linux/include/linux/rcupdate.h
<<
>>
Prefs
   1/*
   2 * Read-Copy Update mechanism for mutual exclusion
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, you can access it online at
  16 * http://www.gnu.org/licenses/gpl-2.0.html.
  17 *
  18 * Copyright IBM Corporation, 2001
  19 *
  20 * Author: Dipankar Sarma <dipankar@in.ibm.com>
  21 *
  22 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
  23 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
  24 * Papers:
  25 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
  26 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
  27 *
  28 * For detailed explanation of Read-Copy Update mechanism see -
  29 *              http://lse.sourceforge.net/locking/rcupdate.html
  30 *
  31 */
  32
  33#ifndef __LINUX_RCUPDATE_H
  34#define __LINUX_RCUPDATE_H
  35
  36#include <linux/types.h>
  37#include <linux/cache.h>
  38#include <linux/spinlock.h>
  39#include <linux/threads.h>
  40#include <linux/cpumask.h>
  41#include <linux/seqlock.h>
  42#include <linux/lockdep.h>
  43#include <linux/completion.h>
  44#include <linux/debugobjects.h>
  45#include <linux/bug.h>
  46#include <linux/compiler.h>
  47#include <asm/barrier.h>
  48
  49extern int rcu_expedited; /* for sysctl */
  50#ifdef CONFIG_RCU_TORTURE_TEST
  51extern int rcutorture_runnable; /* for sysctl */
  52#endif /* #ifdef CONFIG_RCU_TORTURE_TEST */
  53
  54enum rcutorture_type {
  55        RCU_FLAVOR,
  56        RCU_BH_FLAVOR,
  57        RCU_SCHED_FLAVOR,
  58        SRCU_FLAVOR,
  59        INVALID_RCU_FLAVOR
  60};
  61
  62#if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU)
  63void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
  64                            unsigned long *gpnum, unsigned long *completed);
  65void rcutorture_record_test_transition(void);
  66void rcutorture_record_progress(unsigned long vernum);
  67void do_trace_rcu_torture_read(const char *rcutorturename,
  68                               struct rcu_head *rhp,
  69                               unsigned long secs,
  70                               unsigned long c_old,
  71                               unsigned long c);
  72#else
  73static inline void rcutorture_get_gp_data(enum rcutorture_type test_type,
  74                                          int *flags,
  75                                          unsigned long *gpnum,
  76                                          unsigned long *completed)
  77{
  78        *flags = 0;
  79        *gpnum = 0;
  80        *completed = 0;
  81}
  82static inline void rcutorture_record_test_transition(void)
  83{
  84}
  85static inline void rcutorture_record_progress(unsigned long vernum)
  86{
  87}
  88#ifdef CONFIG_RCU_TRACE
  89void do_trace_rcu_torture_read(const char *rcutorturename,
  90                               struct rcu_head *rhp,
  91                               unsigned long secs,
  92                               unsigned long c_old,
  93                               unsigned long c);
  94#else
  95#define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
  96        do { } while (0)
  97#endif
  98#endif
  99
 100#define UINT_CMP_GE(a, b)       (UINT_MAX / 2 >= (a) - (b))
 101#define UINT_CMP_LT(a, b)       (UINT_MAX / 2 < (a) - (b))
 102#define ULONG_CMP_GE(a, b)      (ULONG_MAX / 2 >= (a) - (b))
 103#define ULONG_CMP_LT(a, b)      (ULONG_MAX / 2 < (a) - (b))
 104#define ulong2long(a)           (*(long *)(&(a)))
 105
 106/* Exported common interfaces */
 107
 108#ifdef CONFIG_PREEMPT_RCU
 109
 110/**
 111 * call_rcu() - Queue an RCU callback for invocation after a grace period.
 112 * @head: structure to be used for queueing the RCU updates.
 113 * @func: actual callback function to be invoked after the grace period
 114 *
 115 * The callback function will be invoked some time after a full grace
 116 * period elapses, in other words after all pre-existing RCU read-side
 117 * critical sections have completed.  However, the callback function
 118 * might well execute concurrently with RCU read-side critical sections
 119 * that started after call_rcu() was invoked.  RCU read-side critical
 120 * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
 121 * and may be nested.
 122 *
 123 * Note that all CPUs must agree that the grace period extended beyond
 124 * all pre-existing RCU read-side critical section.  On systems with more
 125 * than one CPU, this means that when "func()" is invoked, each CPU is
 126 * guaranteed to have executed a full memory barrier since the end of its
 127 * last RCU read-side critical section whose beginning preceded the call
 128 * to call_rcu().  It also means that each CPU executing an RCU read-side
 129 * critical section that continues beyond the start of "func()" must have
 130 * executed a memory barrier after the call_rcu() but before the beginning
 131 * of that RCU read-side critical section.  Note that these guarantees
 132 * include CPUs that are offline, idle, or executing in user mode, as
 133 * well as CPUs that are executing in the kernel.
 134 *
 135 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
 136 * resulting RCU callback function "func()", then both CPU A and CPU B are
 137 * guaranteed to execute a full memory barrier during the time interval
 138 * between the call to call_rcu() and the invocation of "func()" -- even
 139 * if CPU A and CPU B are the same CPU (but again only if the system has
 140 * more than one CPU).
 141 */
 142void call_rcu(struct rcu_head *head,
 143              void (*func)(struct rcu_head *head));
 144
 145#else /* #ifdef CONFIG_PREEMPT_RCU */
 146
 147/* In classic RCU, call_rcu() is just call_rcu_sched(). */
 148#define call_rcu        call_rcu_sched
 149
 150#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
 151
 152/**
 153 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
 154 * @head: structure to be used for queueing the RCU updates.
