linux/kernel/exit.c
<<
>>
Prefs
   1/*
   2 *  linux/kernel/exit.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 */
   6
   7#include <linux/mm.h>
   8#include <linux/slab.h>
   9#include <linux/interrupt.h>
  10#include <linux/module.h>
  11#include <linux/capability.h>
  12#include <linux/completion.h>
  13#include <linux/personality.h>
  14#include <linux/tty.h>
  15#include <linux/iocontext.h>
  16#include <linux/key.h>
  17#include <linux/security.h>
  18#include <linux/cpu.h>
  19#include <linux/acct.h>
  20#include <linux/tsacct_kern.h>
  21#include <linux/file.h>
  22#include <linux/fdtable.h>
  23#include <linux/freezer.h>
  24#include <linux/binfmts.h>
  25#include <linux/nsproxy.h>
  26#include <linux/pid_namespace.h>
  27#include <linux/ptrace.h>
  28#include <linux/profile.h>
  29#include <linux/mount.h>
  30#include <linux/proc_fs.h>
  31#include <linux/kthread.h>
  32#include <linux/mempolicy.h>
  33#include <linux/taskstats_kern.h>
  34#include <linux/delayacct.h>
  35#include <linux/cgroup.h>
  36#include <linux/syscalls.h>
  37#include <linux/signal.h>
  38#include <linux/posix-timers.h>
  39#include <linux/cn_proc.h>
  40#include <linux/mutex.h>
  41#include <linux/futex.h>
  42#include <linux/pipe_fs_i.h>
  43#include <linux/audit.h> /* for audit_free() */
  44#include <linux/resource.h>
  45#include <linux/blkdev.h>
  46#include <linux/task_io_accounting_ops.h>
  47#include <linux/tracehook.h>
  48#include <linux/fs_struct.h>
  49#include <linux/init_task.h>
  50#include <linux/perf_event.h>
  51#include <trace/events/sched.h>
  52#include <linux/hw_breakpoint.h>
  53#include <linux/oom.h>
  54#include <linux/writeback.h>
  55#include <linux/shm.h>
  56
  57#include <asm/uaccess.h>
  58#include <asm/unistd.h>
  59#include <asm/pgtable.h>
  60#include <asm/mmu_context.h>
  61
  62static void exit_mm(struct task_struct *tsk);
  63
  64static void __unhash_process(struct task_struct *p, bool group_dead)
  65{
  66        nr_threads--;
  67        detach_pid(p, PIDTYPE_PID);
  68        if (group_dead) {
  69                detach_pid(p, PIDTYPE_PGID);
  70                detach_pid(p, PIDTYPE_SID);
  71
  72                list_del_rcu(&p->tasks);
  73                list_del_init(&p->sibling);
  74                __this_cpu_dec(process_counts);
  75        }
  76        list_del_rcu(&p->thread_group);
  77        list_del_rcu(&p->thread_node);
  78}
  79
  80/*
  81 * This function expects the tasklist_lock write-locked.
  82 */
  83static void __exit_signal(struct task_struct *tsk)
  84{
  85        struct signal_struct *sig = tsk->signal;
  86        bool group_dead = thread_group_leader(tsk);
  87        struct sighand_struct *sighand;
  88        struct tty_struct *uninitialized_var(tty);
  89        cputime_t utime, stime;
  90
  91        sighand = rcu_dereference_check(tsk->sighand,
  92                                        lockdep_tasklist_lock_is_held());
  93        spin_lock(&sighand->siglock);
  94
  95        posix_cpu_timers_exit(tsk);
  96        if (group_dead) {
  97                posix_cpu_timers_exit_group(tsk);
  98                tty = sig->tty;
  99                sig->tty = NULL;
 100        } else {
 101                /*
 102                 * This can only happen if the caller is de_thread().
 103                 * FIXME: this is the temporary hack, we should teach
 104                 * posix-cpu-timers to handle this case correctly.
 105                 */
 106                if (unlikely(has_group_leader_pid(tsk)))
 107                        posix_cpu_timers_exit_group(tsk);
 108
 109                /*
 110                 * If there is any task waiting for the group exit
 111                 * then notify it:
 112                 */
 113                if (sig->notify_count > 0 && !--sig->notify_count)
 114                        wake_up_process(sig->group_exit_task);
 115
 116                if (tsk == sig->curr_target)
 117                        sig->curr_target = next_thread(tsk);
 118                /*
 119                 * Accumulate here the counters for all threads but the
 120                 * group leader as they die, so they can be added into
 121                 * the process-wide totals when those are taken.
 122                 * The group leader stays around as a zombie as long
 123                 * as there are other threads.  When it gets reaped,
 124                 * the exit.c code will add its counts into these totals.
 125                 * We won't ever get here for the group leader, since it
 126                 * will have been the last reference on the signal_struct.
 127                 */
 128                task_cputime(tsk, &utime, &stime);
 129                sig->utime += utime;
 130                sig->stime += stime;
 131                sig->gtime += task_gtime(tsk);
 132                sig->min_flt += tsk->min_flt;
 133                sig->maj_flt += tsk->maj_flt;
 134                sig->nvcsw += tsk->nvcsw;
 135                sig->nivcsw += tsk->nivcsw;
 136                sig->inblock += task_io_get_inblock(tsk);
 137                sig->oublock += task_io_get_oublock(tsk);
 138                task_io_accounting_add(&sig->ioac, &tsk->ioac);
 139                sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
 140        }
 141
 142        sig->nr_threads--;
 143        __unhash_process(tsk, group_dead);
 144
 145        /*
 146         * Do this under ->siglock, we can race with another thread
 147         * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
 148         */
 149        flush_sigqueue(&tsk->pending);
 150        tsk->sighand = NULL;
 151        spin_unlock(&sighand->siglock);
 152
 153        __cleanup_sighand(sighand);
 154        clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
 155        if (group_dead) {
 156                flush_sigqueue(&sig->shared_pending);
 157                tty_kref_put(tty);
 158        }
 159}
 160
 161static void delayed_put_task_struct(struct rcu_head *rhp)
 162{
 163        struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
 164
 165        perf_event_delayed_put(tsk);
 166        trace_sched_process_free(tsk);
 167        put_task_struct(tsk);
 168}
 169
 170
 171void release_task(struct task_struct *p)
 172{
 173        struct task_struct *leader;
 174        int zap_leader;
 175repeat:
 176        /* don't need to get the RCU readlock here - the process is dead and
 177         * can't be modifying its own credentials. But shut RCU-lockdep up */
 178        rcu_read_lock();
 179        atomic_dec(&__task_cred(p)->user->processes);
 180        rcu_read_unlock();
 181
 182        proc_flush_task(p);
 183
 184        write_lock_irq(&tasklist_lock);
 185        ptrace_release_task(p);
 186        __exit_signal(p);
 187
 188        /*
 189         * If we are the last non-leader member of the thread
 190         * group, and the leader is zombie, then notify the
 191         * group leader's parent process. (if it wants notification.)
