() is called for either hcd in a peer set
2514 * invalidate the peer's ->shared_hcd and ->primary_hcd pointers to
2515 * block new peering attempts
2516 */
2517static void hcd_release(struct kref *kref)
2518{
2519        struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2520
2521        mutex_lock(&usb_port_peer_mutex);
2522        if (usb_hcd_is_primary_hcd(hcd))
2523                kfree(hcd->bandwidth_mutex);
2524        if (hcd->shared_hcd) {
2525                struct usb_hcd *peer = hcd->shared_hcd;
2526
2527                peer->shared_hcd = NULL;
2528                if (peer->primary_hcd == hcd)
2529                        peer->primary_hcd = NULL;
2530        }
2531        mutex_unlock(&usb_port_peer_mutex);
2532        kfree(hcd);
2533}
2534
2535struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2536{
2537        if (hcd)
2538                kref_get (&hcd->kref);
2539        return hcd;
2540}
2541EXPORT_SYMBOL_GPL(usb_get_hcd);
2542
2543void usb_put_hcd (struct usb_hcd *hcd)
2544{
2545        if (hcd)
2546                kref_put (&hcd->kref, hcd_release);
2547}
2548EXPORT_SYMBOL_GPL(usb_put_hcd);
2549
2550int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2551{
2552        if (!hcd->primary_hcd)
2553                return 1;
2554        return hcd == hcd->primary_hcd;
2555}
2556EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2557
2558int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1)
2559{
2560        if (!hcd->driver->find_raw_port_number)
2561                return port1;
2562
2563        return hcd->driver->find_raw_port_number(hcd, port1);
2564}
2565
2566static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2567                unsigned int irqnum, unsigned long irqflags)
2568{
2569        int retval;
2570
2571        if (hcd->driver->irq) {
2572
2573                snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2574                                hcd->driver->description, hcd->self.busnum);
2575                retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2576                                hcd->irq_descr, hcd);
2577                if (retval != 0) {
2578                        dev_err(hcd->self.controller,
2579                                        "request interrupt %d failed\n",
2580                                        irqnum);
2581                        return retval;
2582                }
2583                hcd->irq = irqnum;
2584                dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2585                                (hcd->driver->flags & HCD_MEMORY) ?
2586                                        "io mem" : "io base",
2587                                        (unsigned long long)hcd->rsrc_start);
2588        } else {
2589                hcd->irq = 0;
2590                if (hcd->rsrc_start)
2591                        dev_info(hcd->self.controller, "%s 0x%08llx\n",
2592                                        (hcd->driver->flags & HCD_MEMORY) ?
2593                                        "io mem" : "io base",
2594                                        (unsigned long long)hcd->rsrc_start);
2595        }
2596        return 0;
2597}
2598
2599/*
2600 * Before we free this root hub, flush in-flight peering attempts
2601 * and disable peer lookups
2602 */
2603static void usb_put_invalidate_rhdev(struct usb_hcd *hcd)
2604{
2605        struct usb_device *rhdev;
2606
2607        mutex_lock(&usb_port_peer_mutex);
2608        rhdev = hcd->self.root_hub;
2609        hcd->self.root_hub = NULL;
2610        mutex_unlock(&usb_port_peer_mutex);
2611        usb_put_dev(rhdev);
2612}
2613
2614/**
2615 * usb_add_hcd - finish generic HCD structure initialization and register
2616 * @hcd: the usb_hcd structure to initialize
2617 * @irqnum: Interrupt line to allocate
2618 * @irqflags: Interrupt type flags
2619 *
2620 * Finish the remaining parts of generic HCD initialization: allocate the
2621 * buffers of consistent memory, register the bus, request the IRQ line,
2622 * and call the driver's reset() and start() routines.
2623 */
2624int usb_add_hcd(struct usb_hcd *hcd,
2625                unsigned int irqnum, unsigned long irqflags)
2626{
2627        int retval;
2628        struct usb_device *rhdev;
2629
2630        if (IS_ENABLED(CONFIG_USB_PHY) && !hcd->phy) {
2631                struct usb_phy *phy = usb_get_phy_dev(hcd->self.controller, 0);
2632
2633                if (IS_ERR(phy)) {
2634                        retval = PTR_ERR(phy);
2635                        if (retval == -EPROBE_DEFER)
2636                                return retval;
2637                } else {
2638                        retval = usb_phy_init(phy);
2639                        if (retval) {
2640                                usb_put_phy(phy);
2641                                return retval;
2642                        }
2643                        hcd->phy = phy;
2644                        hcd->remove_phy = 1;
2645                }
2646        }
2647
2648        dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2649
2650        /* Keep old behaviour if authorized_default is not in [0, 1]. */
2651        if (authorized_default < 0 || authorized_default > 1)
2652                hcd->authorized_default = hcd->wireless ? 0 : 1;
2653        else
2654                hcd->authorized_default = authorized_default;
2655        set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2656
2657        /* HC is in reset state, but accessible.  Now do the one-time init,
2658         * bottom up so that hcds can customize the root hubs before khubd
2659         * starts talking to them.  (Note, bus id is assigned early too.)
