linux/kernel/locking/rtmutex.c
<<
>>
Prefs
   1/*
   2 * RT-Mutexes: simple blocking mutual exclusion locks with PI support
   3 *
   4 * started by Ingo Molnar and Thomas Gleixner.
   5 *
   6 *  Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
   7 *  Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
   8 *  Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
   9 *  Copyright (C) 2006 Esben Nielsen
  10 *
  11 *  See Documentation/rt-mutex-design.txt for details.
  12 */
  13#include <linux/spinlock.h>
  14#include <linux/export.h>
  15#include <linux/sched.h>
  16#include <linux/sched/rt.h>
  17#include <linux/sched/deadline.h>
  18#include <linux/timer.h>
  19
  20#include "rtmutex_common.h"
  21
  22/*
  23 * lock->owner state tracking:
  24 *
  25 * lock->owner holds the task_struct pointer of the owner. Bit 0
  26 * is used to keep track of the "lock has waiters" state.
  27 *
  28 * owner        bit0
  29 * NULL         0       lock is free (fast acquire possible)
  30 * NULL         1       lock is free and has waiters and the top waiter
  31 *                              is going to take the lock*
  32 * taskpointer  0       lock is held (fast release possible)
  33 * taskpointer  1       lock is held and has waiters**
  34 *
  35 * The fast atomic compare exchange based acquire and release is only
  36 * possible when bit 0 of lock->owner is 0.
  37 *
  38 * (*) It also can be a transitional state when grabbing the lock
  39 * with ->wait_lock is held. To prevent any fast path cmpxchg to the lock,
  40 * we need to set the bit0 before looking at the lock, and the owner may be
  41 * NULL in this small time, hence this can be a transitional state.
  42 *
  43 * (**) There is a small time when bit 0 is set but there are no
  44 * waiters. This can happen when grabbing the lock in the slow path.
  45 * To prevent a cmpxchg of the owner releasing the lock, we need to
  46 * set this bit before looking at the lock.
  47 */
  48
  49static void
  50rt_mutex_set_owner(struct rt_mutex *lock, struct task_struct *owner)
  51{
  52        unsigned long val = (unsigned long)owner;
  53
  54        if (rt_mutex_has_waiters(lock))
  55                val |= RT_MUTEX_HAS_WAITERS;
  56
  57        lock->owner = (struct task_struct *)val;
  58}
  59
  60static inline void clear_rt_mutex_waiters(struct rt_mutex *lock)
  61{
  62        lock->owner = (struct task_struct *)
  63                        ((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS);
  64}
  65
  66static void fixup_rt_mutex_waiters(struct rt_mutex *lock)
  67{
  68        if (!rt_mutex_has_waiters(lock))
  69                clear_rt_mutex_waiters(lock);
  70}
  71
  72/*
  73 * We can speed up the acquire/release, if the architecture
  74 * supports cmpxchg and if there's no debugging state to be set up
  75 */
  76#if defined(__HAVE_ARCH_CMPXCHG) && !defined(CONFIG_DEBUG_RT_MUTEXES)
  77# define rt_mutex_cmpxchg(l,c,n)        (cmpxchg(&l->owner, c, n) == c)
  78static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
  79{
  80        unsigned long owner, *p = (unsigned long *) &lock->owner;
  81
  82        do {
  83                owner = *p;
  84        } while (cmpxchg(p, owner, owner | RT_MUTEX_HAS_WAITERS) != owner);
  85}
  86
  87/*
  88 * Safe fastpath aware unlock:
  89 * 1) Clear the waiters bit
  90 * 2) Drop lock->wait_lock
  91 * 3) Try to unlock the lock with cmpxchg
  92 */
  93static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock)
  94        __releases(lock->wait_lock)
  95{
  96        struct task_struct *owner = rt_mutex_owner(lock);
  97
  98        clear_rt_mutex_waiters(lock);
  99        raw_spin_unlock(&lock->wait_lock);
 100        /*
 101         * If a new waiter comes in between the unlock and the cmpxchg
 102         * we have two situations:
 103         *
 104         * unlock(wait_lock);
 105         *                                      lock(wait_lock);
 106         * cmpxchg(p, owner, 0) == owner
 107         *                                      mark_rt_mutex_waiters(lock);
 108         *                                      acquire(lock);
 109         * or:
 110         *
 111         * unlock(wait_lock);
 112         *                                      lock(wait_lock);
 113         *                                      mark_rt_mutex_waiters(lock);
 114         *
 115         * cmpxchg(p, owner, 0) != owner
 116         *                                      enqueue_waiter();
 117         *                                      unlock(wait_lock);
 118         * lock(wait_lock);
 119         * wake waiter();
 120         * unlock(wait_lock);
 121         *                                      lock(wait_lock);
 122         *                                      acquire(lock);
 123         */
 124        return rt_mutex_cmpxchg(lock, owner, NULL);
 125}
 126
 127#else
 128# define rt_mutex_cmpxchg(l,c,n)        (0)
 129static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
 130{
 131        lock->owner = (struct task_struct *)
 132                        ((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
 133}
 134
 135/*
 136 * Simple slow path only version: lock->owner is protected by lock->wait_lock.
 137 */
 138static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock)
 139        __releases(lock->wait_lock)
 140{
 141        lock->owner = NULL;
 142        raw_spin_unlock(&lock->wait_lock);
 143        return true;
 144}
 145#endif
 146
 147static inline int
 148rt_mutex_waiter_less(struct rt_mutex_waiter *left,
 149                     struct rt_mutex_waiter *right)
 150{
 151        if (left->prio < right->prio)
 152                return 1;
 153
 154        /*
 155         * If both waiters have dl_prio(), we check the deadlines of the
 156         * associated tasks.
 157         * If left waiter has a dl_prio(), and we didn't return 1 above,
 158         * then right waiter has a dl_prio() too.
