linux/kernel/signal.c
<<
>>
Prefs
   1/*
   2 *  linux/kernel/signal.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 *
   6 *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
   7 *
   8 *  2003-06-02  Jim Houston - Concurrent Computer Corp.
   9 *              Changes to use preallocated sigqueue structures
  10 *              to allow signals to be sent reliably.
  11 */
  12
  13#include <linux/slab.h>
  14#include <linux/export.h>
  15#include <linux/init.h>
  16#include <linux/sched.h>
  17#include <linux/fs.h>
  18#include <linux/tty.h>
  19#include <linux/binfmts.h>
  20#include <linux/coredump.h>
  21#include <linux/security.h>
  22#include <linux/syscalls.h>
  23#include <linux/ptrace.h>
  24#include <linux/signal.h>
  25#include <linux/signalfd.h>
  26#include <linux/ratelimit.h>
  27#include <linux/tracehook.h>
  28#include <linux/capability.h>
  29#include <linux/freezer.h>
  30#include <linux/pid_namespace.h>
  31#include <linux/nsproxy.h>
  32#include <linux/user_namespace.h>
  33#include <linux/uprobes.h>
  34#include <linux/compat.h>
  35#include <linux/cn_proc.h>
  36#include <linux/compiler.h>
  37
  38#define CREATE_TRACE_POINTS
  39#include <trace/events/signal.h>
  40
  41#include <asm/param.h>
  42#include <asm/uaccess.h>
  43#include <asm/unistd.h>
  44#include <asm/siginfo.h>
  45#include <asm/cacheflush.h>
  46#include "audit.h"      /* audit_signal_info() */
  47
  48/*
  49 * SLAB caches for signal bits.
  50 */
  51
  52static struct kmem_cache *sigqueue_cachep;
  53
  54int print_fatal_signals __read_mostly;
  55
  56static void __user *sig_handler(struct task_struct *t, int sig)
  57{
  58        return t->sighand->action[sig - 1].sa.sa_handler;
  59}
  60
  61static int sig_handler_ignored(void __user *handler, int sig)
  62{
  63        /* Is it explicitly or implicitly ignored? */
  64        return handler == SIG_IGN ||
  65                (handler == SIG_DFL && sig_kernel_ignore(sig));
  66}
  67
  68static int sig_task_ignored(struct task_struct *t, int sig, bool force)
  69{
  70        void __user *handler;
  71
  72        handler = sig_handler(t, sig);
  73
  74        if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
  75                        handler == SIG_DFL && !force)
  76                return 1;
  77
  78        return sig_handler_ignored(handler, sig);
  79}
  80
  81static int sig_ignored(struct task_struct *t, int sig, bool force)
  82{
  83        /*
  84         * Blocked signals are never ignored, since the
  85         * signal handler may change by the time it is
  86         * unblocked.
  87         */
  88        if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
  89                return 0;
  90
  91        if (!sig_task_ignored(t, sig, force))
  92                return 0;
  93
  94        /*
  95         * Tracers may want to know about even ignored signals.
  96         */
  97        return !t->ptrace;
  98}
  99
 100/*
 101 * Re-calculate pending state from the set of locally pending
 102 * signals, globally pending signals, and blocked signals.
 103 */
 104static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
 105{
 106        unsigned long ready;
 107        long i;
 108
 109        switch (_NSIG_WORDS) {
 110        default:
 111                for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
 112                        ready |= signal->sig[i] &~ blocked->sig[i];
 113                break;
 114
 115        case 4: ready  = signal->sig[3] &~ blocked->sig[3];
 116                ready |= signal->sig[2] &~ blocked->sig[2];
 117                ready |= signal->sig[1] &~ blocked->sig[1];
 118                ready |= signal->sig[0] &~ blocked->sig[0];
 119                break;
 120
 121        case 2: ready  = signal->sig[1] &~ blocked->sig[1];
 122                ready |= signal->sig[0] &~ blocked->sig[0];
 123                break;
 124
 125        case 1: ready  = signal->sig[0] &~ blocked->sig[0];
 126        }
 127        return ready != 0;
 128}
 129
 130#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
 131
 132static int recalc_sigpending_tsk(struct task_struct *t)
 133{
 134        if ((t->jobctl & JOBCTL_PENDING_MASK) ||
 135            PENDING(&t->pending, &t->blocked) ||
 136            PENDING(&t->signal->shared_pending, &t->blocked)) {
 137                set_tsk_thread_flag(t, TIF_SIGPENDING);
 138                return 1;
 139        }
 140        /*
 141         * We must never clear the flag in another thread, or in current
 142         * when it's possible the current syscall is returning -ERESTART*.
 143         * So we don't clear it here, and only callers who know they should do.
 144         */
 145        return 0;
 146}
 147
 148/*
 149 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
 150 * This is superfluous when called on current, the wakeup is a harmless no-op.
 151 */
 152void recalc_sigpending_and_wake(struct task_struct *t)
 153{
 154        if (recalc_sigpending_tsk(t))
 155                signal_wake_up(t, 0);
 156}
 157
 158void recalc_sigpending(void)
 159{
 160        if (!recalc_sigpending_tsk(current) && !freezing(current))
 161                clear_thread_flag(TIF_SIGPENDING);
 162
 163}
 164
 165/* Given the mask, find the first available signal that should be serviced. */
 166
 167#define SYNCHRONOUS_MASK \
 168        (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
 169         sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
 170
 171int next_signal(struct sigpending *pending, sigset_t *mask)
 172{
 173        unsigned long i, *s, *m, x;
 174        int sig = 0;
 175
 176        s = pending->signal.sig;
 177        m = mask->sig;
 178
 179        /*
 180         * Handle the first word specially: it contains the
 181         * synchronous signals that need to be dequeued first.
 182         */
 183        x = *s &~ *m;
 184        if (x) {
 185                if (x & SYNCHRONOUS_MASK)
 186                        x &= SYNCHRONOUS_MASK;
 187                sig = ffz(~x) + 1;
 188                return sig;
 189        }
 190
 191        switch (_NSIG_WORDS) {
 192        default:
 193                for (i = 1; i < _NSIG_WORDS; ++i) {
 194                        x = *++s &~ *++m;
 195                        if (!x)
 196                                continue;
 197                        sig = ffz(~x) + i*_NSIG_BPW + 1;
 198                        break;
 199                }
 200                break;
 201
 202        case 2:
 203                x = s[1] &~ m[1];
 204                if (!x)
 205                        break;
 206                sig = ffz(~x) + _NSIG_BPW + 1;
 207                break;
 208
 209        case 1:
 210                /* Nothing to do */
 211                break;
 212        }
 213
 214        return sig;
 215}
 216
 217static inline void print_dropped_signal(int sig)
 218{
 219        static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
 220
 221        if (!print_fatal_signals)
 222                return;
 223
 224        if (!__ratelimit(&ratelimit_state))
 225                return;
 226
 227        printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
 228                                current->comm, current->pid, sig);
 229}
 230
 231/**
 232 * task_set_jobctl_pending - set jobctl pending bits
 233 * @task: target task
 234 * @mask: pending bits to set
 235 *
 236 * Clear @mask from @task->jobctl.  @mask must be subset of
 237 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
 238 * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
 239 * cleared.  If @task is already being killed or exiting, this function
 240 * becomes noop.
 241 *
 242 * CONTEXT:
 243 * Must be called with @task->sighand->siglock held.
 244 *
 245 * RETURNS:
 246 * %true if @mask is set, %false if made noop because @task was dying.
 247 */
 248bool task_set_jobctl_pending(struct task_struct *task, unsigned int mask)
 249{
 250        BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
 251                        JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
 252        BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
 253
 254        if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
 255                return false;
 256
 257        if (mask & JOBCTL_STOP_SIGMASK)
 258                task->jobctl &= ~JOBCTL_STOP_SIGMASK;
 259
 260        task->jobctl |= mask;
 261        return true;
 262}
 263
 264/**
 265 * task_clear_jobctl_trapping - clear jobctl trapping bit
 266 * @task: target task
 267 *
 268 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
 269 * Clear it and wake up the ptracer.  Note that we don't need any further
 270 * locking.  @task->siglock guarantees that @task->parent points to the
 271 * ptracer.
 272 *
 273 * CONTEXT:
 274 * Must be called with @task->sighand->siglock held.
 275 */
 276void task_clear_jobctl_trapping(struct task_struct *task)
 277{
 278        if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
 279                task->jobctl &= ~JOBCTL_TRAPPING;
 280                smp_mb();       /* advised by wake_up_bit() */
 281                wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
 282        }
 283}
 284
 285/**
 286 * task_clear_jobctl_pending - clear jobctl pending bits
 287 * @task: target task
 288 * @mask: pending bits to clear
 289 *
 290 * Clear @mask from @task->jobctl.  @mask must be subset of
 291 * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
 292 * STOP bits are cleared together.
 293 *
 294 * If clearing of @mask leaves no stop or trap pending, this function calls
 295 * task_clear_jobctl_trapping().
 296 *
 297 * CONTEXT:
 298 * Must be called with @task->sighand->siglock held.
 299 */
 300void task_clear_jobctl_pending(struct task_struct *task, unsigned int mask)
 301{
 302        BUG_ON(mask & ~JOBCTL_PENDING_MASK);
 303
 304        if (mask & JOBCTL_STOP_PENDING)
 305                mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
 306
 307        task->jobctl &= ~mask;
 308
 309        if (!(task->jobctl & JOBCTL_PENDING_MASK))
 310                task_clear_jobctl_trapping(task);
 311}
 312
 313/**
 314 * task_participate_group_stop - participate in a group stop
 315 * @task: task participating in a group stop
 316 *
 317 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
 318 * Group stop states are cleared and the group stop count is consumed if
 319 * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
 320 * stop, the appropriate %SIGNAL_* flags are set.
 321 *
 322 * CONTEXT:
 323 * Must be called with @task->sighand->siglock held.
 324 *
 325 * RETURNS:
 326 * %true if group stop completion should be notified to the parent, %false
 327 * otherwise.
 328 */
 329static bool task_participate_group_stop(struct task_struct *task)
 330{
 331        struct signal_struct *sig = task->signal;
 332        bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
 333
 334        WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
 335
 336        task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
 337
 338        if (!consume)
 339                return false;
 340
 341        if (!WARN_ON_ONCE(sig->group_stop_count == 0))
 342                sig->group_stop_count--;
 343
 344        /*
 345         * Tell the caller to notify completion iff we are entering into a
 346         * fresh group stop.  Read comment in do_signal_stop() for details.
 347         */
 348        if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
 349                sig->flags = SIGNAL_STOP_STOPPED;
 350                return true;
 351        }
 352        return false;
 353}
 354
 355/*
 356 * allocate a new signal queue record
 357 * - this may be called without locks if and only if t == current, otherwise an
 358 *   appropriate lock must be held to stop the target task from exiting
 359 */
 360static struct sigqueue *
 361__sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
 362{
 363        struct sigqueue *q = NULL;
 364        struct user_struct *user;
 365
 366        /*
 367         * Protect access to @t credentials. This can go away when all
 368         * callers hold rcu read lock.
 369         */
 370        rcu_read_lock();
 371        user = get_uid(__task_cred(t)->user);
 372        atomic_inc(&user->sigpending);
 373        rcu_read_unlock();
 374
 375        if (override_rlimit ||
 376            atomic_read(&user->sigpending) <=
 377                        task_rlimit(t, RLIMIT_SIGPENDING)) {
 378                q = kmem_cache_alloc(sigqueue_cachep, flags);
 379        } else {
 380                print_dropped_signal(sig);
 381        }
 382
 383        if (unlikely(q == NULL)) {
 384                atomic_dec(&user->sigpending);
 385                free_uid(user);
 386        } else {
 387                INIT_LIST_HEAD(&q->list);
 388                q->flags = 0;
 389                q->user = user;
 390        }
 391
 392        return q;
 393}
 394
 395static void __sigqueue_free(struct sigqueue *q)
 396{
 397        if (q->flags & SIGQUEUE_PREALLOC)
 398                return;
 399        atomic_dec(&q->user->sigpending);
 400        free_uid(q->user);
 401        kmem_cache_free(sigqueue_cachep, q);
 402}
 403
 404void flush_sigqueue(struct sigpending *queue)
 405{
 406        struct sigqueue *q;
 407
 408        sigemptyset(&queue->signal);
 409        while (!list_empty(&queue->list)) {
 410                q = list_entry(queue->list.next, struct sigqueue , list);
 411                list_del_init(&q->list);
 412                __sigqueue_free(q);
 413        }
 414}
 415
 416/*
 417 * Flush all pending signals for a task.