 192         */
 193        zap_leader = 0;
 194        leader = p->group_leader;
 195        if (leader != p && thread_group_empty(leader)
 196                        && leader->exit_state == EXIT_ZOMBIE) {
 197                /*
 198                 * If we were the last child thread and the leader has
 199                 * exited already, and the leader's parent ignores SIGCHLD,
 200                 * then we are the one who should release the leader.
 201                 */
 202                zap_leader = do_notify_parent(leader, leader->exit_signal);
 203                if (zap_leader)
 204                        leader->exit_state = EXIT_DEAD;
 205        }
 206
 207        write_unlock_irq(&tasklist_lock);
 208        release_thread(p);
 209        call_rcu(&p->rcu, delayed_put_task_struct);
 210
 211        p = leader;
 212        if (unlikely(zap_leader))
 213                goto repeat;
 214}
 215
 216/*
 217 * This checks not only the pgrp, but falls back on the pid if no
 218 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
 219 * without this...
 220 *
 221 * The caller must hold rcu lock or the tasklist lock.
 222 */
 223struct pid *session_of_pgrp(struct pid *pgrp)
 224{
 225        struct task_struct *p;
 226        struct pid *sid = NULL;
 227
 228        p = pid_task(pgrp, PIDTYPE_PGID);
 229        if (p == NULL)
 230                p = pid_task(pgrp, PIDTYPE_PID);
 231        if (p != NULL)
 232                sid = task_session(p);
 233
 234        return sid;
 235}
 236
 237/*
 238 * Determine if a process group is "orphaned", according to the POSIX
 239 * definition in 2.2.2.52.  Orphaned process groups are not to be affected
 240 * by terminal-generated stop signals.  Newly orphaned process groups are
 241 * to receive a SIGHUP and a SIGCONT.
 242 *
 243 * "I ask you, have you ever known what it is to be an orphan?"
 244 */
 245static int will_become_orphaned_pgrp(struct pid *pgrp,
 246                                        struct task_struct *ignored_task)
 247{
 248        struct task_struct *p;
 249
 250        do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
 251                if ((p == ignored_task) ||
 252                    (p->exit_state && thread_group_empty(p)) ||
 253                    is_global_init(p->real_parent))
 254                        continue;
 255
 256                if (task_pgrp(p->real_parent) != pgrp &&
 257                    task_session(p->real_parent) == task_session(p))
 258                        return 0;
 259        } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
 260
 261        return 1;
 262}
 263
 264int is_current_pgrp_orphaned(void)
 265{
 266        int retval;
 267
 268        read_lock(&tasklist_lock);
 269        retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
 270        read_unlock(&tasklist_lock);
 271
 272        return retval;
 273}
 274
 275static bool has_stopped_jobs(struct pid *pgrp)
 276{
 277        struct task_struct *p;
 278
 279        do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
 280                if (p->signal->flags & SIGNAL_STOP_STOPPED)
 281                        return true;
 282        } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
 283
 284        return false;
 285}
 286
 287/*
 288 * Check to see if any process groups have become orphaned as
 289 * a result of our exiting, and if they have any stopped jobs,
 290 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
 291 */
 292static void
 293kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
 294{
 295        struct pid *pgrp = task_pgrp(tsk);
 296        struct task_struct *ignored_task = tsk;
 297
 298        if (!parent)
 299                /* exit: our father is in a different pgrp than
 300                 * we are and we were the only connection outside.
 301                 */
 302                parent = tsk->real_parent;
 303        else
 304                /* reparent: our child is in a different pgrp than
 305                 * we are, and it was the only connection outside.
 306                 */
 307                ignored_task = NULL;
 308
 309        if (task_pgrp(parent) != pgrp &&
 310            task_session(parent) == task_session(tsk) &&
 311            will_become_orphaned_pgrp(pgrp, ignored_task) &&
 312            has_stopped_jobs(pgrp)) {
 313                __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
 314                __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
 315        }
 316}
 317
 318#ifdef CONFIG_MEMCG
 319/*
 320 * A task is exiting.   If it owned this mm, find a new owner for the mm.
 321 */
 322void mm_update_next_owner(struct mm_struct *mm)
 323{
 324        struct task_struct *c, *g, *p = current;
 325
 326retry:
 327        /*
 328         * If the exiting or execing task is not the owner, it's
 329         * someone else's problem.
 330         */
 331        if (mm->owner != p)
 332                return;
 333        /*
 334         * The current owner is exiting/execing and there are no other
 335         * candidates.  Do not leave the mm pointing to a possibly
 336         * freed task structure.
 337         */
 338        if (atomic_read(&mm->mm_users) <= 1) {
 339                mm->owner = NULL;
 340                return;
 341        }
 342
 343        read_lock(&tasklist_lock);
 344        /*
 345         * Search in the children
 346         */
 347        list_for_each_entry(c, &p->children, sibling) {
 348                if (c->mm == mm)
 349                        goto assign_new_owner;
 350        }
 351
 352        /*
 353         * Search in the siblings
 354         */
 355        list_for_each_entry(c, &p->real_parent->children, sibling) {
 356                if (c->mm == mm)
 357                        goto assign_new_owner;
 358        }
 359
 360        /*
 361         * Search through everything else, we should not get here often.
 362         */
 363        for_each_process(g) {
 364                if (g->flags & PF_KTHREAD)
 365                        continue;
 366                for_each_thread(g, c) {
 367                        if (c->mm == mm)
 368                                goto assign_new_owner;
 369                        if (c->mm)
 370                                break;
 371                }
 372        }
 373        read_unlock(&tasklist_lock);
 374        /*
 375         * We found no owner yet mm_users > 1: this implies that we are
 376         * most likely racing with swapoff (try_to_unuse()) or /proc or
 377         * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
 378         */
 379        mm->owner = NULL;
 380        return;
 381
 382assign_new_owner:
 383        BUG_ON(c == p);
 384        get_task_struct(c);
 385        /*
 386         * The task_lock protects c->mm from changing.
 387         * We always want mm->owner->mm == mm
 388         */
 389        task_lock(c);
 390        /*
 391         * Delay read_unlock() till we have the task_lock()
 392         * to ensure that c does not slip away underneath us
 393         */
 394        read_unlock(&tasklist_lock);
 395        if (c->mm != mm) {
 396                task_unlock(c);
 397                put_task_struct(c);
 398                goto retry;
 399        }
 400        mm->owner = c;
 401        task_unlock(c);
 402        put_task_struct(c);
 403}
 404#endif /* CONFIG_MEMCG */
 405
 406/*
 407 * Turn us into a lazy TLB process if we
 408 * aren't already..
 409 */
 410static void exit_mm(struct task_struct *tsk)
 411{
 412        struct mm_struct *mm = tsk->mm;
 413        struct core_state *core_state;
 414
 415        mm_release(tsk, mm);
 416        if (!mm)
 417                return;
 418        sync_mm_rss(mm);
 419        /*
 420         * Serialize with any possible pending coredump.
