linux/fs/btrfs/ctree.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2007,2008 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/sched.h>
  20#include <linux/slab.h>
  21#include <linux/rbtree.h>
  22#include "ctree.h"
  23#include "disk-io.h"
  24#include "transaction.h"
  25#include "print-tree.h"
  26#include "locking.h"
  27
  28static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  29                      *root, struct btrfs_path *path, int level);
  30static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
  31                      *root, struct btrfs_key *ins_key,
  32                      struct btrfs_path *path, int data_size, int extend);
  33static int push_node_left(struct btrfs_trans_handle *trans,
  34                          struct btrfs_root *root, struct extent_buffer *dst,
  35                          struct extent_buffer *src, int empty);
  36static int balance_node_right(struct btrfs_trans_handle *trans,
  37                              struct btrfs_root *root,
  38                              struct extent_buffer *dst_buf,
  39                              struct extent_buffer *src_buf);
  40static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
  41                    int level, int slot);
  42static int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
  43                                 struct extent_buffer *eb);
  44
  45struct btrfs_path *btrfs_alloc_path(void)
  46{
  47        struct btrfs_path *path;
  48        path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
  49        return path;
  50}
  51
  52/*
  53 * set all locked nodes in the path to blocking locks.  This should
  54 * be done before scheduling
  55 */
  56noinline void btrfs_set_path_blocking(struct btrfs_path *p)
  57{
  58        int i;
  59        for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  60                if (!p->nodes[i] || !p->locks[i])
  61                        continue;
  62                btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
  63                if (p->locks[i] == BTRFS_READ_LOCK)
  64                        p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
  65                else if (p->locks[i] == BTRFS_WRITE_LOCK)
  66                        p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
  67        }
  68}
  69
  70/*
  71 * reset all the locked nodes in the patch to spinning locks.
  72 *
  73 * held is used to keep lockdep happy, when lockdep is enabled
  74 * we set held to a blocking lock before we go around and
  75 * retake all the spinlocks in the path.  You can safely use NULL
  76 * for held
  77 */
  78noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
  79                                        struct extent_buffer *held, int held_rw)
  80{
  81        int i;
  82
  83#ifdef CONFIG_DEBUG_LOCK_ALLOC
  84        /* lockdep really cares that we take all of these spinlocks
  85         * in the right order.  If any of the locks in the path are not
  86         * currently blocking, it is going to complain.  So, make really
  87         * really sure by forcing the path to blocking before we clear
  88         * the path blocking.
  89         */
  90        if (held) {
  91                btrfs_set_lock_blocking_rw(held, held_rw);
  92                if (held_rw == BTRFS_WRITE_LOCK)
  93                        held_rw = BTRFS_WRITE_LOCK_BLOCKING;
  94                else if (held_rw == BTRFS_READ_LOCK)
  95                        held_rw = BTRFS_READ_LOCK_BLOCKING;
  96        }
  97        btrfs_set_path_blocking(p);
  98#endif
  99
 100        for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
 101                if (p->nodes[i] && p->locks[i]) {
 102                        btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
 103                        if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
 104                                p->locks[i] = BTRFS_WRITE_LOCK;
 105                        else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
 106                                p->locks[i] = BTRFS_READ_LOCK;
 107                }
 108        }
 109
 110#ifdef CONFIG_DEBUG_LOCK_ALLOC
 111        if (held)
 112                btrfs_clear_lock_blocking_rw(held, held_rw);
 113#endif
 114}
 115
 116/* this also releases the path */
 117void btrfs_free_path(struct btrfs_path *p)
 118{
 119        if (!p)
 120                return;
 121        btrfs_release_path(p);
 122        kmem_cache_free(btrfs_path_cachep, p);
 123}
 124
 125/*
 126 * path release drops references on the extent buffers in the path
 127 * and it drops any locks held by this path
 128 *
 129 * It is safe to call this on paths that no locks or extent buffers held.
 130 */
 131noinline void btrfs_release_path(struct btrfs_path *p)
 132{
 133        int i;
 134
 135        for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
 136                p->slots[i] = 0;
 137                if (!p->nodes[i])
 138                        continue;
 139                if (p->locks[i]) {
 140                        btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
 141                        p->locks[i] = 0;
 142                }
 143                free_extent_buffer(p->nodes[i]);
 144                p->nodes[i] = NULL;
 145        }
 146}
 147
 148/*
 149 * safely gets a reference on the root node of a tree.  A lock
 150 * is not taken, so a concurrent writer may put a different node
 151 * at the root of the tree.  See btrfs_lock_root_node for the
 152 * looping required.
 153 *
 154 * The extent buffer returned by this has a reference taken, so
 155 * it won't disappear.  It may stop being the root of the tree
 156 * at any time because there are no locks held.
 157 */
 158struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
 159{
 160        struct extent_buffer *eb;
 161
 162        while (1) {
 163                rcu_read_lock();
 164                eb = rcu_dereference(root->node);
 165
 166                /*
 167                 * RCU really hurts here, we could free up the root node because
 168                 * it was cow'ed but we may not get the new root node yet so do
 169                 * the inc_not_zero dance and if it doesn't work then
 170                 * synchronize_rcu and try again.
 171                 */
 172                if (atomic_inc_not_zero(&eb->refs)) {
 173                        rcu_read_unlock();
 174                        break;
 175                }
 176                rcu_read_unlock();
 177                synchronize_rcu();
 178        }
 179        return eb;
 180}
 181
 182/* loop around taking references on and locking the root node of the
 183 * tree until you end up with a lock on the root.  A locked buffer
 184 * is returned, with a reference held.
 185 */
 186struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
 187{
 188        struct extent_buffer *eb;
 189
 190        while (1) {
 191                eb = btrfs_root_node(root);
 192                btrfs_tree_lock(eb);
 193                if (eb == root->node)
 194                        break;
 195                btrfs_tree_unlock(eb);
 196                free_extent_buffer(eb);
 197        }
 198        return eb;
 199}
 200
 201/* loop around taking references on and locking the root node of the
 202 * tree until you end up with a lock on the root.  A locked buffer
 203 * is returned, with a reference held.
 204 */
 205static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
 206{
 207        struct extent_buffer *eb;
 208
 209        while (1) {
 210                eb = btrfs_root_node(root);
 211                btrfs_tree_read_lock(eb);
 212                if (eb == root->node)
 213                        break;
 214                btrfs_tree_read_unlock(eb);
 215                free_extent_buffer(eb);
 216        }
 217        return eb;
 218}
 219
 220/* cowonly root (everything not a reference counted cow subvolume), just get
 221 * put onto a simple dirty list.  transaction.c walks this to make sure they
 222 * get properly updated on disk.
 223 */
 224static void add_root_to_dirty_list(struct btrfs_root *root)
 225{
 226        spin_lock(&root->fs_info->trans_lock);
 227        if (test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state) &&
 228            list_empty(&root->dirty_list)) {
 229                list_add(&root->dirty_list,
 230                         &root->fs_info->dirty_cowonly_roots);
 231        }
 232        spin_unlock(&root->fs_info->trans_lock);
 233}
 234
 235/*
 236 * used by snapshot creation to make a copy of a root for a tree with
 237 * a given objectid.  The buffer with the new root node is returned in
 238 * cow_ret, and this func returns zero on success or a negative error code.
 239 */
 240int btrfs_copy_root(struct btrfs_trans_handle *trans,
 241                      struct btrfs_root *root,
 242                      struct extent_buffer *buf,
 243                      struct extent_buffer **cow_ret, u64 new_root_objectid)
 244{
 245        struct extent_buffer *cow;
 246        int ret = 0;
 247        int level;
 248        struct btrfs_disk_key disk_key;
 249
 250        WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
 251                trans->transid != root->fs_info->running_transaction->transid);
 252        WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
 253                trans->transid != root->last_trans);
 254
 255        level = btrfs_header_level(buf);
 256        if (level == 0)
 257                btrfs_item_key(buf, &disk_key, 0);
 258        else
 259                btrfs_node_key(buf, &disk_key, 0);
 260
 261        cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
 262                                     new_root_objectid, &disk_key, level,
 263                                     buf->start, 0);
 264        if (IS_ERR(cow))
 265                return PTR_ERR(cow);
 266
 267        copy_extent_buffer(cow, buf, 0, 0, cow->len);
 268        btrfs_set_header_bytenr(cow, cow->start);
 269        btrfs_set_header_generation(cow, trans->transid);
 270        btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
 271        btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
 272                                     BTRFS_HEADER_FLAG_RELOC);
 273        if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 274                btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
 275        else
 276                btrfs_set_header_owner(cow, new_root_objectid);
 277
 278        write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
 279                            BTRFS_FSID_SIZE);
 280
 281        WARN_ON(btrfs_header_generation(buf) > trans->transid);
 282        if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 283                ret = btrfs_inc_ref(trans, root, cow, 1);
 284        else
 285                ret = btrfs_inc_ref(trans, root, cow, 0);
 286
 287        if (ret)
 288                return ret;
 289
 290        btrfs_mark_buffer_dirty(cow);
 291        *cow_ret = cow;
 292        return 0;
 293}
 294
 295enum mod_log_op {
 296        MOD_LOG_KEY_REPLACE,
 297        MOD_LOG_KEY_ADD,
 298        MOD_LOG_KEY_REMOVE,
 299        MOD_LOG_KEY_REMOVE_WHILE_FREEING,
 300        MOD_LOG_KEY_REMOVE_WHILE_MOVING,
 301        MOD_LOG_MOVE_KEYS,
 302        MOD_LOG_ROOT_REPLACE,
 303};
 304
 305struct tree_mod_move {
 306        int dst_slot;
 307        int nr_items;
 308};
 309
 310struct tree_mod_root {
 311        u64 logical;
 312        u8 level;
 313};
 314
 315struct tree_mod_elem {
 316        struct rb_node node;
 317        u64 index;              /* shifted logical */
 318        u64 seq;
 319        enum mod_log_op op;
 320
 321        /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
 322        int slot;
 323
 324        /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
 325        u64 generation;
 326
 327        /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
 328        struct btrfs_disk_key key;
 329        u64 blockptr;
 330
 331        /* this is used for op == MOD_LOG_MOVE_KEYS */
 332        struct tree_mod_move move;
 333
 334        /* this is used for op == MOD_LOG_ROOT_REPLACE */
 335        struct tree_mod_root old_root;
 336};
 337
 338static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
 339{
 340        read_lock(&fs_info->tree_mod_log_lock);
 341}
 342
 343static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
 344{
 345        read_unlock(&fs_info->tree_mod_log_lock);
 346}
 347
 348static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
 349{
 350        write_lock(&fs_info->tree_mod_log_lock);
 351}
 352
 353static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
 354{
 355        write_unlock(&fs_info->tree_mod_log_lock);
 356}
 357
 358/*
 359 * Pull a new tree mod seq number for our operation.
 360 */
 361static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
 362{
 363        return atomic64_inc_return(&fs_info->tree_mod_seq);
 364}
 365
 366/*
 367 * This adds a new blocker to the tree mod log's blocker list if the @elem
 368 * passed does not already have a sequence number set. So when a caller expects
 369 * to record tree modifications, it should ensure to set elem->seq to zero
 370 * before calling btrfs_get_tree_mod_seq.
 371 * Returns a fresh, unused tree log modification sequence number, even if no new
 372 * blocker was added.
 373 */
 374u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
 375                           struct seq_list *elem)
 376{
 377        tree_mod_log_write_lock(fs_info);
 378        spin_lock(&fs_info->tree_mod_seq_lock);
 379        if (!elem->seq) {
 380                elem->seq = btrfs_inc_tree_mod_seq(fs_info);
 381                list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
 382        }
 383        spin_unlock(&fs_info->tree_mod_seq_lock);
 384        tree_mod_log_write_unlock(fs_info);
 385
 386        return elem->seq;
 387}
 388
 389void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
 390                            struct seq_list *elem)
 391{
 392        struct rb_root *tm_root;
 393        struct rb_node *node;
 394        struct rb_node *next;
 395        struct seq_list *cur_elem;
 396        struct tree_mod_elem *tm;
 397        u64 min_seq = (u64)-1;
 398        u64 seq_putting = elem->seq;
 399
 400        if (!seq_putting)
 401                return;
 402
 403        spin_lock(&fs_info->tree_mod_seq_lock);
 404        list_del(&elem->list);
 405        elem->seq = 0;
 406
 407        list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
 408                if (cur_elem->seq < min_seq) {
 409                        if (seq_putting > cur_elem->seq) {
 410                                /*
 411                                 * blocker with lower sequence number exists, we
 412                                 * cannot remove anything from the log
 413                                 */
 414                                spin_unlock(&fs_info->tree_mod_seq_lock);
 415                                return;
 416                        }
 417                        min_seq = cur_elem->seq;
 418                }
 419        }
 420        spin_unlock(&fs_info->tree_mod_seq_lock);
 421
 422        /*
 423         * anything that's lower than the lowest existing (read: blocked)
 424         * sequence number can be removed from the tree.
 425         */
 426        tree_mod_log_write_lock(fs_info);
 427        tm_root = &fs_info->tree_mod_log;
 428        for (node = rb_first(tm_root); node; node = next) {
 429                next = rb_next(node);
 430                tm = container_of(node, struct tree_mod_elem, node);
 431                if (tm->seq > min_seq)
 432                        continue;
 433                rb_erase(node, tm_root);
 434                kfree(tm);
 435        }
 436        tree_mod_log_write_unlock(fs_info);
 437}
 438
 439/*
 440 * key order of the log:
 441 *       index -> sequence
 442 *
 443 * the index is the shifted logical of the *new* root node for root replace
 444 * operations, or the shifted logical of the affected block for all other
 445 * operations.
 446 *
 447 * Note: must be called with write lock (tree_mod_log_write_lock).
 448 */
 449static noinline int
 450__tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
 451{
 452        struct rb_root *tm_root;
 453        struct rb_node **new;
 454        struct rb_node *parent = NULL;
 455        struct tree_mod_elem *cur;
 456
 457        BUG_ON(!tm);
 458
 459        tm->seq = btrfs_inc_tree_mod_seq(fs_info);
 460
 461        tm_root = &fs_info->tree_mod_log;
 462        new = &tm_root->rb_node;
 463        while (*new) {
 464                cur = container_of(*new, struct tree_mod_elem, node);
 465                parent = *new;
 466                if (cur->index < tm->index)
 467                        new = &((*new)->rb_left);
 468                else if (cur->index > tm->index)
 469                        new = &((*new)->rb_right);
 470                else if (cur->seq < tm->seq)
 471                        new = &((*new)->rb_left);
 472                else if (cur->seq > tm->seq)
 473                        new = &((*new)->rb_right);
 474                else
 475                        return -EEXIST;
 476        }
 477
 478        rb_link_node(&tm->node, parent, new);
 479        rb_insert_color(&tm->node, tm_root);
 480        return 0;
 481}
 482
 483/*
 484 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
 485 * returns zero with the tree_mod_log_lock acquired. The caller must hold
 486 * this until all tree mod log insertions are recorded in the rb tree and then
 487 * call tree_mod_log_write_unlock() to release.
 488 */
 489static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
 490                                    struct extent_buffer *eb) {
 491        smp_mb();
 492        if (list_empty(&(fs_info)->tree_mod_seq_list))
 493                return 1;
 494        if (eb && btrfs_header_level(eb) == 0)
 495                return 1;
 496
 497        tree_mod_log_write_lock(fs_info);
 498        if (list_empty(&(fs_info)->tree_mod_seq_list)) {
 499                tree_mod_log_write_unlock(fs_info);
 500                return 1;
 501        }
 502
 503        return 0;
 504}
 505
 506/* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
 507static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
 508                                    struct extent_buffer *eb)
 509{
 510        smp_mb();
 511        if (list_empty(&(fs_info)->tree_mod_seq_list))
 512                return 0;
 513        if (eb && btrfs_header_level(eb) == 0)
 514                return 0;
 515
 516        return 1;
 517}
 518
 519static struct tree_mod_elem *
 520alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
 521                    enum mod_log_op op, gfp_t flags)
 522{
 523        struct tree_mod_elem *tm;
 524
 525        tm = kzalloc(sizeof(*tm), flags);
 526        if (!tm)
 527                return NULL;
 528
 529        tm->index = eb->start >> PAGE_CACHE_SHIFT;
 530        if (op != MOD_LOG_KEY_ADD) {
 531                btrfs_node_key(eb, &tm->key, slot);
 532                tm->blockptr = btrfs_node_blockptr(eb, slot);
 533        }
 534        tm->op = op;
 535        tm->slot = slot;
 536        tm->generation = btrfs_node_ptr_generation(eb, slot);
 537        RB_CLEAR_NODE(&tm->node);
 538
 539        return tm;
 540}
 541
 542static noinline int
 543tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
 544                        struct extent_buffer *eb, int slot,
 545                        enum mod_log_op op, gfp_t flags)
 546{
 547        struct tree_mod_elem *tm;
 548        int ret;
 549
 550        if (!tree_mod_need_log(fs_info, eb))
 551                return 0;
 552
 553        tm = alloc_tree_mod_elem(eb, slot, op, flags);
 554        if (!tm)
 555                return -ENOMEM;
 556
 557        if (tree_mod_dont_log(fs_info, eb)) {
 558                kfree(tm);
 559                return 0;
 560        }
 561
 562        ret = __tree_mod_log_insert(fs_info, tm);
 563        tree_mod_log_write_unlock(fs_info);
 564        if (ret)
 565                kfree(tm);
 566
 567        return ret;
 568}
 569
 570static noinline int
 571tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
 572                         struct extent_buffer *eb, int dst_slot, int src_slot,
 573                         int nr_items, gfp_t flags)
 574{
 575        struct tree_mod_elem *tm = NULL;
 576        struct tree_mod_elem **tm_list = NULL;
 577        int ret = 0;
 578        int i;
 579        int locked = 0;
 580
 581        if (!tree_mod_need_log(fs_info, eb))
 582                return 0;
 583
 584        tm_list = kzalloc(nr_items * sizeof(struct tree_mod_elem *), flags);
 585        if (!tm_list)
 586                return -ENOMEM;
 587
 588        tm = kzalloc(sizeof(*tm), flags);
 589        if (!tm) {
 590                ret = -ENOMEM;
 591                goto free_tms;
 592        }
 593
 594        tm->index = eb->start >> PAGE_CACHE_SHIFT;
 595        tm->slot = src_slot;
 596        tm->move.dst_slot = dst_slot;
 597        tm->move.nr_items = nr_items;
 598        tm->op = MOD_LOG_MOVE_KEYS;
 599
 600        for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
 601                tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
 602                    MOD_LOG_KEY_REMOVE_WHILE_MOVING, flags);
 603                if (!tm_list[i]) {
 604                        ret = -ENOMEM;
 605                        goto free_tms;
 606                }
 607        }
 608
 609        if (tree_mod_dont_log(fs_info, eb))
 610                goto free_tms;
 611        locked = 1;
 612
 613        /*
 614         * When we override something during the move, we log these removals.
 615         * This can only happen when we move towards the beginning of the
 616         * buffer, i.e. dst_slot < src_slot.
 617         */
 618        for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
 619                ret = __tree_mod_log_insert(fs_info, tm_list[i]);
 620                if (ret)
 621                        goto free_tms;
 622        }
 623
 624        ret = __tree_mod_log_insert(fs_info, tm);
 625        if (ret)
 626                goto free_tms;
 627        tree_mod_log_write_unlock(fs_info);
 628        kfree(tm_list);
 629
 630        return 0;
 631free_tms:
 632        for (i = 0; i < nr_items; i++) {
 633                if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
 634                        rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
 635                kfree(tm_list[i]);
 636        }
 637        if (locked)
 638                tree_mod_log_write_unlock(fs_info);
 639        kfree(tm_list);
 640        kfree(tm);
 641
 642        return ret;
 643}
 644
 645static inline int
 646__tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
 647                       struct tree_mod_elem **tm_list,
 648                       int nritems)
 649{
 650        int i, j;
 651        int ret;
 652
 653        for (i = nritems - 1; i >= 0; i--) {
 654                ret = __tree_mod_log_insert(fs_info, tm_list[i]);
 655                if (ret) {
 656                        for (j = nritems - 1; j > i; j--)
 657                                rb_erase(&tm_list[j]->node,
 658                                         &fs_info->tree_mod_log);
 659                        return ret;
 660                }
 661        }
 662
 663        return 0;
 664}
 665
 666static noinline int
 667tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
 668                         struct extent_buffer *old_root,
 669                         struct extent_buffer *new_root, gfp_t flags,
 670                         int log_removal)
 671{
 672        struct tree_mod_elem *tm = NULL;
 673        struct tree_mod_elem **tm_list = NULL;
 674        int nritems = 0;
 675        int ret = 0;
 676        int i;
 677
 678        if (!tree_mod_need_log(fs_info, NULL))
 679                return 0;
 680
 681        if (log_removal && btrfs_header_level(old_root) > 0) {
 682                nritems = btrfs_header_nritems(old_root);
 683                tm_list = kzalloc(nritems * sizeof(struct tree_mod_elem *),
 684                                  flags);
 685                if (!tm_list) {
 686                        ret = -ENOMEM;
 687                        goto free_tms;
 688                }
 689                for (i = 0; i < nritems; i++) {
 690                        tm_list[i] = alloc_tree_mod_elem(old_root, i,
 691                            MOD_LOG_KEY_REMOVE_WHILE_FREEING, flags);
 692                        if (!tm_list[i]) {
 693                                ret = -ENOMEM;
 694                                goto free_tms;
 695                        }
 696                }
 697        }
 698
 699        tm = kzalloc(sizeof(*tm), flags);
 700        if (!tm) {
 701                ret = -ENOMEM;
 702                goto free_tms;
 703        }
 704
 705        tm->index = new_root->start >> PAGE_CACHE_SHIFT;
 706        tm->old_root.logical = old_root->start;
 707        tm->old_root.level = btrfs_header_level(old_root);
 708        tm->generation = btrfs_header_generation(old_root);
 709        tm->op = MOD_LOG_ROOT_REPLACE;
 710
 711        if (tree_mod_dont_log(fs_info, NULL))
 712                goto free_tms;
 713
 714        if (tm_list)
 715                ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
 716        if (!ret)
 717                ret = __tree_mod_log_insert(fs_info, tm);
 718
 719        tree_mod_log_write_unlock(fs_info);
 720        if (ret)
 721                goto free_tms;
 722        kfree(tm_list);
 723
 724        return ret;
 725
 726free_tms:
 727        if (tm_list) {
 728                for (i = 0; i < nritems; i++)
 729                        kfree(tm_list[i]);
 730                kfree(tm_list);
 731        }
 732        kfree(tm);
 733
 734        return ret;
 735}
 736
 737static struct tree_mod_elem *
 738__tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
 739                      int smallest)
 740{
 741        struct rb_root *tm_root;
 742        struct rb_node *node;
 743        struct tree_mod_elem *cur = NULL;
 744        struct tree_mod_elem *found = NULL;
 745        u64 index = start >> PAGE_CACHE_SHIFT;
 746
 747        tree_mod_log_read_lock(fs_info);
 748        tm_root = &fs_info->tree_mod_log;
 749        node = tm_root->rb_node;
 750        while (node) {
 751                cur = container_of(node, struct tree_mod_elem, node);
 752                if (cur->index < index) {
 753                        node = node->rb_left;
 754                } else if (cur->index > index) {
 755                        node = node->rb_right;
 756                } else if (cur->seq < min_seq) {
 757                        node = node->rb_left;
 758                } else if (!smallest) {
 759                        /* we want the node with the highest seq */
 760                        if (found)
 761                                BUG_ON(found->seq > cur->seq);
 762                        found = cur;
 763                        node = node->rb_left;
 764                } else if (cur->seq > min_seq) {
 765                        /* we want the node with the smallest seq */
 766                        if (found)
 767                                BUG_ON(found->seq < cur->seq);
 768                        found = cur;
 769                        node = node->rb_right;
 770                } else {
 771                        found = cur;
 772                        break;
 773                }
 774        }
 775        tree_mod_log_read_unlock(fs_info);
 776
 777        return found;
 778}
 779
 780/*
 781 * this returns the element from the log with the smallest time sequence
 782 * value that's in the log (the oldest log item). any element with a time
 783 * sequence lower than min_seq will be ignored.