 159         */
 160        if (dl_prio(left->prio))
 161                return (left->task->dl.deadline < right->task->dl.deadline);
 162
 163        return 0;
 164}
 165
 166static void
 167rt_mutex_enqueue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
 168{
 169        struct rb_node **link = &lock->waiters.rb_node;
 170        struct rb_node *parent = NULL;
 171        struct rt_mutex_waiter *entry;
 172        int leftmost = 1;
 173
 174        while (*link) {
 175                parent = *link;
 176                entry = rb_entry(parent, struct rt_mutex_waiter, tree_entry);
 177                if (rt_mutex_waiter_less(waiter, entry)) {
 178                        link = &parent->rb_left;
 179                } else {
 180                        link = &parent->rb_right;
 181                        leftmost = 0;
 182                }
 183        }
 184
 185        if (leftmost)
 186                lock->waiters_leftmost = &waiter->tree_entry;
 187
 188        rb_link_node(&waiter->tree_entry, parent, link);
 189        rb_insert_color(&waiter->tree_entry, &lock->waiters);
 190}
 191
 192static void
 193rt_mutex_dequeue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
 194{
 195        if (RB_EMPTY_NODE(&waiter->tree_entry))
 196                return;
 197
 198        if (lock->waiters_leftmost == &waiter->tree_entry)
 199                lock->waiters_leftmost = rb_next(&waiter->tree_entry);
 200
 201        rb_erase(&waiter->tree_entry, &lock->waiters);
 202        RB_CLEAR_NODE(&waiter->tree_entry);
 203}
 204
 205static void
 206rt_mutex_enqueue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
 207{
 208        struct rb_node **link = &task->pi_waiters.rb_node;
 209        struct rb_node *parent = NULL;
 210        struct rt_mutex_waiter *entry;
 211        int leftmost = 1;
 212
 213        while (*link) {
 214                parent = *link;
 215                entry = rb_entry(parent, struct rt_mutex_waiter, pi_tree_entry);
 216                if (rt_mutex_waiter_less(waiter, entry)) {
 217                        link = &parent->rb_left;
 218                } else {
 219                        link = &parent->rb_right;
 220                        leftmost = 0;
 221                }
 222        }
 223
 224        if (leftmost)
 225                task->pi_waiters_leftmost = &waiter->pi_tree_entry;
 226
 227        rb_link_node(&waiter->pi_tree_entry, parent, link);
 228        rb_insert_color(&waiter->pi_tree_entry, &task->pi_waiters);
 229}
 230
 231static void
 232rt_mutex_dequeue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
 233{
 234        if (RB_EMPTY_NODE(&waiter->pi_tree_entry))
 235                return;
 236
 237        if (task->pi_waiters_leftmost == &waiter->pi_tree_entry)
 238                task->pi_waiters_leftmost = rb_next(&waiter->pi_tree_entry);
 239
 240        rb_erase(&waiter->pi_tree_entry, &task->pi_waiters);
 241        RB_CLEAR_NODE(&waiter->pi_tree_entry);
 242}
 243
 244/*
 245 * Calculate task priority from the waiter tree priority
 246 *
 247 * Return task->normal_prio when the waiter tree is empty or when
 248 * the waiter is not allowed to do priority boosting
 249 */
 250int rt_mutex_getprio(struct task_struct *task)
 251{
 252        if (likely(!task_has_pi_waiters(task)))
 253                return task->normal_prio;
 254
 255        return min(task_top_pi_waiter(task)->prio,
 256                   task->normal_prio);
 257}
 258
 259struct task_struct *rt_mutex_get_top_task(struct task_struct *task)
 260{
 261        if (likely(!task_has_pi_waiters(task)))
 262                return NULL;
 263
 264        return task_top_pi_waiter(task)->task;
 265}
 266
 267/*
 268 * Called by sched_setscheduler() to check whether the priority change
 269 * is overruled by a possible priority boosting.
 270 */
 271int rt_mutex_check_prio(struct task_struct *task, int newprio)
 272{
 273        if (!task_has_pi_waiters(task))
 274                return 0;
 275
 276        return task_top_pi_waiter(task)->task->prio <= newprio;
 277}
 278
 279/*
 280 * Adjust the priority of a task, after its pi_waiters got modified.
 281 *
 282 * This can be both boosting and unboosting. task->pi_lock must be held.
 283 */
 284static void __rt_mutex_adjust_prio(struct task_struct *task)
 285{
 286        int prio = rt_mutex_getprio(task);
 287
 288        if (task->prio != prio || dl_prio(prio))
 289                rt_mutex_setprio(task, prio);
 290}
 291
 292/*
 293 * Adjust task priority (undo boosting). Called from the exit path of
 294 * rt_mutex_slowunlock() and rt_mutex_slowlock().
 295 *
 296 * (Note: We do this outside of the protection of lock->wait_lock to
 297 * allow the lock to be taken while or before we readjust the priority
 298 * of task. We do not use the spin_xx_mutex() variants here as we are
 299 * outside of the debug path.)
 300 */
 301static void rt_mutex_adjust_prio(struct task_struct *task)
 302{
 303        unsigned long flags;
 304
 305        raw_spin_lock_irqsave(&task->pi_lock, flags);
 306        __rt_mutex_adjust_prio(task);
 307        raw_spin_unlock_irqrestore(&task->pi_lock, flags);
 308}
 309
 310/*
 311 * Deadlock detection is conditional:
 312 *
 313 * If CONFIG_DEBUG_RT_MUTEXES=n, deadlock detection is only conducted
 314 * if the detect argument is == RT_MUTEX_FULL_CHAINWALK.
 315 *
 316 * If CONFIG_DEBUG_RT_MUTEXES=y, deadlock detection is always
 317 * conducted independent of the detect argument.
 318 *
 319 * If the waiter argument is NULL this indicates the deboost path and
 320 * deadlock detection is disabled independent of the detect argument
 321 * and the config settings.
 322 */
 323static bool rt_mutex_cond_detect_deadlock(struct rt_mutex_waiter *waiter,
 324                                          enum rtmutex_chainwalk chwalk)
 325{
 326        /*
 327         * This is just a wrapper function for the following call,
 328         * because debug_rt_mutex_detect_deadlock() smells like a magic
 329         * debug feature and I wanted to keep the cond function in the
 330         * main source file along with the comments instead of having
 331         * two of the same in the headers.
 332         */
 333        return debug_rt_mutex_detect_deadlock(waiter, chwalk);
 334}
 335
 336/*
 337 * Max number of times we'll walk the boosting chain:
 338 */
 339int max_lock_depth = 1024;
 340
 341static inline struct rt_mutex *task_blocked_on_lock(struct task_struct *p)
 342{
 343        return p->pi_blocked_on ? p->pi_blocked_on->lock : NULL;
 344}
 345
 346/*
 347 * Adjust the priority chain. Also used for deadlock detection.
 348 * Decreases task's usage by one - may thus free the task.
 349 *
 350 * @task:       the task owning the mutex (owner) for which a chain walk is
 351 *              probably needed
 352 * @deadlock_detect: do we have to carry out deadlock detection?
 353 * @orig_lock:  the mutex (can be NULL if we are walking the chain to recheck
 354 *              things for a task that has just got its priority adjusted, and
 355 *              is waiting on a mutex)
 356 * @next_lock:  the mutex on which the owner of @orig_lock was blocked before
 357 *              we dropped its pi_lock. Is never dereferenced, only used for
 358 *              comparison to detect lock chain changes.
 359 * @orig_waiter: rt_mutex_waiter struct for the task that has just donated
 360 *              its priority to the mutex owner (can be NULL in the case
 361 *              depicted above or if the top waiter is gone away and we are
 362 *              actually deboosting the owner)
 363 * @top_task:   the current top waiter
 364 *
 365 * Returns 0 or -EDEADLK.
 366 *
 367 * Chain walk basics and protection scope
 368 *
 369 * [R] refcount on task
 370 * [P] task->pi_lock held
 371 * [L] rtmutex->wait_lock held
 372 *
 373 * Step Description                             Protected by
 374 *      function arguments:
 375 *      @task                                   [R]
 376 *      @orig_lock if != NULL                   @top_task is blocked on it
 377 *      @next_lock                              Unprotected. Cannot be
 378 *                                              dereferenced. Only used for
 379 *                                              comparison.
