linux/fs/btrfs/ordered-data.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/slab.h>
  20#include <linux/blkdev.h>
  21#include <linux/writeback.h>
  22#include <linux/pagevec.h>
  23#include "ctree.h"
  24#include "transaction.h"
  25#include "btrfs_inode.h"
  26#include "extent_io.h"
  27#include "disk-io.h"
  28
  29static struct kmem_cache *btrfs_ordered_extent_cache;
  30
  31static u64 entry_end(struct btrfs_ordered_extent *entry)
  32{
  33        if (entry->file_offset + entry->len < entry->file_offset)
  34                return (u64)-1;
  35        return entry->file_offset + entry->len;
  36}
  37
  38/* returns NULL if the insertion worked, or it returns the node it did find
  39 * in the tree
  40 */
  41static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
  42                                   struct rb_node *node)
  43{
  44        struct rb_node **p = &root->rb_node;
  45        struct rb_node *parent = NULL;
  46        struct btrfs_ordered_extent *entry;
  47
  48        while (*p) {
  49                parent = *p;
  50                entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
  51
  52                if (file_offset < entry->file_offset)
  53                        p = &(*p)->rb_left;
  54                else if (file_offset >= entry_end(entry))
  55                        p = &(*p)->rb_right;
  56                else
  57                        return parent;
  58        }
  59
  60        rb_link_node(node, parent, p);
  61        rb_insert_color(node, root);
  62        return NULL;
  63}
  64
  65static void ordered_data_tree_panic(struct inode *inode, int errno,
  66                                               u64 offset)
  67{
  68        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  69        btrfs_panic(fs_info, errno, "Inconsistency in ordered tree at offset "
  70                    "%llu", offset);
  71}
  72
  73/*
  74 * look for a given offset in the tree, and if it can't be found return the
  75 * first lesser offset
  76 */
  77static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
  78                                     struct rb_node **prev_ret)
  79{
  80        struct rb_node *n = root->rb_node;
  81        struct rb_node *prev = NULL;
  82        struct rb_node *test;
  83        struct btrfs_ordered_extent *entry;
  84        struct btrfs_ordered_extent *prev_entry = NULL;
  85
  86        while (n) {
  87                entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
  88                prev = n;
  89                prev_entry = entry;
  90
  91                if (file_offset < entry->file_offset)
  92                        n = n->rb_left;
  93                else if (file_offset >= entry_end(entry))
  94                        n = n->rb_right;
  95                else
  96                        return n;
  97        }
  98        if (!prev_ret)
  99                return NULL;
 100
 101        while (prev && file_offset >= entry_end(prev_entry)) {
 102                test = rb_next(prev);
 103                if (!test)
 104                        break;
 105                prev_entry = rb_entry(test, struct btrfs_ordered_extent,
 106                                      rb_node);
 107                if (file_offset < entry_end(prev_entry))
 108                        break;
 109
 110                prev = test;
 111        }
 112        if (prev)
 113                prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
 114                                      rb_node);
 115        while (prev && file_offset < entry_end(prev_entry)) {
 116                test = rb_prev(prev);
 117                if (!test)
 118                        break;
 119                prev_entry = rb_entry(test, struct btrfs_ordered_extent,
 120                                      rb_node);
 121                prev = test;
 122        }
 123        *prev_ret = prev;
 124        return NULL;
 125}
 126
 127/*
 128 * helper to check if a given offset is inside a given entry
 129 */
 130static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
 131{
 132        if (file_offset < entry->file_offset ||
 133            entry->file_offset + entry->len <= file_offset)
 134                return 0;
 135        return 1;
 136}
 137
 138static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
 139                          u64 len)
 140{
 141        if (file_offset + len <= entry->file_offset ||
 142            entry->file_offset + entry->len <= file_offset)
 143                return 0;
 144        return 1;
 145}
 146
 147/*
 148 * look find the first ordered struct that has this offset, otherwise
 149 * the first one less than this offset
 150 */
 151static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
 152                                          u64 file_offset)
 153{
 154        struct rb_root *root = &tree->tree;
 155        struct rb_node *prev = NULL;
 156        struct rb_node *ret;
 157        struct btrfs_ordered_extent *entry;
 158
 159        if (tree->last) {
 160                entry = rb_entry(tree->last, struct btrfs_ordered_extent,
 161                                 rb_node);
 162                if (offset_in_entry(entry, file_offset))
 163                        return tree->last;
 164        }
 165        ret = __tree_search(root, file_offset, &prev);
 166        if (!ret)
 167                ret = prev;
 168        if (ret)
 169                tree->last = ret;
 170        return ret;
 171}
 172
 173/* allocate and add a new ordered_extent into the per-inode tree.
