linux/fs/btrfs/reada.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2011 STRATO.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/sched.h>
  20#include <linux/pagemap.h>
  21#include <linux/writeback.h>
  22#include <linux/blkdev.h>
  23#include <linux/rbtree.h>
  24#include <linux/slab.h>
  25#include <linux/workqueue.h>
  26#include "ctree.h"
  27#include "volumes.h"
  28#include "disk-io.h"
  29#include "transaction.h"
  30#include "dev-replace.h"
  31
  32#undef DEBUG
  33
  34/*
  35 * This is the implementation for the generic read ahead framework.
  36 *
  37 * To trigger a readahead, btrfs_reada_add must be called. It will start
  38 * a read ahead for the given range [start, end) on tree root. The returned
  39 * handle can either be used to wait on the readahead to finish
  40 * (btrfs_reada_wait), or to send it to the background (btrfs_reada_detach).
  41 *
  42 * The read ahead works as follows:
  43 * On btrfs_reada_add, the root of the tree is inserted into a radix_tree.
  44 * reada_start_machine will then search for extents to prefetch and trigger
  45 * some reads. When a read finishes for a node, all contained node/leaf
  46 * pointers that lie in the given range will also be enqueued. The reads will
  47 * be triggered in sequential order, thus giving a big win over a naive
  48 * enumeration. It will also make use of multi-device layouts. Each disk
  49 * will have its on read pointer and all disks will by utilized in parallel.
  50 * Also will no two disks read both sides of a mirror simultaneously, as this
  51 * would waste seeking capacity. Instead both disks will read different parts
  52 * of the filesystem.
  53 * Any number of readaheads can be started in parallel. The read order will be
  54 * determined globally, i.e. 2 parallel readaheads will normally finish faster
  55 * than the 2 started one after another.
  56 */
  57
  58#define MAX_IN_FLIGHT 6
  59
  60struct reada_extctl {
  61        struct list_head        list;
  62        struct reada_control    *rc;
  63        u64                     generation;
  64};
  65
  66struct reada_extent {
  67        u64                     logical;
  68        struct btrfs_key        top;
  69        u32                     blocksize;
  70        int                     err;
  71        struct list_head        extctl;
  72        int                     refcnt;
  73        spinlock_t              lock;
  74        struct reada_zone       *zones[BTRFS_MAX_MIRRORS];
  75        int                     nzones;
  76        struct btrfs_device     *scheduled_for;
  77};
  78
  79struct reada_zone {
  80        u64                     start;
  81        u64                     end;
  82        u64                     elems;
  83        struct list_head        list;
  84        spinlock_t              lock;
  85        int                     locked;
  86        struct btrfs_device     *device;
  87        struct btrfs_device     *devs[BTRFS_MAX_MIRRORS]; /* full list, incl
  88                                                           * self */
  89        int                     ndevs;
  90        struct kref             refcnt;
  91};
  92
  93struct reada_machine_work {
  94        struct btrfs_work       work;
  95        struct btrfs_fs_info    *fs_info;
  96};
  97
  98static void reada_extent_put(struct btrfs_fs_info *, struct reada_extent *);
  99static void reada_control_release(struct kref *kref);
 100static void reada_zone_release(struct kref *kref);
 101static void reada_start_machine(struct btrfs_fs_info *fs_info);
 102static void __reada_start_machine(struct btrfs_fs_info *fs_info);
 103
 104static int reada_add_block(struct reada_control *rc, u64 logical,
 105                           struct btrfs_key *top, int level, u64 generation);
 106
 107/* recurses */
 108/* in case of err, eb might be NULL */
 109static int __readahead_hook(struct btrfs_root *root, struct extent_buffer *eb,
 110                            u64 start, int err)
 111{
 112        int level = 0;
 113        int nritems;
 114        int i;
 115        u64 bytenr;
 116        u64 generation;
 117        struct reada_extent *re;
 118        struct btrfs_fs_info *fs_info = root->fs_info;
 119        struct list_head list;
 120        unsigned long index = start >> PAGE_CACHE_SHIFT;
 121        struct btrfs_device *for_dev;
 122
 123        if (eb)
 124                level = btrfs_header_level(eb);
 125
 126        /* find extent */
 127        spin_lock(&fs_info->reada_lock);
 128        re = radix_tree_lookup(&fs_info->reada_tree, index);
 129        if (re)
 130                re->refcnt++;
 131        spin_unlock(&fs_info->reada_lock);
 132
 133        if (!re)
 134                return -1;
 135
 136        spin_lock(&re->lock);
 137        /*
 138         * just take the full list from the extent. afterwards we
 139         * don't need the lock anymore
 140         */
 141        list_replace_init(&re->extctl, &list);
 142        for_dev = re->scheduled_for;
 143        re->scheduled_for = NULL;
 144        spin_unlock(&re->lock);
 145
 146        if (err == 0) {
 147                nritems = level ? btrfs_header_nritems(eb) : 0;
 148                generation = btrfs_header_generation(eb);
 149                /*
 150                 * FIXME: currently we just set nritems to 0 if this is a leaf,
 151                 * effectively ignoring the content. In a next step we could
 152                 * trigger more readahead depending from the content, e.g.