 784 */
 785static struct tree_mod_elem *
 786tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
 787                           u64 min_seq)
 788{
 789        return __tree_mod_log_search(fs_info, start, min_seq, 1);
 790}
 791
 792/*
 793 * this returns the element from the log with the largest time sequence
 794 * value that's in the log (the most recent log item). any element with
 795 * a time sequence lower than min_seq will be ignored.
 796 */
 797static struct tree_mod_elem *
 798tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
 799{
 800        return __tree_mod_log_search(fs_info, start, min_seq, 0);
 801}
 802
 803static noinline int
 804tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
 805                     struct extent_buffer *src, unsigned long dst_offset,
 806                     unsigned long src_offset, int nr_items)
 807{
 808        int ret = 0;
 809        struct tree_mod_elem **tm_list = NULL;
 810        struct tree_mod_elem **tm_list_add, **tm_list_rem;
 811        int i;
 812        int locked = 0;
 813
 814        if (!tree_mod_need_log(fs_info, NULL))
 815                return 0;
 816
 817        if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
 818                return 0;
 819
 820        tm_list = kzalloc(nr_items * 2 * sizeof(struct tree_mod_elem *),
 821                          GFP_NOFS);
 822        if (!tm_list)
 823                return -ENOMEM;
 824
 825        tm_list_add = tm_list;
 826        tm_list_rem = tm_list + nr_items;
 827        for (i = 0; i < nr_items; i++) {
 828                tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
 829                    MOD_LOG_KEY_REMOVE, GFP_NOFS);
 830                if (!tm_list_rem[i]) {
 831                        ret = -ENOMEM;
 832                        goto free_tms;
 833                }
 834
 835                tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
 836                    MOD_LOG_KEY_ADD, GFP_NOFS);
 837                if (!tm_list_add[i]) {
 838                        ret = -ENOMEM;
 839                        goto free_tms;
 840                }
 841        }
 842
 843        if (tree_mod_dont_log(fs_info, NULL))
 844                goto free_tms;
 845        locked = 1;
 846
 847        for (i = 0; i < nr_items; i++) {
 848                ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
 849                if (ret)
 850                        goto free_tms;
 851                ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
 852                if (ret)
 853                        goto free_tms;
 854        }
 855
 856        tree_mod_log_write_unlock(fs_info);
 857        kfree(tm_list);
 858
 859        return 0;
 860
 861free_tms:
 862        for (i = 0; i < nr_items * 2; i++) {
 863                if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
 864                        rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
 865                kfree(tm_list[i]);
 866        }
 867        if (locked)
 868                tree_mod_log_write_unlock(fs_info);
 869        kfree(tm_list);
 870
 871        return ret;
 872}
 873
 874static inline void
 875tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
 876                     int dst_offset, int src_offset, int nr_items)
 877{
 878        int ret;
 879        ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
 880                                       nr_items, GFP_NOFS);
 881        BUG_ON(ret < 0);
 882}
 883
 884static noinline void
 885tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
 886                          struct extent_buffer *eb, int slot, int atomic)
 887{
 888        int ret;
 889
 890        ret = tree_mod_log_insert_key(fs_info, eb, slot,
 891                                        MOD_LOG_KEY_REPLACE,
 892                                        atomic ? GFP_ATOMIC : GFP_NOFS);
 893        BUG_ON(ret < 0);
 894}
 895
 896static noinline int
 897tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
 898{
 899        struct tree_mod_elem **tm_list = NULL;
 900        int nritems = 0;
 901        int i;
 902        int ret = 0;
 903
 904        if (btrfs_header_level(eb) == 0)
 905                return 0;
 906
 907        if (!tree_mod_need_log(fs_info, NULL))
 908                return 0;
 909
 910        nritems = btrfs_header_nritems(eb);
 911        tm_list = kzalloc(nritems * sizeof(struct tree_mod_elem *),
 912                          GFP_NOFS);
 913        if (!tm_list)
 914                return -ENOMEM;
 915
 916        for (i = 0; i < nritems; i++) {
 917                tm_list[i] = alloc_tree_mod_elem(eb, i,
 918                    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
 919                if (!tm_list[i]) {
 920                        ret = -ENOMEM;
 921                        goto free_tms;
 922                }
 923        }
 924
 925        if (tree_mod_dont_log(fs_info, eb))
 926                goto free_tms;
 927
 928        ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
 929        tree_mod_log_write_unlock(fs_info);
 930        if (ret)
 931                goto free_tms;
 932        kfree(tm_list);
 933
 934        return 0;
 935
 936free_tms:
 937        for (i = 0; i < nritems; i++)
 938                kfree(tm_list[i]);
 939        kfree(tm_list);
 940
 941        return ret;
 942}
 943
 944static noinline void
 945tree_mod_log_set_root_pointer(struct btrfs_root *root,
 946                              struct extent_buffer *new_root_node,
 947                              int log_removal)
 948{
 949        int ret;
 950        ret = tree_mod_log_insert_root(root->fs_info, root->node,
 951                                       new_root_node, GFP_NOFS, log_removal);
 952        BUG_ON(ret < 0);
 953}
 954
 955/*
 956 * check if the tree block can be shared by multiple trees
 957 */
 958int btrfs_block_can_be_shared(struct btrfs_root *root,
 959                              struct extent_buffer *buf)
 960{
 961        /*
 962         * Tree blocks not in refernece counted trees and tree roots
 963         * are never shared. If a block was allocated after the last
 964         * snapshot and the block was not allocated by tree relocation,
 965         * we know the block is not shared.
 966         */
 967        if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
 968            buf != root->node && buf != root->commit_root &&
 969            (btrfs_header_generation(buf) <=
 970             btrfs_root_last_snapshot(&root->root_item) ||
 971             btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
 972                return 1;
 973#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 974        if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
 975            btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
 976                return 1;
 977#endif
 978        return 0;
 979}
 980
 981static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
 982                                       struct btrfs_root *root,
 983                                       struct extent_buffer *buf,
 984                                       struct extent_buffer *cow,
 985                                       int *last_ref)
 986{
 987        u64 refs;
 988        u64 owner;
 989        u64 flags;
 990        u64 new_flags = 0;
 991        int ret;
 992
 993        /*
 994         * Backrefs update rules:
 995         *
 996         * Always use full backrefs for extent pointers in tree block
 997         * allocated by tree relocation.
 998         *
 999         * If a shared tree block is no longer referenced by its owner
1000         * tree (btrfs_header_owner(buf) == root->root_key.objectid),
1001         * use full backrefs for extent pointers in tree block.
1002         *
1003         * If a tree block is been relocating
1004         * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
1005         * use full backrefs for extent pointers in tree block.
1006         * The reason for this is some operations (such as drop tree)
1007         * are only allowed for blocks use full backrefs.
1008         */
1009
1010        if (btrfs_block_can_be_shared(root, buf)) {
1011                ret = btrfs_lookup_extent_info(trans, root, buf->start,
1012                                               btrfs_header_level(buf), 1,
1013                                               &refs, &flags);
1014                if (ret)
1015                        return ret;
1016                if (refs == 0) {
1017                        ret = -EROFS;
1018                        btrfs_std_error(root->fs_info, ret);
1019                        return ret;
1020                }
1021        } else {
1022                refs = 1;
1023                if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1024                    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1025                        flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
1026                else
1027                        flags = 0;
1028        }
1029
1030        owner = btrfs_header_owner(buf);
1031        BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
1032               !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
1033
1034        if (refs > 1) {
1035                if ((owner == root->root_key.objectid ||
1036                     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
1037                    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
1038                        ret = btrfs_inc_ref(trans, root, buf, 1);
1039                        BUG_ON(ret); /* -ENOMEM */
1040
1041                        if (root->root_key.objectid ==
1042                            BTRFS_TREE_RELOC_OBJECTID) {
1043                                ret = btrfs_dec_ref(trans, root, buf, 0);
1044                                BUG_ON(ret); /* -ENOMEM */
1045                                ret = btrfs_inc_ref(trans, root, cow, 1);
1046                                BUG_ON(ret); /* -ENOMEM */
1047                        }
1048                        new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
1049                } else {
1050
1051                        if (root->root_key.objectid ==
1052                            BTRFS_TREE_RELOC_OBJECTID)
1053                                ret = btrfs_inc_ref(trans, root, cow, 1);
1054                        else
1055                                ret = btrfs_inc_ref(trans, root, cow, 0);
1056                        BUG_ON(ret); /* -ENOMEM */
1057                }
1058                if (new_flags != 0) {
1059                        int level = btrfs_header_level(buf);
1060
1061                        ret = btrfs_set_disk_extent_flags(trans, root,
1062                                                          buf->start,
1063                                                          buf->len,
1064                                                          new_flags, level, 0);
1065                        if (ret)
1066                                return ret;
1067                }
1068        } else {
1069                if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
1070                        if (root->root_key.objectid ==
1071                            BTRFS_TREE_RELOC_OBJECTID)
1072                                ret = btrfs_inc_ref(trans, root, cow, 1);
1073                        else
1074                                ret = btrfs_inc_ref(trans, root, cow, 0);
1075                        BUG_ON(ret); /* -ENOMEM */
1076                        ret = btrfs_dec_ref(trans, root, buf, 1);
1077                        BUG_ON(ret); /* -ENOMEM */
1078                }
1079                clean_tree_block(trans, root, buf);
1080                *last_ref = 1;
1081        }
1082        return 0;
1083}
1084
1085/*
1086 * does the dirty work in cow of a single block.  The parent block (if
1087 * supplied) is updated to point to the new cow copy.  The new buffer is marked
1088 * dirty and returned locked.  If you modify the block it needs to be marked
1089 * dirty again.
1090 *
1091 * search_start -- an allocation hint for the new block
1092 *
1093 * empty_size -- a hint that you plan on doing more cow.  This is the size in
1094 * bytes the allocator should try to find free next to the block it returns.
1095 * This is just a hint and may be ignored by the allocator.
1096 */
1097static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1098                             struct btrfs_root *root,
1099                             struct extent_buffer *buf,
1100                             struct extent_buffer *parent, int parent_slot,
1101                             struct extent_buffer **cow_ret,
1102                             u64 search_start, u64 empty_size)
1103{
1104        struct btrfs_disk_key disk_key;
1105        struct extent_buffer *cow;
1106        int level, ret;
1107        int last_ref = 0;
1108        int unlock_orig = 0;
1109        u64 parent_start;
1110
1111        if (*cow_ret == buf)
1112                unlock_orig = 1;
1113
1114        btrfs_assert_tree_locked(buf);
1115
1116        WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1117                trans->transid != root->fs_info->running_transaction->transid);
1118        WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1119                trans->transid != root->last_trans);
1120
1121        level = btrfs_header_level(buf);
1122
1123        if (level == 0)
1124                btrfs_item_key(buf, &disk_key, 0);
1125        else
1126                btrfs_node_key(buf, &disk_key, 0);
1127
1128        if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
1129                if (parent)
1130                        parent_start = parent->start;
1131                else
1132                        parent_start = 0;
1133        } else
1134                parent_start = 0;
1135
1136        cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
1137                                     root->root_key.objectid, &disk_key,
1138                                     level, search_start, empty_size);
1139        if (IS_ERR(cow))
1140                return PTR_ERR(cow);
1141
1142        /* cow is set to blocking by btrfs_init_new_buffer */
1143
1144        copy_extent_buffer(cow, buf, 0, 0, cow->len);
1145        btrfs_set_header_bytenr(cow, cow->start);
1146        btrfs_set_header_generation(cow, trans->transid);
1147        btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1148        btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1149                                     BTRFS_HEADER_FLAG_RELOC);
1150        if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1151                btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1152        else
1153                btrfs_set_header_owner(cow, root->root_key.objectid);
1154
1155        write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
1156                            BTRFS_FSID_SIZE);
1157
1158        ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1159        if (ret) {
1160                btrfs_abort_transaction(trans, root, ret);
1161                return ret;
1162        }
1163
1164        if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1165                ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1166                if (ret)
1167                        return ret;
1168        }
1169
1170        if (buf == root->node) {
1171                WARN_ON(parent && parent != buf);
1172                if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1173                    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1174                        parent_start = buf->start;
1175                else
1176                        parent_start = 0;
1177
1178                extent_buffer_get(cow);
1179                tree_mod_log_set_root_pointer(root, cow, 1);
1180                rcu_assign_pointer(root->node, cow);
1181
1182                btrfs_free_tree_block(trans, root, buf, parent_start,
1183                                      last_ref);
1184                free_extent_buffer(buf);
1185                add_root_to_dirty_list(root);
1186        } else {
1187                if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1188                        parent_start = parent->start;
1189                else
1190                        parent_start = 0;
1191
1192                WARN_ON(trans->transid != btrfs_header_generation(parent));
1193                tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
1194                                        MOD_LOG_KEY_REPLACE, GFP_NOFS);
1195                btrfs_set_node_blockptr(parent, parent_slot,
1196                                        cow->start);
1197                btrfs_set_node_ptr_generation(parent, parent_slot,
1198                                              trans->transid);
1199                btrfs_mark_buffer_dirty(parent);
1200                if (last_ref) {
1201                        ret = tree_mod_log_free_eb(root->fs_info, buf);
1202                        if (ret) {
1203                                btrfs_abort_transaction(trans, root, ret);
1204                                return ret;
1205                        }
1206                }
1207                btrfs_free_tree_block(trans, root, buf, parent_start,
1208                                      last_ref);
1209        }
1210        if (unlock_orig)
1211                btrfs_tree_unlock(buf);
1212        free_extent_buffer_stale(buf);
1213        btrfs_mark_buffer_dirty(cow);
1214        *cow_ret = cow;
1215        return 0;
1216}
1217
1218/*
1219 * returns the logical address of the oldest predecessor of the given root.
1220 * entries older than time_seq are ignored.
1221 */
1222static struct tree_mod_elem *
1223__tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1224                           struct extent_buffer *eb_root, u64 time_seq)
1225{
1226        struct tree_mod_elem *tm;
1227        struct tree_mod_elem *found = NULL;
1228        u64 root_logical = eb_root->start;
1229        int looped = 0;
1230
1231        if (!time_seq)
1232                return NULL;
1233
1234        /*
1235         * the very last operation that's logged for a root is the replacement
1236         * operation (if it is replaced at all). this has the index of the *new*
1237         * root, making it the very first operation that's logged for this root.
1238         */
1239        while (1) {
1240                tm = tree_mod_log_search_oldest(fs_info, root_logical,
1241                                                time_seq);
1242                if (!looped && !tm)
1243                        return NULL;
1244                /*
1245                 * if there are no tree operation for the oldest root, we simply
1246                 * return it. this should only happen if that (old) root is at
1247                 * level 0.
1248                 */
1249                if (!tm)
1250                        break;
1251
1252                /*
1253                 * if there's an operation that's not a root replacement, we
1254                 * found the oldest version of our root. normally, we'll find a
1255                 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1256                 */
1257                if (tm->op != MOD_LOG_ROOT_REPLACE)
1258                        break;
1259
1260                found = tm;
1261                root_logical = tm->old_root.logical;
1262                looped = 1;
1263        }
1264
1265        /* if there's no old root to return, return what we found instead */
1266        if (!found)
1267                found = tm;
1268
1269        return found;
1270}
1271
1272/*
1273 * tm is a pointer to the first operation to rewind within eb. then, all
1274 * previous operations will be rewinded (until we reach something older than
1275 * time_seq).
1276 */
1277static void
1278__tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1279                      u64 time_seq, struct tree_mod_elem *first_tm)
1280{
1281        u32 n;
1282        struct rb_node *next;
1283        struct tree_mod_elem *tm = first_tm;
1284        unsigned long o_dst;
1285        unsigned long o_src;
1286        unsigned long p_size = sizeof(struct btrfs_key_ptr);
1287
1288        n = btrfs_header_nritems(eb);
1289        tree_mod_log_read_lock(fs_info);
1290        while (tm && tm->seq >= time_seq) {
1291                /*
1292                 * all the operations are recorded with the operator used for
1293                 * the modification. as we're going backwards, we do the
1294                 * opposite of each operation here.
1295                 */
1296                switch (tm->op) {
1297                case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1298                        BUG_ON(tm->slot < n);
1299                        /* Fallthrough */
1300                case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1301                case MOD_LOG_KEY_REMOVE:
1302                        btrfs_set_node_key(eb, &tm->key, tm->slot);
1303                        btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1304                        btrfs_set_node_ptr_generation(eb, tm->slot,
1305                                                      tm->generation);
1306                        n++;
1307                        break;
1308                case MOD_LOG_KEY_REPLACE:
1309                        BUG_ON(tm->slot >= n);
1310                        btrfs_set_node_key(eb, &tm->key, tm->slot);
1311                        btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1312                        btrfs_set_node_ptr_generation(eb, tm->slot,
1313                                                      tm->generation);
1314                        break;
1315                case MOD_LOG_KEY_ADD:
1316                        /* if a move operation is needed it's in the log */
1317                        n--;
1318                        break;
1319                case MOD_LOG_MOVE_KEYS:
1320                        o_dst = btrfs_node_key_ptr_offset(tm->slot);
1321                        o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1322                        memmove_extent_buffer(eb, o_dst, o_src,
1323                                              tm->move.nr_items * p_size);
1324                        break;
1325                case MOD_LOG_ROOT_REPLACE:
1326                        /*
1327                         * this operation is special. for roots, this must be
1328                         * handled explicitly before rewinding.
1329                         * for non-roots, this operation may exist if the node
1330                         * was a root: root A -> child B; then A gets empty and
1331                         * B is promoted to the new root. in the mod log, we'll
1332                         * have a root-replace operation for B, a tree block
1333                         * that is no root. we simply ignore that operation.
1334                         */
1335                        break;
1336                }
1337                next = rb_next(&tm->node);
1338                if (!next)
1339                        break;
1340                tm = container_of(next, struct tree_mod_elem, node);
1341                if (tm->index != first_tm->index)
1342                        break;
1343        }
1344        tree_mod_log_read_unlock(fs_info);
1345        btrfs_set_header_nritems(eb, n);
1346}
1347
1348/*
1349 * Called with eb read locked. If the buffer cannot be rewinded, the same buffer
1350 * is returned. If rewind operations happen, a fresh buffer is returned. The
1351 * returned buffer is always read-locked. If the returned buffer is not the
1352 * input buffer, the lock on the input buffer is released and the input buffer
1353 * is freed (its refcount is decremented).
1354 */
1355static struct extent_buffer *
1356tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1357                    struct extent_buffer *eb, u64 time_seq)
1358{
1359        struct extent_buffer *eb_rewin;
1360        struct tree_mod_elem *tm;
1361
1362        if (!time_seq)
1363                return eb;
1364
1365        if (btrfs_header_level(eb) == 0)
1366                return eb;
1367
1368        tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1369        if (!tm)
1370                return eb;
1371
1372        btrfs_set_path_blocking(path);
1373        btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1374
1375        if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1376                BUG_ON(tm->slot != 0);
1377                eb_rewin = alloc_dummy_extent_buffer(eb->start,
1378                                                fs_info->tree_root->nodesize);
1379                if (!eb_rewin) {
1380                        btrfs_tree_read_unlock_blocking(eb);
1381                        free_extent_buffer(eb);
1382                        return NULL;
1383                }
1384                btrfs_set_header_bytenr(eb_rewin, eb->start);
1385                btrfs_set_header_backref_rev(eb_rewin,
1386                                             btrfs_header_backref_rev(eb));
1387                btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1388                btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1389        } else {
1390                eb_rewin = btrfs_clone_extent_buffer(eb);
1391                if (!eb_rewin) {
1392                        btrfs_tree_read_unlock_blocking(eb);
1393                        free_extent_buffer(eb);
1394                        return NULL;
1395                }
1396        }
1397
1398        btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
1399        btrfs_tree_read_unlock_blocking(eb);
1400        free_extent_buffer(eb);
1401
1402        extent_buffer_get(eb_rewin);
1403        btrfs_tree_read_lock(eb_rewin);
1404        __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1405        WARN_ON(btrfs_header_nritems(eb_rewin) >
1406                BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root));
1407
1408        return eb_rewin;
1409}
1410
1411/*
1412 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1413 * value. If there are no changes, the current root->root_node is returned. If
1414 * anything changed in between, there's a fresh buffer allocated on which the
1415 * rewind operations are done. In any case, the returned buffer is read locked.
1416 * Returns NULL on error (with no locks held).
1417 */
1418static inline struct extent_buffer *
1419get_old_root(struct btrfs_root *root, u64 time_seq)
1420{
1421        struct tree_mod_elem *tm;
1422        struct extent_buffer *eb = NULL;
1423        struct extent_buffer *eb_root;
1424        struct extent_buffer *old;
1425        struct tree_mod_root *old_root = NULL;
1426        u64 old_generation = 0;
1427        u64 logical;
1428        u32 blocksize;
1429
1430        eb_root = btrfs_read_lock_root_node(root);
1431        tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1432        if (!tm)
1433                return eb_root;
1434
1435        if (tm->op == MOD_LOG_ROOT_REPLACE) {
1436                old_root = &tm->old_root;
1437                old_generation = tm->generation;
1438                logical = old_root->logical;
1439        } else {
1440                logical = eb_root->start;
1441        }
1442
1443        tm = tree_mod_log_search(root->fs_info, logical, time_seq);
1444        if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1445                btrfs_tree_read_unlock(eb_root);
1446                free_extent_buffer(eb_root);
1447                blocksize = btrfs_level_size(root, old_root->level);
1448                old = read_tree_block(root, logical, blocksize, 0);
1449                if (WARN_ON(!old || !extent_buffer_uptodate(old))) {
1450                        free_extent_buffer(old);
1451                        btrfs_warn(root->fs_info,
1452                                "failed to read tree block %llu from get_old_root", logical);
1453                } else {
1454                        eb = btrfs_clone_extent_buffer(old);
1455                        free_extent_buffer(old);
1456                }
1457        } else if (old_root) {
1458                btrfs_tree_read_unlock(eb_root);
1459                free_extent_buffer(eb_root);
1460                eb = alloc_dummy_extent_buffer(logical, root->nodesize);
1461        } else {
1462                btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
1463                eb = btrfs_clone_extent_buffer(eb_root);
1464                btrfs_tree_read_unlock_blocking(eb_root);
1465                free_extent_buffer(eb_root);
1466        }
1467
1468        if (!eb)
1469                return NULL;
1470        extent_buffer_get(eb);
1471        btrfs_tree_read_lock(eb);
1472        if (old_root) {
1473                btrfs_set_header_bytenr(eb, eb->start);
1474                btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1475                btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1476                btrfs_set_header_level(eb, old_root->level);
1477                btrfs_set_header_generation(eb, old_generation);
1478        }
1479        if (tm)
1480                __tree_mod_log_rewind(root->fs_info, eb, time_seq, tm);
1481        else
1482                WARN_ON(btrfs_header_level(eb) != 0);
1483        WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root));
1484
1485        return eb;
1486}
1487
1488int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1489{
1490        struct tree_mod_elem *tm;
1491        int level;
1492        struct extent_buffer *eb_root = btrfs_root_node(root);
1493
1494        tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1495        if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1496                level = tm->old_root.level;
1497        } else {
1498                level = btrfs_header_level(eb_root);
1499        }
1500        free_extent_buffer(eb_root);
1501
1502        return level;
1503}
1504
1505static inline int should_cow_block(struct btrfs_trans_handle *trans,
1506                                   struct btrfs_root *root,
1507                                   struct extent_buffer *buf)
1508{
1509#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1510        if (unlikely(test_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state)))
1511                return 0;
1512#endif
1513        /* ensure we can see the force_cow */
1514        smp_rmb();
1515
1516        /*
1517         * We do not need to cow a block if
1518         * 1) this block is not created or changed in this transaction;
1519         * 2) this block does not belong to TREE_RELOC tree;
1520         * 3) the root is not forced COW.
1521         *
1522         * What is forced COW:
1523         *    when we create snapshot during commiting the transaction,
1524         *    after we've finished coping src root, we must COW the shared
1525         *    block to ensure the metadata consistency.
1526         */
1527        if (btrfs_header_generation(buf) == trans->transid &&
1528            !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1529            !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1530              btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1531            !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1532                return 0;
1533        return 1;
1534}
1535
1536/*
1537 * cows a single block, see __btrfs_cow_block for the real work.