 380 *      @orig_waiter if != NULL                 @top_task is blocked on it
 381 *      @top_task                               current, or in case of proxy
 382 *                                              locking protected by calling
 383 *                                              code
 384 *      again:
 385 *        loop_sanity_check();
 386 *      retry:
 387 * [1]    lock(task->pi_lock);                  [R] acquire [P]
 388 * [2]    waiter = task->pi_blocked_on;         [P]
 389 * [3]    check_exit_conditions_1();            [P]
 390 * [4]    lock = waiter->lock;                  [P]
 391 * [5]    if (!try_lock(lock->wait_lock)) {     [P] try to acquire [L]
 392 *          unlock(task->pi_lock);              release [P]
 393 *          goto retry;
 394 *        }
 395 * [6]    check_exit_conditions_2();            [P] + [L]
 396 * [7]    requeue_lock_waiter(lock, waiter);    [P] + [L]
 397 * [8]    unlock(task->pi_lock);                release [P]
 398 *        put_task_struct(task);                release [R]
 399 * [9]    check_exit_conditions_3();            [L]
 400 * [10]   task = owner(lock);                   [L]
 401 *        get_task_struct(task);                [L] acquire [R]
 402 *        lock(task->pi_lock);                  [L] acquire [P]
 403 * [11]   requeue_pi_waiter(tsk, waiters(lock));[P] + [L]
 404 * [12]   check_exit_conditions_4();            [P] + [L]
 405 * [13]   unlock(task->pi_lock);                release [P]
 406 *        unlock(lock->wait_lock);              release [L]
 407 *        goto again;
 408 */
 409static int rt_mutex_adjust_prio_chain(struct task_struct *task,
 410                                      enum rtmutex_chainwalk chwalk,
 411                                      struct rt_mutex *orig_lock,
 412                                      struct rt_mutex *next_lock,
 413                                      struct rt_mutex_waiter *orig_waiter,
 414                                      struct task_struct *top_task)
 415{
 416        struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter;
 417        struct rt_mutex_waiter *prerequeue_top_waiter;
 418        int ret = 0, depth = 0;
 419        struct rt_mutex *lock;
 420        bool detect_deadlock;
 421        unsigned long flags;
 422        bool requeue = true;
 423
 424        detect_deadlock = rt_mutex_cond_detect_deadlock(orig_waiter, chwalk);
 425
 426        /*
 427         * The (de)boosting is a step by step approach with a lot of
 428         * pitfalls. We want this to be preemptible and we want hold a
 429         * maximum of two locks per step. So we have to check
 430         * carefully whether things change under us.
 431         */
 432 again:
 433        /*
 434         * We limit the lock chain length for each invocation.
 435         */
 436        if (++depth > max_lock_depth) {
 437                static int prev_max;
 438
 439                /*
 440                 * Print this only once. If the admin changes the limit,
 441                 * print a new message when reaching the limit again.
 442                 */
 443                if (prev_max != max_lock_depth) {
 444                        prev_max = max_lock_depth;
 445                        printk(KERN_WARNING "Maximum lock depth %d reached "
 446                               "task: %s (%d)\n", max_lock_depth,
 447                               top_task->comm, task_pid_nr(top_task));
 448                }
 449                put_task_struct(task);
 450
 451                return -EDEADLK;
 452        }
 453
 454        /*
 455         * We are fully preemptible here and only hold the refcount on
 456         * @task. So everything can have changed under us since the
 457         * caller or our own code below (goto retry/again) dropped all
 458         * locks.
 459         */
 460 retry:
 461        /*
 462         * [1] Task cannot go away as we did a get_task() before !
 463         */
 464        raw_spin_lock_irqsave(&task->pi_lock, flags);
 465
 466        /*
 467         * [2] Get the waiter on which @task is blocked on.
 468         */
 469        waiter = task->pi_blocked_on;
 470
 471        /*
 472         * [3] check_exit_conditions_1() protected by task->pi_lock.
 473         */
 474
 475        /*
 476         * Check whether the end of the boosting chain has been
 477         * reached or the state of the chain has changed while we
 478         * dropped the locks.
 479         */
 480        if (!waiter)
 481                goto out_unlock_pi;
 482
 483        /*
 484         * Check the orig_waiter state. After we dropped the locks,
 485         * the previous owner of the lock might have released the lock.
 486         */
 487        if (orig_waiter && !rt_mutex_owner(orig_lock))
 488                goto out_unlock_pi;
 489
 490        /*
 491         * We dropped all locks after taking a refcount on @task, so
 492         * the task might have moved on in the lock chain or even left
 493         * the chain completely and blocks now on an unrelated lock or
 494         * on @orig_lock.
 495         *
 496         * We stored the lock on which @task was blocked in @next_lock,
 497         * so we can detect the chain change.
 498         */
 499        if (next_lock != waiter->lock)
 500                goto out_unlock_pi;
 501
 502        /*
 503         * Drop out, when the task has no waiters. Note,
 504         * top_waiter can be NULL, when we are in the deboosting
 505         * mode!
 506         */
 507        if (top_waiter) {
 508                if (!task_has_pi_waiters(task))
 509                        goto out_unlock_pi;
 510                /*
 511                 * If deadlock detection is off, we stop here if we
 512                 * are not the top pi waiter of the task. If deadlock
 513                 * detection is enabled we continue, but stop the
 514                 * requeueing in the chain walk.
 515                 */
 516                if (top_waiter != task_top_pi_waiter(task)) {
 517                        if (!detect_deadlock)
 518                                goto out_unlock_pi;
 519                        else
 520                                requeue = false;
 521                }
 522        }
 523
 524        /*
 525         * If the waiter priority is the same as the task priority
 526         * then there is no further priority adjustment necessary.  If
 527         * deadlock detection is off, we stop the chain walk. If its
 528         * enabled we continue, but stop the requeueing in the chain
 529         * walk.
 530         */
 531        if (waiter->prio == task->prio) {
 532                if (!detect_deadlock)
 533                        goto out_unlock_pi;
 534                else
 535                        requeue = false;
 536        }
 537
 538        /*
 539         * [4] Get the next lock
 540         */
 541        lock = waiter->lock;
 542        /*
 543         * [5] We need to trylock here as we are holding task->pi_lock,
 544         * which is the reverse lock order versus the other rtmutex
 545         * operations.
 546         */
 547        if (!raw_spin_trylock(&lock->wait_lock)) {
 548                raw_spin_unlock_irqrestore(&task->pi_lock, flags);
 549                cpu_relax();
 550                goto retry;
 551        }
 552
 553        /*
 554         * [6] check_exit_conditions_2() protected by task->pi_lock and
 555         * lock->wait_lock.
 556         *
 557         * Deadlock detection. If the lock is the same as the original
 558         * lock which caused us to walk the lock chain or if the
 559         * current lock is owned by the task which initiated the chain
 560         * walk, we detected a deadlock.
 561         */
 562        if (lock == orig_lock || rt_mutex_owner(lock) == top_task) {
 563                debug_rt_mutex_deadlock(chwalk, orig_waiter, lock);
 564                raw_spin_unlock(&lock->wait_lock);
 565                ret = -EDEADLK;
 566                goto out_unlock_pi;
 567        }
 568
 569        /*
 570         * If we just follow the lock chain for deadlock detection, no
 571         * need to do all the requeue operations. To avoid a truckload
 572         * of conditionals around the various places below, just do the
 573         * minimum chain walk checks.
 574         */
 575        if (!requeue) {
 576                /*
 577                 * No requeue[7] here. Just release @task [8]
 578                 */
 579                raw_spin_unlock_irqrestore(&task->pi_lock, flags);
 580                put_task_struct(task);
 581
 582                /*
 583                 * [9] check_exit_conditions_3 protected by lock->wait_lock.
 584                 * If there is no owner of the lock, end of chain.
 585                 */
 586                if (!rt_mutex_owner(lock)) {
 587                        raw_spin_unlock(&lock->wait_lock);
 588                        return 0;
 589                }
 590
 591                /* [10] Grab the next task, i.e. owner of @lock */
 592                task = rt_mutex_owner(lock);
 593                get_task_struct(task);
 594                raw_spin_lock_irqsave(&task->pi_lock, flags);
 595
 596                /*
 597                 * No requeue [11] here. We just do deadlock detection.
