linux/fs/xfs/xfs_extfree_item.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include "xfs_fs.h"
  20#include "xfs_log_format.h"
  21#include "xfs_trans_resv.h"
  22#include "xfs_sb.h"
  23#include "xfs_ag.h"
  24#include "xfs_mount.h"
  25#include "xfs_trans.h"
  26#include "xfs_trans_priv.h"
  27#include "xfs_buf_item.h"
  28#include "xfs_extfree_item.h"
  29#include "xfs_log.h"
  30
  31
  32kmem_zone_t     *xfs_efi_zone;
  33kmem_zone_t     *xfs_efd_zone;
  34
  35static inline struct xfs_efi_log_item *EFI_ITEM(struct xfs_log_item *lip)
  36{
  37        return container_of(lip, struct xfs_efi_log_item, efi_item);
  38}
  39
  40void
  41xfs_efi_item_free(
  42        struct xfs_efi_log_item *efip)
  43{
  44        if (efip->efi_format.efi_nextents > XFS_EFI_MAX_FAST_EXTENTS)
  45                kmem_free(efip);
  46        else
  47                kmem_zone_free(xfs_efi_zone, efip);
  48}
  49
  50/*
  51 * Freeing the efi requires that we remove it from the AIL if it has already
  52 * been placed there. However, the EFI may not yet have been placed in the AIL
  53 * when called by xfs_efi_release() from EFD processing due to the ordering of
  54 * committed vs unpin operations in bulk insert operations. Hence the reference
  55 * count to ensure only the last caller frees the EFI.
  56 */
  57STATIC void
  58__xfs_efi_release(
  59        struct xfs_efi_log_item *efip)
  60{
  61        struct xfs_ail          *ailp = efip->efi_item.li_ailp;
  62
  63        if (atomic_dec_and_test(&efip->efi_refcount)) {
  64                spin_lock(&ailp->xa_lock);
  65                /* xfs_trans_ail_delete() drops the AIL lock. */
  66                xfs_trans_ail_delete(ailp, &efip->efi_item,
  67                                     SHUTDOWN_LOG_IO_ERROR);
  68                xfs_efi_item_free(efip);
  69        }
  70}
  71
  72/*
  73 * This returns the number of iovecs needed to log the given efi item.
  74 * We only need 1 iovec for an efi item.  It just logs the efi_log_format
  75 * structure.
  76 */
  77static inline int
  78xfs_efi_item_sizeof(
  79        struct xfs_efi_log_item *efip)
  80{
  81        return sizeof(struct xfs_efi_log_format) +
  82               (efip->efi_format.efi_nextents - 1) * sizeof(xfs_extent_t);
  83}
  84
  85STATIC void
  86xfs_efi_item_size(
  87        struct xfs_log_item     *lip,
  88        int                     *nvecs,
  89        int                     *nbytes)
  90{
  91        *nvecs += 1;
  92        *nbytes += xfs_efi_item_sizeof(EFI_ITEM(lip));
  93}
  94
  95/*
  96 * This is called to fill in the vector of log iovecs for the
  97 * given efi log item. We use only 1 iovec, and we point that
  98 * at the efi_log_format structure embedded in the efi item.
  99 * It is at this point that we assert that all of the extent
 100 * slots in the efi item have been filled.
 101 */
 102STATIC void
 103xfs_efi_item_format(
 104        struct xfs_log_item     *lip,
 105        struct xfs_log_vec      *lv)
 106{
 107        struct xfs_efi_log_item *efip = EFI_ITEM(lip);
 108        struct xfs_log_iovec    *vecp = NULL;
 109
 110        ASSERT(atomic_read(&efip->efi_next_extent) ==
 111                                efip->efi_format.efi_nextents);
 112
 113        efip->efi_format.efi_type = XFS_LI_EFI;
 114        efip->efi_format.efi_size = 1;
 115
 116        xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFI_FORMAT,
 117                        &efip->efi_format,
 118                        xfs_efi_item_sizeof(efip));
 119}
 120
 121
 122/*
 123 * Pinning has no meaning for an efi item, so just return.
 124 */
 125STATIC void
 126xfs_efi_item_pin(
 127        struct xfs_log_item     *lip)
 128{
 129}
 130
 131/*
 132 * While EFIs cannot really be pinned, the unpin operation is the last place at
 133 * which the EFI is manipulated during a transaction.  If we are being asked to
 134 * remove the EFI it's because the transaction has been cancelled and by
 135 * definition that means the EFI cannot be in the AIL so remove it from the
 136 * transaction and free it.  Otherwise coordinate with xfs_efi_release()
 137 * to determine who gets to free the EFI.