2660         */
2661        if ((retval = hcd_buffer_create(hcd)) != 0) {
2662                dev_dbg(hcd->self.controller, "pool alloc failed\n");
2663                goto err_remove_phy;
2664        }
2665
2666        if ((retval = usb_register_bus(&hcd->self)) < 0)
2667                goto err_register_bus;
2668
2669        if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) {
2670                dev_err(hcd->self.controller, "unable to allocate root hub\n");
2671                retval = -ENOMEM;
2672                goto err_allocate_root_hub;
2673        }
2674        mutex_lock(&usb_port_peer_mutex);
2675        hcd->self.root_hub = rhdev;
2676        mutex_unlock(&usb_port_peer_mutex);
2677
2678        switch (hcd->speed) {
2679        case HCD_USB11:
2680                rhdev->speed = USB_SPEED_FULL;
2681                break;
2682        case HCD_USB2:
2683                rhdev->speed = USB_SPEED_HIGH;
2684                break;
2685        case HCD_USB25:
2686                rhdev->speed = USB_SPEED_WIRELESS;
2687                break;
2688        case HCD_USB3:
2689                rhdev->speed = USB_SPEED_SUPER;
2690                break;
2691        default:
2692                retval = -EINVAL;
2693                goto err_set_rh_speed;
2694        }
2695
2696        /* wakeup flag init defaults to "everything works" for root hubs,
2697         * but drivers can override it in reset() if needed, along with
2698         * recording the overall controller's system wakeup capability.
2699         */
2700        device_set_wakeup_capable(&rhdev->dev, 1);
2701
2702        /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2703         * registered.  But since the controller can die at any time,
2704         * let's initialize the flag before touching the hardware.
2705         */
2706        set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2707
2708        /* "reset" is misnamed; its role is now one-time init. the controller
2709         * should already have been reset (and boot firmware kicked off etc).
2710         */
2711        if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) {
2712                dev_err(hcd->self.controller, "can't setup: %d\n", retval);
2713                goto err_hcd_driver_setup;
2714        }
2715        hcd->rh_pollable = 1;
2716
2717        /* NOTE: root hub and controller capabilities may not be the same */
2718        if (device_can_wakeup(hcd->self.controller)
2719                        && device_can_wakeup(&hcd->self.root_hub->dev))
2720                dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2721
2722        /* initialize tasklets */
2723        init_giveback_urb_bh(&hcd->high_prio_bh);
2724        init_giveback_urb_bh(&hcd->low_prio_bh);
2725
2726        /* enable irqs just before we start the controller,
2727         * if the BIOS provides legacy PCI irqs.
2728         */
2729        if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2730                retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2731                if (retval)
2732                        goto err_request_irq;
2733        }
2734
2735        hcd->state = HC_STATE_RUNNING;
2736        retval = hcd->driver->start(hcd);
2737        if (retval < 0) {
2738                dev_err(hcd->self.controller, "startup error %d\n", retval);
2739                goto err_hcd_driver_start;
2740        }
2741
2742        /* starting here, usbcore will pay attention to this root hub */
2743        if ((retval = register_root_hub(hcd)) != 0)
2744                goto err_register_root_hub;
2745
2746        retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2747        if (retval < 0) {
2748                printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
2749                       retval);
2750                goto error_create_attr_group;
2751        }
2752        if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2753                usb_hcd_poll_rh_status(hcd);
2754
2755        return retval;
2756
2757error_create_attr_group:
2758        clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2759        if (HC_IS_RUNNING(hcd->state))
2760                hcd->state = HC_STATE_QUIESCING;
2761        spin_lock_irq(&hcd_root_hub_lock);
2762        hcd->rh_registered = 0;
2763        spin_unlock_irq(&hcd_root_hub_lock);
2764
2765#ifdef CONFIG_PM_RUNTIME
2766        cancel_work_sync(&hcd->wakeup_work);
2767#endif
2768        mutex_lock(&usb_bus_list_lock);
2769        usb_disconnect(&rhdev);         /* Sets rhdev to NULL */
2770        mutex_unlock(&usb_bus_list_lock);
2771err_register_root_hub:
2772        hcd->rh_pollable = 0;
2773        clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2774        del_timer_sync(&hcd->rh_timer);
2775        hcd->driver->stop(hcd);
2776        hcd->state = HC_STATE_HALT;
2777        clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2778        del_timer_sync(&hcd->rh_timer);
2779err_hcd_driver_start:
2780        if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
2781                free_irq(irqnum, hcd);
2782err_request_irq:
2783err_hcd_driver_setup:
2784err_set_rh_speed:
2785        usb_put_invalidate_rhdev(hcd);
2786err_allocate_root_hub:
2787        usb_deregister_bus(&hcd->self);
2788err_register_bus:
2789        hcd_buffer_destroy(hcd);
2790err_remove_phy:
2791        if (hcd->remove_phy && hcd->phy) {
2792                usb_phy_shutdown(hcd->phy);
2793                usb_put_phy(hcd->phy);
2794                hcd->phy = NULL;
2795        }
2796        return retval;
2797}
2798EXPORT_SYMBOL_GPL(usb_add_hcd);
2799
2800/**
2801 * usb_remove_hcd - shutdown processing for generic HCDs
2802 * @hcd: the usb_hcd structure to remove
2803 * Context: !in_interrupt()
2804 *
2805 * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2806 * invoking the HCD's stop() method.
