linux/fs/xfs/xfs_inode.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include <linux/log2.h>
  19
  20#include "xfs.h"
  21#include "xfs_fs.h"
  22#include "xfs_shared.h"
  23#include "xfs_format.h"
  24#include "xfs_log_format.h"
  25#include "xfs_trans_resv.h"
  26#include "xfs_inum.h"
  27#include "xfs_sb.h"
  28#include "xfs_ag.h"
  29#include "xfs_mount.h"
  30#include "xfs_inode.h"
  31#include "xfs_da_format.h"
  32#include "xfs_da_btree.h"
  33#include "xfs_dir2.h"
  34#include "xfs_attr_sf.h"
  35#include "xfs_attr.h"
  36#include "xfs_trans_space.h"
  37#include "xfs_trans.h"
  38#include "xfs_buf_item.h"
  39#include "xfs_inode_item.h"
  40#include "xfs_ialloc.h"
  41#include "xfs_bmap.h"
  42#include "xfs_bmap_util.h"
  43#include "xfs_error.h"
  44#include "xfs_quota.h"
  45#include "xfs_filestream.h"
  46#include "xfs_cksum.h"
  47#include "xfs_trace.h"
  48#include "xfs_icache.h"
  49#include "xfs_symlink.h"
  50#include "xfs_trans_priv.h"
  51#include "xfs_log.h"
  52#include "xfs_bmap_btree.h"
  53
  54kmem_zone_t *xfs_inode_zone;
  55
  56/*
  57 * Used in xfs_itruncate_extents().  This is the maximum number of extents
  58 * freed from a file in a single transaction.
  59 */
  60#define XFS_ITRUNC_MAX_EXTENTS  2
  61
  62STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
  63
  64STATIC int xfs_iunlink_remove(xfs_trans_t *, xfs_inode_t *);
  65
  66/*
  67 * helper function to extract extent size hint from inode
  68 */
  69xfs_extlen_t
  70xfs_get_extsz_hint(
  71        struct xfs_inode        *ip)
  72{
  73        if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
  74                return ip->i_d.di_extsize;
  75        if (XFS_IS_REALTIME_INODE(ip))
  76                return ip->i_mount->m_sb.sb_rextsize;
  77        return 0;
  78}
  79
  80/*
  81 * These two are wrapper routines around the xfs_ilock() routine used to
  82 * centralize some grungy code.  They are used in places that wish to lock the
  83 * inode solely for reading the extents.  The reason these places can't just
  84 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
  85 * bringing in of the extents from disk for a file in b-tree format.  If the
  86 * inode is in b-tree format, then we need to lock the inode exclusively until
  87 * the extents are read in.  Locking it exclusively all the time would limit
  88 * our parallelism unnecessarily, though.  What we do instead is check to see
  89 * if the extents have been read in yet, and only lock the inode exclusively
  90 * if they have not.
  91 *
  92 * The functions return a value which should be given to the corresponding
  93 * xfs_iunlock() call.
  94 */
  95uint
  96xfs_ilock_data_map_shared(
  97        struct xfs_inode        *ip)
  98{
  99        uint                    lock_mode = XFS_ILOCK_SHARED;
 100
 101        if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE &&
 102            (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
 103                lock_mode = XFS_ILOCK_EXCL;
 104        xfs_ilock(ip, lock_mode);
 105        return lock_mode;
 106}
 107
 108uint
 109xfs_ilock_attr_map_shared(
 110        struct xfs_inode        *ip)
 111{
 112        uint                    lock_mode = XFS_ILOCK_SHARED;
 113
 114        if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE &&
 115            (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
 116                lock_mode = XFS_ILOCK_EXCL;
 117        xfs_ilock(ip, lock_mode);
 118        return lock_mode;
 119}
 120
 121/*
 122 * The xfs inode contains 2 locks: a multi-reader lock called the
 123 * i_iolock and a multi-reader lock called the i_lock.  This routine
 124 * allows either or both of the locks to be obtained.
 125 *
 126 * The 2 locks should always be ordered so that the IO lock is
 127 * obtained first in order to prevent deadlock.
 128 *
 129 * ip -- the inode being locked
 130 * lock_flags -- this parameter indicates the inode's locks
 131 *       to be locked.  It can be:
 132 *              XFS_IOLOCK_SHARED,
 133 *              XFS_IOLOCK_EXCL,
 134 *              XFS_ILOCK_SHARED,
 135 *              XFS_ILOCK_EXCL,
 136 *              XFS_IOLOCK_SHARED | XFS_ILOCK_SHARED,
 137 *              XFS_IOLOCK_SHARED | XFS_ILOCK_EXCL,
 138 *              XFS_IOLOCK_EXCL | XFS_ILOCK_SHARED,
 139 *              XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL
 140 */
 141void
 142xfs_ilock(
 143        xfs_inode_t             *ip,
 144        uint                    lock_flags)
 145{
 146        trace_xfs_ilock(ip, lock_flags, _RET_IP_);
 147
 148        /*
 149         * You can't set both SHARED and EXCL for the same lock,
 150         * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
 151         * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
 152         */
 153        ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
 154               (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
 155        ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
 156               (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
 157        ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
 158
 159        if (lock_flags & XFS_IOLOCK_EXCL)
 160                mrupdate_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
 161        else if (lock_flags & XFS_IOLOCK_SHARED)
 162                mraccess_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
 163
 164        if (lock_flags & XFS_ILOCK_EXCL)
 165                mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
 166        else if (lock_flags & XFS_ILOCK_SHARED)
 167                mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
 168}
 169
 170/*
 171 * This is just like xfs_ilock(), except that the caller
 172 * is guaranteed not to sleep.  It returns 1 if it gets
 173 * the requested locks and 0 otherwise.  If the IO lock is
 174 * obtained but the inode lock cannot be, then the IO lock
 175 * is dropped before returning.
 176 *
 177 * ip -- the inode being locked
 178 * lock_flags -- this parameter indicates the inode's locks to be
 179 *       to be locked.  See the comment for xfs_ilock() for a list
 180 *       of valid values.
 181 */
 182int
 183xfs_ilock_nowait(
 184        xfs_inode_t             *ip,
 185        uint                    lock_flags)
 186{
 187        trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
 188
 189        /*
 190         * You can't set both SHARED and EXCL for the same lock,
 191         * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
 192         * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
 193         */
 194        ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
 195               (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
 196        ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
 197               (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
 198        ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
 199
 200        if (lock_flags & XFS_IOLOCK_EXCL) {
 201                if (!mrtryupdate(&ip->i_iolock))
 202                        goto out;
 203        } else if (lock_flags & XFS_IOLOCK_SHARED) {
 204                if (!mrtryaccess(&ip->i_iolock))
 205                        goto out;
 206        }
 207        if (lock_flags & XFS_ILOCK_EXCL) {
 208                if (!mrtryupdate(&ip->i_lock))
 209                        goto out_undo_iolock;
 210        } else if (lock_flags & XFS_ILOCK_SHARED) {
 211                if (!mrtryaccess(&ip->i_lock))
 212                        goto out_undo_iolock;
 213        }
 214        return 1;
 215
 216 out_undo_iolock:
 217        if (lock_flags & XFS_IOLOCK_EXCL)
 218                mrunlock_excl(&ip->i_iolock);
 219        else if (lock_flags & XFS_IOLOCK_SHARED)
 220                mrunlock_shared(&ip->i_iolock);
 221 out:
 222        return 0;
 223}
 224
 225/*
 226 * xfs_iunlock() is used to drop the inode locks acquired with
 227 * xfs_ilock() and xfs_ilock_nowait().  The caller must pass
 228 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
 229 * that we know which locks to drop.
 230 *
 231 * ip -- the inode being unlocked
 232 * lock_flags -- this parameter indicates the inode's locks to be
 233 *       to be unlocked.  See the comment for xfs_ilock() for a list
 234 *       of valid values for this parameter.
 235 *
 236 */
 237void
 238xfs_iunlock(
 239        xfs_inode_t             *ip,
 240        uint                    lock_flags)
 241{
 242        /*
 243         * You can't set both SHARED and EXCL for the same lock,
 244         * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
 245         * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
 246         */
 247        ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
 248               (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
 249        ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
 250               (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
 251        ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
 252        ASSERT(lock_flags != 0);
 253
 254        if (lock_flags & XFS_IOLOCK_EXCL)
 255                mrunlock_excl(&ip->i_iolock);
 256        else if (lock_flags & XFS_IOLOCK_SHARED)
 257                mrunlock_shared(&ip->i_iolock);
 258
 259        if (lock_flags & XFS_ILOCK_EXCL)
 260                mrunlock_excl(&ip->i_lock);
 261        else if (lock_flags & XFS_ILOCK_SHARED)
 262                mrunlock_shared(&ip->i_lock);
 263
 264        trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
 265}
 266
 267/*
 268 * give up write locks.  the i/o lock cannot be held nested
 269 * if it is being demoted.
 270 */
 271void
 272xfs_ilock_demote(
 273        xfs_inode_t             *ip,
 274        uint                    lock_flags)
 275{
 276        ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL));
 277        ASSERT((lock_flags & ~(XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
 278
 279        if (lock_flags & XFS_ILOCK_EXCL)
 280                mrdemote(&ip->i_lock);
 281        if (lock_flags & XFS_IOLOCK_EXCL)
 282                mrdemote(&ip->i_iolock);
 283
 284        trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
 285}
 286
 287#if defined(DEBUG) || defined(XFS_WARN)
 288int
 289xfs_isilocked(
 290        xfs_inode_t             *ip,
 291        uint                    lock_flags)
 292{
 293        if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
 294                if (!(lock_flags & XFS_ILOCK_SHARED))
 295                        return !!ip->i_lock.mr_writer;
 296                return rwsem_is_locked(&ip->i_lock.mr_lock);
 297        }
 298
 299        if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
 300                if (!(lock_flags & XFS_IOLOCK_SHARED))
 301                        return !!ip->i_iolock.mr_writer;
 302                return rwsem_is_locked(&ip->i_iolock.mr_lock);
 303        }
 304
 305        ASSERT(0);
 306        return 0;
 307}
 308#endif
 309
 310#ifdef DEBUG
 311int xfs_locked_n;
 312int xfs_small_retries;
 313int xfs_middle_retries;
 314int xfs_lots_retries;
 315int xfs_lock_delays;
 316#endif
 317
 318/*
 319 * Bump the subclass so xfs_lock_inodes() acquires each lock with
 320 * a different value
 321 */
 322static inline int
 323xfs_lock_inumorder(int lock_mode, int subclass)
 324{
 325        if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))
 326                lock_mode |= (subclass + XFS_LOCK_INUMORDER) << XFS_IOLOCK_SHIFT;
 327        if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))
 328                lock_mode |= (subclass + XFS_LOCK_INUMORDER) << XFS_ILOCK_SHIFT;
 329
 330        return lock_mode;
 331}
 332
 333/*
 334 * The following routine will lock n inodes in exclusive mode.
 335 * We assume the caller calls us with the inodes in i_ino order.
 336 *
 337 * We need to detect deadlock where an inode that we lock
 338 * is in the AIL and we start waiting for another inode that is locked
 339 * by a thread in a long running transaction (such as truncate). This can
 340 * result in deadlock since the long running trans might need to wait
 341 * for the inode we just locked in order to push the tail and free space
 342 * in the log.
 343 */
 344void
 345xfs_lock_inodes(
 346        xfs_inode_t     **ips,
 347        int             inodes,
 348        uint            lock_mode)
 349{
 350        int             attempts = 0, i, j, try_lock;
 351        xfs_log_item_t  *lp;
 352
 353        ASSERT(ips && (inodes >= 2)); /* we need at least two */
 354
 355        try_lock = 0;
 356        i = 0;
 357
 358again:
 359        for (; i < inodes; i++) {
 360                ASSERT(ips[i]);
 361
 362                if (i && (ips[i] == ips[i-1]))  /* Already locked */
 363                        continue;
 364
 365                /*
 366                 * If try_lock is not set yet, make sure all locked inodes
 367                 * are not in the AIL.
 368                 * If any are, set try_lock to be used later.
 369                 */
 370
 371                if (!try_lock) {
 372                        for (j = (i - 1); j >= 0 && !try_lock; j--) {
 373                                lp = (xfs_log_item_t *)ips[j]->i_itemp;
 374                                if (lp && (lp->li_flags & XFS_LI_IN_AIL)) {
 375                                        try_lock++;
 376                                }
 377                        }
 378                }
 379
 380                /*
 381                 * If any of the previous locks we have locked is in the AIL,
 382                 * we must TRY to get the second and subsequent locks. If
 383                 * we can't get any, we must release all we have
 384                 * and try again.
 385                 */
 386
 387                if (try_lock) {
 388                        /* try_lock must be 0 if i is 0. */
 389                        /*
 390                         * try_lock means we have an inode locked
 391                         * that is in the AIL.
 392                         */
 393                        ASSERT(i != 0);
 394                        if (!xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i))) {
 395                                attempts++;
 396
 397                                /*
 398                                 * Unlock all previous guys and try again.
 399                                 * xfs_iunlock will try to push the tail
 400                                 * if the inode is in the AIL.
 401                                 */
 402
 403                                for(j = i - 1; j >= 0; j--) {
 404
 405                                        /*
 406                                         * Check to see if we've already
 407                                         * unlocked this one.
 408                                         * Not the first one going back,
 409                                         * and the inode ptr is the same.
 410                                         */
 411                                        if ((j != (i - 1)) && ips[j] ==
 412                                                                ips[j+1])
 413                                                continue;
 414
 415                                        xfs_iunlock(ips[j], lock_mode);
 416                                }
 417
 418                                if ((attempts % 5) == 0) {
 419                                        delay(1); /* Don't just spin the CPU */
 420#ifdef DEBUG
 421                                        xfs_lock_delays++;
 422#endif
 423                                }
 424                                i = 0;
 425                                try_lock = 0;
 426                                goto again;
 427                        }
 428                } else {
 429                        xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
 430                }
 431        }
 432
 433#ifdef DEBUG
 434        if (attempts) {
 435                if (attempts < 5) xfs_small_retries++;
 436                else if (attempts < 100) xfs_middle_retries++;
 437                else xfs_lots_retries++;
 438        } else {
 439                xfs_locked_n++;
 440        }
 441#endif
 442}
 443
 444/*
 445 * xfs_lock_two_inodes() can only be used to lock one type of lock
 446 * at a time - the iolock or the ilock, but not both at once. If
 447 * we lock both at once, lockdep will report false positives saying
 448 * we have violated locking orders.