 155 * @func: actual callback function to be invoked after the grace period
 156 *
 157 * The callback function will be invoked some time after a full grace
 158 * period elapses, in other words after all currently executing RCU
 159 * read-side critical sections have completed. call_rcu_bh() assumes
 160 * that the read-side critical sections end on completion of a softirq
 161 * handler. This means that read-side critical sections in process
 162 * context must not be interrupted by softirqs. This interface is to be
 163 * used when most of the read-side critical sections are in softirq context.
 164 * RCU read-side critical sections are delimited by :
 165 *  - rcu_read_lock() and  rcu_read_unlock(), if in interrupt context.
 166 *  OR
 167 *  - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
 168 *  These may be nested.
 169 *
 170 * See the description of call_rcu() for more detailed information on
 171 * memory ordering guarantees.
 172 */
 173void call_rcu_bh(struct rcu_head *head,
 174                 void (*func)(struct rcu_head *head));
 175
 176/**
 177 * call_rcu_sched() - Queue an RCU for invocation after sched grace period.
 178 * @head: structure to be used for queueing the RCU updates.
 179 * @func: actual callback function to be invoked after the grace period
 180 *
 181 * The callback function will be invoked some time after a full grace
 182 * period elapses, in other words after all currently executing RCU
 183 * read-side critical sections have completed. call_rcu_sched() assumes
 184 * that the read-side critical sections end on enabling of preemption
 185 * or on voluntary preemption.
 186 * RCU read-side critical sections are delimited by :
 187 *  - rcu_read_lock_sched() and  rcu_read_unlock_sched(),
 188 *  OR
 189 *  anything that disables preemption.
 190 *  These may be nested.
 191 *
 192 * See the description of call_rcu() for more detailed information on
 193 * memory ordering guarantees.
 194 */
 195void call_rcu_sched(struct rcu_head *head,
 196                    void (*func)(struct rcu_head *rcu));
 197
 198void synchronize_sched(void);
 199
 200#ifdef CONFIG_PREEMPT_RCU
 201
 202void __rcu_read_lock(void);
 203void __rcu_read_unlock(void);
 204void rcu_read_unlock_special(struct task_struct *t);
 205void synchronize_rcu(void);
 206
 207/*
 208 * Defined as a macro as it is a very low level header included from
 209 * areas that don't even know about current.  This gives the rcu_read_lock()
 210 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
 211 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
 212 */
 213#define rcu_preempt_depth() (current->rcu_read_lock_nesting)
 214
 215#else /* #ifdef CONFIG_PREEMPT_RCU */
 216
 217static inline void __rcu_read_lock(void)
 218{
 219        preempt_disable();
 220}
 221
 222static inline void __rcu_read_unlock(void)
 223{
 224        preempt_enable();
 225}
 226
 227static inline void synchronize_rcu(void)
 228{
 229        synchronize_sched();
 230}
 231
 232static inline int rcu_preempt_depth(void)
 233{
 234        return 0;
 235}
 236
 237#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
 238
 239/* Internal to kernel */
 240void rcu_init(void);
 241void rcu_sched_qs(int cpu);
 242void rcu_bh_qs(int cpu);
 243void rcu_check_callbacks(int cpu, int user);
 244struct notifier_block;
 245void rcu_idle_enter(void);
 246void rcu_idle_exit(void);
 247void rcu_irq_enter(void);
 248void rcu_irq_exit(void);
 249
 250#ifdef CONFIG_RCU_STALL_COMMON
 251void rcu_sysrq_start(void);
 252void rcu_sysrq_end(void);
 253#else /* #ifdef CONFIG_RCU_STALL_COMMON */
 254static inline void rcu_sysrq_start(void)
 255{
 256}
 257static inline void rcu_sysrq_end(void)
 258{
 259}
 260#endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */
 261
 262#ifdef CONFIG_RCU_USER_QS
 263void rcu_user_enter(void);
 264void rcu_user_exit(void);
 265#else
 266static inline void rcu_user_enter(void) { }
 267static inline void rcu_user_exit(void) { }
 268static inline void rcu_user_hooks_switch(struct task_struct *prev,
 269                                         struct task_struct *next) { }
 270#endif /* CONFIG_RCU_USER_QS */
 271
 272/**
 273 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers
 274 * @a: Code that RCU needs to pay attention to.
 275 *
 276 * RCU, RCU-bh, and RCU-sched read-side critical sections are forbidden
 277 * in the inner idle loop, that is, between the rcu_idle_enter() and
 278 * the rcu_idle_exit() -- RCU will happily ignore any such read-side
 279 * critical sections.  However, things like powertop need tracepoints
 280 * in the inner idle loop.
 281 *
 282 * This macro provides the way out:  RCU_NONIDLE(do_something_with_RCU())
 283 * will tell RCU that it needs to pay attending, invoke its argument
 284 * (in this example, a call to the do_something_with_RCU() function),
 285 * and then tell RCU to go back to ignoring this CPU.  It is permissible
 286 * to nest RCU_NONIDLE() wrappers, but the nesting level is currently
 287 * quite limited.  If deeper nesting is required, it will be necessary
 288 * to adjust DYNTICK_TASK_NESTING_VALUE accordingly.
