linux/fs/coredump.c
<<
>>
Prefs
   1#include <linux/slab.h>
   2#include <linux/file.h>
   3#include <linux/fdtable.h>
   4#include <linux/mm.h>
   5#include <linux/stat.h>
   6#include <linux/fcntl.h>
   7#include <linux/swap.h>
   8#include <linux/string.h>
   9#include <linux/init.h>
  10#include <linux/pagemap.h>
  11#include <linux/perf_event.h>
  12#include <linux/highmem.h>
  13#include <linux/spinlock.h>
  14#include <linux/key.h>
  15#include <linux/personality.h>
  16#include <linux/binfmts.h>
  17#include <linux/coredump.h>
  18#include <linux/utsname.h>
  19#include <linux/pid_namespace.h>
  20#include <linux/module.h>
  21#include <linux/namei.h>
  22#include <linux/mount.h>
  23#include <linux/security.h>
  24#include <linux/syscalls.h>
  25#include <linux/tsacct_kern.h>
  26#include <linux/cn_proc.h>
  27#include <linux/audit.h>
  28#include <linux/tracehook.h>
  29#include <linux/kmod.h>
  30#include <linux/fsnotify.h>
  31#include <linux/fs_struct.h>
  32#include <linux/pipe_fs_i.h>
  33#include <linux/oom.h>
  34#include <linux/compat.h>
  35
  36#include <asm/uaccess.h>
  37#include <asm/mmu_context.h>
  38#include <asm/tlb.h>
  39#include <asm/exec.h>
  40
  41#include <trace/events/task.h>
  42#include "internal.h"
  43
  44#include <trace/events/sched.h>
  45
  46int core_uses_pid;
  47unsigned int core_pipe_limit;
  48char core_pattern[CORENAME_MAX_SIZE] = "core";
  49static int core_name_size = CORENAME_MAX_SIZE;
  50
  51struct core_name {
  52        char *corename;
  53        int used, size;
  54};
  55
  56/* The maximal length of core_pattern is also specified in sysctl.c */
  57
  58static int expand_corename(struct core_name *cn, int size)
  59{
  60        char *corename = krealloc(cn->corename, size, GFP_KERNEL);
  61
  62        if (!corename)
  63                return -ENOMEM;
  64
  65        if (size > core_name_size) /* racy but harmless */
  66                core_name_size = size;
  67
  68        cn->size = ksize(corename);
  69        cn->corename = corename;
  70        return 0;
  71}
  72
  73static int cn_vprintf(struct core_name *cn, const char *fmt, va_list arg)
  74{
  75        int free, need;
  76        va_list arg_copy;
  77
  78again:
  79        free = cn->size - cn->used;
  80
  81        va_copy(arg_copy, arg);
  82        need = vsnprintf(cn->corename + cn->used, free, fmt, arg_copy);
  83        va_end(arg_copy);
  84
  85        if (need < free) {
  86                cn->used += need;
  87                return 0;
  88        }
  89
  90        if (!expand_corename(cn, cn->size + need - free + 1))
  91                goto again;
  92
  93        return -ENOMEM;
  94}
  95
  96static int cn_printf(struct core_name *cn, const char *fmt, ...)
  97{
  98        va_list arg;
  99        int ret;
 100
 101        va_start(arg, fmt);
 102        ret = cn_vprintf(cn, fmt, arg);
 103        va_end(arg);
 104
 105        return ret;
 106}
 107
 108static int cn_esc_printf(struct core_name *cn, const char *fmt, ...)