 418 */
 419void __flush_signals(struct task_struct *t)
 420{
 421        clear_tsk_thread_flag(t, TIF_SIGPENDING);
 422        flush_sigqueue(&t->pending);
 423        flush_sigqueue(&t->signal->shared_pending);
 424}
 425
 426void flush_signals(struct task_struct *t)
 427{
 428        unsigned long flags;
 429
 430        spin_lock_irqsave(&t->sighand->siglock, flags);
 431        __flush_signals(t);
 432        spin_unlock_irqrestore(&t->sighand->siglock, flags);
 433}
 434
 435static void __flush_itimer_signals(struct sigpending *pending)
 436{
 437        sigset_t signal, retain;
 438        struct sigqueue *q, *n;
 439
 440        signal = pending->signal;
 441        sigemptyset(&retain);
 442
 443        list_for_each_entry_safe(q, n, &pending->list, list) {
 444                int sig = q->info.si_signo;
 445
 446                if (likely(q->info.si_code != SI_TIMER)) {
 447                        sigaddset(&retain, sig);
 448                } else {
 449                        sigdelset(&signal, sig);
 450                        list_del_init(&q->list);
 451                        __sigqueue_free(q);
 452                }
 453        }
 454
 455        sigorsets(&pending->signal, &signal, &retain);
 456}
 457
 458void flush_itimer_signals(void)
 459{
 460        struct task_struct *tsk = current;
 461        unsigned long flags;
 462
 463        spin_lock_irqsave(&tsk->sighand->siglock, flags);
 464        __flush_itimer_signals(&tsk->pending);
 465        __flush_itimer_signals(&tsk->signal->shared_pending);
 466        spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
 467}
 468
 469void ignore_signals(struct task_struct *t)
 470{
 471        int i;
 472
 473        for (i = 0; i < _NSIG; ++i)
 474                t->sighand->action[i].sa.sa_handler = SIG_IGN;
 475
 476        flush_signals(t);
 477}
 478
 479/*
 480 * Flush all handlers for a task.
 481 */
 482
 483void
 484flush_signal_handlers(struct task_struct *t, int force_default)
 485{
 486        int i;
 487        struct k_sigaction *ka = &t->sighand->action[0];
 488        for (i = _NSIG ; i != 0 ; i--) {
 489                if (force_default || ka->sa.sa_handler != SIG_IGN)
 490                        ka->sa.sa_handler = SIG_DFL;
 491                ka->sa.sa_flags = 0;
 492#ifdef __ARCH_HAS_SA_RESTORER
 493                ka->sa.sa_restorer = NULL;
 494#endif
 495                sigemptyset(&ka->sa.sa_mask);
 496                ka++;
 497        }
 498}
 499
 500int unhandled_signal(struct task_struct *tsk, int sig)
 501{
 502        void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
 503        if (is_global_init(tsk))
 504                return 1;
 505        if (handler != SIG_IGN && handler != SIG_DFL)
 506                return 0;
 507        /* if ptraced, let the tracer determine */
 508        return !tsk->ptrace;
 509}
 510
 511/*
 512 * Notify the system that a driver wants to block all signals for this
 513 * process, and wants to be notified if any signals at all were to be
 514 * sent/acted upon.  If the notifier routine returns non-zero, then the
 515 * signal will be acted upon after all.  If the notifier routine returns 0,
 516 * then then signal will be blocked.  Only one block per process is
 517 * allowed.  priv is a pointer to private data that the notifier routine
 518 * can use to determine if the signal should be blocked or not.
 519 */
 520void
 521block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
 522{
 523        unsigned long flags;
 524
 525        spin_lock_irqsave(&current->sighand->siglock, flags);
 526        current->notifier_mask = mask;
 527        current->notifier_data = priv;
 528        current->notifier = notifier;
 529        spin_unlock_irqrestore(&current->sighand->siglock, flags);
 530}
 531
 532/* Notify the system that blocking has ended. */
 533
 534void
 535unblock_all_signals(void)
 536{
 537        unsigned long flags;
 538
 539        spin_lock_irqsave(&current->sighand->siglock, flags);
 540        current->notifier = NULL;
 541        current->notifier_data = NULL;
 542        recalc_sigpending();
 543        spin_unlock_irqrestore(&current->sighand->siglock, flags);
 544}
 545
 546static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
 547{
 548        struct sigqueue *q, *first = NULL;
 549
 550        /*
 551         * Collect the siginfo appropriate to this signal.  Check if
 552         * there is another siginfo for the same signal.
 553        */
 554        list_for_each_entry(q, &list->list, list) {
 555                if (q->info.si_signo == sig) {
 556                        if (first)
 557                                goto still_pending;
 558                        first = q;
 559                }
 560        }
 561
 562        sigdelset(&list->signal, sig);
 563
 564        if (first) {
 565still_pending:
 566                list_del_init(&first->list);
 567                copy_siginfo(info, &first->info);
 568                __sigqueue_free(first);
 569        } else {
 570                /*
 571                 * Ok, it wasn't in the queue.  This must be
 572                 * a fast-pathed signal or we must have been
 573                 * out of queue space.  So zero out the info.
 574                 */
 575                info->si_signo = sig;
 576                info->si_errno = 0;
 577                info->si_code = SI_USER;
 578                info->si_pid = 0;
 579                info->si_uid = 0;
 580        }
 581}
 582
 583static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
 584                        siginfo_t *info)
 585{
 586        int sig = next_signal(pending, mask);
 587
 588        if (sig) {
 589                if (current->notifier) {
 590                        if (sigismember(current->notifier_mask, sig)) {
 591                                if (!(current->notifier)(current->notifier_data)) {
 592                                        clear_thread_flag(TIF_SIGPENDING);
 593                                        return 0;
 594                                }
 595                        }
 596                }
 597
 598                collect_signal(sig, pending, info);
 599        }
 600
 601        return sig;
 602}
 603
 604/*
 605 * Dequeue a signal and return the element to the caller, which is
 606 * expected to free it.
 607 *
 608 * All callers have to hold the siglock.
 609 */
 610int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
 611{
 612        int signr;
 613
 614        /* We only dequeue private signals from ourselves, we don't let
 615         * signalfd steal them
 616         */
 617        signr = __dequeue_signal(&tsk->pending, mask, info);
 618        if (!signr) {
 619                signr = __dequeue_signal(&tsk->signal->shared_pending,
 620                                         mask, info);
 621                /*
 622                 * itimer signal ?
 623                 *
 624                 * itimers are process shared and we restart periodic
 625                 * itimers in the signal delivery path to prevent DoS
 626                 * attacks in the high resolution timer case. This is
 627                 * compliant with the old way of self-restarting
 628                 * itimers, as the SIGALRM is a legacy signal and only
 629                 * queued once. Changing the restart behaviour to
 630                 * restart the timer in the signal dequeue path is
 631                 * reducing the timer noise on heavy loaded !highres
 632                 * systems too.
 633                 */
 634                if (unlikely(signr == SIGALRM)) {
 635                        struct hrtimer *tmr = &tsk->signal->real_timer;
 636
 637                        if (!hrtimer_is_queued(tmr) &&
 638                            tsk->signal->it_real_incr.tv64 != 0) {
 639                                hrtimer_forward(tmr, tmr->base->get_time(),
 640                                                tsk->signal->it_real_incr);
 641                                hrtimer_restart(tmr);
 642                        }
 643                }
 644        }
 645
 646        recalc_sigpending();
 647        if (!signr)
 648                return 0;
 649
 650        if (unlikely(sig_kernel_stop(signr))) {
 651                /*
 652                 * Set a marker that we have dequeued a stop signal.  Our
 653                 * caller might release the siglock and then the pending
 654                 * stop signal it is about to process is no longer in the
 655                 * pending bitmasks, but must still be cleared by a SIGCONT
 656                 * (and overruled by a SIGKILL).  So those cases clear this
 657                 * shared flag after we've set it.  Note that this flag may
 658                 * remain set after the signal we return is ignored or
 659                 * handled.  That doesn't matter because its only purpose
 660                 * is to alert stop-signal processing code when another
 661                 * processor has come along and cleared the flag.
 662                 */
 663                current->jobctl |= JOBCTL_STOP_DEQUEUED;
 664        }
 665        if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
 666                /*
 667                 * Release the siglock to ensure proper locking order
 668                 * of timer locks outside of siglocks.  Note, we leave
 669                 * irqs disabled here, since the posix-timers code is
 670                 * about to disable them again anyway.
 671                 */
 672                spin_unlock(&tsk->sighand->siglock);
 673                do_schedule_next_timer(info);
 674                spin_lock(&tsk->sighand->siglock);
 675        }
 676        return signr;
 677}
 678
 679/*
 680 * Tell a process that it has a new active signal..
 681 *
 682 * NOTE! we rely on the previous spin_lock to
 683 * lock interrupts for us! We can only be called with
 684 * "siglock" held, and the local interrupt must
 685 * have been disabled when that got acquired!
 686 *
 687 * No need to set need_resched since signal event passing
 688 * goes through ->blocked
 689 */
 690void signal_wake_up_state(struct task_struct *t, unsigned int state)
 691{
 692        set_tsk_thread_flag(t, TIF_SIGPENDING);
 693        /*
 694         * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
 695         * case. We don't check t->state here because there is a race with it
 696         * executing another processor and just now entering stopped state.
 697         * By using wake_up_state, we ensure the process will wake up and
 698         * handle its death signal.
 699         */
 700        if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
 701                kick_process(t);
 702}
 703
 704/*
 705 * Remove signals in mask from the pending set and queue.
 706 * Returns 1 if any signals were found.
 707 *
 708 * All callers must be holding the siglock.
 709 */
 710static int flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
 711{
 712        struct sigqueue *q, *n;
 713        sigset_t m;
 714
 715        sigandsets(&m, mask, &s->signal);
 716        if (sigisemptyset(&m))
 717                return 0;
 718
 719        sigandnsets(&s->signal, &s->signal, mask);
 720        list_for_each_entry_safe(q, n, &s->list, list) {
 721                if (sigismember(mask, q->info.si_signo)) {
 722                        list_del_init(&q->list);
 723                        __sigqueue_free(q);
 724                }
 725        }
 726        return 1;
 727}
 728
 729static inline int is_si_special(const struct siginfo *info)
 730{
 731        return info <= SEND_SIG_FORCED;
 732}
 733
 734static inline bool si_fromuser(const struct siginfo *info)
 735{
 736        return info == SEND_SIG_NOINFO ||
 737                (!is_si_special(info) && SI_FROMUSER(info));
 738}
 739
 740/*
 741 * called with RCU read lock from check_kill_permission()
 742 */
 743static int kill_ok_by_cred(struct task_struct *t)
 744{
 745        const struct cred *cred = current_cred();
 746        const struct cred *tcred = __task_cred(t);
 747
 748        if (uid_eq(cred->euid, tcred->suid) ||
 749            uid_eq(cred->euid, tcred->uid)  ||
 750            uid_eq(cred->uid,  tcred->suid) ||
 751            uid_eq(cred->uid,  tcred->uid))
 752                return 1;
 753
 754        if (ns_capable(tcred->user_ns, CAP_KILL))
 755                return 1;
 756
 757        return 0;
 758}
 759
 760/*
 761 * Bad permissions for sending the signal
 762 * - the caller must hold the RCU read lock
 763 */
 764static int check_kill_permission(int sig, struct siginfo *info,
 765                                 struct task_struct *t)
 766{
 767        struct pid *sid;
 768        int error;
 769
 770        if (!valid_signal(sig))
 771                return -EINVAL;
 772
 773        if (!si_fromuser(info))
 774                return 0;
 775
 776        error = audit_signal_info(sig, t); /* Let audit system see the signal */
 777        if (error)
 778                return error;
 779
 780        if (!same_thread_group(current, t) &&
 781            !kill_ok_by_cred(t)) {
 782                switch (sig) {
 783                case SIGCONT:
 784                        sid = task_session(t);
 785                        /*
 786                         * We don't return the error if sid == NULL. The
 787                         * task was unhashed, the caller must notice this.
 788                         */
 789                        if (!sid || sid == task_session(current))
 790                                break;
 791                default:
 792                        return -EPERM;
 793                }
 794        }
 795
 796        return security_task_kill(t, info, sig, 0);
 797}
 798
 799/**
 800 * ptrace_trap_notify - schedule trap to notify ptracer
 801 * @t: tracee wanting to notify tracer
 802 *
 803 * This function schedules sticky ptrace trap which is cleared on the next
 804 * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
 805 * ptracer.
 806 *
 807 * If @t is running, STOP trap will be taken.  If trapped for STOP and
 808 * ptracer is listening for events, tracee is woken up so that it can
 809 * re-trap for the new event.  If trapped otherwise, STOP trap will be
 810 * eventually taken without returning to userland after the existing traps
 811 * are finished by PTRACE_CONT.
 812 *
 813 * CONTEXT:
 814 * Must be called with @task->sighand->siglock held.
 815 */
 816static void ptrace_trap_notify(struct task_struct *t)
 817{
 818        WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
 819        assert_spin_locked(&t->sighand->siglock);
 820
 821        task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
 822        ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
 823}
 824
 825/*
 826 * Handle magic process-wide effects of stop/continue signals. Unlike
 827 * the signal actions, these happen immediately at signal-generation
 828 * time regardless of blocking, ignoring, or handling.  This does the
 829 * actual continuing for SIGCONT, but not the actual stopping for stop
 830 * signals. The process stop is done as a signal action for SIG_DFL.
 831 *
 832 * Returns true if the signal should be actually delivered, otherwise
 833 * it should be dropped.
 834 */
 835static bool prepare_signal(int sig, struct task_struct *p, bool force)
 836{
 837        struct signal_struct *signal = p->signal;
 838        struct task_struct *t;
 839        sigset_t flush;
 840
 841        if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
 842                if (signal->flags & SIGNAL_GROUP_COREDUMP)
 843                        return sig == SIGKILL;
 844                /*
 845                 * The process is in the middle of dying, nothing to do.