 289 */
 290#define RCU_NONIDLE(a) \
 291        do { \
 292                rcu_irq_enter(); \
 293                do { a; } while (0); \
 294                rcu_irq_exit(); \
 295        } while (0)
 296
 297#if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP)
 298bool __rcu_is_watching(void);
 299#endif /* #if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP) */
 300
 301/*
 302 * Infrastructure to implement the synchronize_() primitives in
 303 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
 304 */
 305
 306typedef void call_rcu_func_t(struct rcu_head *head,
 307                             void (*func)(struct rcu_head *head));
 308void wait_rcu_gp(call_rcu_func_t crf);
 309
 310#if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU)
 311#include <linux/rcutree.h>
 312#elif defined(CONFIG_TINY_RCU)
 313#include <linux/rcutiny.h>
 314#else
 315#error "Unknown RCU implementation specified to kernel configuration"
 316#endif
 317
 318/*
 319 * init_rcu_head_on_stack()/destroy_rcu_head_on_stack() are needed for dynamic
 320 * initialization and destruction of rcu_head on the stack. rcu_head structures
 321 * allocated dynamically in the heap or defined statically don't need any
 322 * initialization.
 323 */
 324#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
 325void init_rcu_head(struct rcu_head *head);
 326void destroy_rcu_head(struct rcu_head *head);
 327void init_rcu_head_on_stack(struct rcu_head *head);
 328void destroy_rcu_head_on_stack(struct rcu_head *head);
 329#else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
 330static inline void init_rcu_head(struct rcu_head *head)
 331{
 332}
 333
 334static inline void destroy_rcu_head(struct rcu_head *head)
 335{
 336}
 337
 338static inline void init_rcu_head_on_stack(struct rcu_head *head)
 339{
 340}
 341
 342static inline void destroy_rcu_head_on_stack(struct rcu_head *head)
 343{
 344}
 345#endif  /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
 346
 347#if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
 348bool rcu_lockdep_current_cpu_online(void);
 349#else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
 350static inline bool rcu_lockdep_current_cpu_online(void)
 351{
 352        return 1;
 353}
 354#endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
 355
 356#ifdef CONFIG_DEBUG_LOCK_ALLOC
 357
 358static inline void rcu_lock_acquire(struct lockdep_map *map)
 359{
 360        lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_);
 361}
 362
 363static inline void rcu_lock_release(struct lockdep_map *map)
 364{
 365        lock_release(map, 1, _THIS_IP_);
 366}
 367
 368extern struct lockdep_map rcu_lock_map;
 369extern struct lockdep_map rcu_bh_lock_map;
 370extern struct lockdep_map rcu_sched_lock_map;
 371extern struct lockdep_map rcu_callback_map;
 372int debug_lockdep_rcu_enabled(void);
 373
 374/**
 375 * rcu_read_lock_held() - might we be in RCU read-side critical section?
 376 *
 377 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU
 378 * read-side critical section.  In absence of CONFIG_DEBUG_LOCK_ALLOC,
 379 * this assumes we are in an RCU read-side critical section unless it can
 380 * prove otherwise.  This is useful for debug checks in functions that
 381 * require that they be called within an RCU read-side critical section.
 382 *
 383 * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot
 384 * and while lockdep is disabled.
 385 *
 386 * Note that rcu_read_lock() and the matching rcu_read_unlock() must
 387 * occur in the same context, for example, it is illegal to invoke
 388 * rcu_read_unlock() in process context if the matching rcu_read_lock()
 389 * was invoked from within an irq handler.
 390 *
 391 * Note that rcu_read_lock() is disallowed if the CPU is either idle or
 392 * offline from an RCU perspective, so check for those as well.
 393 */
 394static inline int rcu_read_lock_held(void)
 395{
 396        if (!debug_lockdep_rcu_enabled())
 397                return 1;
 398        if (!rcu_is_watching())
 399                return 0;
 400        if (!rcu_lockdep_current_cpu_online())
 401                return 0;
 402        return lock_is_held(&rcu_lock_map);
 403}
 404
 405/*
 406 * rcu_read_lock_bh_held() is defined out of line to avoid #include-file
 407 * hell.
 408 */
 409int rcu_read_lock_bh_held(void);
 410
 411/**
 412 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
 413 *
 414 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
 415 * RCU-sched read-side critical section.  In absence of
 416 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
 417 * critical section unless it can prove otherwise.  Note that disabling
 418 * of preemption (including disabling irqs) counts as an RCU-sched
 419 * read-side critical section.  This is useful for debug checks in functions
 420 * that required that they be called within an RCU-sched read-side
 421 * critical section.
 422 *
 423 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot
 424 * and while lockdep is disabled.
 425 *
 426 * Note that if the CPU is in the idle loop from an RCU point of
 427 * view (ie: that we are in the section between rcu_idle_enter() and
 428 * rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU
 429 * did an rcu_read_lock().  The reason for this is that RCU ignores CPUs
 430 * that are in such a section, considering these as in extended quiescent
 431 * state, so such a CPU is effectively never in an RCU read-side critical
 432 * section regardless of what RCU primitives it invokes.  This state of
 433 * affairs is required --- we need to keep an RCU-free window in idle
 434 * where the CPU may possibly enter into low power mode. This way we can
 435 * notice an extended quiescent state to other CPUs that started a grace
 436 * period. Otherwise we would delay any grace period as long as we run in
 437 * the idle task.
 438 *
 439 * Similarly, we avoid claiming an SRCU read lock held if the current
 440 * CPU is offline.