 174 * file_offset is the logical offset in the file
 175 *
 176 * start is the disk block number of an extent already reserved in the
 177 * extent allocation tree
 178 *
 179 * len is the length of the extent
 180 *
 181 * The tree is given a single reference on the ordered extent that was
 182 * inserted.
 183 */
 184static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
 185                                      u64 start, u64 len, u64 disk_len,
 186                                      int type, int dio, int compress_type)
 187{
 188        struct btrfs_root *root = BTRFS_I(inode)->root;
 189        struct btrfs_ordered_inode_tree *tree;
 190        struct rb_node *node;
 191        struct btrfs_ordered_extent *entry;
 192
 193        tree = &BTRFS_I(inode)->ordered_tree;
 194        entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
 195        if (!entry)
 196                return -ENOMEM;
 197
 198        entry->file_offset = file_offset;
 199        entry->start = start;
 200        entry->len = len;
 201        if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) &&
 202            !(type == BTRFS_ORDERED_NOCOW))
 203                entry->csum_bytes_left = disk_len;
 204        entry->disk_len = disk_len;
 205        entry->bytes_left = len;
 206        entry->inode = igrab(inode);
 207        entry->compress_type = compress_type;
 208        entry->truncated_len = (u64)-1;
 209        if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
 210                set_bit(type, &entry->flags);
 211
 212        if (dio)
 213                set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
 214
 215        /* one ref for the tree */
 216        atomic_set(&entry->refs, 1);
 217        init_waitqueue_head(&entry->wait);
 218        INIT_LIST_HEAD(&entry->list);
 219        INIT_LIST_HEAD(&entry->root_extent_list);
 220        INIT_LIST_HEAD(&entry->work_list);
 221        init_completion(&entry->completion);
 222        INIT_LIST_HEAD(&entry->log_list);
 223
 224        trace_btrfs_ordered_extent_add(inode, entry);
 225
 226        spin_lock_irq(&tree->lock);
 227        node = tree_insert(&tree->tree, file_offset,
 228                           &entry->rb_node);
 229        if (node)
 230                ordered_data_tree_panic(inode, -EEXIST, file_offset);
 231        spin_unlock_irq(&tree->lock);
 232
 233        spin_lock(&root->ordered_extent_lock);
 234        list_add_tail(&entry->root_extent_list,
 235                      &root->ordered_extents);
 236        root->nr_ordered_extents++;
 237        if (root->nr_ordered_extents == 1) {
 238                spin_lock(&root->fs_info->ordered_root_lock);
 239                BUG_ON(!list_empty(&root->ordered_root));
 240                list_add_tail(&root->ordered_root,
 241                              &root->fs_info->ordered_roots);
 242                spin_unlock(&root->fs_info->ordered_root_lock);
 243        }
 244        spin_unlock(&root->ordered_extent_lock);
 245
 246        return 0;
 247}
 248
 249int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
 250                             u64 start, u64 len, u64 disk_len, int type)
 251{
 252        return __btrfs_add_ordered_extent(inode, file_offset, start, len,
 253                                          disk_len, type, 0,
 254                                          BTRFS_COMPRESS_NONE);
 255}
 256
 257int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
 258                                 u64 start, u64 len, u64 disk_len, int type)
 259{
 260        return __btrfs_add_ordered_extent(inode, file_offset, start, len,
 261                                          disk_len, type, 1,
 262                                          BTRFS_COMPRESS_NONE);
 263}
 264
 265int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
 266                                      u64 start, u64 len, u64 disk_len,
 267                                      int type, int compress_type)
 268{
 269        return __btrfs_add_ordered_extent(inode, file_offset, start, len,
 270                                          disk_len, type, 0,
 271                                          compress_type);
 272}
 273
 274/*
 275 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
 276 * when an ordered extent is finished.  If the list covers more than one
 277 * ordered extent, it is split across multiples.
 278 */
 279void btrfs_add_ordered_sum(struct inode *inode,
 280                           struct btrfs_ordered_extent *entry,
 281                           struct btrfs_ordered_sum *sum)
 282{
 283        struct btrfs_ordered_inode_tree *tree;
 284
 285        tree = &BTRFS_I(inode)->ordered_tree;
 286        spin_lock_irq(&tree->lock);
 287        list_add_tail(&sum->list, &entry->list);
 288        WARN_ON(entry->csum_bytes_left < sum->len);
 289        entry->csum_bytes_left -= sum->len;
 290        if (entry->csum_bytes_left == 0)
 291                wake_up(&entry->wait);
 292        spin_unlock_irq(&tree->lock);
 293}
 294
 295/*
 296 * this is used to account for finished IO across a given range
 297 * of the file.  The IO may span ordered extents.  If
 298 * a given ordered_extent is completely done, 1 is returned, otherwise
 299 * 0.