 846                 */
 847        } else if (sig_kernel_stop(sig)) {
 848                /*
 849                 * This is a stop signal.  Remove SIGCONT from all queues.
 850                 */
 851                siginitset(&flush, sigmask(SIGCONT));
 852                flush_sigqueue_mask(&flush, &signal->shared_pending);
 853                for_each_thread(p, t)
 854                        flush_sigqueue_mask(&flush, &t->pending);
 855        } else if (sig == SIGCONT) {
 856                unsigned int why;
 857                /*
 858                 * Remove all stop signals from all queues, wake all threads.
 859                 */
 860                siginitset(&flush, SIG_KERNEL_STOP_MASK);
 861                flush_sigqueue_mask(&flush, &signal->shared_pending);
 862                for_each_thread(p, t) {
 863                        flush_sigqueue_mask(&flush, &t->pending);
 864                        task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
 865                        if (likely(!(t->ptrace & PT_SEIZED)))
 866                                wake_up_state(t, __TASK_STOPPED);
 867                        else
 868                                ptrace_trap_notify(t);
 869                }
 870
 871                /*
 872                 * Notify the parent with CLD_CONTINUED if we were stopped.
 873                 *
 874                 * If we were in the middle of a group stop, we pretend it
 875                 * was already finished, and then continued. Since SIGCHLD
 876                 * doesn't queue we report only CLD_STOPPED, as if the next
 877                 * CLD_CONTINUED was dropped.
 878                 */
 879                why = 0;
 880                if (signal->flags & SIGNAL_STOP_STOPPED)
 881                        why |= SIGNAL_CLD_CONTINUED;
 882                else if (signal->group_stop_count)
 883                        why |= SIGNAL_CLD_STOPPED;
 884
 885                if (why) {
 886                        /*
 887                         * The first thread which returns from do_signal_stop()
 888                         * will take ->siglock, notice SIGNAL_CLD_MASK, and
 889                         * notify its parent. See get_signal_to_deliver().
 890                         */
 891                        signal->flags = why | SIGNAL_STOP_CONTINUED;
 892                        signal->group_stop_count = 0;
 893                        signal->group_exit_code = 0;
 894                }
 895        }
 896
 897        return !sig_ignored(p, sig, force);
 898}
 899
 900/*
 901 * Test if P wants to take SIG.  After we've checked all threads with this,
 902 * it's equivalent to finding no threads not blocking SIG.  Any threads not
 903 * blocking SIG were ruled out because they are not running and already
 904 * have pending signals.  Such threads will dequeue from the shared queue
 905 * as soon as they're available, so putting the signal on the shared queue
 906 * will be equivalent to sending it to one such thread.
 907 */
 908static inline int wants_signal(int sig, struct task_struct *p)
 909{
 910        if (sigismember(&p->blocked, sig))
 911                return 0;
 912        if (p->flags & PF_EXITING)
 913                return 0;
 914        if (sig == SIGKILL)
 915                return 1;
 916        if (task_is_stopped_or_traced(p))
 917                return 0;
 918        return task_curr(p) || !signal_pending(p);
 919}
 920
 921static void complete_signal(int sig, struct task_struct *p, int group)
 922{
 923        struct signal_struct *signal = p->signal;
 924        struct task_struct *t;
 925
 926        /*
 927         * Now find a thread we can wake up to take the signal off the queue.
 928         *
 929         * If the main thread wants the signal, it gets first crack.
 930         * Probably the least surprising to the average bear.
 931         */
 932        if (wants_signal(sig, p))
 933                t = p;
 934        else if (!group || thread_group_empty(p))
 935                /*
 936                 * There is just one thread and it does not need to be woken.
 937                 * It will dequeue unblocked signals before it runs again.
 938                 */
 939                return;
 940        else {
 941                /*
 942                 * Otherwise try to find a suitable thread.
 943                 */
 944                t = signal->curr_target;
 945                while (!wants_signal(sig, t)) {
 946                        t = next_thread(t);
 947                        if (t == signal->curr_target)
 948                                /*
 949                                 * No thread needs to be woken.
 950                                 * Any eligible threads will see
 951                                 * the signal in the queue soon.
 952                                 */
 953                                return;
 954                }
 955                signal->curr_target = t;
 956        }
 957
 958        /*
 959         * Found a killable thread.  If the signal will be fatal,
 960         * then start taking the whole group down immediately.
 961         */
 962        if (sig_fatal(p, sig) &&
 963            !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
 964            !sigismember(&t->real_blocked, sig) &&
 965            (sig == SIGKILL || !t->ptrace)) {
 966                /*
 967                 * This signal will be fatal to the whole group.
 968                 */
 969                if (!sig_kernel_coredump(sig)) {
 970                        /*
 971                         * Start a group exit and wake everybody up.
 972                         * This way we don't have other threads
 973                         * running and doing things after a slower
 974                         * thread has the fatal signal pending.
 975                         */
 976                        signal->flags = SIGNAL_GROUP_EXIT;
 977                        signal->group_exit_code = sig;
 978                        signal->group_stop_count = 0;
 979                        t = p;
 980                        do {
 981                                task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
 982                                sigaddset(&t->pending.signal, SIGKILL);
 983                                signal_wake_up(t, 1);
 984                        } while_each_thread(p, t);
 985                        return;
 986                }
 987        }
 988
 989        /*
 990         * The signal is already in the shared-pending queue.
 991         * Tell the chosen thread to wake up and dequeue it.
 992         */
 993        signal_wake_up(t, sig == SIGKILL);
 994        return;
 995}
 996
 997static inline int legacy_queue(struct sigpending *signals, int sig)
 998{
 999        return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1000}
1001
1002#ifdef CONFIG_USER_NS
1003static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1004{
1005        if (current_user_ns() == task_cred_xxx(t, user_ns))
1006                return;
1007
1008        if (SI_FROMKERNEL(info))
1009                return;
1010
1011        rcu_read_lock();
1012        info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
1013                                        make_kuid(current_user_ns(), info->si_uid));
1014        rcu_read_unlock();
1015}
1016#else
1017static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1018{
1019        return;
1020}
1021#endif
1022
1023static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
1024                        int group, int from_ancestor_ns)
1025{
1026        struct sigpending *pending;
1027        struct sigqueue *q;
1028        int override_rlimit;
1029        int ret = 0, result;
1030
1031        assert_spin_locked(&t->sighand->siglock);
1032
1033        result = TRACE_SIGNAL_IGNORED;
1034        if (!prepare_signal(sig, t,
1035                        from_ancestor_ns || (info == SEND_SIG_FORCED)))
1036                goto ret;
1037
1038        pending = group ? &t->signal->shared_pending : &t->pending;
1039        /*
1040         * Short-circuit ignored signals and support queuing
1041         * exactly one non-rt signal, so that we can get more
1042         * detailed information about the cause of the signal.
1043         */
1044        result = TRACE_SIGNAL_ALREADY_PENDING;
1045        if (legacy_queue(pending, sig))
1046                goto ret;
1047
1048        result = TRACE_SIGNAL_DELIVERED;
1049        /*
1050         * fast-pathed signals for kernel-internal things like SIGSTOP
1051         * or SIGKILL.
1052         */
1053        if (info == SEND_SIG_FORCED)
1054                goto out_set;
1055
1056        /*
1057         * Real-time signals must be queued if sent by sigqueue, or
1058         * some other real-time mechanism.  It is implementation
1059         * defined whether kill() does so.  We attempt to do so, on
1060         * the principle of least surprise, but since kill is not
1061         * allowed to fail with EAGAIN when low on memory we just
1062         * make sure at least one signal gets delivered and don't
1063         * pass on the info struct.
1064         */
1065        if (sig < SIGRTMIN)
1066                override_rlimit = (is_si_special(info) || info->si_code >= 0);
1067        else
1068                override_rlimit = 0;
1069
1070        q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
1071                override_rlimit);
1072        if (q) {
1073                list_add_tail(&q->list, &pending->list);
1074                switch ((unsigned long) info) {
1075                case (unsigned long) SEND_SIG_NOINFO:
1076                        q->info.si_signo = sig;
1077                        q->info.si_errno = 0;
1078                        q->info.si_code = SI_USER;
1079                        q->info.si_pid = task_tgid_nr_ns(current,
1080                                                        task_active_pid_ns(t));
1081                        q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1082                        break;
1083                case (unsigned long) SEND_SIG_PRIV:
1084                        q->info.si_signo = sig;
1085                        q->info.si_errno = 0;
1086                        q->info.si_code = SI_KERNEL;
1087                        q->info.si_pid = 0;
1088                        q->info.si_uid = 0;
1089                        break;
1090                default:
1091                        copy_siginfo(&q->info, info);
1092                        if (from_ancestor_ns)
1093                                q->info.si_pid = 0;
1094                        break;
1095                }
1096
1097                userns_fixup_signal_uid(&q->info, t);
1098
1099        } else if (!is_si_special(info)) {
1100                if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1101                        /*
1102                         * Queue overflow, abort.  We may abort if the
1103                         * signal was rt and sent by user using something
1104                         * other than kill().
1105                         */
1106                        result = TRACE_SIGNAL_OVERFLOW_FAIL;
1107                        ret = -EAGAIN;
1108                        goto ret;
1109                } else {
1110                        /*
1111                         * This is a silent loss of information.  We still
1112                         * send the signal, but the *info bits are lost.
1113                         */
1114                        result = TRACE_SIGNAL_LOSE_INFO;
1115                }
1116        }
1117
1118out_set:
1119        signalfd_notify(t, sig);
1120        sigaddset(&pending->signal, sig);
1121        complete_signal(sig, t, group);
1122ret:
1123        trace_signal_generate(sig, info, t, group, result);
1124        return ret;
1125}
1126
1127static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1128                        int group)
1129{
1130        int from_ancestor_ns = 0;
1131
1132#ifdef CONFIG_PID_NS
1133        from_ancestor_ns = si_fromuser(info) &&
1134                           !task_pid_nr_ns(current, task_active_pid_ns(t));
1135#endif
1136
1137        return __send_signal(sig, info, t, group, from_ancestor_ns);
1138}
1139
1140static void print_fatal_signal(int signr)
1141{
1142        struct pt_regs *regs = signal_pt_regs();
1143        printk(KERN_INFO "potentially unexpected fatal signal %d.\n", signr);
1144
1145#if defined(__i386__) && !defined(__arch_um__)
1146        printk(KERN_INFO "code at %08lx: ", regs->ip);
1147        {
1148                int i;
1149                for (i = 0; i < 16; i++) {
1150                        unsigned char insn;
1151
1152                        if (get_user(insn, (unsigned char *)(regs->ip + i)))
1153                                break;
1154                        printk(KERN_CONT "%02x ", insn);
1155                }
1156        }
1157        printk(KERN_CONT "\n");
1158#endif
1159        preempt_disable();
1160        show_regs(regs);
1161        preempt_enable();
1162}
1163
1164static int __init setup_print_fatal_signals(char *str)
1165{
1166        get_option (&str, &print_fatal_signals);
1167
1168        return 1;
1169}
1170
1171__setup("print-fatal-signals=", setup_print_fatal_signals);
1172
1173int
1174__group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1175{
1176        return send_signal(sig, info, p, 1);
1177}
1178
1179static int
1180specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1181{
1182        return send_signal(sig, info, t, 0);
1183}
1184
1185int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1186                        bool group)
1187{
1188        unsigned long flags;
1189        int ret = -ESRCH;
1190
1191        if (lock_task_sighand(p, &flags)) {
1192                ret = send_signal(sig, info, p, group);
1193                unlock_task_sighand(p, &flags);
1194        }
1195
1196        return ret;
1197}
1198
1199/*
1200 * Force a signal that the process can't ignore: if necessary
1201 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1202 *
1203 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1204 * since we do not want to have a signal handler that was blocked
1205 * be invoked when user space had explicitly blocked it.
1206 *
1207 * We don't want to have recursive SIGSEGV's etc, for example,
1208 * that is why we also clear SIGNAL_UNKILLABLE.
1209 */
1210int
1211force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1212{
1213        unsigned long int flags;
1214        int ret, blocked, ignored;
1215        struct k_sigaction *action;
1216
1217        spin_lock_irqsave(&t->sighand->siglock, flags);
1218        action = &t->sighand->action[sig-1];
1219        ignored = action->sa.sa_handler == SIG_IGN;
1220        blocked = sigismember(&t->blocked, sig);
1221        if (blocked || ignored) {
1222                action->sa.sa_handler = SIG_DFL;
1223                if (blocked) {
1224                        sigdelset(&t->blocked, sig);
1225                        recalc_sigpending_and_wake(t);
1226                }
1227        }
1228        if (action->sa.sa_handler == SIG_DFL)
1229                t->signal->flags &= ~SIGNAL_UNKILLABLE;
1230        ret = specific_send_sig_info(sig, info, t);
1231        spin_unlock_irqrestore(&t->sighand->siglock, flags);
1232
1233        return ret;
1234}
1235
1236/*
1237 * Nuke all other threads in the group.
1238 */
1239int zap_other_threads(struct task_struct *p)
1240{
1241        struct task_struct *t = p;
1242        int count = 0;
1243
1244        p->signal->group_stop_count = 0;
1245
1246        while_each_thread(p, t) {
1247                task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1248                count++;
1249
1250                /* Don't bother with already dead threads */
1251                if (t->exit_state)
1252                        continue;
1253                sigaddset(&t->pending.signal, SIGKILL);
1254                signal_wake_up(t, 1);
1255        }
1256
1257        return count;
1258}
1259
1260struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1261                                           unsigned long *flags)
1262{
1263        struct sighand_struct *sighand;
1264
1265        for (;;) {
1266                /*
1267                 * Disable interrupts early to avoid deadlocks.
