linux/fs/buffer.c
<<
>>
Prefs
   1/*
   2 *  linux/fs/buffer.c
   3 *
   4 *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
   5 */
   6
   7/*
   8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
   9 *
  10 * Removed a lot of unnecessary code and simplified things now that
  11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
  12 *
  13 * Speed up hash, lru, and free list operations.  Use gfp() for allocating
  14 * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
  15 *
  16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
  17 *
  18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
  19 */
  20
  21#include <linux/kernel.h>
  22#include <linux/syscalls.h>
  23#include <linux/fs.h>
  24#include <linux/mm.h>
  25#include <linux/percpu.h>
  26#include <linux/slab.h>
  27#include <linux/capability.h>
  28#include <linux/blkdev.h>
  29#include <linux/file.h>
  30#include <linux/quotaops.h>
  31#include <linux/highmem.h>
  32#include <linux/export.h>
  33#include <linux/writeback.h>
  34#include <linux/hash.h>
  35#include <linux/suspend.h>
  36#include <linux/buffer_head.h>
  37#include <linux/task_io_accounting_ops.h>
  38#include <linux/bio.h>
  39#include <linux/notifier.h>
  40#include <linux/cpu.h>
  41#include <linux/bitops.h>
  42#include <linux/mpage.h>
  43#include <linux/bit_spinlock.h>
  44#include <trace/events/block.h>
  45
  46static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
  47
  48#define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
  49
  50void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
  51{
  52        bh->b_end_io = handler;
  53        bh->b_private = private;
  54}
  55EXPORT_SYMBOL(init_buffer);
  56
  57inline void touch_buffer(struct buffer_head *bh)
  58{
  59        trace_block_touch_buffer(bh);
  60        mark_page_accessed(bh->b_page);
  61}
  62EXPORT_SYMBOL(touch_buffer);
  63
  64void __lock_buffer(struct buffer_head *bh)
  65{
  66        wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
  67}
  68EXPORT_SYMBOL(__lock_buffer);
  69
  70void unlock_buffer(struct buffer_head *bh)
  71{
  72        clear_bit_unlock(BH_Lock, &bh->b_state);
  73        smp_mb__after_atomic();
  74        wake_up_bit(&bh->b_state, BH_Lock);
  75}
  76EXPORT_SYMBOL(unlock_buffer);
  77
  78/*
  79 * Returns if the page has dirty or writeback buffers. If all the buffers
  80 * are unlocked and clean then the PageDirty information is stale. If
  81 * any of the pages are locked, it is assumed they are locked for IO.
  82 */
  83void buffer_check_dirty_writeback(struct page *page,
  84                                     bool *dirty, bool *writeback)
  85{
  86        struct buffer_head *head, *bh;
  87        *dirty = false;
  88        *writeback = false;
  89
  90        BUG_ON(!PageLocked(page));
  91
  92        if (!page_has_buffers(page))
  93                return;
  94
  95        if (PageWriteback(page))
  96                *writeback = true;
  97
  98        head = page_buffers(page);
  99        bh = head;
 100        do {
 101                if (buffer_locked(bh))
 102                        *writeback = true;
 103
 104                if (buffer_dirty(bh))
 105                        *dirty = true;
 106
 107                bh = bh->b_this_page;
 108        } while (bh != head);
 109}
 110EXPORT_SYMBOL(buffer_check_dirty_writeback);
 111
 112/*
 113 * Block until a buffer comes unlocked.  This doesn't stop it
 114 * from becoming locked again - you have to lock it yourself
 115 * if you want to preserve its state.
 116 */
 117void __wait_on_buffer(struct buffer_head * bh)
 118{
 119        wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
 120}
 121EXPORT_SYMBOL(__wait_on_buffer);
 122
 123static void
 124__clear_page_buffers(struct page *page)
 125{
 126        ClearPagePrivate(page);
 127        set_page_private(page, 0);
 128        page_cache_release(page);
 129}
 130
 131
 132static int quiet_error(struct buffer_head *bh)
 133{
 134        if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
 135                return 0;
 136        return 1;
 137}
 138
 139
 140static void buffer_io_error(struct buffer_head *bh)
 141{
 142        char b[BDEVNAME_SIZE];
 143        printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
 144                        bdevname(bh->b_bdev, b),
 145                        (unsigned long long)bh->b_blocknr);
 146}
 147
 148/*
 149 * End-of-IO handler helper function which does not touch the bh after
 150 * unlocking it.
 151 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
 152 * a race there is benign: unlock_buffer() only use the bh's address for
 153 * hashing after unlocking the buffer, so it doesn't actually touch the bh
 154 * itself.
 155 */
 156static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
 157{
 158        if (uptodate) {
 159                set_buffer_uptodate(bh);
 160        } else {
 161                /* This happens, due to failed READA attempts. */
 162                clear_buffer_uptodate(bh);
 163        }
 164        unlock_buffer(bh);
 165}
 166
 167/*
 168 * Default synchronous end-of-IO handler..  Just mark it up-to-date and
 169 * unlock the buffer. This is what ll_rw_block uses too.
 170 */
 171void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
 172{
 173        __end_buffer_read_notouch(bh, uptodate);
 174        put_bh(bh);
 175}
 176EXPORT_SYMBOL(end_buffer_read_sync);
 177
 178void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
 179{
 180        char b[BDEVNAME_SIZE];
 181
 182        if (uptodate) {
 183                set_buffer_uptodate(bh);
 184        } else {
 185                if (!quiet_error(bh)) {
 186                        buffer_io_error(bh);
 187                        printk(KERN_WARNING "lost page write due to "
 188                                        "I/O error on %s\n",
 189                                       bdevname(bh->b_bdev, b));
 190                }
 191                set_buffer_write_io_error(bh);
 192                clear_buffer_uptodate(bh);
 193        }
 194        unlock_buffer(bh);
 195        put_bh(bh);
 196}
 197EXPORT_SYMBOL(end_buffer_write_sync);
 198
 199/*
 200 * Various filesystems appear to want __find_get_block to be non-blocking.
 201 * But it's the page lock which protects the buffers.  To get around this,
 202 * we get exclusion from try_to_free_buffers with the blockdev mapping's
 203 * private_lock.
 204 *
 205 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
 206 * may be quite high.  This code could TryLock the page, and if that
 207 * succeeds, there is no need to take private_lock. (But if
 208 * private_lock is contended then so is mapping->tree_lock).
 209 */
 210static struct buffer_head *
 211__find_get_block_slow(struct block_device *bdev, sector_t block)
 212{
 213        struct inode *bd_inode = bdev->bd_inode;
 214        struct address_space *bd_mapping = bd_inode->i_mapping;
 215        struct buffer_head *ret = NULL;
 216        pgoff_t index;
 217        struct buffer_head *bh;
 218        struct buffer_head *head;
 219        struct page *page;
 220        int all_mapped = 1;
 221
 222        index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
 223        page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
 224        if (!page)
 225                goto out;
 226
 227        spin_lock(&bd_mapping->private_lock);
 228        if (!page_has_buffers(page))
 229                goto out_unlock;
 230        head = page_buffers(page);
 231        bh = head;
 232        do {
 233                if (!buffer_mapped(bh))
 234                        all_mapped = 0;
 235                else if (bh->b_blocknr == block) {
 236                        ret = bh;
 237                        get_bh(bh);
 238                        goto out_unlock;
 239                }
 240                bh = bh->b_this_page;
 241        } while (bh != head);
 242
 243        /* we might be here because some of the buffers on this page are
 244         * not mapped.  This is due to various races between
 245         * file io on the block device and getblk.  It gets dealt with
 246         * elsewhere, don't buffer_error if we had some unmapped buffers
 247         */
 248        if (all_mapped) {
 249                char b[BDEVNAME_SIZE];
 250
 251                printk("__find_get_block_slow() failed. "
 252                        "block=%llu, b_blocknr=%llu\n",
 253                        (unsigned long long)block,
 254                        (unsigned long long)bh->b_blocknr);
 255                printk("b_state=0x%08lx, b_size=%zu\n",
 256                        bh->b_state, bh->b_size);
 257                printk("device %s blocksize: %d\n", bdevname(bdev, b),
 258                        1 << bd_inode->i_blkbits);
 259        }
 260out_unlock:
 261        spin_unlock(&bd_mapping->private_lock);
 262        page_cache_release(page);
 263out:
 264        return ret;
 265}
 266
 267/*
 268 * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
 269 */
 270static void free_more_memory(void)
 271{
 272        struct zone *zone;
 273        int nid;
 274
 275        wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
 276        yield();
 277
 278        for_each_online_node(nid) {
 279                (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
 280                                                gfp_zone(GFP_NOFS), NULL,
 281                                                &zone);
 282                if (zone)
 283                        try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
 284                                                GFP_NOFS, NULL);
 285        }
 286}
 287
 288/*
 289 * I/O completion handler for block_read_full_page() - pages
 290 * which come unlocked at the end of I/O.
 291 */
 292static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
 293{
 294        unsigned long flags;
 295        struct buffer_head *first;
 296        struct buffer_head *tmp;
 297        struct page *page;
 298        int page_uptodate = 1;
 299
 300        BUG_ON(!buffer_async_read(bh));
 301
 302        page = bh->b_page;
 303        if (uptodate) {
 304                set_buffer_uptodate(bh);
 305        } else {
 306                clear_buffer_uptodate(bh);
 307                if (!quiet_error(bh))
 308                        buffer_io_error(bh);
 309                SetPageError(page);
 310        }
 311
 312        /*
 313         * Be _very_ careful from here on. Bad things can happen if
 314         * two buffer heads end IO at almost the same time and both
 315         * decide that the page is now completely done.
 316         */
 317        first = page_buffers(page);
 318        local_irq_save(flags);
 319        bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
 320        clear_buffer_async_read(bh);
 321        unlock_buffer(bh);
 322        tmp = bh;
 323        do {
 324                if (!buffer_uptodate(tmp))
 325                        page_uptodate = 0;
 326                if (buffer_async_read(tmp)) {
 327                        BUG_ON(!buffer_locked(tmp));
 328                        goto still_busy;
 329                }
 330                tmp = tmp->b_this_page;
 331        } while (tmp != bh);
 332        bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
 333        local_irq_restore(flags);
 334
 335        /*
 336         * If none of the buffers had errors and they are all
 337         * uptodate then we can set the page uptodate.
 338         */
 339        if (page_uptodate && !PageError(page))
 340                SetPageUptodate(page);
 341        unlock_page(page);
 342        return;
 343
 344still_busy:
 345        bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
 346        local_irq_restore(flags);
 347        return;
 348}
 349
 350/*
 351 * Completion handler for block_write_full_page() - pages which are unlocked
 352 * during I/O, and which have PageWriteback cleared upon I/O completion.
 353 */
 354void end_buffer_async_write(struct buffer_head *bh, int uptodate)
 355{
 356        char b[BDEVNAME_SIZE];
 357        unsigned long flags;
 358        struct buffer_head *first;
 359        struct buffer_head *tmp;
 360        struct page *page;
 361
 362        BUG_ON(!buffer_async_write(bh));
 363
 364        page = bh->b_page;
 365        if (uptodate) {
 366                set_buffer_uptodate(bh);
 367        } else {
 368                if (!quiet_error(bh)) {
 369                        buffer_io_error(bh);
 370                        printk(KERN_WARNING "lost page write due to "
 371                                        "I/O error on %s\n",
 372                               bdevname(bh->b_bdev, b));
 373                }
 374                set_bit(AS_EIO, &page->mapping->flags);
 375                set_buffer_write_io_error(bh);
 376                clear_buffer_uptodate(bh);
 377                SetPageError(page);
 378        }
 379
 380        first = page_buffers(page);
 381        local_irq_save(flags);
 382        bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
 383
 384        clear_buffer_async_write(bh);
 385        unlock_buffer(bh);
 386        tmp = bh->b_this_page;
 387        while (tmp != bh) {
 388                if (buffer_async_write(tmp)) {
 389                        BUG_ON(!buffer_locked(tmp));
 390                        goto still_busy;
 391                }
 392                tmp = tmp->b_this_page;
 393        }
 394        bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
 395        local_irq_restore(flags);
 396        end_page_writeback(page);
 397        return;
 398
 399still_busy:
 400        bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
 401        local_irq_restore(flags);
 402        return;
 403}
 404EXPORT_SYMBOL(end_buffer_async_write);
 405
 406/*
 407 * If a page's buffers are under async readin (end_buffer_async_read
 408 * completion) then there is a possibility that another thread of
 409 * control could lock one of the buffers after it has completed
 410 * but while some of the other buffers have not completed.  This
 411 * locked buffer would confuse end_buffer_async_read() into not unlocking
 412 * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
 413 * that this buffer is not under async I/O.
 414 *
 415 * The page comes unlocked when it has no locked buffer_async buffers
 416 * left.
 417 *
 418 * PageLocked prevents anyone starting new async I/O reads any of
 419 * the buffers.
 420 *
 421 * PageWriteback is used to prevent simultaneous writeout of the same
 422 * page.
 423 *
 424 * PageLocked prevents anyone from starting writeback of a page which is
 425 * under read I/O (PageWriteback is only ever set against a locked page).
 426 */
 427static void mark_buffer_async_read(struct buffer_head *bh)
 428{
 429        bh->b_end_io = end_buffer_async_read;
 430        set_buffer_async_read(bh);
 431}
 432
 433static void mark_buffer_async_write_endio(struct buffer_head *bh,
 434                                          bh_end_io_t *handler)
 435{
 436        bh->b_end_io = handler;
 437        set_buffer_async_write(bh);
 438}
 439
 440void mark_buffer_async_write(struct buffer_head *bh)
 441{
 442        mark_buffer_async_write_endio(bh, end_buffer_async_write);
 443}
 444EXPORT_SYMBOL(mark_buffer_async_write);
 445
 446
 447/*
 448 * fs/buffer.c contains helper functions for buffer-backed address space's
 449 * fsync functions.  A common requirement for buffer-based filesystems is
 450 * that certain data from the backing blockdev needs to be written out for
 451 * a successful fsync().  For example, ext2 indirect blocks need to be
 452 * written back and waited upon before fsync() returns.
