linux/drivers/xen/swiotlb-xen.c
<<
>>
Prefs
   1/*
   2 *  Copyright 2010
   3 *  by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
   4 *
   5 * This code provides a IOMMU for Xen PV guests with PCI passthrough.
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License v2.0 as published by
   9 * the Free Software Foundation
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * PV guests under Xen are running in an non-contiguous memory architecture.
  17 *
  18 * When PCI pass-through is utilized, this necessitates an IOMMU for
  19 * translating bus (DMA) to virtual and vice-versa and also providing a
  20 * mechanism to have contiguous pages for device drivers operations (say DMA
  21 * operations).
  22 *
  23 * Specifically, under Xen the Linux idea of pages is an illusion. It
  24 * assumes that pages start at zero and go up to the available memory. To
  25 * help with that, the Linux Xen MMU provides a lookup mechanism to
  26 * translate the page frame numbers (PFN) to machine frame numbers (MFN)
  27 * and vice-versa. The MFN are the "real" frame numbers. Furthermore
  28 * memory is not contiguous. Xen hypervisor stitches memory for guests
  29 * from different pools, which means there is no guarantee that PFN==MFN
  30 * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are
  31 * allocated in descending order (high to low), meaning the guest might
  32 * never get any MFN's under the 4GB mark.
  33 *
  34 */
  35
  36#define pr_fmt(fmt) "xen:" KBUILD_MODNAME ": " fmt
  37
  38#include <linux/bootmem.h>
  39#include <linux/dma-mapping.h>
  40#include <linux/export.h>
  41#include <xen/swiotlb-xen.h>
  42#include <xen/page.h>
  43#include <xen/xen-ops.h>
  44#include <xen/hvc-console.h>
  45
  46#include <asm/dma-mapping.h>
  47#include <asm/xen/page-coherent.h>
  48
  49#include <trace/events/swiotlb.h>
  50/*
  51 * Used to do a quick range check in swiotlb_tbl_unmap_single and
  52 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
  53 * API.
  54 */
  55
  56#ifndef CONFIG_X86
  57static unsigned long dma_alloc_coherent_mask(struct device *dev,
  58                                            gfp_t gfp)
  59{
  60        unsigned long dma_mask = 0;
  61
  62        dma_mask = dev->coherent_dma_mask;
  63        if (!dma_mask)
  64                dma_mask = (gfp & GFP_DMA) ? DMA_BIT_MASK(24) : DMA_BIT_MASK(32);
  65
  66        return dma_mask;
  67}
  68#endif
  69
  70static char *xen_io_tlb_start, *xen_io_tlb_end;
  71static unsigned long xen_io_tlb_nslabs;
  72/*
  73 * Quick lookup value of the bus address of the IOTLB.
  74 */
  75
  76static u64 start_dma_addr;
  77
  78/*
  79 * Both of these functions should avoid PFN_PHYS because phys_addr_t
  80 * can be 32bit when dma_addr_t is 64bit leading to a loss in
  81 * information if the shift is done before casting to 64bit.
  82 */
  83static inline dma_addr_t xen_phys_to_bus(phys_addr_t paddr)
  84{
  85        unsigned long mfn = pfn_to_mfn(PFN_DOWN(paddr));
  86        dma_addr_t dma = (dma_addr_t)mfn << PAGE_SHIFT;
  87
  88        dma |= paddr & ~PAGE_MASK;
  89
  90        return dma;
  91}
  92
  93static inline phys_addr_t xen_bus_to_phys(dma_addr_t baddr)
  94{
  95        unsigned long pfn = mfn_to_pfn(PFN_DOWN(baddr));
  96        dma_addr_t dma = (dma_addr_t)pfn << PAGE_SHIFT;
  97        phys_addr_t paddr = dma;
  98
  99        BUG_ON(paddr != dma); /* truncation has occurred, should never happen */
 100
 101        paddr |= baddr & ~PAGE_MASK;
 102
 103        return paddr;
 104}
 105
 106static inline dma_addr_t xen_virt_to_bus(void *address)
 107{
 108        return xen_phys_to_bus(virt_to_phys(address));
 109}
 110
 111static int check_pages_physically_contiguous(unsigned long pfn,
 112                                             unsigned int offset,
 113                                             size_t length)
 114{
 115        unsigned long next_mfn;
 116        int i;
 117        int nr_pages;
 118
 119        next_mfn = pfn_to_mfn(pfn);
 120        nr_pages = (offset + length + PAGE_SIZE-1) >> PAGE_SHIFT;
 121
 122        for (i = 1; i < nr_pages; i++) {
 123                if (pfn_to_mfn(++pfn) != ++next_mfn)
 124                        return 0;
 125        }
 126        return 1;
 127}
 128
 129static inline int range_straddles_page_boundary(phys_addr_t p, size_t size)
 130{
 131        unsigned long pfn = PFN_DOWN(p);
 132        unsigned int offset = p & ~PAGE_MASK;
 133
 134        if (offset + size <= PAGE_SIZE)
 135                return 0;
 136        if (check_pages_physically_contiguous(pfn, offset, size))
 137                return 0;
 138        return 1;
 139}
 140
 141static int is_xen_swiotlb_buffer(dma_addr_t dma_addr)
 142{
 143        unsigned long mfn = PFN_DOWN(dma_addr);
 144        unsigned long pfn = mfn_to_local_pfn(mfn);
 145        phys_addr_t paddr;
 146
 147        /* If the address is outside our domain, it CAN
 148         * have the same virtual address as another address
 149         * in our domain. Therefore _only_ check address within our domain.