1538 * This version of it has extra checks so that a block isn't cow'd more than
1539 * once per transaction, as long as it hasn't been written yet
1540 */
1541noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1542                    struct btrfs_root *root, struct extent_buffer *buf,
1543                    struct extent_buffer *parent, int parent_slot,
1544                    struct extent_buffer **cow_ret)
1545{
1546        u64 search_start;
1547        int ret;
1548
1549        if (trans->transaction != root->fs_info->running_transaction)
1550                WARN(1, KERN_CRIT "trans %llu running %llu\n",
1551                       trans->transid,
1552                       root->fs_info->running_transaction->transid);
1553
1554        if (trans->transid != root->fs_info->generation)
1555                WARN(1, KERN_CRIT "trans %llu running %llu\n",
1556                       trans->transid, root->fs_info->generation);
1557
1558        if (!should_cow_block(trans, root, buf)) {
1559                *cow_ret = buf;
1560                return 0;
1561        }
1562
1563        search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
1564
1565        if (parent)
1566                btrfs_set_lock_blocking(parent);
1567        btrfs_set_lock_blocking(buf);
1568
1569        ret = __btrfs_cow_block(trans, root, buf, parent,
1570                                 parent_slot, cow_ret, search_start, 0);
1571
1572        trace_btrfs_cow_block(root, buf, *cow_ret);
1573
1574        return ret;
1575}
1576
1577/*
1578 * helper function for defrag to decide if two blocks pointed to by a
1579 * node are actually close by
1580 */
1581static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1582{
1583        if (blocknr < other && other - (blocknr + blocksize) < 32768)
1584                return 1;
1585        if (blocknr > other && blocknr - (other + blocksize) < 32768)
1586                return 1;
1587        return 0;
1588}
1589
1590/*
1591 * compare two keys in a memcmp fashion
1592 */
1593static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1594{
1595        struct btrfs_key k1;
1596
1597        btrfs_disk_key_to_cpu(&k1, disk);
1598
1599        return btrfs_comp_cpu_keys(&k1, k2);
1600}
1601
1602/*
1603 * same as comp_keys only with two btrfs_key's
1604 */
1605int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1606{
1607        if (k1->objectid > k2->objectid)
1608                return 1;
1609        if (k1->objectid < k2->objectid)
1610                return -1;
1611        if (k1->type > k2->type)
1612                return 1;
1613        if (k1->type < k2->type)
1614                return -1;
1615        if (k1->offset > k2->offset)
1616                return 1;
1617        if (k1->offset < k2->offset)
1618                return -1;
1619        return 0;
1620}
1621
1622/*
1623 * this is used by the defrag code to go through all the
1624 * leaves pointed to by a node and reallocate them so that
1625 * disk order is close to key order
1626 */
1627int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1628                       struct btrfs_root *root, struct extent_buffer *parent,
1629                       int start_slot, u64 *last_ret,
1630                       struct btrfs_key *progress)
1631{
1632        struct extent_buffer *cur;
1633        u64 blocknr;
1634        u64 gen;
1635        u64 search_start = *last_ret;
1636        u64 last_block = 0;
1637        u64 other;
1638        u32 parent_nritems;
1639        int end_slot;
1640        int i;
1641        int err = 0;
1642        int parent_level;
1643        int uptodate;
1644        u32 blocksize;
1645        int progress_passed = 0;
1646        struct btrfs_disk_key disk_key;
1647
1648        parent_level = btrfs_header_level(parent);
1649
1650        WARN_ON(trans->transaction != root->fs_info->running_transaction);
1651        WARN_ON(trans->transid != root->fs_info->generation);
1652
1653        parent_nritems = btrfs_header_nritems(parent);
1654        blocksize = btrfs_level_size(root, parent_level - 1);
1655        end_slot = parent_nritems;
1656
1657        if (parent_nritems == 1)
1658                return 0;
1659
1660        btrfs_set_lock_blocking(parent);
1661
1662        for (i = start_slot; i < end_slot; i++) {
1663                int close = 1;
1664
1665                btrfs_node_key(parent, &disk_key, i);
1666                if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1667                        continue;
1668
1669                progress_passed = 1;
1670                blocknr = btrfs_node_blockptr(parent, i);
1671                gen = btrfs_node_ptr_generation(parent, i);
1672                if (last_block == 0)
1673                        last_block = blocknr;
1674
1675                if (i > 0) {
1676                        other = btrfs_node_blockptr(parent, i - 1);
1677                        close = close_blocks(blocknr, other, blocksize);
1678                }
1679                if (!close && i < end_slot - 2) {
1680                        other = btrfs_node_blockptr(parent, i + 1);
1681                        close = close_blocks(blocknr, other, blocksize);
1682                }
1683                if (close) {
1684                        last_block = blocknr;
1685                        continue;
1686                }
1687
1688                cur = btrfs_find_tree_block(root, blocknr, blocksize);
1689                if (cur)
1690                        uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1691                else
1692                        uptodate = 0;
1693                if (!cur || !uptodate) {
1694                        if (!cur) {
1695                                cur = read_tree_block(root, blocknr,
1696                                                         blocksize, gen);
1697                                if (!cur || !extent_buffer_uptodate(cur)) {
1698                                        free_extent_buffer(cur);
1699                                        return -EIO;
1700                                }
1701                        } else if (!uptodate) {
1702                                err = btrfs_read_buffer(cur, gen);
1703                                if (err) {
1704                                        free_extent_buffer(cur);
1705                                        return err;
1706                                }
1707                        }
1708                }
1709                if (search_start == 0)
1710                        search_start = last_block;
1711
1712                btrfs_tree_lock(cur);
1713                btrfs_set_lock_blocking(cur);
1714                err = __btrfs_cow_block(trans, root, cur, parent, i,
1715                                        &cur, search_start,
1716                                        min(16 * blocksize,
1717                                            (end_slot - i) * blocksize));
1718                if (err) {
1719                        btrfs_tree_unlock(cur);
1720                        free_extent_buffer(cur);
1721                        break;
1722                }
1723                search_start = cur->start;
1724                last_block = cur->start;
1725                *last_ret = search_start;
1726                btrfs_tree_unlock(cur);
1727                free_extent_buffer(cur);
1728        }
1729        return err;
1730}
1731
1732/*
1733 * The leaf data grows from end-to-front in the node.
1734 * this returns the address of the start of the last item,
1735 * which is the stop of the leaf data stack
1736 */
1737static inline unsigned int leaf_data_end(struct btrfs_root *root,
1738                                         struct extent_buffer *leaf)
1739{
1740        u32 nr = btrfs_header_nritems(leaf);
1741        if (nr == 0)
1742                return BTRFS_LEAF_DATA_SIZE(root);
1743        return btrfs_item_offset_nr(leaf, nr - 1);
1744}
1745
1746
1747/*
1748 * search for key in the extent_buffer.  The items start at offset p,
1749 * and they are item_size apart.  There are 'max' items in p.
1750 *
1751 * the slot in the array is returned via slot, and it points to
1752 * the place where you would insert key if it is not found in
1753 * the array.
1754 *
1755 * slot may point to max if the key is bigger than all of the keys
1756 */
1757static noinline int generic_bin_search(struct extent_buffer *eb,
1758                                       unsigned long p,
1759                                       int item_size, struct btrfs_key *key,
1760                                       int max, int *slot)
1761{
1762        int low = 0;
1763        int high = max;
1764        int mid;
1765        int ret;
1766        struct btrfs_disk_key *tmp = NULL;
1767        struct btrfs_disk_key unaligned;
1768        unsigned long offset;
1769        char *kaddr = NULL;
1770        unsigned long map_start = 0;
1771        unsigned long map_len = 0;
1772        int err;
1773
1774        while (low < high) {
1775                mid = (low + high) / 2;
1776                offset = p + mid * item_size;
1777
1778                if (!kaddr || offset < map_start ||
1779                    (offset + sizeof(struct btrfs_disk_key)) >
1780                    map_start + map_len) {
1781
1782                        err = map_private_extent_buffer(eb, offset,
1783                                                sizeof(struct btrfs_disk_key),
1784                                                &kaddr, &map_start, &map_len);
1785
1786                        if (!err) {
1787                                tmp = (struct btrfs_disk_key *)(kaddr + offset -
1788                                                        map_start);
1789                        } else {
1790                                read_extent_buffer(eb, &unaligned,
1791                                                   offset, sizeof(unaligned));
1792                                tmp = &unaligned;
1793                        }
1794
1795                } else {
1796                        tmp = (struct btrfs_disk_key *)(kaddr + offset -
1797                                                        map_start);
1798                }
1799                ret = comp_keys(tmp, key);
1800
1801                if (ret < 0)
1802                        low = mid + 1;
1803                else if (ret > 0)
1804                        high = mid;
1805                else {
1806                        *slot = mid;
1807                        return 0;
1808                }
1809        }
1810        *slot = low;
1811        return 1;
1812}
1813
1814/*
1815 * simple bin_search frontend that does the right thing for
1816 * leaves vs nodes
1817 */
1818static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1819                      int level, int *slot)
1820{
1821        if (level == 0)
1822                return generic_bin_search(eb,
1823                                          offsetof(struct btrfs_leaf, items),
1824                                          sizeof(struct btrfs_item),
1825                                          key, btrfs_header_nritems(eb),
1826                                          slot);
1827        else
1828                return generic_bin_search(eb,
1829                                          offsetof(struct btrfs_node, ptrs),
1830                                          sizeof(struct btrfs_key_ptr),
1831                                          key, btrfs_header_nritems(eb),
1832                                          slot);
1833}
1834
1835int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1836                     int level, int *slot)
1837{
1838        return bin_search(eb, key, level, slot);
1839}
1840
1841static void root_add_used(struct btrfs_root *root, u32 size)
1842{
1843        spin_lock(&root->accounting_lock);
1844        btrfs_set_root_used(&root->root_item,
1845                            btrfs_root_used(&root->root_item) + size);
1846        spin_unlock(&root->accounting_lock);
1847}
1848
1849static void root_sub_used(struct btrfs_root *root, u32 size)
1850{
1851        spin_lock(&root->accounting_lock);
1852        btrfs_set_root_used(&root->root_item,
1853                            btrfs_root_used(&root->root_item) - size);
1854        spin_unlock(&root->accounting_lock);
1855}
1856
1857/* given a node and slot number, this reads the blocks it points to.  The
1858 * extent buffer is returned with a reference taken (but unlocked).
1859 * NULL is returned on error.
1860 */
1861static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
1862                                   struct extent_buffer *parent, int slot)
1863{
1864        int level = btrfs_header_level(parent);
1865        struct extent_buffer *eb;
1866
1867        if (slot < 0)
1868                return NULL;
1869        if (slot >= btrfs_header_nritems(parent))
1870                return NULL;
1871
1872        BUG_ON(level == 0);
1873
1874        eb = read_tree_block(root, btrfs_node_blockptr(parent, slot),
1875                             btrfs_level_size(root, level - 1),
1876                             btrfs_node_ptr_generation(parent, slot));
1877        if (eb && !extent_buffer_uptodate(eb)) {
1878                free_extent_buffer(eb);
1879                eb = NULL;
1880        }
1881
1882        return eb;
1883}
1884
1885/*
1886 * node level balancing, used to make sure nodes are in proper order for
1887 * item deletion.  We balance from the top down, so we have to make sure
1888 * that a deletion won't leave an node completely empty later on.
1889 */
1890static noinline int balance_level(struct btrfs_trans_handle *trans,
1891                         struct btrfs_root *root,
1892                         struct btrfs_path *path, int level)
1893{
1894        struct extent_buffer *right = NULL;
1895        struct extent_buffer *mid;
1896        struct extent_buffer *left = NULL;
1897        struct extent_buffer *parent = NULL;
1898        int ret = 0;
1899        int wret;
1900        int pslot;
1901        int orig_slot = path->slots[level];
1902        u64 orig_ptr;
1903
1904        if (level == 0)
1905                return 0;
1906
1907        mid = path->nodes[level];
1908
1909        WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1910                path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1911        WARN_ON(btrfs_header_generation(mid) != trans->transid);
1912
1913        orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1914
1915        if (level < BTRFS_MAX_LEVEL - 1) {
1916                parent = path->nodes[level + 1];
1917                pslot = path->slots[level + 1];
1918        }
1919
1920        /*
1921         * deal with the case where there is only one pointer in the root
1922         * by promoting the node below to a root
1923         */
1924        if (!parent) {
1925                struct extent_buffer *child;
1926
1927                if (btrfs_header_nritems(mid) != 1)
1928                        return 0;
1929
1930                /* promote the child to a root */
1931                child = read_node_slot(root, mid, 0);
1932                if (!child) {
1933                        ret = -EROFS;
1934                        btrfs_std_error(root->fs_info, ret);
1935                        goto enospc;
1936                }
1937
1938                btrfs_tree_lock(child);
1939                btrfs_set_lock_blocking(child);
1940                ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1941                if (ret) {
1942                        btrfs_tree_unlock(child);
1943                        free_extent_buffer(child);
1944                        goto enospc;
1945                }
1946
1947                tree_mod_log_set_root_pointer(root, child, 1);
1948                rcu_assign_pointer(root->node, child);
1949
1950                add_root_to_dirty_list(root);
1951                btrfs_tree_unlock(child);
1952
1953                path->locks[level] = 0;
1954                path->nodes[level] = NULL;
1955                clean_tree_block(trans, root, mid);
1956                btrfs_tree_unlock(mid);
1957                /* once for the path */
1958                free_extent_buffer(mid);
1959
1960                root_sub_used(root, mid->len);
1961                btrfs_free_tree_block(trans, root, mid, 0, 1);
1962                /* once for the root ptr */
1963                free_extent_buffer_stale(mid);
1964                return 0;
1965        }
1966        if (btrfs_header_nritems(mid) >
1967            BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1968                return 0;
1969
1970        left = read_node_slot(root, parent, pslot - 1);
1971        if (left) {
1972                btrfs_tree_lock(left);
1973                btrfs_set_lock_blocking(left);
1974                wret = btrfs_cow_block(trans, root, left,
1975                                       parent, pslot - 1, &left);
1976                if (wret) {
1977                        ret = wret;
1978                        goto enospc;
1979                }
1980        }
1981        right = read_node_slot(root, parent, pslot + 1);
1982        if (right) {
1983                btrfs_tree_lock(right);
1984                btrfs_set_lock_blocking(right);
1985                wret = btrfs_cow_block(trans, root, right,
1986                                       parent, pslot + 1, &right);
1987                if (wret) {
1988                        ret = wret;
1989                        goto enospc;
1990                }
1991        }
1992
1993        /* first, try to make some room in the middle buffer */
1994        if (left) {
1995                orig_slot += btrfs_header_nritems(left);
1996                wret = push_node_left(trans, root, left, mid, 1);
1997                if (wret < 0)
1998                        ret = wret;
1999        }
2000
2001        /*
2002         * then try to empty the right most buffer into the middle
2003         */
2004        if (right) {
2005                wret = push_node_left(trans, root, mid, right, 1);
2006                if (wret < 0 && wret != -ENOSPC)
2007                        ret = wret;
2008                if (btrfs_header_nritems(right) == 0) {
2009                        clean_tree_block(trans, root, right);
2010                        btrfs_tree_unlock(right);
2011                        del_ptr(root, path, level + 1, pslot + 1);
2012                        root_sub_used(root, right->len);
2013                        btrfs_free_tree_block(trans, root, right, 0, 1);
2014                        free_extent_buffer_stale(right);
2015                        right = NULL;
2016                } else {
2017                        struct btrfs_disk_key right_key;
2018                        btrfs_node_key(right, &right_key, 0);
2019                        tree_mod_log_set_node_key(root->fs_info, parent,
2020                                                  pslot + 1, 0);
2021                        btrfs_set_node_key(parent, &right_key, pslot + 1);
2022                        btrfs_mark_buffer_dirty(parent);
2023                }
2024        }
2025        if (btrfs_header_nritems(mid) == 1) {
2026                /*
2027                 * we're not allowed to leave a node with one item in the
2028                 * tree during a delete.  A deletion from lower in the tree
2029                 * could try to delete the only pointer in this node.
2030                 * So, pull some keys from the left.
2031                 * There has to be a left pointer at this point because
2032                 * otherwise we would have pulled some pointers from the
2033                 * right
2034                 */
2035                if (!left) {
2036                        ret = -EROFS;
2037                        btrfs_std_error(root->fs_info, ret);
2038                        goto enospc;
2039                }
2040                wret = balance_node_right(trans, root, mid, left);
2041                if (wret < 0) {
2042                        ret = wret;
2043                        goto enospc;
2044                }
2045                if (wret == 1) {
2046                        wret = push_node_left(trans, root, left, mid, 1);
2047                        if (wret < 0)
2048                                ret = wret;
2049                }
2050                BUG_ON(wret == 1);
2051        }
2052        if (btrfs_header_nritems(mid) == 0) {
2053                clean_tree_block(trans, root, mid);
2054                btrfs_tree_unlock(mid);
2055                del_ptr(root, path, level + 1, pslot);
2056                root_sub_used(root, mid->len);
2057                btrfs_free_tree_block(trans, root, mid, 0, 1);
2058                free_extent_buffer_stale(mid);
2059                mid = NULL;
2060        } else {
2061                /* update the parent key to reflect our changes */
2062                struct btrfs_disk_key mid_key;
2063                btrfs_node_key(mid, &mid_key, 0);
2064                tree_mod_log_set_node_key(root->fs_info, parent,
2065                                          pslot, 0);
2066                btrfs_set_node_key(parent, &mid_key, pslot);
2067                btrfs_mark_buffer_dirty(parent);
2068        }
2069
2070        /* update the path */
2071        if (left) {
2072                if (btrfs_header_nritems(left) > orig_slot) {
2073                        extent_buffer_get(left);
2074                        /* left was locked after cow */
2075                        path->nodes[level] = left;
2076                        path->slots[level + 1] -= 1;
2077                        path->slots[level] = orig_slot;
2078                        if (mid) {
2079                                btrfs_tree_unlock(mid);
2080                                free_extent_buffer(mid);
2081                        }
2082                } else {
2083                        orig_slot -= btrfs_header_nritems(left);
2084                        path->slots[level] = orig_slot;
2085                }
2086        }
2087        /* double check we haven't messed things up */
2088        if (orig_ptr !=
2089            btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2090                BUG();
2091enospc:
2092        if (right) {
2093                btrfs_tree_unlock(right);
2094                free_extent_buffer(right);
2095        }
2096        if (left) {
2097                if (path->nodes[level] != left)
2098                        btrfs_tree_unlock(left);
2099                free_extent_buffer(left);
2100        }
2101        return ret;
2102}
2103
2104/* Node balancing for insertion.  Here we only split or push nodes around
2105 * when they are completely full.  This is also done top down, so we
2106 * have to be pessimistic.
2107 */
2108static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2109                                          struct btrfs_root *root,
2110                                          struct btrfs_path *path, int level)
2111{
2112        struct extent_buffer *right = NULL;
2113        struct extent_buffer *mid;
2114        struct extent_buffer *left = NULL;
2115        struct extent_buffer *parent = NULL;
2116        int ret = 0;
2117        int wret;
2118        int pslot;
2119        int orig_slot = path->slots[level];
2120
2121        if (level == 0)
2122                return 1;
2123
2124        mid = path->nodes[level];
2125        WARN_ON(btrfs_header_generation(mid) != trans->transid);
2126
2127        if (level < BTRFS_MAX_LEVEL - 1) {
2128                parent = path->nodes[level + 1];
2129                pslot = path->slots[level + 1];
2130        }
2131
2132        if (!parent)
2133                return 1;
2134
2135        left = read_node_slot(root, parent, pslot - 1);
2136
2137        /* first, try to make some room in the middle buffer */
2138        if (left) {
2139                u32 left_nr;
2140
2141                btrfs_tree_lock(left);
2142                btrfs_set_lock_blocking(left);
2143
2144                left_nr = btrfs_header_nritems(left);
2145                if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2146                        wret = 1;
2147                } else {
2148                        ret = btrfs_cow_block(trans, root, left, parent,
2149                                              pslot - 1, &left);
2150                        if (ret)
2151                                wret = 1;
2152                        else {
2153                                wret = push_node_left(trans, root,
2154                                                      left, mid, 0);
2155                        }
2156                }
2157                if (wret < 0)
2158                        ret = wret;
2159                if (wret == 0) {
2160                        struct btrfs_disk_key disk_key;
2161                        orig_slot += left_nr;
2162                        btrfs_node_key(mid, &disk_key, 0);
2163                        tree_mod_log_set_node_key(root->fs_info, parent,
2164                                                  pslot, 0);
2165                        btrfs_set_node_key(parent, &disk_key, pslot);
2166                        btrfs_mark_buffer_dirty(parent);
2167                        if (btrfs_header_nritems(left) > orig_slot) {
2168                                path->nodes[level] = left;
2169                                path->slots[level + 1] -= 1;
2170                                path->slots[level] = orig_slot;
2171                                btrfs_tree_unlock(mid);
2172                                free_extent_buffer(mid);
2173                        } else {
2174                                orig_slot -=
2175                                        btrfs_header_nritems(left);
2176                                path->slots[level] = orig_slot;
2177                                btrfs_tree_unlock(left);
2178                                free_extent_buffer(left);
2179                        }
2180                        return 0;
2181                }
2182                btrfs_tree_unlock(left);
2183                free_extent_buffer(left);
2184        }
2185        right = read_node_slot(root, parent, pslot + 1);
2186
2187        /*
2188         * then try to empty the right most buffer into the middle
2189         */
2190        if (right) {
2191                u32 right_nr;
2192
2193                btrfs_tree_lock(right);
2194                btrfs_set_lock_blocking(right);
2195
2196                right_nr = btrfs_header_nritems(right);
2197                if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2198                        wret = 1;
2199                } else {
2200                        ret = btrfs_cow_block(trans, root, right,
2201                                              parent, pslot + 1,
2202                                              &right);
2203                        if (ret)
2204                                wret = 1;
2205                        else {
2206                                wret = balance_node_right(trans, root,
2207                                                          right, mid);
2208                        }
2209                }
2210                if (wret < 0)
2211                        ret = wret;
2212                if (wret == 0) {
2213                        struct btrfs_disk_key disk_key;
2214
2215                        btrfs_node_key(right, &disk_key, 0);
2216                        tree_mod_log_set_node_key(root->fs_info, parent,
2217                                                  pslot + 1, 0);
2218                        btrfs_set_node_key(parent, &disk_key, pslot + 1);
2219                        btrfs_mark_buffer_dirty(parent);
2220
2221                        if (btrfs_header_nritems(mid) <= orig_slot) {
2222                                path->nodes[level] = right;
2223                                path->slots[level + 1] += 1;
2224                                path->slots[level] = orig_slot -
2225                                        btrfs_header_nritems(mid);
2226                                btrfs_tree_unlock(mid);
2227                                free_extent_buffer(mid);
2228                        } else {
2229                                btrfs_tree_unlock(right);
2230                                free_extent_buffer(right);
2231                        }
2232                        return 0;
2233                }
2234                btrfs_tree_unlock(right);
2235                free_extent_buffer(right);
2236        }
2237        return 1;
2238}
2239
2240/*
2241 * readahead one full node of leaves, finding things that are close
2242 * to the block in 'slot', and triggering ra on them.