 421         * We must hold mmap_sem around checking core_state
 422         * and clearing tsk->mm.  The core-inducing thread
 423         * will increment ->nr_threads for each thread in the
 424         * group with ->mm != NULL.
 425         */
 426        down_read(&mm->mmap_sem);
 427        core_state = mm->core_state;
 428        if (core_state) {
 429                struct core_thread self;
 430
 431                up_read(&mm->mmap_sem);
 432
 433                self.task = tsk;
 434                self.next = xchg(&core_state->dumper.next, &self);
 435                /*
 436                 * Implies mb(), the result of xchg() must be visible
 437                 * to core_state->dumper.
 438                 */
 439                if (atomic_dec_and_test(&core_state->nr_threads))
 440                        complete(&core_state->startup);
 441
 442                for (;;) {
 443                        set_task_state(tsk, TASK_UNINTERRUPTIBLE);
 444                        if (!self.task) /* see coredump_finish() */
 445                                break;
 446                        freezable_schedule();
 447                }
 448                __set_task_state(tsk, TASK_RUNNING);
 449                down_read(&mm->mmap_sem);
 450        }
 451        atomic_inc(&mm->mm_count);
 452        BUG_ON(mm != tsk->active_mm);
 453        /* more a memory barrier than a real lock */
 454        task_lock(tsk);
 455        tsk->mm = NULL;
 456        up_read(&mm->mmap_sem);
 457        enter_lazy_tlb(mm, current);
 458        task_unlock(tsk);
 459        mm_update_next_owner(mm);
 460        mmput(mm);
 461        clear_thread_flag(TIF_MEMDIE);
 462}
 463
 464/*
 465 * When we die, we re-parent all our children, and try to:
 466 * 1. give them to another thread in our thread group, if such a member exists
 467 * 2. give it to the first ancestor process which prctl'd itself as a
 468 *    child_subreaper for its children (like a service manager)
 469 * 3. give it to the init process (PID 1) in our pid namespace
 470 */
 471static struct task_struct *find_new_reaper(struct task_struct *father)
 472        __releases(&tasklist_lock)
 473        __acquires(&tasklist_lock)
 474{
 475        struct pid_namespace *pid_ns = task_active_pid_ns(father);
 476        struct task_struct *thread;
 477
 478        thread = father;
 479        while_each_thread(father, thread) {
 480                if (thread->flags & PF_EXITING)
 481                        continue;
 482                if (unlikely(pid_ns->child_reaper == father))
 483                        pid_ns->child_reaper = thread;
 484                return thread;
 485        }
 486
 487        if (unlikely(pid_ns->child_reaper == father)) {
 488                write_unlock_irq(&tasklist_lock);
 489                if (unlikely(pid_ns == &init_pid_ns)) {
 490                        panic("Attempted to kill init! exitcode=0x%08x\n",
 491                                father->signal->group_exit_code ?:
 492                                        father->exit_code);
 493                }
 494
 495                zap_pid_ns_processes(pid_ns);
 496                write_lock_irq(&tasklist_lock);
 497        } else if (father->signal->has_child_subreaper) {
 498                struct task_struct *reaper;
 499
 500                /*
 501                 * Find the first ancestor marked as child_subreaper.
 502                 * Note that the code below checks same_thread_group(reaper,
 503                 * pid_ns->child_reaper).  This is what we need to DTRT in a
 504                 * PID namespace. However we still need the check above, see
 505                 * http://marc.info/?l=linux-kernel&m=131385460420380
 506                 */
 507                for (reaper = father->real_parent;
 508                     reaper != &init_task;
 509                     reaper = reaper->real_parent) {
 510                        if (same_thread_group(reaper, pid_ns->child_reaper))
 511                                break;
 512                        if (!reaper->signal->is_child_subreaper)
 513                                continue;
 514                        thread = reaper;
 515                        do {
 516                                if (!(thread->flags & PF_EXITING))
 517                                        return reaper;
 518                        } while_each_thread(reaper, thread);
 519                }
 520        }
 521
 522        return pid_ns->child_reaper;
 523}
 524
 525/*
 526* Any that need to be release_task'd are put on the @dead list.
 527 */
 528static void reparent_leader(struct task_struct *father, struct task_struct *p,
 529                                struct list_head *dead)
 530{
 531        list_move_tail(&p->sibling, &p->real_parent->children);
 532
 533        if (p->exit_state == EXIT_DEAD)
 534                return;
 535        /*
 536         * If this is a threaded reparent there is no need to
 537         * notify anyone anything has happened.
 538         */
 539        if (same_thread_group(p->real_parent, father))
 540                return;
 541
 542        /* We don't want people slaying init. */
 543        p->exit_signal = SIGCHLD;
 544
 545        /* If it has exited notify the new parent about this child's death. */
 546        if (!p->ptrace &&
 547            p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
 548                if (do_notify_parent(p, p->exit_signal)) {
 549                        p->exit_state = EXIT_DEAD;
 550                        list_move_tail(&p->sibling, dead);
 551                }
 552        }
 553
 554        kill_orphaned_pgrp(p, father);
 555}
 556
 557static void forget_original_parent(struct task_struct *father)
 558{
 559        struct task_struct *p, *n, *reaper;
 560        LIST_HEAD(dead_children);
 561
 562        write_lock_irq(&tasklist_lock);
 563        /*
 564         * Note that exit_ptrace() and find_new_reaper() might
 565         * drop tasklist_lock and reacquire it.
 566         */
 567        exit_ptrace(father);
 568        reaper = find_new_reaper(father);
 569
 570        list_for_each_entry_safe(p, n, &father->children, sibling) {
 571                struct task_struct *t = p;
 572
 573                do {
 574                        t->real_parent = reaper;
 575                        if (t->parent == father) {
 576                                BUG_ON(t->ptrace);
 577                                t->parent = t->real_parent;
 578                        }
 579                        if (t->pdeath_signal)
 580                                group_send_sig_info(t->pdeath_signal,
 581                                                    SEND_SIG_NOINFO, t);
 582                } while_each_thread(p, t);
 583                reparent_leader(father, p, &dead_children);
 584        }
 585        write_unlock_irq(&tasklist_lock);
 586
 587        BUG_ON(!list_empty(&father->children));
 588
 589        list_for_each_entry_safe(p, n, &dead_children, sibling) {
 590                list_del_init(&p->sibling);
 591                release_task(p);
 592        }
 593}
 594
 595/*
 596 * Send signals to all our closest relatives so that they know
 597 * to properly mourn us..