 150         */
 151        if (pfn_valid(pfn)) {
 152                paddr = PFN_PHYS(pfn);
 153                return paddr >= virt_to_phys(xen_io_tlb_start) &&
 154                       paddr < virt_to_phys(xen_io_tlb_end);
 155        }
 156        return 0;
 157}
 158
 159static int max_dma_bits = 32;
 160
 161static int
 162xen_swiotlb_fixup(void *buf, size_t size, unsigned long nslabs)
 163{
 164        int i, rc;
 165        int dma_bits;
 166        dma_addr_t dma_handle;
 167        phys_addr_t p = virt_to_phys(buf);
 168
 169        dma_bits = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT) + PAGE_SHIFT;
 170
 171        i = 0;
 172        do {
 173                int slabs = min(nslabs - i, (unsigned long)IO_TLB_SEGSIZE);
 174
 175                do {
 176                        rc = xen_create_contiguous_region(
 177                                p + (i << IO_TLB_SHIFT),
 178                                get_order(slabs << IO_TLB_SHIFT),
 179                                dma_bits, &dma_handle);
 180                } while (rc && dma_bits++ < max_dma_bits);
 181                if (rc)
 182                        return rc;
 183
 184                i += slabs;
 185        } while (i < nslabs);
 186        return 0;
 187}
 188static unsigned long xen_set_nslabs(unsigned long nr_tbl)
 189{
 190        if (!nr_tbl) {
 191                xen_io_tlb_nslabs = (64 * 1024 * 1024 >> IO_TLB_SHIFT);
 192                xen_io_tlb_nslabs = ALIGN(xen_io_tlb_nslabs, IO_TLB_SEGSIZE);
 193        } else
 194                xen_io_tlb_nslabs = nr_tbl;
 195
 196        return xen_io_tlb_nslabs << IO_TLB_SHIFT;
 197}
 198
 199enum xen_swiotlb_err {
 200        XEN_SWIOTLB_UNKNOWN = 0,
 201        XEN_SWIOTLB_ENOMEM,
 202        XEN_SWIOTLB_EFIXUP
 203};
 204
 205static const char *xen_swiotlb_error(enum xen_swiotlb_err err)
 206{
 207        switch (err) {
 208        case XEN_SWIOTLB_ENOMEM:
 209                return "Cannot allocate Xen-SWIOTLB buffer\n";
 210        case XEN_SWIOTLB_EFIXUP:
 211                return "Failed to get contiguous memory for DMA from Xen!\n"\
 212                    "You either: don't have the permissions, do not have"\
 213                    " enough free memory under 4GB, or the hypervisor memory"\
 214                    " is too fragmented!";
 215        default:
 216                break;
 217        }
 218        return "";
 219}
 220int __ref xen_swiotlb_init(int verbose, bool early)
 221{
 222        unsigned long bytes, order;
 223        int rc = -ENOMEM;
 224        enum xen_swiotlb_err m_ret = XEN_SWIOTLB_UNKNOWN;
 225        unsigned int repeat = 3;
 226
 227        xen_io_tlb_nslabs = swiotlb_nr_tbl();
 228retry:
 229        bytes = xen_set_nslabs(xen_io_tlb_nslabs);
 230        order = get_order(xen_io_tlb_nslabs << IO_TLB_SHIFT);
 231        /*
 232         * Get IO TLB memory from any location.