 449 */
 450void
 451xfs_lock_two_inodes(
 452        xfs_inode_t             *ip0,
 453        xfs_inode_t             *ip1,
 454        uint                    lock_mode)
 455{
 456        xfs_inode_t             *temp;
 457        int                     attempts = 0;
 458        xfs_log_item_t          *lp;
 459
 460        if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))
 461                ASSERT((lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) == 0);
 462        ASSERT(ip0->i_ino != ip1->i_ino);
 463
 464        if (ip0->i_ino > ip1->i_ino) {
 465                temp = ip0;
 466                ip0 = ip1;
 467                ip1 = temp;
 468        }
 469
 470 again:
 471        xfs_ilock(ip0, xfs_lock_inumorder(lock_mode, 0));
 472
 473        /*
 474         * If the first lock we have locked is in the AIL, we must TRY to get
 475         * the second lock. If we can't get it, we must release the first one
 476         * and try again.
 477         */
 478        lp = (xfs_log_item_t *)ip0->i_itemp;
 479        if (lp && (lp->li_flags & XFS_LI_IN_AIL)) {
 480                if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(lock_mode, 1))) {
 481                        xfs_iunlock(ip0, lock_mode);
 482                        if ((++attempts % 5) == 0)
 483                                delay(1); /* Don't just spin the CPU */
 484                        goto again;
 485                }
 486        } else {
 487                xfs_ilock(ip1, xfs_lock_inumorder(lock_mode, 1));
 488        }
 489}
 490
 491
 492void
 493__xfs_iflock(
 494        struct xfs_inode        *ip)
 495{
 496        wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
 497        DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
 498
 499        do {
 500                prepare_to_wait_exclusive(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
 501                if (xfs_isiflocked(ip))
 502                        io_schedule();
 503        } while (!xfs_iflock_nowait(ip));
 504
 505        finish_wait(wq, &wait.wait);
 506}
 507
 508STATIC uint
 509_xfs_dic2xflags(
 510        __uint16_t              di_flags)
 511{
 512        uint                    flags = 0;
 513
 514        if (di_flags & XFS_DIFLAG_ANY) {
 515                if (di_flags & XFS_DIFLAG_REALTIME)
 516                        flags |= XFS_XFLAG_REALTIME;
 517                if (di_flags & XFS_DIFLAG_PREALLOC)
 518                        flags |= XFS_XFLAG_PREALLOC;
 519                if (di_flags & XFS_DIFLAG_IMMUTABLE)
 520                        flags |= XFS_XFLAG_IMMUTABLE;
 521                if (di_flags & XFS_DIFLAG_APPEND)
 522                        flags |= XFS_XFLAG_APPEND;
 523                if (di_flags & XFS_DIFLAG_SYNC)
 524                        flags |= XFS_XFLAG_SYNC;
 525                if (di_flags & XFS_DIFLAG_NOATIME)
 526                        flags |= XFS_XFLAG_NOATIME;
 527                if (di_flags & XFS_DIFLAG_NODUMP)
 528                        flags |= XFS_XFLAG_NODUMP;
 529                if (di_flags & XFS_DIFLAG_RTINHERIT)
 530                        flags |= XFS_XFLAG_RTINHERIT;
 531                if (di_flags & XFS_DIFLAG_PROJINHERIT)
 532                        flags |= XFS_XFLAG_PROJINHERIT;
 533                if (di_flags & XFS_DIFLAG_NOSYMLINKS)
 534                        flags |= XFS_XFLAG_NOSYMLINKS;
 535                if (di_flags & XFS_DIFLAG_EXTSIZE)
 536                        flags |= XFS_XFLAG_EXTSIZE;
 537                if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
 538                        flags |= XFS_XFLAG_EXTSZINHERIT;
 539                if (di_flags & XFS_DIFLAG_NODEFRAG)
 540                        flags |= XFS_XFLAG_NODEFRAG;
 541                if (di_flags & XFS_DIFLAG_FILESTREAM)
 542                        flags |= XFS_XFLAG_FILESTREAM;
 543        }
 544
 545        return flags;
 546}
 547
 548uint
 549xfs_ip2xflags(
 550        xfs_inode_t             *ip)
 551{
 552        xfs_icdinode_t          *dic = &ip->i_d;
 553
 554        return _xfs_dic2xflags(dic->di_flags) |
 555                                (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
 556}
 557
 558uint
 559xfs_dic2xflags(
 560        xfs_dinode_t            *dip)
 561{
 562        return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
 563                                (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
 564}
 565
 566/*
 567 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
 568 * is allowed, otherwise it has to be an exact match. If a CI match is found,
 569 * ci_name->name will point to a the actual name (caller must free) or
 570 * will be set to NULL if an exact match is found.
 571 */
 572int
 573xfs_lookup(
 574        xfs_inode_t             *dp,
 575        struct xfs_name         *name,
 576        xfs_inode_t             **ipp,
 577        struct xfs_name         *ci_name)
 578{
 579        xfs_ino_t               inum;
 580        int                     error;
 581        uint                    lock_mode;
 582
 583        trace_xfs_lookup(dp, name);
 584
 585        if (XFS_FORCED_SHUTDOWN(dp->i_mount))
 586                return -EIO;
 587
 588        lock_mode = xfs_ilock_data_map_shared(dp);
 589        error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
 590        xfs_iunlock(dp, lock_mode);
 591
 592        if (error)
 593                goto out;
 594
 595        error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
 596        if (error)
 597                goto out_free_name;
 598
 599        return 0;
 600
 601out_free_name:
 602        if (ci_name)
 603                kmem_free(ci_name->name);
 604out:
 605        *ipp = NULL;
 606        return error;
 607}
 608
 609/*
 610 * Allocate an inode on disk and return a copy of its in-core version.
 611 * The in-core inode is locked exclusively.  Set mode, nlink, and rdev
 612 * appropriately within the inode.  The uid and gid for the inode are
 613 * set according to the contents of the given cred structure.
 614 *
 615 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
 616 * has a free inode available, call xfs_iget() to obtain the in-core
 617 * version of the allocated inode.  Finally, fill in the inode and
 618 * log its initial contents.  In this case, ialloc_context would be
 619 * set to NULL.
 620 *
 621 * If xfs_dialloc() does not have an available inode, it will replenish
 622 * its supply by doing an allocation. Since we can only do one
 623 * allocation within a transaction without deadlocks, we must commit
 624 * the current transaction before returning the inode itself.
 625 * In this case, therefore, we will set ialloc_context and return.
 626 * The caller should then commit the current transaction, start a new
 627 * transaction, and call xfs_ialloc() again to actually get the inode.
 628 *
 629 * To ensure that some other process does not grab the inode that
 630 * was allocated during the first call to xfs_ialloc(), this routine
 631 * also returns the [locked] bp pointing to the head of the freelist
 632 * as ialloc_context.  The caller should hold this buffer across
 633 * the commit and pass it back into this routine on the second call.
 634 *
 635 * If we are allocating quota inodes, we do not have a parent inode
 636 * to attach to or associate with (i.e. pip == NULL) because they
 637 * are not linked into the directory structure - they are attached
 638 * directly to the superblock - and so have no parent.
 639 */
 640int
 641xfs_ialloc(
 642        xfs_trans_t     *tp,
 643        xfs_inode_t     *pip,
 644        umode_t         mode,
 645        xfs_nlink_t     nlink,
 646        xfs_dev_t       rdev,
 647        prid_t          prid,
 648        int             okalloc,
 649        xfs_buf_t       **ialloc_context,
 650        xfs_inode_t     **ipp)
 651{
 652        struct xfs_mount *mp = tp->t_mountp;
 653        xfs_ino_t       ino;
 654        xfs_inode_t     *ip;
 655        uint            flags;
 656        int             error;
 657        timespec_t      tv;
 658
 659        /*
 660         * Call the space management code to pick
 661         * the on-disk inode to be allocated.
 662         */
 663        error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
 664                            ialloc_context, &ino);
 665        if (error)
 666                return error;
 667        if (*ialloc_context || ino == NULLFSINO) {
 668                *ipp = NULL;
 669                return 0;
 670        }
 671        ASSERT(*ialloc_context == NULL);
 672
 673        /*
 674         * Get the in-core inode with the lock held exclusively.
 675         * This is because we're setting fields here we need
 676         * to prevent others from looking at until we're done.
 677         */
 678        error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
 679                         XFS_ILOCK_EXCL, &ip);
 680        if (error)
 681                return error;
 682        ASSERT(ip != NULL);
 683
 684        /*
 685         * We always convert v1 inodes to v2 now - we only support filesystems
 686         * with >= v2 inode capability, so there is no reason for ever leaving
 687         * an inode in v1 format.
 688         */
 689        if (ip->i_d.di_version == 1)
 690                ip->i_d.di_version = 2;
 691
 692        ip->i_d.di_mode = mode;
 693        ip->i_d.di_onlink = 0;
 694        ip->i_d.di_nlink = nlink;
 695        ASSERT(ip->i_d.di_nlink == nlink);
 696        ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid());
 697        ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid());
 698        xfs_set_projid(ip, prid);
 699        memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
 700
 701        if (pip && XFS_INHERIT_GID(pip)) {
 702                ip->i_d.di_gid = pip->i_d.di_gid;
 703                if ((pip->i_d.di_mode & S_ISGID) && S_ISDIR(mode)) {
 704                        ip->i_d.di_mode |= S_ISGID;
 705                }
 706        }
 707
 708        /*
 709         * If the group ID of the new file does not match the effective group
 710         * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
 711         * (and only if the irix_sgid_inherit compatibility variable is set).
 712         */
 713        if ((irix_sgid_inherit) &&
 714            (ip->i_d.di_mode & S_ISGID) &&
 715            (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid)))) {
 716                ip->i_d.di_mode &= ~S_ISGID;
 717        }
 718
 719        ip->i_d.di_size = 0;
 720        ip->i_d.di_nextents = 0;
 721        ASSERT(ip->i_d.di_nblocks == 0);
 722
 723        nanotime(&tv);
 724        ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
 725        ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
 726        ip->i_d.di_atime = ip->i_d.di_mtime;
 727        ip->i_d.di_ctime = ip->i_d.di_mtime;
 728
 729        /*
 730         * di_gen will have been taken care of in xfs_iread.
 731         */
 732        ip->i_d.di_extsize = 0;
 733        ip->i_d.di_dmevmask = 0;
 734        ip->i_d.di_dmstate = 0;
 735        ip->i_d.di_flags = 0;
 736
 737        if (ip->i_d.di_version == 3) {
 738                ASSERT(ip->i_d.di_ino == ino);
 739                ASSERT(uuid_equal(&ip->i_d.di_uuid, &mp->m_sb.sb_uuid));
 740                ip->i_d.di_crc = 0;
 741                ip->i_d.di_changecount = 1;
 742                ip->i_d.di_lsn = 0;
 743                ip->i_d.di_flags2 = 0;
 744                memset(&(ip->i_d.di_pad2[0]), 0, sizeof(ip->i_d.di_pad2));
 745                ip->i_d.di_crtime = ip->i_d.di_mtime;
 746        }
 747
 748
 749        flags = XFS_ILOG_CORE;
 750        switch (mode & S_IFMT) {
 751        case S_IFIFO:
 752        case S_IFCHR:
 753        case S_IFBLK:
 754        case S_IFSOCK:
 755                ip->i_d.di_format = XFS_DINODE_FMT_DEV;
 756                ip->i_df.if_u2.if_rdev = rdev;
 757                ip->i_df.if_flags = 0;
 758                flags |= XFS_ILOG_DEV;
 759                break;
 760        case S_IFREG:
 761        case S_IFDIR:
 762                if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
 763                        uint    di_flags = 0;
 764
 765                        if (S_ISDIR(mode)) {
 766                                if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
 767                                        di_flags |= XFS_DIFLAG_RTINHERIT;
 768                                if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
 769                                        di_flags |= XFS_DIFLAG_EXTSZINHERIT;
 770                                        ip->i_d.di_extsize = pip->i_d.di_extsize;
 771                                }
 772                        } else if (S_ISREG(mode)) {
 773                                if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
 774                                        di_flags |= XFS_DIFLAG_REALTIME;
 775                                if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
 776                                        di_flags |= XFS_DIFLAG_EXTSIZE;
 777                                        ip->i_d.di_extsize = pip->i_d.di_extsize;
 778                                }
 779                        }
 780                        if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
 781                            xfs_inherit_noatime)
 782                                di_flags |= XFS_DIFLAG_NOATIME;
 783                        if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
 784                            xfs_inherit_nodump)
 785                                di_flags |= XFS_DIFLAG_NODUMP;
 786                        if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
 787                            xfs_inherit_sync)
 788                                di_flags |= XFS_DIFLAG_SYNC;
 789                        if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
 790                            xfs_inherit_nosymlinks)
 791                                di_flags |= XFS_DIFLAG_NOSYMLINKS;
 792                        if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
 793                                di_flags |= XFS_DIFLAG_PROJINHERIT;
 794                        if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
 795                            xfs_inherit_nodefrag)
 796                                di_flags |= XFS_DIFLAG_NODEFRAG;
 797                        if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
 798                                di_flags |= XFS_DIFLAG_FILESTREAM;
 799                        ip->i_d.di_flags |= di_flags;
 800                }
 801                /* FALLTHROUGH */
 802        case S_IFLNK:
 803                ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
 804                ip->i_df.if_flags = XFS_IFEXTENTS;
 805                ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
 806                ip->i_df.if_u1.if_extents = NULL;
 807                break;
 808        default:
 809                ASSERT(0);
 810        }
 811        /*
 812         * Attribute fork settings for new inode.