 598                 *
 599                 * [12] Store whether owner is blocked
 600                 * itself. Decision is made after dropping the locks
 601                 */
 602                next_lock = task_blocked_on_lock(task);
 603                /*
 604                 * Get the top waiter for the next iteration
 605                 */
 606                top_waiter = rt_mutex_top_waiter(lock);
 607
 608                /* [13] Drop locks */
 609                raw_spin_unlock_irqrestore(&task->pi_lock, flags);
 610                raw_spin_unlock(&lock->wait_lock);
 611
 612                /* If owner is not blocked, end of chain. */
 613                if (!next_lock)
 614                        goto out_put_task;
 615                goto again;
 616        }
 617
 618        /*
 619         * Store the current top waiter before doing the requeue
 620         * operation on @lock. We need it for the boost/deboost
 621         * decision below.
 622         */
 623        prerequeue_top_waiter = rt_mutex_top_waiter(lock);
 624
 625        /* [7] Requeue the waiter in the lock waiter list. */
 626        rt_mutex_dequeue(lock, waiter);
 627        waiter->prio = task->prio;
 628        rt_mutex_enqueue(lock, waiter);
 629
 630        /* [8] Release the task */
 631        raw_spin_unlock_irqrestore(&task->pi_lock, flags);
 632        put_task_struct(task);
 633
 634        /*
 635         * [9] check_exit_conditions_3 protected by lock->wait_lock.
 636         *
 637         * We must abort the chain walk if there is no lock owner even
 638         * in the dead lock detection case, as we have nothing to
 639         * follow here. This is the end of the chain we are walking.
 640         */
 641        if (!rt_mutex_owner(lock)) {
 642                /*
 643                 * If the requeue [7] above changed the top waiter,
 644                 * then we need to wake the new top waiter up to try
 645                 * to get the lock.
 646                 */
 647                if (prerequeue_top_waiter != rt_mutex_top_waiter(lock))
 648                        wake_up_process(rt_mutex_top_waiter(lock)->task);
 649                raw_spin_unlock(&lock->wait_lock);
 650                return 0;
 651        }
 652
 653        /* [10] Grab the next task, i.e. the owner of @lock */
 654        task = rt_mutex_owner(lock);
 655        get_task_struct(task);
 656        raw_spin_lock_irqsave(&task->pi_lock, flags);
 657
 658        /* [11] requeue the pi waiters if necessary */
 659        if (waiter == rt_mutex_top_waiter(lock)) {
 660                /*
 661                 * The waiter became the new top (highest priority)
 662                 * waiter on the lock. Replace the previous top waiter
 663                 * in the owner tasks pi waiters list with this waiter
 664                 * and adjust the priority of the owner.
 665                 */
 666                rt_mutex_dequeue_pi(task, prerequeue_top_waiter);
 667                rt_mutex_enqueue_pi(task, waiter);
 668                __rt_mutex_adjust_prio(task);
 669
 670        } else if (prerequeue_top_waiter == waiter) {
 671                /*
 672                 * The waiter was the top waiter on the lock, but is
 673                 * no longer the top prority waiter. Replace waiter in
 674                 * the owner tasks pi waiters list with the new top
 675                 * (highest priority) waiter and adjust the priority
 676                 * of the owner.
 677                 * The new top waiter is stored in @waiter so that
 678                 * @waiter == @top_waiter evaluates to true below and
 679                 * we continue to deboost the rest of the chain.
 680                 */
 681                rt_mutex_dequeue_pi(task, waiter);
 682                waiter = rt_mutex_top_waiter(lock);
 683                rt_mutex_enqueue_pi(task, waiter);
 684                __rt_mutex_adjust_prio(task);
 685        } else {
 686                /*
 687                 * Nothing changed. No need to do any priority
 688                 * adjustment.
 689                 */
 690        }
 691
 692        /*
 693         * [12] check_exit_conditions_4() protected by task->pi_lock
 694         * and lock->wait_lock. The actual decisions are made after we
 695         * dropped the locks.
 696         *
 697         * Check whether the task which owns the current lock is pi
 698         * blocked itself. If yes we store a pointer to the lock for
 699         * the lock chain change detection above. After we dropped
 700         * task->pi_lock next_lock cannot be dereferenced anymore.
 701         */
 702        next_lock = task_blocked_on_lock(task);
 703        /*
 704         * Store the top waiter of @lock for the end of chain walk
 705         * decision below.
 706         */
 707        top_waiter = rt_mutex_top_waiter(lock);
 708
 709        /* [13] Drop the locks */
 710        raw_spin_unlock_irqrestore(&task->pi_lock, flags);
 711        raw_spin_unlock(&lock->wait_lock);
 712
 713        /*
 714         * Make the actual exit decisions [12], based on the stored
 715         * values.
 716         *
 717         * We reached the end of the lock chain. Stop right here. No
 718         * point to go back just to figure that out.
 719         */
 720        if (!next_lock)
 721                goto out_put_task;
 722
 723        /*
 724         * If the current waiter is not the top waiter on the lock,
 725         * then we can stop the chain walk here if we are not in full
 726         * deadlock detection mode.
 727         */
 728        if (!detect_deadlock && waiter != top_waiter)
 729                goto out_put_task;
 730
 731        goto again;
 732
 733 out_unlock_pi:
 734        raw_spin_unlock_irqrestore(&task->pi_lock, flags);
 735 out_put_task:
 736        put_task_struct(task);
 737
 738        return ret;
 739}
 740
 741/*
 742 * Try to take an rt-mutex
 743 *
 744 * Must be called with lock->wait_lock held.
 745 *
 746 * @lock:   The lock to be acquired.
 747 * @task:   The task which wants to acquire the lock
 748 * @waiter: The waiter that is queued to the lock's wait list if the
 749 *          callsite called task_blocked_on_lock(), otherwise NULL
 750 */
 751static int try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task,
 752                                struct rt_mutex_waiter *waiter)
 753{
 754        unsigned long flags;
 755
 756        /*
 757         * Before testing whether we can acquire @lock, we set the
 758         * RT_MUTEX_HAS_WAITERS bit in @lock->owner. This forces all
 759         * other tasks which try to modify @lock into the slow path
 760         * and they serialize on @lock->wait_lock.
 761         *
 762         * The RT_MUTEX_HAS_WAITERS bit can have a transitional state
 763         * as explained at the top of this file if and only if:
 764         *
 765         * - There is a lock owner. The caller must fixup the
 766         *   transient state if it does a trylock or leaves the lock
 767         *   function due to a signal or timeout.
 768         *
 769         * - @task acquires the lock and there are no other
 770         *   waiters. This is undone in rt_mutex_set_owner(@task) at
 771         *   the end of this function.
 772         */
 773        mark_rt_mutex_waiters(lock);
 774
 775        /*
 776         * If @lock has an owner, give up.
 777         */
 778        if (rt_mutex_owner(lock))
 779                return 0;
 780
 781        /*
 782         * If @waiter != NULL, @task has already enqueued the waiter
 783         * into @lock waiter list. If @waiter == NULL then this is a
 784         * trylock attempt.
 785         */
 786        if (waiter) {
 787                /*
 788                 * If waiter is not the highest priority waiter of
 789                 * @lock, give up.
 790                 */
 791                if (waiter != rt_mutex_top_waiter(lock))
 792                        return 0;
 793
 794                /*
 795                 * We can acquire the lock. Remove the waiter from the
 796                 * lock waiters list.
 797                 */
 798                rt_mutex_dequeue(lock, waiter);
 799
 800        } else {
 801                /*
 802                 * If the lock has waiters already we check whether @task is
 803                 * eligible to take over the lock.
 804                 *
 805                 * If there are no other waiters, @task can acquire
 806                 * the lock.  @task->pi_blocked_on is NULL, so it does
 807                 * not need to be dequeued.