 109{
 110        int cur = cn->used;
 111        va_list arg;
 112        int ret;
 113
 114        va_start(arg, fmt);
 115        ret = cn_vprintf(cn, fmt, arg);
 116        va_end(arg);
 117
 118        for (; cur < cn->used; ++cur) {
 119                if (cn->corename[cur] == '/')
 120                        cn->corename[cur] = '!';
 121        }
 122        return ret;
 123}
 124
 125static int cn_print_exe_file(struct core_name *cn)
 126{
 127        struct file *exe_file;
 128        char *pathbuf, *path;
 129        int ret;
 130
 131        exe_file = get_mm_exe_file(current->mm);
 132        if (!exe_file)
 133                return cn_esc_printf(cn, "%s (path unknown)", current->comm);
 134
 135        pathbuf = kmalloc(PATH_MAX, GFP_TEMPORARY);
 136        if (!pathbuf) {
 137                ret = -ENOMEM;
 138                goto put_exe_file;
 139        }
 140
 141        path = d_path(&exe_file->f_path, pathbuf, PATH_MAX);
 142        if (IS_ERR(path)) {
 143                ret = PTR_ERR(path);
 144                goto free_buf;
 145        }
 146
 147        ret = cn_esc_printf(cn, "%s", path);
 148
 149free_buf:
 150        kfree(pathbuf);
 151put_exe_file:
 152        fput(exe_file);
 153        return ret;
 154}
 155
 156/* format_corename will inspect the pattern parameter, and output a
 157 * name into corename, which must have space for at least
 158 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
 159 */
 160static int format_corename(struct core_name *cn, struct coredump_params *cprm)
 161{
 162        const struct cred *cred = current_cred();
 163        const char *pat_ptr = core_pattern;
 164        int ispipe = (*pat_ptr == '|');
 165        int pid_in_pattern = 0;
 166        int err = 0;
 167
 168        cn->used = 0;
 169        cn->corename = NULL;
 170        if (expand_corename(cn, core_name_size))
 171                return -ENOMEM;
 172        cn->corename[0] = '\0';
 173
 174        if (ispipe)
 175                ++pat_ptr;
 176
 177        /* Repeat as long as we have more pattern to process and more output
 178           space */
 179        while (*pat_ptr) {
 180                if (*pat_ptr != '%') {
 181                        err = cn_printf(cn, "%c", *pat_ptr++);
 182                } else {
 183                        switch (*++pat_ptr) {
 184                        /* single % at the end, drop that */
 185                        case 0:
 186                                goto out;
 187                        /* Double percent, output one percent */
 188                        case '%':
 189                                err = cn_printf(cn, "%c", '%');
 190                                break;
 191                        /* pid */
 192                        case 'p':
 193                                pid_in_pattern = 1;
 194                                err = cn_printf(cn, "%d",
 195                                              task_tgid_vnr(current));
 196                                break;
 197                        /* global pid */
 198                        case 'P':
 199                                err = cn_printf(cn, "%d",
 200                                              task_tgid_nr(current));
 201                                break;
 202                        /* uid */
 203                        case 'u':
 204                                err = cn_printf(cn, "%d", cred->uid);
 205                                break;
 206                        /* gid */
 207                        case 'g':
 208                                err = cn_printf(cn, "%d", cred->gid);
 209                                break;
 210                        case 'd':
 211                                err = cn_printf(cn, "%d",
 212                                        __get_dumpable(cprm->mm_flags));
 213                                break;
 214                        /* signal that caused the coredump */
 215                        case 's':
 216                                err = cn_printf(cn, "%ld", cprm->siginfo->si_signo);
 217                                break;
 218                        /* UNIX time of coredump */
 219                        case 't': {
 220                                struct timeval tv;
 221                                do_gettimeofday(&tv);
 222                                err = cn_printf(cn, "%lu", tv.tv_sec);
 223                                break;
 224                        }
 225                        /* hostname */
 226                        case 'h':
 227                                down_read(&uts_sem);
 228                                err = cn_esc_printf(cn, "%s",
 229                                              utsname()->nodename);
 230                                up_read(&uts_sem);
 231                                break;
 232                        /* executable */
 233                        case 'e':
 234                                err = cn_esc_printf(cn, "%s", current->comm);
 235                                break;
 236                        case 'E':
 237                                err = cn_print_exe_file(cn);
 238                                break;
 239                        /* core limit size */
 240                        case 'c':
 241                                err = cn_printf(cn, "%lu",
 242                                              rlimit(RLIMIT_CORE));
 243                                break;
 244                        default:
 245                                break;
 246                        }
 247                        ++pat_ptr;
 248                }
 249
 250                if (err)
 251                        return err;
 252        }
 253
 254out:
 255        /* Backward compatibility with core_uses_pid:
 256         *
 257         * If core_pattern does not include a %p (as is the default)
 258         * and core_uses_pid is set, then .%pid will be appended to
 259         * the filename. Do not do this for piped commands. */
 260        if (!ispipe && !pid_in_pattern && core_uses_pid) {
 261                err = cn_printf(cn, ".%d", task_tgid_vnr(current));
 262                if (err)
 263                        return err;
 264        }
 265        return ispipe;
 266}
 267
 268static int zap_process(struct task_struct *start, int exit_code)
 269{
 270        struct task_struct *t;
 271        int nr = 0;
 272
 273        start->signal->group_exit_code = exit_code;
 274        start->signal->group_stop_count = 0;
 275
 276        t = start;
 277        do {
 278                task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
 279                if (t != current && t->mm) {
 280                        sigaddset(&t->pending.signal, SIGKILL);
 281                        signal_wake_up(t, 1);
 282                        nr++;
 283                }
 284        } while_each_thread(start, t);
 285
 286        return nr;
 287}
 288
 289static int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
 290                        struct core_state *core_state, int exit_code)
 291{
 292        struct task_struct *g, *p;
 293        unsigned long flags;
 294        int nr = -EAGAIN;
 295
 296        spin_lock_irq(&tsk->sighand->siglock);
 297        if (!signal_group_exit(tsk->signal)) {
 298                mm->core_state = core_state;
 299                nr = zap_process(tsk, exit_code);
 300                tsk->signal->group_exit_task = tsk;
 301                /* ignore all signals except SIGKILL, see prepare_signal() */
 302                tsk->signal->flags = SIGNAL_GROUP_COREDUMP;
 303                clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
 304        }
 305        spin_unlock_irq(&tsk->sighand->siglock);
 306        if (unlikely(nr < 0))
 307                return nr;
 308
 309        tsk->flags |= PF_DUMPCORE;
 310        if (atomic_read(&mm->mm_users) == nr + 1)
 311                goto done;
 312        /*
 313         * We should find and kill all tasks which use this mm, and we should
 314         * count them correctly into ->nr_threads. We don't take tasklist
 315         * lock, but this is safe wrt:
 316         *
 317         * fork:
 318         *      None of sub-threads can fork after zap_process(leader). All
 319         *      processes which were created before this point should be
 320         *      visible to zap_threads() because copy_process() adds the new
 321         *      process to the tail of init_task.tasks list, and lock/unlock
 322         *      of ->siglock provides a memory barrier.
 323         *
 324         * do_exit:
 325         *      The caller holds mm->mmap_sem. This means that the task which
 326         *      uses this mm can't pass exit_mm(), so it can't exit or clear
 327         *      its ->mm.
 328         *
 329         * de_thread:
 330         *      It does list_replace_rcu(&leader->tasks, &current->tasks),
 331         *      we must see either old or new leader, this does not matter.
 332         *      However, it can change p->sighand, so lock_task_sighand(p)
 333         *      must be used. Since p->mm != NULL and we hold ->mmap_sem
 334         *      it can't fail.
 335         *
 336         *      Note also that "g" can be the old leader with ->mm == NULL
 337         *      and already unhashed and thus removed from ->thread_group.
 338         *      This is OK, __unhash_process()->list_del_rcu() does not
 339         *      clear the ->next pointer, we will find the new leader via
 340         *      next_thread().
 341         */
 342        rcu_read_lock();
 343        for_each_process(g) {
 344                if (g == tsk->group_leader)
 345                        continue;
 346                if (g->flags & PF_KTHREAD)
 347                        continue;
 348                p = g;
 349                do {
 350                        if (p->mm) {
 351                                if (unlikely(p->mm == mm)) {
 352                                        lock_task_sighand(p, &flags);
 353                                        nr += zap_process(p, exit_code);
 354                                        p->signal->flags = SIGNAL_GROUP_EXIT;
 355                                        unlock_task_sighand(p, &flags);
 356                                }
 357                                break;
 358                        }
 359                } while_each_thread(g, p);
 360        }
 361        rcu_read_unlock();
 362done:
 363        atomic_set(&core_state->nr_threads, nr);
 364        return nr;
 365}
 366
 367static int coredump_wait(int exit_code, struct core_state *core_state)
 368{
 369        struct task_struct *tsk = current;
 370        struct mm_struct *mm = tsk->mm;
 371        int core_waiters = -EBUSY;
 372
 373        init_completion(&core_state->startup);
 374        core_state->dumper.task = tsk;
 375        core_state->dumper.next = NULL;
 376
 377        down_write(&mm->mmap_sem);
 378        if (!mm->core_state)
 379                core_waiters = zap_threads(tsk, mm, core_state, exit_code);
 380        up_write(&mm->mmap_sem);
 381
 382        if (core_waiters > 0) {
 383                struct core_thread *ptr;
 384
 385                wait_for_completion(&core_state->startup);
 386                /*
 387                 * Wait for all the threads to become inactive, so that
 388                 * all the thread context (extended register state, like
 389                 * fpu etc) gets copied to the memory.