 138 */
 139STATIC void
 140xfs_efi_item_unpin(
 141        struct xfs_log_item     *lip,
 142        int                     remove)
 143{
 144        struct xfs_efi_log_item *efip = EFI_ITEM(lip);
 145
 146        if (remove) {
 147                ASSERT(!(lip->li_flags & XFS_LI_IN_AIL));
 148                if (lip->li_desc)
 149                        xfs_trans_del_item(lip);
 150                xfs_efi_item_free(efip);
 151                return;
 152        }
 153        __xfs_efi_release(efip);
 154}
 155
 156/*
 157 * Efi items have no locking or pushing.  However, since EFIs are pulled from
 158 * the AIL when their corresponding EFDs are committed to disk, their situation
 159 * is very similar to being pinned.  Return XFS_ITEM_PINNED so that the caller
 160 * will eventually flush the log.  This should help in getting the EFI out of
 161 * the AIL.
 162 */
 163STATIC uint
 164xfs_efi_item_push(
 165        struct xfs_log_item     *lip,
 166        struct list_head        *buffer_list)
 167{
 168        return XFS_ITEM_PINNED;
 169}
 170
 171STATIC void
 172xfs_efi_item_unlock(
 173        struct xfs_log_item     *lip)
 174{
 175        if (lip->li_flags & XFS_LI_ABORTED)
 176                xfs_efi_item_free(EFI_ITEM(lip));
 177}
 178
 179/*
 180 * The EFI is logged only once and cannot be moved in the log, so simply return
 181 * the lsn at which it's been logged.
 182 */
 183STATIC xfs_lsn_t
 184xfs_efi_item_committed(
 185        struct xfs_log_item     *lip,
 186        xfs_lsn_t               lsn)
 187{
 188        return lsn;
 189}
 190
 191/*
 192 * The EFI dependency tracking op doesn't do squat.  It can't because
 193 * it doesn't know where the free extent is coming from.  The dependency
 194 * tracking has to be handled by the "enclosing" metadata object.  For
 195 * example, for inodes, the inode is locked throughout the extent freeing
 196 * so the dependency should be recorded there.
 197 */
 198STATIC void
 199xfs_efi_item_committing(
 200        struct xfs_log_item     *lip,
 201        xfs_lsn_t               lsn)
 202{
 203}
 204
 205/*
 206 * This is the ops vector shared by all efi log items.
 207 */
 208static const struct xfs_item_ops xfs_efi_item_ops = {
 209        .iop_size       = xfs_efi_item_size,
 210        .iop_format     = xfs_efi_item_format,
 211        .iop_pin        = xfs_efi_item_pin,
 212        .iop_unpin      = xfs_efi_item_unpin,
 213        .iop_unlock     = xfs_efi_item_unlock,
 214        .iop_committed  = xfs_efi_item_committed,
 215        .iop_push       = xfs_efi_item_push,
 216        .iop_committing = xfs_efi_item_committing
 217};
 218
 219
 220/*
 221 * Allocate and initialize an efi item with the given number of extents.
 222 */
 223struct xfs_efi_log_item *
 224xfs_efi_init(
 225        struct xfs_mount        *mp,
 226        uint                    nextents)
 227
 228{
 229        struct xfs_efi_log_item *efip;
 230        uint                    size;
 231
 232        ASSERT(nextents > 0);
 233        if (nextents > XFS_EFI_MAX_FAST_EXTENTS) {
 234                size = (uint)(sizeof(xfs_efi_log_item_t) +
 235                        ((nextents - 1) * sizeof(xfs_extent_t)));
 236                efip = kmem_zalloc(size, KM_SLEEP);
 237        } else {
 238                efip = kmem_zone_zalloc(xfs_efi_zone, KM_SLEEP);
 239        }
 240
 241        xfs_log_item_init(mp, &efip->efi_item, XFS_LI_EFI, &xfs_efi_item_ops);
 242        efip->efi_format.efi_nextents = nextents;
 243        efip->efi_format.efi_id = (__psint_t)(void*)efip;
 244        atomic_set(&efip->efi_next_extent, 0);
 245        atomic_set(&efip->efi_refcount, 2);
 246
 247        return efip;
 248}
 249
 250/*
 251 * Copy an EFI format buffer from the given buf, and into the destination
 252 * EFI format structure.
 253 * The given buffer can be in 32 bit or 64 bit form (which has different padding),
 254 * one of which will be the native format for this kernel.
 255 * It will handle the conversion of formats if necessary.