 453 *
 454 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
 455 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
 456 * management of a list of dependent buffers at ->i_mapping->private_list.
 457 *
 458 * Locking is a little subtle: try_to_free_buffers() will remove buffers
 459 * from their controlling inode's queue when they are being freed.  But
 460 * try_to_free_buffers() will be operating against the *blockdev* mapping
 461 * at the time, not against the S_ISREG file which depends on those buffers.
 462 * So the locking for private_list is via the private_lock in the address_space
 463 * which backs the buffers.  Which is different from the address_space 
 464 * against which the buffers are listed.  So for a particular address_space,
 465 * mapping->private_lock does *not* protect mapping->private_list!  In fact,
 466 * mapping->private_list will always be protected by the backing blockdev's
 467 * ->private_lock.
 468 *
 469 * Which introduces a requirement: all buffers on an address_space's
 470 * ->private_list must be from the same address_space: the blockdev's.
 471 *
 472 * address_spaces which do not place buffers at ->private_list via these
 473 * utility functions are free to use private_lock and private_list for
 474 * whatever they want.  The only requirement is that list_empty(private_list)
 475 * be true at clear_inode() time.
 476 *
 477 * FIXME: clear_inode should not call invalidate_inode_buffers().  The
 478 * filesystems should do that.  invalidate_inode_buffers() should just go
 479 * BUG_ON(!list_empty).
 480 *
 481 * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
 482 * take an address_space, not an inode.  And it should be called
 483 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
 484 * queued up.
 485 *
 486 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
 487 * list if it is already on a list.  Because if the buffer is on a list,
 488 * it *must* already be on the right one.  If not, the filesystem is being
 489 * silly.  This will save a ton of locking.  But first we have to ensure
 490 * that buffers are taken *off* the old inode's list when they are freed
 491 * (presumably in truncate).  That requires careful auditing of all
 492 * filesystems (do it inside bforget()).  It could also be done by bringing
 493 * b_inode back.
 494 */
 495
 496/*
 497 * The buffer's backing address_space's private_lock must be held
 498 */
 499static void __remove_assoc_queue(struct buffer_head *bh)
 500{
 501        list_del_init(&bh->b_assoc_buffers);
 502        WARN_ON(!bh->b_assoc_map);
 503        if (buffer_write_io_error(bh))
 504                set_bit(AS_EIO, &bh->b_assoc_map->flags);
 505        bh->b_assoc_map = NULL;
 506}
 507
 508int inode_has_buffers(struct inode *inode)
 509{
 510        return !list_empty(&inode->i_data.private_list);
 511}
 512
 513/*
 514 * osync is designed to support O_SYNC io.  It waits synchronously for
 515 * all already-submitted IO to complete, but does not queue any new
 516 * writes to the disk.
 517 *
 518 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
 519 * you dirty the buffers, and then use osync_inode_buffers to wait for
 520 * completion.  Any other dirty buffers which are not yet queued for
 521 * write will not be flushed to disk by the osync.
 522 */
 523static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
 524{
 525        struct buffer_head *bh;
 526        struct list_head *p;
 527        int err = 0;
 528
 529        spin_lock(lock);
 530repeat:
 531        list_for_each_prev(p, list) {
 532                bh = BH_ENTRY(p);
 533                if (buffer_locked(bh)) {
 534                        get_bh(bh);
 535                        spin_unlock(lock);
 536                        wait_on_buffer(bh);
 537                        if (!buffer_uptodate(bh))
 538                                err = -EIO;
 539                        brelse(bh);
 540                        spin_lock(lock);
 541                        goto repeat;
 542                }
 543        }
 544        spin_unlock(lock);
 545        return err;
 546}
 547
 548static void do_thaw_one(struct super_block *sb, void *unused)
 549{
 550        char b[BDEVNAME_SIZE];
 551        while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
 552                printk(KERN_WARNING "Emergency Thaw on %s\n",
 553                       bdevname(sb->s_bdev, b));
 554}
 555
 556static void do_thaw_all(struct work_struct *work)
 557{
 558        iterate_supers(do_thaw_one, NULL);
 559        kfree(work);
 560        printk(KERN_WARNING "Emergency Thaw complete\n");
 561}
 562
 563/**
 564 * emergency_thaw_all -- forcibly thaw every frozen filesystem
 565 *
 566 * Used for emergency unfreeze of all filesystems via SysRq
 567 */
 568void emergency_thaw_all(void)
 569{
 570        struct work_struct *work;
 571
 572        work = kmalloc(sizeof(*work), GFP_ATOMIC);
 573        if (work) {
 574                INIT_WORK(work, do_thaw_all);
 575                schedule_work(work);
 576        }
 577}
 578
 579/**
 580 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
 581 * @mapping: the mapping which wants those buffers written
 582 *
 583 * Starts I/O against the buffers at mapping->private_list, and waits upon
 584 * that I/O.
 585 *
 586 * Basically, this is a convenience function for fsync().
 587 * @mapping is a file or directory which needs those buffers to be written for
 588 * a successful fsync().
 589 */
 590int sync_mapping_buffers(struct address_space *mapping)
 591{
 592        struct address_space *buffer_mapping = mapping->private_data;
 593
 594        if (buffer_mapping == NULL || list_empty(&mapping->private_list))
 595                return 0;
 596
 597        return fsync_buffers_list(&buffer_mapping->private_lock,
 598                                        &mapping->private_list);
 599}
 600EXPORT_SYMBOL(sync_mapping_buffers);
 601
 602/*
 603 * Called when we've recently written block `bblock', and it is known that
 604 * `bblock' was for a buffer_boundary() buffer.  This means that the block at
 605 * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
 606 * dirty, schedule it for IO.  So that indirects merge nicely with their data.
 607 */
 608void write_boundary_block(struct block_device *bdev,
 609                        sector_t bblock, unsigned blocksize)
 610{
 611        struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
 612        if (bh) {
 613                if (buffer_dirty(bh))
 614                        ll_rw_block(WRITE, 1, &bh);
 615                put_bh(bh);
 616        }
 617}
 618
 619void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
 620{
 621        struct address_space *mapping = inode->i_mapping;
 622        struct address_space *buffer_mapping = bh->b_page->mapping;
 623
 624        mark_buffer_dirty(bh);
 625        if (!mapping->private_data) {
 626                mapping->private_data = buffer_mapping;
 627        } else {
 628                BUG_ON(mapping->private_data != buffer_mapping);
 629        }
 630        if (!bh->b_assoc_map) {
 631                spin_lock(&buffer_mapping->private_lock);
 632                list_move_tail(&bh->b_assoc_buffers,
 633                                &mapping->private_list);
 634                bh->b_assoc_map = mapping;
 635                spin_unlock(&buffer_mapping->private_lock);
 636        }
 637}
 638EXPORT_SYMBOL(mark_buffer_dirty_inode);
 639
 640/*
 641 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
 642 * dirty.
 643 *
 644 * If warn is true, then emit a warning if the page is not uptodate and has
 645 * not been truncated.
 646 */
 647static void __set_page_dirty(struct page *page,
 648                struct address_space *mapping, int warn)
 649{
 650        unsigned long flags;
 651
 652        spin_lock_irqsave(&mapping->tree_lock, flags);
 653        if (page->mapping) {    /* Race with truncate? */
 654                WARN_ON_ONCE(warn && !PageUptodate(page));
 655                account_page_dirtied(page, mapping);
 656                radix_tree_tag_set(&mapping->page_tree,
 657                                page_index(page), PAGECACHE_TAG_DIRTY);
 658        }
 659        spin_unlock_irqrestore(&mapping->tree_lock, flags);
 660        __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
 661}
 662
 663/*
 664 * Add a page to the dirty page list.
 665 *
 666 * It is a sad fact of life that this function is called from several places
 667 * deeply under spinlocking.  It may not sleep.
 668 *
 669 * If the page has buffers, the uptodate buffers are set dirty, to preserve
 670 * dirty-state coherency between the page and the buffers.  It the page does
 671 * not have buffers then when they are later attached they will all be set
 672 * dirty.
 673 *
 674 * The buffers are dirtied before the page is dirtied.  There's a small race
 675 * window in which a writepage caller may see the page cleanness but not the
 676 * buffer dirtiness.  That's fine.  If this code were to set the page dirty
 677 * before the buffers, a concurrent writepage caller could clear the page dirty
 678 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
 679 * page on the dirty page list.
 680 *
 681 * We use private_lock to lock against try_to_free_buffers while using the
 682 * page's buffer list.  Also use this to protect against clean buffers being
 683 * added to the page after it was set dirty.
 684 *
 685 * FIXME: may need to call ->reservepage here as well.  That's rather up to the
 686 * address_space though.
 687 */
 688int __set_page_dirty_buffers(struct page *page)
 689{
 690        int newly_dirty;
 691        struct address_space *mapping = page_mapping(page);
 692
 693        if (unlikely(!mapping))
 694                return !TestSetPageDirty(page);
 695
 696        spin_lock(&mapping->private_lock);
 697        if (page_has_buffers(page)) {
 698                struct buffer_head *head = page_buffers(page);
 699                struct buffer_head *bh = head;
 700
 701                do {
 702                        set_buffer_dirty(bh);
 703                        bh = bh->b_this_page;
 704                } while (bh != head);
 705        }
 706        newly_dirty = !TestSetPageDirty(page);
 707        spin_unlock(&mapping->private_lock);
 708
 709        if (newly_dirty)
 710                __set_page_dirty(page, mapping, 1);
 711        return newly_dirty;
 712}
 713EXPORT_SYMBOL(__set_page_dirty_buffers);
 714
 715/*
 716 * Write out and wait upon a list of buffers.
 717 *
 718 * We have conflicting pressures: we want to make sure that all
 719 * initially dirty buffers get waited on, but that any subsequently
 720 * dirtied buffers don't.  After all, we don't want fsync to last
 721 * forever if somebody is actively writing to the file.
 722 *
 723 * Do this in two main stages: first we copy dirty buffers to a
 724 * temporary inode list, queueing the writes as we go.  Then we clean
 725 * up, waiting for those writes to complete.
 726 * 
 727 * During this second stage, any subsequent updates to the file may end
 728 * up refiling the buffer on the original inode's dirty list again, so
 729 * there is a chance we will end up with a buffer queued for write but
 730 * not yet completed on that list.  So, as a final cleanup we go through
 731 * the osync code to catch these locked, dirty buffers without requeuing
 732 * any newly dirty buffers for write.
 733 */
 734static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
 735{
 736        struct buffer_head *bh;
 737        struct list_head tmp;
 738        struct address_space *mapping;
 739        int err = 0, err2;
 740        struct blk_plug plug;
 741
 742        INIT_LIST_HEAD(&tmp);
 743        blk_start_plug(&plug);
 744
 745        spin_lock(lock);
 746        while (!list_empty(list)) {
 747                bh = BH_ENTRY(list->next);
 748                mapping = bh->b_assoc_map;
 749                __remove_assoc_queue(bh);
 750                /* Avoid race with mark_buffer_dirty_inode() which does
 751                 * a lockless check and we rely on seeing the dirty bit */
 752                smp_mb();
 753                if (buffer_dirty(bh) || buffer_locked(bh)) {
 754                        list_add(&bh->b_assoc_buffers, &tmp);
 755                        bh->b_assoc_map = mapping;
 756                        if (buffer_dirty(bh)) {
 757                                get_bh(bh);
 758                                spin_unlock(lock);
 759                                /*
 760                                 * Ensure any pending I/O completes so that
 761                                 * write_dirty_buffer() actually writes the
 762                                 * current contents - it is a noop if I/O is
 763                                 * still in flight on potentially older
 764                                 * contents.
 765                                 */
 766                                write_dirty_buffer(bh, WRITE_SYNC);
 767
 768                                /*
 769                                 * Kick off IO for the previous mapping. Note
 770                                 * that we will not run the very last mapping,
 771                                 * wait_on_buffer() will do that for us
 772                                 * through sync_buffer().
 773                                 */
 774                                brelse(bh);
 775                                spin_lock(lock);
 776                        }
 777                }
 778        }
 779
 780        spin_unlock(lock);
 781        blk_finish_plug(&plug);
 782        spin_lock(lock);
 783
 784        while (!list_empty(&tmp)) {
 785                bh = BH_ENTRY(tmp.prev);
 786                get_bh(bh);
 787                mapping = bh->b_assoc_map;
 788                __remove_assoc_queue(bh);
 789                /* Avoid race with mark_buffer_dirty_inode() which does
 790                 * a lockless check and we rely on seeing the dirty bit */
 791                smp_mb();
 792                if (buffer_dirty(bh)) {
 793                        list_add(&bh->b_assoc_buffers,
 794                                 &mapping->private_list);
 795                        bh->b_assoc_map = mapping;
 796                }
 797                spin_unlock(lock);
 798                wait_on_buffer(bh);
 799                if (!buffer_uptodate(bh))
 800                        err = -EIO;
 801                brelse(bh);
 802                spin_lock(lock);
 803        }
 804        
 805        spin_unlock(lock);
 806        err2 = osync_buffers_list(lock, list);
 807        if (err)
 808                return err;
 809        else
 810                return err2;
 811}
 812
 813/*
 814 * Invalidate any and all dirty buffers on a given inode.  We are
 815 * probably unmounting the fs, but that doesn't mean we have already
 816 * done a sync().  Just drop the buffers from the inode list.
 817 *
 818 * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
 819 * assumes that all the buffers are against the blockdev.  Not true
 820 * for reiserfs.
 821 */
 822void invalidate_inode_buffers(struct inode *inode)
 823{
 824        if (inode_has_buffers(inode)) {
 825                struct address_space *mapping = &inode->i_data;
 826                struct list_head *list = &mapping->private_list;
 827                struct address_space *buffer_mapping = mapping->private_data;
 828
 829                spin_lock(&buffer_mapping->private_lock);
 830                while (!list_empty(list))
 831                        __remove_assoc_queue(BH_ENTRY(list->next));
 832                spin_unlock(&buffer_mapping->private_lock);
 833        }
 834}
 835EXPORT_SYMBOL(invalidate_inode_buffers);
 836
 837/*
 838 * Remove any clean buffers from the inode's buffer list.  This is called
 839 * when we're trying to free the inode itself.  Those buffers can pin it.