 300 *
 301 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
 302 * to make sure this function only returns 1 once for a given ordered extent.
 303 *
 304 * file_offset is updated to one byte past the range that is recorded as
 305 * complete.  This allows you to walk forward in the file.
 306 */
 307int btrfs_dec_test_first_ordered_pending(struct inode *inode,
 308                                   struct btrfs_ordered_extent **cached,
 309                                   u64 *file_offset, u64 io_size, int uptodate)
 310{
 311        struct btrfs_ordered_inode_tree *tree;
 312        struct rb_node *node;
 313        struct btrfs_ordered_extent *entry = NULL;
 314        int ret;
 315        unsigned long flags;
 316        u64 dec_end;
 317        u64 dec_start;
 318        u64 to_dec;
 319
 320        tree = &BTRFS_I(inode)->ordered_tree;
 321        spin_lock_irqsave(&tree->lock, flags);
 322        node = tree_search(tree, *file_offset);
 323        if (!node) {
 324                ret = 1;
 325                goto out;
 326        }
 327
 328        entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 329        if (!offset_in_entry(entry, *file_offset)) {
 330                ret = 1;
 331                goto out;
 332        }
 333
 334        dec_start = max(*file_offset, entry->file_offset);
 335        dec_end = min(*file_offset + io_size, entry->file_offset +
 336                      entry->len);
 337        *file_offset = dec_end;
 338        if (dec_start > dec_end) {
 339                btrfs_crit(BTRFS_I(inode)->root->fs_info,
 340                        "bad ordering dec_start %llu end %llu", dec_start, dec_end);
 341        }
 342        to_dec = dec_end - dec_start;
 343        if (to_dec > entry->bytes_left) {
 344                btrfs_crit(BTRFS_I(inode)->root->fs_info,
 345                        "bad ordered accounting left %llu size %llu",
 346                        entry->bytes_left, to_dec);
 347        }
 348        entry->bytes_left -= to_dec;
 349        if (!uptodate)
 350                set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
 351
 352        if (entry->bytes_left == 0) {
 353                ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
 354                if (waitqueue_active(&entry->wait))
 355                        wake_up(&entry->wait);
 356        } else {
 357                ret = 1;
 358        }
 359out:
 360        if (!ret && cached && entry) {
 361                *cached = entry;
 362                atomic_inc(&entry->refs);
 363        }
 364        spin_unlock_irqrestore(&tree->lock, flags);
 365        return ret == 0;
 366}
 367
 368/*
 369 * this is used to account for finished IO across a given range
 370 * of the file.  The IO should not span ordered extents.  If
 371 * a given ordered_extent is completely done, 1 is returned, otherwise
 372 * 0.
 373 *
 374 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
 375 * to make sure this function only returns 1 once for a given ordered extent.