2807 */
2808void usb_remove_hcd(struct usb_hcd *hcd)
2809{
2810        struct usb_device *rhdev = hcd->self.root_hub;
2811
2812        dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2813
2814        usb_get_dev(rhdev);
2815        sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2816
2817        clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2818        if (HC_IS_RUNNING (hcd->state))
2819                hcd->state = HC_STATE_QUIESCING;
2820
2821        dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2822        spin_lock_irq (&hcd_root_hub_lock);
2823        hcd->rh_registered = 0;
2824        spin_unlock_irq (&hcd_root_hub_lock);
2825
2826#ifdef CONFIG_PM_RUNTIME
2827        cancel_work_sync(&hcd->wakeup_work);
2828#endif
2829
2830        mutex_lock(&usb_bus_list_lock);
2831        usb_disconnect(&rhdev);         /* Sets rhdev to NULL */
2832        mutex_unlock(&usb_bus_list_lock);
2833
2834        /*
2835         * tasklet_kill() isn't needed here because:
2836         * - driver's disconnect() called from usb_disconnect() should
2837         *   make sure its URBs are completed during the disconnect()
2838         *   callback
2839         *
2840         * - it is too late to run complete() here since driver may have
2841         *   been removed already now
2842         */
2843
2844        /* Prevent any more root-hub status calls from the timer.
2845         * The HCD might still restart the timer (if a port status change
2846         * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
2847         * the hub_status_data() callback.
2848         */
2849        hcd->rh_pollable = 0;
2850        clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2851        del_timer_sync(&hcd->rh_timer);
2852
2853        hcd->driver->stop(hcd);
2854        hcd->state = HC_STATE_HALT;
2855
2856        /* In case the HCD restarted the timer, stop it again. */
2857        clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2858        del_timer_sync(&hcd->rh_timer);
2859
2860        if (usb_hcd_is_primary_hcd(hcd)) {
2861                if (hcd->irq > 0)
2862                        free_irq(hcd->irq, hcd);
2863        }
2864
2865        usb_deregister_bus(&hcd->self);
2866        hcd_buffer_destroy(hcd);
2867        if (hcd->remove_phy && hcd->phy) {
2868                usb_phy_shutdown(hcd->phy);
2869                usb_put_phy(hcd->phy);
2870                hcd->phy = NULL;
2871        }
2872
2873        usb_put_invalidate_rhdev(hcd);
2874}
2875EXPORT_SYMBOL_GPL(usb_remove_hcd);
2876
2877void
2878usb_hcd_platform_shutdown(struct platform_device *dev)
2879{
2880        struct usb_hcd *hcd = platform_get_drvdata(dev);
2881
2882        if (hcd->driver->shutdown)
2883                hcd->driver->shutdown(hcd);
2884}
2885EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
2886
2887/*-------------------------------------------------------------------------*/
2888
2889#if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
2890
2891struct usb_mon_operations *mon_ops;
2892
2893/*
2894 * The registration is unlocked.
2895 * We do it this way because we do not want to lock in hot paths.
2896 *
2897 * Notice that the code is minimally error-proof. Because usbmon needs
2898 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
2899 */
2900
2901int usb_mon_register (struct usb_mon_operations *ops)
2902{
2903
2904        if (mon_ops)
2905                return -EBUSY;
2906
2907        mon_ops = ops;
2908        mb();
2909        return 0;
2910}
2911EXPORT_SYMBOL_GPL (usb_mon_register);
2912
2913void usb_mon_deregister (void)
2914{
2915
2916        if (mon_ops == NULL) {
2917                printk(KERN_ERR "USB: monitor was not registered\n");
2918                return;
2919        }
2920        mon_ops = NULL;
2921        mb();
2922}
2923EXPORT_SYMBOL_GPL (usb_mon_deregister);
2924
2925#endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */
2926