 153                 * fetch the checksums for the extents in the leaf.
 154                 */
 155        } else {
 156                /*
 157                 * this is the error case, the extent buffer has not been
 158                 * read correctly. We won't access anything from it and
 159                 * just cleanup our data structures. Effectively this will
 160                 * cut the branch below this node from read ahead.
 161                 */
 162                nritems = 0;
 163                generation = 0;
 164        }
 165
 166        for (i = 0; i < nritems; i++) {
 167                struct reada_extctl *rec;
 168                u64 n_gen;
 169                struct btrfs_key key;
 170                struct btrfs_key next_key;
 171
 172                btrfs_node_key_to_cpu(eb, &key, i);
 173                if (i + 1 < nritems)
 174                        btrfs_node_key_to_cpu(eb, &next_key, i + 1);
 175                else
 176                        next_key = re->top;
 177                bytenr = btrfs_node_blockptr(eb, i);
 178                n_gen = btrfs_node_ptr_generation(eb, i);
 179
 180                list_for_each_entry(rec, &list, list) {
 181                        struct reada_control *rc = rec->rc;
 182
 183                        /*
 184                         * if the generation doesn't match, just ignore this
 185                         * extctl. This will probably cut off a branch from
 186                         * prefetch. Alternatively one could start a new (sub-)
 187                         * prefetch for this branch, starting again from root.
 188                         * FIXME: move the generation check out of this loop
 189                         */
 190#ifdef DEBUG
 191                        if (rec->generation != generation) {
 192                                btrfs_debug(root->fs_info,
 193                                           "generation mismatch for (%llu,%d,%llu) %llu != %llu",
 194                                       key.objectid, key.type, key.offset,
 195                                       rec->generation, generation);
 196                        }
 197#endif
 198                        if (rec->generation == generation &&
 199                            btrfs_comp_cpu_keys(&key, &rc->key_end) < 0 &&
 200                            btrfs_comp_cpu_keys(&next_key, &rc->key_start) > 0)
 201                                reada_add_block(rc, bytenr, &next_key,
 202                                                level - 1, n_gen);
 203                }
 204        }
 205        /*
 206         * free extctl records
 207         */
 208        while (!list_empty(&list)) {
 209                struct reada_control *rc;
 210                struct reada_extctl *rec;
 211
 212                rec = list_first_entry(&list, struct reada_extctl, list);
 213                list_del(&rec->list);
 214                rc = rec->rc;
 215                kfree(rec);
 216
 217                kref_get(&rc->refcnt);
 218                if (atomic_dec_and_test(&rc->elems)) {
 219                        kref_put(&rc->refcnt, reada_control_release);
 220                        wake_up(&rc->wait);
 221                }
 222                kref_put(&rc->refcnt, reada_control_release);
 223
 224                reada_extent_put(fs_info, re);  /* one ref for each entry */
 225        }
 226        reada_extent_put(fs_info, re);  /* our ref */
 227        if (for_dev)
 228                atomic_dec(&for_dev->reada_in_flight);
 229
 230        return 0;
 231}
 232
 233/*
 234 * start is passed separately in case eb in NULL, which may be the case with
 235 * failed I/O
 236 */
 237int btree_readahead_hook(struct btrfs_root *root, struct extent_buffer *eb,
 238                         u64 start, int err)
 239{
 240        int ret;
 241
 242        ret = __readahead_hook(root, eb, start, err);
 243
 244        reada_start_machine(root->fs_info);
 245
 246        return ret;
 247}
 248
 249static struct reada_zone *reada_find_zone(struct btrfs_fs_info *fs_info,
 250                                          struct btrfs_device *dev, u64 logical,
 251                                          struct btrfs_bio *bbio)
 252{
 253        int ret;
 254        struct reada_zone *zone;
 255        struct btrfs_block_group_cache *cache = NULL;
 256        u64 start;
 257        u64 end;
 258        int i;
 259
 260        zone = NULL;
 261        spin_lock(&fs_info->reada_lock);
 262        ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
 263                                     logical >> PAGE_CACHE_SHIFT, 1);
 264        if (ret == 1)
 265                kref_get(&zone->refcnt);
 266        spin_unlock(&fs_info->reada_lock);
 267
 268        if (ret == 1) {
 269                if (logical >= zone->start && logical < zone->end)
 270                        return zone;