1268                 * See rcu_read_unlock() comment header for details.
1269                 */
1270                local_irq_save(*flags);
1271                rcu_read_lock();
1272                sighand = rcu_dereference(tsk->sighand);
1273                if (unlikely(sighand == NULL)) {
1274                        rcu_read_unlock();
1275                        local_irq_restore(*flags);
1276                        break;
1277                }
1278
1279                spin_lock(&sighand->siglock);
1280                if (likely(sighand == tsk->sighand)) {
1281                        rcu_read_unlock();
1282                        break;
1283                }
1284                spin_unlock(&sighand->siglock);
1285                rcu_read_unlock();
1286                local_irq_restore(*flags);
1287        }
1288
1289        return sighand;
1290}
1291
1292/*
1293 * send signal info to all the members of a group
1294 */
1295int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1296{
1297        int ret;
1298
1299        rcu_read_lock();
1300        ret = check_kill_permission(sig, info, p);
1301        rcu_read_unlock();
1302
1303        if (!ret && sig)
1304                ret = do_send_sig_info(sig, info, p, true);
1305
1306        return ret;
1307}
1308
1309/*
1310 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1311 * control characters do (^C, ^Z etc)
1312 * - the caller must hold at least a readlock on tasklist_lock
1313 */
1314int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1315{
1316        struct task_struct *p = NULL;
1317        int retval, success;
1318
1319        success = 0;
1320        retval = -ESRCH;
1321        do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1322                int err = group_send_sig_info(sig, info, p);
1323                success |= !err;
1324                retval = err;
1325        } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1326        return success ? 0 : retval;
1327}
1328
1329int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1330{
1331        int error = -ESRCH;
1332        struct task_struct *p;
1333
1334        rcu_read_lock();
1335retry:
1336        p = pid_task(pid, PIDTYPE_PID);
1337        if (p) {
1338                error = group_send_sig_info(sig, info, p);
1339                if (unlikely(error == -ESRCH))
1340                        /*
1341                         * The task was unhashed in between, try again.
1342                         * If it is dead, pid_task() will return NULL,
1343                         * if we race with de_thread() it will find the
1344                         * new leader.
1345                         */
1346                        goto retry;
1347        }
1348        rcu_read_unlock();
1349
1350        return error;
1351}
1352
1353int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1354{
1355        int error;
1356        rcu_read_lock();
1357        error = kill_pid_info(sig, info, find_vpid(pid));
1358        rcu_read_unlock();
1359        return error;
1360}
1361
1362static int kill_as_cred_perm(const struct cred *cred,
1363                             struct task_struct *target)
1364{
1365        const struct cred *pcred = __task_cred(target);
1366        if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) &&
1367            !uid_eq(cred->uid,  pcred->suid) && !uid_eq(cred->uid,  pcred->uid))
1368                return 0;
1369        return 1;
1370}
1371
1372/* like kill_pid_info(), but doesn't use uid/euid of "current" */
1373int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
1374                         const struct cred *cred, u32 secid)
1375{
1376        int ret = -EINVAL;
1377        struct task_struct *p;
1378        unsigned long flags;
1379
1380        if (!valid_signal(sig))
1381                return ret;
1382
1383        rcu_read_lock();
1384        p = pid_task(pid, PIDTYPE_PID);
1385        if (!p) {
1386                ret = -ESRCH;
1387                goto out_unlock;
1388        }
1389        if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1390                ret = -EPERM;
1391                goto out_unlock;
1392        }
1393        ret = security_task_kill(p, info, sig, secid);
1394        if (ret)
1395                goto out_unlock;
1396
1397        if (sig) {
1398                if (lock_task_sighand(p, &flags)) {
1399                        ret = __send_signal(sig, info, p, 1, 0);
1400                        unlock_task_sighand(p, &flags);
1401                } else
1402                        ret = -ESRCH;
1403        }
1404out_unlock:
1405        rcu_read_unlock();
1406        return ret;
1407}
1408EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1409
1410/*
1411 * kill_something_info() interprets pid in interesting ways just like kill(2).
1412 *
1413 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1414 * is probably wrong.  Should make it like BSD or SYSV.
1415 */
1416
1417static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1418{
1419        int ret;
1420
1421        if (pid > 0) {
1422                rcu_read_lock();
1423                ret = kill_pid_info(sig, info, find_vpid(pid));
1424                rcu_read_unlock();
1425                return ret;
1426        }
1427
1428        read_lock(&tasklist_lock);
1429        if (pid != -1) {
1430                ret = __kill_pgrp_info(sig, info,
1431                                pid ? find_vpid(-pid) : task_pgrp(current));
1432        } else {
1433                int retval = 0, count = 0;
1434                struct task_struct * p;
1435
1436                for_each_process(p) {
1437                        if (task_pid_vnr(p) > 1 &&
1438                                        !same_thread_group(p, current)) {
1439                                int err = group_send_sig_info(sig, info, p);
1440                                ++count;
1441                                if (err != -EPERM)
1442                                        retval = err;
1443                        }
1444                }
1445                ret = count ? retval : -ESRCH;
1446        }
1447        read_unlock(&tasklist_lock);
1448
1449        return ret;
1450}
1451
1452/*
1453 * These are for backward compatibility with the rest of the kernel source.
1454 */
1455
1456int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1457{
1458        /*
1459         * Make sure legacy kernel users don't send in bad values
1460         * (normal paths check this in check_kill_permission).
1461         */
1462        if (!valid_signal(sig))
1463                return -EINVAL;
1464
1465        return do_send_sig_info(sig, info, p, false);
1466}
1467
1468#define __si_special(priv) \
1469        ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1470
1471int
1472send_sig(int sig, struct task_struct *p, int priv)
1473{
1474        return send_sig_info(sig, __si_special(priv), p);
1475}
1476
1477void
1478force_sig(int sig, struct task_struct *p)
1479{
1480        force_sig_info(sig, SEND_SIG_PRIV, p);
1481}
1482
1483/*
1484 * When things go south during signal handling, we
1485 * will force a SIGSEGV. And if the signal that caused
1486 * the problem was already a SIGSEGV, we'll want to
1487 * make sure we don't even try to deliver the signal..
1488 */
1489int
1490force_sigsegv(int sig, struct task_struct *p)
1491{
1492        if (sig == SIGSEGV) {
1493                unsigned long flags;
1494                spin_lock_irqsave(&p->sighand->siglock, flags);
1495                p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1496                spin_unlock_irqrestore(&p->sighand->siglock, flags);
1497        }
1498        force_sig(SIGSEGV, p);
1499        return 0;
1500}
1501
1502int kill_pgrp(struct pid *pid, int sig, int priv)
1503{
1504        int ret;
1505
1506        read_lock(&tasklist_lock);
1507        ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1508        read_unlock(&tasklist_lock);
1509
1510        return ret;
1511}
1512EXPORT_SYMBOL(kill_pgrp);
1513
1514int kill_pid(struct pid *pid, int sig, int priv)
1515{
1516        return kill_pid_info(sig, __si_special(priv), pid);
1517}
1518EXPORT_SYMBOL(kill_pid);
1519
1520/*
1521 * These functions support sending signals using preallocated sigqueue
1522 * structures.  This is needed "because realtime applications cannot
1523 * afford to lose notifications of asynchronous events, like timer
1524 * expirations or I/O completions".  In the case of POSIX Timers
1525 * we allocate the sigqueue structure from the timer_create.  If this
1526 * allocation fails we are able to report the failure to the application
1527 * with an EAGAIN error.
1528 */
1529struct sigqueue *sigqueue_alloc(void)
1530{
1531        struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1532
1533        if (q)
1534                q->flags |= SIGQUEUE_PREALLOC;
1535
1536        return q;
1537}
1538
1539void sigqueue_free(struct sigqueue *q)
1540{
1541        unsigned long flags;
1542        spinlock_t *lock = &current->sighand->siglock;
1543
1544        BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1545        /*
1546         * We must hold ->siglock while testing q->list
1547         * to serialize with collect_signal() or with
1548         * __exit_signal()->flush_sigqueue().
1549         */
1550        spin_lock_irqsave(lock, flags);
1551        q->flags &= ~SIGQUEUE_PREALLOC;
1552        /*
1553         * If it is queued it will be freed when dequeued,
1554         * like the "regular" sigqueue.
1555         */
1556        if (!list_empty(&q->list))
1557                q = NULL;
1558        spin_unlock_irqrestore(lock, flags);
1559
1560        if (q)
1561                __sigqueue_free(q);
1562}
1563
1564int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1565{
1566        int sig = q->info.si_signo;
1567        struct sigpending *pending;
1568        unsigned long flags;
1569        int ret, result;
1570
1571        BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1572
1573        ret = -1;
1574        if (!likely(lock_task_sighand(t, &flags)))
1575                goto ret;
1576
1577        ret = 1; /* the signal is ignored */
1578        result = TRACE_SIGNAL_IGNORED;
1579        if (!prepare_signal(sig, t, false))
1580                goto out;
1581
1582        ret = 0;
1583        if (unlikely(!list_empty(&q->list))) {
1584                /*
1585                 * If an SI_TIMER entry is already queue just increment
1586                 * the overrun count.
1587                 */
1588                BUG_ON(q->info.si_code != SI_TIMER);
1589                q->info.si_overrun++;
1590                result = TRACE_SIGNAL_ALREADY_PENDING;
1591                goto out;
1592        }
1593        q->info.si_overrun = 0;
1594
1595        signalfd_notify(t, sig);
1596        pending = group ? &t->signal->shared_pending : &t->pending;
1597        list_add_tail(&q->list, &pending->list);
1598        sigaddset(&pending->signal, sig);
1599        complete_signal(sig, t, group);
1600        result = TRACE_SIGNAL_DELIVERED;
1601out:
1602        trace_signal_generate(sig, &q->info, t, group, result);
1603        unlock_task_sighand(t, &flags);
1604ret:
1605        return ret;
1606}
1607
1608/*
1609 * Let a parent know about the death of a child.
1610 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1611 *
1612 * Returns true if our parent ignored us and so we've switched to
1613 * self-reaping.
1614 */
1615bool do_notify_parent(struct task_struct *tsk, int sig)
1616{
1617        struct siginfo info;
1618        unsigned long flags;
1619        struct sighand_struct *psig;
1620        bool autoreap = false;
1621        cputime_t utime, stime;
1622
1623        BUG_ON(sig == -1);
1624
1625        /* do_notify_parent_cldstop should have been called instead.  */
1626        BUG_ON(task_is_stopped_or_traced(tsk));
1627
1628        BUG_ON(!tsk->ptrace &&
1629               (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1630
1631        if (sig != SIGCHLD) {
1632                /*
1633                 * This is only possible if parent == real_parent.
1634                 * Check if it has changed security domain.
1635                 */
1636                if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1637                        sig = SIGCHLD;
1638        }
1639
1640        info.si_signo = sig;
1641        info.si_errno = 0;
1642        /*
1643         * We are under tasklist_lock here so our parent is tied to
1644         * us and cannot change.
1645         *
1646         * task_active_pid_ns will always return the same pid namespace
1647         * until a task passes through release_task.
1648         *
1649         * write_lock() currently calls preempt_disable() which is the
1650         * same as rcu_read_lock(), but according to Oleg, this is not
1651         * correct to rely on this
1652         */
1653        rcu_read_lock();
1654        info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1655        info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1656                                       task_uid(tsk));
1657        rcu_read_unlock();
1658
1659        task_cputime(tsk, &utime, &stime);
1660        info.si_utime = cputime_to_clock_t(utime + tsk->signal->utime);
1661        info.si_stime = cputime_to_clock_t(stime + tsk->signal->stime);
1662
1663        info.si_status = tsk->exit_code & 0x7f;
1664        if (tsk->exit_code & 0x80)
1665                info.si_code = CLD_DUMPED;
1666        else if (tsk->exit_code & 0x7f)
1667                info.si_code = CLD_KILLED;
1668        else {
1669                info.si_code = CLD_EXITED;
1670                info.si_status = tsk->exit_code >> 8;
1671        }
1672
1673        psig = tsk->parent->sighand;
1674        spin_lock_irqsave(&psig->siglock, flags);
1675        if (!tsk->ptrace && sig == SIGCHLD &&
1676            (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1677             (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1678                /*
1679                 * We are exiting and our parent doesn't care.  POSIX.1
1680                 * defines special semantics for setting SIGCHLD to SIG_IGN
1681                 * or setting the SA_NOCLDWAIT flag: we should be reaped
1682                 * automatically and not left for our parent's wait4 call.
1683                 * Rather than having the parent do it as a magic kind of
1684                 * signal handler, we just set this to tell do_exit that we
1685                 * can be cleaned up without becoming a zombie.  Note that
1686                 * we still call __wake_up_parent in this case, because a
1687                 * blocked sys_wait4 might now return -ECHILD.
1688                 *
1689                 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1690                 * is implementation-defined: we do (if you don't want
1691                 * it, just use SIG_IGN instead).