 840 *
 841 * Returns true if all buffers were removed.
 842 */
 843int remove_inode_buffers(struct inode *inode)
 844{
 845        int ret = 1;
 846
 847        if (inode_has_buffers(inode)) {
 848                struct address_space *mapping = &inode->i_data;
 849                struct list_head *list = &mapping->private_list;
 850                struct address_space *buffer_mapping = mapping->private_data;
 851
 852                spin_lock(&buffer_mapping->private_lock);
 853                while (!list_empty(list)) {
 854                        struct buffer_head *bh = BH_ENTRY(list->next);
 855                        if (buffer_dirty(bh)) {
 856                                ret = 0;
 857                                break;
 858                        }
 859                        __remove_assoc_queue(bh);
 860                }
 861                spin_unlock(&buffer_mapping->private_lock);
 862        }
 863        return ret;
 864}
 865
 866/*
 867 * Create the appropriate buffers when given a page for data area and
 868 * the size of each buffer.. Use the bh->b_this_page linked list to
 869 * follow the buffers created.  Return NULL if unable to create more
 870 * buffers.
 871 *
 872 * The retry flag is used to differentiate async IO (paging, swapping)
 873 * which may not fail from ordinary buffer allocations.
 874 */
 875struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
 876                int retry)
 877{
 878        struct buffer_head *bh, *head;
 879        long offset;
 880
 881try_again:
 882        head = NULL;
 883        offset = PAGE_SIZE;
 884        while ((offset -= size) >= 0) {
 885                bh = alloc_buffer_head(GFP_NOFS);
 886                if (!bh)
 887                        goto no_grow;
 888
 889                bh->b_this_page = head;
 890                bh->b_blocknr = -1;
 891                head = bh;
 892
 893                bh->b_size = size;
 894
 895                /* Link the buffer to its page */
 896                set_bh_page(bh, page, offset);
 897        }
 898        return head;
 899/*
 900 * In case anything failed, we just free everything we got.
 901 */
 902no_grow:
 903        if (head) {
 904                do {
 905                        bh = head;
 906                        head = head->b_this_page;
 907                        free_buffer_head(bh);
 908                } while (head);
 909        }
 910
 911        /*
 912         * Return failure for non-async IO requests.  Async IO requests
 913         * are not allowed to fail, so we have to wait until buffer heads
 914         * become available.  But we don't want tasks sleeping with 
 915         * partially complete buffers, so all were released above.
 916         */
 917        if (!retry)
 918                return NULL;
 919
 920        /* We're _really_ low on memory. Now we just
 921         * wait for old buffer heads to become free due to
 922         * finishing IO.  Since this is an async request and
 923         * the reserve list is empty, we're sure there are 
 924         * async buffer heads in use.
 925         */
 926        free_more_memory();
 927        goto try_again;
 928}
 929EXPORT_SYMBOL_GPL(alloc_page_buffers);
 930
 931static inline void
 932link_dev_buffers(struct page *page, struct buffer_head *head)
 933{
 934        struct buffer_head *bh, *tail;
 935
 936        bh = head;
 937        do {
 938                tail = bh;
 939                bh = bh->b_this_page;
 940        } while (bh);
 941        tail->b_this_page = head;
 942        attach_page_buffers(page, head);
 943}
 944
 945static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
 946{
 947        sector_t retval = ~((sector_t)0);
 948        loff_t sz = i_size_read(bdev->bd_inode);
 949
 950        if (sz) {
 951                unsigned int sizebits = blksize_bits(size);
 952                retval = (sz >> sizebits);
 953        }
 954        return retval;
 955}
 956
 957/*
 958 * Initialise the state of a blockdev page's buffers.
 959 */ 
 960static sector_t
 961init_page_buffers(struct page *page, struct block_device *bdev,
 962                        sector_t block, int size)
 963{
 964        struct buffer_head *head = page_buffers(page);
 965        struct buffer_head *bh = head;
 966        int uptodate = PageUptodate(page);
 967        sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
 968
 969        do {
 970                if (!buffer_mapped(bh)) {
 971                        init_buffer(bh, NULL, NULL);
 972                        bh->b_bdev = bdev;
 973                        bh->b_blocknr = block;
 974                        if (uptodate)
 975                                set_buffer_uptodate(bh);
 976                        if (block < end_block)
 977                                set_buffer_mapped(bh);
 978                }
 979                block++;
 980                bh = bh->b_this_page;
 981        } while (bh != head);
 982
 983        /*
 984         * Caller needs to validate requested block against end of device.
 985         */
 986        return end_block;
 987}
 988
 989/*
 990 * Create the page-cache page that contains the requested block.
 991 *
 992 * This is used purely for blockdev mappings.
 993 */
 994static int
 995grow_dev_page(struct block_device *bdev, sector_t block,
 996                pgoff_t index, int size, int sizebits)
 997{
 998        struct inode *inode = bdev->bd_inode;
 999        struct page *page;
1000        struct buffer_head *bh;
1001        sector_t end_block;
1002        int ret = 0;            /* Will call free_more_memory() */
1003        gfp_t gfp_mask;
1004
1005        gfp_mask = mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS;
1006        gfp_mask |= __GFP_MOVABLE;
1007        /*
1008         * XXX: __getblk_slow() can not really deal with failure and
1009         * will endlessly loop on improvised global reclaim.  Prefer
1010         * looping in the allocator rather than here, at least that
1011         * code knows what it's doing.
1012         */
1013        gfp_mask |= __GFP_NOFAIL;
1014
1015        page = find_or_create_page(inode->i_mapping, index, gfp_mask);
1016        if (!page)
1017                return ret;
1018
1019        BUG_ON(!PageLocked(page));
1020
1021        if (page_has_buffers(page)) {
1022                bh = page_buffers(page);
1023                if (bh->b_size == size) {
1024                        end_block = init_page_buffers(page, bdev,
1025                                                (sector_t)index << sizebits,
1026                                                size);
1027                        goto done;
1028                }
1029                if (!try_to_free_buffers(page))
1030                        goto failed;
1031        }
1032
1033        /*
1034         * Allocate some buffers for this page
1035         */
1036        bh = alloc_page_buffers(page, size, 0);
1037        if (!bh)
1038                goto failed;
1039
1040        /*
1041         * Link the page to the buffers and initialise them.  Take the
1042         * lock to be atomic wrt __find_get_block(), which does not
1043         * run under the page lock.
1044         */
1045        spin_lock(&inode->i_mapping->private_lock);
1046        link_dev_buffers(page, bh);
1047        end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1048                        size);
1049        spin_unlock(&inode->i_mapping->private_lock);
1050done:
1051        ret = (block < end_block) ? 1 : -ENXIO;
1052failed:
1053        unlock_page(page);
1054        page_cache_release(page);
1055        return ret;
1056}
1057
1058/*
1059 * Create buffers for the specified block device block's page.  If
1060 * that page was dirty, the buffers are set dirty also.
1061 */
1062static int
1063grow_buffers(struct block_device *bdev, sector_t block, int size)
1064{
1065        pgoff_t index;
1066        int sizebits;
1067
1068        sizebits = -1;
1069        do {
1070                sizebits++;
1071        } while ((size << sizebits) < PAGE_SIZE);
1072
1073        index = block >> sizebits;
1074
1075        /*
1076         * Check for a block which wants to lie outside our maximum possible
1077         * pagecache index.  (this comparison is done using sector_t types).
1078         */
1079        if (unlikely(index != block >> sizebits)) {
1080                char b[BDEVNAME_SIZE];
1081
1082                printk(KERN_ERR "%s: requested out-of-range block %llu for "
1083                        "device %s\n",
1084                        __func__, (unsigned long long)block,
1085                        bdevname(bdev, b));
1086                return -EIO;
1087        }
1088
1089        /* Create a page with the proper size buffers.. */
1090        return grow_dev_page(bdev, block, index, size, sizebits);
1091}
1092
1093static struct buffer_head *
1094__getblk_slow(struct block_device *bdev, sector_t block, int size)
1095{
1096        /* Size must be multiple of hard sectorsize */
1097        if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1098                        (size < 512 || size > PAGE_SIZE))) {
1099                printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1100                                        size);
1101                printk(KERN_ERR "logical block size: %d\n",
1102                                        bdev_logical_block_size(bdev));
1103
1104                dump_stack();
1105                return NULL;
1106        }
1107
1108        for (;;) {
1109                struct buffer_head *bh;
1110                int ret;
1111
1112                bh = __find_get_block(bdev, block, size);
1113                if (bh)
1114                        return bh;
1115
1116                ret = grow_buffers(bdev, block, size);
1117                if (ret < 0)
1118                        return NULL;
1119                if (ret == 0)
1120                        free_more_memory();
1121        }
1122}
1123
1124/*
1125 * The relationship between dirty buffers and dirty pages:
1126 *
1127 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1128 * the page is tagged dirty in its radix tree.
1129 *
1130 * At all times, the dirtiness of the buffers represents the dirtiness of
1131 * subsections of the page.  If the page has buffers, the page dirty bit is
1132 * merely a hint about the true dirty state.
1133 *
1134 * When a page is set dirty in its entirety, all its buffers are marked dirty
1135 * (if the page has buffers).
1136 *
1137 * When a buffer is marked dirty, its page is dirtied, but the page's other
1138 * buffers are not.
1139 *
1140 * Also.  When blockdev buffers are explicitly read with bread(), they
1141 * individually become uptodate.  But their backing page remains not
1142 * uptodate - even if all of its buffers are uptodate.  A subsequent
1143 * block_read_full_page() against that page will discover all the uptodate
1144 * buffers, will set the page uptodate and will perform no I/O.
1145 */
1146
1147/**
1148 * mark_buffer_dirty - mark a buffer_head as needing writeout
1149 * @bh: the buffer_head to mark dirty
1150 *
1151 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1152 * backing page dirty, then tag the page as dirty in its address_space's radix
1153 * tree and then attach the address_space's inode to its superblock's dirty
1154 * inode list.
1155 *
1156 * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1157 * mapping->tree_lock and mapping->host->i_lock.
1158 */
1159void mark_buffer_dirty(struct buffer_head *bh)
1160{
1161        WARN_ON_ONCE(!buffer_uptodate(bh));
1162
1163        trace_block_dirty_buffer(bh);
1164
1165        /*
1166         * Very *carefully* optimize the it-is-already-dirty case.
1167         *
1168         * Don't let the final "is it dirty" escape to before we
1169         * perhaps modified the buffer.
1170         */
1171        if (buffer_dirty(bh)) {
1172                smp_mb();
1173                if (buffer_dirty(bh))
1174                        return;
1175        }
1176
1177        if (!test_set_buffer_dirty(bh)) {
1178                struct page *page = bh->b_page;
1179                if (!TestSetPageDirty(page)) {
1180                        struct address_space *mapping = page_mapping(page);
1181                        if (mapping)
1182                                __set_page_dirty(page, mapping, 0);
1183                }
1184        }
1185}
1186EXPORT_SYMBOL(mark_buffer_dirty);
1187
1188/*
1189 * Decrement a buffer_head's reference count.  If all buffers against a page
1190 * have zero reference count, are clean and unlocked, and if the page is clean
1191 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1192 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1193 * a page but it ends up not being freed, and buffers may later be reattached).
1194 */
1195void __brelse(struct buffer_head * buf)
1196{
1197        if (atomic_read(&buf->b_count)) {
1198                put_bh(buf);
1199                return;
1200        }
1201        WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1202}
1203EXPORT_SYMBOL(__brelse);
1204
1205/*
1206 * bforget() is like brelse(), except it discards any
1207 * potentially dirty data.
1208 */
1209void __bforget(struct buffer_head *bh)
1210{
1211        clear_buffer_dirty(bh);
1212        if (bh->b_assoc_map) {
1213                struct address_space *buffer_mapping = bh->b_page->mapping;
1214
1215                spin_lock(&buffer_mapping->private_lock);
1216                list_del_init(&bh->b_assoc_buffers);
1217                bh->b_assoc_map = NULL;
1218                spin_unlock(&buffer_mapping->private_lock);
1219        }
1220        __brelse(bh);
1221}
1222EXPORT_SYMBOL(__bforget);
1223
1224static struct buffer_head *__bread_slow(struct buffer_head *bh)
1225{
1226        lock_buffer(bh);
1227        if (buffer_uptodate(bh)) {
1228                unlock_buffer(bh);
1229                return bh;
1230        } else {
1231                get_bh(bh);
1232                bh->b_end_io = end_buffer_read_sync;
1233                submit_bh(READ, bh);
1234                wait_on_buffer(bh);
1235                if (buffer_uptodate(bh))
1236                        return bh;
1237        }
1238        brelse(bh);
1239        return NULL;
1240}
1241
1242/*
1243 * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1244 * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1245 * refcount elevated by one when they're in an LRU.  A buffer can only appear
1246 * once in a particular CPU's LRU.  A single buffer can be present in multiple
1247 * CPU's LRUs at the same time.
1248 *
1249 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1250 * sb_find_get_block().
1251 *
1252 * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1253 * a local interrupt disable for that.
1254 */
1255
1256#define BH_LRU_SIZE     8
1257
1258struct bh_lru {
1259        struct buffer_head *bhs[BH_LRU_SIZE];
1260};
1261
1262static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1263
1264#ifdef CONFIG_SMP
1265#define bh_lru_lock()   local_irq_disable()
1266#define bh_lru_unlock() local_irq_enable()
1267#else
1268#define bh_lru_lock()   preempt_disable()
1269#define bh_lru_unlock() preempt_enable()
1270#endif
1271
1272static inline void check_irqs_on(void)
1273{
1274#ifdef irqs_disabled
1275        BUG_ON(irqs_disabled());
1276#endif
1277}
1278
1279/*
1280 * The LRU management algorithm is dopey-but-simple.  Sorry.