 271                spin_lock(&fs_info->reada_lock);
 272                kref_put(&zone->refcnt, reada_zone_release);
 273                spin_unlock(&fs_info->reada_lock);
 274        }
 275
 276        cache = btrfs_lookup_block_group(fs_info, logical);
 277        if (!cache)
 278                return NULL;
 279
 280        start = cache->key.objectid;
 281        end = start + cache->key.offset - 1;
 282        btrfs_put_block_group(cache);
 283
 284        zone = kzalloc(sizeof(*zone), GFP_NOFS);
 285        if (!zone)
 286                return NULL;
 287
 288        zone->start = start;
 289        zone->end = end;
 290        INIT_LIST_HEAD(&zone->list);
 291        spin_lock_init(&zone->lock);
 292        zone->locked = 0;
 293        kref_init(&zone->refcnt);
 294        zone->elems = 0;
 295        zone->device = dev; /* our device always sits at index 0 */
 296        for (i = 0; i < bbio->num_stripes; ++i) {
 297                /* bounds have already been checked */
 298                zone->devs[i] = bbio->stripes[i].dev;
 299        }
 300        zone->ndevs = bbio->num_stripes;
 301
 302        spin_lock(&fs_info->reada_lock);
 303        ret = radix_tree_insert(&dev->reada_zones,
 304                                (unsigned long)(zone->end >> PAGE_CACHE_SHIFT),
 305                                zone);
 306
 307        if (ret == -EEXIST) {
 308                kfree(zone);
 309                ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
 310                                             logical >> PAGE_CACHE_SHIFT, 1);
 311                if (ret == 1)
 312                        kref_get(&zone->refcnt);
 313        }
 314        spin_unlock(&fs_info->reada_lock);
 315
 316        return zone;
 317}
 318
 319static struct reada_extent *reada_find_extent(struct btrfs_root *root,
 320                                              u64 logical,
 321                                              struct btrfs_key *top, int level)
 322{
 323        int ret;
 324        struct reada_extent *re = NULL;
 325        struct reada_extent *re_exist = NULL;
 326        struct btrfs_fs_info *fs_info = root->fs_info;
 327        struct btrfs_bio *bbio = NULL;
 328        struct btrfs_device *dev;
 329        struct btrfs_device *prev_dev;
 330        u32 blocksize;
 331        u64 length;
 332        int nzones = 0;
 333        int i;
 334        unsigned long index = logical >> PAGE_CACHE_SHIFT;
 335        int dev_replace_is_ongoing;
 336
 337        spin_lock(&fs_info->reada_lock);
 338        re = radix_tree_lookup(&fs_info->reada_tree, index);
 339        if (re)
 340                re->refcnt++;
 341        spin_unlock(&fs_info->reada_lock);
 342
 343        if (re)
 344                return re;
 345
 346        re = kzalloc(sizeof(*re), GFP_NOFS);
 347        if (!re)
 348                return NULL;
 349
 350        blocksize = btrfs_level_size(root, level);
 351        re->logical = logical;
 352        re->blocksize = blocksize;
 353        re->top = *top;
 354        INIT_LIST_HEAD(&re->extctl);
 355        spin_lock_init(&re->lock);
 356        re->refcnt = 1;
 357
 358        /*
 359         * map block
 360         */
 361        length = blocksize;
 362        ret = btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS, logical, &length,
 363                              &bbio, 0);
 364        if (ret || !bbio || length < blocksize)
 365                goto error;
 366
 367        if (bbio->num_stripes > BTRFS_MAX_MIRRORS) {
 368                btrfs_err(root->fs_info,
 369                           "readahead: more than %d copies not supported",
 370                           BTRFS_MAX_MIRRORS);
 371                goto error;
 372        }
 373
 374        for (nzones = 0; nzones < bbio->num_stripes; ++nzones) {
 375                struct reada_zone *zone;
 376
 377                dev = bbio->stripes[nzones].dev;
 378                zone = reada_find_zone(fs_info, dev, logical, bbio);
 379                if (!zone)
 380                        break;
 381
 382                re->zones[nzones] = zone;
 383                spin_lock(&zone->lock);
 384                if (!zone->elems)
 385                        kref_get(&zone->refcnt);
 386                ++zone->elems;
 387                spin_unlock(&zone->lock);
 388                spin_lock(&fs_info->reada_lock);
 389                kref_put(&zone->refcnt, reada_zone_release);
 390                spin_unlock(&fs_info->reada_lock);
 391        }
 392        re->nzones = nzones;
 393        if (nzones == 0) {
 394                /* not a single zone found, error and out */
 395                goto error;
 396        }
 397
 398        /* insert extent in reada_tree + all per-device trees, all or nothing */
 399        btrfs_dev_replace_lock(&fs_info->dev_replace);
 400        spin_lock(&fs_info->reada_lock);