2243 */
2244static void reada_for_search(struct btrfs_root *root,
2245                             struct btrfs_path *path,
2246                             int level, int slot, u64 objectid)
2247{
2248        struct extent_buffer *node;
2249        struct btrfs_disk_key disk_key;
2250        u32 nritems;
2251        u64 search;
2252        u64 target;
2253        u64 nread = 0;
2254        u64 gen;
2255        int direction = path->reada;
2256        struct extent_buffer *eb;
2257        u32 nr;
2258        u32 blocksize;
2259        u32 nscan = 0;
2260
2261        if (level != 1)
2262                return;
2263
2264        if (!path->nodes[level])
2265                return;
2266
2267        node = path->nodes[level];
2268
2269        search = btrfs_node_blockptr(node, slot);
2270        blocksize = btrfs_level_size(root, level - 1);
2271        eb = btrfs_find_tree_block(root, search, blocksize);
2272        if (eb) {
2273                free_extent_buffer(eb);
2274                return;
2275        }
2276
2277        target = search;
2278
2279        nritems = btrfs_header_nritems(node);
2280        nr = slot;
2281
2282        while (1) {
2283                if (direction < 0) {
2284                        if (nr == 0)
2285                                break;
2286                        nr--;
2287                } else if (direction > 0) {
2288                        nr++;
2289                        if (nr >= nritems)
2290                                break;
2291                }
2292                if (path->reada < 0 && objectid) {
2293                        btrfs_node_key(node, &disk_key, nr);
2294                        if (btrfs_disk_key_objectid(&disk_key) != objectid)
2295                                break;
2296                }
2297                search = btrfs_node_blockptr(node, nr);
2298                if ((search <= target && target - search <= 65536) ||
2299                    (search > target && search - target <= 65536)) {
2300                        gen = btrfs_node_ptr_generation(node, nr);
2301                        readahead_tree_block(root, search, blocksize, gen);
2302                        nread += blocksize;
2303                }
2304                nscan++;
2305                if ((nread > 65536 || nscan > 32))
2306                        break;
2307        }
2308}
2309
2310static noinline void reada_for_balance(struct btrfs_root *root,
2311                                       struct btrfs_path *path, int level)
2312{
2313        int slot;
2314        int nritems;
2315        struct extent_buffer *parent;
2316        struct extent_buffer *eb;
2317        u64 gen;
2318        u64 block1 = 0;
2319        u64 block2 = 0;
2320        int blocksize;
2321
2322        parent = path->nodes[level + 1];
2323        if (!parent)
2324                return;
2325
2326        nritems = btrfs_header_nritems(parent);
2327        slot = path->slots[level + 1];
2328        blocksize = btrfs_level_size(root, level);
2329
2330        if (slot > 0) {
2331                block1 = btrfs_node_blockptr(parent, slot - 1);
2332                gen = btrfs_node_ptr_generation(parent, slot - 1);
2333                eb = btrfs_find_tree_block(root, block1, blocksize);
2334                /*
2335                 * if we get -eagain from btrfs_buffer_uptodate, we
2336                 * don't want to return eagain here.  That will loop
2337                 * forever
2338                 */
2339                if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2340                        block1 = 0;
2341                free_extent_buffer(eb);
2342        }
2343        if (slot + 1 < nritems) {
2344                block2 = btrfs_node_blockptr(parent, slot + 1);
2345                gen = btrfs_node_ptr_generation(parent, slot + 1);
2346                eb = btrfs_find_tree_block(root, block2, blocksize);
2347                if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2348                        block2 = 0;
2349                free_extent_buffer(eb);
2350        }
2351
2352        if (block1)
2353                readahead_tree_block(root, block1, blocksize, 0);
2354        if (block2)
2355                readahead_tree_block(root, block2, blocksize, 0);
2356}
2357
2358
2359/*
2360 * when we walk down the tree, it is usually safe to unlock the higher layers
2361 * in the tree.  The exceptions are when our path goes through slot 0, because
2362 * operations on the tree might require changing key pointers higher up in the
2363 * tree.
2364 *
2365 * callers might also have set path->keep_locks, which tells this code to keep
2366 * the lock if the path points to the last slot in the block.  This is part of
2367 * walking through the tree, and selecting the next slot in the higher block.
2368 *
2369 * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2370 * if lowest_unlock is 1, level 0 won't be unlocked
2371 */
2372static noinline void unlock_up(struct btrfs_path *path, int level,
2373                               int lowest_unlock, int min_write_lock_level,
2374                               int *write_lock_level)
2375{
2376        int i;
2377        int skip_level = level;
2378        int no_skips = 0;
2379        struct extent_buffer *t;
2380
2381        for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2382                if (!path->nodes[i])
2383                        break;
2384                if (!path->locks[i])
2385                        break;
2386                if (!no_skips && path->slots[i] == 0) {
2387                        skip_level = i + 1;
2388                        continue;
2389                }
2390                if (!no_skips && path->keep_locks) {
2391                        u32 nritems;
2392                        t = path->nodes[i];
2393                        nritems = btrfs_header_nritems(t);
2394                        if (nritems < 1 || path->slots[i] >= nritems - 1) {
2395                                skip_level = i + 1;
2396                                continue;
2397                        }
2398                }
2399                if (skip_level < i && i >= lowest_unlock)
2400                        no_skips = 1;
2401
2402                t = path->nodes[i];
2403                if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2404                        btrfs_tree_unlock_rw(t, path->locks[i]);
2405                        path->locks[i] = 0;
2406                        if (write_lock_level &&
2407                            i > min_write_lock_level &&
2408                            i <= *write_lock_level) {
2409                                *write_lock_level = i - 1;
2410                        }
2411                }
2412        }
2413}
2414
2415/*
2416 * This releases any locks held in the path starting at level and
2417 * going all the way up to the root.
2418 *
2419 * btrfs_search_slot will keep the lock held on higher nodes in a few
2420 * corner cases, such as COW of the block at slot zero in the node.  This
2421 * ignores those rules, and it should only be called when there are no
2422 * more updates to be done higher up in the tree.
2423 */
2424noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2425{
2426        int i;
2427
2428        if (path->keep_locks)
2429                return;
2430
2431        for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2432                if (!path->nodes[i])
2433                        continue;
2434                if (!path->locks[i])
2435                        continue;
2436                btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2437                path->locks[i] = 0;
2438        }
2439}
2440
2441/*
2442 * helper function for btrfs_search_slot.  The goal is to find a block
2443 * in cache without setting the path to blocking.  If we find the block
2444 * we return zero and the path is unchanged.
2445 *
2446 * If we can't find the block, we set the path blocking and do some
2447 * reada.  -EAGAIN is returned and the search must be repeated.
2448 */
2449static int
2450read_block_for_search(struct btrfs_trans_handle *trans,
2451                       struct btrfs_root *root, struct btrfs_path *p,
2452                       struct extent_buffer **eb_ret, int level, int slot,
2453                       struct btrfs_key *key, u64 time_seq)
2454{
2455        u64 blocknr;
2456        u64 gen;
2457        u32 blocksize;
2458        struct extent_buffer *b = *eb_ret;
2459        struct extent_buffer *tmp;
2460        int ret;
2461
2462        blocknr = btrfs_node_blockptr(b, slot);
2463        gen = btrfs_node_ptr_generation(b, slot);
2464        blocksize = btrfs_level_size(root, level - 1);
2465
2466        tmp = btrfs_find_tree_block(root, blocknr, blocksize);
2467        if (tmp) {
2468                /* first we do an atomic uptodate check */
2469                if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2470                        *eb_ret = tmp;
2471                        return 0;
2472                }
2473
2474                /* the pages were up to date, but we failed
2475                 * the generation number check.  Do a full
2476                 * read for the generation number that is correct.
2477                 * We must do this without dropping locks so
2478                 * we can trust our generation number
2479                 */
2480                btrfs_set_path_blocking(p);
2481
2482                /* now we're allowed to do a blocking uptodate check */
2483                ret = btrfs_read_buffer(tmp, gen);
2484                if (!ret) {
2485                        *eb_ret = tmp;
2486                        return 0;
2487                }
2488                free_extent_buffer(tmp);
2489                btrfs_release_path(p);
2490                return -EIO;
2491        }
2492
2493        /*
2494         * reduce lock contention at high levels
2495         * of the btree by dropping locks before
2496         * we read.  Don't release the lock on the current
2497         * level because we need to walk this node to figure
2498         * out which blocks to read.
2499         */
2500        btrfs_unlock_up_safe(p, level + 1);
2501        btrfs_set_path_blocking(p);
2502
2503        free_extent_buffer(tmp);
2504        if (p->reada)
2505                reada_for_search(root, p, level, slot, key->objectid);
2506
2507        btrfs_release_path(p);
2508
2509        ret = -EAGAIN;
2510        tmp = read_tree_block(root, blocknr, blocksize, 0);
2511        if (tmp) {
2512                /*
2513                 * If the read above didn't mark this buffer up to date,
2514                 * it will never end up being up to date.  Set ret to EIO now
2515                 * and give up so that our caller doesn't loop forever
2516                 * on our EAGAINs.
2517                 */
2518                if (!btrfs_buffer_uptodate(tmp, 0, 0))
2519                        ret = -EIO;
2520                free_extent_buffer(tmp);
2521        }
2522        return ret;
2523}
2524
2525/*
2526 * helper function for btrfs_search_slot.  This does all of the checks
2527 * for node-level blocks and does any balancing required based on
2528 * the ins_len.
2529 *
2530 * If no extra work was required, zero is returned.  If we had to
2531 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2532 * start over
2533 */
2534static int
2535setup_nodes_for_search(struct btrfs_trans_handle *trans,
2536                       struct btrfs_root *root, struct btrfs_path *p,
2537                       struct extent_buffer *b, int level, int ins_len,
2538                       int *write_lock_level)
2539{
2540        int ret;
2541        if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2542            BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2543                int sret;
2544
2545                if (*write_lock_level < level + 1) {
2546                        *write_lock_level = level + 1;
2547                        btrfs_release_path(p);
2548                        goto again;
2549                }
2550
2551                btrfs_set_path_blocking(p);
2552                reada_for_balance(root, p, level);
2553                sret = split_node(trans, root, p, level);
2554                btrfs_clear_path_blocking(p, NULL, 0);
2555
2556                BUG_ON(sret > 0);
2557                if (sret) {
2558                        ret = sret;
2559                        goto done;
2560                }
2561                b = p->nodes[level];
2562        } else if (ins_len < 0 && btrfs_header_nritems(b) <
2563                   BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
2564                int sret;
2565
2566                if (*write_lock_level < level + 1) {
2567                        *write_lock_level = level + 1;
2568                        btrfs_release_path(p);
2569                        goto again;
2570                }
2571
2572                btrfs_set_path_blocking(p);
2573                reada_for_balance(root, p, level);
2574                sret = balance_level(trans, root, p, level);
2575                btrfs_clear_path_blocking(p, NULL, 0);
2576
2577                if (sret) {
2578                        ret = sret;
2579                        goto done;
2580                }
2581                b = p->nodes[level];
2582                if (!b) {
2583                        btrfs_release_path(p);
2584                        goto again;
2585                }
2586                BUG_ON(btrfs_header_nritems(b) == 1);
2587        }
2588        return 0;
2589
2590again:
2591        ret = -EAGAIN;
2592done:
2593        return ret;
2594}
2595
2596static void key_search_validate(struct extent_buffer *b,
2597                                struct btrfs_key *key,
2598                                int level)
2599{
2600#ifdef CONFIG_BTRFS_ASSERT
2601        struct btrfs_disk_key disk_key;
2602
2603        btrfs_cpu_key_to_disk(&disk_key, key);
2604
2605        if (level == 0)
2606                ASSERT(!memcmp_extent_buffer(b, &disk_key,
2607                    offsetof(struct btrfs_leaf, items[0].key),
2608                    sizeof(disk_key)));
2609        else
2610                ASSERT(!memcmp_extent_buffer(b, &disk_key,
2611                    offsetof(struct btrfs_node, ptrs[0].key),
2612                    sizeof(disk_key)));
2613#endif
2614}
2615
2616static int key_search(struct extent_buffer *b, struct btrfs_key *key,
2617                      int level, int *prev_cmp, int *slot)
2618{
2619        if (*prev_cmp != 0) {
2620                *prev_cmp = bin_search(b, key, level, slot);
2621                return *prev_cmp;
2622        }
2623
2624        key_search_validate(b, key, level);
2625        *slot = 0;
2626
2627        return 0;
2628}
2629
2630int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *found_path,
2631                u64 iobjectid, u64 ioff, u8 key_type,
2632                struct btrfs_key *found_key)
2633{
2634        int ret;
2635        struct btrfs_key key;
2636        struct extent_buffer *eb;
2637        struct btrfs_path *path;
2638
2639        key.type = key_type;
2640        key.objectid = iobjectid;
2641        key.offset = ioff;
2642
2643        if (found_path == NULL) {
2644                path = btrfs_alloc_path();
2645                if (!path)
2646                        return -ENOMEM;
2647        } else
2648                path = found_path;
2649
2650        ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2651        if ((ret < 0) || (found_key == NULL)) {
2652                if (path != found_path)
2653                        btrfs_free_path(path);
2654                return ret;
2655        }
2656
2657        eb = path->nodes[0];
2658        if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2659                ret = btrfs_next_leaf(fs_root, path);
2660                if (ret)
2661                        return ret;
2662                eb = path->nodes[0];
2663        }
2664
2665        btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2666        if (found_key->type != key.type ||
2667                        found_key->objectid != key.objectid)
2668                return 1;
2669
2670        return 0;
2671}
2672
2673/*
2674 * look for key in the tree.  path is filled in with nodes along the way
2675 * if key is found, we return zero and you can find the item in the leaf
2676 * level of the path (level 0)
2677 *
2678 * If the key isn't found, the path points to the slot where it should
2679 * be inserted, and 1 is returned.  If there are other errors during the
2680 * search a negative error number is returned.
2681 *
2682 * if ins_len > 0, nodes and leaves will be split as we walk down the
2683 * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
2684 * possible)
2685 */
2686int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2687                      *root, struct btrfs_key *key, struct btrfs_path *p, int
2688                      ins_len, int cow)
2689{
2690        struct extent_buffer *b;
2691        int slot;
2692        int ret;
2693        int err;
2694        int level;
2695        int lowest_unlock = 1;
2696        int root_lock;
2697        /* everything at write_lock_level or lower must be write locked */
2698        int write_lock_level = 0;
2699        u8 lowest_level = 0;
2700        int min_write_lock_level;
2701        int prev_cmp;
2702
2703        lowest_level = p->lowest_level;
2704        WARN_ON(lowest_level && ins_len > 0);
2705        WARN_ON(p->nodes[0] != NULL);
2706        BUG_ON(!cow && ins_len);
2707
2708        if (ins_len < 0) {
2709                lowest_unlock = 2;
2710
2711                /* when we are removing items, we might have to go up to level
2712                 * two as we update tree pointers  Make sure we keep write
2713                 * for those levels as well
2714                 */
2715                write_lock_level = 2;
2716        } else if (ins_len > 0) {
2717                /*
2718                 * for inserting items, make sure we have a write lock on
2719                 * level 1 so we can update keys
2720                 */
2721                write_lock_level = 1;
2722        }
2723
2724        if (!cow)
2725                write_lock_level = -1;
2726
2727        if (cow && (p->keep_locks || p->lowest_level))
2728                write_lock_level = BTRFS_MAX_LEVEL;
2729
2730        min_write_lock_level = write_lock_level;
2731
2732again:
2733        prev_cmp = -1;
2734        /*
2735         * we try very hard to do read locks on the root
2736         */
2737        root_lock = BTRFS_READ_LOCK;
2738        level = 0;
2739        if (p->search_commit_root) {
2740                /*
2741                 * the commit roots are read only
2742                 * so we always do read locks
2743                 */
2744                if (p->need_commit_sem)
2745                        down_read(&root->fs_info->commit_root_sem);
2746                b = root->commit_root;
2747                extent_buffer_get(b);
2748                level = btrfs_header_level(b);
2749                if (p->need_commit_sem)
2750                        up_read(&root->fs_info->commit_root_sem);
2751                if (!p->skip_locking)
2752                        btrfs_tree_read_lock(b);
2753        } else {
2754                if (p->skip_locking) {
2755                        b = btrfs_root_node(root);
2756                        level = btrfs_header_level(b);
2757                } else {
2758                        /* we don't know the level of the root node
2759                         * until we actually have it read locked
2760                         */
2761                        b = btrfs_read_lock_root_node(root);
2762                        level = btrfs_header_level(b);
2763                        if (level <= write_lock_level) {
2764                                /* whoops, must trade for write lock */
2765                                btrfs_tree_read_unlock(b);
2766                                free_extent_buffer(b);
2767                                b = btrfs_lock_root_node(root);
2768                                root_lock = BTRFS_WRITE_LOCK;
2769
2770                                /* the level might have changed, check again */
2771                                level = btrfs_header_level(b);
2772                        }
2773                }
2774        }
2775        p->nodes[level] = b;
2776        if (!p->skip_locking)
2777                p->locks[level] = root_lock;
2778
2779        while (b) {
2780                level = btrfs_header_level(b);
2781
2782                /*
2783                 * setup the path here so we can release it under lock
2784                 * contention with the cow code
2785                 */
2786                if (cow) {
2787                        /*
2788                         * if we don't really need to cow this block
2789                         * then we don't want to set the path blocking,
2790                         * so we test it here
2791                         */
2792                        if (!should_cow_block(trans, root, b))
2793                                goto cow_done;
2794
2795                        btrfs_set_path_blocking(p);
2796
2797                        /*
2798                         * must have write locks on this node and the
2799                         * parent
2800                         */
2801                        if (level > write_lock_level ||
2802                            (level + 1 > write_lock_level &&
2803                            level + 1 < BTRFS_MAX_LEVEL &&
2804                            p->nodes[level + 1])) {
2805                                write_lock_level = level + 1;
2806                                btrfs_release_path(p);
2807                                goto again;
2808                        }
2809
2810                        err = btrfs_cow_block(trans, root, b,
2811                                              p->nodes[level + 1],
2812                                              p->slots[level + 1], &b);
2813                        if (err) {
2814                                ret = err;
2815                                goto done;
2816                        }
2817                }
2818cow_done:
2819                p->nodes[level] = b;
2820                btrfs_clear_path_blocking(p, NULL, 0);
2821
2822                /*
2823                 * we have a lock on b and as long as we aren't changing
2824                 * the tree, there is no way to for the items in b to change.
2825                 * It is safe to drop the lock on our parent before we
2826                 * go through the expensive btree search on b.
2827                 *
2828                 * If we're inserting or deleting (ins_len != 0), then we might
2829                 * be changing slot zero, which may require changing the parent.
2830                 * So, we can't drop the lock until after we know which slot
2831                 * we're operating on.
2832                 */
2833                if (!ins_len && !p->keep_locks) {
2834                        int u = level + 1;
2835
2836                        if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2837                                btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2838                                p->locks[u] = 0;
2839                        }
2840                }
2841
2842                ret = key_search(b, key, level, &prev_cmp, &slot);
2843
2844                if (level != 0) {
2845                        int dec = 0;
2846                        if (ret && slot > 0) {
2847                                dec = 1;
2848                                slot -= 1;
2849                        }
2850                        p->slots[level] = slot;
2851                        err = setup_nodes_for_search(trans, root, p, b, level,
2852                                             ins_len, &write_lock_level);
2853                        if (err == -EAGAIN)
2854                                goto again;
2855                        if (err) {
2856                                ret = err;
2857                                goto done;
2858                        }
2859                        b = p->nodes[level];
2860                        slot = p->slots[level];
2861
2862                        /*
2863                         * slot 0 is special, if we change the key
2864                         * we have to update the parent pointer
2865                         * which means we must have a write lock
2866                         * on the parent
2867                         */
2868                        if (slot == 0 && ins_len &&
2869                            write_lock_level < level + 1) {
2870                                write_lock_level = level + 1;
2871                                btrfs_release_path(p);
2872                                goto again;
2873                        }
2874
2875                        unlock_up(p, level, lowest_unlock,
2876                                  min_write_lock_level, &write_lock_level);
2877
2878                        if (level == lowest_level) {
2879                                if (dec)
2880                                        p->slots[level]++;
2881                                goto done;
2882                        }
2883
2884                        err = read_block_for_search(trans, root, p,
2885                                                    &b, level, slot, key, 0);
2886                        if (err == -EAGAIN)
2887                                goto again;
2888                        if (err) {
2889                                ret = err;
2890                                goto done;
2891                        }
2892
2893                        if (!p->skip_locking) {
2894                                level = btrfs_header_level(b);
2895                                if (level <= write_lock_level) {
2896                                        err = btrfs_try_tree_write_lock(b);
2897                                        if (!err) {
2898                                                btrfs_set_path_blocking(p);
2899                                                btrfs_tree_lock(b);
2900                                                btrfs_clear_path_blocking(p, b,
2901                                                                  BTRFS_WRITE_LOCK);
2902                                        }
2903                                        p->locks[level] = BTRFS_WRITE_LOCK;
2904                                } else {
2905                                        err = btrfs_try_tree_read_lock(b);
2906                                        if (!err) {
2907                                                btrfs_set_path_blocking(p);
2908                                                btrfs_tree_read_lock(b);
2909                                                btrfs_clear_path_blocking(p, b,
2910                                                                  BTRFS_READ_LOCK);
2911                                        }
2912                                        p->locks[level] = BTRFS_READ_LOCK;
2913                                }
2914                                p->nodes[level] = b;
2915                        }
2916                } else {
2917                        p->slots[level] = slot;
2918                        if (ins_len > 0 &&
2919                            btrfs_leaf_free_space(root, b) < ins_len) {
2920                                if (write_lock_level < 1) {
2921                                        write_lock_level = 1;
2922                                        btrfs_release_path(p);
2923                                        goto again;
2924                                }
2925
2926                                btrfs_set_path_blocking(p);
2927                                err = split_leaf(trans, root, key,
2928                                                 p, ins_len, ret == 0);
2929                                btrfs_clear_path_blocking(p, NULL, 0);
2930
2931                                BUG_ON(err > 0);
2932                                if (err) {
2933                                        ret = err;
2934                                        goto done;
2935                                }
2936                        }
2937                        if (!p->search_for_split)
2938                                unlock_up(p, level, lowest_unlock,
2939                                          min_write_lock_level, &write_lock_level);
2940                        goto done;
2941                }
2942        }
2943        ret = 1;
2944done:
2945        /*
2946         * we don't really know what they plan on doing with the path
2947         * from here on, so for now just mark it as blocking
2948         */
2949        if (!p->leave_spinning)
2950                btrfs_set_path_blocking(p);
2951        if (ret < 0)
2952                btrfs_release_path(p);
2953        return ret;
2954}
2955
2956/*
2957 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2958 * current state of the tree together with the operations recorded in the tree
2959 * modification log to search for the key in a previous version of this tree, as
2960 * denoted by the time_seq parameter.
2961 *
2962 * Naturally, there is no support for insert, delete or cow operations.
2963 *
2964 * The resulting path and return value will be set up as if we called
2965 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2966 */
2967int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2968                          struct btrfs_path *p, u64 time_seq)
2969{
2970        struct extent_buffer *b;
2971        int slot;
2972        int ret;
2973        int err;
2974        int level;
2975        int lowest_unlock = 1;
2976        u8 lowest_level = 0;
2977        int prev_cmp = -1;
2978
2979        lowest_level = p->lowest_level;
2980        WARN_ON(p->nodes[0] != NULL);
2981
2982        if (p->search_commit_root) {
2983                BUG_ON(time_seq);
2984                return btrfs_search_slot(NULL, root, key, p, 0, 0);
2985        }
2986
2987again:
2988        b = get_old_root(root, time_seq);
2989        level = btrfs_header_level(b);
2990        p->locks[level] = BTRFS_READ_LOCK;
2991
2992        while (b) {
2993                level = btrfs_header_level(b);
2994                p->nodes[level] = b;
2995                btrfs_clear_path_blocking(p, NULL, 0);
2996
2997                /*
2998                 * we have a lock on b and as long as we aren't changing
2999                 * the tree, there is no way to for the items in b to change.
3000                 * It is safe to drop the lock on our parent before we
3001                 * go through the expensive btree search on b.
3002                 */
3003                btrfs_unlock_up_safe(p, level + 1);
3004
3005                /*
3006                 * Since we can unwind eb's we want to do a real search every
3007                 * time.