 813         */
 814        ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
 815        ip->i_d.di_anextents = 0;
 816
 817        /*
 818         * Log the new values stuffed into the inode.
 819         */
 820        xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
 821        xfs_trans_log_inode(tp, ip, flags);
 822
 823        /* now that we have an i_mode we can setup inode ops and unlock */
 824        xfs_setup_inode(ip);
 825
 826        *ipp = ip;
 827        return 0;
 828}
 829
 830/*
 831 * Allocates a new inode from disk and return a pointer to the
 832 * incore copy. This routine will internally commit the current
 833 * transaction and allocate a new one if the Space Manager needed
 834 * to do an allocation to replenish the inode free-list.
 835 *
 836 * This routine is designed to be called from xfs_create and
 837 * xfs_create_dir.
 838 *
 839 */
 840int
 841xfs_dir_ialloc(
 842        xfs_trans_t     **tpp,          /* input: current transaction;
 843                                           output: may be a new transaction. */
 844        xfs_inode_t     *dp,            /* directory within whose allocate
 845                                           the inode. */
 846        umode_t         mode,
 847        xfs_nlink_t     nlink,
 848        xfs_dev_t       rdev,
 849        prid_t          prid,           /* project id */
 850        int             okalloc,        /* ok to allocate new space */
 851        xfs_inode_t     **ipp,          /* pointer to inode; it will be
 852                                           locked. */
 853        int             *committed)
 854
 855{
 856        xfs_trans_t     *tp;
 857        xfs_trans_t     *ntp;
 858        xfs_inode_t     *ip;
 859        xfs_buf_t       *ialloc_context = NULL;
 860        int             code;
 861        void            *dqinfo;
 862        uint            tflags;
 863
 864        tp = *tpp;
 865        ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
 866
 867        /*
 868         * xfs_ialloc will return a pointer to an incore inode if
 869         * the Space Manager has an available inode on the free
 870         * list. Otherwise, it will do an allocation and replenish
 871         * the freelist.  Since we can only do one allocation per
 872         * transaction without deadlocks, we will need to commit the
 873         * current transaction and start a new one.  We will then
 874         * need to call xfs_ialloc again to get the inode.
 875         *
 876         * If xfs_ialloc did an allocation to replenish the freelist,
 877         * it returns the bp containing the head of the freelist as
 878         * ialloc_context. We will hold a lock on it across the
 879         * transaction commit so that no other process can steal
 880         * the inode(s) that we've just allocated.
 881         */
 882        code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, okalloc,
 883                          &ialloc_context, &ip);
 884
 885        /*
 886         * Return an error if we were unable to allocate a new inode.
 887         * This should only happen if we run out of space on disk or
 888         * encounter a disk error.
 889         */
 890        if (code) {
 891                *ipp = NULL;
 892                return code;
 893        }
 894        if (!ialloc_context && !ip) {
 895                *ipp = NULL;
 896                return -ENOSPC;
 897        }
 898
 899        /*
 900         * If the AGI buffer is non-NULL, then we were unable to get an
 901         * inode in one operation.  We need to commit the current
 902         * transaction and call xfs_ialloc() again.  It is guaranteed
 903         * to succeed the second time.
 904         */
 905        if (ialloc_context) {
 906                struct xfs_trans_res tres;
 907
 908                /*
 909                 * Normally, xfs_trans_commit releases all the locks.
 910                 * We call bhold to hang on to the ialloc_context across
 911                 * the commit.  Holding this buffer prevents any other
 912                 * processes from doing any allocations in this
 913                 * allocation group.
 914                 */
 915                xfs_trans_bhold(tp, ialloc_context);
 916                /*
 917                 * Save the log reservation so we can use
 918                 * them in the next transaction.
 919                 */
 920                tres.tr_logres = xfs_trans_get_log_res(tp);
 921                tres.tr_logcount = xfs_trans_get_log_count(tp);
 922
 923                /*
 924                 * We want the quota changes to be associated with the next
 925                 * transaction, NOT this one. So, detach the dqinfo from this
 926                 * and attach it to the next transaction.
 927                 */
 928                dqinfo = NULL;
 929                tflags = 0;
 930                if (tp->t_dqinfo) {
 931                        dqinfo = (void *)tp->t_dqinfo;
 932                        tp->t_dqinfo = NULL;
 933                        tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
 934                        tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
 935                }
 936
 937                ntp = xfs_trans_dup(tp);
 938                code = xfs_trans_commit(tp, 0);
 939                tp = ntp;
 940                if (committed != NULL) {
 941                        *committed = 1;
 942                }
 943                /*
 944                 * If we get an error during the commit processing,
 945                 * release the buffer that is still held and return
 946                 * to the caller.
 947                 */
 948                if (code) {
 949                        xfs_buf_relse(ialloc_context);
 950                        if (dqinfo) {
 951                                tp->t_dqinfo = dqinfo;
 952                                xfs_trans_free_dqinfo(tp);
 953                        }
 954                        *tpp = ntp;
 955                        *ipp = NULL;
 956                        return code;
 957                }
 958
 959                /*
 960                 * transaction commit worked ok so we can drop the extra ticket
 961                 * reference that we gained in xfs_trans_dup()
 962                 */
 963                xfs_log_ticket_put(tp->t_ticket);
 964                tres.tr_logflags = XFS_TRANS_PERM_LOG_RES;
 965                code = xfs_trans_reserve(tp, &tres, 0, 0);
 966
 967                /*
 968                 * Re-attach the quota info that we detached from prev trx.
 969                 */
 970                if (dqinfo) {
 971                        tp->t_dqinfo = dqinfo;
 972                        tp->t_flags |= tflags;
 973                }
 974
 975                if (code) {
 976                        xfs_buf_relse(ialloc_context);
 977                        *tpp = ntp;
 978                        *ipp = NULL;
 979                        return code;
 980                }
 981                xfs_trans_bjoin(tp, ialloc_context);
 982
 983                /*
 984                 * Call ialloc again. Since we've locked out all
 985                 * other allocations in this allocation group,
 986                 * this call should always succeed.
 987                 */
 988                code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
 989                                  okalloc, &ialloc_context, &ip);
 990
 991                /*
 992                 * If we get an error at this point, return to the caller
 993                 * so that the current transaction can be aborted.
 994                 */
 995                if (code) {
 996                        *tpp = tp;
 997                        *ipp = NULL;
 998                        return code;
 999                }
1000                ASSERT(!ialloc_context && ip);
1001
1002        } else {
1003                if (committed != NULL)
1004                        *committed = 0;
1005        }
1006
1007        *ipp = ip;
1008        *tpp = tp;
1009
1010        return 0;
1011}
1012
1013/*
1014 * Decrement the link count on an inode & log the change.
1015 * If this causes the link count to go to zero, initiate the
1016 * logging activity required to truncate a file.
1017 */
1018int                             /* error */
1019xfs_droplink(
1020        xfs_trans_t *tp,
1021        xfs_inode_t *ip)
1022{
1023        int     error;
1024
1025        xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1026
1027        ASSERT (ip->i_d.di_nlink > 0);
1028        ip->i_d.di_nlink--;
1029        drop_nlink(VFS_I(ip));
1030        xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1031
1032        error = 0;
1033        if (ip->i_d.di_nlink == 0) {
1034                /*
1035                 * We're dropping the last link to this file.
1036                 * Move the on-disk inode to the AGI unlinked list.
1037                 * From xfs_inactive() we will pull the inode from
1038                 * the list and free it.
1039                 */
1040                error = xfs_iunlink(tp, ip);
1041        }
1042        return error;
1043}
1044
1045/*
1046 * Increment the link count on an inode & log the change.
1047 */
1048int
1049xfs_bumplink(
1050        xfs_trans_t *tp,
1051        xfs_inode_t *ip)
1052{
1053        xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1054
1055        ASSERT(ip->i_d.di_version > 1);
1056        ASSERT(ip->i_d.di_nlink > 0 || (VFS_I(ip)->i_state & I_LINKABLE));
1057        ip->i_d.di_nlink++;
1058        inc_nlink(VFS_I(ip));
1059        xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1060        return 0;
1061}
1062
1063int
1064xfs_create(
1065        xfs_inode_t             *dp,
1066        struct xfs_name         *name,
1067        umode_t                 mode,
1068        xfs_dev_t               rdev,
1069        xfs_inode_t             **ipp)
1070{
1071        int                     is_dir = S_ISDIR(mode);
1072        struct xfs_mount        *mp = dp->i_mount;
1073        struct xfs_inode        *ip = NULL;
1074        struct xfs_trans        *tp = NULL;
1075        int                     error;
1076        xfs_bmap_free_t         free_list;
1077        xfs_fsblock_t           first_block;
1078        bool                    unlock_dp_on_error = false;
1079        uint                    cancel_flags;
1080        int                     committed;
1081        prid_t                  prid;
1082        struct xfs_dquot        *udqp = NULL;
1083        struct xfs_dquot        *gdqp = NULL;
1084        struct xfs_dquot        *pdqp = NULL;
1085        struct xfs_trans_res    tres;
1086        uint                    resblks;
1087
1088        trace_xfs_create(dp, name);
1089
1090        if (XFS_FORCED_SHUTDOWN(mp))
1091                return -EIO;
1092
1093        prid = xfs_get_initial_prid(dp);
1094
1095        /*
1096         * Make sure that we have allocated dquot(s) on disk.
1097         */
1098        error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1099                                        xfs_kgid_to_gid(current_fsgid()), prid,
1100                                        XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1101                                        &udqp, &gdqp, &pdqp);
1102        if (error)
1103                return error;
1104
1105        if (is_dir) {
1106                rdev = 0;
1107                resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
1108                tres.tr_logres = M_RES(mp)->tr_mkdir.tr_logres;
1109                tres.tr_logcount = XFS_MKDIR_LOG_COUNT;
1110                tp = xfs_trans_alloc(mp, XFS_TRANS_MKDIR);
1111        } else {
1112                resblks = XFS_CREATE_SPACE_RES(mp, name->len);
1113                tres.tr_logres = M_RES(mp)->tr_create.tr_logres;
1114                tres.tr_logcount = XFS_CREATE_LOG_COUNT;
1115                tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE);
1116        }
1117
1118        cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
1119
1120        /*
1121         * Initially assume that the file does not exist and
1122         * reserve the resources for that case.  If that is not
1123         * the case we'll drop the one we have and get a more
1124         * appropriate transaction later.
1125         */
1126        tres.tr_logflags = XFS_TRANS_PERM_LOG_RES;
1127        error = xfs_trans_reserve(tp, &tres, resblks, 0);
1128        if (error == -ENOSPC) {
1129                /* flush outstanding delalloc blocks and retry */
1130                xfs_flush_inodes(mp);
1131                error = xfs_trans_reserve(tp, &tres, resblks, 0);
1132        }
1133        if (error == -ENOSPC) {
1134                /* No space at all so try a "no-allocation" reservation */
1135                resblks = 0;
1136                error = xfs_trans_reserve(tp, &tres, 0, 0);
1137        }
1138        if (error) {
1139                cancel_flags = 0;
1140                goto out_trans_cancel;
1141        }
1142
1143        xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1144        unlock_dp_on_error = true;
1145
1146        xfs_bmap_init(&free_list, &first_block);
1147
1148        /*
1149         * Reserve disk quota and the inode.
1150         */
1151        error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1152                                                pdqp, resblks, 1, 0);
1153        if (error)
1154                goto out_trans_cancel;
1155
1156        error = xfs_dir_canenter(tp, dp, name, resblks);
1157        if (error)
1158                goto out_trans_cancel;
1159
1160        /*
1161         * A newly created regular or special file just has one directory
1162         * entry pointing to them, but a directory also the "." entry
1163         * pointing to itself.
1164         */
1165        error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev,
1166                               prid, resblks > 0, &ip, &committed);
1167        if (error) {
1168                if (error == -ENOSPC)
1169                        goto out_trans_cancel;
1170                goto out_trans_abort;
1171        }
1172
1173        /*
1174         * Now we join the directory inode to the transaction.  We do not do it
1175         * earlier because xfs_dir_ialloc might commit the previous transaction
1176         * (and release all the locks).  An error from here on will result in
1177         * the transaction cancel unlocking dp so don't do it explicitly in the
1178         * error path.
1179         */
1180        xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1181        unlock_dp_on_error = false;
1182
1183        error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1184                                        &first_block, &free_list, resblks ?
1185                                        resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
1186        if (error) {
1187                ASSERT(error != -ENOSPC);
1188                goto out_trans_abort;
1189        }
1190        xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1191        xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1192
1193        if (is_dir) {
1194                error = xfs_dir_init(tp, ip, dp);
1195                if (error)
1196                        goto out_bmap_cancel;
1197
1198                error = xfs_bumplink(tp, dp);
1199                if (error)
1200                        goto out_bmap_cancel;
1201        }
1202
1203        /*
1204         * If this is a synchronous mount, make sure that the
1205         * create transaction goes to disk before returning to
1206         * the user.
1207         */
1208        if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1209                xfs_trans_set_sync(tp);
1210
1211        /*
1212         * Attach the dquot(s) to the inodes and modify them incore.
1213         * These ids of the inode couldn't have changed since the new
1214         * inode has been locked ever since it was created.
1215         */
1216        xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1217
1218        error = xfs_bmap_finish(&tp, &free_list, &committed);
1219        if (error)
1220                goto out_bmap_cancel;
1221
1222        error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1223        if (error)
1224                goto out_release_inode;
1225
1226        xfs_qm_dqrele(udqp);
1227        xfs_qm_dqrele(gdqp);
1228        xfs_qm_dqrele(pdqp);
1229
1230        *ipp = ip;
1231        return 0;
1232
1233 out_bmap_cancel:
1234        xfs_bmap_cancel(&free_list);
1235 out_trans_abort:
1236        cancel_flags |= XFS_TRANS_ABORT;
1237 out_trans_cancel:
1238        xfs_trans_cancel(tp, cancel_flags);
1239 out_release_inode:
1240        /*
1241         * Wait until after the current transaction is aborted to
1242         * release the inode.  This prevents recursive transactions
1243         * and deadlocks from xfs_inactive.