1281 */
1282static void bh_lru_install(struct buffer_head *bh)
1283{
1284        struct buffer_head *evictee = NULL;
1285
1286        check_irqs_on();
1287        bh_lru_lock();
1288        if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1289                struct buffer_head *bhs[BH_LRU_SIZE];
1290                int in;
1291                int out = 0;
1292
1293                get_bh(bh);
1294                bhs[out++] = bh;
1295                for (in = 0; in < BH_LRU_SIZE; in++) {
1296                        struct buffer_head *bh2 =
1297                                __this_cpu_read(bh_lrus.bhs[in]);
1298
1299                        if (bh2 == bh) {
1300                                __brelse(bh2);
1301                        } else {
1302                                if (out >= BH_LRU_SIZE) {
1303                                        BUG_ON(evictee != NULL);
1304                                        evictee = bh2;
1305                                } else {
1306                                        bhs[out++] = bh2;
1307                                }
1308                        }
1309                }
1310                while (out < BH_LRU_SIZE)
1311                        bhs[out++] = NULL;
1312                memcpy(this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1313        }
1314        bh_lru_unlock();
1315
1316        if (evictee)
1317                __brelse(evictee);
1318}
1319
1320/*
1321 * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1322 */
1323static struct buffer_head *
1324lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1325{
1326        struct buffer_head *ret = NULL;
1327        unsigned int i;
1328
1329        check_irqs_on();
1330        bh_lru_lock();
1331        for (i = 0; i < BH_LRU_SIZE; i++) {
1332                struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1333
1334                if (bh && bh->b_bdev == bdev &&
1335                                bh->b_blocknr == block && bh->b_size == size) {
1336                        if (i) {
1337                                while (i) {
1338                                        __this_cpu_write(bh_lrus.bhs[i],
1339                                                __this_cpu_read(bh_lrus.bhs[i - 1]));
1340                                        i--;
1341                                }
1342                                __this_cpu_write(bh_lrus.bhs[0], bh);
1343                        }
1344                        get_bh(bh);
1345                        ret = bh;
1346                        break;
1347                }
1348        }
1349        bh_lru_unlock();
1350        return ret;
1351}
1352
1353/*
1354 * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1355 * it in the LRU and mark it as accessed.  If it is not present then return
1356 * NULL
1357 */
1358struct buffer_head *
1359__find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1360{
1361        struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1362
1363        if (bh == NULL) {
1364                /* __find_get_block_slow will mark the page accessed */
1365                bh = __find_get_block_slow(bdev, block);
1366                if (bh)
1367                        bh_lru_install(bh);
1368        } else
1369                touch_buffer(bh);
1370
1371        return bh;
1372}
1373EXPORT_SYMBOL(__find_get_block);
1374
1375/*
1376 * __getblk will locate (and, if necessary, create) the buffer_head
1377 * which corresponds to the passed block_device, block and size. The
1378 * returned buffer has its reference count incremented.
1379 *
1380 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1381 * attempt is failing.  FIXME, perhaps?
1382 */
1383struct buffer_head *
1384__getblk(struct block_device *bdev, sector_t block, unsigned size)
1385{
1386        struct buffer_head *bh = __find_get_block(bdev, block, size);
1387
1388        might_sleep();
1389        if (bh == NULL)
1390                bh = __getblk_slow(bdev, block, size);
1391        return bh;
1392}
1393EXPORT_SYMBOL(__getblk);
1394
1395/*
1396 * Do async read-ahead on a buffer..
1397 */
1398void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1399{
1400        struct buffer_head *bh = __getblk(bdev, block, size);
1401        if (likely(bh)) {
1402                ll_rw_block(READA, 1, &bh);
1403                brelse(bh);
1404        }
1405}
1406EXPORT_SYMBOL(__breadahead);
1407
1408/**
1409 *  __bread() - reads a specified block and returns the bh
1410 *  @bdev: the block_device to read from
1411 *  @block: number of block
1412 *  @size: size (in bytes) to read
1413 * 
1414 *  Reads a specified block, and returns buffer head that contains it.
1415 *  It returns NULL if the block was unreadable.
1416 */
1417struct buffer_head *
1418__bread(struct block_device *bdev, sector_t block, unsigned size)
1419{
1420        struct buffer_head *bh = __getblk(bdev, block, size);
1421
1422        if (likely(bh) && !buffer_uptodate(bh))
1423                bh = __bread_slow(bh);
1424        return bh;
1425}
1426EXPORT_SYMBOL(__bread);
1427
1428/*
1429 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1430 * This doesn't race because it runs in each cpu either in irq
1431 * or with preempt disabled.
1432 */
1433static void invalidate_bh_lru(void *arg)
1434{
1435        struct bh_lru *b = &get_cpu_var(bh_lrus);
1436        int i;
1437
1438        for (i = 0; i < BH_LRU_SIZE; i++) {
1439                brelse(b->bhs[i]);
1440                b->bhs[i] = NULL;
1441        }
1442        put_cpu_var(bh_lrus);
1443}
1444
1445static bool has_bh_in_lru(int cpu, void *dummy)
1446{
1447        struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1448        int i;
1449        
1450        for (i = 0; i < BH_LRU_SIZE; i++) {
1451                if (b->bhs[i])
1452                        return 1;
1453        }
1454
1455        return 0;
1456}
1457
1458void invalidate_bh_lrus(void)
1459{
1460        on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1461}
1462EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1463
1464void set_bh_page(struct buffer_head *bh,
1465                struct page *page, unsigned long offset)
1466{
1467        bh->b_page = page;
1468        BUG_ON(offset >= PAGE_SIZE);
1469        if (PageHighMem(page))
1470                /*
1471                 * This catches illegal uses and preserves the offset:
1472                 */
1473                bh->b_data = (char *)(0 + offset);
1474        else
1475                bh->b_data = page_address(page) + offset;
1476}
1477EXPORT_SYMBOL(set_bh_page);
1478
1479/*
1480 * Called when truncating a buffer on a page completely.
1481 */
1482
1483/* Bits that are cleared during an invalidate */
1484#define BUFFER_FLAGS_DISCARD \
1485        (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1486         1 << BH_Delay | 1 << BH_Unwritten)
1487
1488static void discard_buffer(struct buffer_head * bh)
1489{
1490        unsigned long b_state, b_state_old;
1491
1492        lock_buffer(bh);
1493        clear_buffer_dirty(bh);
1494        bh->b_bdev = NULL;
1495        b_state = bh->b_state;
1496        for (;;) {
1497                b_state_old = cmpxchg(&bh->b_state, b_state,
1498                                      (b_state & ~BUFFER_FLAGS_DISCARD));
1499                if (b_state_old == b_state)
1500                        break;
1501                b_state = b_state_old;
1502        }
1503        unlock_buffer(bh);
1504}
1505
1506/**
1507 * block_invalidatepage - invalidate part or all of a buffer-backed page
1508 *
1509 * @page: the page which is affected
1510 * @offset: start of the range to invalidate
1511 * @length: length of the range to invalidate
1512 *
1513 * block_invalidatepage() is called when all or part of the page has become
1514 * invalidated by a truncate operation.
1515 *
1516 * block_invalidatepage() does not have to release all buffers, but it must
1517 * ensure that no dirty buffer is left outside @offset and that no I/O
1518 * is underway against any of the blocks which are outside the truncation
1519 * point.  Because the caller is about to free (and possibly reuse) those
1520 * blocks on-disk.
1521 */
1522void block_invalidatepage(struct page *page, unsigned int offset,
1523                          unsigned int length)
1524{
1525        struct buffer_head *head, *bh, *next;
1526        unsigned int curr_off = 0;
1527        unsigned int stop = length + offset;
1528
1529        BUG_ON(!PageLocked(page));
1530        if (!page_has_buffers(page))
1531                goto out;
1532
1533        /*
1534         * Check for overflow
1535         */
1536        BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1537
1538        head = page_buffers(page);
1539        bh = head;
1540        do {
1541                unsigned int next_off = curr_off + bh->b_size;
1542                next = bh->b_this_page;
1543
1544                /*
1545                 * Are we still fully in range ?
1546                 */
1547                if (next_off > stop)
1548                        goto out;
1549
1550                /*
1551                 * is this block fully invalidated?
1552                 */
1553                if (offset <= curr_off)
1554                        discard_buffer(bh);
1555                curr_off = next_off;
1556                bh = next;
1557        } while (bh != head);
1558
1559        /*
1560         * We release buffers only if the entire page is being invalidated.
1561         * The get_block cached value has been unconditionally invalidated,
1562         * so real IO is not possible anymore.
1563         */
1564        if (offset == 0)
1565                try_to_release_page(page, 0);
1566out:
1567        return;
1568}
1569EXPORT_SYMBOL(block_invalidatepage);
1570
1571
1572/*
1573 * We attach and possibly dirty the buffers atomically wrt
1574 * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1575 * is already excluded via the page lock.
1576 */
1577void create_empty_buffers(struct page *page,
1578                        unsigned long blocksize, unsigned long b_state)
1579{
1580        struct buffer_head *bh, *head, *tail;
1581
1582        head = alloc_page_buffers(page, blocksize, 1);
1583        bh = head;
1584        do {
1585                bh->b_state |= b_state;
1586                tail = bh;
1587                bh = bh->b_this_page;
1588        } while (bh);
1589        tail->b_this_page = head;
1590
1591        spin_lock(&page->mapping->private_lock);
1592        if (PageUptodate(page) || PageDirty(page)) {
1593                bh = head;
1594                do {
1595                        if (PageDirty(page))
1596                                set_buffer_dirty(bh);
1597                        if (PageUptodate(page))
1598                                set_buffer_uptodate(bh);
1599                        bh = bh->b_this_page;
1600                } while (bh != head);
1601        }
1602        attach_page_buffers(page, head);
1603        spin_unlock(&page->mapping->private_lock);
1604}
1605EXPORT_SYMBOL(create_empty_buffers);
1606
1607/*
1608 * We are taking a block for data and we don't want any output from any
1609 * buffer-cache aliases starting from return from that function and
1610 * until the moment when something will explicitly mark the buffer
1611 * dirty (hopefully that will not happen until we will free that block ;-)
1612 * We don't even need to mark it not-uptodate - nobody can expect
1613 * anything from a newly allocated buffer anyway. We used to used
1614 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1615 * don't want to mark the alias unmapped, for example - it would confuse
1616 * anyone who might pick it with bread() afterwards...
1617 *
1618 * Also..  Note that bforget() doesn't lock the buffer.  So there can
1619 * be writeout I/O going on against recently-freed buffers.  We don't
1620 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1621 * only if we really need to.  That happens here.
1622 */
1623void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1624{
1625        struct buffer_head *old_bh;
1626
1627        might_sleep();
1628
1629        old_bh = __find_get_block_slow(bdev, block);
1630        if (old_bh) {
1631                clear_buffer_dirty(old_bh);
1632                wait_on_buffer(old_bh);
1633                clear_buffer_req(old_bh);
1634                __brelse(old_bh);
1635        }
1636}
1637EXPORT_SYMBOL(unmap_underlying_metadata);
1638
1639/*
1640 * Size is a power-of-two in the range 512..PAGE_SIZE,
1641 * and the case we care about most is PAGE_SIZE.
1642 *
1643 * So this *could* possibly be written with those
1644 * constraints in mind (relevant mostly if some
1645 * architecture has a slow bit-scan instruction)
1646 */
1647static inline int block_size_bits(unsigned int blocksize)
1648{
1649        return ilog2(blocksize);
1650}
1651
1652static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1653{
1654        BUG_ON(!PageLocked(page));
1655
1656        if (!page_has_buffers(page))
1657                create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state);
1658        return page_buffers(page);
1659}
1660
1661/*
1662 * NOTE! All mapped/uptodate combinations are valid:
1663 *
1664 *      Mapped  Uptodate        Meaning
1665 *
1666 *      No      No              "unknown" - must do get_block()
1667 *      No      Yes             "hole" - zero-filled
1668 *      Yes     No              "allocated" - allocated on disk, not read in
1669 *      Yes     Yes             "valid" - allocated and up-to-date in memory.
1670 *
1671 * "Dirty" is valid only with the last case (mapped+uptodate).
1672 */
1673
1674/*
1675 * While block_write_full_page is writing back the dirty buffers under
1676 * the page lock, whoever dirtied the buffers may decide to clean them
1677 * again at any time.  We handle that by only looking at the buffer
1678 * state inside lock_buffer().
1679 *
1680 * If block_write_full_page() is called for regular writeback
1681 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1682 * locked buffer.   This only can happen if someone has written the buffer
1683 * directly, with submit_bh().  At the address_space level PageWriteback
1684 * prevents this contention from occurring.
1685 *
1686 * If block_write_full_page() is called with wbc->sync_mode ==
1687 * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this
1688 * causes the writes to be flagged as synchronous writes.
1689 */
1690static int __block_write_full_page(struct inode *inode, struct page *page,
1691                        get_block_t *get_block, struct writeback_control *wbc,
1692                        bh_end_io_t *handler)
1693{
1694        int err;
1695        sector_t block;
1696        sector_t last_block;
1697        struct buffer_head *bh, *head;
1698        unsigned int blocksize, bbits;
1699        int nr_underway = 0;
1700        int write_op = (wbc->sync_mode == WB_SYNC_ALL ?
1701                        WRITE_SYNC : WRITE);
1702
1703        head = create_page_buffers(page, inode,
1704                                        (1 << BH_Dirty)|(1 << BH_Uptodate));
1705
1706        /*
1707         * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1708         * here, and the (potentially unmapped) buffers may become dirty at
1709         * any time.  If a buffer becomes dirty here after we've inspected it
1710         * then we just miss that fact, and the page stays dirty.
1711         *
1712         * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1713         * handle that here by just cleaning them.
1714         */
1715
1716        bh = head;
1717        blocksize = bh->b_size;
1718        bbits = block_size_bits(blocksize);
1719
1720        block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1721        last_block = (i_size_read(inode) - 1) >> bbits;
1722
1723        /*
1724         * Get all the dirty buffers mapped to disk addresses and
1725         * handle any aliases from the underlying blockdev's mapping.