3008                 */
3009                prev_cmp = -1;
3010                ret = key_search(b, key, level, &prev_cmp, &slot);
3011
3012                if (level != 0) {
3013                        int dec = 0;
3014                        if (ret && slot > 0) {
3015                                dec = 1;
3016                                slot -= 1;
3017                        }
3018                        p->slots[level] = slot;
3019                        unlock_up(p, level, lowest_unlock, 0, NULL);
3020
3021                        if (level == lowest_level) {
3022                                if (dec)
3023                                        p->slots[level]++;
3024                                goto done;
3025                        }
3026
3027                        err = read_block_for_search(NULL, root, p, &b, level,
3028                                                    slot, key, time_seq);
3029                        if (err == -EAGAIN)
3030                                goto again;
3031                        if (err) {
3032                                ret = err;
3033                                goto done;
3034                        }
3035
3036                        level = btrfs_header_level(b);
3037                        err = btrfs_try_tree_read_lock(b);
3038                        if (!err) {
3039                                btrfs_set_path_blocking(p);
3040                                btrfs_tree_read_lock(b);
3041                                btrfs_clear_path_blocking(p, b,
3042                                                          BTRFS_READ_LOCK);
3043                        }
3044                        b = tree_mod_log_rewind(root->fs_info, p, b, time_seq);
3045                        if (!b) {
3046                                ret = -ENOMEM;
3047                                goto done;
3048                        }
3049                        p->locks[level] = BTRFS_READ_LOCK;
3050                        p->nodes[level] = b;
3051                } else {
3052                        p->slots[level] = slot;
3053                        unlock_up(p, level, lowest_unlock, 0, NULL);
3054                        goto done;
3055                }
3056        }
3057        ret = 1;
3058done:
3059        if (!p->leave_spinning)
3060                btrfs_set_path_blocking(p);
3061        if (ret < 0)
3062                btrfs_release_path(p);
3063
3064        return ret;
3065}
3066
3067/*
3068 * helper to use instead of search slot if no exact match is needed but
3069 * instead the next or previous item should be returned.
3070 * When find_higher is true, the next higher item is returned, the next lower
3071 * otherwise.
3072 * When return_any and find_higher are both true, and no higher item is found,
3073 * return the next lower instead.
3074 * When return_any is true and find_higher is false, and no lower item is found,
3075 * return the next higher instead.
3076 * It returns 0 if any item is found, 1 if none is found (tree empty), and
3077 * < 0 on error
3078 */
3079int btrfs_search_slot_for_read(struct btrfs_root *root,
3080                               struct btrfs_key *key, struct btrfs_path *p,
3081                               int find_higher, int return_any)
3082{
3083        int ret;
3084        struct extent_buffer *leaf;
3085
3086again:
3087        ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3088        if (ret <= 0)
3089                return ret;
3090        /*
3091         * a return value of 1 means the path is at the position where the
3092         * item should be inserted. Normally this is the next bigger item,
3093         * but in case the previous item is the last in a leaf, path points
3094         * to the first free slot in the previous leaf, i.e. at an invalid
3095         * item.
3096         */
3097        leaf = p->nodes[0];
3098
3099        if (find_higher) {
3100                if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3101                        ret = btrfs_next_leaf(root, p);
3102                        if (ret <= 0)
3103                                return ret;
3104                        if (!return_any)
3105                                return 1;
3106                        /*
3107                         * no higher item found, return the next
3108                         * lower instead
3109                         */
3110                        return_any = 0;
3111                        find_higher = 0;
3112                        btrfs_release_path(p);
3113                        goto again;
3114                }
3115        } else {
3116                if (p->slots[0] == 0) {
3117                        ret = btrfs_prev_leaf(root, p);
3118                        if (ret < 0)
3119                                return ret;
3120                        if (!ret) {
3121                                leaf = p->nodes[0];
3122                                if (p->slots[0] == btrfs_header_nritems(leaf))
3123                                        p->slots[0]--;
3124                                return 0;
3125                        }
3126                        if (!return_any)
3127                                return 1;
3128                        /*
3129                         * no lower item found, return the next
3130                         * higher instead
3131                         */
3132                        return_any = 0;
3133                        find_higher = 1;
3134                        btrfs_release_path(p);
3135                        goto again;
3136                } else {
3137                        --p->slots[0];
3138                }
3139        }
3140        return 0;
3141}
3142
3143/*
3144 * adjust the pointers going up the tree, starting at level
3145 * making sure the right key of each node is points to 'key'.
3146 * This is used after shifting pointers to the left, so it stops
3147 * fixing up pointers when a given leaf/node is not in slot 0 of the
3148 * higher levels
3149 *
3150 */
3151static void fixup_low_keys(struct btrfs_root *root, struct btrfs_path *path,
3152                           struct btrfs_disk_key *key, int level)
3153{
3154        int i;
3155        struct extent_buffer *t;
3156
3157        for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3158                int tslot = path->slots[i];
3159                if (!path->nodes[i])
3160                        break;
3161                t = path->nodes[i];
3162                tree_mod_log_set_node_key(root->fs_info, t, tslot, 1);
3163                btrfs_set_node_key(t, key, tslot);
3164                btrfs_mark_buffer_dirty(path->nodes[i]);
3165                if (tslot != 0)
3166                        break;
3167        }
3168}
3169
3170/*
3171 * update item key.
3172 *
3173 * This function isn't completely safe. It's the caller's responsibility
3174 * that the new key won't break the order
3175 */
3176void btrfs_set_item_key_safe(struct btrfs_root *root, struct btrfs_path *path,
3177                             struct btrfs_key *new_key)
3178{
3179        struct btrfs_disk_key disk_key;
3180        struct extent_buffer *eb;
3181        int slot;
3182
3183        eb = path->nodes[0];
3184        slot = path->slots[0];
3185        if (slot > 0) {
3186                btrfs_item_key(eb, &disk_key, slot - 1);
3187                BUG_ON(comp_keys(&disk_key, new_key) >= 0);
3188        }
3189        if (slot < btrfs_header_nritems(eb) - 1) {
3190                btrfs_item_key(eb, &disk_key, slot + 1);
3191                BUG_ON(comp_keys(&disk_key, new_key) <= 0);
3192        }
3193
3194        btrfs_cpu_key_to_disk(&disk_key, new_key);
3195        btrfs_set_item_key(eb, &disk_key, slot);
3196        btrfs_mark_buffer_dirty(eb);
3197        if (slot == 0)
3198                fixup_low_keys(root, path, &disk_key, 1);
3199}
3200
3201/*
3202 * try to push data from one node into the next node left in the
3203 * tree.
3204 *
3205 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3206 * error, and > 0 if there was no room in the left hand block.
3207 */
3208static int push_node_left(struct btrfs_trans_handle *trans,
3209                          struct btrfs_root *root, struct extent_buffer *dst,
3210                          struct extent_buffer *src, int empty)
3211{
3212        int push_items = 0;
3213        int src_nritems;
3214        int dst_nritems;
3215        int ret = 0;
3216
3217        src_nritems = btrfs_header_nritems(src);
3218        dst_nritems = btrfs_header_nritems(dst);
3219        push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3220        WARN_ON(btrfs_header_generation(src) != trans->transid);
3221        WARN_ON(btrfs_header_generation(dst) != trans->transid);
3222
3223        if (!empty && src_nritems <= 8)
3224                return 1;
3225
3226        if (push_items <= 0)
3227                return 1;
3228
3229        if (empty) {
3230                push_items = min(src_nritems, push_items);
3231                if (push_items < src_nritems) {
3232                        /* leave at least 8 pointers in the node if
3233                         * we aren't going to empty it
3234                         */
3235                        if (src_nritems - push_items < 8) {
3236                                if (push_items <= 8)
3237                                        return 1;
3238                                push_items -= 8;
3239                        }
3240                }
3241        } else
3242                push_items = min(src_nritems - 8, push_items);
3243
3244        ret = tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
3245                                   push_items);
3246        if (ret) {
3247                btrfs_abort_transaction(trans, root, ret);
3248                return ret;
3249        }
3250        copy_extent_buffer(dst, src,
3251                           btrfs_node_key_ptr_offset(dst_nritems),
3252                           btrfs_node_key_ptr_offset(0),
3253                           push_items * sizeof(struct btrfs_key_ptr));
3254
3255        if (push_items < src_nritems) {
3256                /*
3257                 * don't call tree_mod_log_eb_move here, key removal was already
3258                 * fully logged by tree_mod_log_eb_copy above.
3259                 */
3260                memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3261                                      btrfs_node_key_ptr_offset(push_items),
3262                                      (src_nritems - push_items) *
3263                                      sizeof(struct btrfs_key_ptr));
3264        }
3265        btrfs_set_header_nritems(src, src_nritems - push_items);
3266        btrfs_set_header_nritems(dst, dst_nritems + push_items);
3267        btrfs_mark_buffer_dirty(src);
3268        btrfs_mark_buffer_dirty(dst);
3269
3270        return ret;
3271}
3272
3273/*
3274 * try to push data from one node into the next node right in the
3275 * tree.
3276 *
3277 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3278 * error, and > 0 if there was no room in the right hand block.
3279 *
3280 * this will  only push up to 1/2 the contents of the left node over
3281 */
3282static int balance_node_right(struct btrfs_trans_handle *trans,
3283                              struct btrfs_root *root,
3284                              struct extent_buffer *dst,
3285                              struct extent_buffer *src)
3286{
3287        int push_items = 0;
3288        int max_push;
3289        int src_nritems;
3290        int dst_nritems;
3291        int ret = 0;
3292
3293        WARN_ON(btrfs_header_generation(src) != trans->transid);
3294        WARN_ON(btrfs_header_generation(dst) != trans->transid);
3295
3296        src_nritems = btrfs_header_nritems(src);
3297        dst_nritems = btrfs_header_nritems(dst);
3298        push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3299        if (push_items <= 0)
3300                return 1;
3301
3302        if (src_nritems < 4)
3303                return 1;
3304
3305        max_push = src_nritems / 2 + 1;
3306        /* don't try to empty the node */
3307        if (max_push >= src_nritems)
3308                return 1;
3309
3310        if (max_push < push_items)
3311                push_items = max_push;
3312
3313        tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
3314        memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3315                                      btrfs_node_key_ptr_offset(0),
3316                                      (dst_nritems) *
3317                                      sizeof(struct btrfs_key_ptr));
3318
3319        ret = tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
3320                                   src_nritems - push_items, push_items);
3321        if (ret) {
3322                btrfs_abort_transaction(trans, root, ret);
3323                return ret;
3324        }
3325        copy_extent_buffer(dst, src,
3326                           btrfs_node_key_ptr_offset(0),
3327                           btrfs_node_key_ptr_offset(src_nritems - push_items),
3328                           push_items * sizeof(struct btrfs_key_ptr));
3329
3330        btrfs_set_header_nritems(src, src_nritems - push_items);
3331        btrfs_set_header_nritems(dst, dst_nritems + push_items);
3332
3333        btrfs_mark_buffer_dirty(src);
3334        btrfs_mark_buffer_dirty(dst);
3335
3336        return ret;
3337}
3338
3339/*
3340 * helper function to insert a new root level in the tree.
3341 * A new node is allocated, and a single item is inserted to
3342 * point to the existing root
3343 *
3344 * returns zero on success or < 0 on failure.
3345 */
3346static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3347                           struct btrfs_root *root,
3348                           struct btrfs_path *path, int level)
3349{
3350        u64 lower_gen;
3351        struct extent_buffer *lower;
3352        struct extent_buffer *c;
3353        struct extent_buffer *old;
3354        struct btrfs_disk_key lower_key;
3355
3356        BUG_ON(path->nodes[level]);
3357        BUG_ON(path->nodes[level-1] != root->node);
3358
3359        lower = path->nodes[level-1];
3360        if (level == 1)
3361                btrfs_item_key(lower, &lower_key, 0);
3362        else
3363                btrfs_node_key(lower, &lower_key, 0);
3364
3365        c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3366                                   root->root_key.objectid, &lower_key,
3367                                   level, root->node->start, 0);
3368        if (IS_ERR(c))
3369                return PTR_ERR(c);
3370
3371        root_add_used(root, root->nodesize);
3372
3373        memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
3374        btrfs_set_header_nritems(c, 1);
3375        btrfs_set_header_level(c, level);
3376        btrfs_set_header_bytenr(c, c->start);
3377        btrfs_set_header_generation(c, trans->transid);
3378        btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3379        btrfs_set_header_owner(c, root->root_key.objectid);
3380
3381        write_extent_buffer(c, root->fs_info->fsid, btrfs_header_fsid(),
3382                            BTRFS_FSID_SIZE);
3383
3384        write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
3385                            btrfs_header_chunk_tree_uuid(c), BTRFS_UUID_SIZE);
3386
3387        btrfs_set_node_key(c, &lower_key, 0);
3388        btrfs_set_node_blockptr(c, 0, lower->start);
3389        lower_gen = btrfs_header_generation(lower);
3390        WARN_ON(lower_gen != trans->transid);
3391
3392        btrfs_set_node_ptr_generation(c, 0, lower_gen);
3393
3394        btrfs_mark_buffer_dirty(c);
3395
3396        old = root->node;
3397        tree_mod_log_set_root_pointer(root, c, 0);
3398        rcu_assign_pointer(root->node, c);
3399
3400        /* the super has an extra ref to root->node */
3401        free_extent_buffer(old);
3402
3403        add_root_to_dirty_list(root);
3404        extent_buffer_get(c);
3405        path->nodes[level] = c;
3406        path->locks[level] = BTRFS_WRITE_LOCK;
3407        path->slots[level] = 0;
3408        return 0;
3409}
3410
3411/*
3412 * worker function to insert a single pointer in a node.
3413 * the node should have enough room for the pointer already
3414 *
3415 * slot and level indicate where you want the key to go, and
3416 * blocknr is the block the key points to.
3417 */
3418static void insert_ptr(struct btrfs_trans_handle *trans,
3419                       struct btrfs_root *root, struct btrfs_path *path,
3420                       struct btrfs_disk_key *key, u64 bytenr,
3421                       int slot, int level)
3422{
3423        struct extent_buffer *lower;
3424        int nritems;
3425        int ret;
3426
3427        BUG_ON(!path->nodes[level]);
3428        btrfs_assert_tree_locked(path->nodes[level]);
3429        lower = path->nodes[level];
3430        nritems = btrfs_header_nritems(lower);
3431        BUG_ON(slot > nritems);
3432        BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
3433        if (slot != nritems) {
3434                if (level)
3435                        tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3436                                             slot, nritems - slot);
3437                memmove_extent_buffer(lower,
3438                              btrfs_node_key_ptr_offset(slot + 1),
3439                              btrfs_node_key_ptr_offset(slot),
3440                              (nritems - slot) * sizeof(struct btrfs_key_ptr));
3441        }
3442        if (level) {
3443                ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3444                                              MOD_LOG_KEY_ADD, GFP_NOFS);
3445                BUG_ON(ret < 0);
3446        }
3447        btrfs_set_node_key(lower, key, slot);
3448        btrfs_set_node_blockptr(lower, slot, bytenr);
3449        WARN_ON(trans->transid == 0);
3450        btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3451        btrfs_set_header_nritems(lower, nritems + 1);
3452        btrfs_mark_buffer_dirty(lower);
3453}
3454
3455/*
3456 * split the node at the specified level in path in two.
3457 * The path is corrected to point to the appropriate node after the split
3458 *
3459 * Before splitting this tries to make some room in the node by pushing
3460 * left and right, if either one works, it returns right away.
3461 *
3462 * returns 0 on success and < 0 on failure
3463 */
3464static noinline int split_node(struct btrfs_trans_handle *trans,
3465                               struct btrfs_root *root,
3466                               struct btrfs_path *path, int level)
3467{
3468        struct extent_buffer *c;
3469        struct extent_buffer *split;
3470        struct btrfs_disk_key disk_key;
3471        int mid;
3472        int ret;
3473        u32 c_nritems;
3474
3475        c = path->nodes[level];
3476        WARN_ON(btrfs_header_generation(c) != trans->transid);
3477        if (c == root->node) {
3478                /*
3479                 * trying to split the root, lets make a new one
3480                 *
3481                 * tree mod log: We don't log_removal old root in
3482                 * insert_new_root, because that root buffer will be kept as a
3483                 * normal node. We are going to log removal of half of the
3484                 * elements below with tree_mod_log_eb_copy. We're holding a
3485                 * tree lock on the buffer, which is why we cannot race with
3486                 * other tree_mod_log users.
3487                 */
3488                ret = insert_new_root(trans, root, path, level + 1);
3489                if (ret)
3490                        return ret;
3491        } else {
3492                ret = push_nodes_for_insert(trans, root, path, level);
3493                c = path->nodes[level];
3494                if (!ret && btrfs_header_nritems(c) <
3495                    BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
3496                        return 0;
3497                if (ret < 0)
3498                        return ret;
3499        }
3500
3501        c_nritems = btrfs_header_nritems(c);
3502        mid = (c_nritems + 1) / 2;
3503        btrfs_node_key(c, &disk_key, mid);
3504
3505        split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3506                                        root->root_key.objectid,
3507                                        &disk_key, level, c->start, 0);
3508        if (IS_ERR(split))
3509                return PTR_ERR(split);
3510
3511        root_add_used(root, root->nodesize);
3512
3513        memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
3514        btrfs_set_header_level(split, btrfs_header_level(c));
3515        btrfs_set_header_bytenr(split, split->start);
3516        btrfs_set_header_generation(split, trans->transid);
3517        btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3518        btrfs_set_header_owner(split, root->root_key.objectid);
3519        write_extent_buffer(split, root->fs_info->fsid,
3520                            btrfs_header_fsid(), BTRFS_FSID_SIZE);
3521        write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3522                            btrfs_header_chunk_tree_uuid(split),
3523                            BTRFS_UUID_SIZE);
3524
3525        ret = tree_mod_log_eb_copy(root->fs_info, split, c, 0,
3526                                   mid, c_nritems - mid);
3527        if (ret) {
3528                btrfs_abort_transaction(trans, root, ret);
3529                return ret;
3530        }
3531        copy_extent_buffer(split, c,
3532                           btrfs_node_key_ptr_offset(0),
3533                           btrfs_node_key_ptr_offset(mid),
3534                           (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3535        btrfs_set_header_nritems(split, c_nritems - mid);
3536        btrfs_set_header_nritems(c, mid);
3537        ret = 0;
3538
3539        btrfs_mark_buffer_dirty(c);
3540        btrfs_mark_buffer_dirty(split);
3541
3542        insert_ptr(trans, root, path, &disk_key, split->start,
3543                   path->slots[level + 1] + 1, level + 1);
3544
3545        if (path->slots[level] >= mid) {
3546                path->slots[level] -= mid;
3547                btrfs_tree_unlock(c);
3548                free_extent_buffer(c);
3549                path->nodes[level] = split;
3550                path->slots[level + 1] += 1;
3551        } else {
3552                btrfs_tree_unlock(split);
3553                free_extent_buffer(split);
3554        }
3555        return ret;
3556}
3557
3558/*
3559 * how many bytes are required to store the items in a leaf.  start
3560 * and nr indicate which items in the leaf to check.  This totals up the
3561 * space used both by the item structs and the item data
3562 */
3563static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3564{
3565        struct btrfs_item *start_item;
3566        struct btrfs_item *end_item;
3567        struct btrfs_map_token token;
3568        int data_len;
3569        int nritems = btrfs_header_nritems(l);
3570        int end = min(nritems, start + nr) - 1;
3571
3572        if (!nr)
3573                return 0;
3574        btrfs_init_map_token(&token);
3575        start_item = btrfs_item_nr(start);
3576        end_item = btrfs_item_nr(end);
3577        data_len = btrfs_token_item_offset(l, start_item, &token) +
3578                btrfs_token_item_size(l, start_item, &token);
3579        data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3580        data_len += sizeof(struct btrfs_item) * nr;
3581        WARN_ON(data_len < 0);
3582        return data_len;
3583}
3584
3585/*
3586 * The space between the end of the leaf items and
3587 * the start of the leaf data.  IOW, how much room
3588 * the leaf has left for both items and data
3589 */
3590noinline int btrfs_leaf_free_space(struct btrfs_root *root,
3591                                   struct extent_buffer *leaf)
3592{
3593        int nritems = btrfs_header_nritems(leaf);
3594        int ret;
3595        ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3596        if (ret < 0) {
3597                btrfs_crit(root->fs_info,
3598                        "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3599                       ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
3600                       leaf_space_used(leaf, 0, nritems), nritems);
3601        }
3602        return ret;
3603}
3604
3605/*
3606 * min slot controls the lowest index we're willing to push to the
3607 * right.  We'll push up to and including min_slot, but no lower
3608 */
3609static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3610                                      struct btrfs_root *root,
3611                                      struct btrfs_path *path,
3612                                      int data_size, int empty,
3613                                      struct extent_buffer *right,
3614                                      int free_space, u32 left_nritems,
3615                                      u32 min_slot)
3616{
3617        struct extent_buffer *left = path->nodes[0];
3618        struct extent_buffer *upper = path->nodes[1];
3619        struct btrfs_map_token token;
3620        struct btrfs_disk_key disk_key;
3621        int slot;
3622        u32 i;
3623        int push_space = 0;
3624        int push_items = 0;
3625        struct btrfs_item *item;
3626        u32 nr;
3627        u32 right_nritems;
3628        u32 data_end;
3629        u32 this_item_size;
3630
3631        btrfs_init_map_token(&token);
3632
3633        if (empty)
3634                nr = 0;
3635        else
3636                nr = max_t(u32, 1, min_slot);
3637
3638        if (path->slots[0] >= left_nritems)
3639                push_space += data_size;
3640
3641        slot = path->slots[1];
3642        i = left_nritems - 1;
3643        while (i >= nr) {
3644                item = btrfs_item_nr(i);
3645
3646                if (!empty && push_items > 0) {
3647                        if (path->slots[0] > i)
3648                                break;
3649                        if (path->slots[0] == i) {
3650                                int space = btrfs_leaf_free_space(root, left);
3651                                if (space + push_space * 2 > free_space)
3652                                        break;
3653                        }
3654                }
3655
3656                if (path->slots[0] == i)
3657                        push_space += data_size;
3658
3659                this_item_size = btrfs_item_size(left, item);
3660                if (this_item_size + sizeof(*item) + push_space > free_space)
3661                        break;
3662
3663                push_items++;
3664                push_space += this_item_size + sizeof(*item);
3665                if (i == 0)
3666                        break;
3667                i--;
3668        }
3669
3670        if (push_items == 0)
3671                goto out_unlock;
3672
3673        WARN_ON(!empty && push_items == left_nritems);
3674
3675        /* push left to right */
3676        right_nritems = btrfs_header_nritems(right);
3677
3678        push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3679        push_space -= leaf_data_end(root, left);
3680
3681        /* make room in the right data area */
3682        data_end = leaf_data_end(root, right);
3683        memmove_extent_buffer(right,
3684                              btrfs_leaf_data(right) + data_end - push_space,
3685                              btrfs_leaf_data(right) + data_end,
3686                              BTRFS_LEAF_DATA_SIZE(root) - data_end);
3687
3688        /* copy from the left data area */
3689        copy_extent_buffer(right, left, btrfs_leaf_data(right) +
3690                     BTRFS_LEAF_DATA_SIZE(root) - push_space,
3691                     btrfs_leaf_data(left) + leaf_data_end(root, left),
3692                     push_space);
3693
3694        memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3695                              btrfs_item_nr_offset(0),
3696                              right_nritems * sizeof(struct btrfs_item));
3697
3698        /* copy the items from left to right */
3699        copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3700                   btrfs_item_nr_offset(left_nritems - push_items),
3701                   push_items * sizeof(struct btrfs_item));
3702
3703        /* update the item pointers */
3704        right_nritems += push_items;
3705        btrfs_set_header_nritems(right, right_nritems);
3706        push_space = BTRFS_LEAF_DATA_SIZE(root);
3707        for (i = 0; i < right_nritems; i++) {
3708                item = btrfs_item_nr(i);
3709                push_space -= btrfs_token_item_size(right, item, &token);
3710                btrfs_set_token_item_offset(right, item, push_space, &token);
3711        }
3712
3713        left_nritems -= push_items;
3714        btrfs_set_header_nritems(left, left_nritems);
3715
3716        if (left_nritems)
3717                btrfs_mark_buffer_dirty(left);
3718        else
3719                clean_tree_block(trans, root, left);
3720
3721        btrfs_mark_buffer_dirty(right);
3722
3723        btrfs_item_key(right, &disk_key, 0);
3724        btrfs_set_node_key(upper, &disk_key, slot + 1);
3725        btrfs_mark_buffer_dirty(upper);
3726
3727        /* then fixup the leaf pointer in the path */
3728        if (path->slots[0] >= left_nritems) {
3729                path->slots[0] -= left_nritems;
3730                if (btrfs_header_nritems(path->nodes[0]) == 0)
3731                        clean_tree_block(trans, root, path->nodes[0]);
3732                btrfs_tree_unlock(path->nodes[0]);
3733                free_extent_buffer(path->nodes[0]);
3734                path->nodes[0] = right;
3735                path->slots[1] += 1;
3736        } else {
3737                btrfs_tree_unlock(right);
3738                free_extent_buffer(right);
3739        }
3740        return 0;
3741
3742out_unlock:
3743        btrfs_tree_unlock(right);
3744        free_extent_buffer(right);
3745        return 1;
3746}
3747
3748/*
3749 * push some data in the path leaf to the right, trying to free up at
3750 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3751 *
3752 * returns 1 if the push failed because the other node didn't have enough
3753 * room, 0 if everything worked out and < 0 if there were major errors.