 401        ret = radix_tree_insert(&fs_info->reada_tree, index, re);
 402        if (ret == -EEXIST) {
 403                re_exist = radix_tree_lookup(&fs_info->reada_tree, index);
 404                BUG_ON(!re_exist);
 405                re_exist->refcnt++;
 406                spin_unlock(&fs_info->reada_lock);
 407                btrfs_dev_replace_unlock(&fs_info->dev_replace);
 408                goto error;
 409        }
 410        if (ret) {
 411                spin_unlock(&fs_info->reada_lock);
 412                btrfs_dev_replace_unlock(&fs_info->dev_replace);
 413                goto error;
 414        }
 415        prev_dev = NULL;
 416        dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(
 417                        &fs_info->dev_replace);
 418        for (i = 0; i < nzones; ++i) {
 419                dev = bbio->stripes[i].dev;
 420                if (dev == prev_dev) {
 421                        /*
 422                         * in case of DUP, just add the first zone. As both
 423                         * are on the same device, there's nothing to gain
 424                         * from adding both.
 425                         * Also, it wouldn't work, as the tree is per device
 426                         * and adding would fail with EEXIST
 427                         */
 428                        continue;
 429                }
 430                if (!dev->bdev) {
 431                        /*
 432                         * cannot read ahead on missing device, but for RAID5/6,
 433                         * REQ_GET_READ_MIRRORS return 1. So don't skip missing
 434                         * device for such case.
 435                         */
 436                        if (nzones > 1)
 437                                continue;
 438                }
 439                if (dev_replace_is_ongoing &&
 440                    dev == fs_info->dev_replace.tgtdev) {
 441                        /*
 442                         * as this device is selected for reading only as
 443                         * a last resort, skip it for read ahead.
 444                         */
 445                        continue;
 446                }
 447                prev_dev = dev;
 448                ret = radix_tree_insert(&dev->reada_extents, index, re);
 449                if (ret) {
 450                        while (--i >= 0) {
 451                                dev = bbio->stripes[i].dev;
 452                                BUG_ON(dev == NULL);
 453                                /* ignore whether the entry was inserted */
 454                                radix_tree_delete(&dev->reada_extents, index);
 455                        }
 456                        BUG_ON(fs_info == NULL);
 457                        radix_tree_delete(&fs_info->reada_tree, index);
 458                        spin_unlock(&fs_info->reada_lock);
 459                        btrfs_dev_replace_unlock(&fs_info->dev_replace);
 460                        goto error;
 461                }
 462        }
 463        spin_unlock(&fs_info->reada_lock);
 464        btrfs_dev_replace_unlock(&fs_info->dev_replace);
 465
 466        kfree(bbio);
 467        return re;
 468
 469error:
 470        while (nzones) {
 471                struct reada_zone *zone;
 472
 473                --nzones;
 474                zone = re->zones[nzones];
 475                kref_get(&zone->refcnt);
 476                spin_lock(&zone->lock);
 477                --zone->elems;
 478                if (zone->elems == 0) {
 479                        /*
 480                         * no fs_info->reada_lock needed, as this can't be
 481                         * the last ref
 482                         */
 483                        kref_put(&zone->refcnt, reada_zone_release);
 484                }
 485                spin_unlock(&zone->lock);
 486
 487                spin_lock(&fs_info->reada_lock);
 488                kref_put(&zone->refcnt, reada_zone_release);
 489                spin_unlock(&fs_info->reada_lock);
 490        }
 491        kfree(bbio);
 492        kfree(re);
 493        return re_exist;
 494}
 495
 496static void reada_extent_put(struct btrfs_fs_info *fs_info,
 497                             struct reada_extent *re)
 498{
 499        int i;
 500        unsigned long index = re->logical >> PAGE_CACHE_SHIFT;
 501
 502        spin_lock(&fs_info->reada_lock);
 503        if (--re->refcnt) {
 504                spin_unlock(&fs_info->reada_lock);
 505                return;
 506        }
 507
 508        radix_tree_delete(&fs_info->reada_tree, index);
 509        for (i = 0; i < re->nzones; ++i) {
 510                struct reada_zone *zone = re->zones[i];
 511
 512                radix_tree_delete(&zone->device->reada_extents, index);
 513        }
 514
 515        spin_unlock(&fs_info->reada_lock);
 516