 598 */
 599static void exit_notify(struct task_struct *tsk, int group_dead)
 600{
 601        bool autoreap;
 602
 603        /*
 604         * This does two things:
 605         *
 606         * A.  Make init inherit all the child processes
 607         * B.  Check to see if any process groups have become orphaned
 608         *      as a result of our exiting, and if they have any stopped
 609         *      jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
 610         */
 611        forget_original_parent(tsk);
 612
 613        write_lock_irq(&tasklist_lock);
 614        if (group_dead)
 615                kill_orphaned_pgrp(tsk->group_leader, NULL);
 616
 617        if (unlikely(tsk->ptrace)) {
 618                int sig = thread_group_leader(tsk) &&
 619                                thread_group_empty(tsk) &&
 620                                !ptrace_reparented(tsk) ?
 621                        tsk->exit_signal : SIGCHLD;
 622                autoreap = do_notify_parent(tsk, sig);
 623        } else if (thread_group_leader(tsk)) {
 624                autoreap = thread_group_empty(tsk) &&
 625                        do_notify_parent(tsk, tsk->exit_signal);
 626        } else {
 627                autoreap = true;
 628        }
 629
 630        tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
 631
 632        /* mt-exec, de_thread() is waiting for group leader */
 633        if (unlikely(tsk->signal->notify_count < 0))
 634                wake_up_process(tsk->signal->group_exit_task);
 635        write_unlock_irq(&tasklist_lock);
 636
 637        /* If the process is dead, release it - nobody will wait for it */
 638        if (autoreap)
 639                release_task(tsk);
 640}
 641
 642#ifdef CONFIG_DEBUG_STACK_USAGE
 643static void check_stack_usage(void)
 644{
 645        static DEFINE_SPINLOCK(low_water_lock);
 646        static int lowest_to_date = THREAD_SIZE;
 647        unsigned long free;
 648
 649        free = stack_not_used(current);
 650
 651        if (free >= lowest_to_date)
 652                return;
 653
 654        spin_lock(&low_water_lock);
 655        if (free < lowest_to_date) {
 656                pr_warn("%s (%d) used greatest stack depth: %lu bytes left\n",
 657                        current->comm, task_pid_nr(current), free);
 658                lowest_to_date = free;
 659        }
 660        spin_unlock(&low_water_lock);
 661}
 662#else
 663static inline void check_stack_usage(void) {}
 664#endif
 665
 666void do_exit(long code)
 667{
 668        struct task_struct *tsk = current;
 669        int group_dead;
 670
 671        profile_task_exit(tsk);
 672
 673        WARN_ON(blk_needs_flush_plug(tsk));
 674
 675        if (unlikely(in_interrupt()))
 676                panic("Aiee, killing interrupt handler!");
 677        if (unlikely(!tsk->pid))
 678                panic("Attempted to kill the idle task!");
 679
 680        /*
 681         * If do_exit is called because this processes oopsed, it's possible
 682         * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
 683         * continuing. Amongst other possible reasons, this is to prevent
 684         * mm_release()->clear_child_tid() from writing to a user-controlled
 685         * kernel address.
 686         */
 687        set_fs(USER_DS);
 688
 689        ptrace_event(PTRACE_EVENT_EXIT, code);
 690
 691        validate_creds_for_do_exit(tsk);
 692
 693        /*
 694         * We're taking recursive faults here in do_exit. Safest is to just
 695         * leave this task alone and wait for reboot.
 696         */
 697        if (unlikely(tsk->flags & PF_EXITING)) {
 698                pr_alert("Fixing recursive fault but reboot is needed!\n");
 699                /*
 700                 * We can do this unlocked here. The futex code uses
 701                 * this flag just to verify whether the pi state
 702                 * cleanup has been done or not. In the worst case it
 703                 * loops once more. We pretend that the cleanup was
 704                 * done as there is no way to return. Either the
 705                 * OWNER_DIED bit is set by now or we push the blocked
 706                 * task into the wait for ever nirwana as well.
 707                 */
 708                tsk->flags |= PF_EXITPIDONE;
 709                set_current_state(TASK_UNINTERRUPTIBLE);
 710                schedule();
 711        }
 712
 713        exit_signals(tsk);  /* sets PF_EXITING */
 714        /*
 715         * tsk->flags are checked in the futex code to protect against
 716         * an exiting task cleaning up the robust pi futexes.
 717         */
 718        smp_mb();
 719        raw_spin_unlock_wait(&tsk->pi_lock);
 720
 721        if (unlikely(in_atomic()))
 722                pr_info("note: %s[%d] exited with preempt_count %d\n",
 723                        current->comm, task_pid_nr(current),
 724                        preempt_count());
 725
 726        acct_update_integrals(tsk);
 727        /* sync mm's RSS info before statistics gathering */
 728        if (tsk->mm)
 729                sync_mm_rss(tsk->mm);
 730        group_dead = atomic_dec_and_test(&tsk->signal->live);
 731        if (group_dead) {
 732                hrtimer_cancel(&tsk->signal->real_timer);
 733                exit_itimers(tsk->signal);
 734                if (tsk->mm)
 735                        setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
 736        }
 737        acct_collect(code, group_dead);
 738        if (group_dead)
 739                tty_audit_exit();
 740        audit_free(tsk);
 741
 742        tsk->exit_code = code;
 743        taskstats_exit(tsk, group_dead);
 744
 745        exit_mm(tsk);
 746
 747        if (group_dead)
 748                acct_process();
 749        trace_sched_process_exit(tsk);
 750
 751        exit_sem(tsk);
 752        exit_shm(tsk);
 753        exit_files(tsk);
 754        exit_fs(tsk);
 755        if (group_dead)
 756                disassociate_ctty(1);
 757        exit_task_namespaces(tsk);
 758        exit_task_work(tsk);
 759        exit_thread();
 760
 761        /*
 762         * Flush inherited counters to the parent - before the parent
 763         * gets woken up by child-exit notifications.
 764         *
 765         * because of cgroup mode, must be called before cgroup_exit()
 766         */
 767        perf_event_exit_task(tsk);
 768
 769        cgroup_exit(tsk);
 770
 771        module_put(task_thread_info(tsk)->exec_domain->module);
 772
 773        /*
 774         * FIXME: do that only when needed, using sched_exit tracepoint
 775         */
 776        flush_ptrace_hw_breakpoint(tsk);
 777
 778        exit_notify(tsk, group_dead);
 779        proc_exit_connector(tsk);
 780#ifdef CONFIG_NUMA
 781        task_lock(tsk);
 782        mpol_put(tsk->mempolicy);
 783        tsk->mempolicy = NULL;
 784        task_unlock(tsk);
 785#endif
 786#ifdef CONFIG_FUTEX
 787        if (unlikely(current->pi_state_cache))
 788                kfree(current->pi_state_cache);
 789#endif
 790        /*
 791         * Make sure we are holding no locks:
 792         */
 793        debug_check_no_locks_held();
 794        /*
 795         * We can do this unlocked here. The futex code uses this flag
 796         * just to verify whether the pi state cleanup has been done
 797         * or not. In the worst case it loops once more.