1244         */
1245        if (ip)
1246                IRELE(ip);
1247
1248        xfs_qm_dqrele(udqp);
1249        xfs_qm_dqrele(gdqp);
1250        xfs_qm_dqrele(pdqp);
1251
1252        if (unlock_dp_on_error)
1253                xfs_iunlock(dp, XFS_ILOCK_EXCL);
1254        return error;
1255}
1256
1257int
1258xfs_create_tmpfile(
1259        struct xfs_inode        *dp,
1260        struct dentry           *dentry,
1261        umode_t                 mode,
1262        struct xfs_inode        **ipp)
1263{
1264        struct xfs_mount        *mp = dp->i_mount;
1265        struct xfs_inode        *ip = NULL;
1266        struct xfs_trans        *tp = NULL;
1267        int                     error;
1268        uint                    cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
1269        prid_t                  prid;
1270        struct xfs_dquot        *udqp = NULL;
1271        struct xfs_dquot        *gdqp = NULL;
1272        struct xfs_dquot        *pdqp = NULL;
1273        struct xfs_trans_res    *tres;
1274        uint                    resblks;
1275
1276        if (XFS_FORCED_SHUTDOWN(mp))
1277                return -EIO;
1278
1279        prid = xfs_get_initial_prid(dp);
1280
1281        /*
1282         * Make sure that we have allocated dquot(s) on disk.
1283         */
1284        error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1285                                xfs_kgid_to_gid(current_fsgid()), prid,
1286                                XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1287                                &udqp, &gdqp, &pdqp);
1288        if (error)
1289                return error;
1290
1291        resblks = XFS_IALLOC_SPACE_RES(mp);
1292        tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE_TMPFILE);
1293
1294        tres = &M_RES(mp)->tr_create_tmpfile;
1295        error = xfs_trans_reserve(tp, tres, resblks, 0);
1296        if (error == -ENOSPC) {
1297                /* No space at all so try a "no-allocation" reservation */
1298                resblks = 0;
1299                error = xfs_trans_reserve(tp, tres, 0, 0);
1300        }
1301        if (error) {
1302                cancel_flags = 0;
1303                goto out_trans_cancel;
1304        }
1305
1306        error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1307                                                pdqp, resblks, 1, 0);
1308        if (error)
1309                goto out_trans_cancel;
1310
1311        error = xfs_dir_ialloc(&tp, dp, mode, 1, 0,
1312                                prid, resblks > 0, &ip, NULL);
1313        if (error) {
1314                if (error == -ENOSPC)
1315                        goto out_trans_cancel;
1316                goto out_trans_abort;
1317        }
1318
1319        if (mp->m_flags & XFS_MOUNT_WSYNC)
1320                xfs_trans_set_sync(tp);
1321
1322        /*
1323         * Attach the dquot(s) to the inodes and modify them incore.
1324         * These ids of the inode couldn't have changed since the new
1325         * inode has been locked ever since it was created.
1326         */
1327        xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1328
1329        ip->i_d.di_nlink--;
1330        error = xfs_iunlink(tp, ip);
1331        if (error)
1332                goto out_trans_abort;
1333
1334        error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1335        if (error)
1336                goto out_release_inode;
1337
1338        xfs_qm_dqrele(udqp);
1339        xfs_qm_dqrele(gdqp);
1340        xfs_qm_dqrele(pdqp);
1341
1342        *ipp = ip;
1343        return 0;
1344
1345 out_trans_abort:
1346        cancel_flags |= XFS_TRANS_ABORT;
1347 out_trans_cancel:
1348        xfs_trans_cancel(tp, cancel_flags);
1349 out_release_inode:
1350        /*
1351         * Wait until after the current transaction is aborted to
1352         * release the inode.  This prevents recursive transactions
1353         * and deadlocks from xfs_inactive.
1354         */
1355        if (ip)
1356                IRELE(ip);
1357
1358        xfs_qm_dqrele(udqp);
1359        xfs_qm_dqrele(gdqp);
1360        xfs_qm_dqrele(pdqp);
1361
1362        return error;
1363}
1364
1365int
1366xfs_link(
1367        xfs_inode_t             *tdp,
1368        xfs_inode_t             *sip,
1369        struct xfs_name         *target_name)
1370{
1371        xfs_mount_t             *mp = tdp->i_mount;
1372        xfs_trans_t             *tp;
1373        int                     error;
1374        xfs_bmap_free_t         free_list;
1375        xfs_fsblock_t           first_block;
1376        int                     cancel_flags;
1377        int                     committed;
1378        int                     resblks;
1379
1380        trace_xfs_link(tdp, target_name);
1381
1382        ASSERT(!S_ISDIR(sip->i_d.di_mode));
1383
1384        if (XFS_FORCED_SHUTDOWN(mp))
1385                return -EIO;
1386
1387        error = xfs_qm_dqattach(sip, 0);
1388        if (error)
1389                goto std_return;
1390
1391        error = xfs_qm_dqattach(tdp, 0);
1392        if (error)
1393                goto std_return;
1394
1395        tp = xfs_trans_alloc(mp, XFS_TRANS_LINK);
1396        cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
1397        resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1398        error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, resblks, 0);
1399        if (error == -ENOSPC) {
1400                resblks = 0;
1401                error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, 0, 0);
1402        }
1403        if (error) {
1404                cancel_flags = 0;
1405                goto error_return;
1406        }
1407
1408        xfs_lock_two_inodes(sip, tdp, XFS_ILOCK_EXCL);
1409
1410        xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1411        xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL);
1412
1413        /*
1414         * If we are using project inheritance, we only allow hard link
1415         * creation in our tree when the project IDs are the same; else
1416         * the tree quota mechanism could be circumvented.
1417         */
1418        if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1419                     (xfs_get_projid(tdp) != xfs_get_projid(sip)))) {
1420                error = -EXDEV;
1421                goto error_return;
1422        }
1423
1424        error = xfs_dir_canenter(tp, tdp, target_name, resblks);
1425        if (error)
1426                goto error_return;
1427
1428        xfs_bmap_init(&free_list, &first_block);
1429
1430        if (sip->i_d.di_nlink == 0) {
1431                error = xfs_iunlink_remove(tp, sip);
1432                if (error)
1433                        goto abort_return;
1434        }
1435
1436        error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1437                                        &first_block, &free_list, resblks);
1438        if (error)
1439                goto abort_return;
1440        xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1441        xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1442
1443        error = xfs_bumplink(tp, sip);
1444        if (error)
1445                goto abort_return;
1446
1447        /*
1448         * If this is a synchronous mount, make sure that the
1449         * link transaction goes to disk before returning to
1450         * the user.
1451         */
1452        if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) {
1453                xfs_trans_set_sync(tp);
1454        }
1455
1456        error = xfs_bmap_finish (&tp, &free_list, &committed);
1457        if (error) {
1458                xfs_bmap_cancel(&free_list);
1459                goto abort_return;
1460        }
1461
1462        return xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1463
1464 abort_return:
1465        cancel_flags |= XFS_TRANS_ABORT;
1466 error_return:
1467        xfs_trans_cancel(tp, cancel_flags);
1468 std_return:
1469        return error;
1470}
1471
1472/*
1473 * Free up the underlying blocks past new_size.  The new size must be smaller
1474 * than the current size.  This routine can be used both for the attribute and
1475 * data fork, and does not modify the inode size, which is left to the caller.
1476 *
1477 * The transaction passed to this routine must have made a permanent log
1478 * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1479 * given transaction and start new ones, so make sure everything involved in
1480 * the transaction is tidy before calling here.  Some transaction will be
1481 * returned to the caller to be committed.  The incoming transaction must
1482 * already include the inode, and both inode locks must be held exclusively.
1483 * The inode must also be "held" within the transaction.  On return the inode
1484 * will be "held" within the returned transaction.  This routine does NOT
1485 * require any disk space to be reserved for it within the transaction.
1486 *
1487 * If we get an error, we must return with the inode locked and linked into the
1488 * current transaction. This keeps things simple for the higher level code,
1489 * because it always knows that the inode is locked and held in the transaction
1490 * that returns to it whether errors occur or not.  We don't mark the inode
1491 * dirty on error so that transactions can be easily aborted if possible.
1492 */
1493int
1494xfs_itruncate_extents(
1495        struct xfs_trans        **tpp,
1496        struct xfs_inode        *ip,
1497        int                     whichfork,
1498        xfs_fsize_t             new_size)
1499{
1500        struct xfs_mount        *mp = ip->i_mount;
1501        struct xfs_trans        *tp = *tpp;
1502        struct xfs_trans        *ntp;
1503        xfs_bmap_free_t         free_list;
1504        xfs_fsblock_t           first_block;
1505        xfs_fileoff_t           first_unmap_block;
1506        xfs_fileoff_t           last_block;
1507        xfs_filblks_t           unmap_len;
1508        int                     committed;
1509        int                     error = 0;
1510        int                     done = 0;
1511
1512        ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1513        ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1514               xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1515        ASSERT(new_size <= XFS_ISIZE(ip));
1516        ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1517        ASSERT(ip->i_itemp != NULL);
1518        ASSERT(ip->i_itemp->ili_lock_flags == 0);
1519        ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1520
1521        trace_xfs_itruncate_extents_start(ip, new_size);
1522
1523        /*
1524         * Since it is possible for space to become allocated beyond
1525         * the end of the file (in a crash where the space is allocated
1526         * but the inode size is not yet updated), simply remove any
1527         * blocks which show up between the new EOF and the maximum
1528         * possible file size.  If the first block to be removed is
1529         * beyond the maximum file size (ie it is the same as last_block),
1530         * then there is nothing to do.
1531         */
1532        first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1533        last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
1534        if (first_unmap_block == last_block)
1535                return 0;
1536
1537        ASSERT(first_unmap_block < last_block);
1538        unmap_len = last_block - first_unmap_block + 1;
1539        while (!done) {
1540                xfs_bmap_init(&free_list, &first_block);
1541                error = xfs_bunmapi(tp, ip,
1542                                    first_unmap_block, unmap_len,
1543                                    xfs_bmapi_aflag(whichfork),
1544                                    XFS_ITRUNC_MAX_EXTENTS,
1545                                    &first_block, &free_list,
1546                                    &done);
1547                if (error)
1548                        goto out_bmap_cancel;
1549
1550                /*
1551                 * Duplicate the transaction that has the permanent
1552                 * reservation and commit the old transaction.
1553                 */
1554                error = xfs_bmap_finish(&tp, &free_list, &committed);
1555                if (committed)
1556                        xfs_trans_ijoin(tp, ip, 0);
1557                if (error)
1558                        goto out_bmap_cancel;
1559
1560                if (committed) {
1561                        /*
1562                         * Mark the inode dirty so it will be logged and
1563                         * moved forward in the log as part of every commit.
1564                         */
1565                        xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1566                }
1567
1568                ntp = xfs_trans_dup(tp);
1569                error = xfs_trans_commit(tp, 0);
1570                tp = ntp;
1571
1572                xfs_trans_ijoin(tp, ip, 0);
1573
1574                if (error)
1575                        goto out;
1576
1577                /*
1578                 * Transaction commit worked ok so we can drop the extra ticket
1579                 * reference that we gained in xfs_trans_dup()
1580                 */
1581                xfs_log_ticket_put(tp->t_ticket);
1582                error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
1583                if (error)
1584                        goto out;
1585        }
1586
1587        /*
1588         * Always re-log the inode so that our permanent transaction can keep
1589         * on rolling it forward in the log.
1590         */
1591        xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1592
1593        trace_xfs_itruncate_extents_end(ip, new_size);
1594
1595out:
1596        *tpp = tp;
1597        return error;
1598out_bmap_cancel:
1599        /*
1600         * If the bunmapi call encounters an error, return to the caller where
1601         * the transaction can be properly aborted.  We just need to make sure
1602         * we're not holding any resources that we were not when we came in.
1603         */
1604        xfs_bmap_cancel(&free_list);
1605        goto out;
1606}
1607
1608int
1609xfs_release(
1610        xfs_inode_t     *ip)
1611{
1612        xfs_mount_t     *mp = ip->i_mount;
1613        int             error;
1614
1615        if (!S_ISREG(ip->i_d.di_mode) || (ip->i_d.di_mode == 0))
1616                return 0;
1617
1618        /* If this is a read-only mount, don't do this (would generate I/O) */
1619        if (mp->m_flags & XFS_MOUNT_RDONLY)
1620                return 0;
1621
1622        if (!XFS_FORCED_SHUTDOWN(mp)) {
1623                int truncated;
1624
1625                /*
1626                 * If we previously truncated this file and removed old data
1627                 * in the process, we want to initiate "early" writeout on
1628                 * the last close.  This is an attempt to combat the notorious
1629                 * NULL files problem which is particularly noticeable from a
1630                 * truncate down, buffered (re-)write (delalloc), followed by
1631                 * a crash.  What we are effectively doing here is
1632                 * significantly reducing the time window where we'd otherwise
1633                 * be exposed to that problem.
1634                 */
1635                truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1636                if (truncated) {
1637                        xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1638                        if (ip->i_delayed_blks > 0) {
1639                                error = filemap_flush(VFS_I(ip)->i_mapping);
1640                                if (error)
1641                                        return error;
1642                        }
1643                }
1644        }
1645
1646        if (ip->i_d.di_nlink == 0)
1647                return 0;
1648
1649        if (xfs_can_free_eofblocks(ip, false)) {
1650
1651                /*
1652                 * If we can't get the iolock just skip truncating the blocks
1653                 * past EOF because we could deadlock with the mmap_sem
1654                 * otherwise.  We'll get another chance to drop them once the
1655                 * last reference to the inode is dropped, so we'll never leak
1656                 * blocks permanently.
1657                 *
1658                 * Further, check if the inode is being opened, written and
1659                 * closed frequently and we have delayed allocation blocks
1660                 * outstanding (e.g. streaming writes from the NFS server),
1661                 * truncating the blocks past EOF will cause fragmentation to
1662                 * occur.