 233         */
 234        if (early)
 235                xen_io_tlb_start = alloc_bootmem_pages(PAGE_ALIGN(bytes));
 236        else {
 237#define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
 238#define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
 239                while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
 240                        xen_io_tlb_start = (void *)__get_free_pages(__GFP_NOWARN, order);
 241                        if (xen_io_tlb_start)
 242                                break;
 243                        order--;
 244                }
 245                if (order != get_order(bytes)) {
 246                        pr_warn("Warning: only able to allocate %ld MB for software IO TLB\n",
 247                                (PAGE_SIZE << order) >> 20);
 248                        xen_io_tlb_nslabs = SLABS_PER_PAGE << order;
 249                        bytes = xen_io_tlb_nslabs << IO_TLB_SHIFT;
 250                }
 251        }
 252        if (!xen_io_tlb_start) {
 253                m_ret = XEN_SWIOTLB_ENOMEM;
 254                goto error;
 255        }
 256        xen_io_tlb_end = xen_io_tlb_start + bytes;
 257        /*
 258         * And replace that memory with pages under 4GB.
 259         */
 260        rc = xen_swiotlb_fixup(xen_io_tlb_start,
 261                               bytes,
 262                               xen_io_tlb_nslabs);
 263        if (rc) {
 264                if (early)
 265                        free_bootmem(__pa(xen_io_tlb_start), PAGE_ALIGN(bytes));
 266                else {
 267                        free_pages((unsigned long)xen_io_tlb_start, order);
 268                        xen_io_tlb_start = NULL;
 269                }
 270                m_ret = XEN_SWIOTLB_EFIXUP;
 271                goto error;
 272        }
 273        start_dma_addr = xen_virt_to_bus(xen_io_tlb_start);
 274        if (early) {
 275                if (swiotlb_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs,
 276                         verbose))
 277                        panic("Cannot allocate SWIOTLB buffer");
 278                rc = 0;
 279        } else
 280                rc = swiotlb_late_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs);
 281        return rc;
 282error:
 283        if (repeat--) {
 284                xen_io_tlb_nslabs = max(1024UL, /* Min is 2MB */
 285                                        (xen_io_tlb_nslabs >> 1));
 286                pr_info("Lowering to %luMB\n",
 287                        (xen_io_tlb_nslabs << IO_TLB_SHIFT) >> 20);
 288                goto retry;
 289        }
 290        pr_err("%s (rc:%d)\n", xen_swiotlb_error(m_ret), rc);
 291        if (early)
 292                panic("%s (rc:%d)", xen_swiotlb_error(m_ret), rc);
 293        else
 294                free_pages((unsigned long)xen_io_tlb_start, order);
 295        return rc;
 296}
 297void *
 298xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size,
 299                           dma_addr_t *dma_handle, gfp_t flags,
 300                           struct dma_attrs *attrs)
 301{
 302        void *ret;
 303        int order = get_order(size);
 304        u64 dma_mask = DMA_BIT_MASK(32);
 305        phys_addr_t phys;
 306        dma_addr_t dev_addr;
 307
 308        /*
 309        * Ignore region specifiers - the kernel's ideas of
 310        * pseudo-phys memory layout has nothing to do with the
 311        * machine physical layout.  We can't allocate highmem
 312        * because we can't return a pointer to it.
 313        */
 314        flags &= ~(__GFP_DMA | __GFP_HIGHMEM);
 315
 316        if (dma_alloc_from_coherent(hwdev, size, dma_handle, &ret))
 317                return ret;
 318
 319        /* On ARM this function returns an ioremap'ped virtual address for
 320         * which virt_to_phys doesn't return the corresponding physical
 321         * address. In fact on ARM virt_to_phys only works for kernel direct
 322         * mapped RAM memory. Also see comment below.
 323         */
 324        ret = xen_alloc_coherent_pages(hwdev, size, dma_handle, flags, attrs);
 325
 326        if (!ret)
 327                return ret;
 328
 329        if (hwdev && hwdev->coherent_dma_mask)
 330                dma_mask = dma_alloc_coherent_mask(hwdev, flags);
 331
 332        /* At this point dma_handle is the physical address, next we are
 333         * going to set it to the machine address.