 798         */
 799        tsk->flags |= PF_EXITPIDONE;
 800
 801        if (tsk->io_context)
 802                exit_io_context(tsk);
 803
 804        if (tsk->splice_pipe)
 805                free_pipe_info(tsk->splice_pipe);
 806
 807        if (tsk->task_frag.page)
 808                put_page(tsk->task_frag.page);
 809
 810        validate_creds_for_do_exit(tsk);
 811
 812        check_stack_usage();
 813        preempt_disable();
 814        if (tsk->nr_dirtied)
 815                __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
 816        exit_rcu();
 817
 818        /*
 819         * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
 820         * when the following two conditions become true.
 821         *   - There is race condition of mmap_sem (It is acquired by
 822         *     exit_mm()), and
 823         *   - SMI occurs before setting TASK_RUNINNG.
 824         *     (or hypervisor of virtual machine switches to other guest)
 825         *  As a result, we may become TASK_RUNNING after becoming TASK_DEAD
 826         *
 827         * To avoid it, we have to wait for releasing tsk->pi_lock which
 828         * is held by try_to_wake_up()
 829         */
 830        smp_mb();
 831        raw_spin_unlock_wait(&tsk->pi_lock);
 832
 833        /* causes final put_task_struct in finish_task_switch(). */
 834        tsk->state = TASK_DEAD;
 835        tsk->flags |= PF_NOFREEZE;      /* tell freezer to ignore us */
 836        schedule();
 837        BUG();
 838        /* Avoid "noreturn function does return".  */
 839        for (;;)
 840                cpu_relax();    /* For when BUG is null */
 841}
 842EXPORT_SYMBOL_GPL(do_exit);
 843
 844void complete_and_exit(struct completion *comp, long code)
 845{
 846        if (comp)
 847                complete(comp);
 848
 849        do_exit(code);
 850}
 851EXPORT_SYMBOL(complete_and_exit);
 852
 853SYSCALL_DEFINE1(exit, int, error_code)
 854{
 855        do_exit((error_code&0xff)<<8);
 856}
 857
 858/*
 859 * Take down every thread in the group.  This is called by fatal signals
 860 * as well as by sys_exit_group (below).
 861 */
 862void
 863do_group_exit(int exit_code)
 864{
 865        struct signal_struct *sig = current->signal;
 866
 867        BUG_ON(exit_code & 0x80); /* core dumps don't get here */
 868
 869        if (signal_group_exit(sig))
 870                exit_code = sig->group_exit_code;
 871        else if (!thread_group_empty(current)) {
 872                struct sighand_struct *const sighand = current->sighand;
 873
 874                spin_lock_irq(&sighand->siglock);
 875                if (signal_group_exit(sig))
 876                        /* Another thread got here before we took the lock.  */
 877                        exit_code = sig->group_exit_code;
 878                else {
 879                        sig->group_exit_code = exit_code;
 880                        sig->flags = SIGNAL_GROUP_EXIT;
 881                        zap_other_threads(current);
 882                }
 883                spin_unlock_irq(&sighand->siglock);
 884        }
 885
 886        do_exit(exit_code);
 887        /* NOTREACHED */
 888}
 889
 890/*
 891 * this kills every thread in the thread group. Note that any externally
 892 * wait4()-ing process will get the correct exit code - even if this
 893 * thread is not the thread group leader.
 894 */
 895SYSCALL_DEFINE1(exit_group, int, error_code)
 896{
 897        do_group_exit((error_code & 0xff) << 8);
 898        /* NOTREACHED */
 899        return 0;
 900}
 901
 902struct wait_opts {
 903        enum pid_type           wo_type;
 904        int                     wo_flags;
 905        struct pid              *wo_pid;
 906
 907        struct siginfo __user   *wo_info;
 908        int __user              *wo_stat;
 909        struct rusage __user    *wo_rusage;
 910
 911        wait_queue_t            child_wait;
 912        int                     notask_error;
 913};
 914
 915static inline
 916struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
 917{
 918        if (type != PIDTYPE_PID)
 919                task = task->group_leader;
 920        return task->pids[type].pid;
 921}
 922
 923static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
 924{
 925        return  wo->wo_type == PIDTYPE_MAX ||
 926                task_pid_type(p, wo->wo_type) == wo->wo_pid;
 927}
 928
 929static int eligible_child(struct wait_opts *wo, struct task_struct *p)
 930{
 931        if (!eligible_pid(wo, p))
 932                return 0;
 933        /* Wait for all children (clone and not) if __WALL is set;
 934         * otherwise, wait for clone children *only* if __WCLONE is
 935         * set; otherwise, wait for non-clone children *only*.  (Note:
 936         * A "clone" child here is one that reports to its parent
 937         * using a signal other than SIGCHLD.) */
 938        if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
 939            && !(wo->wo_flags & __WALL))
 940                return 0;
 941
 942        return 1;
 943}
 944
 945static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
 946                                pid_t pid, uid_t uid, int why, int status)
 947{
 948        struct siginfo __user *infop;
 949        int retval = wo->wo_rusage
 950                ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
 951
 952        put_task_struct(p);
 953        infop = wo->wo_info;
 954        if (infop) {
 955                if (!retval)
 956                        retval = put_user(SIGCHLD, &infop->si_signo);
 957                if (!retval)
 958                        retval = put_user(0, &infop->si_errno);
 959                if (!retval)
 960                        retval = put_user((short)why, &infop->si_code);
 961                if (!retval)
 962                        retval = put_user(pid, &infop->si_pid);
 963                if (!retval)
 964                        retval = put_user(uid, &infop->si_uid);
 965                if (!retval)
 966                        retval = put_user(status, &infop->si_status);
 967        }
 968        if (!retval)
 969                retval = pid;
 970        return retval;
 971}
 972
 973/*
 974 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
 975 * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
 976 * the lock and this task is uninteresting.  If we return nonzero, we have
 977 * released the lock and the system call should return.
 978 */
 979static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
 980{
 981        unsigned long state;
 982        int retval, status, traced;
 983        pid_t pid = task_pid_vnr(p);
 984        uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
 985        struct siginfo __user *infop;
 986
 987        if (!likely(wo->wo_flags & WEXITED))
 988                return 0;
 989
 990        if (unlikely(wo->wo_flags & WNOWAIT)) {
 991                int exit_code = p->exit_code;
 992                int why;
 993
 994                get_task_struct(p);
 995                read_unlock(&tasklist_lock);
 996                if ((exit_code & 0x7f) == 0) {
 997                        why = CLD_EXITED;
 998                        status = exit_code >> 8;
 999                } else {
1000                        why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1001                        status = exit_code & 0x7f;
1002                }
1003                return wait_noreap_copyout(wo, p, pid, uid, why, status);
1004        }
1005
1006        traced = ptrace_reparented(p);
1007        /*
1008         * Move the task's state to DEAD/TRACE, only one thread can do this.