1692                 */
1693                autoreap = true;
1694                if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1695                        sig = 0;
1696        }
1697        if (valid_signal(sig) && sig)
1698                __group_send_sig_info(sig, &info, tsk->parent);
1699        __wake_up_parent(tsk, tsk->parent);
1700        spin_unlock_irqrestore(&psig->siglock, flags);
1701
1702        return autoreap;
1703}
1704
1705/**
1706 * do_notify_parent_cldstop - notify parent of stopped/continued state change
1707 * @tsk: task reporting the state change
1708 * @for_ptracer: the notification is for ptracer
1709 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1710 *
1711 * Notify @tsk's parent that the stopped/continued state has changed.  If
1712 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1713 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1714 *
1715 * CONTEXT:
1716 * Must be called with tasklist_lock at least read locked.
1717 */
1718static void do_notify_parent_cldstop(struct task_struct *tsk,
1719                                     bool for_ptracer, int why)
1720{
1721        struct siginfo info;
1722        unsigned long flags;
1723        struct task_struct *parent;
1724        struct sighand_struct *sighand;
1725        cputime_t utime, stime;
1726
1727        if (for_ptracer) {
1728                parent = tsk->parent;
1729        } else {
1730                tsk = tsk->group_leader;
1731                parent = tsk->real_parent;
1732        }
1733
1734        info.si_signo = SIGCHLD;
1735        info.si_errno = 0;
1736        /*
1737         * see comment in do_notify_parent() about the following 4 lines
1738         */
1739        rcu_read_lock();
1740        info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
1741        info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1742        rcu_read_unlock();
1743
1744        task_cputime(tsk, &utime, &stime);
1745        info.si_utime = cputime_to_clock_t(utime);
1746        info.si_stime = cputime_to_clock_t(stime);
1747
1748        info.si_code = why;
1749        switch (why) {
1750        case CLD_CONTINUED:
1751                info.si_status = SIGCONT;
1752                break;
1753        case CLD_STOPPED:
1754                info.si_status = tsk->signal->group_exit_code & 0x7f;
1755                break;
1756        case CLD_TRAPPED:
1757                info.si_status = tsk->exit_code & 0x7f;
1758                break;
1759        default:
1760                BUG();
1761        }
1762
1763        sighand = parent->sighand;
1764        spin_lock_irqsave(&sighand->siglock, flags);
1765        if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1766            !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1767                __group_send_sig_info(SIGCHLD, &info, parent);
1768        /*
1769         * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1770         */
1771        __wake_up_parent(tsk, parent);
1772        spin_unlock_irqrestore(&sighand->siglock, flags);
1773}
1774
1775static inline int may_ptrace_stop(void)
1776{
1777        if (!likely(current->ptrace))
1778                return 0;
1779        /*
1780         * Are we in the middle of do_coredump?
1781         * If so and our tracer is also part of the coredump stopping
1782         * is a deadlock situation, and pointless because our tracer
1783         * is dead so don't allow us to stop.
1784         * If SIGKILL was already sent before the caller unlocked
1785         * ->siglock we must see ->core_state != NULL. Otherwise it
1786         * is safe to enter schedule().
1787         *
1788         * This is almost outdated, a task with the pending SIGKILL can't
1789         * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
1790         * after SIGKILL was already dequeued.
1791         */
1792        if (unlikely(current->mm->core_state) &&
1793            unlikely(current->mm == current->parent->mm))
1794                return 0;
1795
1796        return 1;
1797}
1798
1799/*
1800 * Return non-zero if there is a SIGKILL that should be waking us up.
1801 * Called with the siglock held.
1802 */
1803static int sigkill_pending(struct task_struct *tsk)
1804{
1805        return  sigismember(&tsk->pending.signal, SIGKILL) ||
1806                sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1807}
1808
1809/*
1810 * This must be called with current->sighand->siglock held.
1811 *
1812 * This should be the path for all ptrace stops.
1813 * We always set current->last_siginfo while stopped here.
1814 * That makes it a way to test a stopped process for
1815 * being ptrace-stopped vs being job-control-stopped.
1816 *
1817 * If we actually decide not to stop at all because the tracer
1818 * is gone, we keep current->exit_code unless clear_code.
1819 */
1820static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1821        __releases(&current->sighand->siglock)
1822        __acquires(&current->sighand->siglock)
1823{
1824        bool gstop_done = false;
1825
1826        if (arch_ptrace_stop_needed(exit_code, info)) {
1827                /*
1828                 * The arch code has something special to do before a
1829                 * ptrace stop.  This is allowed to block, e.g. for faults
1830                 * on user stack pages.  We can't keep the siglock while
1831                 * calling arch_ptrace_stop, so we must release it now.
1832                 * To preserve proper semantics, we must do this before
1833                 * any signal bookkeeping like checking group_stop_count.
1834                 * Meanwhile, a SIGKILL could come in before we retake the
1835                 * siglock.  That must prevent us from sleeping in TASK_TRACED.
1836                 * So after regaining the lock, we must check for SIGKILL.
1837                 */
1838                spin_unlock_irq(&current->sighand->siglock);
1839                arch_ptrace_stop(exit_code, info);
1840                spin_lock_irq(&current->sighand->siglock);
1841                if (sigkill_pending(current))
1842                        return;
1843        }
1844
1845        /*
1846         * We're committing to trapping.  TRACED should be visible before
1847         * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1848         * Also, transition to TRACED and updates to ->jobctl should be
1849         * atomic with respect to siglock and should be done after the arch
1850         * hook as siglock is released and regrabbed across it.
1851         */
1852        set_current_state(TASK_TRACED);
1853
1854        current->last_siginfo = info;
1855        current->exit_code = exit_code;
1856
1857        /*
1858         * If @why is CLD_STOPPED, we're trapping to participate in a group
1859         * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
1860         * across siglock relocks since INTERRUPT was scheduled, PENDING
1861         * could be clear now.  We act as if SIGCONT is received after
1862         * TASK_TRACED is entered - ignore it.
1863         */
1864        if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1865                gstop_done = task_participate_group_stop(current);
1866
1867        /* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1868        task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
1869        if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
1870                task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
1871
1872        /* entering a trap, clear TRAPPING */
1873        task_clear_jobctl_trapping(current);
1874
1875        spin_unlock_irq(&current->sighand->siglock);
1876        read_lock(&tasklist_lock);
1877        if (may_ptrace_stop()) {
1878                /*
1879                 * Notify parents of the stop.
1880                 *
1881                 * While ptraced, there are two parents - the ptracer and
1882                 * the real_parent of the group_leader.  The ptracer should
1883                 * know about every stop while the real parent is only
1884                 * interested in the completion of group stop.  The states
1885                 * for the two don't interact with each other.  Notify
1886                 * separately unless they're gonna be duplicates.
1887                 */
1888                do_notify_parent_cldstop(current, true, why);
1889                if (gstop_done && ptrace_reparented(current))
1890                        do_notify_parent_cldstop(current, false, why);
1891
1892                /*
1893                 * Don't want to allow preemption here, because
1894                 * sys_ptrace() needs this task to be inactive.
1895                 *
1896                 * XXX: implement read_unlock_no_resched().
1897                 */
1898                preempt_disable();
1899                read_unlock(&tasklist_lock);
1900                preempt_enable_no_resched();
1901                freezable_schedule();
1902        } else {
1903                /*
1904                 * By the time we got the lock, our tracer went away.
1905                 * Don't drop the lock yet, another tracer may come.
1906                 *
1907                 * If @gstop_done, the ptracer went away between group stop
1908                 * completion and here.  During detach, it would have set
1909                 * JOBCTL_STOP_PENDING on us and we'll re-enter
1910                 * TASK_STOPPED in do_signal_stop() on return, so notifying
1911                 * the real parent of the group stop completion is enough.
1912                 */
1913                if (gstop_done)
1914                        do_notify_parent_cldstop(current, false, why);
1915
1916                /* tasklist protects us from ptrace_freeze_traced() */
1917                __set_current_state(TASK_RUNNING);
1918                if (clear_code)
1919                        current->exit_code = 0;
1920                read_unlock(&tasklist_lock);
1921        }
1922
1923        /*
1924         * We are back.  Now reacquire the siglock before touching
1925         * last_siginfo, so that we are sure to have synchronized with
1926         * any signal-sending on another CPU that wants to examine it.
1927         */
1928        spin_lock_irq(&current->sighand->siglock);
1929        current->last_siginfo = NULL;
1930
1931        /* LISTENING can be set only during STOP traps, clear it */
1932        current->jobctl &= ~JOBCTL_LISTENING;
1933
1934        /*
1935         * Queued signals ignored us while we were stopped for tracing.
1936         * So check for any that we should take before resuming user mode.
1937         * This sets TIF_SIGPENDING, but never clears it.
1938         */
1939        recalc_sigpending_tsk(current);
1940}
1941
1942static void ptrace_do_notify(int signr, int exit_code, int why)
1943{
1944        siginfo_t info;
1945
1946        memset(&info, 0, sizeof info);
1947        info.si_signo = signr;
1948        info.si_code = exit_code;
1949        info.si_pid = task_pid_vnr(current);
1950        info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1951
1952        /* Let the debugger run.  */
1953        ptrace_stop(exit_code, why, 1, &info);
1954}
1955
1956void ptrace_notify(int exit_code)
1957{
1958        BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1959        if (unlikely(current->task_works))
1960                task_work_run();
1961
1962        spin_lock_irq(&current->sighand->siglock);
1963        ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
1964        spin_unlock_irq(&current->sighand->siglock);
1965}
1966
1967/**
1968 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
1969 * @signr: signr causing group stop if initiating
1970 *
1971 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
1972 * and participate in it.  If already set, participate in the existing
1973 * group stop.  If participated in a group stop (and thus slept), %true is
1974 * returned with siglock released.
1975 *
1976 * If ptraced, this function doesn't handle stop itself.  Instead,
1977 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
1978 * untouched.  The caller must ensure that INTERRUPT trap handling takes
1979 * places afterwards.
1980 *
1981 * CONTEXT:
1982 * Must be called with @current->sighand->siglock held, which is released
1983 * on %true return.
1984 *
1985 * RETURNS:
1986 * %false if group stop is already cancelled or ptrace trap is scheduled.
1987 * %true if participated in group stop.
1988 */
1989static bool do_signal_stop(int signr)
1990        __releases(&current->sighand->siglock)
1991{
1992        struct signal_struct *sig = current->signal;
1993
1994        if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
1995                unsigned int gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
1996                struct task_struct *t;
1997
1998                /* signr will be recorded in task->jobctl for retries */
1999                WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2000
2001                if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2002                    unlikely(signal_group_exit(sig)))
2003                        return false;
2004                /*
2005                 * There is no group stop already in progress.  We must
2006                 * initiate one now.
2007                 *
2008                 * While ptraced, a task may be resumed while group stop is
2009                 * still in effect and then receive a stop signal and
2010                 * initiate another group stop.  This deviates from the
2011                 * usual behavior as two consecutive stop signals can't
2012                 * cause two group stops when !ptraced.  That is why we
2013                 * also check !task_is_stopped(t) below.
2014                 *
2015                 * The condition can be distinguished by testing whether
2016                 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2017                 * group_exit_code in such case.
2018                 *
2019                 * This is not necessary for SIGNAL_STOP_CONTINUED because
2020                 * an intervening stop signal is required to cause two
2021                 * continued events regardless of ptrace.
2022                 */
2023                if (!(sig->flags & SIGNAL_STOP_STOPPED))
2024                        sig->group_exit_code = signr;
2025
2026                sig->group_stop_count = 0;
2027
2028                if (task_set_jobctl_pending(current, signr | gstop))
2029                        sig->group_stop_count++;
2030
2031                t = current;
2032                while_each_thread(current, t) {
2033                        /*
2034                         * Setting state to TASK_STOPPED for a group
2035                         * stop is always done with the siglock held,
2036                         * so this check has no races.
2037                         */
2038                        if (!task_is_stopped(t) &&
2039                            task_set_jobctl_pending(t, signr | gstop)) {
2040                                sig->group_stop_count++;
2041                                if (likely(!(t->ptrace & PT_SEIZED)))
2042                                        signal_wake_up(t, 0);
2043                                else
2044                                        ptrace_trap_notify(t);
2045                        }
2046                }
2047        }
2048
2049        if (likely(!current->ptrace)) {
2050                int notify = 0;
2051
2052                /*
2053                 * If there are no other threads in the group, or if there
2054                 * is a group stop in progress and we are the last to stop,
2055                 * report to the parent.
2056                 */
2057                if (task_participate_group_stop(current))
2058                        notify = CLD_STOPPED;
2059
2060                __set_current_state(TASK_STOPPED);
2061                spin_unlock_irq(&current->sighand->siglock);
2062
2063                /*
2064                 * Notify the parent of the group stop completion.  Because
2065                 * we're not holding either the siglock or tasklist_lock
2066                 * here, ptracer may attach inbetween; however, this is for
2067                 * group stop and should always be delivered to the real
2068                 * parent of the group leader.  The new ptracer will get
2069                 * its notification when this task transitions into
2070                 * TASK_TRACED.
2071                 */
2072                if (notify) {
2073                        read_lock(&tasklist_lock);
2074                        do_notify_parent_cldstop(current, false, notify);
2075                        read_unlock(&tasklist_lock);
2076                }
2077
2078                /* Now we don't run again until woken by SIGCONT or SIGKILL */
2079                freezable_schedule();
2080                return true;
2081        } else {
2082                /*
2083                 * While ptraced, group stop is handled by STOP trap.