1663                 *
1664                 * In this case don't do the truncation, either, but we have to
1665                 * be careful how we detect this case. Blocks beyond EOF show
1666                 * up as i_delayed_blks even when the inode is clean, so we
1667                 * need to truncate them away first before checking for a dirty
1668                 * release. Hence on the first dirty close we will still remove
1669                 * the speculative allocation, but after that we will leave it
1670                 * in place.
1671                 */
1672                if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1673                        return 0;
1674
1675                error = xfs_free_eofblocks(mp, ip, true);
1676                if (error && error != -EAGAIN)
1677                        return error;
1678
1679                /* delalloc blocks after truncation means it really is dirty */
1680                if (ip->i_delayed_blks)
1681                        xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1682        }
1683        return 0;
1684}
1685
1686/*
1687 * xfs_inactive_truncate
1688 *
1689 * Called to perform a truncate when an inode becomes unlinked.
1690 */
1691STATIC int
1692xfs_inactive_truncate(
1693        struct xfs_inode *ip)
1694{
1695        struct xfs_mount        *mp = ip->i_mount;
1696        struct xfs_trans        *tp;
1697        int                     error;
1698
1699        tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
1700        error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
1701        if (error) {
1702                ASSERT(XFS_FORCED_SHUTDOWN(mp));
1703                xfs_trans_cancel(tp, 0);
1704                return error;
1705        }
1706
1707        xfs_ilock(ip, XFS_ILOCK_EXCL);
1708        xfs_trans_ijoin(tp, ip, 0);
1709
1710        /*
1711         * Log the inode size first to prevent stale data exposure in the event
1712         * of a system crash before the truncate completes. See the related
1713         * comment in xfs_setattr_size() for details.
1714         */
1715        ip->i_d.di_size = 0;
1716        xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1717
1718        error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1719        if (error)
1720                goto error_trans_cancel;
1721
1722        ASSERT(ip->i_d.di_nextents == 0);
1723
1724        error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1725        if (error)
1726                goto error_unlock;
1727
1728        xfs_iunlock(ip, XFS_ILOCK_EXCL);
1729        return 0;
1730
1731error_trans_cancel:
1732        xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES | XFS_TRANS_ABORT);
1733error_unlock:
1734        xfs_iunlock(ip, XFS_ILOCK_EXCL);
1735        return error;
1736}
1737
1738/*
1739 * xfs_inactive_ifree()
1740 *
1741 * Perform the inode free when an inode is unlinked.
1742 */
1743STATIC int
1744xfs_inactive_ifree(
1745        struct xfs_inode *ip)
1746{
1747        xfs_bmap_free_t         free_list;
1748        xfs_fsblock_t           first_block;
1749        int                     committed;
1750        struct xfs_mount        *mp = ip->i_mount;
1751        struct xfs_trans        *tp;
1752        int                     error;
1753
1754        tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
1755
1756        /*
1757         * The ifree transaction might need to allocate blocks for record
1758         * insertion to the finobt. We don't want to fail here at ENOSPC, so
1759         * allow ifree to dip into the reserved block pool if necessary.
1760         *
1761         * Freeing large sets of inodes generally means freeing inode chunks,
1762         * directory and file data blocks, so this should be relatively safe.
1763         * Only under severe circumstances should it be possible to free enough
1764         * inodes to exhaust the reserve block pool via finobt expansion while
1765         * at the same time not creating free space in the filesystem.
1766         *
1767         * Send a warning if the reservation does happen to fail, as the inode
1768         * now remains allocated and sits on the unlinked list until the fs is
1769         * repaired.
1770         */
1771        tp->t_flags |= XFS_TRANS_RESERVE;
1772        error = xfs_trans_reserve(tp, &M_RES(mp)->tr_ifree,
1773                                  XFS_IFREE_SPACE_RES(mp), 0);
1774        if (error) {
1775                if (error == -ENOSPC) {
1776                        xfs_warn_ratelimited(mp,
1777                        "Failed to remove inode(s) from unlinked list. "
1778                        "Please free space, unmount and run xfs_repair.");
1779                } else {
1780                        ASSERT(XFS_FORCED_SHUTDOWN(mp));
1781                }
1782                xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES);
1783                return error;
1784        }
1785
1786        xfs_ilock(ip, XFS_ILOCK_EXCL);
1787        xfs_trans_ijoin(tp, ip, 0);
1788
1789        xfs_bmap_init(&free_list, &first_block);
1790        error = xfs_ifree(tp, ip, &free_list);
1791        if (error) {
1792                /*
1793                 * If we fail to free the inode, shut down.  The cancel
1794                 * might do that, we need to make sure.  Otherwise the
1795                 * inode might be lost for a long time or forever.
1796                 */
1797                if (!XFS_FORCED_SHUTDOWN(mp)) {
1798                        xfs_notice(mp, "%s: xfs_ifree returned error %d",
1799                                __func__, error);
1800                        xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1801                }
1802                xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES|XFS_TRANS_ABORT);
1803                xfs_iunlock(ip, XFS_ILOCK_EXCL);
1804                return error;
1805        }
1806
1807        /*
1808         * Credit the quota account(s). The inode is gone.
1809         */
1810        xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1811
1812        /*
1813         * Just ignore errors at this point.  There is nothing we can
1814         * do except to try to keep going. Make sure it's not a silent
1815         * error.
1816         */
1817        error = xfs_bmap_finish(&tp,  &free_list, &committed);
1818        if (error)
1819                xfs_notice(mp, "%s: xfs_bmap_finish returned error %d",
1820                        __func__, error);
1821        error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1822        if (error)
1823                xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1824                        __func__, error);
1825
1826        xfs_iunlock(ip, XFS_ILOCK_EXCL);
1827        return 0;
1828}
1829
1830/*
1831 * xfs_inactive
1832 *
1833 * This is called when the vnode reference count for the vnode
1834 * goes to zero.  If the file has been unlinked, then it must
1835 * now be truncated.  Also, we clear all of the read-ahead state
1836 * kept for the inode here since the file is now closed.
1837 */
1838void
1839xfs_inactive(
1840        xfs_inode_t     *ip)
1841{
1842        struct xfs_mount        *mp;
1843        int                     error;
1844        int                     truncate = 0;
1845
1846        /*
1847         * If the inode is already free, then there can be nothing
1848         * to clean up here.
1849         */
1850        if (ip->i_d.di_mode == 0) {
1851                ASSERT(ip->i_df.if_real_bytes == 0);
1852                ASSERT(ip->i_df.if_broot_bytes == 0);
1853                return;
1854        }
1855
1856        mp = ip->i_mount;
1857
1858        /* If this is a read-only mount, don't do this (would generate I/O) */
1859        if (mp->m_flags & XFS_MOUNT_RDONLY)
1860                return;
1861
1862        if (ip->i_d.di_nlink != 0) {
1863                /*
1864                 * force is true because we are evicting an inode from the
1865                 * cache. Post-eof blocks must be freed, lest we end up with
1866                 * broken free space accounting.
1867                 */
1868                if (xfs_can_free_eofblocks(ip, true))
1869                        xfs_free_eofblocks(mp, ip, false);
1870
1871                return;
1872        }
1873
1874        if (S_ISREG(ip->i_d.di_mode) &&
1875            (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1876             ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
1877                truncate = 1;
1878
1879        error = xfs_qm_dqattach(ip, 0);
1880        if (error)
1881                return;
1882
1883        if (S_ISLNK(ip->i_d.di_mode))
1884                error = xfs_inactive_symlink(ip);
1885        else if (truncate)
1886                error = xfs_inactive_truncate(ip);
1887        if (error)
1888                return;
1889
1890        /*
1891         * If there are attributes associated with the file then blow them away
1892         * now.  The code calls a routine that recursively deconstructs the
1893         * attribute fork.  We need to just commit the current transaction
1894         * because we can't use it for xfs_attr_inactive().
1895         */
1896        if (ip->i_d.di_anextents > 0) {
1897                ASSERT(ip->i_d.di_forkoff != 0);
1898
1899                error = xfs_attr_inactive(ip);
1900                if (error)
1901                        return;
1902        }
1903
1904        if (ip->i_afp)
1905                xfs_idestroy_fork(ip, XFS_ATTR_FORK);
1906
1907        ASSERT(ip->i_d.di_anextents == 0);
1908
1909        /*
1910         * Free the inode.
1911         */
1912        error = xfs_inactive_ifree(ip);
1913        if (error)
1914                return;
1915
1916        /*
1917         * Release the dquots held by inode, if any.
1918         */
1919        xfs_qm_dqdetach(ip);
1920}
1921
1922/*
1923 * This is called when the inode's link count goes to 0.
1924 * We place the on-disk inode on a list in the AGI.  It
1925 * will be pulled from this list when the inode is freed.
1926 */
1927int
1928xfs_iunlink(
1929        xfs_trans_t     *tp,
1930        xfs_inode_t     *ip)
1931{
1932        xfs_mount_t     *mp;
1933        xfs_agi_t       *agi;
1934        xfs_dinode_t    *dip;
1935        xfs_buf_t       *agibp;
1936        xfs_buf_t       *ibp;
1937        xfs_agino_t     agino;
1938        short           bucket_index;
1939        int             offset;
1940        int             error;
1941
1942        ASSERT(ip->i_d.di_nlink == 0);
1943        ASSERT(ip->i_d.di_mode != 0);
1944
1945        mp = tp->t_mountp;
1946
1947        /*
1948         * Get the agi buffer first.  It ensures lock ordering
1949         * on the list.
1950         */
1951        error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
1952        if (error)
1953                return error;
1954        agi = XFS_BUF_TO_AGI(agibp);
1955
1956        /*
1957         * Get the index into the agi hash table for the
1958         * list this inode will go on.
1959         */
1960        agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1961        ASSERT(agino != 0);
1962        bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1963        ASSERT(agi->agi_unlinked[bucket_index]);
1964        ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1965
1966        if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
1967                /*
1968                 * There is already another inode in the bucket we need
1969                 * to add ourselves to.  Add us at the front of the list.
1970                 * Here we put the head pointer into our next pointer,
1971                 * and then we fall through to point the head at us.
1972                 */
1973                error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
1974                                       0, 0);
1975                if (error)
1976                        return error;
1977
1978                ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
1979                dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1980                offset = ip->i_imap.im_boffset +
1981                        offsetof(xfs_dinode_t, di_next_unlinked);
1982
1983                /* need to recalc the inode CRC if appropriate */
1984                xfs_dinode_calc_crc(mp, dip);
1985
1986                xfs_trans_inode_buf(tp, ibp);
1987                xfs_trans_log_buf(tp, ibp, offset,
1988                                  (offset + sizeof(xfs_agino_t) - 1));
1989                xfs_inobp_check(mp, ibp);
1990        }
1991
1992        /*
1993         * Point the bucket head pointer at the inode being inserted.
1994         */
1995        ASSERT(agino != 0);
1996        agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1997        offset = offsetof(xfs_agi_t, agi_unlinked) +
1998                (sizeof(xfs_agino_t) * bucket_index);
1999        xfs_trans_log_buf(tp, agibp, offset,
2000                          (offset + sizeof(xfs_agino_t) - 1));
2001        return 0;
2002}
2003
2004/*
2005 * Pull the on-disk inode from the AGI unlinked list.
2006 */
2007STATIC int
2008xfs_iunlink_remove(
2009        xfs_trans_t     *tp,
2010        xfs_inode_t     *ip)
2011{
2012        xfs_ino_t       next_ino;
2013        xfs_mount_t     *mp;
2014        xfs_agi_t       *agi;
2015        xfs_dinode_t    *dip;
2016        xfs_buf_t       *agibp;
2017        xfs_buf_t       *ibp;
2018        xfs_agnumber_t  agno;
2019        xfs_agino_t     agino;
2020        xfs_agino_t     next_agino;
2021        xfs_buf_t       *last_ibp;
2022        xfs_dinode_t    *last_dip = NULL;
2023        short           bucket_index;
2024        int             offset, last_offset = 0;
2025        int             error;
2026
2027        mp = tp->t_mountp;
2028        agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2029
2030        /*
2031         * Get the agi buffer first.  It ensures lock ordering
2032         * on the list.
2033         */
2034        error = xfs_read_agi(mp, tp, agno, &agibp);
2035        if (error)
2036                return error;
2037
2038        agi = XFS_BUF_TO_AGI(agibp);
2039
2040        /*
2041         * Get the index into the agi hash table for the
2042         * list this inode will go on.
2043         */
2044        agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2045        ASSERT(agino != 0);
2046        bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2047        ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
2048        ASSERT(agi->agi_unlinked[bucket_index]);
2049
2050        if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
2051                /*
2052                 * We're at the head of the list.  Get the inode's on-disk
2053                 * buffer to see if there is anyone after us on the list.
2054                 * Only modify our next pointer if it is not already NULLAGINO.
2055                 * This saves us the overhead of dealing with the buffer when
2056                 * there is no need to change it.
2057                 */
2058                error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2059                                       0, 0);
2060                if (error) {
2061                        xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
2062                                __func__, error);
2063                        return error;
2064                }
2065                next_agino = be32_to_cpu(dip->di_next_unlinked);
2066                ASSERT(next_agino != 0);
2067                if (next_agino != NULLAGINO) {
2068                        dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2069                        offset = ip->i_imap.im_boffset +
2070                                offsetof(xfs_dinode_t, di_next_unlinked);
2071
2072                        /* need to recalc the inode CRC if appropriate */
2073                        xfs_dinode_calc_crc(mp, dip);
2074
2075                        xfs_trans_inode_buf(tp, ibp);
2076                        xfs_trans_log_buf(tp, ibp, offset,
2077                                          (offset + sizeof(xfs_agino_t) - 1));
2078                        xfs_inobp_check(mp, ibp);
2079                } else {
2080                        xfs_trans_brelse(tp, ibp);
2081                }
2082                /*
2083                 * Point the bucket head pointer at the next inode.