 256 */
 257int
 258xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt)
 259{
 260        xfs_efi_log_format_t *src_efi_fmt = buf->i_addr;
 261        uint i;
 262        uint len = sizeof(xfs_efi_log_format_t) + 
 263                (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_t);  
 264        uint len32 = sizeof(xfs_efi_log_format_32_t) + 
 265                (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_32_t);  
 266        uint len64 = sizeof(xfs_efi_log_format_64_t) + 
 267                (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_64_t);  
 268
 269        if (buf->i_len == len) {
 270                memcpy((char *)dst_efi_fmt, (char*)src_efi_fmt, len);
 271                return 0;
 272        } else if (buf->i_len == len32) {
 273                xfs_efi_log_format_32_t *src_efi_fmt_32 = buf->i_addr;
 274
 275                dst_efi_fmt->efi_type     = src_efi_fmt_32->efi_type;
 276                dst_efi_fmt->efi_size     = src_efi_fmt_32->efi_size;
 277                dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents;
 278                dst_efi_fmt->efi_id       = src_efi_fmt_32->efi_id;
 279                for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
 280                        dst_efi_fmt->efi_extents[i].ext_start =
 281                                src_efi_fmt_32->efi_extents[i].ext_start;
 282                        dst_efi_fmt->efi_extents[i].ext_len =
 283                                src_efi_fmt_32->efi_extents[i].ext_len;
 284                }
 285                return 0;
 286        } else if (buf->i_len == len64) {
 287                xfs_efi_log_format_64_t *src_efi_fmt_64 = buf->i_addr;
 288
 289                dst_efi_fmt->efi_type     = src_efi_fmt_64->efi_type;
 290                dst_efi_fmt->efi_size     = src_efi_fmt_64->efi_size;
 291                dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents;
 292                dst_efi_fmt->efi_id       = src_efi_fmt_64->efi_id;
 293                for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
 294                        dst_efi_fmt->efi_extents[i].ext_start =
 295                                src_efi_fmt_64->efi_extents[i].ext_start;
 296                        dst_efi_fmt->efi_extents[i].ext_len =
 297                                src_efi_fmt_64->efi_extents[i].ext_len;
 298                }
 299                return 0;
 300        }
 301        return -EFSCORRUPTED;
 302}
 303
 304/*
 305 * This is called by the efd item code below to release references to the given
 306 * efi item.  Each efd calls this with the number of extents that it has
 307 * logged, and when the sum of these reaches the total number of extents logged
 308 * by this efi item we can free the efi item.
 309 */
 310void
 311xfs_efi_release(xfs_efi_log_item_t      *efip,
 312                uint                    nextents)
 313{
 314        ASSERT(atomic_read(&efip->efi_next_extent) >= nextents);
 315        if (atomic_sub_and_test(nextents, &efip->efi_next_extent)) {
 316                /* recovery needs us to drop the EFI reference, too */
 317                if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags))
 318                        __xfs_efi_release(efip);
 319
 320                __xfs_efi_release(efip);
 321                /* efip may now have been freed, do not reference it again. */
 322        }
 323}
 324
 325static inline struct xfs_efd_log_item *EFD_ITEM(struct xfs_log_item *lip)
 326{
 327        return container_of(lip, struct xfs_efd_log_item, efd_item);
 328}
 329
 330STATIC void
 331xfs_efd_item_free(struct xfs_efd_log_item *efdp)
 332{
 333        if (efdp->efd_format.efd_nextents > XFS_EFD_MAX_FAST_EXTENTS)
 334                kmem_free(efdp);
 335        else
 336                kmem_zone_free(xfs_efd_zone, efdp);
 337}
 338
 339/*
 340 * This returns the number of iovecs needed to log the given efd item.
 341 * We only need 1 iovec for an efd item.  It just logs the efd_log_format
 342 * structure.
 343 */
 344static inline int
 345xfs_efd_item_sizeof(
 346        struct xfs_efd_log_item *efdp)
 347{
 348        return sizeof(xfs_efd_log_format_t) +
 349               (efdp->efd_format.efd_nextents - 1) * sizeof(xfs_extent_t);
 350}
 351
 352STATIC void
 353xfs_efd_item_size(
 354        struct xfs_log_item     *lip,
 355        int                     *nvecs,
 356        int                     *nbytes)
 357{
 358        *nvecs += 1;
 359        *nbytes += xfs_efd_item_sizeof(EFD_ITEM(lip));
 360}
 361
 362/*
 363 * This is called to fill in the vector of log iovecs for the
 364 * given efd log item. We use only 1 iovec, and we point that
 365 * at the efd_log_format structure embedded in the efd item.
 366 * It is at this point that we assert that all of the extent
 367 * slots in the efd item have been filled.
 368 */
 369STATIC void
 370xfs_efd_item_format(
 371        struct xfs_log_item     *lip,
 372        struct xfs_log_vec      *lv)
 373{
 374        struct xfs_efd_log_item *efdp = EFD_ITEM(lip);
 375        struct xfs_log_iovec    *vecp = NULL;
 376
 377        ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents);
 378
 379        efdp->efd_format.efd_type = XFS_LI_EFD;
 380        efdp->efd_format.efd_size = 1;
 381
 382        xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFD_FORMAT,
 383                        &efdp->efd_format,
 384                        xfs_efd_item_sizeof(efdp));
 385}
 386
 387/*
 388 * Pinning has no meaning for an efd item, so just return.