 334         * Do not use virt_to_phys(ret) because on ARM it doesn't correspond
 335         * to *dma_handle. */
 336        phys = *dma_handle;
 337        dev_addr = xen_phys_to_bus(phys);
 338        if (((dev_addr + size - 1 <= dma_mask)) &&
 339            !range_straddles_page_boundary(phys, size))
 340                *dma_handle = dev_addr;
 341        else {
 342                if (xen_create_contiguous_region(phys, order,
 343                                                 fls64(dma_mask), dma_handle) != 0) {
 344                        xen_free_coherent_pages(hwdev, size, ret, (dma_addr_t)phys, attrs);
 345                        return NULL;
 346                }
 347        }
 348        memset(ret, 0, size);
 349        return ret;
 350}
 351EXPORT_SYMBOL_GPL(xen_swiotlb_alloc_coherent);
 352
 353void
 354xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
 355                          dma_addr_t dev_addr, struct dma_attrs *attrs)
 356{
 357        int order = get_order(size);
 358        phys_addr_t phys;
 359        u64 dma_mask = DMA_BIT_MASK(32);
 360
 361        if (dma_release_from_coherent(hwdev, order, vaddr))
 362                return;
 363
 364        if (hwdev && hwdev->coherent_dma_mask)
 365                dma_mask = hwdev->coherent_dma_mask;
 366
 367        /* do not use virt_to_phys because on ARM it doesn't return you the
 368         * physical address */
 369        phys = xen_bus_to_phys(dev_addr);
 370
 371        if (((dev_addr + size - 1 > dma_mask)) ||
 372            range_straddles_page_boundary(phys, size))
 373                xen_destroy_contiguous_region(phys, order);
 374
 375        xen_free_coherent_pages(hwdev, size, vaddr, (dma_addr_t)phys, attrs);
 376}
 377EXPORT_SYMBOL_GPL(xen_swiotlb_free_coherent);
 378
 379
 380/*
 381 * Map a single buffer of the indicated size for DMA in streaming mode.  The
 382 * physical address to use is returned.
 383 *
 384 * Once the device is given the dma address, the device owns this memory until
 385 * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed.
 386 */
 387dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page,
 388                                unsigned long offset, size_t size,
 389                                enum dma_data_direction dir,
 390                                struct dma_attrs *attrs)
 391{
 392        phys_addr_t map, phys = page_to_phys(page) + offset;
 393        dma_addr_t dev_addr = xen_phys_to_bus(phys);
 394
 395        BUG_ON(dir == DMA_NONE);
 396        /*
 397         * If the address happens to be in the device's DMA window,
 398         * we can safely return the device addr and not worry about bounce
 399         * buffering it.
 400         */
 401        if (dma_capable(dev, dev_addr, size) &&
 402            !range_straddles_page_boundary(phys, size) && !swiotlb_force) {
 403                /* we are not interested in the dma_addr returned by
 404                 * xen_dma_map_page, only in the potential cache flushes executed
 405                 * by the function. */
 406                xen_dma_map_page(dev, page, offset, size, dir, attrs);
 407                return dev_addr;
 408        }
 409
 410        /*
 411         * Oh well, have to allocate and map a bounce buffer.
 412         */
 413        trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force);
 414
 415        map = swiotlb_tbl_map_single(dev, start_dma_addr, phys, size, dir);
 416        if (map == SWIOTLB_MAP_ERROR)
 417                return DMA_ERROR_CODE;
 418
 419        xen_dma_map_page(dev, pfn_to_page(map >> PAGE_SHIFT),
 420                                        map & ~PAGE_MASK, size, dir, attrs);
 421        dev_addr = xen_phys_to_bus(map);
 422
 423        /*
 424         * Ensure that the address returned is DMA'ble
 425         */
 426        if (!dma_capable(dev, dev_addr, size)) {
 427                swiotlb_tbl_unmap_single(dev, map, size, dir);
 428                dev_addr = 0;
 429        }
 430        return dev_addr;
 431}
 432EXPORT_SYMBOL_GPL(xen_swiotlb_map_page);
 433
 434/*
 435 * Unmap a single streaming mode DMA translation.  The dma_addr and size must
 436 * match what was provided for in a previous xen_swiotlb_map_page call.  All
 437 * other usages are undefined.
 438 *
 439 * After this call, reads by the cpu to the buffer are guaranteed to see
 440 * whatever the device wrote there.