 808                 */
 809                if (rt_mutex_has_waiters(lock)) {
 810                        /*
 811                         * If @task->prio is greater than or equal to
 812                         * the top waiter priority (kernel view),
 813                         * @task lost.
 814                         */
 815                        if (task->prio >= rt_mutex_top_waiter(lock)->prio)
 816                                return 0;
 817
 818                        /*
 819                         * The current top waiter stays enqueued. We
 820                         * don't have to change anything in the lock
 821                         * waiters order.
 822                         */
 823                } else {
 824                        /*
 825                         * No waiters. Take the lock without the
 826                         * pi_lock dance.@task->pi_blocked_on is NULL
 827                         * and we have no waiters to enqueue in @task
 828                         * pi waiters list.
 829                         */
 830                        goto takeit;
 831                }
 832        }
 833
 834        /*
 835         * Clear @task->pi_blocked_on. Requires protection by
 836         * @task->pi_lock. Redundant operation for the @waiter == NULL
 837         * case, but conditionals are more expensive than a redundant
 838         * store.
 839         */
 840        raw_spin_lock_irqsave(&task->pi_lock, flags);
 841        task->pi_blocked_on = NULL;
 842        /*
 843         * Finish the lock acquisition. @task is the new owner. If
 844         * other waiters exist we have to insert the highest priority
 845         * waiter into @task->pi_waiters list.
 846         */
 847        if (rt_mutex_has_waiters(lock))
 848                rt_mutex_enqueue_pi(task, rt_mutex_top_waiter(lock));
 849        raw_spin_unlock_irqrestore(&task->pi_lock, flags);
 850
 851takeit:
 852        /* We got the lock. */
 853        debug_rt_mutex_lock(lock);
 854
 855        /*
 856         * This either preserves the RT_MUTEX_HAS_WAITERS bit if there
 857         * are still waiters or clears it.
 858         */
 859        rt_mutex_set_owner(lock, task);
 860
 861        rt_mutex_deadlock_account_lock(lock, task);
 862
 863        return 1;
 864}
 865
 866/*
 867 * Task blocks on lock.
 868 *
 869 * Prepare waiter and propagate pi chain
 870 *
 871 * This must be called with lock->wait_lock held.
 872 */
 873static int task_blocks_on_rt_mutex(struct rt_mutex *lock,
 874                                   struct rt_mutex_waiter *waiter,
 875                                   struct task_struct *task,
 876                                   enum rtmutex_chainwalk chwalk)
 877{
 878        struct task_struct *owner = rt_mutex_owner(lock);
 879        struct rt_mutex_waiter *top_waiter = waiter;
 880        struct rt_mutex *next_lock;
 881        int chain_walk = 0, res;
 882        unsigned long flags;
 883
 884        /*
 885         * Early deadlock detection. We really don't want the task to
 886         * enqueue on itself just to untangle the mess later. It's not
 887         * only an optimization. We drop the locks, so another waiter
 888         * can come in before the chain walk detects the deadlock. So
 889         * the other will detect the deadlock and return -EDEADLOCK,
 890         * which is wrong, as the other waiter is not in a deadlock
 891         * situation.
 892         */
 893        if (owner == task)
 894                return -EDEADLK;
 895
 896        raw_spin_lock_irqsave(&task->pi_lock, flags);
 897        __rt_mutex_adjust_prio(task);
 898        waiter->task = task;
 899        waiter->lock = lock;
 900        waiter->prio = task->prio;
 901
 902        /* Get the top priority waiter on the lock */
 903        if (rt_mutex_has_waiters(lock))
 904                top_waiter = rt_mutex_top_waiter(lock);
 905        rt_mutex_enqueue(lock, waiter);
 906
 907        task->pi_blocked_on = waiter;
 908
 909        raw_spin_unlock_irqrestore(&task->pi_lock, flags);
 910
 911        if (!owner)
 912                return 0;
 913
 914        raw_spin_lock_irqsave(&owner->pi_lock, flags);
 915        if (waiter == rt_mutex_top_waiter(lock)) {
 916                rt_mutex_dequeue_pi(owner, top_waiter);
 917                rt_mutex_enqueue_pi(owner, waiter);
 918
 919                __rt_mutex_adjust_prio(owner);
 920                if (owner->pi_blocked_on)
 921                        chain_walk = 1;
 922        } else if (rt_mutex_cond_detect_deadlock(waiter, chwalk)) {
 923                chain_walk = 1;
 924        }
 925
 926        /* Store the lock on which owner is blocked or NULL */
 927        next_lock = task_blocked_on_lock(owner);
 928
 929        raw_spin_unlock_irqrestore(&owner->pi_lock, flags);
 930        /*
 931         * Even if full deadlock detection is on, if the owner is not
 932         * blocked itself, we can avoid finding this out in the chain
 933         * walk.
 934         */
 935        if (!chain_walk || !next_lock)
 936                return 0;
 937
 938        /*
 939         * The owner can't disappear while holding a lock,
 940         * so the owner struct is protected by wait_lock.
 941         * Gets dropped in rt_mutex_adjust_prio_chain()!
 942         */
 943        get_task_struct(owner);
 944
 945        raw_spin_unlock(&lock->wait_lock);
 946
 947        res = rt_mutex_adjust_prio_chain(owner, chwalk, lock,
 948                                         next_lock, waiter, task);
 949
 950        raw_spin_lock(&lock->wait_lock);
 951
 952        return res;
 953}
 954
 955/*
 956 * Wake up the next waiter on the lock.
 957 *
 958 * Remove the top waiter from the current tasks pi waiter list and
 959 * wake it up.
 960 *
 961 * Called with lock->wait_lock held.
 962 */
 963static void wakeup_next_waiter(struct rt_mutex *lock)
 964{
 965        struct rt_mutex_waiter *waiter;
 966        unsigned long flags;
 967
 968        raw_spin_lock_irqsave(&current->pi_lock, flags);
 969
 970        waiter = rt_mutex_top_waiter(lock);
 971
 972        /*
 973         * Remove it from current->pi_waiters. We do not adjust a
 974         * possible priority boost right now. We execute wakeup in the
 975         * boosted mode and go back to normal after releasing
 976         * lock->wait_lock.
 977         */
 978        rt_mutex_dequeue_pi(current, waiter);
 979
 980        /*
 981         * As we are waking up the top waiter, and the waiter stays
 982         * queued on the lock until it gets the lock, this lock
 983         * obviously has waiters. Just set the bit here and this has
 984         * the added benefit of forcing all new tasks into the
 985         * slow path making sure no task of lower priority than
 986         * the top waiter can steal this lock.
 987         */
 988        lock->owner = (void *) RT_MUTEX_HAS_WAITERS;
 989
 990        raw_spin_unlock_irqrestore(&current->pi_lock, flags);
 991
 992        /*
 993         * It's safe to dereference waiter as it cannot go away as
 994         * long as we hold lock->wait_lock. The waiter task needs to
 995         * acquire it in order to dequeue the waiter.
 996         */
 997        wake_up_process(waiter->task);
 998}
 999
1000/*
1001 * Remove a waiter from a lock and give up
1002 *
1003 * Must be called with lock->wait_lock held and
1004 * have just failed to try_to_take_rt_mutex().