 389 */
 390STATIC void
 391xfs_efd_item_pin(
 392        struct xfs_log_item     *lip)
 393{
 394}
 395
 396/*
 397 * Since pinning has no meaning for an efd item, unpinning does
 398 * not either.
 399 */
 400STATIC void
 401xfs_efd_item_unpin(
 402        struct xfs_log_item     *lip,
 403        int                     remove)
 404{
 405}
 406
 407/*
 408 * There isn't much you can do to push on an efd item.  It is simply stuck
 409 * waiting for the log to be flushed to disk.
 410 */
 411STATIC uint
 412xfs_efd_item_push(
 413        struct xfs_log_item     *lip,
 414        struct list_head        *buffer_list)
 415{
 416        return XFS_ITEM_PINNED;
 417}
 418
 419STATIC void
 420xfs_efd_item_unlock(
 421        struct xfs_log_item     *lip)
 422{
 423        if (lip->li_flags & XFS_LI_ABORTED)
 424                xfs_efd_item_free(EFD_ITEM(lip));
 425}
 426
 427/*
 428 * When the efd item is committed to disk, all we need to do
 429 * is delete our reference to our partner efi item and then
 430 * free ourselves.  Since we're freeing ourselves we must
 431 * return -1 to keep the transaction code from further referencing
 432 * this item.
 433 */
 434STATIC xfs_lsn_t
 435xfs_efd_item_committed(
 436        struct xfs_log_item     *lip,
 437        xfs_lsn_t               lsn)
 438{
 439        struct xfs_efd_log_item *efdp = EFD_ITEM(lip);
 440
 441        /*
 442         * If we got a log I/O error, it's always the case that the LR with the
 443         * EFI got unpinned and freed before the EFD got aborted.
 444         */
 445        if (!(lip->li_flags & XFS_LI_ABORTED))
 446                xfs_efi_release(efdp->efd_efip, efdp->efd_format.efd_nextents);
 447
 448        xfs_efd_item_free(efdp);
 449        return (xfs_lsn_t)-1;
 450}
 451
 452/*
 453 * The EFD dependency tracking op doesn't do squat.  It can't because
 454 * it doesn't know where the free extent is coming from.  The dependency
 455 * tracking has to be handled by the "enclosing" metadata object.  For
 456 * example, for inodes, the inode is locked throughout the extent freeing
 457 * so the dependency should be recorded there.
 458 */
 459STATIC void
 460xfs_efd_item_committing(
 461        struct xfs_log_item     *lip,
 462        xfs_lsn_t               lsn)
 463{
 464}
 465
 466/*
 467 * This is the ops vector shared by all efd log items.
 468 */
 469static const struct xfs_item_ops xfs_efd_item_ops = {
 470        .iop_size       = xfs_efd_item_size,
 471        .iop_format     = xfs_efd_item_format,
 472        .iop_pin        = xfs_efd_item_pin,
 473        .iop_unpin      = xfs_efd_item_unpin,
 474        .iop_unlock     = xfs_efd_item_unlock,
 475        .iop_committed  = xfs_efd_item_committed,
 476        .iop_push       = xfs_efd_item_push,
 477        .iop_committing = xfs_efd_item_committing
 478};
 479
 480/*
 481 * Allocate and initialize an efd item with the given number of extents.
 482 */
 483struct xfs_efd_log_item *
 484xfs_efd_init(
 485        struct xfs_mount        *mp,
 486        struct xfs_efi_log_item *efip,
 487        uint                    nextents)
 488
 489{
 490        struct xfs_efd_log_item *efdp;
 491        uint                    size;
 492
 493        ASSERT(nextents > 0);
 494        if (nextents > XFS_EFD_MAX_FAST_EXTENTS) {
 495                size = (uint)(sizeof(xfs_efd_log_item_t) +
 496                        ((nextents - 1) * sizeof(xfs_extent_t)));
 497                efdp = kmem_zalloc(size, KM_SLEEP);
 498        } else {
 499                efdp = kmem_zone_zalloc(xfs_efd_zone, KM_SLEEP);
 500        }
 501
 502        xfs_log_item_init(mp, &efdp->efd_item, XFS_LI_EFD, &xfs_efd_item_ops);
 503        efdp->efd_efip = efip;
 504        efdp->efd_format.efd_nextents = nextents;
 505        efdp->efd_format.efd_efi_id = efip->efi_format.efi_id;
 506
 507        return efdp;
 508}
 509