1726         */
1727        do {
1728                if (block > last_block) {
1729                        /*
1730                         * mapped buffers outside i_size will occur, because
1731                         * this page can be outside i_size when there is a
1732                         * truncate in progress.
1733                         */
1734                        /*
1735                         * The buffer was zeroed by block_write_full_page()
1736                         */
1737                        clear_buffer_dirty(bh);
1738                        set_buffer_uptodate(bh);
1739                } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1740                           buffer_dirty(bh)) {
1741                        WARN_ON(bh->b_size != blocksize);
1742                        err = get_block(inode, block, bh, 1);
1743                        if (err)
1744                                goto recover;
1745                        clear_buffer_delay(bh);
1746                        if (buffer_new(bh)) {
1747                                /* blockdev mappings never come here */
1748                                clear_buffer_new(bh);
1749                                unmap_underlying_metadata(bh->b_bdev,
1750                                                        bh->b_blocknr);
1751                        }
1752                }
1753                bh = bh->b_this_page;
1754                block++;
1755        } while (bh != head);
1756
1757        do {
1758                if (!buffer_mapped(bh))
1759                        continue;
1760                /*
1761                 * If it's a fully non-blocking write attempt and we cannot
1762                 * lock the buffer then redirty the page.  Note that this can
1763                 * potentially cause a busy-wait loop from writeback threads
1764                 * and kswapd activity, but those code paths have their own
1765                 * higher-level throttling.
1766                 */
1767                if (wbc->sync_mode != WB_SYNC_NONE) {
1768                        lock_buffer(bh);
1769                } else if (!trylock_buffer(bh)) {
1770                        redirty_page_for_writepage(wbc, page);
1771                        continue;
1772                }
1773                if (test_clear_buffer_dirty(bh)) {
1774                        mark_buffer_async_write_endio(bh, handler);
1775                } else {
1776                        unlock_buffer(bh);
1777                }
1778        } while ((bh = bh->b_this_page) != head);
1779
1780        /*
1781         * The page and its buffers are protected by PageWriteback(), so we can
1782         * drop the bh refcounts early.
1783         */
1784        BUG_ON(PageWriteback(page));
1785        set_page_writeback(page);
1786
1787        do {
1788                struct buffer_head *next = bh->b_this_page;
1789                if (buffer_async_write(bh)) {
1790                        submit_bh(write_op, bh);
1791                        nr_underway++;
1792                }
1793                bh = next;
1794        } while (bh != head);
1795        unlock_page(page);
1796
1797        err = 0;
1798done:
1799        if (nr_underway == 0) {
1800                /*
1801                 * The page was marked dirty, but the buffers were
1802                 * clean.  Someone wrote them back by hand with
1803                 * ll_rw_block/submit_bh.  A rare case.
1804                 */
1805                end_page_writeback(page);
1806
1807                /*
1808                 * The page and buffer_heads can be released at any time from
1809                 * here on.
1810                 */
1811        }
1812        return err;
1813
1814recover:
1815        /*
1816         * ENOSPC, or some other error.  We may already have added some
1817         * blocks to the file, so we need to write these out to avoid
1818         * exposing stale data.
1819         * The page is currently locked and not marked for writeback
1820         */
1821        bh = head;
1822        /* Recovery: lock and submit the mapped buffers */
1823        do {
1824                if (buffer_mapped(bh) && buffer_dirty(bh) &&
1825                    !buffer_delay(bh)) {
1826                        lock_buffer(bh);
1827                        mark_buffer_async_write_endio(bh, handler);
1828                } else {
1829                        /*
1830                         * The buffer may have been set dirty during
1831                         * attachment to a dirty page.
1832                         */
1833                        clear_buffer_dirty(bh);
1834                }
1835        } while ((bh = bh->b_this_page) != head);
1836        SetPageError(page);
1837        BUG_ON(PageWriteback(page));
1838        mapping_set_error(page->mapping, err);
1839        set_page_writeback(page);
1840        do {
1841                struct buffer_head *next = bh->b_this_page;
1842                if (buffer_async_write(bh)) {
1843                        clear_buffer_dirty(bh);
1844                        submit_bh(write_op, bh);
1845                        nr_underway++;
1846                }
1847                bh = next;
1848        } while (bh != head);
1849        unlock_page(page);
1850        goto done;
1851}
1852
1853/*
1854 * If a page has any new buffers, zero them out here, and mark them uptodate
1855 * and dirty so they'll be written out (in order to prevent uninitialised
1856 * block data from leaking). And clear the new bit.
1857 */
1858void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1859{
1860        unsigned int block_start, block_end;
1861        struct buffer_head *head, *bh;
1862
1863        BUG_ON(!PageLocked(page));
1864        if (!page_has_buffers(page))
1865                return;
1866
1867        bh = head = page_buffers(page);
1868        block_start = 0;
1869        do {
1870                block_end = block_start + bh->b_size;
1871
1872                if (buffer_new(bh)) {
1873                        if (block_end > from && block_start < to) {
1874                                if (!PageUptodate(page)) {
1875                                        unsigned start, size;
1876
1877                                        start = max(from, block_start);
1878                                        size = min(to, block_end) - start;
1879
1880                                        zero_user(page, start, size);
1881                                        set_buffer_uptodate(bh);
1882                                }
1883
1884                                clear_buffer_new(bh);
1885                                mark_buffer_dirty(bh);
1886                        }
1887                }
1888
1889                block_start = block_end;
1890                bh = bh->b_this_page;
1891        } while (bh != head);
1892}
1893EXPORT_SYMBOL(page_zero_new_buffers);
1894
1895int __block_write_begin(struct page *page, loff_t pos, unsigned len,
1896                get_block_t *get_block)
1897{
1898        unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1899        unsigned to = from + len;
1900        struct inode *inode = page->mapping->host;
1901        unsigned block_start, block_end;
1902        sector_t block;
1903        int err = 0;
1904        unsigned blocksize, bbits;
1905        struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1906
1907        BUG_ON(!PageLocked(page));
1908        BUG_ON(from > PAGE_CACHE_SIZE);
1909        BUG_ON(to > PAGE_CACHE_SIZE);
1910        BUG_ON(from > to);
1911
1912        head = create_page_buffers(page, inode, 0);
1913        blocksize = head->b_size;
1914        bbits = block_size_bits(blocksize);
1915
1916        block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1917
1918        for(bh = head, block_start = 0; bh != head || !block_start;
1919            block++, block_start=block_end, bh = bh->b_this_page) {
1920                block_end = block_start + blocksize;
1921                if (block_end <= from || block_start >= to) {
1922                        if (PageUptodate(page)) {
1923                                if (!buffer_uptodate(bh))
1924                                        set_buffer_uptodate(bh);
1925                        }
1926                        continue;
1927                }
1928                if (buffer_new(bh))
1929                        clear_buffer_new(bh);
1930                if (!buffer_mapped(bh)) {
1931                        WARN_ON(bh->b_size != blocksize);
1932                        err = get_block(inode, block, bh, 1);
1933                        if (err)
1934                                break;
1935                        if (buffer_new(bh)) {
1936                                unmap_underlying_metadata(bh->b_bdev,
1937                                                        bh->b_blocknr);
1938                                if (PageUptodate(page)) {
1939                                        clear_buffer_new(bh);
1940                                        set_buffer_uptodate(bh);
1941                                        mark_buffer_dirty(bh);
1942                                        continue;
1943                                }
1944                                if (block_end > to || block_start < from)
1945                                        zero_user_segments(page,
1946                                                to, block_end,
1947                                                block_start, from);
1948                                continue;
1949                        }
1950                }
1951                if (PageUptodate(page)) {
1952                        if (!buffer_uptodate(bh))
1953                                set_buffer_uptodate(bh);
1954                        continue; 
1955                }
1956                if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1957                    !buffer_unwritten(bh) &&
1958                     (block_start < from || block_end > to)) {
1959                        ll_rw_block(READ, 1, &bh);
1960                        *wait_bh++=bh;
1961                }
1962        }
1963        /*
1964         * If we issued read requests - let them complete.
1965         */
1966        while(wait_bh > wait) {
1967                wait_on_buffer(*--wait_bh);
1968                if (!buffer_uptodate(*wait_bh))
1969                        err = -EIO;
1970        }
1971        if (unlikely(err))
1972                page_zero_new_buffers(page, from, to);
1973        return err;
1974}
1975EXPORT_SYMBOL(__block_write_begin);
1976
1977static int __block_commit_write(struct inode *inode, struct page *page,
1978                unsigned from, unsigned to)
1979{
1980        unsigned block_start, block_end;
1981        int partial = 0;
1982        unsigned blocksize;
1983        struct buffer_head *bh, *head;
1984
1985        bh = head = page_buffers(page);
1986        blocksize = bh->b_size;
1987
1988        block_start = 0;
1989        do {
1990                block_end = block_start + blocksize;
1991                if (block_end <= from || block_start >= to) {
1992                        if (!buffer_uptodate(bh))
1993                                partial = 1;
1994                } else {
1995                        set_buffer_uptodate(bh);
1996                        mark_buffer_dirty(bh);
1997                }
1998                clear_buffer_new(bh);
1999
2000                block_start = block_end;
2001                bh = bh->b_this_page;
2002        } while (bh != head);
2003
2004        /*
2005         * If this is a partial write which happened to make all buffers
2006         * uptodate then we can optimize away a bogus readpage() for
2007         * the next read(). Here we 'discover' whether the page went
2008         * uptodate as a result of this (potentially partial) write.
2009         */
2010        if (!partial)
2011                SetPageUptodate(page);
2012        return 0;
2013}
2014
2015/*
2016 * block_write_begin takes care of the basic task of block allocation and
2017 * bringing partial write blocks uptodate first.
2018 *
2019 * The filesystem needs to handle block truncation upon failure.
2020 */
2021int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2022                unsigned flags, struct page **pagep, get_block_t *get_block)
2023{
2024        pgoff_t index = pos >> PAGE_CACHE_SHIFT;
2025        struct page *page;
2026        int status;
2027
2028        page = grab_cache_page_write_begin(mapping, index, flags);
2029        if (!page)
2030                return -ENOMEM;
2031
2032        status = __block_write_begin(page, pos, len, get_block);
2033        if (unlikely(status)) {
2034                unlock_page(page);
2035                page_cache_release(page);
2036                page = NULL;
2037        }
2038
2039        *pagep = page;
2040        return status;
2041}
2042EXPORT_SYMBOL(block_write_begin);
2043
2044int block_write_end(struct file *file, struct address_space *mapping,
2045                        loff_t pos, unsigned len, unsigned copied,
2046                        struct page *page, void *fsdata)
2047{
2048        struct inode *inode = mapping->host;
2049        unsigned start;
2050
2051        start = pos & (PAGE_CACHE_SIZE - 1);
2052
2053        if (unlikely(copied < len)) {
2054                /*
2055                 * The buffers that were written will now be uptodate, so we
2056                 * don't have to worry about a readpage reading them and
2057                 * overwriting a partial write. However if we have encountered
2058                 * a short write and only partially written into a buffer, it
2059                 * will not be marked uptodate, so a readpage might come in and
2060                 * destroy our partial write.
2061                 *
2062                 * Do the simplest thing, and just treat any short write to a
2063                 * non uptodate page as a zero-length write, and force the
2064                 * caller to redo the whole thing.
2065                 */
2066                if (!PageUptodate(page))
2067                        copied = 0;
2068
2069                page_zero_new_buffers(page, start+copied, start+len);
2070        }
2071        flush_dcache_page(page);
2072
2073        /* This could be a short (even 0-length) commit */
2074        __block_commit_write(inode, page, start, start+copied);
2075
2076        return copied;
2077}
2078EXPORT_SYMBOL(block_write_end);
2079
2080int generic_write_end(struct file *file, struct address_space *mapping,
2081                        loff_t pos, unsigned len, unsigned copied,
2082                        struct page *page, void *fsdata)
2083{
2084        struct inode *inode = mapping->host;
2085        int i_size_changed = 0;
2086
2087        copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2088
2089        /*
2090         * No need to use i_size_read() here, the i_size
2091         * cannot change under us because we hold i_mutex.
2092         *
2093         * But it's important to update i_size while still holding page lock:
2094         * page writeout could otherwise come in and zero beyond i_size.
2095         */
2096        if (pos+copied > inode->i_size) {
2097                i_size_write(inode, pos+copied);
2098                i_size_changed = 1;
2099        }
2100
2101        unlock_page(page);
2102        page_cache_release(page);
2103
2104        /*
2105         * Don't mark the inode dirty under page lock. First, it unnecessarily
2106         * makes the holding time of page lock longer. Second, it forces lock
2107         * ordering of page lock and transaction start for journaling
2108         * filesystems.
2109         */
2110        if (i_size_changed)
2111                mark_inode_dirty(inode);
2112
2113        return copied;
2114}
2115EXPORT_SYMBOL(generic_write_end);
2116
2117/*
2118 * block_is_partially_uptodate checks whether buffers within a page are
2119 * uptodate or not.
2120 *
2121 * Returns true if all buffers which correspond to a file portion
2122 * we want to read are uptodate.
2123 */
2124int block_is_partially_uptodate(struct page *page, unsigned long from,
2125                                        unsigned long count)
2126{
2127        unsigned block_start, block_end, blocksize;
2128        unsigned to;
2129        struct buffer_head *bh, *head;
2130        int ret = 1;
2131
2132        if (!page_has_buffers(page))
2133                return 0;
2134
2135        head = page_buffers(page);
2136        blocksize = head->b_size;
2137        to = min_t(unsigned, PAGE_CACHE_SIZE - from, count);
2138        to = from + to;
2139        if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2140                return 0;
2141
2142        bh = head;
2143        block_start = 0;
2144        do {
2145                block_end = block_start + blocksize;
2146                if (block_end > from && block_start < to) {
2147                        if (!buffer_uptodate(bh)) {
2148                                ret = 0;
2149                                break;
2150                        }
2151                        if (block_end >= to)
2152                                break;
2153                }
2154                block_start = block_end;
2155                bh = bh->b_this_page;
2156        } while (bh != head);
2157
2158        return ret;
2159}
2160EXPORT_SYMBOL(block_is_partially_uptodate);
2161
2162/*
2163 * Generic "read page" function for block devices that have the normal
2164 * get_block functionality. This is most of the block device filesystems.