1005 */
1006static void remove_waiter(struct rt_mutex *lock,
1007                          struct rt_mutex_waiter *waiter)
1008{
1009        bool is_top_waiter = (waiter == rt_mutex_top_waiter(lock));
1010        struct task_struct *owner = rt_mutex_owner(lock);
1011        struct rt_mutex *next_lock;
1012        unsigned long flags;
1013
1014        raw_spin_lock_irqsave(&current->pi_lock, flags);
1015        rt_mutex_dequeue(lock, waiter);
1016        current->pi_blocked_on = NULL;
1017        raw_spin_unlock_irqrestore(&current->pi_lock, flags);
1018
1019        /*
1020         * Only update priority if the waiter was the highest priority
1021         * waiter of the lock and there is an owner to update.
1022         */
1023        if (!owner || !is_top_waiter)
1024                return;
1025
1026        raw_spin_lock_irqsave(&owner->pi_lock, flags);
1027
1028        rt_mutex_dequeue_pi(owner, waiter);
1029
1030        if (rt_mutex_has_waiters(lock))
1031                rt_mutex_enqueue_pi(owner, rt_mutex_top_waiter(lock));
1032
1033        __rt_mutex_adjust_prio(owner);
1034
1035        /* Store the lock on which owner is blocked or NULL */
1036        next_lock = task_blocked_on_lock(owner);
1037
1038        raw_spin_unlock_irqrestore(&owner->pi_lock, flags);
1039
1040        /*
1041         * Don't walk the chain, if the owner task is not blocked
1042         * itself.
1043         */
1044        if (!next_lock)
1045                return;
1046
1047        /* gets dropped in rt_mutex_adjust_prio_chain()! */
1048        get_task_struct(owner);
1049
1050        raw_spin_unlock(&lock->wait_lock);
1051
1052        rt_mutex_adjust_prio_chain(owner, RT_MUTEX_MIN_CHAINWALK, lock,
1053                                   next_lock, NULL, current);
1054
1055        raw_spin_lock(&lock->wait_lock);
1056}
1057
1058/*
1059 * Recheck the pi chain, in case we got a priority setting
1060 *
1061 * Called from sched_setscheduler
1062 */
1063void rt_mutex_adjust_pi(struct task_struct *task)
1064{
1065        struct rt_mutex_waiter *waiter;
1066        struct rt_mutex *next_lock;
1067        unsigned long flags;
1068
1069        raw_spin_lock_irqsave(&task->pi_lock, flags);
1070
1071        waiter = task->pi_blocked_on;
1072        if (!waiter || (waiter->prio == task->prio &&
1073                        !dl_prio(task->prio))) {
1074                raw_spin_unlock_irqrestore(&task->pi_lock, flags);
1075                return;
1076        }
1077        next_lock = waiter->lock;
1078        raw_spin_unlock_irqrestore(&task->pi_lock, flags);
1079
1080        /* gets dropped in rt_mutex_adjust_prio_chain()! */
1081        get_task_struct(task);
1082
1083        rt_mutex_adjust_prio_chain(task, RT_MUTEX_MIN_CHAINWALK, NULL,
1084                                   next_lock, NULL, task);
1085}
1086
1087/**
1088 * __rt_mutex_slowlock() - Perform the wait-wake-try-to-take loop
1089 * @lock:                the rt_mutex to take
1090 * @state:               the state the task should block in (TASK_INTERRUPTIBLE
1091 *                       or TASK_UNINTERRUPTIBLE)
1092 * @timeout:             the pre-initialized and started timer, or NULL for none
1093 * @waiter:              the pre-initialized rt_mutex_waiter
1094 *
1095 * lock->wait_lock must be held by the caller.
1096 */
1097static int __sched
1098__rt_mutex_slowlock(struct rt_mutex *lock, int state,
1099                    struct hrtimer_sleeper *timeout,
1100                    struct rt_mutex_waiter *waiter)
1101{
1102        int ret = 0;
1103
1104        for (;;) {
1105                /* Try to acquire the lock: */
1106                if (try_to_take_rt_mutex(lock, current, waiter))
1107                        break;
1108
1109                /*
1110                 * TASK_INTERRUPTIBLE checks for signals and
1111                 * timeout. Ignored otherwise.
1112                 */
1113                if (unlikely(state == TASK_INTERRUPTIBLE)) {
1114                        /* Signal pending? */
1115                        if (signal_pending(current))
1116                                ret = -EINTR;
1117                        if (timeout && !timeout->task)
1118                                ret = -ETIMEDOUT;
1119                        if (ret)
1120                                break;
1121                }
1122
1123                raw_spin_unlock(&lock->wait_lock);
1124
1125                debug_rt_mutex_print_deadlock(waiter);
1126
1127                schedule_rt_mutex(lock);
1128
1129                raw_spin_lock(&lock->wait_lock);
1130                set_current_state(state);
1131        }
1132
1133        return ret;
1134}
1135
1136static void rt_mutex_handle_deadlock(int res, int detect_deadlock,
1137                                     struct rt_mutex_waiter *w)
1138{
1139        /*
1140         * If the result is not -EDEADLOCK or the caller requested
1141         * deadlock detection, nothing to do here.
1142         */
1143        if (res != -EDEADLOCK || detect_deadlock)
1144                return;
1145
1146        /*
1147         * Yell lowdly and stop the task right here.
1148         */
1149        rt_mutex_print_deadlock(w);
1150        while (1) {
1151                set_current_state(TASK_INTERRUPTIBLE);
1152                schedule();
1153        }
1154}
1155
1156/*
1157 * Slow path lock function:
1158 */
1159static int __sched
1160rt_mutex_slowlock(struct rt_mutex *lock, int state,
1161                  struct hrtimer_sleeper *timeout,
1162                  enum rtmutex_chainwalk chwalk)
1163{
1164        struct rt_mutex_waiter waiter;
1165        int ret = 0;
1166
1167        debug_rt_mutex_init_waiter(&waiter);
1168        RB_CLEAR_NODE(&waiter.pi_tree_entry);
1169        RB_CLEAR_NODE(&waiter.tree_entry);
1170
1171        raw_spin_lock(&lock->wait_lock);
1172
1173        /* Try to acquire the lock again: */
1174        if (try_to_take_rt_mutex(lock, current, NULL)) {
1175                raw_spin_unlock(&lock->wait_lock);
1176                return 0;
1177        }
1178
1179        set_current_state(state);
1180
1181        /* Setup the timer, when timeout != NULL */
1182        if (unlikely(timeout)) {
1183                hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1184                if (!hrtimer_active(&timeout->timer))
1185                        timeout->task = NULL;
1186        }
1187
1188        ret = task_blocks_on_rt_mutex(lock, &waiter, current, chwalk);
1189
1190        if (likely(!ret))
1191                ret = __rt_mutex_slowlock(lock, state, timeout, &waiter);
1192
1193        set_current_state(TASK_RUNNING);
1194
1195        if (unlikely(ret)) {
1196                remove_waiter(lock, &waiter);
1197                rt_mutex_handle_deadlock(ret, chwalk, &waiter);
1198        }
1199
1200        /*
1201         * try_to_take_rt_mutex() sets the waiter bit
1202         * unconditionally. We might have to fix that up.
1203         */
1204        fixup_rt_mutex_waiters(lock);
1205
1206        raw_spin_unlock(&lock->wait_lock);
1207
1208        /* Remove pending timer: */
1209        if (unlikely(timeout))
1210                hrtimer_cancel(&timeout->timer);
1211
1212        debug_rt_mutex_free_waiter(&waiter);
1213
1214        return ret;
1215}
1216
1217/*
1218 * Slow path try-lock function:
1219 */
1220static inline int rt_mutex_slowtrylock(struct rt_mutex *lock)
1221{
1222        int ret;
1223
1224        /*
1225         * If the lock already has an owner we fail to get the lock.