 376 */
 377int btrfs_dec_test_ordered_pending(struct inode *inode,
 378                                   struct btrfs_ordered_extent **cached,
 379                                   u64 file_offset, u64 io_size, int uptodate)
 380{
 381        struct btrfs_ordered_inode_tree *tree;
 382        struct rb_node *node;
 383        struct btrfs_ordered_extent *entry = NULL;
 384        unsigned long flags;
 385        int ret;
 386
 387        tree = &BTRFS_I(inode)->ordered_tree;
 388        spin_lock_irqsave(&tree->lock, flags);
 389        if (cached && *cached) {
 390                entry = *cached;
 391                goto have_entry;
 392        }
 393
 394        node = tree_search(tree, file_offset);
 395        if (!node) {
 396                ret = 1;
 397                goto out;
 398        }
 399
 400        entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 401have_entry:
 402        if (!offset_in_entry(entry, file_offset)) {
 403                ret = 1;
 404                goto out;
 405        }
 406
 407        if (io_size > entry->bytes_left) {
 408                btrfs_crit(BTRFS_I(inode)->root->fs_info,
 409                           "bad ordered accounting left %llu size %llu",
 410                       entry->bytes_left, io_size);
 411        }
 412        entry->bytes_left -= io_size;
 413        if (!uptodate)
 414                set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
 415
 416        if (entry->bytes_left == 0) {
 417                ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
 418                if (waitqueue_active(&entry->wait))
 419                        wake_up(&entry->wait);
 420        } else {
 421                ret = 1;
 422        }
 423out:
 424        if (!ret && cached && entry) {
 425                *cached = entry;
 426                atomic_inc(&entry->refs);
 427        }
 428        spin_unlock_irqrestore(&tree->lock, flags);
 429        return ret == 0;
 430}
 431
 432/* Needs to either be called under a log transaction or the log_mutex */
 433void btrfs_get_logged_extents(struct inode *inode,
 434                              struct list_head *logged_list)
 435{
 436        struct btrfs_ordered_inode_tree *tree;
 437        struct btrfs_ordered_extent *ordered;
 438        struct rb_node *n;
 439
 440        tree = &BTRFS_I(inode)->ordered_tree;
 441        spin_lock_irq(&tree->lock);
 442        for (n = rb_first(&tree->tree); n; n = rb_next(n)) {
 443                ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
 444                if (!list_empty(&ordered->log_list))
 445                        continue;
 446                list_add_tail(&ordered->log_list, logged_list);
 447                atomic_inc(&ordered->refs);
 448        }
 449        spin_unlock_irq(&tree->lock);
 450}
 451
 452void btrfs_put_logged_extents(struct list_head *logged_list)
 453{
 454        struct btrfs_ordered_extent *ordered;
 455
 456        while (!list_empty(logged_list)) {
 457                ordered = list_first_entry(logged_list,
 458                                           struct btrfs_ordered_extent,
 459                                           log_list);
 460                list_del_init(&ordered->log_list);
 461                btrfs_put_ordered_extent(ordered);
 462        }
 463}
 464
 465void btrfs_submit_logged_extents(struct list_head *logged_list,
 466                                 struct btrfs_root *log)
 467{
 468        int index = log->log_transid % 2;
 469
 470        spin_lock_irq(&log->log_extents_lock[index]);
 471        list_splice_tail(logged_list, &log->logged_list[index]);
 472        spin_unlock_irq(&log->log_extents_lock[index]);
 473}
 474
 475void btrfs_wait_logged_extents(struct btrfs_root *log, u64 transid)
 476{
 477        struct btrfs_ordered_extent *ordered;
 478        int index = transid % 2;
 479
 480        spin_lock_irq(&log->log_extents_lock[index]);
 481        while (!list_empty(&log->logged_list[index])) {
 482                ordered = list_first_entry(&log->logged_list[index],
 483                                           struct btrfs_ordered_extent,
 484                                           log_list);
 485                list_del_init(&ordered->log_list);
 486                spin_unlock_irq(&log->log_extents_lock[index]);
 487
 488                if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) &&
 489                    !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
 490                        struct inode *inode = ordered->inode;
 491                        u64 start = ordered->file_offset;
 492                        u64 end = ordered->file_offset + ordered->len - 1;
 493
 494                        WARN_ON(!inode);
 495                        filemap_fdatawrite_range(inode->i_mapping, start, end);
 496                }
 497                wait_event(ordered->wait, test_bit(BTRFS_ORDERED_IO_DONE,
 498                                                   &ordered->flags));
 499
 500                btrfs_put_ordered_extent(ordered);
 501                spin_lock_irq(&log->log_extents_lock[index]);
 502        }
 503        spin_unlock_irq(&log->log_extents_lock[index]);
 504}
 505
 506void btrfs_free_logged_extents(struct btrfs_root *log, u64 transid)
 507{
 508        struct btrfs_ordered_extent *ordered;
 509        int index = transid % 2;
 510
 511        spin_lock_irq(&log->log_extents_lock[index]);
 512        while (!list_empty(&log->logged_list[index])) {
 513                ordered = list_first_entry(&log->logged_list[index],
 514                                           struct btrfs_ordered_extent,
 515                                           log_list);
 516                list_del_init(&ordered->log_list);
 517                spin_unlock_irq(&log->log_extents_lock[index]);
 518                btrfs_put_ordered_extent(ordered);
 519                spin_lock_irq(&log->log_extents_lock[index]);
 520        }
 521        spin_unlock_irq(&log->log_extents_lock[index]);
 522}
 523
 524/*
 525 * used to drop a reference on an ordered extent.  This will free
 526 * the extent if the last reference is dropped
 527 */
 528void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
 529{
 530        struct list_head *cur;
 531        struct btrfs_ordered_sum *sum;
 532
 533        trace_btrfs_ordered_extent_put(entry->inode, entry);
 534
 535        if (atomic_dec_and_test(&entry->refs)) {
 536                if (entry->inode)
 537                        btrfs_add_delayed_iput(entry->inode);
 538                while (!list_empty(&entry->list)) {
 539                        cur = entry->list.next;
 540                        sum = list_entry(cur, struct btrfs_ordered_sum, list);
 541                        list_del(&sum->list);
 542                        kfree(sum);
 543                }
 544                kmem_cache_free(btrfs_ordered_extent_cache, entry);
 545        }
 546}
 547
 548/*
 549 * remove an ordered extent from the tree.  No references are dropped
 550 * and waiters are woken up.