 390                 */
 391                ptr = core_state->dumper.next;
 392                while (ptr != NULL) {
 393                        wait_task_inactive(ptr->task, 0);
 394                        ptr = ptr->next;
 395                }
 396        }
 397
 398        return core_waiters;
 399}
 400
 401static void coredump_finish(struct mm_struct *mm, bool core_dumped)
 402{
 403        struct core_thread *curr, *next;
 404        struct task_struct *task;
 405
 406        spin_lock_irq(&current->sighand->siglock);
 407        if (core_dumped && !__fatal_signal_pending(current))
 408                current->signal->group_exit_code |= 0x80;
 409        current->signal->group_exit_task = NULL;
 410        current->signal->flags = SIGNAL_GROUP_EXIT;
 411        spin_unlock_irq(&current->sighand->siglock);
 412
 413        next = mm->core_state->dumper.next;
 414        while ((curr = next) != NULL) {
 415                next = curr->next;
 416                task = curr->task;
 417                /*
 418                 * see exit_mm(), curr->task must not see
 419                 * ->task == NULL before we read ->next.
 420                 */
 421                smp_mb();
 422                curr->task = NULL;
 423                wake_up_process(task);
 424        }
 425
 426        mm->core_state = NULL;
 427}
 428
 429static bool dump_interrupted(void)
 430{
 431        /*
 432         * SIGKILL or freezing() interrupt the coredumping. Perhaps we
 433         * can do try_to_freeze() and check __fatal_signal_pending(),
 434         * but then we need to teach dump_write() to restart and clear
 435         * TIF_SIGPENDING.
 436         */
 437        return signal_pending(current);
 438}
 439
 440static void wait_for_dump_helpers(struct file *file)
 441{
 442        struct pipe_inode_info *pipe = file->private_data;
 443
 444        pipe_lock(pipe);
 445        pipe->readers++;
 446        pipe->writers--;
 447        wake_up_interruptible_sync(&pipe->wait);
 448        kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
 449        pipe_unlock(pipe);
 450
 451        /*
 452         * We actually want wait_event_freezable() but then we need
 453         * to clear TIF_SIGPENDING and improve dump_interrupted().
 454         */
 455        wait_event_interruptible(pipe->wait, pipe->readers == 1);
 456
 457        pipe_lock(pipe);
 458        pipe->readers--;
 459        pipe->writers++;
 460        pipe_unlock(pipe);
 461}
 462
 463/*
 464 * umh_pipe_setup
 465 * helper function to customize the process used
 466 * to collect the core in userspace.  Specifically
 467 * it sets up a pipe and installs it as fd 0 (stdin)
 468 * for the process.  Returns 0 on success, or
 469 * PTR_ERR on failure.
 470 * Note that it also sets the core limit to 1.  This
 471 * is a special value that we use to trap recursive
 472 * core dumps
 473 */
 474static int umh_pipe_setup(struct subprocess_info *info, struct cred *new)
 475{
 476        struct file *files[2];
 477        struct coredump_params *cp = (struct coredump_params *)info->data;
 478        int err = create_pipe_files(files, 0);
 479        if (err)
 480                return err;
 481
 482        cp->file = files[1];
 483
 484        err = replace_fd(0, files[0], 0);
 485        fput(files[0]);
 486        /* and disallow core files too */
 487        current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
 488
 489        return err;
 490}
 491
 492void do_coredump(const siginfo_t *siginfo)
 493{
 494        struct core_state core_state;
 495        struct core_name cn;
 496        struct mm_struct *mm = current->mm;
 497        struct linux_binfmt * binfmt;
 498        const struct cred *old_cred;
 499        struct cred *cred;
 500        int retval = 0;
 501        int flag = 0;
 502        int ispipe;
 503        struct files_struct *displaced;
 504        bool need_nonrelative = false;
 505        bool core_dumped = false;
 506        static atomic_t core_dump_count = ATOMIC_INIT(0);
 507        struct coredump_params cprm = {
 508                .siginfo = siginfo,
 509                .regs = signal_pt_regs(),
 510                .limit = rlimit(RLIMIT_CORE),
 511                /*
 512                 * We must use the same mm->flags while dumping core to avoid
 513                 * inconsistency of bit flags, since this flag is not protected
 514                 * by any locks.