2165 * Reads the page asynchronously --- the unlock_buffer() and
2166 * set/clear_buffer_uptodate() functions propagate buffer state into the
2167 * page struct once IO has completed.
2168 */
2169int block_read_full_page(struct page *page, get_block_t *get_block)
2170{
2171        struct inode *inode = page->mapping->host;
2172        sector_t iblock, lblock;
2173        struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2174        unsigned int blocksize, bbits;
2175        int nr, i;
2176        int fully_mapped = 1;
2177
2178        head = create_page_buffers(page, inode, 0);
2179        blocksize = head->b_size;
2180        bbits = block_size_bits(blocksize);
2181
2182        iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
2183        lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2184        bh = head;
2185        nr = 0;
2186        i = 0;
2187
2188        do {
2189                if (buffer_uptodate(bh))
2190                        continue;
2191
2192                if (!buffer_mapped(bh)) {
2193                        int err = 0;
2194
2195                        fully_mapped = 0;
2196                        if (iblock < lblock) {
2197                                WARN_ON(bh->b_size != blocksize);
2198                                err = get_block(inode, iblock, bh, 0);
2199                                if (err)
2200                                        SetPageError(page);
2201                        }
2202                        if (!buffer_mapped(bh)) {
2203                                zero_user(page, i * blocksize, blocksize);
2204                                if (!err)
2205                                        set_buffer_uptodate(bh);
2206                                continue;
2207                        }
2208                        /*
2209                         * get_block() might have updated the buffer
2210                         * synchronously
2211                         */
2212                        if (buffer_uptodate(bh))
2213                                continue;
2214                }
2215                arr[nr++] = bh;
2216        } while (i++, iblock++, (bh = bh->b_this_page) != head);
2217
2218        if (fully_mapped)
2219                SetPageMappedToDisk(page);
2220
2221        if (!nr) {
2222                /*
2223                 * All buffers are uptodate - we can set the page uptodate
2224                 * as well. But not if get_block() returned an error.
2225                 */
2226                if (!PageError(page))
2227                        SetPageUptodate(page);
2228                unlock_page(page);
2229                return 0;
2230        }
2231
2232        /* Stage two: lock the buffers */
2233        for (i = 0; i < nr; i++) {
2234                bh = arr[i];
2235                lock_buffer(bh);
2236                mark_buffer_async_read(bh);
2237        }
2238
2239        /*
2240         * Stage 3: start the IO.  Check for uptodateness
2241         * inside the buffer lock in case another process reading
2242         * the underlying blockdev brought it uptodate (the sct fix).
2243         */
2244        for (i = 0; i < nr; i++) {
2245                bh = arr[i];
2246                if (buffer_uptodate(bh))
2247                        end_buffer_async_read(bh, 1);
2248                else
2249                        submit_bh(READ, bh);
2250        }
2251        return 0;
2252}
2253EXPORT_SYMBOL(block_read_full_page);
2254
2255/* utility function for filesystems that need to do work on expanding
2256 * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2257 * deal with the hole.  
2258 */
2259int generic_cont_expand_simple(struct inode *inode, loff_t size)
2260{
2261        struct address_space *mapping = inode->i_mapping;
2262        struct page *page;
2263        void *fsdata;
2264        int err;
2265
2266        err = inode_newsize_ok(inode, size);
2267        if (err)
2268                goto out;
2269
2270        err = pagecache_write_begin(NULL, mapping, size, 0,
2271                                AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2272                                &page, &fsdata);
2273        if (err)
2274                goto out;
2275
2276        err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2277        BUG_ON(err > 0);
2278
2279out:
2280        return err;
2281}
2282EXPORT_SYMBOL(generic_cont_expand_simple);
2283
2284static int cont_expand_zero(struct file *file, struct address_space *mapping,
2285                            loff_t pos, loff_t *bytes)
2286{
2287        struct inode *inode = mapping->host;
2288        unsigned blocksize = 1 << inode->i_blkbits;
2289        struct page *page;
2290        void *fsdata;
2291        pgoff_t index, curidx;
2292        loff_t curpos;
2293        unsigned zerofrom, offset, len;
2294        int err = 0;
2295
2296        index = pos >> PAGE_CACHE_SHIFT;
2297        offset = pos & ~PAGE_CACHE_MASK;
2298
2299        while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2300                zerofrom = curpos & ~PAGE_CACHE_MASK;
2301                if (zerofrom & (blocksize-1)) {
2302                        *bytes |= (blocksize-1);
2303                        (*bytes)++;
2304                }
2305                len = PAGE_CACHE_SIZE - zerofrom;
2306
2307                err = pagecache_write_begin(file, mapping, curpos, len,
2308                                                AOP_FLAG_UNINTERRUPTIBLE,
2309                                                &page, &fsdata);
2310                if (err)
2311                        goto out;
2312                zero_user(page, zerofrom, len);
2313                err = pagecache_write_end(file, mapping, curpos, len, len,
2314                                                page, fsdata);
2315                if (err < 0)
2316                        goto out;
2317                BUG_ON(err != len);
2318                err = 0;
2319
2320                balance_dirty_pages_ratelimited(mapping);
2321        }
2322
2323        /* page covers the boundary, find the boundary offset */
2324        if (index == curidx) {
2325                zerofrom = curpos & ~PAGE_CACHE_MASK;
2326                /* if we will expand the thing last block will be filled */
2327                if (offset <= zerofrom) {
2328                        goto out;
2329                }
2330                if (zerofrom & (blocksize-1)) {
2331                        *bytes |= (blocksize-1);
2332                        (*bytes)++;
2333                }
2334                len = offset - zerofrom;
2335
2336                err = pagecache_write_begin(file, mapping, curpos, len,
2337                                                AOP_FLAG_UNINTERRUPTIBLE,
2338                                                &page, &fsdata);
2339                if (err)
2340                        goto out;
2341                zero_user(page, zerofrom, len);
2342                err = pagecache_write_end(file, mapping, curpos, len, len,
2343                                                page, fsdata);
2344                if (err < 0)
2345                        goto out;
2346                BUG_ON(err != len);
2347                err = 0;
2348        }
2349out:
2350        return err;
2351}
2352
2353/*
2354 * For moronic filesystems that do not allow holes in file.
2355 * We may have to extend the file.
2356 */
2357int cont_write_begin(struct file *file, struct address_space *mapping,
2358                        loff_t pos, unsigned len, unsigned flags,
2359                        struct page **pagep, void **fsdata,
2360                        get_block_t *get_block, loff_t *bytes)
2361{
2362        struct inode *inode = mapping->host;
2363        unsigned blocksize = 1 << inode->i_blkbits;
2364        unsigned zerofrom;
2365        int err;
2366
2367        err = cont_expand_zero(file, mapping, pos, bytes);
2368        if (err)
2369                return err;
2370
2371        zerofrom = *bytes & ~PAGE_CACHE_MASK;
2372        if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2373                *bytes |= (blocksize-1);
2374                (*bytes)++;
2375        }
2376
2377        return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2378}
2379EXPORT_SYMBOL(cont_write_begin);
2380
2381int block_commit_write(struct page *page, unsigned from, unsigned to)
2382{
2383        struct inode *inode = page->mapping->host;
2384        __block_commit_write(inode,page,from,to);
2385        return 0;
2386}
2387EXPORT_SYMBOL(block_commit_write);
2388
2389/*
2390 * block_page_mkwrite() is not allowed to change the file size as it gets
2391 * called from a page fault handler when a page is first dirtied. Hence we must
2392 * be careful to check for EOF conditions here. We set the page up correctly
2393 * for a written page which means we get ENOSPC checking when writing into
2394 * holes and correct delalloc and unwritten extent mapping on filesystems that
2395 * support these features.
2396 *
2397 * We are not allowed to take the i_mutex here so we have to play games to
2398 * protect against truncate races as the page could now be beyond EOF.  Because
2399 * truncate writes the inode size before removing pages, once we have the
2400 * page lock we can determine safely if the page is beyond EOF. If it is not
2401 * beyond EOF, then the page is guaranteed safe against truncation until we
2402 * unlock the page.
2403 *
2404 * Direct callers of this function should protect against filesystem freezing
2405 * using sb_start_write() - sb_end_write() functions.
2406 */
2407int __block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2408                         get_block_t get_block)
2409{
2410        struct page *page = vmf->page;
2411        struct inode *inode = file_inode(vma->vm_file);
2412        unsigned long end;
2413        loff_t size;
2414        int ret;
2415
2416        lock_page(page);
2417        size = i_size_read(inode);
2418        if ((page->mapping != inode->i_mapping) ||
2419            (page_offset(page) > size)) {
2420                /* We overload EFAULT to mean page got truncated */
2421                ret = -EFAULT;
2422                goto out_unlock;
2423        }
2424
2425        /* page is wholly or partially inside EOF */
2426        if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2427                end = size & ~PAGE_CACHE_MASK;
2428        else
2429                end = PAGE_CACHE_SIZE;
2430
2431        ret = __block_write_begin(page, 0, end, get_block);
2432        if (!ret)
2433                ret = block_commit_write(page, 0, end);
2434
2435        if (unlikely(ret < 0))
2436                goto out_unlock;
2437        set_page_dirty(page);
2438        wait_for_stable_page(page);
2439        return 0;
2440out_unlock:
2441        unlock_page(page);
2442        return ret;
2443}
2444EXPORT_SYMBOL(__block_page_mkwrite);
2445
2446int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2447                   get_block_t get_block)
2448{
2449        int ret;
2450        struct super_block *sb = file_inode(vma->vm_file)->i_sb;
2451
2452        sb_start_pagefault(sb);
2453
2454        /*
2455         * Update file times before taking page lock. We may end up failing the
2456         * fault so this update may be superfluous but who really cares...
2457         */
2458        file_update_time(vma->vm_file);
2459
2460        ret = __block_page_mkwrite(vma, vmf, get_block);
2461        sb_end_pagefault(sb);
2462        return block_page_mkwrite_return(ret);
2463}
2464EXPORT_SYMBOL(block_page_mkwrite);
2465
2466/*
2467 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2468 * immediately, while under the page lock.  So it needs a special end_io
2469 * handler which does not touch the bh after unlocking it.
2470 */
2471static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2472{
2473        __end_buffer_read_notouch(bh, uptodate);
2474}
2475
2476/*
2477 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2478 * the page (converting it to circular linked list and taking care of page
2479 * dirty races).
2480 */
2481static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2482{
2483        struct buffer_head *bh;
2484
2485        BUG_ON(!PageLocked(page));
2486
2487        spin_lock(&page->mapping->private_lock);
2488        bh = head;
2489        do {
2490                if (PageDirty(page))
2491                        set_buffer_dirty(bh);
2492                if (!bh->b_this_page)
2493                        bh->b_this_page = head;
2494                bh = bh->b_this_page;
2495        } while (bh != head);
2496        attach_page_buffers(page, head);
2497        spin_unlock(&page->mapping->private_lock);
2498}
2499
2500/*
2501 * On entry, the page is fully not uptodate.
2502 * On exit the page is fully uptodate in the areas outside (from,to)
2503 * The filesystem needs to handle block truncation upon failure.
2504 */
2505int nobh_write_begin(struct address_space *mapping,
2506                        loff_t pos, unsigned len, unsigned flags,
2507                        struct page **pagep, void **fsdata,
2508                        get_block_t *get_block)
2509{
2510        struct inode *inode = mapping->host;
2511        const unsigned blkbits = inode->i_blkbits;
2512        const unsigned blocksize = 1 << blkbits;
2513        struct buffer_head *head, *bh;
2514        struct page *page;
2515        pgoff_t index;
2516        unsigned from, to;
2517        unsigned block_in_page;
2518        unsigned block_start, block_end;
2519        sector_t block_in_file;
2520        int nr_reads = 0;
2521        int ret = 0;
2522        int is_mapped_to_disk = 1;
2523
2524        index = pos >> PAGE_CACHE_SHIFT;
2525        from = pos & (PAGE_CACHE_SIZE - 1);
2526        to = from + len;
2527
2528        page = grab_cache_page_write_begin(mapping, index, flags);
2529        if (!page)
2530                return -ENOMEM;
2531        *pagep = page;
2532        *fsdata = NULL;
2533
2534        if (page_has_buffers(page)) {
2535                ret = __block_write_begin(page, pos, len, get_block);
2536                if (unlikely(ret))
2537                        goto out_release;
2538                return ret;
2539        }
2540
2541        if (PageMappedToDisk(page))
2542                return 0;
2543
2544        /*
2545         * Allocate buffers so that we can keep track of state, and potentially
2546         * attach them to the page if an error occurs. In the common case of
2547         * no error, they will just be freed again without ever being attached
2548         * to the page (which is all OK, because we're under the page lock).
2549         *
2550         * Be careful: the buffer linked list is a NULL terminated one, rather
2551         * than the circular one we're used to.
2552         */
2553        head = alloc_page_buffers(page, blocksize, 0);
2554        if (!head) {
2555                ret = -ENOMEM;
2556                goto out_release;
2557        }
2558
2559        block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2560
2561        /*
2562         * We loop across all blocks in the page, whether or not they are
2563         * part of the affected region.  This is so we can discover if the
2564         * page is fully mapped-to-disk.
2565         */
2566        for (block_start = 0, block_in_page = 0, bh = head;
2567                  block_start < PAGE_CACHE_SIZE;
2568                  block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2569                int create;
2570
2571                block_end = block_start + blocksize;
2572                bh->b_state = 0;
2573                create = 1;
2574                if (block_start >= to)
2575                        create = 0;
2576                ret = get_block(inode, block_in_file + block_in_page,
2577                                        bh, create);
2578                if (ret)
2579                        goto failed;
2580                if (!buffer_mapped(bh))
2581                        is_mapped_to_disk = 0;
2582                if (buffer_new(bh))
2583                        unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2584                if (PageUptodate(page)) {
2585                        set_buffer_uptodate(bh);
2586                        continue;
2587                }
2588                if (buffer_new(bh) || !buffer_mapped(bh)) {
2589                        zero_user_segments(page, block_start, from,
2590                                                        to, block_end);
2591                        continue;
2592                }
2593                if (buffer_uptodate(bh))
2594                        continue;       /* reiserfs does this */
2595                if (block_start < from || block_end > to) {
2596                        lock_buffer(bh);
2597                        bh->b_end_io = end_buffer_read_nobh;
2598                        submit_bh(READ, bh);
2599                        nr_reads++;
2600                }
2601        }
2602
2603        if (nr_reads) {
2604                /*
2605                 * The page is locked, so these buffers are protected from
2606                 * any VM or truncate activity.  Hence we don't need to care
2607                 * for the buffer_head refcounts.