1226         * This can be done without taking the @lock->wait_lock as
1227         * it is only being read, and this is a trylock anyway.
1228         */
1229        if (rt_mutex_owner(lock))
1230                return 0;
1231
1232        /*
1233         * The mutex has currently no owner. Lock the wait lock and
1234         * try to acquire the lock.
1235         */
1236        raw_spin_lock(&lock->wait_lock);
1237
1238        ret = try_to_take_rt_mutex(lock, current, NULL);
1239
1240        /*
1241         * try_to_take_rt_mutex() sets the lock waiters bit
1242         * unconditionally. Clean this up.
1243         */
1244        fixup_rt_mutex_waiters(lock);
1245
1246        raw_spin_unlock(&lock->wait_lock);
1247
1248        return ret;
1249}
1250
1251/*
1252 * Slow path to release a rt-mutex:
1253 */
1254static void __sched
1255rt_mutex_slowunlock(struct rt_mutex *lock)
1256{
1257        raw_spin_lock(&lock->wait_lock);
1258
1259        debug_rt_mutex_unlock(lock);
1260
1261        rt_mutex_deadlock_account_unlock(current);
1262
1263        /*
1264         * We must be careful here if the fast path is enabled. If we
1265         * have no waiters queued we cannot set owner to NULL here
1266         * because of:
1267         *
1268         * foo->lock->owner = NULL;
1269         *                      rtmutex_lock(foo->lock);   <- fast path
1270         *                      free = atomic_dec_and_test(foo->refcnt);
1271         *                      rtmutex_unlock(foo->lock); <- fast path
1272         *                      if (free)
1273         *                              kfree(foo);
1274         * raw_spin_unlock(foo->lock->wait_lock);
1275         *
1276         * So for the fastpath enabled kernel:
1277         *
1278         * Nothing can set the waiters bit as long as we hold
1279         * lock->wait_lock. So we do the following sequence:
1280         *
1281         *      owner = rt_mutex_owner(lock);
1282         *      clear_rt_mutex_waiters(lock);
1283         *      raw_spin_unlock(&lock->wait_lock);
1284         *      if (cmpxchg(&lock->owner, owner, 0) == owner)
1285         *              return;
1286         *      goto retry;
1287         *
1288         * The fastpath disabled variant is simple as all access to
1289         * lock->owner is serialized by lock->wait_lock:
1290         *
1291         *      lock->owner = NULL;
1292         *      raw_spin_unlock(&lock->wait_lock);
1293         */
1294        while (!rt_mutex_has_waiters(lock)) {
1295                /* Drops lock->wait_lock ! */
1296                if (unlock_rt_mutex_safe(lock) == true)
1297                        return;
1298                /* Relock the rtmutex and try again */
1299                raw_spin_lock(&lock->wait_lock);
1300        }
1301
1302        /*
1303         * The wakeup next waiter path does not suffer from the above
1304         * race. See the comments there.
1305         */
1306        wakeup_next_waiter(lock);
1307
1308        raw_spin_unlock(&lock->wait_lock);
1309
1310        /* Undo pi boosting if necessary: */
1311        rt_mutex_adjust_prio(current);
1312}
1313
1314/*
1315 * debug aware fast / slowpath lock,trylock,unlock
1316 *
1317 * The atomic acquire/release ops are compiled away, when either the
1318 * architecture does not support cmpxchg or when debugging is enabled.
1319 */
1320static inline int
1321rt_mutex_fastlock(struct rt_mutex *lock, int state,
1322                  int (*slowfn)(struct rt_mutex *lock, int state,
1323                                struct hrtimer_sleeper *timeout,
1324                                enum rtmutex_chainwalk chwalk))
1325{
1326        if (likely(rt_mutex_cmpxchg(lock, NULL, current))) {
1327                rt_mutex_deadlock_account_lock(lock, current);
1328                return 0;
1329        } else
1330                return slowfn(lock, state, NULL, RT_MUTEX_MIN_CHAINWALK);
1331}
1332
1333static inline int
1334rt_mutex_timed_fastlock(struct rt_mutex *lock, int state,
1335                        struct hrtimer_sleeper *timeout,
1336                        enum rtmutex_chainwalk chwalk,
1337                        int (*slowfn)(struct rt_mutex *lock, int state,
1338                                      struct hrtimer_sleeper *timeout,
1339                                      enum rtmutex_chainwalk chwalk))
1340{
1341        if (chwalk == RT_MUTEX_MIN_CHAINWALK &&
1342            likely(rt_mutex_cmpxchg(lock, NULL, current))) {
1343                rt_mutex_deadlock_account_lock(lock, current);
1344                return 0;
1345        } else
1346                return slowfn(lock, state, timeout, chwalk);
1347}
1348
1349static inline int
1350rt_mutex_fasttrylock(struct rt_mutex *lock,
1351                     int (*slowfn)(struct rt_mutex *lock))
1352{
1353        if (likely(rt_mutex_cmpxchg(lock, NULL, current))) {
1354                rt_mutex_deadlock_account_lock(lock, current);
1355                return 1;
1356        }
1357        return slowfn(lock);
1358}
1359
1360static inline void
1361rt_mutex_fastunlock(struct rt_mutex *lock,
1362                    void (*slowfn)(struct rt_mutex *lock))
1363{
1364        if (likely(rt_mutex_cmpxchg(lock, current, NULL)))
1365                rt_mutex_deadlock_account_unlock(current);
1366        else
1367                slowfn(lock);
1368}
1369
1370/**
1371 * rt_mutex_lock - lock a rt_mutex
1372 *
1373 * @lock: the rt_mutex to be locked
1374 */
1375void __sched rt_mutex_lock(struct rt_mutex *lock)
1376{
1377        might_sleep();
1378
1379        rt_mutex_fastlock(lock, TASK_UNINTERRUPTIBLE, rt_mutex_slowlock);
1380}
1381EXPORT_SYMBOL_GPL(rt_mutex_lock);
1382
1383/**
1384 * rt_mutex_lock_interruptible - lock a rt_mutex interruptible
1385 *
1386 * @lock:               the rt_mutex to be locked
1387 *
1388 * Returns:
1389 *  0           on success
1390 * -EINTR       when interrupted by a signal
1391 */
1392int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock)
1393{
1394        might_sleep();
1395
1396        return rt_mutex_fastlock(lock, TASK_INTERRUPTIBLE, rt_mutex_slowlock);
1397}
1398EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible);
1399
1400/*
1401 * Futex variant with full deadlock detection.