3754 *
3755 * this will push starting from min_slot to the end of the leaf.  It won't
3756 * push any slot lower than min_slot
3757 */
3758static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3759                           *root, struct btrfs_path *path,
3760                           int min_data_size, int data_size,
3761                           int empty, u32 min_slot)
3762{
3763        struct extent_buffer *left = path->nodes[0];
3764        struct extent_buffer *right;
3765        struct extent_buffer *upper;
3766        int slot;
3767        int free_space;
3768        u32 left_nritems;
3769        int ret;
3770
3771        if (!path->nodes[1])
3772                return 1;
3773
3774        slot = path->slots[1];
3775        upper = path->nodes[1];
3776        if (slot >= btrfs_header_nritems(upper) - 1)
3777                return 1;
3778
3779        btrfs_assert_tree_locked(path->nodes[1]);
3780
3781        right = read_node_slot(root, upper, slot + 1);
3782        if (right == NULL)
3783                return 1;
3784
3785        btrfs_tree_lock(right);
3786        btrfs_set_lock_blocking(right);
3787
3788        free_space = btrfs_leaf_free_space(root, right);
3789        if (free_space < data_size)
3790                goto out_unlock;
3791
3792        /* cow and double check */
3793        ret = btrfs_cow_block(trans, root, right, upper,
3794                              slot + 1, &right);
3795        if (ret)
3796                goto out_unlock;
3797
3798        free_space = btrfs_leaf_free_space(root, right);
3799        if (free_space < data_size)
3800                goto out_unlock;
3801
3802        left_nritems = btrfs_header_nritems(left);
3803        if (left_nritems == 0)
3804                goto out_unlock;
3805
3806        if (path->slots[0] == left_nritems && !empty) {
3807                /* Key greater than all keys in the leaf, right neighbor has
3808                 * enough room for it and we're not emptying our leaf to delete
3809                 * it, therefore use right neighbor to insert the new item and
3810                 * no need to touch/dirty our left leaft. */
3811                btrfs_tree_unlock(left);
3812                free_extent_buffer(left);
3813                path->nodes[0] = right;
3814                path->slots[0] = 0;
3815                path->slots[1]++;
3816                return 0;
3817        }
3818
3819        return __push_leaf_right(trans, root, path, min_data_size, empty,
3820                                right, free_space, left_nritems, min_slot);
3821out_unlock:
3822        btrfs_tree_unlock(right);
3823        free_extent_buffer(right);
3824        return 1;
3825}
3826
3827/*
3828 * push some data in the path leaf to the left, trying to free up at
3829 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3830 *
3831 * max_slot can put a limit on how far into the leaf we'll push items.  The
3832 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3833 * items
3834 */
3835static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3836                                     struct btrfs_root *root,
3837                                     struct btrfs_path *path, int data_size,
3838                                     int empty, struct extent_buffer *left,
3839                                     int free_space, u32 right_nritems,
3840                                     u32 max_slot)
3841{
3842        struct btrfs_disk_key disk_key;
3843        struct extent_buffer *right = path->nodes[0];
3844        int i;
3845        int push_space = 0;
3846        int push_items = 0;
3847        struct btrfs_item *item;
3848        u32 old_left_nritems;
3849        u32 nr;
3850        int ret = 0;
3851        u32 this_item_size;
3852        u32 old_left_item_size;
3853        struct btrfs_map_token token;
3854
3855        btrfs_init_map_token(&token);
3856
3857        if (empty)
3858                nr = min(right_nritems, max_slot);
3859        else
3860                nr = min(right_nritems - 1, max_slot);
3861
3862        for (i = 0; i < nr; i++) {
3863                item = btrfs_item_nr(i);
3864
3865                if (!empty && push_items > 0) {
3866                        if (path->slots[0] < i)
3867                                break;
3868                        if (path->slots[0] == i) {
3869                                int space = btrfs_leaf_free_space(root, right);
3870                                if (space + push_space * 2 > free_space)
3871                                        break;
3872                        }
3873                }
3874
3875                if (path->slots[0] == i)
3876                        push_space += data_size;
3877
3878                this_item_size = btrfs_item_size(right, item);
3879                if (this_item_size + sizeof(*item) + push_space > free_space)
3880                        break;
3881
3882                push_items++;
3883                push_space += this_item_size + sizeof(*item);
3884        }
3885
3886        if (push_items == 0) {
3887                ret = 1;
3888                goto out;
3889        }
3890        WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3891
3892        /* push data from right to left */
3893        copy_extent_buffer(left, right,
3894                           btrfs_item_nr_offset(btrfs_header_nritems(left)),
3895                           btrfs_item_nr_offset(0),
3896                           push_items * sizeof(struct btrfs_item));
3897
3898        push_space = BTRFS_LEAF_DATA_SIZE(root) -
3899                     btrfs_item_offset_nr(right, push_items - 1);
3900
3901        copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3902                     leaf_data_end(root, left) - push_space,
3903                     btrfs_leaf_data(right) +
3904                     btrfs_item_offset_nr(right, push_items - 1),
3905                     push_space);
3906        old_left_nritems = btrfs_header_nritems(left);
3907        BUG_ON(old_left_nritems <= 0);
3908
3909        old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3910        for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3911                u32 ioff;
3912
3913                item = btrfs_item_nr(i);
3914
3915                ioff = btrfs_token_item_offset(left, item, &token);
3916                btrfs_set_token_item_offset(left, item,
3917                      ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3918                      &token);
3919        }
3920        btrfs_set_header_nritems(left, old_left_nritems + push_items);
3921
3922        /* fixup right node */
3923        if (push_items > right_nritems)
3924                WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3925                       right_nritems);
3926
3927        if (push_items < right_nritems) {
3928                push_space = btrfs_item_offset_nr(right, push_items - 1) -
3929                                                  leaf_data_end(root, right);
3930                memmove_extent_buffer(right, btrfs_leaf_data(right) +
3931                                      BTRFS_LEAF_DATA_SIZE(root) - push_space,
3932                                      btrfs_leaf_data(right) +
3933                                      leaf_data_end(root, right), push_space);
3934
3935                memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3936                              btrfs_item_nr_offset(push_items),
3937                             (btrfs_header_nritems(right) - push_items) *
3938                             sizeof(struct btrfs_item));
3939        }
3940        right_nritems -= push_items;
3941        btrfs_set_header_nritems(right, right_nritems);
3942        push_space = BTRFS_LEAF_DATA_SIZE(root);
3943        for (i = 0; i < right_nritems; i++) {
3944                item = btrfs_item_nr(i);
3945
3946                push_space = push_space - btrfs_token_item_size(right,
3947                                                                item, &token);
3948                btrfs_set_token_item_offset(right, item, push_space, &token);
3949        }
3950
3951        btrfs_mark_buffer_dirty(left);
3952        if (right_nritems)
3953                btrfs_mark_buffer_dirty(right);
3954        else
3955                clean_tree_block(trans, root, right);
3956
3957        btrfs_item_key(right, &disk_key, 0);
3958        fixup_low_keys(root, path, &disk_key, 1);
3959
3960        /* then fixup the leaf pointer in the path */
3961        if (path->slots[0] < push_items) {
3962                path->slots[0] += old_left_nritems;
3963                btrfs_tree_unlock(path->nodes[0]);
3964                free_extent_buffer(path->nodes[0]);
3965                path->nodes[0] = left;
3966                path->slots[1] -= 1;
3967        } else {
3968                btrfs_tree_unlock(left);
3969                free_extent_buffer(left);
3970                path->slots[0] -= push_items;
3971        }
3972        BUG_ON(path->slots[0] < 0);
3973        return ret;
3974out:
3975        btrfs_tree_unlock(left);
3976        free_extent_buffer(left);
3977        return ret;
3978}
3979
3980/*
3981 * push some data in the path leaf to the left, trying to free up at
3982 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3983 *
3984 * max_slot can put a limit on how far into the leaf we'll push items.  The
3985 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3986 * items
3987 */
3988static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3989                          *root, struct btrfs_path *path, int min_data_size,
3990                          int data_size, int empty, u32 max_slot)
3991{
3992        struct extent_buffer *right = path->nodes[0];
3993        struct extent_buffer *left;
3994        int slot;
3995        int free_space;
3996        u32 right_nritems;
3997        int ret = 0;
3998
3999        slot = path->slots[1];
4000        if (slot == 0)
4001                return 1;
4002        if (!path->nodes[1])
4003                return 1;
4004
4005        right_nritems = btrfs_header_nritems(right);
4006        if (right_nritems == 0)
4007                return 1;
4008
4009        btrfs_assert_tree_locked(path->nodes[1]);
4010
4011        left = read_node_slot(root, path->nodes[1], slot - 1);
4012        if (left == NULL)
4013                return 1;
4014
4015        btrfs_tree_lock(left);
4016        btrfs_set_lock_blocking(left);
4017
4018        free_space = btrfs_leaf_free_space(root, left);
4019        if (free_space < data_size) {
4020                ret = 1;
4021                goto out;
4022        }
4023
4024        /* cow and double check */
4025        ret = btrfs_cow_block(trans, root, left,
4026                              path->nodes[1], slot - 1, &left);
4027        if (ret) {
4028                /* we hit -ENOSPC, but it isn't fatal here */
4029                if (ret == -ENOSPC)
4030                        ret = 1;
4031                goto out;
4032        }
4033
4034        free_space = btrfs_leaf_free_space(root, left);
4035        if (free_space < data_size) {
4036                ret = 1;
4037                goto out;
4038        }
4039
4040        return __push_leaf_left(trans, root, path, min_data_size,
4041                               empty, left, free_space, right_nritems,
4042                               max_slot);
4043out:
4044        btrfs_tree_unlock(left);
4045        free_extent_buffer(left);
4046        return ret;
4047}
4048
4049/*
4050 * split the path's leaf in two, making sure there is at least data_size
4051 * available for the resulting leaf level of the path.
4052 */
4053static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4054                                    struct btrfs_root *root,
4055                                    struct btrfs_path *path,
4056                                    struct extent_buffer *l,
4057                                    struct extent_buffer *right,
4058                                    int slot, int mid, int nritems)
4059{
4060        int data_copy_size;
4061        int rt_data_off;
4062        int i;
4063        struct btrfs_disk_key disk_key;
4064        struct btrfs_map_token token;
4065
4066        btrfs_init_map_token(&token);
4067
4068        nritems = nritems - mid;
4069        btrfs_set_header_nritems(right, nritems);
4070        data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
4071
4072        copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4073                           btrfs_item_nr_offset(mid),
4074                           nritems * sizeof(struct btrfs_item));
4075
4076        copy_extent_buffer(right, l,
4077                     btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
4078                     data_copy_size, btrfs_leaf_data(l) +
4079                     leaf_data_end(root, l), data_copy_size);
4080
4081        rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
4082                      btrfs_item_end_nr(l, mid);
4083
4084        for (i = 0; i < nritems; i++) {
4085                struct btrfs_item *item = btrfs_item_nr(i);
4086                u32 ioff;
4087
4088                ioff = btrfs_token_item_offset(right, item, &token);
4089                btrfs_set_token_item_offset(right, item,
4090                                            ioff + rt_data_off, &token);
4091        }
4092
4093        btrfs_set_header_nritems(l, mid);
4094        btrfs_item_key(right, &disk_key, 0);
4095        insert_ptr(trans, root, path, &disk_key, right->start,
4096                   path->slots[1] + 1, 1);
4097
4098        btrfs_mark_buffer_dirty(right);
4099        btrfs_mark_buffer_dirty(l);
4100        BUG_ON(path->slots[0] != slot);
4101
4102        if (mid <= slot) {
4103                btrfs_tree_unlock(path->nodes[0]);
4104                free_extent_buffer(path->nodes[0]);
4105                path->nodes[0] = right;
4106                path->slots[0] -= mid;
4107                path->slots[1] += 1;
4108        } else {
4109                btrfs_tree_unlock(right);
4110                free_extent_buffer(right);
4111        }
4112
4113        BUG_ON(path->slots[0] < 0);
4114}
4115
4116/*
4117 * double splits happen when we need to insert a big item in the middle
4118 * of a leaf.  A double split can leave us with 3 mostly empty leaves:
4119 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4120 *          A                 B                 C
4121 *
4122 * We avoid this by trying to push the items on either side of our target
4123 * into the adjacent leaves.  If all goes well we can avoid the double split
4124 * completely.
4125 */
4126static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4127                                          struct btrfs_root *root,
4128                                          struct btrfs_path *path,
4129                                          int data_size)
4130{
4131        int ret;
4132        int progress = 0;
4133        int slot;
4134        u32 nritems;
4135        int space_needed = data_size;
4136
4137        slot = path->slots[0];
4138        if (slot < btrfs_header_nritems(path->nodes[0]))
4139                space_needed -= btrfs_leaf_free_space(root, path->nodes[0]);
4140
4141        /*
4142         * try to push all the items after our slot into the
4143         * right leaf
4144         */
4145        ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4146        if (ret < 0)
4147                return ret;
4148
4149        if (ret == 0)
4150                progress++;
4151
4152        nritems = btrfs_header_nritems(path->nodes[0]);
4153        /*
4154         * our goal is to get our slot at the start or end of a leaf.  If
4155         * we've done so we're done
4156         */
4157        if (path->slots[0] == 0 || path->slots[0] == nritems)
4158                return 0;
4159
4160        if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4161                return 0;
4162
4163        /* try to push all the items before our slot into the next leaf */
4164        slot = path->slots[0];
4165        ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4166        if (ret < 0)
4167                return ret;
4168
4169        if (ret == 0)
4170                progress++;
4171
4172        if (progress)
4173                return 0;
4174        return 1;
4175}
4176
4177/*
4178 * split the path's leaf in two, making sure there is at least data_size
4179 * available for the resulting leaf level of the path.
4180 *
4181 * returns 0 if all went well and < 0 on failure.
4182 */
4183static noinline int split_leaf(struct btrfs_trans_handle *trans,
4184                               struct btrfs_root *root,
4185                               struct btrfs_key *ins_key,
4186                               struct btrfs_path *path, int data_size,
4187                               int extend)
4188{
4189        struct btrfs_disk_key disk_key;
4190        struct extent_buffer *l;
4191        u32 nritems;
4192        int mid;
4193        int slot;
4194        struct extent_buffer *right;
4195        int ret = 0;
4196        int wret;
4197        int split;
4198        int num_doubles = 0;
4199        int tried_avoid_double = 0;
4200
4201        l = path->nodes[0];
4202        slot = path->slots[0];
4203        if (extend && data_size + btrfs_item_size_nr(l, slot) +
4204            sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
4205                return -EOVERFLOW;
4206
4207        /* first try to make some room by pushing left and right */
4208        if (data_size && path->nodes[1]) {
4209                int space_needed = data_size;
4210
4211                if (slot < btrfs_header_nritems(l))
4212                        space_needed -= btrfs_leaf_free_space(root, l);
4213
4214                wret = push_leaf_right(trans, root, path, space_needed,
4215                                       space_needed, 0, 0);
4216                if (wret < 0)
4217                        return wret;
4218                if (wret) {
4219                        wret = push_leaf_left(trans, root, path, space_needed,
4220                                              space_needed, 0, (u32)-1);
4221                        if (wret < 0)
4222                                return wret;
4223                }
4224                l = path->nodes[0];
4225
4226                /* did the pushes work? */
4227                if (btrfs_leaf_free_space(root, l) >= data_size)
4228                        return 0;
4229        }
4230
4231        if (!path->nodes[1]) {
4232                ret = insert_new_root(trans, root, path, 1);
4233                if (ret)
4234                        return ret;
4235        }
4236again:
4237        split = 1;
4238        l = path->nodes[0];
4239        slot = path->slots[0];
4240        nritems = btrfs_header_nritems(l);
4241        mid = (nritems + 1) / 2;
4242
4243        if (mid <= slot) {
4244                if (nritems == 1 ||
4245                    leaf_space_used(l, mid, nritems - mid) + data_size >
4246                        BTRFS_LEAF_DATA_SIZE(root)) {
4247                        if (slot >= nritems) {
4248                                split = 0;
4249                        } else {
4250                                mid = slot;
4251                                if (mid != nritems &&
4252                                    leaf_space_used(l, mid, nritems - mid) +
4253                                    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4254                                        if (data_size && !tried_avoid_double)
4255                                                goto push_for_double;
4256                                        split = 2;
4257                                }
4258                        }
4259                }
4260        } else {
4261                if (leaf_space_used(l, 0, mid) + data_size >
4262                        BTRFS_LEAF_DATA_SIZE(root)) {
4263                        if (!extend && data_size && slot == 0) {
4264                                split = 0;
4265                        } else if ((extend || !data_size) && slot == 0) {
4266                                mid = 1;
4267                        } else {
4268                                mid = slot;
4269                                if (mid != nritems &&
4270                                    leaf_space_used(l, mid, nritems - mid) +
4271                                    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4272                                        if (data_size && !tried_avoid_double)
4273                                                goto push_for_double;
4274                                        split = 2;
4275                                }
4276                        }
4277                }
4278        }
4279
4280        if (split == 0)
4281                btrfs_cpu_key_to_disk(&disk_key, ins_key);
4282        else
4283                btrfs_item_key(l, &disk_key, mid);
4284
4285        right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
4286                                        root->root_key.objectid,
4287                                        &disk_key, 0, l->start, 0);
4288        if (IS_ERR(right))
4289                return PTR_ERR(right);
4290
4291        root_add_used(root, root->leafsize);
4292
4293        memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
4294        btrfs_set_header_bytenr(right, right->start);
4295        btrfs_set_header_generation(right, trans->transid);
4296        btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4297        btrfs_set_header_owner(right, root->root_key.objectid);
4298        btrfs_set_header_level(right, 0);
4299        write_extent_buffer(right, root->fs_info->fsid,
4300                            btrfs_header_fsid(), BTRFS_FSID_SIZE);
4301
4302        write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
4303                            btrfs_header_chunk_tree_uuid(right),
4304                            BTRFS_UUID_SIZE);
4305
4306        if (split == 0) {
4307                if (mid <= slot) {
4308                        btrfs_set_header_nritems(right, 0);
4309                        insert_ptr(trans, root, path, &disk_key, right->start,
4310                                   path->slots[1] + 1, 1);
4311                        btrfs_tree_unlock(path->nodes[0]);
4312                        free_extent_buffer(path->nodes[0]);
4313                        path->nodes[0] = right;
4314                        path->slots[0] = 0;
4315                        path->slots[1] += 1;
4316                } else {
4317                        btrfs_set_header_nritems(right, 0);
4318                        insert_ptr(trans, root, path, &disk_key, right->start,
4319                                          path->slots[1], 1);
4320                        btrfs_tree_unlock(path->nodes[0]);
4321                        free_extent_buffer(path->nodes[0]);
4322                        path->nodes[0] = right;
4323                        path->slots[0] = 0;
4324                        if (path->slots[1] == 0)
4325                                fixup_low_keys(root, path, &disk_key, 1);
4326                }
4327                btrfs_mark_buffer_dirty(right);
4328                return ret;
4329        }
4330
4331        copy_for_split(trans, root, path, l, right, slot, mid, nritems);
4332
4333        if (split == 2) {
4334                BUG_ON(num_doubles != 0);
4335                num_doubles++;
4336                goto again;
4337        }
4338
4339        return 0;
4340
4341push_for_double:
4342        push_for_double_split(trans, root, path, data_size);
4343        tried_avoid_double = 1;
4344        if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4345                return 0;
4346        goto again;
4347}
4348
4349static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4350                                         struct btrfs_root *root,
4351                                         struct btrfs_path *path, int ins_len)
4352{
4353        struct btrfs_key key;
4354        struct extent_buffer *leaf;
4355        struct btrfs_file_extent_item *fi;
4356        u64 extent_len = 0;
4357        u32 item_size;
4358        int ret;
4359
4360        leaf = path->nodes[0];
4361        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4362
4363        BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4364               key.type != BTRFS_EXTENT_CSUM_KEY);
4365
4366        if (btrfs_leaf_free_space(root, leaf) >= ins_len)
4367                return 0;
4368
4369        item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4370        if (key.type == BTRFS_EXTENT_DATA_KEY) {
4371                fi = btrfs_item_ptr(leaf, path->slots[0],
4372                                    struct btrfs_file_extent_item);
4373                extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4374        }
4375        btrfs_release_path(path);
4376
4377        path->keep_locks = 1;
4378        path->search_for_split = 1;
4379        ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4380        path->search_for_split = 0;
4381        if (ret < 0)
4382                goto err;
4383
4384        ret = -EAGAIN;
4385        leaf = path->nodes[0];
4386        /* if our item isn't there or got smaller, return now */
4387        if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4388                goto err;
4389
4390        /* the leaf has  changed, it now has room.  return now */
4391        if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
4392                goto err;
4393
4394        if (key.type == BTRFS_EXTENT_DATA_KEY) {
4395                fi = btrfs_item_ptr(leaf, path->slots[0],
4396                                    struct btrfs_file_extent_item);
4397                if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4398                        goto err;
4399        }
4400
4401        btrfs_set_path_blocking(path);
4402        ret = split_leaf(trans, root, &key, path, ins_len, 1);
4403        if (ret)
4404                goto err;
4405
4406        path->keep_locks = 0;
4407        btrfs_unlock_up_safe(path, 1);
4408        return 0;
4409err:
4410        path->keep_locks = 0;
4411        return ret;
4412}
4413
4414static noinline int split_item(struct btrfs_trans_handle *trans,
4415                               struct btrfs_root *root,
4416                               struct btrfs_path *path,
4417                               struct btrfs_key *new_key,
4418                               unsigned long split_offset)
4419{
4420        struct extent_buffer *leaf;
4421        struct btrfs_item *item;
4422        struct btrfs_item *new_item;
4423        int slot;
4424        char *buf;
4425        u32 nritems;
4426        u32 item_size;
4427        u32 orig_offset;
4428        struct btrfs_disk_key disk_key;
4429
4430        leaf = path->nodes[0];
4431        BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
4432
4433        btrfs_set_path_blocking(path);
4434
4435        item = btrfs_item_nr(path->slots[0]);
4436        orig_offset = btrfs_item_offset(leaf, item);
4437        item_size = btrfs_item_size(leaf, item);
4438
4439        buf = kmalloc(item_size, GFP_NOFS);
4440        if (!buf)
4441                return -ENOMEM;
4442
4443        read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4444                            path->slots[0]), item_size);
4445
4446        slot = path->slots[0] + 1;
4447        nritems = btrfs_header_nritems(leaf);
4448        if (slot != nritems) {
4449                /* shift the items */
4450                memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4451                                btrfs_item_nr_offset(slot),
4452                                (nritems - slot) * sizeof(struct btrfs_item));
4453        }
4454
4455        btrfs_cpu_key_to_disk(&disk_key, new_key);
4456        btrfs_set_item_key(leaf, &disk_key, slot);
4457
4458        new_item = btrfs_item_nr(slot);
4459
4460        btrfs_set_item_offset(leaf, new_item, orig_offset);
4461        btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4462
4463        btrfs_set_item_offset(leaf, item,
4464                              orig_offset + item_size - split_offset);
4465        btrfs_set_item_size(leaf, item, split_offset);
4466
4467        btrfs_set_header_nritems(leaf, nritems + 1);
4468
4469        /* write the data for the start of the original item */
4470        write_extent_buffer(leaf, buf,
4471                            btrfs_item_ptr_offset(leaf, path->slots[0]),
4472                            split_offset);
4473
4474        /* write the data for the new item */
4475        write_extent_buffer(leaf, buf + split_offset,
4476                            btrfs_item_ptr_offset(leaf, slot),
4477                            item_size - split_offset);
4478        btrfs_mark_buffer_dirty(leaf);
4479
4480        BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
4481        kfree(buf);
4482        return 0;
4483}
4484
4485/*
4486 * This function splits a single item into two items,
4487 * giving 'new_key' to the new item and splitting the
4488 * old one at split_offset (from the start of the item).