2608                 */
2609                for (bh = head; bh; bh = bh->b_this_page) {
2610                        wait_on_buffer(bh);
2611                        if (!buffer_uptodate(bh))
2612                                ret = -EIO;
2613                }
2614                if (ret)
2615                        goto failed;
2616        }
2617
2618        if (is_mapped_to_disk)
2619                SetPageMappedToDisk(page);
2620
2621        *fsdata = head; /* to be released by nobh_write_end */
2622
2623        return 0;
2624
2625failed:
2626        BUG_ON(!ret);
2627        /*
2628         * Error recovery is a bit difficult. We need to zero out blocks that
2629         * were newly allocated, and dirty them to ensure they get written out.
2630         * Buffers need to be attached to the page at this point, otherwise
2631         * the handling of potential IO errors during writeout would be hard
2632         * (could try doing synchronous writeout, but what if that fails too?)
2633         */
2634        attach_nobh_buffers(page, head);
2635        page_zero_new_buffers(page, from, to);
2636
2637out_release:
2638        unlock_page(page);
2639        page_cache_release(page);
2640        *pagep = NULL;
2641
2642        return ret;
2643}
2644EXPORT_SYMBOL(nobh_write_begin);
2645
2646int nobh_write_end(struct file *file, struct address_space *mapping,
2647                        loff_t pos, unsigned len, unsigned copied,
2648                        struct page *page, void *fsdata)
2649{
2650        struct inode *inode = page->mapping->host;
2651        struct buffer_head *head = fsdata;
2652        struct buffer_head *bh;
2653        BUG_ON(fsdata != NULL && page_has_buffers(page));
2654
2655        if (unlikely(copied < len) && head)
2656                attach_nobh_buffers(page, head);
2657        if (page_has_buffers(page))
2658                return generic_write_end(file, mapping, pos, len,
2659                                        copied, page, fsdata);
2660
2661        SetPageUptodate(page);
2662        set_page_dirty(page);
2663        if (pos+copied > inode->i_size) {
2664                i_size_write(inode, pos+copied);
2665                mark_inode_dirty(inode);
2666        }
2667
2668        unlock_page(page);
2669        page_cache_release(page);
2670
2671        while (head) {
2672                bh = head;
2673                head = head->b_this_page;
2674                free_buffer_head(bh);
2675        }
2676
2677        return copied;
2678}
2679EXPORT_SYMBOL(nobh_write_end);
2680
2681/*
2682 * nobh_writepage() - based on block_full_write_page() except
2683 * that it tries to operate without attaching bufferheads to
2684 * the page.
2685 */
2686int nobh_writepage(struct page *page, get_block_t *get_block,
2687                        struct writeback_control *wbc)
2688{
2689        struct inode * const inode = page->mapping->host;
2690        loff_t i_size = i_size_read(inode);
2691        const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2692        unsigned offset;
2693        int ret;
2694
2695        /* Is the page fully inside i_size? */
2696        if (page->index < end_index)
2697                goto out;
2698
2699        /* Is the page fully outside i_size? (truncate in progress) */
2700        offset = i_size & (PAGE_CACHE_SIZE-1);
2701        if (page->index >= end_index+1 || !offset) {
2702                /*
2703                 * The page may have dirty, unmapped buffers.  For example,
2704                 * they may have been added in ext3_writepage().  Make them
2705                 * freeable here, so the page does not leak.
2706                 */
2707#if 0
2708                /* Not really sure about this  - do we need this ? */
2709                if (page->mapping->a_ops->invalidatepage)
2710                        page->mapping->a_ops->invalidatepage(page, offset);
2711#endif
2712                unlock_page(page);
2713                return 0; /* don't care */
2714        }
2715
2716        /*
2717         * The page straddles i_size.  It must be zeroed out on each and every
2718         * writepage invocation because it may be mmapped.  "A file is mapped
2719         * in multiples of the page size.  For a file that is not a multiple of
2720         * the  page size, the remaining memory is zeroed when mapped, and
2721         * writes to that region are not written out to the file."
2722         */
2723        zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2724out:
2725        ret = mpage_writepage(page, get_block, wbc);
2726        if (ret == -EAGAIN)
2727                ret = __block_write_full_page(inode, page, get_block, wbc,
2728                                              end_buffer_async_write);
2729        return ret;
2730}
2731EXPORT_SYMBOL(nobh_writepage);
2732
2733int nobh_truncate_page(struct address_space *mapping,
2734                        loff_t from, get_block_t *get_block)
2735{
2736        pgoff_t index = from >> PAGE_CACHE_SHIFT;
2737        unsigned offset = from & (PAGE_CACHE_SIZE-1);
2738        unsigned blocksize;
2739        sector_t iblock;
2740        unsigned length, pos;
2741        struct inode *inode = mapping->host;
2742        struct page *page;
2743        struct buffer_head map_bh;
2744        int err;
2745
2746        blocksize = 1 << inode->i_blkbits;
2747        length = offset & (blocksize - 1);
2748
2749        /* Block boundary? Nothing to do */
2750        if (!length)
2751                return 0;
2752
2753        length = blocksize - length;
2754        iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2755
2756        page = grab_cache_page(mapping, index);
2757        err = -ENOMEM;
2758        if (!page)
2759                goto out;
2760
2761        if (page_has_buffers(page)) {
2762has_buffers:
2763                unlock_page(page);
2764                page_cache_release(page);
2765                return block_truncate_page(mapping, from, get_block);
2766        }
2767
2768        /* Find the buffer that contains "offset" */
2769        pos = blocksize;
2770        while (offset >= pos) {
2771                iblock++;
2772                pos += blocksize;
2773        }
2774
2775        map_bh.b_size = blocksize;
2776        map_bh.b_state = 0;
2777        err = get_block(inode, iblock, &map_bh, 0);
2778        if (err)
2779                goto unlock;
2780        /* unmapped? It's a hole - nothing to do */
2781        if (!buffer_mapped(&map_bh))
2782                goto unlock;
2783
2784        /* Ok, it's mapped. Make sure it's up-to-date */
2785        if (!PageUptodate(page)) {
2786                err = mapping->a_ops->readpage(NULL, page);
2787                if (err) {
2788                        page_cache_release(page);
2789                        goto out;
2790                }
2791                lock_page(page);
2792                if (!PageUptodate(page)) {
2793                        err = -EIO;
2794                        goto unlock;
2795                }
2796                if (page_has_buffers(page))
2797                        goto has_buffers;
2798        }
2799        zero_user(page, offset, length);
2800        set_page_dirty(page);
2801        err = 0;
2802
2803unlock:
2804        unlock_page(page);
2805        page_cache_release(page);
2806out:
2807        return err;
2808}
2809EXPORT_SYMBOL(nobh_truncate_page);
2810
2811int block_truncate_page(struct address_space *mapping,
2812                        loff_t from, get_block_t *get_block)
2813{
2814        pgoff_t index = from >> PAGE_CACHE_SHIFT;
2815        unsigned offset = from & (PAGE_CACHE_SIZE-1);
2816        unsigned blocksize;
2817        sector_t iblock;
2818        unsigned length, pos;
2819        struct inode *inode = mapping->host;
2820        struct page *page;
2821        struct buffer_head *bh;
2822        int err;
2823
2824        blocksize = 1 << inode->i_blkbits;
2825        length = offset & (blocksize - 1);
2826
2827        /* Block boundary? Nothing to do */
2828        if (!length)
2829                return 0;
2830
2831        length = blocksize - length;
2832        iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2833        
2834        page = grab_cache_page(mapping, index);
2835        err = -ENOMEM;
2836        if (!page)
2837                goto out;
2838
2839        if (!page_has_buffers(page))
2840                create_empty_buffers(page, blocksize, 0);
2841
2842        /* Find the buffer that contains "offset" */
2843        bh = page_buffers(page);
2844        pos = blocksize;
2845        while (offset >= pos) {
2846                bh = bh->b_this_page;
2847                iblock++;
2848                pos += blocksize;
2849        }
2850
2851        err = 0;
2852        if (!buffer_mapped(bh)) {
2853                WARN_ON(bh->b_size != blocksize);
2854                err = get_block(inode, iblock, bh, 0);
2855                if (err)
2856                        goto unlock;
2857                /* unmapped? It's a hole - nothing to do */
2858                if (!buffer_mapped(bh))
2859                        goto unlock;
2860        }
2861
2862        /* Ok, it's mapped. Make sure it's up-to-date */
2863        if (PageUptodate(page))
2864                set_buffer_uptodate(bh);
2865
2866        if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2867                err = -EIO;
2868                ll_rw_block(READ, 1, &bh);
2869                wait_on_buffer(bh);
2870                /* Uhhuh. Read error. Complain and punt. */
2871                if (!buffer_uptodate(bh))
2872                        goto unlock;
2873        }
2874
2875        zero_user(page, offset, length);
2876        mark_buffer_dirty(bh);
2877        err = 0;
2878
2879unlock:
2880        unlock_page(page);
2881        page_cache_release(page);
2882out:
2883        return err;
2884}
2885EXPORT_SYMBOL(block_truncate_page);
2886
2887/*
2888 * The generic ->writepage function for buffer-backed address_spaces
2889 */
2890int block_write_full_page(struct page *page, get_block_t *get_block,
2891                        struct writeback_control *wbc)
2892{
2893        struct inode * const inode = page->mapping->host;
2894        loff_t i_size = i_size_read(inode);
2895        const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2896        unsigned offset;
2897
2898        /* Is the page fully inside i_size? */
2899        if (page->index < end_index)
2900                return __block_write_full_page(inode, page, get_block, wbc,
2901                                               end_buffer_async_write);
2902
2903        /* Is the page fully outside i_size? (truncate in progress) */
2904        offset = i_size & (PAGE_CACHE_SIZE-1);
2905        if (page->index >= end_index+1 || !offset) {
2906                /*
2907                 * The page may have dirty, unmapped buffers.  For example,
2908                 * they may have been added in ext3_writepage().  Make them
2909                 * freeable here, so the page does not leak.
2910                 */
2911                do_invalidatepage(page, 0, PAGE_CACHE_SIZE);
2912                unlock_page(page);
2913                return 0; /* don't care */
2914        }
2915
2916        /*
2917         * The page straddles i_size.  It must be zeroed out on each and every
2918         * writepage invocation because it may be mmapped.  "A file is mapped
2919         * in multiples of the page size.  For a file that is not a multiple of
2920         * the  page size, the remaining memory is zeroed when mapped, and
2921         * writes to that region are not written out to the file."
2922         */
2923        zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2924        return __block_write_full_page(inode, page, get_block, wbc,
2925                                                        end_buffer_async_write);
2926}
2927EXPORT_SYMBOL(block_write_full_page);
2928
2929sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2930                            get_block_t *get_block)
2931{
2932        struct buffer_head tmp;
2933        struct inode *inode = mapping->host;
2934        tmp.b_state = 0;
2935        tmp.b_blocknr = 0;
2936        tmp.b_size = 1 << inode->i_blkbits;
2937        get_block(inode, block, &tmp, 0);
2938        return tmp.b_blocknr;
2939}
2940EXPORT_SYMBOL(generic_block_bmap);
2941
2942static void end_bio_bh_io_sync(struct bio *bio, int err)
2943{
2944        struct buffer_head *bh = bio->bi_private;
2945
2946        if (err == -EOPNOTSUPP) {
2947                set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2948        }
2949
2950        if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2951                set_bit(BH_Quiet, &bh->b_state);
2952
2953        bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2954        bio_put(bio);
2955}
2956
2957/*
2958 * This allows us to do IO even on the odd last sectors
2959 * of a device, even if the bh block size is some multiple
2960 * of the physical sector size.
2961 *
2962 * We'll just truncate the bio to the size of the device,
2963 * and clear the end of the buffer head manually.
2964 *
2965 * Truly out-of-range accesses will turn into actual IO
2966 * errors, this only handles the "we need to be able to
2967 * do IO at the final sector" case.
2968 */
2969static void guard_bh_eod(int rw, struct bio *bio, struct buffer_head *bh)
2970{
2971        sector_t maxsector;
2972        unsigned bytes;
2973
2974        maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
2975        if (!maxsector)
2976                return;
2977
2978        /*
2979         * If the *whole* IO is past the end of the device,
2980         * let it through, and the IO layer will turn it into
2981         * an EIO.