 551 */
 552void btrfs_remove_ordered_extent(struct inode *inode,
 553                                 struct btrfs_ordered_extent *entry)
 554{
 555        struct btrfs_ordered_inode_tree *tree;
 556        struct btrfs_root *root = BTRFS_I(inode)->root;
 557        struct rb_node *node;
 558
 559        tree = &BTRFS_I(inode)->ordered_tree;
 560        spin_lock_irq(&tree->lock);
 561        node = &entry->rb_node;
 562        rb_erase(node, &tree->tree);
 563        if (tree->last == node)
 564                tree->last = NULL;
 565        set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
 566        spin_unlock_irq(&tree->lock);
 567
 568        spin_lock(&root->ordered_extent_lock);
 569        list_del_init(&entry->root_extent_list);
 570        root->nr_ordered_extents--;
 571
 572        trace_btrfs_ordered_extent_remove(inode, entry);
 573
 574        if (!root->nr_ordered_extents) {
 575                spin_lock(&root->fs_info->ordered_root_lock);
 576                BUG_ON(list_empty(&root->ordered_root));
 577                list_del_init(&root->ordered_root);
 578                spin_unlock(&root->fs_info->ordered_root_lock);
 579        }
 580        spin_unlock(&root->ordered_extent_lock);
 581        wake_up(&entry->wait);
 582}
 583
 584static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
 585{
 586        struct btrfs_ordered_extent *ordered;
 587
 588        ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
 589        btrfs_start_ordered_extent(ordered->inode, ordered, 1);
 590        complete(&ordered->completion);
 591}
 592
 593/*
 594 * wait for all the ordered extents in a root.  This is done when balancing
 595 * space between drives.
 596 */
 597int btrfs_wait_ordered_extents(struct btrfs_root *root, int nr)
 598{
 599        struct list_head splice, works;
 600        struct btrfs_ordered_extent *ordered, *next;
 601        int count = 0;
 602
 603        INIT_LIST_HEAD(&splice);
 604        INIT_LIST_HEAD(&works);
 605
 606        mutex_lock(&root->ordered_extent_mutex);
 607        spin_lock(&root->ordered_extent_lock);
 608        list_splice_init(&root->ordered_extents, &splice);
 609        while (!list_empty(&splice) && nr) {
 610                ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
 611                                           root_extent_list);
 612                list_move_tail(&ordered->root_extent_list,
 613                               &root->ordered_extents);
 614                atomic_inc(&ordered->refs);
 615                spin_unlock(&root->ordered_extent_lock);
 616
 617                btrfs_init_work(&ordered->flush_work,
 618                                btrfs_flush_delalloc_helper,
 619                                btrfs_run_ordered_extent_work, NULL, NULL);
 620                list_add_tail(&ordered->work_list, &works);
 621                btrfs_queue_work(root->fs_info->flush_workers,
 622                                 &ordered->flush_work);
 623
 624                cond_resched();
 625                spin_lock(&root->ordered_extent_lock);
 626                if (nr != -1)
 627                        nr--;
 628                count++;
 629        }
 630        list_splice_tail(&splice, &root->ordered_extents);
 631        spin_unlock(&root->ordered_extent_lock);
 632
 633        list_for_each_entry_safe(ordered, next, &works, work_list) {
 634                list_del_init(&ordered->work_list);
 635                wait_for_completion(&ordered->completion);
 636                btrfs_put_ordered_extent(ordered);
 637                cond_resched();
 638        }
 639        mutex_unlock(&root->ordered_extent_mutex);
 640
 641        return count;
 642}
 643
 644void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, int nr)
 645{
 646        struct btrfs_root *root;
 647        struct list_head splice;
 648        int done;
 649
 650        INIT_LIST_HEAD(&splice);
 651
 652        mutex_lock(&fs_info->ordered_operations_mutex);
 653        spin_lock(&fs_info->ordered_root_lock);
 654        list_splice_init(&fs_info->ordered_roots, &splice);
 655        while (!list_empty(&splice) && nr) {
 656                root = list_first_entry(&splice, struct btrfs_root,
 657                                        ordered_root);
 658                root = btrfs_grab_fs_root(root);
 659                BUG_ON(!root);
 660                list_move_tail(&root->ordered_root,
 661                               &fs_info->ordered_roots);
 662                spin_unlock(&fs_info->ordered_root_lock);
 663
 664                done = btrfs_wait_ordered_extents(root, nr);
 665                btrfs_put_fs_root(root);
 666
 667                spin_lock(&fs_info->ordered_root_lock);
 668                if (nr != -1) {
 669                        nr -= done;
 670                        WARN_ON(nr < 0);
 671                }
 672        }
 673        list_splice_tail(&splice, &fs_info->ordered_roots);
 674        spin_unlock(&fs_info->ordered_root_lock);
 675        mutex_unlock(&fs_info->ordered_operations_mutex);
 676}
 677
 678/*
 679 * Used to start IO or wait for a given ordered extent to finish.