4489 *
4490 * The path may be released by this operation.  After
4491 * the split, the path is pointing to the old item.  The
4492 * new item is going to be in the same node as the old one.
4493 *
4494 * Note, the item being split must be smaller enough to live alone on
4495 * a tree block with room for one extra struct btrfs_item
4496 *
4497 * This allows us to split the item in place, keeping a lock on the
4498 * leaf the entire time.
4499 */
4500int btrfs_split_item(struct btrfs_trans_handle *trans,
4501                     struct btrfs_root *root,
4502                     struct btrfs_path *path,
4503                     struct btrfs_key *new_key,
4504                     unsigned long split_offset)
4505{
4506        int ret;
4507        ret = setup_leaf_for_split(trans, root, path,
4508                                   sizeof(struct btrfs_item));
4509        if (ret)
4510                return ret;
4511
4512        ret = split_item(trans, root, path, new_key, split_offset);
4513        return ret;
4514}
4515
4516/*
4517 * This function duplicate a item, giving 'new_key' to the new item.
4518 * It guarantees both items live in the same tree leaf and the new item
4519 * is contiguous with the original item.
4520 *
4521 * This allows us to split file extent in place, keeping a lock on the
4522 * leaf the entire time.
4523 */
4524int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4525                         struct btrfs_root *root,
4526                         struct btrfs_path *path,
4527                         struct btrfs_key *new_key)
4528{
4529        struct extent_buffer *leaf;
4530        int ret;
4531        u32 item_size;
4532
4533        leaf = path->nodes[0];
4534        item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4535        ret = setup_leaf_for_split(trans, root, path,
4536                                   item_size + sizeof(struct btrfs_item));
4537        if (ret)
4538                return ret;
4539
4540        path->slots[0]++;
4541        setup_items_for_insert(root, path, new_key, &item_size,
4542                               item_size, item_size +
4543                               sizeof(struct btrfs_item), 1);
4544        leaf = path->nodes[0];
4545        memcpy_extent_buffer(leaf,
4546                             btrfs_item_ptr_offset(leaf, path->slots[0]),
4547                             btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4548                             item_size);
4549        return 0;
4550}
4551
4552/*
4553 * make the item pointed to by the path smaller.  new_size indicates
4554 * how small to make it, and from_end tells us if we just chop bytes
4555 * off the end of the item or if we shift the item to chop bytes off
4556 * the front.
4557 */
4558void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path,
4559                         u32 new_size, int from_end)
4560{
4561        int slot;
4562        struct extent_buffer *leaf;
4563        struct btrfs_item *item;
4564        u32 nritems;
4565        unsigned int data_end;
4566        unsigned int old_data_start;
4567        unsigned int old_size;
4568        unsigned int size_diff;
4569        int i;
4570        struct btrfs_map_token token;
4571
4572        btrfs_init_map_token(&token);
4573
4574        leaf = path->nodes[0];
4575        slot = path->slots[0];
4576
4577        old_size = btrfs_item_size_nr(leaf, slot);
4578        if (old_size == new_size)
4579                return;
4580
4581        nritems = btrfs_header_nritems(leaf);
4582        data_end = leaf_data_end(root, leaf);
4583
4584        old_data_start = btrfs_item_offset_nr(leaf, slot);
4585
4586        size_diff = old_size - new_size;
4587
4588        BUG_ON(slot < 0);
4589        BUG_ON(slot >= nritems);
4590
4591        /*
4592         * item0..itemN ... dataN.offset..dataN.size .. data0.size
4593         */
4594        /* first correct the data pointers */
4595        for (i = slot; i < nritems; i++) {
4596                u32 ioff;
4597                item = btrfs_item_nr(i);
4598
4599                ioff = btrfs_token_item_offset(leaf, item, &token);
4600                btrfs_set_token_item_offset(leaf, item,
4601                                            ioff + size_diff, &token);
4602        }
4603
4604        /* shift the data */
4605        if (from_end) {
4606                memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4607                              data_end + size_diff, btrfs_leaf_data(leaf) +
4608                              data_end, old_data_start + new_size - data_end);
4609        } else {
4610                struct btrfs_disk_key disk_key;
4611                u64 offset;
4612
4613                btrfs_item_key(leaf, &disk_key, slot);
4614
4615                if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4616                        unsigned long ptr;
4617                        struct btrfs_file_extent_item *fi;
4618
4619                        fi = btrfs_item_ptr(leaf, slot,
4620                                            struct btrfs_file_extent_item);
4621                        fi = (struct btrfs_file_extent_item *)(
4622                             (unsigned long)fi - size_diff);
4623
4624                        if (btrfs_file_extent_type(leaf, fi) ==
4625                            BTRFS_FILE_EXTENT_INLINE) {
4626                                ptr = btrfs_item_ptr_offset(leaf, slot);
4627                                memmove_extent_buffer(leaf, ptr,
4628                                      (unsigned long)fi,
4629                                      offsetof(struct btrfs_file_extent_item,
4630                                                 disk_bytenr));
4631                        }
4632                }
4633
4634                memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4635                              data_end + size_diff, btrfs_leaf_data(leaf) +
4636                              data_end, old_data_start - data_end);
4637
4638                offset = btrfs_disk_key_offset(&disk_key);
4639                btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4640                btrfs_set_item_key(leaf, &disk_key, slot);
4641                if (slot == 0)
4642                        fixup_low_keys(root, path, &disk_key, 1);
4643        }
4644
4645        item = btrfs_item_nr(slot);
4646        btrfs_set_item_size(leaf, item, new_size);
4647        btrfs_mark_buffer_dirty(leaf);
4648
4649        if (btrfs_leaf_free_space(root, leaf) < 0) {
4650                btrfs_print_leaf(root, leaf);
4651                BUG();
4652        }
4653}
4654
4655/*
4656 * make the item pointed to by the path bigger, data_size is the added size.
4657 */
4658void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path,
4659                       u32 data_size)
4660{
4661        int slot;
4662        struct extent_buffer *leaf;
4663        struct btrfs_item *item;
4664        u32 nritems;
4665        unsigned int data_end;
4666        unsigned int old_data;
4667        unsigned int old_size;
4668        int i;
4669        struct btrfs_map_token token;
4670
4671        btrfs_init_map_token(&token);
4672
4673        leaf = path->nodes[0];
4674
4675        nritems = btrfs_header_nritems(leaf);
4676        data_end = leaf_data_end(root, leaf);
4677
4678        if (btrfs_leaf_free_space(root, leaf) < data_size) {
4679                btrfs_print_leaf(root, leaf);
4680                BUG();
4681        }
4682        slot = path->slots[0];
4683        old_data = btrfs_item_end_nr(leaf, slot);
4684
4685        BUG_ON(slot < 0);
4686        if (slot >= nritems) {
4687                btrfs_print_leaf(root, leaf);
4688                btrfs_crit(root->fs_info, "slot %d too large, nritems %d",
4689                       slot, nritems);
4690                BUG_ON(1);
4691        }
4692
4693        /*
4694         * item0..itemN ... dataN.offset..dataN.size .. data0.size
4695         */
4696        /* first correct the data pointers */
4697        for (i = slot; i < nritems; i++) {
4698                u32 ioff;
4699                item = btrfs_item_nr(i);
4700
4701                ioff = btrfs_token_item_offset(leaf, item, &token);
4702                btrfs_set_token_item_offset(leaf, item,
4703                                            ioff - data_size, &token);
4704        }
4705
4706        /* shift the data */
4707        memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4708                      data_end - data_size, btrfs_leaf_data(leaf) +
4709                      data_end, old_data - data_end);
4710
4711        data_end = old_data;
4712        old_size = btrfs_item_size_nr(leaf, slot);
4713        item = btrfs_item_nr(slot);
4714        btrfs_set_item_size(leaf, item, old_size + data_size);
4715        btrfs_mark_buffer_dirty(leaf);
4716
4717        if (btrfs_leaf_free_space(root, leaf) < 0) {
4718                btrfs_print_leaf(root, leaf);
4719                BUG();
4720        }
4721}
4722
4723/*
4724 * this is a helper for btrfs_insert_empty_items, the main goal here is
4725 * to save stack depth by doing the bulk of the work in a function
4726 * that doesn't call btrfs_search_slot
4727 */
4728void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4729                            struct btrfs_key *cpu_key, u32 *data_size,
4730                            u32 total_data, u32 total_size, int nr)
4731{
4732        struct btrfs_item *item;
4733        int i;
4734        u32 nritems;
4735        unsigned int data_end;
4736        struct btrfs_disk_key disk_key;
4737        struct extent_buffer *leaf;
4738        int slot;
4739        struct btrfs_map_token token;
4740
4741        btrfs_init_map_token(&token);
4742
4743        leaf = path->nodes[0];
4744        slot = path->slots[0];
4745
4746        nritems = btrfs_header_nritems(leaf);
4747        data_end = leaf_data_end(root, leaf);
4748
4749        if (btrfs_leaf_free_space(root, leaf) < total_size) {
4750                btrfs_print_leaf(root, leaf);
4751                btrfs_crit(root->fs_info, "not enough freespace need %u have %d",
4752                       total_size, btrfs_leaf_free_space(root, leaf));
4753                BUG();
4754        }
4755
4756        if (slot != nritems) {
4757                unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4758
4759                if (old_data < data_end) {
4760                        btrfs_print_leaf(root, leaf);
4761                        btrfs_crit(root->fs_info, "slot %d old_data %d data_end %d",
4762                               slot, old_data, data_end);
4763                        BUG_ON(1);
4764                }
4765                /*
4766                 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4767                 */
4768                /* first correct the data pointers */
4769                for (i = slot; i < nritems; i++) {
4770                        u32 ioff;
4771
4772                        item = btrfs_item_nr( i);
4773                        ioff = btrfs_token_item_offset(leaf, item, &token);
4774                        btrfs_set_token_item_offset(leaf, item,
4775                                                    ioff - total_data, &token);
4776                }
4777                /* shift the items */
4778                memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4779                              btrfs_item_nr_offset(slot),
4780                              (nritems - slot) * sizeof(struct btrfs_item));
4781
4782                /* shift the data */
4783                memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4784                              data_end - total_data, btrfs_leaf_data(leaf) +
4785                              data_end, old_data - data_end);
4786                data_end = old_data;
4787        }
4788
4789        /* setup the item for the new data */
4790        for (i = 0; i < nr; i++) {
4791                btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4792                btrfs_set_item_key(leaf, &disk_key, slot + i);
4793                item = btrfs_item_nr(slot + i);
4794                btrfs_set_token_item_offset(leaf, item,
4795                                            data_end - data_size[i], &token);
4796                data_end -= data_size[i];
4797                btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4798        }
4799
4800        btrfs_set_header_nritems(leaf, nritems + nr);
4801
4802        if (slot == 0) {
4803                btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4804                fixup_low_keys(root, path, &disk_key, 1);
4805        }
4806        btrfs_unlock_up_safe(path, 1);
4807        btrfs_mark_buffer_dirty(leaf);
4808
4809        if (btrfs_leaf_free_space(root, leaf) < 0) {
4810                btrfs_print_leaf(root, leaf);
4811                BUG();
4812        }
4813}
4814
4815/*
4816 * Given a key and some data, insert items into the tree.
4817 * This does all the path init required, making room in the tree if needed.
4818 */
4819int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4820                            struct btrfs_root *root,
4821                            struct btrfs_path *path,
4822                            struct btrfs_key *cpu_key, u32 *data_size,
4823                            int nr)
4824{
4825        int ret = 0;
4826        int slot;
4827        int i;
4828        u32 total_size = 0;
4829        u32 total_data = 0;
4830
4831        for (i = 0; i < nr; i++)
4832                total_data += data_size[i];
4833
4834        total_size = total_data + (nr * sizeof(struct btrfs_item));
4835        ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4836        if (ret == 0)
4837                return -EEXIST;
4838        if (ret < 0)
4839                return ret;
4840
4841        slot = path->slots[0];
4842        BUG_ON(slot < 0);
4843
4844        setup_items_for_insert(root, path, cpu_key, data_size,
4845                               total_data, total_size, nr);
4846        return 0;
4847}
4848
4849/*
4850 * Given a key and some data, insert an item into the tree.
4851 * This does all the path init required, making room in the tree if needed.
4852 */
4853int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4854                      *root, struct btrfs_key *cpu_key, void *data, u32
4855                      data_size)
4856{
4857        int ret = 0;
4858        struct btrfs_path *path;
4859        struct extent_buffer *leaf;
4860        unsigned long ptr;
4861
4862        path = btrfs_alloc_path();
4863        if (!path)
4864                return -ENOMEM;
4865        ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4866        if (!ret) {
4867                leaf = path->nodes[0];
4868                ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4869                write_extent_buffer(leaf, data, ptr, data_size);
4870                btrfs_mark_buffer_dirty(leaf);
4871        }
4872        btrfs_free_path(path);
4873        return ret;
4874}
4875
4876/*
4877 * delete the pointer from a given node.
4878 *
4879 * the tree should have been previously balanced so the deletion does not
4880 * empty a node.
4881 */
4882static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4883                    int level, int slot)
4884{
4885        struct extent_buffer *parent = path->nodes[level];
4886        u32 nritems;
4887        int ret;
4888
4889        nritems = btrfs_header_nritems(parent);
4890        if (slot != nritems - 1) {
4891                if (level)
4892                        tree_mod_log_eb_move(root->fs_info, parent, slot,
4893                                             slot + 1, nritems - slot - 1);
4894                memmove_extent_buffer(parent,
4895                              btrfs_node_key_ptr_offset(slot),
4896                              btrfs_node_key_ptr_offset(slot + 1),
4897                              sizeof(struct btrfs_key_ptr) *
4898                              (nritems - slot - 1));
4899        } else if (level) {
4900                ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4901                                              MOD_LOG_KEY_REMOVE, GFP_NOFS);
4902                BUG_ON(ret < 0);
4903        }
4904
4905        nritems--;
4906        btrfs_set_header_nritems(parent, nritems);
4907        if (nritems == 0 && parent == root->node) {
4908                BUG_ON(btrfs_header_level(root->node) != 1);
4909                /* just turn the root into a leaf and break */
4910                btrfs_set_header_level(root->node, 0);
4911        } else if (slot == 0) {
4912                struct btrfs_disk_key disk_key;
4913
4914                btrfs_node_key(parent, &disk_key, 0);
4915                fixup_low_keys(root, path, &disk_key, level + 1);
4916        }
4917        btrfs_mark_buffer_dirty(parent);
4918}
4919
4920/*
4921 * a helper function to delete the leaf pointed to by path->slots[1] and
4922 * path->nodes[1].
4923 *
4924 * This deletes the pointer in path->nodes[1] and frees the leaf
4925 * block extent.  zero is returned if it all worked out, < 0 otherwise.
4926 *
4927 * The path must have already been setup for deleting the leaf, including
4928 * all the proper balancing.  path->nodes[1] must be locked.
4929 */
4930static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4931                                    struct btrfs_root *root,
4932                                    struct btrfs_path *path,
4933                                    struct extent_buffer *leaf)
4934{
4935        WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4936        del_ptr(root, path, 1, path->slots[1]);
4937
4938        /*
4939         * btrfs_free_extent is expensive, we want to make sure we
4940         * aren't holding any locks when we call it
4941         */
4942        btrfs_unlock_up_safe(path, 0);
4943
4944        root_sub_used(root, leaf->len);
4945
4946        extent_buffer_get(leaf);
4947        btrfs_free_tree_block(trans, root, leaf, 0, 1);
4948        free_extent_buffer_stale(leaf);
4949}
4950/*
4951 * delete the item at the leaf level in path.  If that empties
4952 * the leaf, remove it from the tree
4953 */
4954int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4955                    struct btrfs_path *path, int slot, int nr)
4956{
4957        struct extent_buffer *leaf;
4958        struct btrfs_item *item;
4959        int last_off;
4960        int dsize = 0;
4961        int ret = 0;
4962        int wret;
4963        int i;
4964        u32 nritems;
4965        struct btrfs_map_token token;
4966
4967        btrfs_init_map_token(&token);
4968
4969        leaf = path->nodes[0];
4970        last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4971
4972        for (i = 0; i < nr; i++)
4973                dsize += btrfs_item_size_nr(leaf, slot + i);
4974
4975        nritems = btrfs_header_nritems(leaf);
4976
4977        if (slot + nr != nritems) {
4978                int data_end = leaf_data_end(root, leaf);
4979
4980                memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4981                              data_end + dsize,
4982                              btrfs_leaf_data(leaf) + data_end,
4983                              last_off - data_end);
4984
4985                for (i = slot + nr; i < nritems; i++) {
4986                        u32 ioff;
4987
4988                        item = btrfs_item_nr(i);
4989                        ioff = btrfs_token_item_offset(leaf, item, &token);
4990                        btrfs_set_token_item_offset(leaf, item,
4991                                                    ioff + dsize, &token);
4992                }
4993
4994                memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4995                              btrfs_item_nr_offset(slot + nr),
4996                              sizeof(struct btrfs_item) *
4997                              (nritems - slot - nr));
4998        }
4999        btrfs_set_header_nritems(leaf, nritems - nr);
5000        nritems -= nr;
5001
5002        /* delete the leaf if we've emptied it */
5003        if (nritems == 0) {
5004                if (leaf == root->node) {
5005                        btrfs_set_header_level(leaf, 0);
5006                } else {
5007                        btrfs_set_path_blocking(path);
5008                        clean_tree_block(trans, root, leaf);
5009                        btrfs_del_leaf(trans, root, path, leaf);
5010                }
5011        } else {
5012                int used = leaf_space_used(leaf, 0, nritems);
5013                if (slot == 0) {
5014                        struct btrfs_disk_key disk_key;
5015
5016                        btrfs_item_key(leaf, &disk_key, 0);
5017                        fixup_low_keys(root, path, &disk_key, 1);
5018                }
5019
5020                /* delete the leaf if it is mostly empty */
5021                if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
5022                        /* push_leaf_left fixes the path.
5023                         * make sure the path still points to our leaf
5024                         * for possible call to del_ptr below
5025                         */
5026                        slot = path->slots[1];
5027                        extent_buffer_get(leaf);
5028
5029                        btrfs_set_path_blocking(path);
5030                        wret = push_leaf_left(trans, root, path, 1, 1,
5031                                              1, (u32)-1);
5032                        if (wret < 0 && wret != -ENOSPC)
5033                                ret = wret;
5034
5035                        if (path->nodes[0] == leaf &&
5036                            btrfs_header_nritems(leaf)) {
5037                                wret = push_leaf_right(trans, root, path, 1,
5038                                                       1, 1, 0);
5039                                if (wret < 0 && wret != -ENOSPC)
5040                                        ret = wret;
5041                        }
5042
5043                        if (btrfs_header_nritems(leaf) == 0) {
5044                                path->slots[1] = slot;
5045                                btrfs_del_leaf(trans, root, path, leaf);
5046                                free_extent_buffer(leaf);
5047                                ret = 0;
5048                        } else {
5049                                /* if we're still in the path, make sure
5050                                 * we're dirty.  Otherwise, one of the
5051                                 * push_leaf functions must have already
5052                                 * dirtied this buffer
5053                                 */
5054                                if (path->nodes[0] == leaf)
5055                                        btrfs_mark_buffer_dirty(leaf);
5056                                free_extent_buffer(leaf);
5057                        }
5058                } else {
5059                        btrfs_mark_buffer_dirty(leaf);
5060                }
5061        }
5062        return ret;
5063}
5064
5065/*
5066 * search the tree again to find a leaf with lesser keys
5067 * returns 0 if it found something or 1 if there are no lesser leaves.
5068 * returns < 0 on io errors.
5069 *
5070 * This may release the path, and so you may lose any locks held at the
5071 * time you call it.
5072 */
5073int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5074{
5075        struct btrfs_key key;
5076        struct btrfs_disk_key found_key;
5077        int ret;
5078
5079        btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5080
5081        if (key.offset > 0) {
5082                key.offset--;
5083        } else if (key.type > 0) {
5084                key.type--;
5085                key.offset = (u64)-1;
5086        } else if (key.objectid > 0) {
5087                key.objectid--;
5088                key.type = (u8)-1;
5089                key.offset = (u64)-1;
5090        } else {
5091                return 1;
5092        }
5093
5094        btrfs_release_path(path);
5095        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5096        if (ret < 0)
5097                return ret;
5098        btrfs_item_key(path->nodes[0], &found_key, 0);
5099        ret = comp_keys(&found_key, &key);
5100        /*
5101         * We might have had an item with the previous key in the tree right
5102         * before we released our path. And after we released our path, that
5103         * item might have been pushed to the first slot (0) of the leaf we
5104         * were holding due to a tree balance. Alternatively, an item with the
5105         * previous key can exist as the only element of a leaf (big fat item).
5106         * Therefore account for these 2 cases, so that our callers (like
5107         * btrfs_previous_item) don't miss an existing item with a key matching
5108         * the previous key we computed above.
5109         */
5110        if (ret <= 0)
5111                return 0;
5112        return 1;
5113}
5114
5115/*
5116 * A helper function to walk down the tree starting at min_key, and looking
5117 * for nodes or leaves that are have a minimum transaction id.
5118 * This is used by the btree defrag code, and tree logging
5119 *
5120 * This does not cow, but it does stuff the starting key it finds back
5121 * into min_key, so you can call btrfs_search_slot with cow=1 on the
5122 * key and get a writable path.
5123 *
5124 * This does lock as it descends, and path->keep_locks should be set
5125 * to 1 by the caller.
5126 *
5127 * This honors path->lowest_level to prevent descent past a given level
5128 * of the tree.
5129 *
5130 * min_trans indicates the oldest transaction that you are interested
5131 * in walking through.  Any nodes or leaves older than min_trans are
5132 * skipped over (without reading them).
5133 *
5134 * returns zero if something useful was found, < 0 on error and 1 if there
5135 * was nothing in the tree that matched the search criteria.
5136 */
5137int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5138                         struct btrfs_path *path,
5139                         u64 min_trans)
5140{
5141        struct extent_buffer *cur;
5142        struct btrfs_key found_key;
5143        int slot;
5144        int sret;
5145        u32 nritems;
5146        int level;
5147        int ret = 1;
5148
5149        WARN_ON(!path->keep_locks);
5150again:
5151        cur = btrfs_read_lock_root_node(root);
5152        level = btrfs_header_level(cur);
5153        WARN_ON(path->nodes[level]);
5154        path->nodes[level] = cur;
5155        path->locks[level] = BTRFS_READ_LOCK;
5156
5157        if (btrfs_header_generation(cur) < min_trans) {
5158                ret = 1;
5159                goto out;
5160        }
5161        while (1) {
5162                nritems = btrfs_header_nritems(cur);
5163                level = btrfs_header_level(cur);
5164                sret = bin_search(cur, min_key, level, &slot);
5165
5166                /* at the lowest level, we're done, setup the path and exit */
5167                if (level == path->lowest_level) {
5168                        if (slot >= nritems)
5169                                goto find_next_key;
5170                        ret = 0;
5171                        path->slots[level] = slot;
5172                        btrfs_item_key_to_cpu(cur, &found_key, slot);
5173                        goto out;
5174                }
5175                if (sret && slot > 0)
5176                        slot--;
5177                /*
5178                 * check this node pointer against the min_trans parameters.
5179                 * If it is too old, old, skip to the next one.