 441 */
 442#ifdef CONFIG_PREEMPT_COUNT
 443static inline int rcu_read_lock_sched_held(void)
 444{
 445        int lockdep_opinion = 0;
 446
 447        if (!debug_lockdep_rcu_enabled())
 448                return 1;
 449        if (!rcu_is_watching())
 450                return 0;
 451        if (!rcu_lockdep_current_cpu_online())
 452                return 0;
 453        if (debug_locks)
 454                lockdep_opinion = lock_is_held(&rcu_sched_lock_map);
 455        return lockdep_opinion || preempt_count() != 0 || irqs_disabled();
 456}
 457#else /* #ifdef CONFIG_PREEMPT_COUNT */
 458static inline int rcu_read_lock_sched_held(void)
 459{
 460        return 1;
 461}
 462#endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
 463
 464#else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
 465
 466# define rcu_lock_acquire(a)            do { } while (0)
 467# define rcu_lock_release(a)            do { } while (0)
 468
 469static inline int rcu_read_lock_held(void)
 470{
 471        return 1;
 472}
 473
 474static inline int rcu_read_lock_bh_held(void)
 475{
 476        return 1;
 477}
 478
 479#ifdef CONFIG_PREEMPT_COUNT
 480static inline int rcu_read_lock_sched_held(void)
 481{
 482        return preempt_count() != 0 || irqs_disabled();
 483}
 484#else /* #ifdef CONFIG_PREEMPT_COUNT */
 485static inline int rcu_read_lock_sched_held(void)
 486{
 487        return 1;
 488}
 489#endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
 490
 491#endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
 492
 493#ifdef CONFIG_PROVE_RCU
 494
 495/**
 496 * rcu_lockdep_assert - emit lockdep splat if specified condition not met
 497 * @c: condition to check
 498 * @s: informative message
 499 */
 500#define rcu_lockdep_assert(c, s)                                        \
 501        do {                                                            \
 502                static bool __section(.data.unlikely) __warned;         \
 503                if (debug_lockdep_rcu_enabled() && !__warned && !(c)) { \
 504                        __warned = true;                                \
 505                        lockdep_rcu_suspicious(__FILE__, __LINE__, s);  \
 506                }                                                       \
 507        } while (0)
 508
 509#if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
 510static inline void rcu_preempt_sleep_check(void)
 511{
 512        rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
 513                           "Illegal context switch in RCU read-side critical section");
 514}
 515#else /* #ifdef CONFIG_PROVE_RCU */
 516static inline void rcu_preempt_sleep_check(void)
 517{
 518}
 519#endif /* #else #ifdef CONFIG_PROVE_RCU */
 520
 521#define rcu_sleep_check()                                               \
 522        do {                                                            \
 523                rcu_preempt_sleep_check();                              \
 524                rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),     \
 525                                   "Illegal context switch in RCU-bh read-side critical section"); \
 526                rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),  \
 527                                   "Illegal context switch in RCU-sched read-side critical section"); \
 528        } while (0)
 529
 530#else /* #ifdef CONFIG_PROVE_RCU */
 531
 532#define rcu_lockdep_assert(c, s) do { } while (0)
 533#define rcu_sleep_check() do { } while (0)
 534
 535#endif /* #else #ifdef CONFIG_PROVE_RCU */
 536
 537/*
 538 * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
 539 * and rcu_assign_pointer().  Some of these could be folded into their
 540 * callers, but they are left separate in order to ease introduction of
 541 * multiple flavors of pointers to match the multiple flavors of RCU
 542 * (e.g., __rcu_bh, * __rcu_sched, and __srcu), should this make sense in
 543 * the future.
 544 */
 545
 546#ifdef __CHECKER__
 547#define rcu_dereference_sparse(p, space) \
 548        ((void)(((typeof(*p) space *)p) == p))
 549#else /* #ifdef __CHECKER__ */
 550#define rcu_dereference_sparse(p, space)
 551#endif /* #else #ifdef __CHECKER__ */
 552
 553#define __rcu_access_pointer(p, space) \
 554({ \
 555        typeof(*p) *_________p1 = (typeof(*p) *__force)ACCESS_ONCE(p); \
 556        rcu_dereference_sparse(p, space); \
 557        ((typeof(*p) __force __kernel *)(_________p1)); \
 558})
 559#define __rcu_dereference_check(p, c, space) \
 560({ \
 561        typeof(*p) *_________p1 = (typeof(*p) *__force)ACCESS_ONCE(p); \
 562        rcu_lockdep_assert(c, "suspicious rcu_dereference_check() usage"); \
 563        rcu_dereference_sparse(p, space); \
 564        smp_read_barrier_depends(); /* Dependency order vs. p above. */ \
 565        ((typeof(*p) __force __kernel *)(_________p1)); \
 566})
 567#define __rcu_dereference_protected(p, c, space) \
 568({ \
 569        rcu_lockdep_assert(c, "suspicious rcu_dereference_protected() usage"); \
 570        rcu_dereference_sparse(p, space); \
 571        ((typeof(*p) __force __kernel *)(p)); \
 572})
 573
 574#define __rcu_access_index(p, space) \
 575({ \
 576        typeof(p) _________p1 = ACCESS_ONCE(p); \
 577        rcu_dereference_sparse(p, space); \
 578        (_________p1); \
 579})
 580#define __rcu_dereference_index_check(p, c) \
 581({ \
 582        typeof(p) _________p1 = ACCESS_ONCE(p); \
 583        rcu_lockdep_assert(c, \
 584                           "suspicious rcu_dereference_index_check() usage"); \
 585        smp_read_barrier_depends(); /* Dependency order vs. p above. */ \
 586        (_________p1); \
 587})
 588
 589/**
 590 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable
 591 * @v: The value to statically initialize with.
 592 */
 593#define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v)
 594
 595/**
 596 * rcu_assign_pointer() - assign to RCU-protected pointer
 597 * @p: pointer to assign to
 598 * @v: value to assign (publish)
 599 *
 600 * Assigns the specified value to the specified RCU-protected
 601 * pointer, ensuring that any concurrent RCU readers will see
 602 * any prior initialization.