 441 */
 442static void xen_unmap_single(struct device *hwdev, dma_addr_t dev_addr,
 443                             size_t size, enum dma_data_direction dir,
 444                                 struct dma_attrs *attrs)
 445{
 446        phys_addr_t paddr = xen_bus_to_phys(dev_addr);
 447
 448        BUG_ON(dir == DMA_NONE);
 449
 450        xen_dma_unmap_page(hwdev, paddr, size, dir, attrs);
 451
 452        /* NOTE: We use dev_addr here, not paddr! */
 453        if (is_xen_swiotlb_buffer(dev_addr)) {
 454                swiotlb_tbl_unmap_single(hwdev, paddr, size, dir);
 455                return;
 456        }
 457
 458        if (dir != DMA_FROM_DEVICE)
 459                return;
 460
 461        /*
 462         * phys_to_virt doesn't work with hihgmem page but we could
 463         * call dma_mark_clean() with hihgmem page here. However, we
 464         * are fine since dma_mark_clean() is null on POWERPC. We can
 465         * make dma_mark_clean() take a physical address if necessary.
 466         */
 467        dma_mark_clean(phys_to_virt(paddr), size);
 468}
 469
 470void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
 471                            size_t size, enum dma_data_direction dir,
 472                            struct dma_attrs *attrs)
 473{
 474        xen_unmap_single(hwdev, dev_addr, size, dir, attrs);
 475}
 476EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_page);
 477
 478/*
 479 * Make physical memory consistent for a single streaming mode DMA translation
 480 * after a transfer.
 481 *
 482 * If you perform a xen_swiotlb_map_page() but wish to interrogate the buffer
 483 * using the cpu, yet do not wish to teardown the dma mapping, you must
 484 * call this function before doing so.  At the next point you give the dma
 485 * address back to the card, you must first perform a
 486 * xen_swiotlb_dma_sync_for_device, and then the device again owns the buffer
 487 */
 488static void
 489xen_swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
 490                        size_t size, enum dma_data_direction dir,
 491                        enum dma_sync_target target)
 492{
 493        phys_addr_t paddr = xen_bus_to_phys(dev_addr);
 494
 495        BUG_ON(dir == DMA_NONE);
 496
 497        if (target == SYNC_FOR_CPU)
 498                xen_dma_sync_single_for_cpu(hwdev, paddr, size, dir);
 499
 500        /* NOTE: We use dev_addr here, not paddr! */
 501        if (is_xen_swiotlb_buffer(dev_addr))
 502                swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target);
 503
 504        if (target == SYNC_FOR_DEVICE)
 505                xen_dma_sync_single_for_cpu(hwdev, paddr, size, dir);
 506
 507        if (dir != DMA_FROM_DEVICE)
 508                return;
 509
 510        dma_mark_clean(phys_to_virt(paddr), size);
 511}
 512
 513void
 514xen_swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
 515                                size_t size, enum dma_data_direction dir)
 516{
 517        xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
 518}
 519EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_cpu);
 520
 521void
 522xen_swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
 523                                   size_t size, enum dma_data_direction dir)
 524{
 525        xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
 526}
 527EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_device);
 528
 529/*
 530 * Map a set of buffers described by scatterlist in streaming mode for DMA.
 531 * This is the scatter-gather version of the above xen_swiotlb_map_page
 532 * interface.  Here the scatter gather list elements are each tagged with the
 533 * appropriate dma address and length.  They are obtained via
 534 * sg_dma_{address,length}(SG).
 535 *
 536 * NOTE: An implementation may be able to use a smaller number of
 537 *       DMA address/length pairs than there are SG table elements.
 538 *       (for example via virtual mapping capabilities)
 539 *       The routine returns the number of addr/length pairs actually
 540 *       used, at most nents.
 541 *
 542 * Device ownership issues as mentioned above for xen_swiotlb_map_page are the
 543 * same here.