 517        for (i = 0; i < re->nzones; ++i) {
 518                struct reada_zone *zone = re->zones[i];
 519
 520                kref_get(&zone->refcnt);
 521                spin_lock(&zone->lock);
 522                --zone->elems;
 523                if (zone->elems == 0) {
 524                        /* no fs_info->reada_lock needed, as this can't be
 525                         * the last ref */
 526                        kref_put(&zone->refcnt, reada_zone_release);
 527                }
 528                spin_unlock(&zone->lock);
 529
 530                spin_lock(&fs_info->reada_lock);
 531                kref_put(&zone->refcnt, reada_zone_release);
 532                spin_unlock(&fs_info->reada_lock);
 533        }
 534        if (re->scheduled_for)
 535                atomic_dec(&re->scheduled_for->reada_in_flight);
 536
 537        kfree(re);
 538}
 539
 540static void reada_zone_release(struct kref *kref)
 541{
 542        struct reada_zone *zone = container_of(kref, struct reada_zone, refcnt);
 543
 544        radix_tree_delete(&zone->device->reada_zones,
 545                          zone->end >> PAGE_CACHE_SHIFT);
 546
 547        kfree(zone);
 548}
 549
 550static void reada_control_release(struct kref *kref)
 551{
 552        struct reada_control *rc = container_of(kref, struct reada_control,
 553                                                refcnt);
 554
 555        kfree(rc);
 556}
 557
 558static int reada_add_block(struct reada_control *rc, u64 logical,
 559                           struct btrfs_key *top, int level, u64 generation)
 560{
 561        struct btrfs_root *root = rc->root;
 562        struct reada_extent *re;
 563        struct reada_extctl *rec;
 564
 565        re = reada_find_extent(root, logical, top, level); /* takes one ref */
 566        if (!re)
 567                return -1;
 568
 569        rec = kzalloc(sizeof(*rec), GFP_NOFS);
 570        if (!rec) {
 571                reada_extent_put(root->fs_info, re);
 572                return -1;
 573        }
 574
 575        rec->rc = rc;
 576        rec->generation = generation;
 577        atomic_inc(&rc->elems);
 578
 579        spin_lock(&re->lock);
 580        list_add_tail(&rec->list, &re->extctl);
 581        spin_unlock(&re->lock);
 582
 583        /* leave the ref on the extent */
 584
 585        return 0;
 586}
 587
 588/*
 589 * called with fs_info->reada_lock held
 590 */
 591static void reada_peer_zones_set_lock(struct reada_zone *zone, int lock)
 592{
 593        int i;
 594        unsigned long index = zone->end >> PAGE_CACHE_SHIFT;
 595
 596        for (i = 0; i < zone->ndevs; ++i) {
 597                struct reada_zone *peer;
 598                peer = radix_tree_lookup(&zone->devs[i]->reada_zones, index);
 599                if (peer && peer->device != zone->device)
 600                        peer->locked = lock;
 601        }
 602}
 603
 604/*
 605 * called with fs_info->reada_lock held
 606 */
 607static int reada_pick_zone(struct btrfs_device *dev)
 608{
 609        struct reada_zone *top_zone = NULL;
 610        struct reada_zone *top_locked_zone = NULL;
 611        u64 top_elems = 0;
 612        u64 top_locked_elems = 0;
 613        unsigned long index = 0;
 614        int ret;
 615
 616        if (dev->reada_curr_zone) {
 617                reada_peer_zones_set_lock(dev->reada_curr_zone, 0);
 618                kref_put(&dev->reada_curr_zone->refcnt, reada_zone_release);
 619                dev->reada_curr_zone = NULL;
 620        }
 621        /* pick the zone with the most elements */
 622        while (1) {
 623                struct reada_zone *zone;
 624
 625                ret = radix_tree_gang_lookup(&dev->reada_zones,
 626                                             (void **)&zone, index, 1);
 627                if (ret == 0)
 628                        break;
 629                index = (zone->end >> PAGE_CACHE_SHIFT) + 1;
 630                if (zone->locked) {
 631                        if (zone->elems > top_locked_elems) {
 632                                top_locked_elems = zone->elems;
 633                                top_locked_zone = zone;
 634                        }
 635                } else {
 636                        if (zone->elems > top_elems) {
 637                                top_elems = zone->elems;
 638                                top_zone = zone;
 639                        }
 640                }
 641        }
 642        if (top_zone)
 643                dev->reada_curr_zone = top_zone;
 644        else if (top_locked_zone)
 645                dev->reada_curr_zone = top_locked_zone;
 646        else
 647                return 0;
 648
 649        dev->reada_next = dev->reada_curr_zone->start;
 650        kref_get(&dev->reada_curr_zone->refcnt);
 651        reada_peer_zones_set_lock(dev->reada_curr_zone, 1);
 652
 653        return 1;
 654}