 603 *
 604 * Inserts memory barriers on architectures that require them
 605 * (which is most of them), and also prevents the compiler from
 606 * reordering the code that initializes the structure after the pointer
 607 * assignment.  More importantly, this call documents which pointers
 608 * will be dereferenced by RCU read-side code.
 609 *
 610 * In some special cases, you may use RCU_INIT_POINTER() instead
 611 * of rcu_assign_pointer().  RCU_INIT_POINTER() is a bit faster due
 612 * to the fact that it does not constrain either the CPU or the compiler.
 613 * That said, using RCU_INIT_POINTER() when you should have used
 614 * rcu_assign_pointer() is a very bad thing that results in
 615 * impossible-to-diagnose memory corruption.  So please be careful.
 616 * See the RCU_INIT_POINTER() comment header for details.
 617 *
 618 * Note that rcu_assign_pointer() evaluates each of its arguments only
 619 * once, appearances notwithstanding.  One of the "extra" evaluations
 620 * is in typeof() and the other visible only to sparse (__CHECKER__),
 621 * neither of which actually execute the argument.  As with most cpp
 622 * macros, this execute-arguments-only-once property is important, so
 623 * please be careful when making changes to rcu_assign_pointer() and the
 624 * other macros that it invokes.
 625 */
 626#define rcu_assign_pointer(p, v) smp_store_release(&p, RCU_INITIALIZER(v))
 627
 628/**
 629 * rcu_access_pointer() - fetch RCU pointer with no dereferencing
 630 * @p: The pointer to read
 631 *
 632 * Return the value of the specified RCU-protected pointer, but omit the
 633 * smp_read_barrier_depends() and keep the ACCESS_ONCE().  This is useful
 634 * when the value of this pointer is accessed, but the pointer is not
 635 * dereferenced, for example, when testing an RCU-protected pointer against
 636 * NULL.  Although rcu_access_pointer() may also be used in cases where
 637 * update-side locks prevent the value of the pointer from changing, you
 638 * should instead use rcu_dereference_protected() for this use case.
 639 *
 640 * It is also permissible to use rcu_access_pointer() when read-side
 641 * access to the pointer was removed at least one grace period ago, as
 642 * is the case in the context of the RCU callback that is freeing up
 643 * the data, or after a synchronize_rcu() returns.  This can be useful
 644 * when tearing down multi-linked structures after a grace period
 645 * has elapsed.
 646 */
 647#define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu)
 648
 649/**
 650 * rcu_dereference_check() - rcu_dereference with debug checking
 651 * @p: The pointer to read, prior to dereferencing
 652 * @c: The conditions under which the dereference will take place
 653 *
 654 * Do an rcu_dereference(), but check that the conditions under which the
 655 * dereference will take place are correct.  Typically the conditions
 656 * indicate the various locking conditions that should be held at that
 657 * point.  The check should return true if the conditions are satisfied.
 658 * An implicit check for being in an RCU read-side critical section
 659 * (rcu_read_lock()) is included.
 660 *
 661 * For example:
 662 *
 663 *      bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
 664 *
 665 * could be used to indicate to lockdep that foo->bar may only be dereferenced
 666 * if either rcu_read_lock() is held, or that the lock required to replace
 667 * the bar struct at foo->bar is held.
 668 *
 669 * Note that the list of conditions may also include indications of when a lock
 670 * need not be held, for example during initialisation or destruction of the
 671 * target struct:
 672 *
 673 *      bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
 674 *                                            atomic_read(&foo->usage) == 0);
 675 *
 676 * Inserts memory barriers on architectures that require them
 677 * (currently only the Alpha), prevents the compiler from refetching
 678 * (and from merging fetches), and, more importantly, documents exactly
 679 * which pointers are protected by RCU and checks that the pointer is
 680 * annotated as __rcu.
 681 */
 682#define rcu_dereference_check(p, c) \
 683        __rcu_dereference_check((p), rcu_read_lock_held() || (c), __rcu)
 684
 685/**
 686 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
 687 * @p: The pointer to read, prior to dereferencing
 688 * @c: The conditions under which the dereference will take place
 689 *
 690 * This is the RCU-bh counterpart to rcu_dereference_check().
 691 */
 692#define rcu_dereference_bh_check(p, c) \
 693        __rcu_dereference_check((p), rcu_read_lock_bh_held() || (c), __rcu)
 694
 695/**
 696 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
 697 * @p: The pointer to read, prior to dereferencing
 698 * @c: The conditions under which the dereference will take place
 699 *
 700 * This is the RCU-sched counterpart to rcu_dereference_check().
 701 */
 702#define rcu_dereference_sched_check(p, c) \
 703        __rcu_dereference_check((p), rcu_read_lock_sched_held() || (c), \
 704                                __rcu)
 705
 706#define rcu_dereference_raw(p) rcu_dereference_check(p, 1) /*@@@ needed? @@@*/
 707
 708/*
 709 * The tracing infrastructure traces RCU (we want that), but unfortunately
 710 * some of the RCU checks causes tracing to lock up the system.
 711 *
 712 * The tracing version of rcu_dereference_raw() must not call
 713 * rcu_read_lock_held().
 714 */
 715#define rcu_dereference_raw_notrace(p) __rcu_dereference_check((p), 1, __rcu)
 716
 717/**
 718 * rcu_access_index() - fetch RCU index with no dereferencing
 719 * @p: The index to read
 720 *
 721 * Return the value of the specified RCU-protected index, but omit the
 722 * smp_read_barrier_depends() and keep the ACCESS_ONCE().  This is useful
 723 * when the value of this index is accessed, but the index is not
 724 * dereferenced, for example, when testing an RCU-protected index against
 725 * -1.  Although rcu_access_index() may also be used in cases where
 726 * update-side locks prevent the value of the index from changing, you
 727 * should instead use rcu_dereference_index_protected() for this use case.