5180                 */
5181                while (slot < nritems) {
5182                        u64 gen;
5183
5184                        gen = btrfs_node_ptr_generation(cur, slot);
5185                        if (gen < min_trans) {
5186                                slot++;
5187                                continue;
5188                        }
5189                        break;
5190                }
5191find_next_key:
5192                /*
5193                 * we didn't find a candidate key in this node, walk forward
5194                 * and find another one
5195                 */
5196                if (slot >= nritems) {
5197                        path->slots[level] = slot;
5198                        btrfs_set_path_blocking(path);
5199                        sret = btrfs_find_next_key(root, path, min_key, level,
5200                                                  min_trans);
5201                        if (sret == 0) {
5202                                btrfs_release_path(path);
5203                                goto again;
5204                        } else {
5205                                goto out;
5206                        }
5207                }
5208                /* save our key for returning back */
5209                btrfs_node_key_to_cpu(cur, &found_key, slot);
5210                path->slots[level] = slot;
5211                if (level == path->lowest_level) {
5212                        ret = 0;
5213                        unlock_up(path, level, 1, 0, NULL);
5214                        goto out;
5215                }
5216                btrfs_set_path_blocking(path);
5217                cur = read_node_slot(root, cur, slot);
5218                BUG_ON(!cur); /* -ENOMEM */
5219
5220                btrfs_tree_read_lock(cur);
5221
5222                path->locks[level - 1] = BTRFS_READ_LOCK;
5223                path->nodes[level - 1] = cur;
5224                unlock_up(path, level, 1, 0, NULL);
5225                btrfs_clear_path_blocking(path, NULL, 0);
5226        }
5227out:
5228        if (ret == 0)
5229                memcpy(min_key, &found_key, sizeof(found_key));
5230        btrfs_set_path_blocking(path);
5231        return ret;
5232}
5233
5234static void tree_move_down(struct btrfs_root *root,
5235                           struct btrfs_path *path,
5236                           int *level, int root_level)
5237{
5238        BUG_ON(*level == 0);
5239        path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level],
5240                                        path->slots[*level]);
5241        path->slots[*level - 1] = 0;
5242        (*level)--;
5243}
5244
5245static int tree_move_next_or_upnext(struct btrfs_root *root,
5246                                    struct btrfs_path *path,
5247                                    int *level, int root_level)
5248{
5249        int ret = 0;
5250        int nritems;
5251        nritems = btrfs_header_nritems(path->nodes[*level]);
5252
5253        path->slots[*level]++;
5254
5255        while (path->slots[*level] >= nritems) {
5256                if (*level == root_level)
5257                        return -1;
5258
5259                /* move upnext */
5260                path->slots[*level] = 0;
5261                free_extent_buffer(path->nodes[*level]);
5262                path->nodes[*level] = NULL;
5263                (*level)++;
5264                path->slots[*level]++;
5265
5266                nritems = btrfs_header_nritems(path->nodes[*level]);
5267                ret = 1;
5268        }
5269        return ret;
5270}
5271
5272/*
5273 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5274 * or down.
5275 */
5276static int tree_advance(struct btrfs_root *root,
5277                        struct btrfs_path *path,
5278                        int *level, int root_level,
5279                        int allow_down,
5280                        struct btrfs_key *key)
5281{
5282        int ret;
5283
5284        if (*level == 0 || !allow_down) {
5285                ret = tree_move_next_or_upnext(root, path, level, root_level);
5286        } else {
5287                tree_move_down(root, path, level, root_level);
5288                ret = 0;
5289        }
5290        if (ret >= 0) {
5291                if (*level == 0)
5292                        btrfs_item_key_to_cpu(path->nodes[*level], key,
5293                                        path->slots[*level]);
5294                else
5295                        btrfs_node_key_to_cpu(path->nodes[*level], key,
5296                                        path->slots[*level]);
5297        }
5298        return ret;
5299}
5300
5301static int tree_compare_item(struct btrfs_root *left_root,
5302                             struct btrfs_path *left_path,
5303                             struct btrfs_path *right_path,
5304                             char *tmp_buf)
5305{
5306        int cmp;
5307        int len1, len2;
5308        unsigned long off1, off2;
5309
5310        len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5311        len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5312        if (len1 != len2)
5313                return 1;
5314
5315        off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5316        off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5317                                right_path->slots[0]);
5318
5319        read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5320
5321        cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5322        if (cmp)
5323                return 1;
5324        return 0;
5325}
5326
5327#define ADVANCE 1
5328#define ADVANCE_ONLY_NEXT -1
5329
5330/*
5331 * This function compares two trees and calls the provided callback for
5332 * every changed/new/deleted item it finds.
5333 * If shared tree blocks are encountered, whole subtrees are skipped, making
5334 * the compare pretty fast on snapshotted subvolumes.
5335 *
5336 * This currently works on commit roots only. As commit roots are read only,
5337 * we don't do any locking. The commit roots are protected with transactions.
5338 * Transactions are ended and rejoined when a commit is tried in between.
5339 *
5340 * This function checks for modifications done to the trees while comparing.
5341 * If it detects a change, it aborts immediately.
5342 */
5343int btrfs_compare_trees(struct btrfs_root *left_root,
5344                        struct btrfs_root *right_root,
5345                        btrfs_changed_cb_t changed_cb, void *ctx)
5346{
5347        int ret;
5348        int cmp;
5349        struct btrfs_path *left_path = NULL;
5350        struct btrfs_path *right_path = NULL;
5351        struct btrfs_key left_key;
5352        struct btrfs_key right_key;
5353        char *tmp_buf = NULL;
5354        int left_root_level;
5355        int right_root_level;
5356        int left_level;
5357        int right_level;
5358        int left_end_reached;
5359        int right_end_reached;
5360        int advance_left;
5361        int advance_right;
5362        u64 left_blockptr;
5363        u64 right_blockptr;
5364        u64 left_gen;
5365        u64 right_gen;
5366
5367        left_path = btrfs_alloc_path();
5368        if (!left_path) {
5369                ret = -ENOMEM;
5370                goto out;
5371        }
5372        right_path = btrfs_alloc_path();
5373        if (!right_path) {
5374                ret = -ENOMEM;
5375                goto out;
5376        }
5377
5378        tmp_buf = kmalloc(left_root->leafsize, GFP_NOFS);
5379        if (!tmp_buf) {
5380                ret = -ENOMEM;
5381                goto out;
5382        }
5383
5384        left_path->search_commit_root = 1;
5385        left_path->skip_locking = 1;
5386        right_path->search_commit_root = 1;
5387        right_path->skip_locking = 1;
5388
5389        /*
5390         * Strategy: Go to the first items of both trees. Then do
5391         *
5392         * If both trees are at level 0
5393         *   Compare keys of current items
5394         *     If left < right treat left item as new, advance left tree
5395         *       and repeat
5396         *     If left > right treat right item as deleted, advance right tree
5397         *       and repeat
5398         *     If left == right do deep compare of items, treat as changed if
5399         *       needed, advance both trees and repeat
5400         * If both trees are at the same level but not at level 0
5401         *   Compare keys of current nodes/leafs
5402         *     If left < right advance left tree and repeat
5403         *     If left > right advance right tree and repeat
5404         *     If left == right compare blockptrs of the next nodes/leafs
5405         *       If they match advance both trees but stay at the same level
5406         *         and repeat
5407         *       If they don't match advance both trees while allowing to go
5408         *         deeper and repeat
5409         * If tree levels are different
5410         *   Advance the tree that needs it and repeat
5411         *
5412         * Advancing a tree means:
5413         *   If we are at level 0, try to go to the next slot. If that's not
5414         *   possible, go one level up and repeat. Stop when we found a level
5415         *   where we could go to the next slot. We may at this point be on a
5416         *   node or a leaf.
5417         *
5418         *   If we are not at level 0 and not on shared tree blocks, go one
5419         *   level deeper.
5420         *
5421         *   If we are not at level 0 and on shared tree blocks, go one slot to
5422         *   the right if possible or go up and right.
5423         */
5424
5425        down_read(&left_root->fs_info->commit_root_sem);
5426        left_level = btrfs_header_level(left_root->commit_root);
5427        left_root_level = left_level;
5428        left_path->nodes[left_level] = left_root->commit_root;
5429        extent_buffer_get(left_path->nodes[left_level]);
5430
5431        right_level = btrfs_header_level(right_root->commit_root);
5432        right_root_level = right_level;
5433        right_path->nodes[right_level] = right_root->commit_root;
5434        extent_buffer_get(right_path->nodes[right_level]);
5435        up_read(&left_root->fs_info->commit_root_sem);
5436
5437        if (left_level == 0)
5438                btrfs_item_key_to_cpu(left_path->nodes[left_level],
5439                                &left_key, left_path->slots[left_level]);
5440        else
5441                btrfs_node_key_to_cpu(left_path->nodes[left_level],
5442                                &left_key, left_path->slots[left_level]);
5443        if (right_level == 0)
5444                btrfs_item_key_to_cpu(right_path->nodes[right_level],
5445                                &right_key, right_path->slots[right_level]);
5446        else
5447                btrfs_node_key_to_cpu(right_path->nodes[right_level],
5448                                &right_key, right_path->slots[right_level]);
5449
5450        left_end_reached = right_end_reached = 0;
5451        advance_left = advance_right = 0;
5452
5453        while (1) {
5454                if (advance_left && !left_end_reached) {
5455                        ret = tree_advance(left_root, left_path, &left_level,
5456                                        left_root_level,
5457                                        advance_left != ADVANCE_ONLY_NEXT,
5458                                        &left_key);
5459                        if (ret < 0)
5460                                left_end_reached = ADVANCE;
5461                        advance_left = 0;
5462                }
5463                if (advance_right && !right_end_reached) {
5464                        ret = tree_advance(right_root, right_path, &right_level,
5465                                        right_root_level,
5466                                        advance_right != ADVANCE_ONLY_NEXT,
5467                                        &right_key);
5468                        if (ret < 0)
5469                                right_end_reached = ADVANCE;
5470                        advance_right = 0;
5471                }
5472
5473                if (left_end_reached && right_end_reached) {
5474                        ret = 0;
5475                        goto out;
5476                } else if (left_end_reached) {
5477                        if (right_level == 0) {
5478                                ret = changed_cb(left_root, right_root,
5479                                                left_path, right_path,
5480                                                &right_key,
5481                                                BTRFS_COMPARE_TREE_DELETED,
5482                                                ctx);
5483                                if (ret < 0)
5484                                        goto out;
5485                        }
5486                        advance_right = ADVANCE;
5487                        continue;
5488                } else if (right_end_reached) {
5489                        if (left_level == 0) {
5490                                ret = changed_cb(left_root, right_root,
5491                                                left_path, right_path,
5492                                                &left_key,
5493                                                BTRFS_COMPARE_TREE_NEW,
5494                                                ctx);
5495                                if (ret < 0)
5496                                        goto out;
5497                        }
5498                        advance_left = ADVANCE;
5499                        continue;
5500                }
5501
5502                if (left_level == 0 && right_level == 0) {
5503                        cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5504                        if (cmp < 0) {
5505                                ret = changed_cb(left_root, right_root,
5506                                                left_path, right_path,
5507                                                &left_key,
5508                                                BTRFS_COMPARE_TREE_NEW,
5509                                                ctx);
5510                                if (ret < 0)
5511                                        goto out;
5512                                advance_left = ADVANCE;
5513                        } else if (cmp > 0) {
5514                                ret = changed_cb(left_root, right_root,
5515                                                left_path, right_path,
5516                                                &right_key,
5517                                                BTRFS_COMPARE_TREE_DELETED,
5518                                                ctx);
5519                                if (ret < 0)
5520                                        goto out;
5521                                advance_right = ADVANCE;
5522                        } else {
5523                                enum btrfs_compare_tree_result cmp;
5524
5525                                WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5526                                ret = tree_compare_item(left_root, left_path,
5527                                                right_path, tmp_buf);
5528                                if (ret)
5529                                        cmp = BTRFS_COMPARE_TREE_CHANGED;
5530                                else
5531                                        cmp = BTRFS_COMPARE_TREE_SAME;
5532                                ret = changed_cb(left_root, right_root,
5533                                                 left_path, right_path,
5534                                                 &left_key, cmp, ctx);
5535                                if (ret < 0)
5536                                        goto out;
5537                                advance_left = ADVANCE;
5538                                advance_right = ADVANCE;
5539                        }
5540                } else if (left_level == right_level) {
5541                        cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5542                        if (cmp < 0) {
5543                                advance_left = ADVANCE;
5544                        } else if (cmp > 0) {
5545                                advance_right = ADVANCE;
5546                        } else {
5547                                left_blockptr = btrfs_node_blockptr(
5548                                                left_path->nodes[left_level],
5549                                                left_path->slots[left_level]);
5550                                right_blockptr = btrfs_node_blockptr(
5551                                                right_path->nodes[right_level],
5552                                                right_path->slots[right_level]);
5553                                left_gen = btrfs_node_ptr_generation(
5554                                                left_path->nodes[left_level],
5555                                                left_path->slots[left_level]);
5556                                right_gen = btrfs_node_ptr_generation(
5557                                                right_path->nodes[right_level],
5558                                                right_path->slots[right_level]);
5559                                if (left_blockptr == right_blockptr &&
5560                                    left_gen == right_gen) {
5561                                        /*
5562                                         * As we're on a shared block, don't
5563                                         * allow to go deeper.
5564                                         */
5565                                        advance_left = ADVANCE_ONLY_NEXT;
5566                                        advance_right = ADVANCE_ONLY_NEXT;
5567                                } else {
5568                                        advance_left = ADVANCE;
5569                                        advance_right = ADVANCE;
5570                                }
5571                        }
5572                } else if (left_level < right_level) {
5573                        advance_right = ADVANCE;
5574                } else {
5575                        advance_left = ADVANCE;
5576                }
5577        }
5578
5579out:
5580        btrfs_free_path(left_path);
5581        btrfs_free_path(right_path);
5582        kfree(tmp_buf);
5583        return ret;
5584}
5585
5586/*
5587 * this is similar to btrfs_next_leaf, but does not try to preserve
5588 * and fixup the path.  It looks for and returns the next key in the
5589 * tree based on the current path and the min_trans parameters.
5590 *
5591 * 0 is returned if another key is found, < 0 if there are any errors
5592 * and 1 is returned if there are no higher keys in the tree
5593 *
5594 * path->keep_locks should be set to 1 on the search made before
5595 * calling this function.
5596 */
5597int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5598                        struct btrfs_key *key, int level, u64 min_trans)
5599{
5600        int slot;
5601        struct extent_buffer *c;
5602
5603        WARN_ON(!path->keep_locks);
5604        while (level < BTRFS_MAX_LEVEL) {
5605                if (!path->nodes[level])
5606                        return 1;
5607
5608                slot = path->slots[level] + 1;
5609                c = path->nodes[level];
5610next:
5611                if (slot >= btrfs_header_nritems(c)) {
5612                        int ret;
5613                        int orig_lowest;
5614                        struct btrfs_key cur_key;
5615                        if (level + 1 >= BTRFS_MAX_LEVEL ||
5616                            !path->nodes[level + 1])
5617                                return 1;
5618
5619                        if (path->locks[level + 1]) {
5620                                level++;
5621                                continue;
5622                        }
5623
5624                        slot = btrfs_header_nritems(c) - 1;
5625                        if (level == 0)
5626                                btrfs_item_key_to_cpu(c, &cur_key, slot);
5627                        else
5628                                btrfs_node_key_to_cpu(c, &cur_key, slot);
5629
5630                        orig_lowest = path->lowest_level;
5631                        btrfs_release_path(path);
5632                        path->lowest_level = level;
5633                        ret = btrfs_search_slot(NULL, root, &cur_key, path,
5634                                                0, 0);
5635                        path->lowest_level = orig_lowest;
5636                        if (ret < 0)
5637                                return ret;
5638
5639                        c = path->nodes[level];
5640                        slot = path->slots[level];
5641                        if (ret == 0)
5642                                slot++;
5643                        goto next;
5644                }
5645
5646                if (level == 0)
5647                        btrfs_item_key_to_cpu(c, key, slot);
5648                else {
5649                        u64 gen = btrfs_node_ptr_generation(c, slot);
5650
5651                        if (gen < min_trans) {
5652                                slot++;
5653                                goto next;
5654                        }
5655                        btrfs_node_key_to_cpu(c, key, slot);
5656                }
5657                return 0;
5658        }
5659        return 1;
5660}
5661
5662/*
5663 * search the tree again to find a leaf with greater keys
5664 * returns 0 if it found something or 1 if there are no greater leaves.
5665 * returns < 0 on io errors.
5666 */
5667int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5668{
5669        return btrfs_next_old_leaf(root, path, 0);
5670}
5671
5672int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5673                        u64 time_seq)
5674{
5675        int slot;
5676        int level;
5677        struct extent_buffer *c;
5678        struct extent_buffer *next;
5679        struct btrfs_key key;
5680        u32 nritems;
5681        int ret;
5682        int old_spinning = path->leave_spinning;
5683        int next_rw_lock = 0;
5684
5685        nritems = btrfs_header_nritems(path->nodes[0]);
5686        if (nritems == 0)
5687                return 1;
5688
5689        btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5690again:
5691        level = 1;
5692        next = NULL;
5693        next_rw_lock = 0;
5694        btrfs_release_path(path);
5695
5696        path->keep_locks = 1;
5697        path->leave_spinning = 1;
5698
5699        if (time_seq)
5700                ret = btrfs_search_old_slot(root, &key, path, time_seq);
5701        else
5702                ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5703        path->keep_locks = 0;
5704
5705        if (ret < 0)
5706                return ret;
5707
5708        nritems = btrfs_header_nritems(path->nodes[0]);
5709        /*
5710         * by releasing the path above we dropped all our locks.  A balance
5711         * could have added more items next to the key that used to be
5712         * at the very end of the block.  So, check again here and
5713         * advance the path if there are now more items available.
5714         */
5715        if (nritems > 0 && path->slots[0] < nritems - 1) {
5716                if (ret == 0)
5717                        path->slots[0]++;
5718                ret = 0;
5719                goto done;
5720        }
5721        /*
5722         * So the above check misses one case:
5723         * - after releasing the path above, someone has removed the item that
5724         *   used to be at the very end of the block, and balance between leafs
5725         *   gets another one with bigger key.offset to replace it.
5726         *
5727         * This one should be returned as well, or we can get leaf corruption
5728         * later(esp. in __btrfs_drop_extents()).
5729         *
5730         * And a bit more explanation about this check,
5731         * with ret > 0, the key isn't found, the path points to the slot
5732         * where it should be inserted, so the path->slots[0] item must be the
5733         * bigger one.
5734         */
5735        if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5736                ret = 0;
5737                goto done;
5738        }
5739
5740        while (level < BTRFS_MAX_LEVEL) {
5741                if (!path->nodes[level]) {
5742                        ret = 1;
5743                        goto done;
5744                }
5745
5746                slot = path->slots[level] + 1;
5747                c = path->nodes[level];
5748                if (slot >= btrfs_header_nritems(c)) {
5749                        level++;
5750                        if (level == BTRFS_MAX_LEVEL) {
5751                                ret = 1;
5752                                goto done;
5753                        }
5754                        continue;
5755                }
5756
5757                if (next) {
5758                        btrfs_tree_unlock_rw(next, next_rw_lock);
5759                        free_extent_buffer(next);
5760                }
5761
5762                next = c;
5763                next_rw_lock = path->locks[level];
5764                ret = read_block_for_search(NULL, root, path, &next, level,
5765                                            slot, &key, 0);
5766                if (ret == -EAGAIN)
5767                        goto again;
5768
5769                if (ret < 0) {
5770                        btrfs_release_path(path);
5771                        goto done;
5772                }
5773
5774                if (!path->skip_locking) {
5775                        ret = btrfs_try_tree_read_lock(next);
5776                        if (!ret && time_seq) {
5777                                /*
5778                                 * If we don't get the lock, we may be racing
5779                                 * with push_leaf_left, holding that lock while
5780                                 * itself waiting for the leaf we've currently
5781                                 * locked. To solve this situation, we give up
5782                                 * on our lock and cycle.
5783                                 */
5784                                free_extent_buffer(next);
5785                                btrfs_release_path(path);
5786                                cond_resched();
5787                                goto again;
5788                        }
5789                        if (!ret) {
5790                                btrfs_set_path_blocking(path);
5791                                btrfs_tree_read_lock(next);
5792                                btrfs_clear_path_blocking(path, next,
5793                                                          BTRFS_READ_LOCK);
5794                        }
5795                        next_rw_lock = BTRFS_READ_LOCK;
5796                }
5797                break;
5798        }
5799        path->slots[level] = slot;
5800        while (1) {
5801                level--;
5802                c = path->nodes[level];
5803                if (path->locks[level])
5804                        btrfs_tree_unlock_rw(c, path->locks[level]);
5805
5806                free_extent_buffer(c);
5807                path->nodes[level] = next;
5808                path->slots[level] = 0;
5809                if (!path->skip_locking)
5810                        path->locks[level] = next_rw_lock;
5811                if (!level)
5812                        break;
5813
5814                ret = read_block_for_search(NULL, root, path, &next, level,
5815                                            0, &key, 0);
5816                if (ret == -EAGAIN)
5817                        goto again;
5818
5819                if (ret < 0) {
5820                        btrfs_release_path(path);
5821                        goto done;
5822                }
5823
5824                if (!path->skip_locking) {
5825                        ret = btrfs_try_tree_read_lock(next);
5826                        if (!ret) {
5827                                btrfs_set_path_blocking(path);
5828                                btrfs_tree_read_lock(next);
5829                                btrfs_clear_path_blocking(path, next,
5830                                                          BTRFS_READ_LOCK);
5831                        }
5832                        next_rw_lock = BTRFS_READ_LOCK;
5833                }
5834        }
5835        ret = 0;
5836done:
5837        unlock_up(path, 0, 1, 0, NULL);
5838        path->leave_spinning = old_spinning;
5839        if (!old_spinning)
5840                btrfs_set_path_blocking(path);
5841
5842        return ret;
5843}
5844
5845/*
5846 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5847 * searching until it gets past min_objectid or finds an item of 'type'
5848 *
5849 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5850 */
5851int btrfs_previous_item(struct btrfs_root *root,
5852                        struct btrfs_path *path, u64 min_objectid,
5853                        int type)
5854{
5855        struct btrfs_key found_key;
5856        struct extent_buffer *leaf;
5857        u32 nritems;
5858        int ret;
5859
5860        while (1) {
5861                if (path->slots[0] == 0) {
5862                        btrfs_set_path_blocking(path);
5863                        ret = btrfs_prev_leaf(root, path);
5864                        if (ret != 0)
5865                                return ret;
5866                } else {
5867                        path->slots[0]--;
5868                }
5869                leaf = path->nodes[0];
5870                nritems = btrfs_header_nritems(leaf);
5871                if (nritems == 0)
5872                        return 1;
5873                if (path->slots[0] == nritems)
5874                        path->slots[0]--;
5875
5876                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5877                if (found_key.objectid < min_objectid)
5878                        break;
5879                if (found_key.type == type)
5880                        return 0;
5881                if (found_key.objectid == min_objectid &&
5882                    found_key.type < type)
5883                        break;
5884        }
5885        return 1;
5886}
5887
5888/*
5889 * search in extent tree to find a previous Metadata/Data extent item with
5890 * min objecitd.
5891 *
5892 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5893 */
5894int btrfs_previous_extent_item(struct btrfs_root *root,
5895                        struct btrfs_path *path, u64 min_objectid)
5896{
5897        struct btrfs_key found_key;
5898        struct extent_buffer *leaf;
5899        u32 nritems;
5900        int ret;
5901
5902        while (1) {
5903                if (path->slots[0] == 0) {
5904                        btrfs_set_path_blocking(path);
5905                        ret = btrfs_prev_leaf(root, path);
5906                        if (ret != 0)
5907                                return ret;
5908                } else {
5909                        path->slots[0]--;
5910                }
5911                leaf = path->nodes[0];
5912                nritems = btrfs_header_nritems(leaf);
5913                if (nritems == 0)
5914                        return 1;
5915                if (path->slots[0] == nritems)
5916                        path->slots[0]--;
5917
5918                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5919                if (found_key.objectid < min_objectid)
5920                        break;
5921                if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5922                    found_key.type == BTRFS_METADATA_ITEM_KEY)
5923                        return 0;
5924                if (found_key.objectid == min_objectid &&
5925                    found_key.type < BTRFS_EXTENT_ITEM_KEY)
5926                        break;
5927        }
5928        return 1;
5929}
5930