 655
 656static int reada_start_machine_dev(struct btrfs_fs_info *fs_info,
 657                                   struct btrfs_device *dev)
 658{
 659        struct reada_extent *re = NULL;
 660        int mirror_num = 0;
 661        struct extent_buffer *eb = NULL;
 662        u64 logical;
 663        u32 blocksize;
 664        int ret;
 665        int i;
 666        int need_kick = 0;
 667
 668        spin_lock(&fs_info->reada_lock);
 669        if (dev->reada_curr_zone == NULL) {
 670                ret = reada_pick_zone(dev);
 671                if (!ret) {
 672                        spin_unlock(&fs_info->reada_lock);
 673                        return 0;
 674                }
 675        }
 676        /*
 677         * FIXME currently we issue the reads one extent at a time. If we have
 678         * a contiguous block of extents, we could also coagulate them or use
 679         * plugging to speed things up
 680         */
 681        ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
 682                                     dev->reada_next >> PAGE_CACHE_SHIFT, 1);
 683        if (ret == 0 || re->logical >= dev->reada_curr_zone->end) {
 684                ret = reada_pick_zone(dev);
 685                if (!ret) {
 686                        spin_unlock(&fs_info->reada_lock);
 687                        return 0;
 688                }
 689                re = NULL;
 690                ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
 691                                        dev->reada_next >> PAGE_CACHE_SHIFT, 1);
 692        }
 693        if (ret == 0) {
 694                spin_unlock(&fs_info->reada_lock);
 695                return 0;
 696        }
 697        dev->reada_next = re->logical + re->blocksize;
 698        re->refcnt++;
 699
 700        spin_unlock(&fs_info->reada_lock);
 701
 702        /*
 703         * find mirror num
 704         */
 705        for (i = 0; i < re->nzones; ++i) {
 706                if (re->zones[i]->device == dev) {
 707                        mirror_num = i + 1;
 708                        break;
 709                }
 710        }
 711        logical = re->logical;
 712        blocksize = re->blocksize;
 713
 714        spin_lock(&re->lock);
 715        if (re->scheduled_for == NULL) {
 716                re->scheduled_for = dev;
 717                need_kick = 1;
 718        }
 719        spin_unlock(&re->lock);
 720
 721        reada_extent_put(fs_info, re);
 722
 723        if (!need_kick)
 724                return 0;
 725
 726        atomic_inc(&dev->reada_in_flight);
 727        ret = reada_tree_block_flagged(fs_info->extent_root, logical, blocksize,
 728                         mirror_num, &eb);
 729        if (ret)
 730                __readahead_hook(fs_info->extent_root, NULL, logical, ret);
 731        else if (eb)
 732                __readahead_hook(fs_info->extent_root, eb, eb->start, ret);
 733
 734        if (eb)
 735                free_extent_buffer(eb);
 736
 737        return 1;
 738
 739}
 740
 741static void reada_start_machine_worker(struct btrfs_work *work)
 742{
 743        struct reada_machine_work *rmw;
 744        struct btrfs_fs_info *fs_info;
 745        int old_ioprio;
 746
 747        rmw = container_of(work, struct reada_machine_work, work);
 748        fs_info = rmw->fs_info;
 749
 750        kfree(rmw);
 751
 752        old_ioprio = IOPRIO_PRIO_VALUE(task_nice_ioclass(current),
 753                                       task_nice_ioprio(current));
 754        set_task_ioprio(current, BTRFS_IOPRIO_READA);
 755        __reada_start_machine(fs_info);
 756        set_task_ioprio(current, old_ioprio);
 757}
 758
 759static void __reada_start_machine(struct btrfs_fs_info *fs_info)
 760{
 761        struct btrfs_device *device;
 762        struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
 763        u64 enqueued;
 764        u64 total = 0;
 765        int i;
 766
 767        do {
 768                enqueued = 0;
 769                list_for_each_entry(device, &fs_devices->devices, dev_list) {
 770                        if (atomic_read(&device->reada_in_flight) <
 771                            MAX_IN_FLIGHT)
 772                                enqueued += reada_start_machine_dev(fs_info,
 773                                                                    device);
 774                }
 775                total += enqueued;
 776        } while (enqueued && total < 10000);
 777
 778        if (enqueued == 0)
 779                return;
 780
 781        /*
 782         * If everything is already in the cache, this is effectively single
 783         * threaded. To a) not hold the caller for too long and b) to utilize
 784         * more cores, we broke the loop above after 10000 iterations and now
 785         * enqueue to workers to finish it. This will distribute the load to
 786         * the cores.