2084                 */
2085                ASSERT(next_agino != 0);
2086                ASSERT(next_agino != agino);
2087                agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
2088                offset = offsetof(xfs_agi_t, agi_unlinked) +
2089                        (sizeof(xfs_agino_t) * bucket_index);
2090                xfs_trans_log_buf(tp, agibp, offset,
2091                                  (offset + sizeof(xfs_agino_t) - 1));
2092        } else {
2093                /*
2094                 * We need to search the list for the inode being freed.
2095                 */
2096                next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2097                last_ibp = NULL;
2098                while (next_agino != agino) {
2099                        struct xfs_imap imap;
2100
2101                        if (last_ibp)
2102                                xfs_trans_brelse(tp, last_ibp);
2103
2104                        imap.im_blkno = 0;
2105                        next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2106
2107                        error = xfs_imap(mp, tp, next_ino, &imap, 0);
2108                        if (error) {
2109                                xfs_warn(mp,
2110        "%s: xfs_imap returned error %d.",
2111                                         __func__, error);
2112                                return error;
2113                        }
2114
2115                        error = xfs_imap_to_bp(mp, tp, &imap, &last_dip,
2116                                               &last_ibp, 0, 0);
2117                        if (error) {
2118                                xfs_warn(mp,
2119        "%s: xfs_imap_to_bp returned error %d.",
2120                                        __func__, error);
2121                                return error;
2122                        }
2123
2124                        last_offset = imap.im_boffset;
2125                        next_agino = be32_to_cpu(last_dip->di_next_unlinked);
2126                        ASSERT(next_agino != NULLAGINO);
2127                        ASSERT(next_agino != 0);
2128                }
2129
2130                /*
2131                 * Now last_ibp points to the buffer previous to us on the
2132                 * unlinked list.  Pull us from the list.
2133                 */
2134                error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2135                                       0, 0);
2136                if (error) {
2137                        xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.",
2138                                __func__, error);
2139                        return error;
2140                }
2141                next_agino = be32_to_cpu(dip->di_next_unlinked);
2142                ASSERT(next_agino != 0);
2143                ASSERT(next_agino != agino);
2144                if (next_agino != NULLAGINO) {
2145                        dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2146                        offset = ip->i_imap.im_boffset +
2147                                offsetof(xfs_dinode_t, di_next_unlinked);
2148
2149                        /* need to recalc the inode CRC if appropriate */
2150                        xfs_dinode_calc_crc(mp, dip);
2151
2152                        xfs_trans_inode_buf(tp, ibp);
2153                        xfs_trans_log_buf(tp, ibp, offset,
2154                                          (offset + sizeof(xfs_agino_t) - 1));
2155                        xfs_inobp_check(mp, ibp);
2156                } else {
2157                        xfs_trans_brelse(tp, ibp);
2158                }
2159                /*
2160                 * Point the previous inode on the list to the next inode.
2161                 */
2162                last_dip->di_next_unlinked = cpu_to_be32(next_agino);
2163                ASSERT(next_agino != 0);
2164                offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2165
2166                /* need to recalc the inode CRC if appropriate */
2167                xfs_dinode_calc_crc(mp, last_dip);
2168
2169                xfs_trans_inode_buf(tp, last_ibp);
2170                xfs_trans_log_buf(tp, last_ibp, offset,
2171                                  (offset + sizeof(xfs_agino_t) - 1));
2172                xfs_inobp_check(mp, last_ibp);
2173        }
2174        return 0;
2175}
2176
2177/*
2178 * A big issue when freeing the inode cluster is that we _cannot_ skip any
2179 * inodes that are in memory - they all must be marked stale and attached to
2180 * the cluster buffer.
2181 */
2182STATIC int
2183xfs_ifree_cluster(
2184        xfs_inode_t     *free_ip,
2185        xfs_trans_t     *tp,
2186        xfs_ino_t       inum)
2187{
2188        xfs_mount_t             *mp = free_ip->i_mount;
2189        int                     blks_per_cluster;
2190        int                     inodes_per_cluster;
2191        int                     nbufs;
2192        int                     i, j;
2193        xfs_daddr_t             blkno;
2194        xfs_buf_t               *bp;
2195        xfs_inode_t             *ip;
2196        xfs_inode_log_item_t    *iip;
2197        xfs_log_item_t          *lip;
2198        struct xfs_perag        *pag;
2199
2200        pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
2201        blks_per_cluster = xfs_icluster_size_fsb(mp);
2202        inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
2203        nbufs = mp->m_ialloc_blks / blks_per_cluster;
2204
2205        for (j = 0; j < nbufs; j++, inum += inodes_per_cluster) {
2206                blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2207                                         XFS_INO_TO_AGBNO(mp, inum));
2208
2209                /*
2210                 * We obtain and lock the backing buffer first in the process
2211                 * here, as we have to ensure that any dirty inode that we
2212                 * can't get the flush lock on is attached to the buffer.
2213                 * If we scan the in-memory inodes first, then buffer IO can
2214                 * complete before we get a lock on it, and hence we may fail
2215                 * to mark all the active inodes on the buffer stale.
2216                 */
2217                bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2218                                        mp->m_bsize * blks_per_cluster,
2219                                        XBF_UNMAPPED);
2220
2221                if (!bp)
2222                        return -ENOMEM;
2223
2224                /*
2225                 * This buffer may not have been correctly initialised as we
2226                 * didn't read it from disk. That's not important because we are
2227                 * only using to mark the buffer as stale in the log, and to
2228                 * attach stale cached inodes on it. That means it will never be
2229                 * dispatched for IO. If it is, we want to know about it, and we
2230                 * want it to fail. We can acheive this by adding a write
2231                 * verifier to the buffer.
2232                 */
2233                 bp->b_ops = &xfs_inode_buf_ops;
2234
2235                /*
2236                 * Walk the inodes already attached to the buffer and mark them
2237                 * stale. These will all have the flush locks held, so an
2238                 * in-memory inode walk can't lock them. By marking them all
2239                 * stale first, we will not attempt to lock them in the loop
2240                 * below as the XFS_ISTALE flag will be set.
2241                 */
2242                lip = bp->b_fspriv;
2243                while (lip) {
2244                        if (lip->li_type == XFS_LI_INODE) {
2245                                iip = (xfs_inode_log_item_t *)lip;
2246                                ASSERT(iip->ili_logged == 1);
2247                                lip->li_cb = xfs_istale_done;
2248                                xfs_trans_ail_copy_lsn(mp->m_ail,
2249                                                        &iip->ili_flush_lsn,
2250                                                        &iip->ili_item.li_lsn);
2251                                xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2252                        }
2253                        lip = lip->li_bio_list;
2254                }
2255
2256
2257                /*
2258                 * For each inode in memory attempt to add it to the inode
2259                 * buffer and set it up for being staled on buffer IO
2260                 * completion.  This is safe as we've locked out tail pushing
2261                 * and flushing by locking the buffer.
2262                 *
2263                 * We have already marked every inode that was part of a
2264                 * transaction stale above, which means there is no point in
2265                 * even trying to lock them.
2266                 */
2267                for (i = 0; i < inodes_per_cluster; i++) {
2268retry:
2269                        rcu_read_lock();
2270                        ip = radix_tree_lookup(&pag->pag_ici_root,
2271                                        XFS_INO_TO_AGINO(mp, (inum + i)));
2272
2273                        /* Inode not in memory, nothing to do */
2274                        if (!ip) {
2275                                rcu_read_unlock();
2276                                continue;
2277                        }
2278
2279                        /*
2280                         * because this is an RCU protected lookup, we could
2281                         * find a recently freed or even reallocated inode
2282                         * during the lookup. We need to check under the
2283                         * i_flags_lock for a valid inode here. Skip it if it
2284                         * is not valid, the wrong inode or stale.
2285                         */
2286                        spin_lock(&ip->i_flags_lock);
2287                        if (ip->i_ino != inum + i ||
2288                            __xfs_iflags_test(ip, XFS_ISTALE)) {
2289                                spin_unlock(&ip->i_flags_lock);
2290                                rcu_read_unlock();
2291                                continue;
2292                        }
2293                        spin_unlock(&ip->i_flags_lock);
2294
2295                        /*
2296                         * Don't try to lock/unlock the current inode, but we
2297                         * _cannot_ skip the other inodes that we did not find
2298                         * in the list attached to the buffer and are not
2299                         * already marked stale. If we can't lock it, back off
2300                         * and retry.
2301                         */
2302                        if (ip != free_ip &&
2303                            !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2304                                rcu_read_unlock();
2305                                delay(1);
2306                                goto retry;
2307                        }
2308                        rcu_read_unlock();
2309
2310                        xfs_iflock(ip);
2311                        xfs_iflags_set(ip, XFS_ISTALE);
2312
2313                        /*
2314                         * we don't need to attach clean inodes or those only
2315                         * with unlogged changes (which we throw away, anyway).
2316                         */
2317                        iip = ip->i_itemp;
2318                        if (!iip || xfs_inode_clean(ip)) {
2319                                ASSERT(ip != free_ip);
2320                                xfs_ifunlock(ip);
2321                                xfs_iunlock(ip, XFS_ILOCK_EXCL);
2322                                continue;
2323                        }
2324
2325                        iip->ili_last_fields = iip->ili_fields;
2326                        iip->ili_fields = 0;
2327                        iip->ili_logged = 1;
2328                        xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2329                                                &iip->ili_item.li_lsn);
2330
2331                        xfs_buf_attach_iodone(bp, xfs_istale_done,
2332                                                  &iip->ili_item);
2333
2334                        if (ip != free_ip)
2335                                xfs_iunlock(ip, XFS_ILOCK_EXCL);
2336                }
2337
2338                xfs_trans_stale_inode_buf(tp, bp);
2339                xfs_trans_binval(tp, bp);
2340        }
2341
2342        xfs_perag_put(pag);
2343        return 0;
2344}
2345
2346/*
2347 * This is called to return an inode to the inode free list.
2348 * The inode should already be truncated to 0 length and have
2349 * no pages associated with it.  This routine also assumes that
2350 * the inode is already a part of the transaction.
2351 *
2352 * The on-disk copy of the inode will have been added to the list
2353 * of unlinked inodes in the AGI. We need to remove the inode from
2354 * that list atomically with respect to freeing it here.
2355 */
2356int
2357xfs_ifree(
2358        xfs_trans_t     *tp,
2359        xfs_inode_t     *ip,
2360        xfs_bmap_free_t *flist)
2361{
2362        int                     error;
2363        int                     delete;
2364        xfs_ino_t               first_ino;
2365
2366        ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2367        ASSERT(ip->i_d.di_nlink == 0);
2368        ASSERT(ip->i_d.di_nextents == 0);
2369        ASSERT(ip->i_d.di_anextents == 0);
2370        ASSERT(ip->i_d.di_size == 0 || !S_ISREG(ip->i_d.di_mode));
2371        ASSERT(ip->i_d.di_nblocks == 0);
2372
2373        /*
2374         * Pull the on-disk inode from the AGI unlinked list.
2375         */
2376        error = xfs_iunlink_remove(tp, ip);
2377        if (error)
2378                return error;
2379
2380        error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2381        if (error)
2382                return error;
2383
2384        ip->i_d.di_mode = 0;            /* mark incore inode as free */
2385        ip->i_d.di_flags = 0;
2386        ip->i_d.di_dmevmask = 0;
2387        ip->i_d.di_forkoff = 0;         /* mark the attr fork not in use */
2388        ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2389        ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2390        /*
2391         * Bump the generation count so no one will be confused
2392         * by reincarnations of this inode.
2393         */
2394        ip->i_d.di_gen++;
2395        xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2396
2397        if (delete)
2398                error = xfs_ifree_cluster(ip, tp, first_ino);
2399
2400        return error;
2401}
2402
2403/*
2404 * This is called to unpin an inode.  The caller must have the inode locked
2405 * in at least shared mode so that the buffer cannot be subsequently pinned
2406 * once someone is waiting for it to be unpinned.
2407 */
2408static void
2409xfs_iunpin(
2410        struct xfs_inode        *ip)
2411{
2412        ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2413
2414        trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2415
2416        /* Give the log a push to start the unpinning I/O */
2417        xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
2418
2419}
2420
2421static void
2422__xfs_iunpin_wait(
2423        struct xfs_inode        *ip)
2424{
2425        wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2426        DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2427
2428        xfs_iunpin(ip);
2429
2430        do {
2431                prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2432                if (xfs_ipincount(ip))
2433                        io_schedule();
2434        } while (xfs_ipincount(ip));
2435        finish_wait(wq, &wait.wait);
2436}
2437
2438void
2439xfs_iunpin_wait(
2440        struct xfs_inode        *ip)
2441{
2442        if (xfs_ipincount(ip))
2443                __xfs_iunpin_wait(ip);
2444}
2445
2446/*
2447 * Removing an inode from the namespace involves removing the directory entry
2448 * and dropping the link count on the inode. Removing the directory entry can
2449 * result in locking an AGF (directory blocks were freed) and removing a link
2450 * count can result in placing the inode on an unlinked list which results in
2451 * locking an AGI.
2452 *
2453 * The big problem here is that we have an ordering constraint on AGF and AGI
2454 * locking - inode allocation locks the AGI, then can allocate a new extent for
2455 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2456 * removes the inode from the unlinked list, requiring that we lock the AGI
2457 * first, and then freeing the inode can result in an inode chunk being freed
2458 * and hence freeing disk space requiring that we lock an AGF.
2459 *
2460 * Hence the ordering that is imposed by other parts of the code is AGI before
2461 * AGF. This means we cannot remove the directory entry before we drop the inode
2462 * reference count and put it on the unlinked list as this results in a lock
2463 * order of AGF then AGI, and this can deadlock against inode allocation and
2464 * freeing. Therefore we must drop the link counts before we remove the
2465 * directory entry.
2466 *
2467 * This is still safe from a transactional point of view - it is not until we
2468 * get to xfs_bmap_finish() that we have the possibility of multiple
2469 * transactions in this operation. Hence as long as we remove the directory
2470 * entry and drop the link count in the first transaction of the remove
2471 * operation, there are no transactional constraints on the ordering here.