 728 */
 729#define rcu_access_index(p) __rcu_access_index((p), __rcu)
 730
 731/**
 732 * rcu_dereference_index_check() - rcu_dereference for indices with debug checking
 733 * @p: The pointer to read, prior to dereferencing
 734 * @c: The conditions under which the dereference will take place
 735 *
 736 * Similar to rcu_dereference_check(), but omits the sparse checking.
 737 * This allows rcu_dereference_index_check() to be used on integers,
 738 * which can then be used as array indices.  Attempting to use
 739 * rcu_dereference_check() on an integer will give compiler warnings
 740 * because the sparse address-space mechanism relies on dereferencing
 741 * the RCU-protected pointer.  Dereferencing integers is not something
 742 * that even gcc will put up with.
 743 *
 744 * Note that this function does not implicitly check for RCU read-side
 745 * critical sections.  If this function gains lots of uses, it might
 746 * make sense to provide versions for each flavor of RCU, but it does
 747 * not make sense as of early 2010.
 748 */
 749#define rcu_dereference_index_check(p, c) \
 750        __rcu_dereference_index_check((p), (c))
 751
 752/**
 753 * rcu_dereference_protected() - fetch RCU pointer when updates prevented
 754 * @p: The pointer to read, prior to dereferencing
 755 * @c: The conditions under which the dereference will take place
 756 *
 757 * Return the value of the specified RCU-protected pointer, but omit
 758 * both the smp_read_barrier_depends() and the ACCESS_ONCE().  This
 759 * is useful in cases where update-side locks prevent the value of the
 760 * pointer from changing.  Please note that this primitive does -not-
 761 * prevent the compiler from repeating this reference or combining it
 762 * with other references, so it should not be used without protection
 763 * of appropriate locks.
 764 *
 765 * This function is only for update-side use.  Using this function
 766 * when protected only by rcu_read_lock() will result in infrequent
 767 * but very ugly failures.
 768 */
 769#define rcu_dereference_protected(p, c) \
 770        __rcu_dereference_protected((p), (c), __rcu)
 771
 772
 773/**
 774 * rcu_dereference() - fetch RCU-protected pointer for dereferencing
 775 * @p: The pointer to read, prior to dereferencing
 776 *
 777 * This is a simple wrapper around rcu_dereference_check().
 778 */
 779#define rcu_dereference(p) rcu_dereference_check(p, 0)
 780
 781/**
 782 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
 783 * @p: The pointer to read, prior to dereferencing
 784 *
 785 * Makes rcu_dereference_check() do the dirty work.
 786 */
 787#define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
 788
 789/**
 790 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
 791 * @p: The pointer to read, prior to dereferencing
 792 *
 793 * Makes rcu_dereference_check() do the dirty work.
 794 */
 795#define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
 796
 797/**
 798 * rcu_read_lock() - mark the beginning of an RCU read-side critical section
 799 *
 800 * When synchronize_rcu() is invoked on one CPU while other CPUs
 801 * are within RCU read-side critical sections, then the
 802 * synchronize_rcu() is guaranteed to block until after all the other
 803 * CPUs exit their critical sections.  Similarly, if call_rcu() is invoked
 804 * on one CPU while other CPUs are within RCU read-side critical
 805 * sections, invocation of the corresponding RCU callback is deferred
 806 * until after the all the other CPUs exit their critical sections.
 807 *
 808 * Note, however, that RCU callbacks are permitted to run concurrently
 809 * with new RCU read-side critical sections.  One way that this can happen
 810 * is via the following sequence of events: (1) CPU 0 enters an RCU
 811 * read-side critical section, (2) CPU 1 invokes call_rcu() to register
 812 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
 813 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
 814 * callback is invoked.  This is legal, because the RCU read-side critical
 815 * section that was running concurrently with the call_rcu() (and which
 816 * therefore might be referencing something that the corresponding RCU
 817 * callback would free up) has completed before the corresponding
 818 * RCU callback is invoked.
 819 *
 820 * RCU read-side critical sections may be nested.  Any deferred actions
 821 * will be deferred until the outermost RCU read-side critical section
 822 * completes.
 823 *
 824 * You can avoid reading and understanding the next paragraph by
 825 * following this rule: don't put anything in an rcu_read_lock() RCU
 826 * read-side critical section that would block in a !PREEMPT kernel.
 827 * But if you want the full story, read on!
 828 *
 829 * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU),
 830 * it is illegal to block while in an RCU read-side critical section.
 831 * In preemptible RCU implementations (TREE_PREEMPT_RCU) in CONFIG_PREEMPT
 832 * kernel builds, RCU read-side critical sections may be preempted,
 833 * but explicit blocking is illegal.  Finally, in preemptible RCU
 834 * implementations in real-time (with -rt patchset) kernel builds, RCU
 835 * read-side critical sections may be preempted and they may also block, but
 836 * only when acquiring spinlocks that are subject to priority inheritance.
 837 */
 838static inline void rcu_read_lock(void)
 839{
 840        __rcu_read_lock();
 841        __acquire(RCU);
 842        rcu_lock_acquire(&rcu_lock_map);
 843        rcu_lockdep_assert(rcu_is_watching(),
 844                           "rcu_read_lock() used illegally while idle");
 845}
 846
 847/*
 848 * So where is rcu_write_lock()?  It does not exist, as there is no
 849 * way for writers to lock out RCU readers.  This is a feature, not
 850 * a bug -- this property is what provides RCU's performance benefits.