1402 */
1403int rt_mutex_timed_futex_lock(struct rt_mutex *lock,
1404                              struct hrtimer_sleeper *timeout)
1405{
1406        might_sleep();
1407
1408        return rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout,
1409                                       RT_MUTEX_FULL_CHAINWALK,
1410                                       rt_mutex_slowlock);
1411}
1412
1413/**
1414 * rt_mutex_timed_lock - lock a rt_mutex interruptible
1415 *                      the timeout structure is provided
1416 *                      by the caller
1417 *
1418 * @lock:               the rt_mutex to be locked
1419 * @timeout:            timeout structure or NULL (no timeout)
1420 *
1421 * Returns:
1422 *  0           on success
1423 * -EINTR       when interrupted by a signal
1424 * -ETIMEDOUT   when the timeout expired
1425 */
1426int
1427rt_mutex_timed_lock(struct rt_mutex *lock, struct hrtimer_sleeper *timeout)
1428{
1429        might_sleep();
1430
1431        return rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout,
1432                                       RT_MUTEX_MIN_CHAINWALK,
1433                                       rt_mutex_slowlock);
1434}
1435EXPORT_SYMBOL_GPL(rt_mutex_timed_lock);
1436
1437/**
1438 * rt_mutex_trylock - try to lock a rt_mutex
1439 *
1440 * @lock:       the rt_mutex to be locked
1441 *
1442 * Returns 1 on success and 0 on contention
1443 */
1444int __sched rt_mutex_trylock(struct rt_mutex *lock)
1445{
1446        return rt_mutex_fasttrylock(lock, rt_mutex_slowtrylock);
1447}
1448EXPORT_SYMBOL_GPL(rt_mutex_trylock);
1449
1450/**
1451 * rt_mutex_unlock - unlock a rt_mutex
1452 *
1453 * @lock: the rt_mutex to be unlocked
1454 */
1455void __sched rt_mutex_unlock(struct rt_mutex *lock)
1456{
1457        rt_mutex_fastunlock(lock, rt_mutex_slowunlock);
1458}
1459EXPORT_SYMBOL_GPL(rt_mutex_unlock);
1460
1461/**
1462 * rt_mutex_destroy - mark a mutex unusable
1463 * @lock: the mutex to be destroyed
1464 *
1465 * This function marks the mutex uninitialized, and any subsequent
1466 * use of the mutex is forbidden. The mutex must not be locked when
1467 * this function is called.
1468 */
1469void rt_mutex_destroy(struct rt_mutex *lock)
1470{
1471        WARN_ON(rt_mutex_is_locked(lock));
1472#ifdef CONFIG_DEBUG_RT_MUTEXES
1473        lock->magic = NULL;
1474#endif
1475}
1476
1477EXPORT_SYMBOL_GPL(rt_mutex_destroy);
1478
1479/**
1480 * __rt_mutex_init - initialize the rt lock
1481 *
1482 * @lock: the rt lock to be initialized
1483 *
1484 * Initialize the rt lock to unlocked state.
1485 *
1486 * Initializing of a locked rt lock is not allowed
1487 */
1488void __rt_mutex_init(struct rt_mutex *lock, const char *name)
1489{
1490        lock->owner = NULL;
1491        raw_spin_lock_init(&lock->wait_lock);
1492        lock->waiters = RB_ROOT;
1493        lock->waiters_leftmost = NULL;
1494
1495        debug_rt_mutex_init(lock, name);
1496}
1497EXPORT_SYMBOL_GPL(__rt_mutex_init);
1498
1499/**
1500 * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a
1501 *                              proxy owner
1502 *
1503 * @lock:       the rt_mutex to be locked
1504 * @proxy_owner:the task to set as owner
1505 *
1506 * No locking. Caller has to do serializing itself
1507 * Special API call for PI-futex support
1508 */
1509void rt_mutex_init_proxy_locked(struct rt_mutex *lock,
1510                                struct task_struct *proxy_owner)
1511{
1512        __rt_mutex_init(lock, NULL);
1513        debug_rt_mutex_proxy_lock(lock, proxy_owner);
1514        rt_mutex_set_owner(lock, proxy_owner);
1515        rt_mutex_deadlock_account_lock(lock, proxy_owner);
1516}
1517
1518/**
1519 * rt_mutex_proxy_unlock - release a lock on behalf of owner
1520 *
1521 * @lock:       the rt_mutex to be locked
1522 *
1523 * No locking. Caller has to do serializing itself
1524 * Special API call for PI-futex support
1525 */
1526void rt_mutex_proxy_unlock(struct rt_mutex *lock,
1527                           struct task_struct *proxy_owner)
1528{
1529        debug_rt_mutex_proxy_unlock(lock);
1530        rt_mutex_set_owner(lock, NULL);
1531        rt_mutex_deadlock_account_unlock(proxy_owner);
1532}
1533
1534/**
1535 * rt_mutex_start_proxy_lock() - Start lock acquisition for another task
1536 * @lock:               the rt_mutex to take
1537 * @waiter:             the pre-initialized rt_mutex_waiter
1538 * @task:               the task to prepare
1539 *
1540 * Returns:
1541 *  0 - task blocked on lock
1542 *  1 - acquired the lock for task, caller should wake it up
1543 * <0 - error
1544 *
1545 * Special API call for FUTEX_REQUEUE_PI support.
1546 */
1547int rt_mutex_start_proxy_lock(struct rt_mutex *lock,
1548                              struct rt_mutex_waiter *waiter,
1549                              struct task_struct *task)
1550{
1551        int ret;
1552
1553        raw_spin_lock(&lock->wait_lock);
1554
1555        if (try_to_take_rt_mutex(lock, task, NULL)) {
1556                raw_spin_unlock(&lock->wait_lock);
1557                return 1;
1558        }
1559
1560        /* We enforce deadlock detection for futexes */
1561        ret = task_blocks_on_rt_mutex(lock, waiter, task,
1562                                      RT_MUTEX_FULL_CHAINWALK);
1563
1564        if (ret && !rt_mutex_owner(lock)) {
1565                /*
1566                 * Reset the return value. We might have
1567                 * returned with -EDEADLK and the owner
1568                 * released the lock while we were walking the
1569                 * pi chain.  Let the waiter sort it out.
1570                 */
1571                ret = 0;
1572        }
1573
1574        if (unlikely(ret))
1575                remove_waiter(lock, waiter);
1576
1577        raw_spin_unlock(&lock->wait_lock);
1578
1579        debug_rt_mutex_print_deadlock(waiter);
1580
1581        return ret;
1582}
1583
1584/**
1585 * rt_mutex_next_owner - return the next owner of the lock
1586 *
1587 * @lock: the rt lock query
1588 *
1589 * Returns the next owner of the lock or NULL
1590 *
1591 * Caller has to serialize against other accessors to the lock
1592 * itself.
1593 *
1594 * Special API call for PI-futex support
1595 */
1596struct task_struct *rt_mutex_next_owner(struct rt_mutex *lock)
1597{
1598        if (!rt_mutex_has_waiters(lock))
1599                return NULL;
1600
1601        return rt_mutex_top_waiter(lock)->task;
1602}
1603
1604/**
1605 * rt_mutex_finish_proxy_lock() - Complete lock acquisition
1606 * @lock:               the rt_mutex we were woken on
1607 * @to:                 the timeout, null if none. hrtimer should already have
1608 *                      been started.
1609 * @waiter:             the pre-initialized rt_mutex_waiter
1610 *
1611 * Complete the lock acquisition started our behalf by another thread.
1612 *
1613 * Returns:
1614 *  0 - success
1615 * <0 - error, one of -EINTR, -ETIMEDOUT
1616 *
1617 * Special API call for PI-futex requeue support
1618 */
1619int rt_mutex_finish_proxy_lock(struct rt_mutex *lock,
1620                               struct hrtimer_sleeper *to,
1621                               struct rt_mutex_waiter *waiter)
1622{
1623        int ret;
1624
1625        raw_spin_lock(&lock->wait_lock);
1626
1627        set_current_state(TASK_INTERRUPTIBLE);
1628
1629        ret = __rt_mutex_slowlock(lock, TASK_INTERRUPTIBLE, to, waiter);
1630
1631        set_current_state(TASK_RUNNING);
1632
1633        if (unlikely(ret))
1634                remove_waiter(lock, waiter);
1635
1636        /*
1637         * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
1638         * have to fix that up.
1639         */
1640        fixup_rt_mutex_waiters(lock);
1641
1642        raw_spin_unlock(&lock->wait_lock);
1643
1644        return ret;
1645}
1646