2084                 * Schedule it and let the caller deal with it.
2085                 */
2086                task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2087                return false;
2088        }
2089}
2090
2091/**
2092 * do_jobctl_trap - take care of ptrace jobctl traps
2093 *
2094 * When PT_SEIZED, it's used for both group stop and explicit
2095 * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2096 * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2097 * the stop signal; otherwise, %SIGTRAP.
2098 *
2099 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2100 * number as exit_code and no siginfo.
2101 *
2102 * CONTEXT:
2103 * Must be called with @current->sighand->siglock held, which may be
2104 * released and re-acquired before returning with intervening sleep.
2105 */
2106static void do_jobctl_trap(void)
2107{
2108        struct signal_struct *signal = current->signal;
2109        int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2110
2111        if (current->ptrace & PT_SEIZED) {
2112                if (!signal->group_stop_count &&
2113                    !(signal->flags & SIGNAL_STOP_STOPPED))
2114                        signr = SIGTRAP;
2115                WARN_ON_ONCE(!signr);
2116                ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2117                                 CLD_STOPPED);
2118        } else {
2119                WARN_ON_ONCE(!signr);
2120                ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2121                current->exit_code = 0;
2122        }
2123}
2124
2125static int ptrace_signal(int signr, siginfo_t *info)
2126{
2127        ptrace_signal_deliver();
2128        /*
2129         * We do not check sig_kernel_stop(signr) but set this marker
2130         * unconditionally because we do not know whether debugger will
2131         * change signr. This flag has no meaning unless we are going
2132         * to stop after return from ptrace_stop(). In this case it will
2133         * be checked in do_signal_stop(), we should only stop if it was
2134         * not cleared by SIGCONT while we were sleeping. See also the
2135         * comment in dequeue_signal().
2136         */
2137        current->jobctl |= JOBCTL_STOP_DEQUEUED;
2138        ptrace_stop(signr, CLD_TRAPPED, 0, info);
2139
2140        /* We're back.  Did the debugger cancel the sig?  */
2141        signr = current->exit_code;
2142        if (signr == 0)
2143                return signr;
2144
2145        current->exit_code = 0;
2146
2147        /*
2148         * Update the siginfo structure if the signal has
2149         * changed.  If the debugger wanted something
2150         * specific in the siginfo structure then it should
2151         * have updated *info via PTRACE_SETSIGINFO.
2152         */
2153        if (signr != info->si_signo) {
2154                info->si_signo = signr;
2155                info->si_errno = 0;
2156                info->si_code = SI_USER;
2157                rcu_read_lock();
2158                info->si_pid = task_pid_vnr(current->parent);
2159                info->si_uid = from_kuid_munged(current_user_ns(),
2160                                                task_uid(current->parent));
2161                rcu_read_unlock();
2162        }
2163
2164        /* If the (new) signal is now blocked, requeue it.  */
2165        if (sigismember(&current->blocked, signr)) {
2166                specific_send_sig_info(signr, info, current);
2167                signr = 0;
2168        }
2169
2170        return signr;
2171}
2172
2173int get_signal(struct ksignal *ksig)
2174{
2175        struct sighand_struct *sighand = current->sighand;
2176        struct signal_struct *signal = current->signal;
2177        int signr;
2178
2179        if (unlikely(current->task_works))
2180                task_work_run();
2181
2182        if (unlikely(uprobe_deny_signal()))
2183                return 0;
2184
2185        /*
2186         * Do this once, we can't return to user-mode if freezing() == T.
2187         * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2188         * thus do not need another check after return.
2189         */
2190        try_to_freeze();
2191
2192relock:
2193        spin_lock_irq(&sighand->siglock);
2194        /*
2195         * Every stopped thread goes here after wakeup. Check to see if
2196         * we should notify the parent, prepare_signal(SIGCONT) encodes
2197         * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2198         */
2199        if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2200                int why;
2201
2202                if (signal->flags & SIGNAL_CLD_CONTINUED)
2203                        why = CLD_CONTINUED;
2204                else
2205                        why = CLD_STOPPED;
2206
2207                signal->flags &= ~SIGNAL_CLD_MASK;
2208
2209                spin_unlock_irq(&sighand->siglock);
2210
2211                /*
2212                 * Notify the parent that we're continuing.  This event is
2213                 * always per-process and doesn't make whole lot of sense
2214                 * for ptracers, who shouldn't consume the state via
2215                 * wait(2) either, but, for backward compatibility, notify
2216                 * the ptracer of the group leader too unless it's gonna be
2217                 * a duplicate.
2218                 */
2219                read_lock(&tasklist_lock);
2220                do_notify_parent_cldstop(current, false, why);
2221
2222                if (ptrace_reparented(current->group_leader))
2223                        do_notify_parent_cldstop(current->group_leader,
2224                                                true, why);
2225                read_unlock(&tasklist_lock);
2226
2227                goto relock;
2228        }
2229
2230        for (;;) {
2231                struct k_sigaction *ka;
2232
2233                if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2234                    do_signal_stop(0))
2235                        goto relock;
2236
2237                if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2238                        do_jobctl_trap();
2239                        spin_unlock_irq(&sighand->siglock);
2240                        goto relock;
2241                }
2242
2243                signr = dequeue_signal(current, &current->blocked, &ksig->info);
2244
2245                if (!signr)
2246                        break; /* will return 0 */
2247
2248                if (unlikely(current->ptrace) && signr != SIGKILL) {
2249                        signr = ptrace_signal(signr, &ksig->info);
2250                        if (!signr)
2251                                continue;
2252                }
2253
2254                ka = &sighand->action[signr-1];
2255
2256                /* Trace actually delivered signals. */
2257                trace_signal_deliver(signr, &ksig->info, ka);
2258
2259                if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2260                        continue;
2261                if (ka->sa.sa_handler != SIG_DFL) {
2262                        /* Run the handler.  */
2263                        ksig->ka = *ka;
2264
2265                        if (ka->sa.sa_flags & SA_ONESHOT)
2266                                ka->sa.sa_handler = SIG_DFL;
2267
2268                        break; /* will return non-zero "signr" value */
2269                }
2270
2271                /*
2272                 * Now we are doing the default action for this signal.
2273                 */
2274                if (sig_kernel_ignore(signr)) /* Default is nothing. */
2275                        continue;
2276
2277                /*
2278                 * Global init gets no signals it doesn't want.
2279                 * Container-init gets no signals it doesn't want from same
2280                 * container.
2281                 *
2282                 * Note that if global/container-init sees a sig_kernel_only()
2283                 * signal here, the signal must have been generated internally
2284                 * or must have come from an ancestor namespace. In either
2285                 * case, the signal cannot be dropped.
2286                 */
2287                if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2288                                !sig_kernel_only(signr))
2289                        continue;
2290
2291                if (sig_kernel_stop(signr)) {
2292                        /*
2293                         * The default action is to stop all threads in
2294                         * the thread group.  The job control signals
2295                         * do nothing in an orphaned pgrp, but SIGSTOP
2296                         * always works.  Note that siglock needs to be
2297                         * dropped during the call to is_orphaned_pgrp()
2298                         * because of lock ordering with tasklist_lock.
2299                         * This allows an intervening SIGCONT to be posted.
2300                         * We need to check for that and bail out if necessary.
2301                         */
2302                        if (signr != SIGSTOP) {
2303                                spin_unlock_irq(&sighand->siglock);
2304
2305                                /* signals can be posted during this window */
2306
2307                                if (is_current_pgrp_orphaned())
2308                                        goto relock;
2309
2310                                spin_lock_irq(&sighand->siglock);
2311                        }
2312
2313                        if (likely(do_signal_stop(ksig->info.si_signo))) {
2314                                /* It released the siglock.  */
2315                                goto relock;
2316                        }
2317
2318                        /*
2319                         * We didn't actually stop, due to a race
2320                         * with SIGCONT or something like that.
2321                         */
2322                        continue;
2323                }
2324
2325                spin_unlock_irq(&sighand->siglock);
2326
2327                /*
2328                 * Anything else is fatal, maybe with a core dump.
2329                 */
2330                current->flags |= PF_SIGNALED;
2331
2332                if (sig_kernel_coredump(signr)) {
2333                        if (print_fatal_signals)
2334                                print_fatal_signal(ksig->info.si_signo);
2335                        proc_coredump_connector(current);
2336                        /*
2337                         * If it was able to dump core, this kills all
2338                         * other threads in the group and synchronizes with
2339                         * their demise.  If we lost the race with another
2340                         * thread getting here, it set group_exit_code
2341                         * first and our do_group_exit call below will use
2342                         * that value and ignore the one we pass it.
2343                         */
2344                        do_coredump(&ksig->info);
2345                }
2346
2347                /*
2348                 * Death signals, no core dump.
2349                 */
2350                do_group_exit(ksig->info.si_signo);
2351                /* NOTREACHED */
2352        }
2353        spin_unlock_irq(&sighand->siglock);
2354
2355        ksig->sig = signr;
2356        return ksig->sig > 0;
2357}
2358
2359/**
2360 * signal_delivered - 
2361 * @ksig:               kernel signal struct
2362 * @stepping:           nonzero if debugger single-step or block-step in use
2363 *
2364 * This function should be called when a signal has successfully been
2365 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2366 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2367 * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2368 */
2369static void signal_delivered(struct ksignal *ksig, int stepping)
2370{
2371        sigset_t blocked;
2372
2373        /* A signal was successfully delivered, and the
2374           saved sigmask was stored on the signal frame,
2375           and will be restored by sigreturn.  So we can
2376           simply clear the restore sigmask flag.  */
2377        clear_restore_sigmask();
2378
2379        sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2380        if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2381                sigaddset(&blocked, ksig->sig);
2382        set_current_blocked(&blocked);
2383        tracehook_signal_handler(stepping);
2384}
2385
2386void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2387{
2388        if (failed)
2389                force_sigsegv(ksig->sig, current);
2390        else
2391                signal_delivered(ksig, stepping);
2392}
2393
2394/*
2395 * It could be that complete_signal() picked us to notify about the
2396 * group-wide signal. Other threads should be notified now to take
2397 * the shared signals in @which since we will not.
2398 */
2399static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2400{
2401        sigset_t retarget;
2402        struct task_struct *t;
2403
2404        sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2405        if (sigisemptyset(&retarget))
2406                return;
2407
2408        t = tsk;
2409        while_each_thread(tsk, t) {
2410                if (t->flags & PF_EXITING)
2411                        continue;
2412
2413                if (!has_pending_signals(&retarget, &t->blocked))
2414                        continue;
2415                /* Remove the signals this thread can handle. */
2416                sigandsets(&retarget, &retarget, &t->blocked);
2417
2418                if (!signal_pending(t))
2419                        signal_wake_up(t, 0);
2420
2421                if (sigisemptyset(&retarget))
2422                        break;
2423        }
2424}
2425
2426void exit_signals(struct task_struct *tsk)
2427{
2428        int group_stop = 0;
2429        sigset_t unblocked;
2430
2431        /*
2432         * @tsk is about to have PF_EXITING set - lock out users which
2433         * expect stable threadgroup.
2434         */
2435        threadgroup_change_begin(tsk);
2436
2437        if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2438                tsk->flags |= PF_EXITING;
2439                threadgroup_change_end(tsk);
2440                return;
2441        }
2442
2443        spin_lock_irq(&tsk->sighand->siglock);
2444        /*
2445         * From now this task is not visible for group-wide signals,
2446         * see wants_signal(), do_signal_stop().
2447         */
2448        tsk->flags |= PF_EXITING;
2449
2450        threadgroup_change_end(tsk);
2451
2452        if (!signal_pending(tsk))
2453                goto out;
2454
2455        unblocked = tsk->blocked;
2456        signotset(&unblocked);
2457        retarget_shared_pending(tsk, &unblocked);
2458
2459        if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2460            task_participate_group_stop(tsk))
2461                group_stop = CLD_STOPPED;
2462out:
2463        spin_unlock_irq(&tsk->sighand->siglock);
2464
2465        /*
2466         * If group stop has completed, deliver the notification.  This
2467         * should always go to the real parent of the group leader.
2468         */
2469        if (unlikely(group_stop)) {
2470                read_lock(&tasklist_lock);
2471                do_notify_parent_cldstop(tsk, false, group_stop);
2472                read_unlock(&tasklist_lock);
2473        }
2474}
2475
2476EXPORT_SYMBOL(recalc_sigpending);
2477EXPORT_SYMBOL_GPL(dequeue_signal);
2478EXPORT_SYMBOL(flush_signals);
2479EXPORT_SYMBOL(force_sig);
2480EXPORT_SYMBOL(send_sig);
2481EXPORT_SYMBOL(send_sig_info);
2482EXPORT_SYMBOL(sigprocmask);
2483EXPORT_SYMBOL(block_all_signals);
2484EXPORT_SYMBOL(unblock_all_signals);
2485
2486
2487/*
2488 * System call entry points.