 680 *
 681 * If wait is one, this effectively waits on page writeback for all the pages
 682 * in the extent, and it waits on the io completion code to insert
 683 * metadata into the btree corresponding to the extent
 684 */
 685void btrfs_start_ordered_extent(struct inode *inode,
 686                                       struct btrfs_ordered_extent *entry,
 687                                       int wait)
 688{
 689        u64 start = entry->file_offset;
 690        u64 end = start + entry->len - 1;
 691
 692        trace_btrfs_ordered_extent_start(inode, entry);
 693
 694        /*
 695         * pages in the range can be dirty, clean or writeback.  We
 696         * start IO on any dirty ones so the wait doesn't stall waiting
 697         * for the flusher thread to find them
 698         */
 699        if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
 700                filemap_fdatawrite_range(inode->i_mapping, start, end);
 701        if (wait) {
 702                wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
 703                                                 &entry->flags));
 704        }
 705}
 706
 707/*
 708 * Used to wait on ordered extents across a large range of bytes.
 709 */
 710int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
 711{
 712        int ret = 0;
 713        u64 end;
 714        u64 orig_end;
 715        struct btrfs_ordered_extent *ordered;
 716
 717        if (start + len < start) {
 718                orig_end = INT_LIMIT(loff_t);
 719        } else {
 720                orig_end = start + len - 1;
 721                if (orig_end > INT_LIMIT(loff_t))
 722                        orig_end = INT_LIMIT(loff_t);
 723        }
 724
 725        /* start IO across the range first to instantiate any delalloc
 726         * extents
 727         */
 728        ret = filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
 729        if (ret)
 730                return ret;
 731        /*
 732         * So with compression we will find and lock a dirty page and clear the
 733         * first one as dirty, setup an async extent, and immediately return
 734         * with the entire range locked but with nobody actually marked with
 735         * writeback.  So we can't just filemap_write_and_wait_range() and
 736         * expect it to work since it will just kick off a thread to do the
 737         * actual work.  So we need to call filemap_fdatawrite_range _again_
 738         * since it will wait on the page lock, which won't be unlocked until
 739         * after the pages have been marked as writeback and so we're good to go
 740         * from there.  We have to do this otherwise we'll miss the ordered
 741         * extents and that results in badness.  Please Josef, do not think you
 742         * know better and pull this out at some point in the future, it is
 743         * right and you are wrong.
 744         */
 745        if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
 746                     &BTRFS_I(inode)->runtime_flags)) {
 747                ret = filemap_fdatawrite_range(inode->i_mapping, start,
 748                                               orig_end);
 749                if (ret)
 750                        return ret;
 751        }
 752        ret = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
 753        if (ret)
 754                return ret;
 755
 756        end = orig_end;
 757        while (1) {
 758                ordered = btrfs_lookup_first_ordered_extent(inode, end);
 759                if (!ordered)
 760                        break;
 761                if (ordered->file_offset > orig_end) {
 762                        btrfs_put_ordered_extent(ordered);
 763                        break;
 764                }
 765                if (ordered->file_offset + ordered->len <= start) {
 766                        btrfs_put_ordered_extent(ordered);
 767                        break;
 768                }
 769                btrfs_start_ordered_extent(inode, ordered, 1);
 770                end = ordered->file_offset;
 771                if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
 772                        ret = -EIO;
 773                btrfs_put_ordered_extent(ordered);
 774                if (ret || end == 0 || end == start)
 775                        break;
 776                end--;
 777        }
 778        return ret;
 779}
 780
 781/*
 782 * find an ordered extent corresponding to file_offset.  return NULL if
 783 * nothing is found, otherwise take a reference on the extent and return it
 784 */
 785struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
 786                                                         u64 file_offset)
 787{
 788        struct btrfs_ordered_inode_tree *tree;
 789        struct rb_node *node;
 790        struct btrfs_ordered_extent *entry = NULL;
 791
 792        tree = &BTRFS_I(inode)->ordered_tree;
 793        spin_lock_irq(&tree->lock);
 794        node = tree_search(tree, file_offset);
 795        if (!node)
 796                goto out;
 797
 798        entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 799        if (!offset_in_entry(entry, file_offset))
 800                entry = NULL;
 801        if (entry)
 802                atomic_inc(&entry->refs);
 803out:
 804        spin_unlock_irq(&tree->lock);
 805        return entry;
 806}
 807
 808/* Since the DIO code tries to lock a wide area we need to look for any ordered
 809 * extents that exist in the range, rather than just the start of the range.