1009         */
1010        state = traced && thread_group_leader(p) ? EXIT_TRACE : EXIT_DEAD;
1011        if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1012                return 0;
1013        /*
1014         * It can be ptraced but not reparented, check
1015         * thread_group_leader() to filter out sub-threads.
1016         */
1017        if (likely(!traced) && thread_group_leader(p)) {
1018                struct signal_struct *psig;
1019                struct signal_struct *sig;
1020                unsigned long maxrss;
1021                cputime_t tgutime, tgstime;
1022
1023                /*
1024                 * The resource counters for the group leader are in its
1025                 * own task_struct.  Those for dead threads in the group
1026                 * are in its signal_struct, as are those for the child
1027                 * processes it has previously reaped.  All these
1028                 * accumulate in the parent's signal_struct c* fields.
1029                 *
1030                 * We don't bother to take a lock here to protect these
1031                 * p->signal fields, because they are only touched by
1032                 * __exit_signal, which runs with tasklist_lock
1033                 * write-locked anyway, and so is excluded here.  We do
1034                 * need to protect the access to parent->signal fields,
1035                 * as other threads in the parent group can be right
1036                 * here reaping other children at the same time.
1037                 *
1038                 * We use thread_group_cputime_adjusted() to get times for
1039                 * the thread group, which consolidates times for all threads
1040                 * in the group including the group leader.
1041                 */
1042                thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1043                spin_lock_irq(&p->real_parent->sighand->siglock);
1044                psig = p->real_parent->signal;
1045                sig = p->signal;
1046                psig->cutime += tgutime + sig->cutime;
1047                psig->cstime += tgstime + sig->cstime;
1048                psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1049                psig->cmin_flt +=
1050                        p->min_flt + sig->min_flt + sig->cmin_flt;
1051                psig->cmaj_flt +=
1052                        p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1053                psig->cnvcsw +=
1054                        p->nvcsw + sig->nvcsw + sig->cnvcsw;
1055                psig->cnivcsw +=
1056                        p->nivcsw + sig->nivcsw + sig->cnivcsw;
1057                psig->cinblock +=
1058                        task_io_get_inblock(p) +
1059                        sig->inblock + sig->cinblock;
1060                psig->coublock +=
1061                        task_io_get_oublock(p) +
1062                        sig->oublock + sig->coublock;
1063                maxrss = max(sig->maxrss, sig->cmaxrss);
1064                if (psig->cmaxrss < maxrss)
1065                        psig->cmaxrss = maxrss;
1066                task_io_accounting_add(&psig->ioac, &p->ioac);
1067                task_io_accounting_add(&psig->ioac, &sig->ioac);
1068                spin_unlock_irq(&p->real_parent->sighand->siglock);
1069        }
1070
1071        /*
1072         * Now we are sure this task is interesting, and no other
1073         * thread can reap it because we its state == DEAD/TRACE.
1074         */
1075        read_unlock(&tasklist_lock);
1076
1077        retval = wo->wo_rusage
1078                ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1079        status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1080                ? p->signal->group_exit_code : p->exit_code;
1081        if (!retval && wo->wo_stat)
1082                retval = put_user(status, wo->wo_stat);
1083
1084        infop = wo->wo_info;
1085        if (!retval && infop)
1086                retval = put_user(SIGCHLD, &infop->si_signo);
1087        if (!retval && infop)
1088                retval = put_user(0, &infop->si_errno);
1089        if (!retval && infop) {
1090                int why;
1091
1092                if ((status & 0x7f) == 0) {
1093                        why = CLD_EXITED;
1094                        status >>= 8;
1095                } else {
1096                        why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1097                        status &= 0x7f;
1098                }
1099                retval = put_user((short)why, &infop->si_code);
1100                if (!retval)
1101                        retval = put_user(status, &infop->si_status);
1102        }
1103        if (!retval && infop)
1104                retval = put_user(pid, &infop->si_pid);
1105        if (!retval && infop)
1106                retval = put_user(uid, &infop->si_uid);
1107        if (!retval)
1108                retval = pid;
1109
1110        if (state == EXIT_TRACE) {
1111                write_lock_irq(&tasklist_lock);
1112                /* We dropped tasklist, ptracer could die and untrace */
1113                ptrace_unlink(p);
1114
1115                /* If parent wants a zombie, don't release it now */
1116                state = EXIT_ZOMBIE;
1117                if (do_notify_parent(p, p->exit_signal))
1118                        state = EXIT_DEAD;
1119                p->exit_state = state;
1120                write_unlock_irq(&tasklist_lock);
1121        }
1122        if (state == EXIT_DEAD)
1123                release_task(p);
1124
1125        return retval;
1126}
1127
1128static int *task_stopped_code(struct task_struct *p, bool ptrace)
1129{
1130        if (ptrace) {
1131                if (task_is_stopped_or_traced(p) &&
1132                    !(p->jobctl & JOBCTL_LISTENING))
1133                        return &p->exit_code;
1134        } else {
1135                if (p->signal->flags & SIGNAL_STOP_STOPPED)
1136                        return &p->signal->group_exit_code;
1137        }
1138        return NULL;
1139}
1140
1141/**
1142 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1143 * @wo: wait options
1144 * @ptrace: is the wait for ptrace
1145 * @p: task to wait for
1146 *
1147 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1148 *
1149 * CONTEXT:
1150 * read_lock(&tasklist_lock), which is released if return value is
1151 * non-zero.  Also, grabs and releases @p->sighand->siglock.
1152 *
1153 * RETURNS:
1154 * 0 if wait condition didn't exist and search for other wait conditions
1155 * should continue.  Non-zero return, -errno on failure and @p's pid on
1156 * success, implies that tasklist_lock is released and wait condition
1157 * search should terminate.
1158 */
1159static int wait_task_stopped(struct wait_opts *wo,
1160                                int ptrace, struct task_struct *p)
1161{
1162        struct siginfo __user *infop;
1163        int retval, exit_code, *p_code, why;
1164        uid_t uid = 0; /* unneeded, required by compiler */
1165        pid_t pid;
1166
1167        /*
1168         * Traditionally we see ptrace'd stopped tasks regardless of options.
1169         */
1170        if (!ptrace && !(wo->wo_flags & WUNTRACED))
1171                return 0;
1172
1173        if (!task_stopped_code(p, ptrace))
1174                return 0;
1175
1176        exit_code = 0;
1177        spin_lock_irq(&p->sighand->siglock);
1178
1179        p_code = task_stopped_code(p, ptrace);
1180        if (unlikely(!p_code))
1181                goto unlock_sig;
1182
1183        exit_code = *p_code;
1184        if (!exit_code)
1185                goto unlock_sig;
1186
1187        if (!unlikely(wo->wo_flags & WNOWAIT))
1188                *p_code = 0;
1189
1190        uid = from_kuid_munged(current_user_ns(), task_uid(p));
1191unlock_sig:
1192        spin_unlock_irq(&p->sighand->siglock);
1193        if (!exit_code)
1194                return 0;
1195
1196        /*
1197         * Now we are pretty sure this task is interesting.