2489 */
2490
2491/**
2492 *  sys_restart_syscall - restart a system call
2493 */
2494SYSCALL_DEFINE0(restart_syscall)
2495{
2496        struct restart_block *restart = &current_thread_info()->restart_block;
2497        return restart->fn(restart);
2498}
2499
2500long do_no_restart_syscall(struct restart_block *param)
2501{
2502        return -EINTR;
2503}
2504
2505static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2506{
2507        if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2508                sigset_t newblocked;
2509                /* A set of now blocked but previously unblocked signals. */
2510                sigandnsets(&newblocked, newset, &current->blocked);
2511                retarget_shared_pending(tsk, &newblocked);
2512        }
2513        tsk->blocked = *newset;
2514        recalc_sigpending();
2515}
2516
2517/**
2518 * set_current_blocked - change current->blocked mask
2519 * @newset: new mask
2520 *
2521 * It is wrong to change ->blocked directly, this helper should be used
2522 * to ensure the process can't miss a shared signal we are going to block.
2523 */
2524void set_current_blocked(sigset_t *newset)
2525{
2526        sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2527        __set_current_blocked(newset);
2528}
2529
2530void __set_current_blocked(const sigset_t *newset)
2531{
2532        struct task_struct *tsk = current;
2533
2534        spin_lock_irq(&tsk->sighand->siglock);
2535        __set_task_blocked(tsk, newset);
2536        spin_unlock_irq(&tsk->sighand->siglock);
2537}
2538
2539/*
2540 * This is also useful for kernel threads that want to temporarily
2541 * (or permanently) block certain signals.
2542 *
2543 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2544 * interface happily blocks "unblockable" signals like SIGKILL
2545 * and friends.
2546 */
2547int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2548{
2549        struct task_struct *tsk = current;
2550        sigset_t newset;
2551
2552        /* Lockless, only current can change ->blocked, never from irq */
2553        if (oldset)
2554                *oldset = tsk->blocked;
2555
2556        switch (how) {
2557        case SIG_BLOCK:
2558                sigorsets(&newset, &tsk->blocked, set);
2559                break;
2560        case SIG_UNBLOCK:
2561                sigandnsets(&newset, &tsk->blocked, set);
2562                break;
2563        case SIG_SETMASK:
2564                newset = *set;
2565                break;
2566        default:
2567                return -EINVAL;
2568        }
2569
2570        __set_current_blocked(&newset);
2571        return 0;
2572}
2573
2574/**
2575 *  sys_rt_sigprocmask - change the list of currently blocked signals
2576 *  @how: whether to add, remove, or set signals
2577 *  @nset: stores pending signals
2578 *  @oset: previous value of signal mask if non-null
2579 *  @sigsetsize: size of sigset_t type
2580 */
2581SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2582                sigset_t __user *, oset, size_t, sigsetsize)
2583{
2584        sigset_t old_set, new_set;
2585        int error;
2586
2587        /* XXX: Don't preclude handling different sized sigset_t's.  */
2588        if (sigsetsize != sizeof(sigset_t))
2589                return -EINVAL;
2590
2591        old_set = current->blocked;
2592
2593        if (nset) {
2594                if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2595                        return -EFAULT;
2596                sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2597
2598                error = sigprocmask(how, &new_set, NULL);
2599                if (error)
2600                        return error;
2601        }
2602
2603        if (oset) {
2604                if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2605                        return -EFAULT;
2606        }
2607
2608        return 0;
2609}
2610
2611#ifdef CONFIG_COMPAT
2612COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
2613                compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
2614{
2615#ifdef __BIG_ENDIAN
2616        sigset_t old_set = current->blocked;
2617
2618        /* XXX: Don't preclude handling different sized sigset_t's.  */
2619        if (sigsetsize != sizeof(sigset_t))
2620                return -EINVAL;
2621
2622        if (nset) {
2623                compat_sigset_t new32;
2624                sigset_t new_set;
2625                int error;
2626                if (copy_from_user(&new32, nset, sizeof(compat_sigset_t)))
2627                        return -EFAULT;
2628
2629                sigset_from_compat(&new_set, &new32);
2630                sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2631
2632                error = sigprocmask(how, &new_set, NULL);
2633                if (error)
2634                        return error;
2635        }
2636        if (oset) {
2637                compat_sigset_t old32;
2638                sigset_to_compat(&old32, &old_set);
2639                if (copy_to_user(oset, &old32, sizeof(compat_sigset_t)))
2640                        return -EFAULT;
2641        }
2642        return 0;
2643#else
2644        return sys_rt_sigprocmask(how, (sigset_t __user *)nset,
2645                                  (sigset_t __user *)oset, sigsetsize);
2646#endif
2647}
2648#endif
2649
2650static int do_sigpending(void *set, unsigned long sigsetsize)
2651{
2652        if (sigsetsize > sizeof(sigset_t))
2653                return -EINVAL;
2654
2655        spin_lock_irq(&current->sighand->siglock);
2656        sigorsets(set, &current->pending.signal,
2657                  &current->signal->shared_pending.signal);
2658        spin_unlock_irq(&current->sighand->siglock);
2659
2660        /* Outside the lock because only this thread touches it.  */
2661        sigandsets(set, &current->blocked, set);
2662        return 0;
2663}
2664
2665/**
2666 *  sys_rt_sigpending - examine a pending signal that has been raised
2667 *                      while blocked
2668 *  @uset: stores pending signals
2669 *  @sigsetsize: size of sigset_t type or larger
2670 */
2671SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
2672{
2673        sigset_t set;
2674        int err = do_sigpending(&set, sigsetsize);
2675        if (!err && copy_to_user(uset, &set, sigsetsize))
2676                err = -EFAULT;
2677        return err;
2678}
2679
2680#ifdef CONFIG_COMPAT
2681COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
2682                compat_size_t, sigsetsize)
2683{
2684#ifdef __BIG_ENDIAN
2685        sigset_t set;
2686        int err = do_sigpending(&set, sigsetsize);
2687        if (!err) {
2688                compat_sigset_t set32;
2689                sigset_to_compat(&set32, &set);
2690                /* we can get here only if sigsetsize <= sizeof(set) */
2691                if (copy_to_user(uset, &set32, sigsetsize))
2692                        err = -EFAULT;
2693        }
2694        return err;
2695#else
2696        return sys_rt_sigpending((sigset_t __user *)uset, sigsetsize);
2697#endif
2698}
2699#endif
2700
2701#ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2702
2703int copy_siginfo_to_user(siginfo_t __user *to, const siginfo_t *from)
2704{
2705        int err;
2706
2707        if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2708                return -EFAULT;
2709        if (from->si_code < 0)
2710                return __copy_to_user(to, from, sizeof(siginfo_t))
2711                        ? -EFAULT : 0;
2712        /*
2713         * If you change siginfo_t structure, please be sure
2714         * this code is fixed accordingly.
2715         * Please remember to update the signalfd_copyinfo() function
2716         * inside fs/signalfd.c too, in case siginfo_t changes.
2717         * It should never copy any pad contained in the structure
2718         * to avoid security leaks, but must copy the generic
2719         * 3 ints plus the relevant union member.
2720         */
2721        err = __put_user(from->si_signo, &to->si_signo);
2722        err |= __put_user(from->si_errno, &to->si_errno);
2723        err |= __put_user((short)from->si_code, &to->si_code);
2724        switch (from->si_code & __SI_MASK) {
2725        case __SI_KILL:
2726                err |= __put_user(from->si_pid, &to->si_pid);
2727                err |= __put_user(from->si_uid, &to->si_uid);
2728                break;
2729        case __SI_TIMER:
2730                 err |= __put_user(from->si_tid, &to->si_tid);
2731                 err |= __put_user(from->si_overrun, &to->si_overrun);
2732                 err |= __put_user(from->si_ptr, &to->si_ptr);
2733                break;
2734        case __SI_POLL:
2735                err |= __put_user(from->si_band, &to->si_band);
2736                err |= __put_user(from->si_fd, &to->si_fd);
2737                break;
2738        case __SI_FAULT:
2739                err |= __put_user(from->si_addr, &to->si_addr);
2740#ifdef __ARCH_SI_TRAPNO
2741                err |= __put_user(from->si_trapno, &to->si_trapno);
2742#endif
2743#ifdef BUS_MCEERR_AO
2744                /*
2745                 * Other callers might not initialize the si_lsb field,
2746                 * so check explicitly for the right codes here.
2747                 */
2748                if (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO)
2749                        err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2750#endif
2751                break;
2752        case __SI_CHLD:
2753                err |= __put_user(from->si_pid, &to->si_pid);
2754                err |= __put_user(from->si_uid, &to->si_uid);
2755                err |= __put_user(from->si_status, &to->si_status);
2756                err |= __put_user(from->si_utime, &to->si_utime);
2757                err |= __put_user(from->si_stime, &to->si_stime);
2758                break;
2759        case __SI_RT: /* This is not generated by the kernel as of now. */
2760        case __SI_MESGQ: /* But this is */
2761                err |= __put_user(from->si_pid, &to->si_pid);
2762                err |= __put_user(from->si_uid, &to->si_uid);
2763                err |= __put_user(from->si_ptr, &to->si_ptr);
2764                break;
2765#ifdef __ARCH_SIGSYS
2766        case __SI_SYS:
2767                err |= __put_user(from->si_call_addr, &to->si_call_addr);
2768                err |= __put_user(from->si_syscall, &to->si_syscall);
2769                err |= __put_user(from->si_arch, &to->si_arch);
2770                break;
2771#endif
2772        default: /* this is just in case for now ... */
2773                err |= __put_user(from->si_pid, &to->si_pid);
2774                err |= __put_user(from->si_uid, &to->si_uid);
2775                break;
2776        }
2777        return err;
2778}
2779
2780#endif
2781
2782/**
2783 *  do_sigtimedwait - wait for queued signals specified in @which
2784 *  @which: queued signals to wait for
2785 *  @info: if non-null, the signal's siginfo is returned here
2786 *  @ts: upper bound on process time suspension
2787 */
2788int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
2789                        const struct timespec *ts)
2790{
2791        struct task_struct *tsk = current;
2792        long timeout = MAX_SCHEDULE_TIMEOUT;
2793        sigset_t mask = *which;
2794        int sig;
2795
2796        if (ts) {
2797                if (!timespec_valid(ts))
2798                        return -EINVAL;
2799                timeout = timespec_to_jiffies(ts);
2800                /*
2801                 * We can be close to the next tick, add another one
2802                 * to ensure we will wait at least the time asked for.
2803                 */
2804                if (ts->tv_sec || ts->tv_nsec)
2805                        timeout++;
2806        }
2807
2808        /*
2809         * Invert the set of allowed signals to get those we want to block.
2810         */
2811        sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2812        signotset(&mask);
2813
2814        spin_lock_irq(&tsk->sighand->siglock);
2815        sig = dequeue_signal(tsk, &mask, info);
2816        if (!sig && timeout) {
2817                /*
2818                 * None ready, temporarily unblock those we're interested
2819                 * while we are sleeping in so that we'll be awakened when
2820                 * they arrive. Unblocking is always fine, we can avoid
2821                 * set_current_blocked().
2822                 */
2823                tsk->real_blocked = tsk->blocked;
2824                sigandsets(&tsk->blocked, &tsk->blocked, &mask);
2825                recalc_sigpending();
2826                spin_unlock_irq(&tsk->sighand->siglock);
2827
2828                timeout = freezable_schedule_timeout_interruptible(timeout);
2829
2830                spin_lock_irq(&tsk->sighand->siglock);
2831                __set_task_blocked(tsk, &tsk->real_blocked);
2832                sigemptyset(&tsk->real_blocked);
2833                sig = dequeue_signal(tsk, &mask, info);
2834        }
2835        spin_unlock_irq(&tsk->sighand->siglock);
2836
2837        if (sig)
2838                return sig;
2839        return timeout ? -EINTR : -EAGAIN;
2840}
2841
2842/**
2843 *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
2844 *                      in @uthese
2845 *  @uthese: queued signals to wait for
2846 *  @uinfo: if non-null, the signal's siginfo is returned here
2847 *  @uts: upper bound on process time suspension
2848 *  @sigsetsize: size of sigset_t type
2849 */
2850SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2851                siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2852                size_t, sigsetsize)
2853{
2854        sigset_t these;
2855        struct timespec ts;
2856        siginfo_t info;
2857        int ret;
2858
2859        /* XXX: Don't preclude handling different sized sigset_t's.  */
2860        if (sigsetsize != sizeof(sigset_t))
2861                return -EINVAL;
2862
2863        if (copy_from_user(&these, uthese, sizeof(these)))
2864                return -EFAULT;
2865
2866        if (uts) {
2867                if (copy_from_user(&ts, uts, sizeof(ts)))
2868                        return -EFAULT;
2869        }
2870
2871        ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
2872
2873        if (ret > 0 && uinfo) {
2874                if (copy_siginfo_to_user(uinfo, &info))
2875                        ret = -EFAULT;
2876        }
2877
2878        return ret;
2879}
2880
2881/**
2882 *  sys_kill - send a signal to a process
2883 *  @pid: the PID of the process
2884 *  @sig: signal to be sent
2885 */
2886SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2887{
2888        struct siginfo info;
2889
2890        info.si_signo = sig;
2891        info.si_errno = 0;
2892        info.si_code = SI_USER;
2893        info.si_pid = task_tgid_vnr(current);
2894        info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2895
2896        return kill_something_info(sig, &info, pid);
2897}
2898
2899static int
2900do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2901{
2902        struct task_struct *p;
2903        int error = -ESRCH;
2904
2905        rcu_read_lock();
2906        p = find_task_by_vpid(pid);
2907        if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2908                error = check_kill_permission(sig, info, p);
2909                /*
2910                 * The null signal is a permissions and process existence
2911                 * probe.  No signal is actually delivered.