 787         */
 788        for (i = 0; i < 2; ++i)
 789                reada_start_machine(fs_info);
 790}
 791
 792static void reada_start_machine(struct btrfs_fs_info *fs_info)
 793{
 794        struct reada_machine_work *rmw;
 795
 796        rmw = kzalloc(sizeof(*rmw), GFP_NOFS);
 797        if (!rmw) {
 798                /* FIXME we cannot handle this properly right now */
 799                BUG();
 800        }
 801        btrfs_init_work(&rmw->work, btrfs_readahead_helper,
 802                        reada_start_machine_worker, NULL, NULL);
 803        rmw->fs_info = fs_info;
 804
 805        btrfs_queue_work(fs_info->readahead_workers, &rmw->work);
 806}
 807
 808#ifdef DEBUG
 809static void dump_devs(struct btrfs_fs_info *fs_info, int all)
 810{
 811        struct btrfs_device *device;
 812        struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
 813        unsigned long index;
 814        int ret;
 815        int i;
 816        int j;
 817        int cnt;
 818
 819        spin_lock(&fs_info->reada_lock);
 820        list_for_each_entry(device, &fs_devices->devices, dev_list) {
 821                printk(KERN_DEBUG "dev %lld has %d in flight\n", device->devid,
 822                        atomic_read(&device->reada_in_flight));
 823                index = 0;
 824                while (1) {
 825                        struct reada_zone *zone;
 826                        ret = radix_tree_gang_lookup(&device->reada_zones,
 827                                                     (void **)&zone, index, 1);
 828                        if (ret == 0)
 829                                break;
 830                        printk(KERN_DEBUG "  zone %llu-%llu elems %llu locked "
 831                                "%d devs", zone->start, zone->end, zone->elems,
 832                                zone->locked);
 833                        for (j = 0; j < zone->ndevs; ++j) {
 834                                printk(KERN_CONT " %lld",
 835                                        zone->devs[j]->devid);
 836                        }
 837                        if (device->reada_curr_zone == zone)
 838                                printk(KERN_CONT " curr off %llu",
 839                                        device->reada_next - zone->start);
 840                        printk(KERN_CONT "\n");
 841                        index = (zone->end >> PAGE_CACHE_SHIFT) + 1;
 842                }
 843                cnt = 0;
 844                index = 0;
 845                while (all) {
 846                        struct reada_extent *re = NULL;
 847
 848                        ret = radix_tree_gang_lookup(&device->reada_extents,
 849                                                     (void **)&re, index, 1);
 850                        if (ret == 0)
 851                                break;
 852                        printk(KERN_DEBUG
 853                                "  re: logical %llu size %u empty %d for %lld",
 854                                re->logical, re->blocksize,
 855                                list_empty(&re->extctl), re->scheduled_for ?