1198         * Make sure it doesn't get reaped out from under us while we
1199         * give up the lock and then examine it below.  We don't want to
1200         * keep holding onto the tasklist_lock while we call getrusage and
1201         * possibly take page faults for user memory.
1202         */
1203        get_task_struct(p);
1204        pid = task_pid_vnr(p);
1205        why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1206        read_unlock(&tasklist_lock);
1207
1208        if (unlikely(wo->wo_flags & WNOWAIT))
1209                return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1210
1211        retval = wo->wo_rusage
1212                ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1213        if (!retval && wo->wo_stat)
1214                retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1215
1216        infop = wo->wo_info;
1217        if (!retval && infop)
1218                retval = put_user(SIGCHLD, &infop->si_signo);
1219        if (!retval && infop)
1220                retval = put_user(0, &infop->si_errno);
1221        if (!retval && infop)
1222                retval = put_user((short)why, &infop->si_code);
1223        if (!retval && infop)
1224                retval = put_user(exit_code, &infop->si_status);
1225        if (!retval && infop)
1226                retval = put_user(pid, &infop->si_pid);
1227        if (!retval && infop)
1228                retval = put_user(uid, &infop->si_uid);
1229        if (!retval)
1230                retval = pid;
1231        put_task_struct(p);
1232
1233        BUG_ON(!retval);
1234        return retval;
1235}
1236
1237/*
1238 * Handle do_wait work for one task in a live, non-stopped state.
1239 * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1240 * the lock and this task is uninteresting.  If we return nonzero, we have
1241 * released the lock and the system call should return.
1242 */
1243static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1244{
1245        int retval;
1246        pid_t pid;
1247        uid_t uid;
1248
1249        if (!unlikely(wo->wo_flags & WCONTINUED))
1250                return 0;
1251
1252        if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1253                return 0;
1254
1255        spin_lock_irq(&p->sighand->siglock);
1256        /* Re-check with the lock held.  */
1257        if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1258                spin_unlock_irq(&p->sighand->siglock);
1259                return 0;
1260        }
1261        if (!unlikely(wo->wo_flags & WNOWAIT))
1262                p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1263        uid = from_kuid_munged(current_user_ns(), task_uid(p));
1264        spin_unlock_irq(&p->sighand->siglock);
1265
1266        pid = task_pid_vnr(p);
1267        get_task_struct(p);
1268        read_unlock(&tasklist_lock);
1269
1270        if (!wo->wo_info) {
1271                retval = wo->wo_rusage
1272                        ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1273                put_task_struct(p);
1274                if (!retval && wo->wo_stat)
1275                        retval = put_user(0xffff, wo->wo_stat);
1276                if (!retval)
1277                        retval = pid;
1278        } else {
1279                retval = wait_noreap_copyout(wo, p, pid, uid,
1280                                             CLD_CONTINUED, SIGCONT);
1281                BUG_ON(retval == 0);
1282        }
1283
1284        return retval;
1285}
1286
1287/*
1288 * Consider @p for a wait by @parent.
1289 *
1290 * -ECHILD should be in ->notask_error before the first call.
1291 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1292 * Returns zero if the search for a child should continue;
1293 * then ->notask_error is 0 if @p is an eligible child,
1294 * or another error from security_task_wait(), or still -ECHILD.
1295 */
1296static int wait_consider_task(struct wait_opts *wo, int ptrace,
1297                                struct task_struct *p)
1298{
1299        int ret;
1300
1301        if (unlikely(p->exit_state == EXIT_DEAD))
1302                return 0;
1303
1304        ret = eligible_child(wo, p);
1305        if (!ret)
1306                return ret;
1307
1308        ret = security_task_wait(p);
1309        if (unlikely(ret < 0)) {
1310                /*
1311                 * If we have not yet seen any eligible child,
1312                 * then let this error code replace -ECHILD.
1313                 * A permission error will give the user a clue
1314                 * to look for security policy problems, rather
1315                 * than for mysterious wait bugs.
1316                 */
1317                if (wo->notask_error)
1318                        wo->notask_error = ret;
1319                return 0;
1320        }
1321
1322        if (unlikely(p->exit_state == EXIT_TRACE)) {
1323                /*
1324                 * ptrace == 0 means we are the natural parent. In this case
1325                 * we should clear notask_error, debugger will notify us.
1326                 */
1327                if (likely(!ptrace))
1328                        wo->notask_error = 0;
1329                return 0;
1330        }
1331
1332        if (likely(!ptrace) && unlikely(p->ptrace)) {
1333                /*
1334                 * If it is traced by its real parent's group, just pretend
1335                 * the caller is ptrace_do_wait() and reap this child if it
1336                 * is zombie.
1337                 *
1338                 * This also hides group stop state from real parent; otherwise
1339                 * a single stop can be reported twice as group and ptrace stop.
1340                 * If a ptracer wants to distinguish these two events for its
1341                 * own children it should create a separate process which takes
1342                 * the role of real parent.
1343                 */
1344                if (!ptrace_reparented(p))
1345                        ptrace = 1;
1346        }
1347
1348        /* slay zombie? */
1349        if (p->exit_state == EXIT_ZOMBIE) {
1350                /* we don't reap group leaders with subthreads */
1351                if (!delay_group_leader(p)) {
1352                        /*
1353                         * A zombie ptracee is only visible to its ptracer.
1354                         * Notification and reaping will be cascaded to the
1355                         * real parent when the ptracer detaches.
1356                         */
1357                        if (unlikely(ptrace) || likely(!p->ptrace))
1358                                return wait_task_zombie(wo, p);
1359                }
1360
1361                /*
1362                 * Allow access to stopped/continued state via zombie by
1363                 * falling through.  Clearing of notask_error is complex.
1364                 *
1365                 * When !@ptrace:
1366                 *
1367                 * If WEXITED is set, notask_error should naturally be
1368                 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1369                 * so, if there are live subthreads, there are events to
1370                 * wait for.  If all subthreads are dead, it's still safe
1371                 * to clear - this function will be called again in finite
1372                 * amount time once all the subthreads are released and
1373                 * will then return without clearing.
1374                 *
1375                 * When @ptrace:
1376                 *
1377                 * Stopped state is per-task and thus can't change once the
1378                 * target task dies.  Only continued and exited can happen.
1379                 * Clear notask_error if WCONTINUED | WEXITED.
1380                 */
1381                if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1382                        wo->notask_error = 0;
1383        } else {
1384                /*
1385                 * @p is alive and it's gonna stop, continue or exit, so
1386                 * there always is something to wait for.
1387                 */
1388                wo->notask_error = 0;
1389        }
1390
1391        /*
1392         * Wait for stopped.  Depending on @ptrace, different stopped state
1393         * is used and the two don't interact with each other.