2982         */
2983        if (unlikely(bio->bi_iter.bi_sector >= maxsector))
2984                return;
2985
2986        maxsector -= bio->bi_iter.bi_sector;
2987        bytes = bio->bi_iter.bi_size;
2988        if (likely((bytes >> 9) <= maxsector))
2989                return;
2990
2991        /* Uhhuh. We've got a bh that straddles the device size! */
2992        bytes = maxsector << 9;
2993
2994        /* Truncate the bio.. */
2995        bio->bi_iter.bi_size = bytes;
2996        bio->bi_io_vec[0].bv_len = bytes;
2997
2998        /* ..and clear the end of the buffer for reads */
2999        if ((rw & RW_MASK) == READ) {
3000                void *kaddr = kmap_atomic(bh->b_page);
3001                memset(kaddr + bh_offset(bh) + bytes, 0, bh->b_size - bytes);
3002                kunmap_atomic(kaddr);
3003                flush_dcache_page(bh->b_page);
3004        }
3005}
3006
3007int _submit_bh(int rw, struct buffer_head *bh, unsigned long bio_flags)
3008{
3009        struct bio *bio;
3010        int ret = 0;
3011
3012        BUG_ON(!buffer_locked(bh));
3013        BUG_ON(!buffer_mapped(bh));
3014        BUG_ON(!bh->b_end_io);
3015        BUG_ON(buffer_delay(bh));
3016        BUG_ON(buffer_unwritten(bh));
3017
3018        /*
3019         * Only clear out a write error when rewriting
3020         */
3021        if (test_set_buffer_req(bh) && (rw & WRITE))
3022                clear_buffer_write_io_error(bh);
3023
3024        /*
3025         * from here on down, it's all bio -- do the initial mapping,
3026         * submit_bio -> generic_make_request may further map this bio around
3027         */
3028        bio = bio_alloc(GFP_NOIO, 1);
3029
3030        bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3031        bio->bi_bdev = bh->b_bdev;
3032        bio->bi_io_vec[0].bv_page = bh->b_page;
3033        bio->bi_io_vec[0].bv_len = bh->b_size;
3034        bio->bi_io_vec[0].bv_offset = bh_offset(bh);
3035
3036        bio->bi_vcnt = 1;
3037        bio->bi_iter.bi_size = bh->b_size;
3038
3039        bio->bi_end_io = end_bio_bh_io_sync;
3040        bio->bi_private = bh;
3041        bio->bi_flags |= bio_flags;
3042
3043        /* Take care of bh's that straddle the end of the device */
3044        guard_bh_eod(rw, bio, bh);
3045
3046        if (buffer_meta(bh))
3047                rw |= REQ_META;
3048        if (buffer_prio(bh))
3049                rw |= REQ_PRIO;
3050
3051        bio_get(bio);
3052        submit_bio(rw, bio);
3053
3054        if (bio_flagged(bio, BIO_EOPNOTSUPP))
3055                ret = -EOPNOTSUPP;
3056
3057        bio_put(bio);
3058        return ret;
3059}
3060EXPORT_SYMBOL_GPL(_submit_bh);
3061
3062int submit_bh(int rw, struct buffer_head *bh)
3063{
3064        return _submit_bh(rw, bh, 0);
3065}
3066EXPORT_SYMBOL(submit_bh);
3067
3068/**
3069 * ll_rw_block: low-level access to block devices (DEPRECATED)
3070 * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
3071 * @nr: number of &struct buffer_heads in the array
3072 * @bhs: array of pointers to &struct buffer_head
3073 *
3074 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3075 * requests an I/O operation on them, either a %READ or a %WRITE.  The third
3076 * %READA option is described in the documentation for generic_make_request()
3077 * which ll_rw_block() calls.
3078 *
3079 * This function drops any buffer that it cannot get a lock on (with the
3080 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3081 * request, and any buffer that appears to be up-to-date when doing read
3082 * request.  Further it marks as clean buffers that are processed for
3083 * writing (the buffer cache won't assume that they are actually clean
3084 * until the buffer gets unlocked).
3085 *
3086 * ll_rw_block sets b_end_io to simple completion handler that marks
3087 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3088 * any waiters. 
3089 *
3090 * All of the buffers must be for the same device, and must also be a
3091 * multiple of the current approved size for the device.
3092 */
3093void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
3094{
3095        int i;
3096
3097        for (i = 0; i < nr; i++) {
3098                struct buffer_head *bh = bhs[i];
3099
3100                if (!trylock_buffer(bh))
3101                        continue;
3102                if (rw == WRITE) {
3103                        if (test_clear_buffer_dirty(bh)) {
3104                                bh->b_end_io = end_buffer_write_sync;
3105                                get_bh(bh);
3106                                submit_bh(WRITE, bh);
3107                                continue;
3108                        }
3109                } else {
3110                        if (!buffer_uptodate(bh)) {
3111                                bh->b_end_io = end_buffer_read_sync;
3112                                get_bh(bh);
3113                                submit_bh(rw, bh);
3114                                continue;
3115                        }
3116                }
3117                unlock_buffer(bh);
3118        }
3119}
3120EXPORT_SYMBOL(ll_rw_block);
3121
3122void write_dirty_buffer(struct buffer_head *bh, int rw)
3123{
3124        lock_buffer(bh);
3125        if (!test_clear_buffer_dirty(bh)) {
3126                unlock_buffer(bh);
3127                return;
3128        }
3129        bh->b_end_io = end_buffer_write_sync;
3130        get_bh(bh);
3131        submit_bh(rw, bh);
3132}
3133EXPORT_SYMBOL(write_dirty_buffer);
3134
3135/*
3136 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3137 * and then start new I/O and then wait upon it.  The caller must have a ref on
3138 * the buffer_head.
3139 */
3140int __sync_dirty_buffer(struct buffer_head *bh, int rw)
3141{
3142        int ret = 0;
3143
3144        WARN_ON(atomic_read(&bh->b_count) < 1);
3145        lock_buffer(bh);
3146        if (test_clear_buffer_dirty(bh)) {
3147                get_bh(bh);
3148                bh->b_end_io = end_buffer_write_sync;
3149                ret = submit_bh(rw, bh);
3150                wait_on_buffer(bh);
3151                if (!ret && !buffer_uptodate(bh))
3152                        ret = -EIO;
3153        } else {
3154                unlock_buffer(bh);
3155        }
3156        return ret;
3157}
3158EXPORT_SYMBOL(__sync_dirty_buffer);
3159
3160int sync_dirty_buffer(struct buffer_head *bh)
3161{
3162        return __sync_dirty_buffer(bh, WRITE_SYNC);
3163}
3164EXPORT_SYMBOL(sync_dirty_buffer);
3165
3166/*
3167 * try_to_free_buffers() checks if all the buffers on this particular page
3168 * are unused, and releases them if so.
3169 *
3170 * Exclusion against try_to_free_buffers may be obtained by either
3171 * locking the page or by holding its mapping's private_lock.
3172 *
3173 * If the page is dirty but all the buffers are clean then we need to
3174 * be sure to mark the page clean as well.  This is because the page
3175 * may be against a block device, and a later reattachment of buffers
3176 * to a dirty page will set *all* buffers dirty.  Which would corrupt
3177 * filesystem data on the same device.
3178 *
3179 * The same applies to regular filesystem pages: if all the buffers are
3180 * clean then we set the page clean and proceed.  To do that, we require
3181 * total exclusion from __set_page_dirty_buffers().  That is obtained with
3182 * private_lock.
3183 *
3184 * try_to_free_buffers() is non-blocking.
3185 */
3186static inline int buffer_busy(struct buffer_head *bh)
3187{
3188        return atomic_read(&bh->b_count) |
3189                (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3190}
3191
3192static int
3193drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3194{
3195        struct buffer_head *head = page_buffers(page);
3196        struct buffer_head *bh;
3197
3198        bh = head;
3199        do {
3200                if (buffer_write_io_error(bh) && page->mapping)
3201                        set_bit(AS_EIO, &page->mapping->flags);
3202                if (buffer_busy(bh))
3203                        goto failed;
3204                bh = bh->b_this_page;
3205        } while (bh != head);
3206
3207        do {
3208                struct buffer_head *next = bh->b_this_page;
3209
3210                if (bh->b_assoc_map)
3211                        __remove_assoc_queue(bh);
3212                bh = next;
3213        } while (bh != head);
3214        *buffers_to_free = head;
3215        __clear_page_buffers(page);
3216        return 1;
3217failed:
3218        return 0;
3219}
3220
3221int try_to_free_buffers(struct page *page)
3222{
3223        struct address_space * const mapping = page->mapping;
3224        struct buffer_head *buffers_to_free = NULL;
3225        int ret = 0;
3226
3227        BUG_ON(!PageLocked(page));
3228        if (PageWriteback(page))
3229                return 0;
3230
3231        if (mapping == NULL) {          /* can this still happen? */
3232                ret = drop_buffers(page, &buffers_to_free);
3233                goto out;
3234        }
3235
3236        spin_lock(&mapping->private_lock);
3237        ret = drop_buffers(page, &buffers_to_free);
3238
3239        /*
3240         * If the filesystem writes its buffers by hand (eg ext3)
3241         * then we can have clean buffers against a dirty page.  We
3242         * clean the page here; otherwise the VM will never notice
3243         * that the filesystem did any IO at all.
3244         *
3245         * Also, during truncate, discard_buffer will have marked all
3246         * the page's buffers clean.  We discover that here and clean
3247         * the page also.
3248         *
3249         * private_lock must be held over this entire operation in order
3250         * to synchronise against __set_page_dirty_buffers and prevent the
3251         * dirty bit from being lost.
3252         */
3253        if (ret)
3254                cancel_dirty_page(page, PAGE_CACHE_SIZE);
3255        spin_unlock(&mapping->private_lock);
3256out:
3257        if (buffers_to_free) {
3258                struct buffer_head *bh = buffers_to_free;
3259
3260                do {
3261                        struct buffer_head *next = bh->b_this_page;
3262                        free_buffer_head(bh);
3263                        bh = next;
3264                } while (bh != buffers_to_free);
3265        }
3266        return ret;
3267}
3268EXPORT_SYMBOL(try_to_free_buffers);
3269
3270/*
3271 * There are no bdflush tunables left.  But distributions are
3272 * still running obsolete flush daemons, so we terminate them here.
3273 *
3274 * Use of bdflush() is deprecated and will be removed in a future kernel.
3275 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3276 */
3277SYSCALL_DEFINE2(bdflush, int, func, long, data)
3278{
3279        static int msg_count;
3280
3281        if (!capable(CAP_SYS_ADMIN))
3282                return -EPERM;
3283
3284        if (msg_count < 5) {
3285                msg_count++;
3286                printk(KERN_INFO
3287                        "warning: process `%s' used the obsolete bdflush"
3288                        " system call\n", current->comm);
3289                printk(KERN_INFO "Fix your initscripts?\n");
3290        }
3291
3292        if (func == 1)
3293                do_exit(0);
3294        return 0;
3295}
3296
3297/*
3298 * Buffer-head allocation
3299 */
3300static struct kmem_cache *bh_cachep __read_mostly;
3301
3302/*
3303 * Once the number of bh's in the machine exceeds this level, we start
3304 * stripping them in writeback.
3305 */
3306static unsigned long max_buffer_heads;
3307
3308int buffer_heads_over_limit;
3309
3310struct bh_accounting {
3311        int nr;                 /* Number of live bh's */
3312        int ratelimit;          /* Limit cacheline bouncing */
3313};
3314
3315static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3316
3317static void recalc_bh_state(void)
3318{
3319        int i;
3320        int tot = 0;
3321
3322        if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3323                return;
3324        __this_cpu_write(bh_accounting.ratelimit, 0);
3325        for_each_online_cpu(i)
3326                tot += per_cpu(bh_accounting, i).nr;
3327        buffer_heads_over_limit = (tot > max_buffer_heads);
3328}
3329
3330struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3331{
3332        struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3333        if (ret) {
3334                INIT_LIST_HEAD(&ret->b_assoc_buffers);
3335                preempt_disable();
3336                __this_cpu_inc(bh_accounting.nr);
3337                recalc_bh_state();
3338                preempt_enable();
3339        }
3340        return ret;
3341}
3342EXPORT_SYMBOL(alloc_buffer_head);
3343
3344void free_buffer_head(struct buffer_head *bh)
3345{
3346        BUG_ON(!list_empty(&bh->b_assoc_buffers));
3347        kmem_cache_free(bh_cachep, bh);
3348        preempt_disable();
3349        __this_cpu_dec(bh_accounting.nr);
3350        recalc_bh_state();
3351        preempt_enable();
3352}
3353EXPORT_SYMBOL(free_buffer_head);
3354
3355static void buffer_exit_cpu(int cpu)
3356{
3357        int i;
3358        struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3359
3360        for (i = 0; i < BH_LRU_SIZE; i++) {
3361                brelse(b->bhs[i]);
3362                b->bhs[i] = NULL;
3363        }
3364        this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3365        per_cpu(bh_accounting, cpu).nr = 0;
3366}
3367
3368static int buffer_cpu_notify(struct notifier_block *self,
3369                              unsigned long action, void *hcpu)
3370{
3371        if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3372                buffer_exit_cpu((unsigned long)hcpu);
3373        return NOTIFY_OK;
3374}
3375
3376/**
3377 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3378 * @bh: struct buffer_head
3379 *
3380 * Return true if the buffer is up-to-date and false,
3381 * with the buffer locked, if not.
3382 */
3383int bh_uptodate_or_lock(struct buffer_head *bh)
3384{
3385        if (!buffer_uptodate(bh)) {
3386                lock_buffer(bh);
3387                if (!buffer_uptodate(bh))
3388                        return 0;
3389                unlock_buffer(bh);
3390        }
3391        return 1;
3392}
3393EXPORT_SYMBOL(bh_uptodate_or_lock);
3394
3395/**
3396 * bh_submit_read - Submit a locked buffer for reading
3397 * @bh: struct buffer_head
3398 *
3399 * Returns zero on success and -EIO on error.
3400 */
3401int bh_submit_read(struct buffer_head *bh)
3402{
3403        BUG_ON(!buffer_locked(bh));
3404
3405        if (buffer_uptodate(bh)) {
3406                unlock_buffer(bh);
3407                return 0;
3408        }
3409
3410        get_bh(bh);
3411        bh->b_end_io = end_buffer_read_sync;
3412        submit_bh(READ, bh);
3413        wait_on_buffer(bh);
3414        if (buffer_uptodate(bh))
3415                return 0;
3416        return -EIO;
3417}
3418EXPORT_SYMBOL(bh_submit_read);
3419
3420void __init buffer_init(void)
3421{
3422        unsigned long nrpages;
3423
3424        bh_cachep = kmem_cache_create("buffer_head",
3425                        sizeof(struct buffer_head), 0,
3426                                (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3427                                SLAB_MEM_SPREAD),
3428                                NULL);
3429
3430        /*
3431         * Limit the bh occupancy to 10% of ZONE_NORMAL
3432         */
3433        nrpages = (nr_free_buffer_pages() * 10) / 100;
3434        max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3435        hotcpu_notifier(buffer_cpu_notify, 0);
3436}
3437