 515                 */
 516                .mm_flags = mm->flags,
 517        };
 518
 519        audit_core_dumps(siginfo->si_signo);
 520
 521        binfmt = mm->binfmt;
 522        if (!binfmt || !binfmt->core_dump)
 523                goto fail;
 524        if (!__get_dumpable(cprm.mm_flags))
 525                goto fail;
 526
 527        cred = prepare_creds();
 528        if (!cred)
 529                goto fail;
 530        /*
 531         * We cannot trust fsuid as being the "true" uid of the process
 532         * nor do we know its entire history. We only know it was tainted
 533         * so we dump it as root in mode 2, and only into a controlled
 534         * environment (pipe handler or fully qualified path).
 535         */
 536        if (__get_dumpable(cprm.mm_flags) == SUID_DUMP_ROOT) {
 537                /* Setuid core dump mode */
 538                flag = O_EXCL;          /* Stop rewrite attacks */
 539                cred->fsuid = GLOBAL_ROOT_UID;  /* Dump root private */
 540                need_nonrelative = true;
 541        }
 542
 543        retval = coredump_wait(siginfo->si_signo, &core_state);
 544        if (retval < 0)
 545                goto fail_creds;
 546
 547        old_cred = override_creds(cred);
 548
 549        ispipe = format_corename(&cn, &cprm);
 550
 551        if (ispipe) {
 552                int dump_count;
 553                char **helper_argv;
 554                struct subprocess_info *sub_info;
 555
 556                if (ispipe < 0) {
 557                        printk(KERN_WARNING "format_corename failed\n");
 558                        printk(KERN_WARNING "Aborting core\n");
 559                        goto fail_unlock;
 560                }
 561
 562                if (cprm.limit == 1) {
 563                        /* See umh_pipe_setup() which sets RLIMIT_CORE = 1.
 564                         *
 565                         * Normally core limits are irrelevant to pipes, since
 566                         * we're not writing to the file system, but we use
 567                         * cprm.limit of 1 here as a speacial value, this is a
 568                         * consistent way to catch recursive crashes.
 569                         * We can still crash if the core_pattern binary sets
 570                         * RLIM_CORE = !1, but it runs as root, and can do
 571                         * lots of stupid things.
 572                         *
 573                         * Note that we use task_tgid_vnr here to grab the pid
 574                         * of the process group leader.  That way we get the
 575                         * right pid if a thread in a multi-threaded
 576                         * core_pattern process dies.
 577                         */
 578                        printk(KERN_WARNING
 579                                "Process %d(%s) has RLIMIT_CORE set to 1\n",
 580                                task_tgid_vnr(current), current->comm);
 581                        printk(KERN_WARNING "Aborting core\n");
 582                        goto fail_unlock;
 583                }
 584                cprm.limit = RLIM_INFINITY;
 585
 586                dump_count = atomic_inc_return(&core_dump_count);
 587                if (core_pipe_limit && (core_pipe_limit < dump_count)) {
 588                        printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
 589                               task_tgid_vnr(current), current->comm);
 590                        printk(KERN_WARNING "Skipping core dump\n");
 591                        goto fail_dropcount;
 592                }
 593
 594                helper_argv = argv_split(GFP_KERNEL, cn.corename, NULL);
 595                if (!helper_argv) {
 596                        printk(KERN_WARNING "%s failed to allocate memory\n",
 597                               __func__);
 598                        goto fail_dropcount;
 599                }
 600
 601                retval = -ENOMEM;
 602                sub_info = call_usermodehelper_setup(helper_argv[0],
 603                                                helper_argv, NULL, GFP_KERNEL,
 604                                                umh_pipe_setup, NULL, &cprm);
 605                if (sub_info)
 606                        retval = call_usermodehelper_exec(sub_info,
 607                                                          UMH_WAIT_EXEC);
 608
 609                argv_free(helper_argv);
 610                if (retval) {
 611                        printk(KERN_INFO "Core dump to |%s pipe failed\n",
 612                               cn.corename);
 613                        goto close_fail;
 614                }
 615        } else {
 616                struct inode *inode;
 617
 618                if (cprm.limit < binfmt->min_coredump)
 619                        goto fail_unlock;
 620
 621                if (need_nonrelative && cn.corename[0] != '/') {
 622                        printk(KERN_WARNING "Pid %d(%s) can only dump core "\
 623                                "to fully qualified path!\n",
 624                                task_tgid_vnr(current), current->comm);
 625                        printk(KERN_WARNING "Skipping core dump\n");
 626                        goto fail_unlock;
 627                }
 628
 629                cprm.file = filp_open(cn.corename,
 630                                 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
 631                                 0600);
 632                if (IS_ERR(cprm.file))
 633                        goto fail_unlock;
 634
 635                inode = file_inode(cprm.file);
 636                if (inode->i_nlink > 1)
 637                        goto close_fail;
 638                if (d_unhashed(cprm.file->f_path.dentry))
 639                        goto close_fail;
 640                /*
 641                 * AK: actually i see no reason to not allow this for named
 642                 * pipes etc, but keep the previous behaviour for now.