 544 */
 545int
 546xen_swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
 547                         int nelems, enum dma_data_direction dir,
 548                         struct dma_attrs *attrs)
 549{
 550        struct scatterlist *sg;
 551        int i;
 552
 553        BUG_ON(dir == DMA_NONE);
 554
 555        for_each_sg(sgl, sg, nelems, i) {
 556                phys_addr_t paddr = sg_phys(sg);
 557                dma_addr_t dev_addr = xen_phys_to_bus(paddr);
 558
 559                if (swiotlb_force ||
 560                    !dma_capable(hwdev, dev_addr, sg->length) ||
 561                    range_straddles_page_boundary(paddr, sg->length)) {
 562                        phys_addr_t map = swiotlb_tbl_map_single(hwdev,
 563                                                                 start_dma_addr,
 564                                                                 sg_phys(sg),
 565                                                                 sg->length,
 566                                                                 dir);
 567                        if (map == SWIOTLB_MAP_ERROR) {
 568                                dev_warn(hwdev, "swiotlb buffer is full\n");
 569                                /* Don't panic here, we expect map_sg users
 570                                   to do proper error handling. */
 571                                xen_swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
 572                                                           attrs);
 573                                sg_dma_len(sgl) = 0;
 574                                return 0;
 575                        }
 576                        xen_dma_map_page(hwdev, pfn_to_page(map >> PAGE_SHIFT),
 577                                                map & ~PAGE_MASK,
 578                                                sg->length,
 579                                                dir,
 580                                                attrs);
 581                        sg->dma_address = xen_phys_to_bus(map);
 582                } else {
 583                        /* we are not interested in the dma_addr returned by
 584                         * xen_dma_map_page, only in the potential cache flushes executed
 585                         * by the function. */
 586                        xen_dma_map_page(hwdev, pfn_to_page(paddr >> PAGE_SHIFT),
 587                                                paddr & ~PAGE_MASK,
 588                                                sg->length,
 589                                                dir,
 590                                                attrs);
 591                        sg->dma_address = dev_addr;
 592                }
 593                sg_dma_len(sg) = sg->length;
 594        }
 595        return nelems;
 596}
 597EXPORT_SYMBOL_GPL(xen_swiotlb_map_sg_attrs);
 598
 599/*
 600 * Unmap a set of streaming mode DMA translations.  Again, cpu read rules
 601 * concerning calls here are the same as for swiotlb_unmap_page() above.
 602 */
 603void
 604xen_swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
 605                           int nelems, enum dma_data_direction dir,
 606                           struct dma_attrs *attrs)
 607{
 608        struct scatterlist *sg;
 609        int i;
 610
 611        BUG_ON(dir == DMA_NONE);
 612
 613        for_each_sg(sgl, sg, nelems, i)
 614                xen_unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir, attrs);
 615
 616}
 617EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_sg_attrs);
 618
 619/*
 620 * Make physical memory consistent for a set of streaming mode DMA translations
 621 * after a transfer.
 622 *
 623 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
 624 * and usage.
 625 */
 626static void
 627xen_swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
 628                    int nelems, enum dma_data_direction dir,
 629                    enum dma_sync_target target)
 630{
 631        struct scatterlist *sg;
 632        int i;
 633
 634        for_each_sg(sgl, sg, nelems, i)
 635                xen_swiotlb_sync_single(hwdev, sg->dma_address,
 636                                        sg_dma_len(sg), dir, target);
 637}
 638
 639void
 640xen_swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
 641                            int nelems, enum dma_data_direction dir)
 642{
 643        xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
 644}
 645EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_cpu);
 646
 647void
 648xen_swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
 649                               int nelems, enum dma_data_direction dir)
 650{
 651        xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
 652}
 653EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_device);
 654
 655int
 656xen_swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
 657{
 658        return !dma_addr;
 659}
 660EXPORT_SYMBOL_GPL(xen_swiotlb_dma_mapping_error);
 661
 662/*
 663 * Return whether the given device DMA address mask can be supported
 664 * properly.  For example, if your device can only drive the low 24-bits
 665 * during bus mastering, then you would pass 0x00ffffff as the mask to
 666 * this function.
 667 */
 668int
 669xen_swiotlb_dma_supported(struct device *hwdev, u64 mask)
 670{
 671        return xen_virt_to_bus(xen_io_tlb_end - 1) <= mask;
 672}
 673EXPORT_SYMBOL_GPL(xen_swiotlb_dma_supported);
 674
 675int
 676xen_swiotlb_set_dma_mask(struct device *dev, u64 dma_mask)
 677{
 678        if (!dev->dma_mask || !xen_swiotlb_dma_supported(dev, dma_mask))
 679                return -EIO;
 680
 681        *dev->dma_mask = dma_mask;
 682
 683        return 0;
 684}
 685EXPORT_SYMBOL_GPL(xen_swiotlb_set_dma_mask);
 686