2472 */
2473int
2474xfs_remove(
2475        xfs_inode_t             *dp,
2476        struct xfs_name         *name,
2477        xfs_inode_t             *ip)
2478{
2479        xfs_mount_t             *mp = dp->i_mount;
2480        xfs_trans_t             *tp = NULL;
2481        int                     is_dir = S_ISDIR(ip->i_d.di_mode);
2482        int                     error = 0;
2483        xfs_bmap_free_t         free_list;
2484        xfs_fsblock_t           first_block;
2485        int                     cancel_flags;
2486        int                     committed;
2487        int                     link_zero;
2488        uint                    resblks;
2489        uint                    log_count;
2490
2491        trace_xfs_remove(dp, name);
2492
2493        if (XFS_FORCED_SHUTDOWN(mp))
2494                return -EIO;
2495
2496        error = xfs_qm_dqattach(dp, 0);
2497        if (error)
2498                goto std_return;
2499
2500        error = xfs_qm_dqattach(ip, 0);
2501        if (error)
2502                goto std_return;
2503
2504        if (is_dir) {
2505                tp = xfs_trans_alloc(mp, XFS_TRANS_RMDIR);
2506                log_count = XFS_DEFAULT_LOG_COUNT;
2507        } else {
2508                tp = xfs_trans_alloc(mp, XFS_TRANS_REMOVE);
2509                log_count = XFS_REMOVE_LOG_COUNT;
2510        }
2511        cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
2512
2513        /*
2514         * We try to get the real space reservation first,
2515         * allowing for directory btree deletion(s) implying
2516         * possible bmap insert(s).  If we can't get the space
2517         * reservation then we use 0 instead, and avoid the bmap
2518         * btree insert(s) in the directory code by, if the bmap
2519         * insert tries to happen, instead trimming the LAST
2520         * block from the directory.
2521         */
2522        resblks = XFS_REMOVE_SPACE_RES(mp);
2523        error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, resblks, 0);
2524        if (error == -ENOSPC) {
2525                resblks = 0;
2526                error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, 0, 0);
2527        }
2528        if (error) {
2529                ASSERT(error != -ENOSPC);
2530                cancel_flags = 0;
2531                goto out_trans_cancel;
2532        }
2533
2534        xfs_lock_two_inodes(dp, ip, XFS_ILOCK_EXCL);
2535
2536        xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
2537        xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2538
2539        /*
2540         * If we're removing a directory perform some additional validation.
2541         */
2542        cancel_flags |= XFS_TRANS_ABORT;
2543        if (is_dir) {
2544                ASSERT(ip->i_d.di_nlink >= 2);
2545                if (ip->i_d.di_nlink != 2) {
2546                        error = -ENOTEMPTY;
2547                        goto out_trans_cancel;
2548                }
2549                if (!xfs_dir_isempty(ip)) {
2550                        error = -ENOTEMPTY;
2551                        goto out_trans_cancel;
2552                }
2553
2554                /* Drop the link from ip's "..".  */
2555                error = xfs_droplink(tp, dp);
2556                if (error)
2557                        goto out_trans_cancel;
2558
2559                /* Drop the "." link from ip to self.  */
2560                error = xfs_droplink(tp, ip);
2561                if (error)
2562                        goto out_trans_cancel;
2563        } else {
2564                /*
2565                 * When removing a non-directory we need to log the parent
2566                 * inode here.  For a directory this is done implicitly
2567                 * by the xfs_droplink call for the ".." entry.
2568                 */
2569                xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2570        }
2571        xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2572
2573        /* Drop the link from dp to ip. */
2574        error = xfs_droplink(tp, ip);
2575        if (error)
2576                goto out_trans_cancel;
2577
2578        /* Determine if this is the last link while the inode is locked */
2579        link_zero = (ip->i_d.di_nlink == 0);
2580
2581        xfs_bmap_init(&free_list, &first_block);
2582        error = xfs_dir_removename(tp, dp, name, ip->i_ino,
2583                                        &first_block, &free_list, resblks);
2584        if (error) {
2585                ASSERT(error != -ENOENT);
2586                goto out_bmap_cancel;
2587        }
2588
2589        /*
2590         * If this is a synchronous mount, make sure that the
2591         * remove transaction goes to disk before returning to
2592         * the user.
2593         */
2594        if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2595                xfs_trans_set_sync(tp);
2596
2597        error = xfs_bmap_finish(&tp, &free_list, &committed);
2598        if (error)
2599                goto out_bmap_cancel;
2600
2601        error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
2602        if (error)
2603                goto std_return;
2604
2605        if (is_dir && xfs_inode_is_filestream(ip))
2606                xfs_filestream_deassociate(ip);
2607
2608        return 0;
2609
2610 out_bmap_cancel:
2611        xfs_bmap_cancel(&free_list);
2612 out_trans_cancel:
2613        xfs_trans_cancel(tp, cancel_flags);
2614 std_return:
2615        return error;
2616}
2617
2618/*
2619 * Enter all inodes for a rename transaction into a sorted array.
2620 */
2621STATIC void
2622xfs_sort_for_rename(
2623        xfs_inode_t     *dp1,   /* in: old (source) directory inode */
2624        xfs_inode_t     *dp2,   /* in: new (target) directory inode */
2625        xfs_inode_t     *ip1,   /* in: inode of old entry */
2626        xfs_inode_t     *ip2,   /* in: inode of new entry, if it
2627                                   already exists, NULL otherwise. */
2628        xfs_inode_t     **i_tab,/* out: array of inode returned, sorted */
2629        int             *num_inodes)  /* out: number of inodes in array */
2630{
2631        xfs_inode_t             *temp;
2632        int                     i, j;
2633
2634        /*
2635         * i_tab contains a list of pointers to inodes.  We initialize
2636         * the table here & we'll sort it.  We will then use it to
2637         * order the acquisition of the inode locks.
2638         *
2639         * Note that the table may contain duplicates.  e.g., dp1 == dp2.
2640         */
2641        i_tab[0] = dp1;
2642        i_tab[1] = dp2;
2643        i_tab[2] = ip1;
2644        if (ip2) {
2645                *num_inodes = 4;
2646                i_tab[3] = ip2;
2647        } else {
2648                *num_inodes = 3;
2649                i_tab[3] = NULL;
2650        }
2651
2652        /*
2653         * Sort the elements via bubble sort.  (Remember, there are at
2654         * most 4 elements to sort, so this is adequate.)
2655         */
2656        for (i = 0; i < *num_inodes; i++) {
2657                for (j = 1; j < *num_inodes; j++) {
2658                        if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2659                                temp = i_tab[j];
2660                                i_tab[j] = i_tab[j-1];
2661                                i_tab[j-1] = temp;
2662                        }
2663                }
2664        }
2665}
2666
2667/*
2668 * xfs_rename
2669 */
2670int
2671xfs_rename(
2672        xfs_inode_t     *src_dp,
2673        struct xfs_name *src_name,
2674        xfs_inode_t     *src_ip,
2675        xfs_inode_t     *target_dp,
2676        struct xfs_name *target_name,
2677        xfs_inode_t     *target_ip)
2678{
2679        xfs_trans_t     *tp = NULL;
2680        xfs_mount_t     *mp = src_dp->i_mount;
2681        int             new_parent;             /* moving to a new dir */
2682        int             src_is_directory;       /* src_name is a directory */
2683        int             error;
2684        xfs_bmap_free_t free_list;
2685        xfs_fsblock_t   first_block;
2686        int             cancel_flags;
2687        int             committed;
2688        xfs_inode_t     *inodes[4];
2689        int             spaceres;
2690        int             num_inodes;
2691
2692        trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2693
2694        new_parent = (src_dp != target_dp);
2695        src_is_directory = S_ISDIR(src_ip->i_d.di_mode);
2696
2697        xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip,
2698                                inodes, &num_inodes);
2699
2700        xfs_bmap_init(&free_list, &first_block);
2701        tp = xfs_trans_alloc(mp, XFS_TRANS_RENAME);
2702        cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
2703        spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
2704        error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, spaceres, 0);
2705        if (error == -ENOSPC) {
2706                spaceres = 0;
2707                error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, 0, 0);
2708        }
2709        if (error) {
2710                xfs_trans_cancel(tp, 0);
2711                goto std_return;
2712        }
2713
2714        /*
2715         * Attach the dquots to the inodes
2716         */
2717        error = xfs_qm_vop_rename_dqattach(inodes);
2718        if (error) {
2719                xfs_trans_cancel(tp, cancel_flags);
2720                goto std_return;
2721        }
2722
2723        /*
2724         * Lock all the participating inodes. Depending upon whether
2725         * the target_name exists in the target directory, and
2726         * whether the target directory is the same as the source
2727         * directory, we can lock from 2 to 4 inodes.
2728         */
2729        xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
2730
2731        /*
2732         * Join all the inodes to the transaction. From this point on,
2733         * we can rely on either trans_commit or trans_cancel to unlock
2734         * them.
2735         */
2736        xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
2737        if (new_parent)
2738                xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
2739        xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
2740        if (target_ip)
2741                xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
2742
2743        /*
2744         * If we are using project inheritance, we only allow renames
2745         * into our tree when the project IDs are the same; else the
2746         * tree quota mechanism would be circumvented.
2747         */
2748        if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
2749                     (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) {
2750                error = -EXDEV;
2751                goto error_return;
2752        }
2753
2754        /*
2755         * Set up the target.
2756         */
2757        if (target_ip == NULL) {
2758                /*
2759                 * If there's no space reservation, check the entry will
2760                 * fit before actually inserting it.
2761                 */
2762                error = xfs_dir_canenter(tp, target_dp, target_name, spaceres);
2763                if (error)
2764                        goto error_return;
2765                /*
2766                 * If target does not exist and the rename crosses
2767                 * directories, adjust the target directory link count
2768                 * to account for the ".." reference from the new entry.
2769                 */
2770                error = xfs_dir_createname(tp, target_dp, target_name,
2771                                                src_ip->i_ino, &first_block,
2772                                                &free_list, spaceres);
2773                if (error == -ENOSPC)
2774                        goto error_return;
2775                if (error)
2776                        goto abort_return;
2777
2778                xfs_trans_ichgtime(tp, target_dp,
2779                                        XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2780
2781                if (new_parent && src_is_directory) {
2782                        error = xfs_bumplink(tp, target_dp);
2783                        if (error)
2784                                goto abort_return;
2785                }
2786        } else { /* target_ip != NULL */
2787                /*
2788                 * If target exists and it's a directory, check that both
2789                 * target and source are directories and that target can be
2790                 * destroyed, or that neither is a directory.
2791                 */
2792                if (S_ISDIR(target_ip->i_d.di_mode)) {
2793                        /*
2794                         * Make sure target dir is empty.
2795                         */
2796                        if (!(xfs_dir_isempty(target_ip)) ||
2797                            (target_ip->i_d.di_nlink > 2)) {
2798                                error = -EEXIST;
2799                                goto error_return;
2800                        }
2801                }
2802
2803                /*
2804                 * Link the source inode under the target name.
2805                 * If the source inode is a directory and we are moving
2806                 * it across directories, its ".." entry will be
2807                 * inconsistent until we replace that down below.
2808                 *
2809                 * In case there is already an entry with the same
2810                 * name at the destination directory, remove it first.
2811                 */
2812                error = xfs_dir_replace(tp, target_dp, target_name,
2813                                        src_ip->i_ino,
2814                                        &first_block, &free_list, spaceres);
2815                if (error)
2816                        goto abort_return;
2817
2818                xfs_trans_ichgtime(tp, target_dp,
2819                                        XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2820
2821                /*
2822                 * Decrement the link count on the target since the target
2823                 * dir no longer points to it.
2824                 */
2825                error = xfs_droplink(tp, target_ip);
2826                if (error)
2827                        goto abort_return;
2828
2829                if (src_is_directory) {
2830                        /*
2831                         * Drop the link from the old "." entry.
2832                         */
2833                        error = xfs_droplink(tp, target_ip);
2834                        if (error)
2835                                goto abort_return;
2836                }
2837        } /* target_ip != NULL */
2838
2839        /*
2840         * Remove the source.
2841         */
2842        if (new_parent && src_is_directory) {
2843                /*
2844                 * Rewrite the ".." entry to point to the new
2845                 * directory.
2846                 */
2847                error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
2848                                        target_dp->i_ino,
2849                                        &first_block, &free_list, spaceres);
2850                ASSERT(error != -EEXIST);
2851                if (error)
2852                        goto abort_return;
2853        }
2854
2855        /*
2856         * We always want to hit the ctime on the source inode.
2857         *
2858         * This isn't strictly required by the standards since the source
2859         * inode isn't really being changed, but old unix file systems did
2860         * it and some incremental backup programs won't work without it.
2861         */
2862        xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
2863        xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
2864
2865        /*
2866         * Adjust the link count on src_dp.  This is necessary when
2867         * renaming a directory, either within one parent when
2868         * the target existed, or across two parent directories.
2869         */
2870        if (src_is_directory && (new_parent || target_ip != NULL)) {
2871
2872                /*
2873                 * Decrement link count on src_directory since the
2874                 * entry that's moved no longer points to it.
2875                 */
2876                error = xfs_droplink(tp, src_dp);
2877                if (error)
2878                        goto abort_return;
2879        }
2880
2881        error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
2882                                        &first_block, &free_list, spaceres);
2883        if (error)
2884                goto abort_return;
2885
2886        xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2887        xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
2888        if (new_parent)
2889                xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
2890
2891        /*
2892         * If this is a synchronous mount, make sure that the
2893         * rename transaction goes to disk before returning to
2894         * the user.
2895         */
2896        if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) {
2897                xfs_trans_set_sync(tp);
2898        }
2899
2900        error = xfs_bmap_finish(&tp, &free_list, &committed);
2901        if (error) {
2902                xfs_bmap_cancel(&free_list);
2903                xfs_trans_cancel(tp, (XFS_TRANS_RELEASE_LOG_RES |
2904                                 XFS_TRANS_ABORT));
2905                goto std_return;
2906        }
2907
2908        /*
2909         * trans_commit will unlock src_ip, target_ip & decrement
2910         * the vnode references.