 851 * Of course, writers must coordinate with each other.  The normal
 852 * spinlock primitives work well for this, but any other technique may be
 853 * used as well.  RCU does not care how the writers keep out of each
 854 * others' way, as long as they do so.
 855 */
 856
 857/**
 858 * rcu_read_unlock() - marks the end of an RCU read-side critical section.
 859 *
 860 * In most situations, rcu_read_unlock() is immune from deadlock.
 861 * However, in kernels built with CONFIG_RCU_BOOST, rcu_read_unlock()
 862 * is responsible for deboosting, which it does via rt_mutex_unlock().
 863 * Unfortunately, this function acquires the scheduler's runqueue and
 864 * priority-inheritance spinlocks.  This means that deadlock could result
 865 * if the caller of rcu_read_unlock() already holds one of these locks or
 866 * any lock that is ever acquired while holding them.
 867 *
 868 * That said, RCU readers are never priority boosted unless they were
 869 * preempted.  Therefore, one way to avoid deadlock is to make sure
 870 * that preemption never happens within any RCU read-side critical
 871 * section whose outermost rcu_read_unlock() is called with one of
 872 * rt_mutex_unlock()'s locks held.  Such preemption can be avoided in
 873 * a number of ways, for example, by invoking preempt_disable() before
 874 * critical section's outermost rcu_read_lock().
 875 *
 876 * Given that the set of locks acquired by rt_mutex_unlock() might change
 877 * at any time, a somewhat more future-proofed approach is to make sure
 878 * that that preemption never happens within any RCU read-side critical
 879 * section whose outermost rcu_read_unlock() is called with irqs disabled.
 880 * This approach relies on the fact that rt_mutex_unlock() currently only
 881 * acquires irq-disabled locks.
 882 *
 883 * The second of these two approaches is best in most situations,
 884 * however, the first approach can also be useful, at least to those
 885 * developers willing to keep abreast of the set of locks acquired by
 886 * rt_mutex_unlock().
 887 *
 888 * See rcu_read_lock() for more information.
 889 */
 890static inline void rcu_read_unlock(void)
 891{
 892        rcu_lockdep_assert(rcu_is_watching(),
 893                           "rcu_read_unlock() used illegally while idle");
 894        rcu_lock_release(&rcu_lock_map);
 895        __release(RCU);
 896        __rcu_read_unlock();
 897}
 898
 899/**
 900 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
 901 *
 902 * This is equivalent of rcu_read_lock(), but to be used when updates
 903 * are being done using call_rcu_bh() or synchronize_rcu_bh(). Since
 904 * both call_rcu_bh() and synchronize_rcu_bh() consider completion of a
 905 * softirq handler to be a quiescent state, a process in RCU read-side
 906 * critical section must be protected by disabling softirqs. Read-side
 907 * critical sections in interrupt context can use just rcu_read_lock(),
 908 * though this should at least be commented to avoid confusing people
 909 * reading the code.
 910 *
 911 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
 912 * must occur in the same context, for example, it is illegal to invoke
 913 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
 914 * was invoked from some other task.
 915 */
 916static inline void rcu_read_lock_bh(void)
 917{
 918        local_bh_disable();
 919        __acquire(RCU_BH);
 920        rcu_lock_acquire(&rcu_bh_lock_map);
 921        rcu_lockdep_assert(rcu_is_watching(),
 922                           "rcu_read_lock_bh() used illegally while idle");
 923}
 924
 925/*
 926 * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section
 927 *
 928 * See rcu_read_lock_bh() for more information.
 929 */
 930static inline void rcu_read_unlock_bh(void)
 931{
 932        rcu_lockdep_assert(rcu_is_watching(),
 933                           "rcu_read_unlock_bh() used illegally while idle");
 934        rcu_lock_release(&rcu_bh_lock_map);
 935        __release(RCU_BH);
 936        local_bh_enable();
 937}
 938
 939/**
 940 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
 941 *
 942 * This is equivalent of rcu_read_lock(), but to be used when updates
 943 * are being done using call_rcu_sched() or synchronize_rcu_sched().
 944 * Read-side critical sections can also be introduced by anything that
 945 * disables preemption, including local_irq_disable() and friends.
 946 *
 947 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
 948 * must occur in the same context, for example, it is illegal to invoke
 949 * rcu_read_unlock_sched() from process context if the matching
 950 * rcu_read_lock_sched() was invoked from an NMI handler.
 951 */
 952static inline void rcu_read_lock_sched(void)
 953{
 954        preempt_disable();
 955        __acquire(RCU_SCHED);
 956        rcu_lock_acquire(&rcu_sched_lock_map);
 957        rcu_lockdep_assert(rcu_is_watching(),
 958                           "rcu_read_lock_sched() used illegally while idle");
 959}
 960
 961/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
 962static inline notrace void rcu_read_lock_sched_notrace(void)
 963{
 964        preempt_disable_notrace();
 965        __acquire(RCU_SCHED);
 966}
 967
 968/*
 969 * rcu_read_unlock_sched - marks the end of a RCU-classic critical section
 970 *
 971 * See rcu_read_lock_sched for more information.