 643                 */
 644                if (!S_ISREG(inode->i_mode))
 645                        goto close_fail;
 646                /*
 647                 * Dont allow local users get cute and trick others to coredump
 648                 * into their pre-created files.
 649                 */
 650                if (!uid_eq(inode->i_uid, current_fsuid()))
 651                        goto close_fail;
 652                if (!cprm.file->f_op->write)
 653                        goto close_fail;
 654                if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file))
 655                        goto close_fail;
 656        }
 657
 658        /* get us an unshared descriptor table; almost always a no-op */
 659        retval = unshare_files(&displaced);
 660        if (retval)
 661                goto close_fail;
 662        if (displaced)
 663                put_files_struct(displaced);
 664        if (!dump_interrupted()) {
 665                file_start_write(cprm.file);
 666                core_dumped = binfmt->core_dump(&cprm);
 667                file_end_write(cprm.file);
 668        }
 669        if (ispipe && core_pipe_limit)
 670                wait_for_dump_helpers(cprm.file);
 671close_fail:
 672        if (cprm.file)
 673                filp_close(cprm.file, NULL);
 674fail_dropcount:
 675        if (ispipe)
 676                atomic_dec(&core_dump_count);
 677fail_unlock:
 678        kfree(cn.corename);
 679        coredump_finish(mm, core_dumped);
 680        revert_creds(old_cred);
 681fail_creds:
 682        put_cred(cred);
 683fail:
 684        return;
 685}
 686
 687/*
 688 * Core dumping helper functions.  These are the only things you should
 689 * do on a core-file: use only these functions to write out all the
 690 * necessary info.
 691 */
 692int dump_emit(struct coredump_params *cprm, const void *addr, int nr)
 693{
 694        struct file *file = cprm->file;
 695        loff_t pos = file->f_pos;
 696        ssize_t n;
 697        if (cprm->written + nr > cprm->limit)
 698                return 0;
 699        while (nr) {
 700                if (dump_interrupted())
 701                        return 0;
 702                n = __kernel_write(file, addr, nr, &pos);
 703                if (n <= 0)
 704                        return 0;
 705                file->f_pos = pos;
 706                cprm->written += n;
 707                nr -= n;
 708        }
 709        return 1;
 710}
 711EXPORT_SYMBOL(dump_emit);
 712
 713int dump_skip(struct coredump_params *cprm, size_t nr)
 714{
 715        static char zeroes[PAGE_SIZE];
 716        struct file *file = cprm->file;
 717        if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
 718                if (cprm->written + nr > cprm->limit)
 719                        return 0;
 720                if (dump_interrupted() ||
 721                    file->f_op->llseek(file, nr, SEEK_CUR) < 0)
 722                        return 0;
 723                cprm->written += nr;
 724                return 1;
 725        } else {
 726                while (nr > PAGE_SIZE) {
 727                        if (!dump_emit(cprm, zeroes, PAGE_SIZE))
 728                                return 0;
 729                        nr -= PAGE_SIZE;
 730                }
 731                return dump_emit(cprm, zeroes, nr);
 732        }
 733}
 734EXPORT_SYMBOL(dump_skip);
 735
 736int dump_align(struct coredump_params *cprm, int align)
 737{
 738        unsigned mod = cprm->written & (align - 1);
 739        if (align & (align - 1))
 740                return 0;
 741        return mod ? dump_skip(cprm, align - mod) : 1;
 742}
 743EXPORT_SYMBOL(dump_align);
 744