 856                                re->scheduled_for->devid : -1);
 857
 858                        for (i = 0; i < re->nzones; ++i) {
 859                                printk(KERN_CONT " zone %llu-%llu devs",
 860                                        re->zones[i]->start,
 861                                        re->zones[i]->end);
 862                                for (j = 0; j < re->zones[i]->ndevs; ++j) {
 863                                        printk(KERN_CONT " %lld",
 864                                                re->zones[i]->devs[j]->devid);
 865                                }
 866                        }
 867                        printk(KERN_CONT "\n");
 868                        index = (re->logical >> PAGE_CACHE_SHIFT) + 1;
 869                        if (++cnt > 15)
 870                                break;
 871                }
 872        }
 873
 874        index = 0;
 875        cnt = 0;
 876        while (all) {
 877                struct reada_extent *re = NULL;
 878
 879                ret = radix_tree_gang_lookup(&fs_info->reada_tree, (void **)&re,
 880                                             index, 1);
 881                if (ret == 0)
 882                        break;
 883                if (!re->scheduled_for) {
 884                        index = (re->logical >> PAGE_CACHE_SHIFT) + 1;
 885                        continue;
 886                }
 887                printk(KERN_DEBUG
 888                        "re: logical %llu size %u list empty %d for %lld",
 889                        re->logical, re->blocksize, list_empty(&re->extctl),
 890                        re->scheduled_for ? re->scheduled_for->devid : -1);
 891                for (i = 0; i < re->nzones; ++i) {
 892                        printk(KERN_CONT " zone %llu-%llu devs",
 893                                re->zones[i]->start,
 894                                re->zones[i]->end);
 895                        for (i = 0; i < re->nzones; ++i) {
 896                                printk(KERN_CONT " zone %llu-%llu devs",
 897                                        re->zones[i]->start,
 898                                        re->zones[i]->end);
 899                                for (j = 0; j < re->zones[i]->ndevs; ++j) {
 900                                        printk(KERN_CONT " %lld",
 901                                                re->zones[i]->devs[j]->devid);
 902                                }
 903                        }
 904                }
 905                printk(KERN_CONT "\n");
 906                index = (re->logical >> PAGE_CACHE_SHIFT) + 1;
 907        }
 908        spin_unlock(&fs_info->reada_lock);
 909}
 910#endif
 911
 912/*
 913 * interface
 914 */
 915struct reada_control *btrfs_reada_add(struct btrfs_root *root,
 916                        struct btrfs_key *key_start, struct btrfs_key *key_end)
 917{
 918        struct reada_control *rc;
 919        u64 start;
 920        u64 generation;
 921        int level;
 922        struct extent_buffer *node;
 923        static struct btrfs_key max_key = {
 924                .objectid = (u64)-1,
 925                .type = (u8)-1,
 926                .offset = (u64)-1
 927        };
 928
 929        rc = kzalloc(sizeof(*rc), GFP_NOFS);
 930        if (!rc)
 931                return ERR_PTR(-ENOMEM);
 932
 933        rc->root = root;
 934        rc->key_start = *key_start;
 935        rc->key_end = *key_end;
 936        atomic_set(&rc->elems, 0);
 937        init_waitqueue_head(&rc->wait);
 938        kref_init(&rc->refcnt);
 939        kref_get(&rc->refcnt); /* one ref for having elements */
 940
 941        node = btrfs_root_node(root);
 942        start = node->start;
 943        level = btrfs_header_level(node);
 944        generation = btrfs_header_generation(node);
 945        free_extent_buffer(node);
 946
 947        if (reada_add_block(rc, start, &max_key, level, generation)) {
 948                kfree(rc);
 949                return ERR_PTR(-ENOMEM);
 950        }
 951
 952        reada_start_machine(root->fs_info);
 953
 954        return rc;
 955}
 956
 957#ifdef DEBUG
 958int btrfs_reada_wait(void *handle)
 959{
 960        struct reada_control *rc = handle;
 961
 962        while (atomic_read(&rc->elems)) {
 963                wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0,
 964                                   5 * HZ);
 965                dump_devs(rc->root->fs_info,
 966                          atomic_read(&rc->elems) < 10 ? 1 : 0);
 967        }
 968
 969        dump_devs(rc->root->fs_info, atomic_read(&rc->elems) < 10 ? 1 : 0);
 970
 971        kref_put(&rc->refcnt, reada_control_release);
 972
 973        return 0;
 974}
 975#else
 976int btrfs_reada_wait(void *handle)
 977{
 978        struct reada_control *rc = handle;
 979
 980        while (atomic_read(&rc->elems)) {
 981                wait_event(rc->wait, atomic_read(&rc->elems) == 0);
 982        }
 983
 984        kref_put(&rc->refcnt, reada_control_release);
 985
 986        return 0;
 987}
 988#endif
 989
 990void btrfs_reada_detach(void *handle)
 991{
 992        struct reada_control *rc = handle;
 993
 994        kref_put(&rc->refcnt, reada_control_release);
 995}
 996