 810 */
 811struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode,
 812                                                        u64 file_offset,
 813                                                        u64 len)
 814{
 815        struct btrfs_ordered_inode_tree *tree;
 816        struct rb_node *node;
 817        struct btrfs_ordered_extent *entry = NULL;
 818
 819        tree = &BTRFS_I(inode)->ordered_tree;
 820        spin_lock_irq(&tree->lock);
 821        node = tree_search(tree, file_offset);
 822        if (!node) {
 823                node = tree_search(tree, file_offset + len);
 824                if (!node)
 825                        goto out;
 826        }
 827
 828        while (1) {
 829                entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 830                if (range_overlaps(entry, file_offset, len))
 831                        break;
 832
 833                if (entry->file_offset >= file_offset + len) {
 834                        entry = NULL;
 835                        break;
 836                }
 837                entry = NULL;
 838                node = rb_next(node);
 839                if (!node)
 840                        break;
 841        }
 842out:
 843        if (entry)
 844                atomic_inc(&entry->refs);
 845        spin_unlock_irq(&tree->lock);
 846        return entry;
 847}
 848
 849/*
 850 * lookup and return any extent before 'file_offset'.  NULL is returned
 851 * if none is found
 852 */
 853struct btrfs_ordered_extent *
 854btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
 855{
 856        struct btrfs_ordered_inode_tree *tree;
 857        struct rb_node *node;
 858        struct btrfs_ordered_extent *entry = NULL;
 859
 860        tree = &BTRFS_I(inode)->ordered_tree;
 861        spin_lock_irq(&tree->lock);
 862        node = tree_search(tree, file_offset);
 863        if (!node)
 864                goto out;
 865
 866        entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 867        atomic_inc(&entry->refs);
 868out:
 869        spin_unlock_irq(&tree->lock);
 870        return entry;
 871}
 872
 873/*
 874 * After an extent is done, call this to conditionally update the on disk
 875 * i_size.  i_size is updated to cover any fully written part of the file.
 876 */
 877int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
 878                                struct btrfs_ordered_extent *ordered)
 879{
 880        struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
 881        u64 disk_i_size;
 882        u64 new_i_size;
 883        u64 i_size = i_size_read(inode);
 884        struct rb_node *node;
 885        struct rb_node *prev = NULL;
 886        struct btrfs_ordered_extent *test;
 887        int ret = 1;
 888
 889        spin_lock_irq(&tree->lock);
 890        if (ordered) {
 891                offset = entry_end(ordered);
 892                if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags))
 893                        offset = min(offset,
 894                                     ordered->file_offset +
 895                                     ordered->truncated_len);
 896        } else {
 897                offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize);
 898        }
 899        disk_i_size = BTRFS_I(inode)->disk_i_size;
 900
 901        /* truncate file */
 902        if (disk_i_size > i_size) {
 903                BTRFS_I(inode)->disk_i_size = i_size;
 904                ret = 0;
 905                goto out;
 906        }
 907
 908        /*
 909         * if the disk i_size is already at the inode->i_size, or
 910         * this ordered extent is inside the disk i_size, we're done
 911         */
 912        if (disk_i_size == i_size)
 913                goto out;
 914
 915        /*
 916         * We still need to update disk_i_size if outstanding_isize is greater
 917         * than disk_i_size.
 918         */
 919        if (offset <= disk_i_size &&
 920            (!ordered || ordered->outstanding_isize <= disk_i_size))
 921                goto out;
 922
 923        /*
 924         * walk backward from this ordered extent to disk_i_size.