 972 */
 973static inline void rcu_read_unlock_sched(void)
 974{
 975        rcu_lockdep_assert(rcu_is_watching(),
 976                           "rcu_read_unlock_sched() used illegally while idle");
 977        rcu_lock_release(&rcu_sched_lock_map);
 978        __release(RCU_SCHED);
 979        preempt_enable();
 980}
 981
 982/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
 983static inline notrace void rcu_read_unlock_sched_notrace(void)
 984{
 985        __release(RCU_SCHED);
 986        preempt_enable_notrace();
 987}
 988
 989/**
 990 * RCU_INIT_POINTER() - initialize an RCU protected pointer
 991 *
 992 * Initialize an RCU-protected pointer in special cases where readers
 993 * do not need ordering constraints on the CPU or the compiler.  These
 994 * special cases are:
 995 *
 996 * 1.   This use of RCU_INIT_POINTER() is NULLing out the pointer -or-
 997 * 2.   The caller has taken whatever steps are required to prevent
 998 *      RCU readers from concurrently accessing this pointer -or-
 999 * 3.   The referenced data structure has already been exposed to
1000 *      readers either at compile time or via rcu_assign_pointer() -and-
1001 *      a.      You have not made -any- reader-visible changes to
1002 *              this structure since then -or-
1003 *      b.      It is OK for readers accessing this structure from its
1004 *              new location to see the old state of the structure.  (For
1005 *              example, the changes were to statistical counters or to
1006 *              other state where exact synchronization is not required.)
1007 *
1008 * Failure to follow these rules governing use of RCU_INIT_POINTER() will
1009 * result in impossible-to-diagnose memory corruption.  As in the structures
1010 * will look OK in crash dumps, but any concurrent RCU readers might
1011 * see pre-initialized values of the referenced data structure.  So
1012 * please be very careful how you use RCU_INIT_POINTER()!!!
1013 *
1014 * If you are creating an RCU-protected linked structure that is accessed
1015 * by a single external-to-structure RCU-protected pointer, then you may
1016 * use RCU_INIT_POINTER() to initialize the internal RCU-protected
1017 * pointers, but you must use rcu_assign_pointer() to initialize the
1018 * external-to-structure pointer -after- you have completely initialized
1019 * the reader-accessible portions of the linked structure.
1020 *
1021 * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no
1022 * ordering guarantees for either the CPU or the compiler.
1023 */
1024#define RCU_INIT_POINTER(p, v) \
1025        do { \
1026                p = RCU_INITIALIZER(v); \
1027        } while (0)
1028
1029/**
1030 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
1031 *
1032 * GCC-style initialization for an RCU-protected pointer in a structure field.
1033 */
1034#define RCU_POINTER_INITIALIZER(p, v) \
1035                .p = RCU_INITIALIZER(v)
1036
1037/*
1038 * Does the specified offset indicate that the corresponding rcu_head
1039 * structure can be handled by kfree_rcu()?
1040 */
1041#define __is_kfree_rcu_offset(offset) ((offset) < 4096)
1042
1043/*
1044 * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain.
1045 */
1046#define __kfree_rcu(head, offset) \
1047        do { \
1048                BUILD_BUG_ON(!__is_kfree_rcu_offset(offset)); \
1049                kfree_call_rcu(head, (void (*)(struct rcu_head *))(unsigned long)(offset)); \
1050        } while (0)
1051
1052/**
1053 * kfree_rcu() - kfree an object after a grace period.
1054 * @ptr:        pointer to kfree
1055 * @rcu_head:   the name of the struct rcu_head within the type of @ptr.
1056 *
1057 * Many rcu callbacks functions just call kfree() on the base structure.
1058 * These functions are trivial, but their size adds up, and furthermore
1059 * when they are used in a kernel module, that module must invoke the
1060 * high-latency rcu_barrier() function at module-unload time.
1061 *
1062 * The kfree_rcu() function handles this issue.  Rather than encoding a
1063 * function address in the embedded rcu_head structure, kfree_rcu() instead
1064 * encodes the offset of the rcu_head structure within the base structure.
1065 * Because the functions are not allowed in the low-order 4096 bytes of
1066 * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
1067 * If the offset is larger than 4095 bytes, a compile-time error will
1068 * be generated in __kfree_rcu().  If this error is triggered, you can
1069 * either fall back to use of call_rcu() or rearrange the structure to
1070 * position the rcu_head structure into the first 4096 bytes.
1071 *
1072 * Note that the allowable offset might decrease in the future, for example,
1073 * to allow something like kmem_cache_free_rcu().
1074 *
1075 * The BUILD_BUG_ON check must not involve any function calls, hence the
1076 * checks are done in macros here.
1077 */
1078#define kfree_rcu(ptr, rcu_head)                                        \
1079        __kfree_rcu(&((ptr)->rcu_head), offsetof(typeof(*(ptr)), rcu_head))
1080
1081#if defined(CONFIG_TINY_RCU) || defined(CONFIG_RCU_NOCB_CPU_ALL)
1082static inline int rcu_needs_cpu(int cpu, unsigned long *delta_jiffies)
1083{
1084        *delta_jiffies = ULONG_MAX;
1085        return 0;
1086}
1087#endif /* #if defined(CONFIG_TINY_RCU) || defined(CONFIG_RCU_NOCB_CPU_ALL) */
1088
1089#if defined(CONFIG_RCU_NOCB_CPU_ALL)
1090static inline bool rcu_is_nocb_cpu(int cpu) { return true; }
1091#elif defined(CONFIG_RCU_NOCB_CPU)
1092bool rcu_is_nocb_cpu(int cpu);
1093#else
1094static inline bool rcu_is_nocb_cpu(int cpu) { return false; }
1095#endif
1096
1097
1098/* Only for use by adaptive-ticks code. */
1099#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
1100bool rcu_sys_is_idle(void);
1101void rcu_sysidle_force_exit(void);
1102#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
1103
1104static inline bool rcu_sys_is_idle(void)
1105{
1106        return false;
1107}
1108
1109static inline void rcu_sysidle_force_exit(void)
1110{
1111}
1112
1113#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
1114
1115
1116#endif /* __LINUX_RCUPDATE_H */
1117