2911         */
2912        return xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
2913
2914 abort_return:
2915        cancel_flags |= XFS_TRANS_ABORT;
2916 error_return:
2917        xfs_bmap_cancel(&free_list);
2918        xfs_trans_cancel(tp, cancel_flags);
2919 std_return:
2920        return error;
2921}
2922
2923STATIC int
2924xfs_iflush_cluster(
2925        xfs_inode_t     *ip,
2926        xfs_buf_t       *bp)
2927{
2928        xfs_mount_t             *mp = ip->i_mount;
2929        struct xfs_perag        *pag;
2930        unsigned long           first_index, mask;
2931        unsigned long           inodes_per_cluster;
2932        int                     ilist_size;
2933        xfs_inode_t             **ilist;
2934        xfs_inode_t             *iq;
2935        int                     nr_found;
2936        int                     clcount = 0;
2937        int                     bufwasdelwri;
2938        int                     i;
2939
2940        pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2941
2942        inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
2943        ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
2944        ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
2945        if (!ilist)
2946                goto out_put;
2947
2948        mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1);
2949        first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
2950        rcu_read_lock();
2951        /* really need a gang lookup range call here */
2952        nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
2953                                        first_index, inodes_per_cluster);
2954        if (nr_found == 0)
2955                goto out_free;
2956
2957        for (i = 0; i < nr_found; i++) {
2958                iq = ilist[i];
2959                if (iq == ip)
2960                        continue;
2961
2962                /*
2963                 * because this is an RCU protected lookup, we could find a
2964                 * recently freed or even reallocated inode during the lookup.
2965                 * We need to check under the i_flags_lock for a valid inode
2966                 * here. Skip it if it is not valid or the wrong inode.
2967                 */
2968                spin_lock(&ip->i_flags_lock);
2969                if (!ip->i_ino ||
2970                    (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) {
2971                        spin_unlock(&ip->i_flags_lock);
2972                        continue;
2973                }
2974                spin_unlock(&ip->i_flags_lock);
2975
2976                /*
2977                 * Do an un-protected check to see if the inode is dirty and
2978                 * is a candidate for flushing.  These checks will be repeated
2979                 * later after the appropriate locks are acquired.
2980                 */
2981                if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
2982                        continue;
2983
2984                /*
2985                 * Try to get locks.  If any are unavailable or it is pinned,
2986                 * then this inode cannot be flushed and is skipped.
2987                 */
2988
2989                if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
2990                        continue;
2991                if (!xfs_iflock_nowait(iq)) {
2992                        xfs_iunlock(iq, XFS_ILOCK_SHARED);
2993                        continue;
2994                }
2995                if (xfs_ipincount(iq)) {
2996                        xfs_ifunlock(iq);
2997                        xfs_iunlock(iq, XFS_ILOCK_SHARED);
2998                        continue;
2999                }
3000
3001                /*
3002                 * arriving here means that this inode can be flushed.  First
3003                 * re-check that it's dirty before flushing.
3004                 */
3005                if (!xfs_inode_clean(iq)) {
3006                        int     error;
3007                        error = xfs_iflush_int(iq, bp);
3008                        if (error) {
3009                                xfs_iunlock(iq, XFS_ILOCK_SHARED);
3010                                goto cluster_corrupt_out;
3011                        }
3012                        clcount++;
3013                } else {
3014                        xfs_ifunlock(iq);
3015                }
3016                xfs_iunlock(iq, XFS_ILOCK_SHARED);
3017        }
3018
3019        if (clcount) {
3020                XFS_STATS_INC(xs_icluster_flushcnt);
3021                XFS_STATS_ADD(xs_icluster_flushinode, clcount);
3022        }
3023
3024out_free:
3025        rcu_read_unlock();
3026        kmem_free(ilist);
3027out_put:
3028        xfs_perag_put(pag);
3029        return 0;
3030
3031
3032cluster_corrupt_out:
3033        /*
3034         * Corruption detected in the clustering loop.  Invalidate the
3035         * inode buffer and shut down the filesystem.
3036         */
3037        rcu_read_unlock();
3038        /*
3039         * Clean up the buffer.  If it was delwri, just release it --
3040         * brelse can handle it with no problems.  If not, shut down the
3041         * filesystem before releasing the buffer.
3042         */
3043        bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q);
3044        if (bufwasdelwri)
3045                xfs_buf_relse(bp);
3046
3047        xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3048
3049        if (!bufwasdelwri) {
3050                /*
3051                 * Just like incore_relse: if we have b_iodone functions,
3052                 * mark the buffer as an error and call them.  Otherwise
3053                 * mark it as stale and brelse.
3054                 */
3055                if (bp->b_iodone) {
3056                        XFS_BUF_UNDONE(bp);
3057                        xfs_buf_stale(bp);
3058                        xfs_buf_ioerror(bp, -EIO);
3059                        xfs_buf_ioend(bp, 0);
3060                } else {
3061                        xfs_buf_stale(bp);
3062                        xfs_buf_relse(bp);
3063                }
3064        }
3065
3066        /*
3067         * Unlocks the flush lock
3068         */
3069        xfs_iflush_abort(iq, false);
3070        kmem_free(ilist);
3071        xfs_perag_put(pag);
3072        return -EFSCORRUPTED;
3073}
3074
3075/*
3076 * Flush dirty inode metadata into the backing buffer.
3077 *
3078 * The caller must have the inode lock and the inode flush lock held.  The
3079 * inode lock will still be held upon return to the caller, and the inode
3080 * flush lock will be released after the inode has reached the disk.
3081 *
3082 * The caller must write out the buffer returned in *bpp and release it.
3083 */
3084int
3085xfs_iflush(
3086        struct xfs_inode        *ip,
3087        struct xfs_buf          **bpp)
3088{
3089        struct xfs_mount        *mp = ip->i_mount;
3090        struct xfs_buf          *bp;
3091        struct xfs_dinode       *dip;
3092        int                     error;
3093
3094        XFS_STATS_INC(xs_iflush_count);
3095
3096        ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3097        ASSERT(xfs_isiflocked(ip));
3098        ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3099               ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3100
3101        *bpp = NULL;
3102
3103        xfs_iunpin_wait(ip);
3104
3105        /*
3106         * For stale inodes we cannot rely on the backing buffer remaining
3107         * stale in cache for the remaining life of the stale inode and so
3108         * xfs_imap_to_bp() below may give us a buffer that no longer contains
3109         * inodes below. We have to check this after ensuring the inode is
3110         * unpinned so that it is safe to reclaim the stale inode after the
3111         * flush call.
3112         */
3113        if (xfs_iflags_test(ip, XFS_ISTALE)) {
3114                xfs_ifunlock(ip);
3115                return 0;
3116        }
3117
3118        /*
3119         * This may have been unpinned because the filesystem is shutting
3120         * down forcibly. If that's the case we must not write this inode
3121         * to disk, because the log record didn't make it to disk.
3122         *
3123         * We also have to remove the log item from the AIL in this case,
3124         * as we wait for an empty AIL as part of the unmount process.
3125         */
3126        if (XFS_FORCED_SHUTDOWN(mp)) {
3127                error = -EIO;
3128                goto abort_out;
3129        }
3130
3131        /*
3132         * Get the buffer containing the on-disk inode.
3133         */
3134        error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
3135                               0);
3136        if (error || !bp) {
3137                xfs_ifunlock(ip);
3138                return error;
3139        }
3140
3141        /*
3142         * First flush out the inode that xfs_iflush was called with.
3143         */
3144        error = xfs_iflush_int(ip, bp);
3145        if (error)
3146                goto corrupt_out;
3147
3148        /*
3149         * If the buffer is pinned then push on the log now so we won't
3150         * get stuck waiting in the write for too long.
3151         */
3152        if (xfs_buf_ispinned(bp))
3153                xfs_log_force(mp, 0);
3154
3155        /*
3156         * inode clustering:
3157         * see if other inodes can be gathered into this write
3158         */
3159        error = xfs_iflush_cluster(ip, bp);
3160        if (error)
3161                goto cluster_corrupt_out;
3162
3163        *bpp = bp;
3164        return 0;
3165
3166corrupt_out:
3167        xfs_buf_relse(bp);
3168        xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3169cluster_corrupt_out:
3170        error = -EFSCORRUPTED;
3171abort_out:
3172        /*
3173         * Unlocks the flush lock
3174         */
3175        xfs_iflush_abort(ip, false);
3176        return error;
3177}
3178
3179STATIC int
3180xfs_iflush_int(
3181        struct xfs_inode        *ip,
3182        struct xfs_buf          *bp)
3183{
3184        struct xfs_inode_log_item *iip = ip->i_itemp;
3185        struct xfs_dinode       *dip;
3186        struct xfs_mount        *mp = ip->i_mount;
3187
3188        ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3189        ASSERT(xfs_isiflocked(ip));
3190        ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3191               ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3192        ASSERT(iip != NULL && iip->ili_fields != 0);
3193        ASSERT(ip->i_d.di_version > 1);
3194
3195        /* set *dip = inode's place in the buffer */
3196        dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
3197
3198        if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3199                               mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3200                xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3201                        "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3202                        __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3203                goto corrupt_out;
3204        }
3205        if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3206                                mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
3207                xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3208                        "%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3209                        __func__, ip->i_ino, ip, ip->i_d.di_magic);
3210                goto corrupt_out;
3211        }
3212        if (S_ISREG(ip->i_d.di_mode)) {
3213                if (XFS_TEST_ERROR(
3214                    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3215                    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3216                    mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3217                        xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3218                                "%s: Bad regular inode %Lu, ptr 0x%p",
3219                                __func__, ip->i_ino, ip);
3220                        goto corrupt_out;
3221                }
3222        } else if (S_ISDIR(ip->i_d.di_mode)) {
3223                if (XFS_TEST_ERROR(
3224                    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3225                    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3226                    (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3227                    mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3228                        xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3229                                "%s: Bad directory inode %Lu, ptr 0x%p",
3230                                __func__, ip->i_ino, ip);
3231                        goto corrupt_out;
3232                }
3233        }
3234        if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3235                                ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3236                                XFS_RANDOM_IFLUSH_5)) {
3237                xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3238                        "%s: detected corrupt incore inode %Lu, "
3239                        "total extents = %d, nblocks = %Ld, ptr 0x%p",
3240                        __func__, ip->i_ino,
3241                        ip->i_d.di_nextents + ip->i_d.di_anextents,
3242                        ip->i_d.di_nblocks, ip);
3243                goto corrupt_out;
3244        }
3245        if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3246                                mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3247                xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3248                        "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3249                        __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
3250                goto corrupt_out;
3251        }
3252
3253        /*
3254         * Inode item log recovery for v2 inodes are dependent on the
3255         * di_flushiter count for correct sequencing. We bump the flush
3256         * iteration count so we can detect flushes which postdate a log record
3257         * during recovery. This is redundant as we now log every change and
3258         * hence this can't happen but we need to still do it to ensure
3259         * backwards compatibility with old kernels that predate logging all
3260         * inode changes.
3261         */
3262        if (ip->i_d.di_version < 3)
3263                ip->i_d.di_flushiter++;
3264
3265        /*
3266         * Copy the dirty parts of the inode into the on-disk
3267         * inode.  We always copy out the core of the inode,
3268         * because if the inode is dirty at all the core must
3269         * be.
3270         */
3271        xfs_dinode_to_disk(dip, &ip->i_d);
3272
3273        /* Wrap, we never let the log put out DI_MAX_FLUSH */
3274        if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3275                ip->i_d.di_flushiter = 0;
3276
3277        xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3278        if (XFS_IFORK_Q(ip))
3279                xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3280        xfs_inobp_check(mp, bp);
3281
3282        /*
3283         * We've recorded everything logged in the inode, so we'd like to clear
3284         * the ili_fields bits so we don't log and flush things unnecessarily.
3285         * However, we can't stop logging all this information until the data
3286         * we've copied into the disk buffer is written to disk.  If we did we
3287         * might overwrite the copy of the inode in the log with all the data
3288         * after re-logging only part of it, and in the face of a crash we
3289         * wouldn't have all the data we need to recover.
3290         *
3291         * What we do is move the bits to the ili_last_fields field.  When
3292         * logging the inode, these bits are moved back to the ili_fields field.
3293         * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3294         * know that the information those bits represent is permanently on
3295         * disk.  As long as the flush completes before the inode is logged
3296         * again, then both ili_fields and ili_last_fields will be cleared.
3297         *
3298         * We can play with the ili_fields bits here, because the inode lock
3299         * must be held exclusively in order to set bits there and the flush
3300         * lock protects the ili_last_fields bits.  Set ili_logged so the flush
3301         * done routine can tell whether or not to look in the AIL.  Also, store
3302         * the current LSN of the inode so that we can tell whether the item has
3303         * moved in the AIL from xfs_iflush_done().  In order to read the lsn we
3304         * need the AIL lock, because it is a 64 bit value that cannot be read
3305         * atomically.
3306         */
3307        iip->ili_last_fields = iip->ili_fields;
3308        iip->ili_fields = 0;
3309        iip->ili_logged = 1;
3310
3311        xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3312                                &iip->ili_item.li_lsn);
3313
3314        /*
3315         * Attach the function xfs_iflush_done to the inode's
3316         * buffer.  This will remove the inode from the AIL
3317         * and unlock the inode's flush lock when the inode is
3318         * completely written to disk.
3319         */
3320        xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
3321
3322        /* update the lsn in the on disk inode if required */
3323        if (ip->i_d.di_version == 3)
3324                dip->di_lsn = cpu_to_be64(iip->ili_item.li_lsn);
3325
3326        /* generate the checksum. */
3327        xfs_dinode_calc_crc(mp, dip);
3328
3329        ASSERT(bp->b_fspriv != NULL);
3330        ASSERT(bp->b_iodone != NULL);
3331        return 0;
3332
3333corrupt_out:
3334        return -EFSCORRUPTED;
3335}
3336