1394         */
1395        ret = wait_task_stopped(wo, ptrace, p);
1396        if (ret)
1397                return ret;
1398
1399        /*
1400         * Wait for continued.  There's only one continued state and the
1401         * ptracer can consume it which can confuse the real parent.  Don't
1402         * use WCONTINUED from ptracer.  You don't need or want it.
1403         */
1404        return wait_task_continued(wo, p);
1405}
1406
1407/*
1408 * Do the work of do_wait() for one thread in the group, @tsk.
1409 *
1410 * -ECHILD should be in ->notask_error before the first call.
1411 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1412 * Returns zero if the search for a child should continue; then
1413 * ->notask_error is 0 if there were any eligible children,
1414 * or another error from security_task_wait(), or still -ECHILD.
1415 */
1416static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1417{
1418        struct task_struct *p;
1419
1420        list_for_each_entry(p, &tsk->children, sibling) {
1421                int ret = wait_consider_task(wo, 0, p);
1422
1423                if (ret)
1424                        return ret;
1425        }
1426
1427        return 0;
1428}
1429
1430static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1431{
1432        struct task_struct *p;
1433
1434        list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1435                int ret = wait_consider_task(wo, 1, p);
1436
1437                if (ret)
1438                        return ret;
1439        }
1440
1441        return 0;
1442}
1443
1444static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1445                                int sync, void *key)
1446{
1447        struct wait_opts *wo = container_of(wait, struct wait_opts,
1448                                                child_wait);
1449        struct task_struct *p = key;
1450
1451        if (!eligible_pid(wo, p))
1452                return 0;
1453
1454        if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1455                return 0;
1456
1457        return default_wake_function(wait, mode, sync, key);
1458}
1459
1460void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1461{
1462        __wake_up_sync_key(&parent->signal->wait_chldexit,
1463                                TASK_INTERRUPTIBLE, 1, p);
1464}
1465
1466static long do_wait(struct wait_opts *wo)
1467{
1468        struct task_struct *tsk;
1469        int retval;
1470
1471        trace_sched_process_wait(wo->wo_pid);
1472
1473        init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1474        wo->child_wait.private = current;
1475        add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1476repeat:
1477        /*
1478         * If there is nothing that can match our critiera just get out.
1479         * We will clear ->notask_error to zero if we see any child that
1480         * might later match our criteria, even if we are not able to reap
1481         * it yet.
1482         */
1483        wo->notask_error = -ECHILD;
1484        if ((wo->wo_type < PIDTYPE_MAX) &&
1485           (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1486                goto notask;
1487
1488        set_current_state(TASK_INTERRUPTIBLE);
1489        read_lock(&tasklist_lock);
1490        tsk = current;
1491        do {
1492                retval = do_wait_thread(wo, tsk);
1493                if (retval)
1494                        goto end;
1495
1496                retval = ptrace_do_wait(wo, tsk);
1497                if (retval)
1498                        goto end;
1499
1500                if (wo->wo_flags & __WNOTHREAD)
1501                        break;
1502        } while_each_thread(current, tsk);
1503        read_unlock(&tasklist_lock);
1504
1505notask:
1506        retval = wo->notask_error;
1507        if (!retval && !(wo->wo_flags & WNOHANG)) {
1508                retval = -ERESTARTSYS;
1509                if (!signal_pending(current)) {
1510                        schedule();
1511                        goto repeat;
1512                }
1513        }
1514end:
1515        __set_current_state(TASK_RUNNING);
1516        remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1517        return retval;
1518}
1519
1520SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1521                infop, int, options, struct rusage __user *, ru)
1522{
1523        struct wait_opts wo;
1524        struct pid *pid = NULL;
1525        enum pid_type type;
1526        long ret;
1527
1528        if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1529                return -EINVAL;
1530        if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1531                return -EINVAL;
1532
1533        switch (which) {
1534        case P_ALL:
1535                type = PIDTYPE_MAX;
1536                break;
1537        case P_PID:
1538                type = PIDTYPE_PID;
1539                if (upid <= 0)
1540                        return -EINVAL;
1541                break;
1542        case P_PGID:
1543                type = PIDTYPE_PGID;
1544                if (upid <= 0)
1545                        return -EINVAL;
1546                break;
1547        default:
1548                return -EINVAL;
1549        }
1550
1551        if (type < PIDTYPE_MAX)
1552                pid = find_get_pid(upid);
1553
1554        wo.wo_type      = type;
1555        wo.wo_pid       = pid;
1556        wo.wo_flags     = options;
1557        wo.wo_info      = infop;
1558        wo.wo_stat      = NULL;
1559        wo.wo_rusage    = ru;
1560        ret = do_wait(&wo);
1561
1562        if (ret > 0) {
1563                ret = 0;
1564        } else if (infop) {
1565                /*
1566                 * For a WNOHANG return, clear out all the fields
1567                 * we would set so the user can easily tell the
1568                 * difference.
1569                 */
1570                if (!ret)
1571                        ret = put_user(0, &infop->si_signo);
1572                if (!ret)
1573                        ret = put_user(0, &infop->si_errno);
1574                if (!ret)
1575                        ret = put_user(0, &infop->si_code);
1576                if (!ret)
1577                        ret = put_user(0, &infop->si_pid);
1578                if (!ret)
1579                        ret = put_user(0, &infop->si_uid);
1580                if (!ret)
1581                        ret = put_user(0, &infop->si_status);
1582        }
1583
1584        put_pid(pid);
1585        return ret;
1586}
1587
1588SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1589                int, options, struct rusage __user *, ru)
1590{
1591        struct wait_opts wo;
1592        struct pid *pid = NULL;
1593        enum pid_type type;
1594        long ret;
1595
1596        if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1597                        __WNOTHREAD|__WCLONE|__WALL))
1598                return -EINVAL;
1599
1600        if (upid == -1)
1601                type = PIDTYPE_MAX;
1602        else if (upid < 0) {
1603                type = PIDTYPE_PGID;
1604                pid = find_get_pid(-upid);
1605        } else if (upid == 0) {
1606                type = PIDTYPE_PGID;
1607                pid = get_task_pid(current, PIDTYPE_PGID);
1608        } else /* upid > 0 */ {
1609                type = PIDTYPE_PID;
1610                pid = find_get_pid(upid);
1611        }
1612
1613        wo.wo_type      = type;
1614        wo.wo_pid       = pid;
1615        wo.wo_flags     = options | WEXITED;
1616        wo.wo_info      = NULL;
1617        wo.wo_stat      = stat_addr;
1618        wo.wo_rusage    = ru;
1619        ret = do_wait(&wo);
1620        put_pid(pid);
1621
1622        return ret;
1623}
1624
1625#ifdef __ARCH_WANT_SYS_WAITPID
1626
1627/*
1628 * sys_waitpid() remains for compatibility. waitpid() should be
1629 * implemented by calling sys_wait4() from libc.a.
1630 */
1631SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1632{
1633        return sys_wait4(pid, stat_addr, options, NULL);
1634}
1635
1636#endif
1637