 925         * if we find an ordered extent then we can't update disk i_size
 926         * yet
 927         */
 928        if (ordered) {
 929                node = rb_prev(&ordered->rb_node);
 930        } else {
 931                prev = tree_search(tree, offset);
 932                /*
 933                 * we insert file extents without involving ordered struct,
 934                 * so there should be no ordered struct cover this offset
 935                 */
 936                if (prev) {
 937                        test = rb_entry(prev, struct btrfs_ordered_extent,
 938                                        rb_node);
 939                        BUG_ON(offset_in_entry(test, offset));
 940                }
 941                node = prev;
 942        }
 943        for (; node; node = rb_prev(node)) {
 944                test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 945
 946                /* We treat this entry as if it doesnt exist */
 947                if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
 948                        continue;
 949                if (test->file_offset + test->len <= disk_i_size)
 950                        break;
 951                if (test->file_offset >= i_size)
 952                        break;
 953                if (entry_end(test) > disk_i_size) {
 954                        /*
 955                         * we don't update disk_i_size now, so record this
 956                         * undealt i_size. Or we will not know the real
 957                         * i_size.
 958                         */
 959                        if (test->outstanding_isize < offset)
 960                                test->outstanding_isize = offset;
 961                        if (ordered &&
 962                            ordered->outstanding_isize >
 963                            test->outstanding_isize)
 964                                test->outstanding_isize =
 965                                                ordered->outstanding_isize;
 966                        goto out;
 967                }
 968        }
 969        new_i_size = min_t(u64, offset, i_size);
 970
 971        /*
 972         * Some ordered extents may completed before the current one, and
 973         * we hold the real i_size in ->outstanding_isize.
 974         */
 975        if (ordered && ordered->outstanding_isize > new_i_size)
 976                new_i_size = min_t(u64, ordered->outstanding_isize, i_size);
 977        BTRFS_I(inode)->disk_i_size = new_i_size;
 978        ret = 0;
 979out:
 980        /*
 981         * We need to do this because we can't remove ordered extents until
 982         * after the i_disk_size has been updated and then the inode has been
 983         * updated to reflect the change, so we need to tell anybody who finds
 984         * this ordered extent that we've already done all the real work, we
 985         * just haven't completed all the other work.
 986         */
 987        if (ordered)
 988                set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags);
 989        spin_unlock_irq(&tree->lock);
 990        return ret;
 991}
 992
 993/*
 994 * search the ordered extents for one corresponding to 'offset' and
 995 * try to find a checksum.  This is used because we allow pages to
 996 * be reclaimed before their checksum is actually put into the btree
 997 */
 998int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
 999                           u32 *sum, int len)
1000{
1001        struct btrfs_ordered_sum *ordered_sum;
1002        struct btrfs_ordered_extent *ordered;
1003        struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
1004        unsigned long num_sectors;
1005        unsigned long i;
1006        u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
1007        int index = 0;
1008
1009        ordered = btrfs_lookup_ordered_extent(inode, offset);
1010        if (!ordered)
1011                return 0;
1012
1013        spin_lock_irq(&tree->lock);
1014        list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
1015                if (disk_bytenr >= ordered_sum->bytenr &&
1016                    disk_bytenr < ordered_sum->bytenr + ordered_sum->len) {
1017                        i = (disk_bytenr - ordered_sum->bytenr) >>
1018                            inode->i_sb->s_blocksize_bits;
1019                        num_sectors = ordered_sum->len >>
1020                                      inode->i_sb->s_blocksize_bits;
1021                        num_sectors = min_t(int, len - index, num_sectors - i);
1022                        memcpy(sum + index, ordered_sum->sums + i,
1023                               num_sectors);
1024
1025                        index += (int)num_sectors;
1026                        if (index == len)
1027                                goto out;
1028                        disk_bytenr += num_sectors * sectorsize;
1029                }
1030        }
1031out:
1032        spin_unlock_irq(&tree->lock);
1033        btrfs_put_ordered_extent(ordered);
1034        return index;
1035}
1036
1037int __init ordered_data_init(void)
1038{
1039        btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1040                                     sizeof(struct btrfs_ordered_extent), 0,
1041                                     SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
1042                                     NULL);
1043        if (!btrfs_ordered_extent_cache)
1044                return -ENOMEM;
1045
1046        return 0;
1047}
1048
1049void ordered_data_exit(void)
1050{
1051        if (btrfs_ordered_extent_cache)
1052                kmem_cache_destroy(btrfs_ordered_extent_cache);
1053}
1054