2912                 */
2913                if (!error && sig) {
2914                        error = do_send_sig_info(sig, info, p, false);
2915                        /*
2916                         * If lock_task_sighand() failed we pretend the task
2917                         * dies after receiving the signal. The window is tiny,
2918                         * and the signal is private anyway.
2919                         */
2920                        if (unlikely(error == -ESRCH))
2921                                error = 0;
2922                }
2923        }
2924        rcu_read_unlock();
2925
2926        return error;
2927}
2928
2929static int do_tkill(pid_t tgid, pid_t pid, int sig)
2930{
2931        struct siginfo info = {};
2932
2933        info.si_signo = sig;
2934        info.si_errno = 0;
2935        info.si_code = SI_TKILL;
2936        info.si_pid = task_tgid_vnr(current);
2937        info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2938
2939        return do_send_specific(tgid, pid, sig, &info);
2940}
2941
2942/**
2943 *  sys_tgkill - send signal to one specific thread
2944 *  @tgid: the thread group ID of the thread
2945 *  @pid: the PID of the thread
2946 *  @sig: signal to be sent
2947 *
2948 *  This syscall also checks the @tgid and returns -ESRCH even if the PID
2949 *  exists but it's not belonging to the target process anymore. This
2950 *  method solves the problem of threads exiting and PIDs getting reused.
2951 */
2952SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2953{
2954        /* This is only valid for single tasks */
2955        if (pid <= 0 || tgid <= 0)
2956                return -EINVAL;
2957
2958        return do_tkill(tgid, pid, sig);
2959}
2960
2961/**
2962 *  sys_tkill - send signal to one specific task
2963 *  @pid: the PID of the task
2964 *  @sig: signal to be sent
2965 *
2966 *  Send a signal to only one task, even if it's a CLONE_THREAD task.
2967 */
2968SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2969{
2970        /* This is only valid for single tasks */
2971        if (pid <= 0)
2972                return -EINVAL;
2973
2974        return do_tkill(0, pid, sig);
2975}
2976
2977static int do_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t *info)
2978{
2979        /* Not even root can pretend to send signals from the kernel.
2980         * Nor can they impersonate a kill()/tgkill(), which adds source info.
2981         */
2982        if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
2983            (task_pid_vnr(current) != pid)) {
2984                /* We used to allow any < 0 si_code */
2985                WARN_ON_ONCE(info->si_code < 0);
2986                return -EPERM;
2987        }
2988        info->si_signo = sig;
2989
2990        /* POSIX.1b doesn't mention process groups.  */
2991        return kill_proc_info(sig, info, pid);
2992}
2993
2994/**
2995 *  sys_rt_sigqueueinfo - send signal information to a signal
2996 *  @pid: the PID of the thread
2997 *  @sig: signal to be sent
2998 *  @uinfo: signal info to be sent
2999 */
3000SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3001                siginfo_t __user *, uinfo)
3002{
3003        siginfo_t info;
3004        if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3005                return -EFAULT;
3006        return do_rt_sigqueueinfo(pid, sig, &info);
3007}
3008
3009#ifdef CONFIG_COMPAT
3010COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3011                        compat_pid_t, pid,
3012                        int, sig,
3013                        struct compat_siginfo __user *, uinfo)
3014{
3015        siginfo_t info;
3016        int ret = copy_siginfo_from_user32(&info, uinfo);
3017        if (unlikely(ret))
3018                return ret;
3019        return do_rt_sigqueueinfo(pid, sig, &info);
3020}
3021#endif
3022
3023static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
3024{
3025        /* This is only valid for single tasks */
3026        if (pid <= 0 || tgid <= 0)
3027                return -EINVAL;
3028
3029        /* Not even root can pretend to send signals from the kernel.
3030         * Nor can they impersonate a kill()/tgkill(), which adds source info.
3031         */
3032        if (((info->si_code >= 0 || info->si_code == SI_TKILL)) &&
3033            (task_pid_vnr(current) != pid)) {
3034                /* We used to allow any < 0 si_code */
3035                WARN_ON_ONCE(info->si_code < 0);
3036                return -EPERM;
3037        }
3038        info->si_signo = sig;
3039
3040        return do_send_specific(tgid, pid, sig, info);
3041}
3042
3043SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3044                siginfo_t __user *, uinfo)
3045{
3046        siginfo_t info;
3047
3048        if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3049                return -EFAULT;
3050
3051        return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3052}
3053
3054#ifdef CONFIG_COMPAT
3055COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3056                        compat_pid_t, tgid,
3057                        compat_pid_t, pid,
3058                        int, sig,
3059                        struct compat_siginfo __user *, uinfo)
3060{
3061        siginfo_t info;
3062
3063        if (copy_siginfo_from_user32(&info, uinfo))
3064                return -EFAULT;
3065        return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3066}
3067#endif
3068
3069/*
3070 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3071 */
3072void kernel_sigaction(int sig, __sighandler_t action)
3073{
3074        spin_lock_irq(&current->sighand->siglock);
3075        current->sighand->action[sig - 1].sa.sa_handler = action;
3076        if (action == SIG_IGN) {
3077                sigset_t mask;
3078
3079                sigemptyset(&mask);
3080                sigaddset(&mask, sig);
3081
3082                flush_sigqueue_mask(&mask, &current->signal->shared_pending);
3083                flush_sigqueue_mask(&mask, &current->pending);
3084                recalc_sigpending();
3085        }
3086        spin_unlock_irq(&current->sighand->siglock);
3087}
3088EXPORT_SYMBOL(kernel_sigaction);
3089
3090int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3091{
3092        struct task_struct *p = current, *t;
3093        struct k_sigaction *k;
3094        sigset_t mask;
3095
3096        if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3097                return -EINVAL;
3098
3099        k = &p->sighand->action[sig-1];
3100
3101        spin_lock_irq(&p->sighand->siglock);
3102        if (oact)
3103                *oact = *k;
3104
3105        if (act) {
3106                sigdelsetmask(&act->sa.sa_mask,
3107                              sigmask(SIGKILL) | sigmask(SIGSTOP));
3108                *k = *act;
3109                /*
3110                 * POSIX 3.3.1.3:
3111                 *  "Setting a signal action to SIG_IGN for a signal that is
3112                 *   pending shall cause the pending signal to be discarded,
3113                 *   whether or not it is blocked."
3114                 *
3115                 *  "Setting a signal action to SIG_DFL for a signal that is
3116                 *   pending and whose default action is to ignore the signal
3117                 *   (for example, SIGCHLD), shall cause the pending signal to
3118                 *   be discarded, whether or not it is blocked"
3119                 */
3120                if (sig_handler_ignored(sig_handler(p, sig), sig)) {
3121                        sigemptyset(&mask);
3122                        sigaddset(&mask, sig);
3123                        flush_sigqueue_mask(&mask, &p->signal->shared_pending);
3124                        for_each_thread(p, t)
3125                                flush_sigqueue_mask(&mask, &t->pending);
3126                }
3127        }
3128
3129        spin_unlock_irq(&p->sighand->siglock);
3130        return 0;
3131}
3132
3133static int
3134do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
3135{
3136        stack_t oss;
3137        int error;
3138
3139        oss.ss_sp = (void __user *) current->sas_ss_sp;
3140        oss.ss_size = current->sas_ss_size;
3141        oss.ss_flags = sas_ss_flags(sp);
3142
3143        if (uss) {
3144                void __user *ss_sp;
3145                size_t ss_size;
3146                int ss_flags;
3147
3148                error = -EFAULT;
3149                if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
3150                        goto out;
3151                error = __get_user(ss_sp, &uss->ss_sp) |
3152                        __get_user(ss_flags, &uss->ss_flags) |
3153                        __get_user(ss_size, &uss->ss_size);
3154                if (error)
3155                        goto out;
3156
3157                error = -EPERM;
3158                if (on_sig_stack(sp))
3159                        goto out;
3160
3161                error = -EINVAL;
3162                /*
3163                 * Note - this code used to test ss_flags incorrectly:
3164                 *        old code may have been written using ss_flags==0
3165                 *        to mean ss_flags==SS_ONSTACK (as this was the only
3166                 *        way that worked) - this fix preserves that older
3167                 *        mechanism.
3168                 */
3169                if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
3170                        goto out;
3171
3172                if (ss_flags == SS_DISABLE) {
3173                        ss_size = 0;
3174                        ss_sp = NULL;
3175                } else {
3176                        error = -ENOMEM;
3177                        if (ss_size < MINSIGSTKSZ)
3178                                goto out;
3179                }
3180
3181                current->sas_ss_sp = (unsigned long) ss_sp;
3182                current->sas_ss_size = ss_size;
3183        }
3184
3185        error = 0;
3186        if (uoss) {
3187                error = -EFAULT;
3188                if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
3189                        goto out;
3190                error = __put_user(oss.ss_sp, &uoss->ss_sp) |
3191                        __put_user(oss.ss_size, &uoss->ss_size) |
3192                        __put_user(oss.ss_flags, &uoss->ss_flags);
3193        }
3194
3195out:
3196        return error;
3197}
3198SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
3199{
3200        return do_sigaltstack(uss, uoss, current_user_stack_pointer());
3201}
3202
3203int restore_altstack(const stack_t __user *uss)
3204{
3205        int err = do_sigaltstack(uss, NULL, current_user_stack_pointer());
3206        /* squash all but EFAULT for now */
3207        return err == -EFAULT ? err : 0;
3208}
3209
3210int __save_altstack(stack_t __user *uss, unsigned long sp)
3211{
3212        struct task_struct *t = current;
3213        return  __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
3214                __put_user(sas_ss_flags(sp), &uss->ss_flags) |
3215                __put_user(t->sas_ss_size, &uss->ss_size);
3216}
3217
3218#ifdef CONFIG_COMPAT
3219COMPAT_SYSCALL_DEFINE2(sigaltstack,
3220                        const compat_stack_t __user *, uss_ptr,
3221                        compat_stack_t __user *, uoss_ptr)
3222{
3223        stack_t uss, uoss;
3224        int ret;
3225        mm_segment_t seg;
3226
3227        if (uss_ptr) {
3228                compat_stack_t uss32;
3229
3230                memset(&uss, 0, sizeof(stack_t));
3231                if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
3232                        return -EFAULT;
3233                uss.ss_sp = compat_ptr(uss32.ss_sp);
3234                uss.ss_flags = uss32.ss_flags;
3235                uss.ss_size = uss32.ss_size;
3236        }
3237        seg = get_fs();
3238        set_fs(KERNEL_DS);
3239        ret = do_sigaltstack((stack_t __force __user *) (uss_ptr ? &uss : NULL),
3240                             (stack_t __force __user *) &uoss,
3241                             compat_user_stack_pointer());
3242        set_fs(seg);
3243        if (ret >= 0 && uoss_ptr)  {
3244                if (!access_ok(VERIFY_WRITE, uoss_ptr, sizeof(compat_stack_t)) ||
3245                    __put_user(ptr_to_compat(uoss.ss_sp), &uoss_ptr->ss_sp) ||
3246                    __put_user(uoss.ss_flags, &uoss_ptr->ss_flags) ||
3247                    __put_user(uoss.ss_size, &uoss_ptr->ss_size))
3248                        ret = -EFAULT;
3249        }
3250        return ret;
3251}
3252
3253int compat_restore_altstack(const compat_stack_t __user *uss)
3254{
3255        int err = compat_sys_sigaltstack(uss, NULL);
3256        /* squash all but -EFAULT for now */
3257        return err == -EFAULT ? err : 0;
3258}
3259
3260int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
3261{
3262        struct task_struct *t = current;
3263        return  __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), &uss->ss_sp) |
3264                __put_user(sas_ss_flags(sp), &uss->ss_flags) |
3265                __put_user(t->sas_ss_size, &uss->ss_size);
3266}
3267#endif
3268
3269#ifdef __ARCH_WANT_SYS_SIGPENDING
3270
3271/**
3272 *  sys_sigpending - examine pending signals
3273 *  @set: where mask of pending signal is returned
3274 */
3275SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
3276{
3277        return sys_rt_sigpending((sigset_t __user *)set, sizeof(old_sigset_t)); 
3278}
3279
3280#endif
3281
3282#ifdef __ARCH_WANT_SYS_SIGPROCMASK
3283/**
3284 *  sys_sigprocmask - examine and change blocked signals
3285 *  @how: whether to add, remove, or set signals
3286 *  @nset: signals to add or remove (if non-null)
3287 *  @oset: previous value of signal mask if non-null
3288 *
3289 * Some platforms have their own version with special arguments;
3290 * others support only sys_rt_sigprocmask.
3291 */
3292
3293SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3294                old_sigset_t __user *, oset)
3295{
3296        old_sigset_t old_set, new_set;
3297        sigset_t new_blocked;
3298
3299        old_set = current->blocked.sig[0];
3300
3301        if (nset) {
3302                if (copy_from_user(&new_set, nset, sizeof(*nset)))
3303                        return -EFAULT;
3304
3305                new_blocked = current->blocked;
3306
3307                switch (how) {
3308                case SIG_BLOCK:
3309                        sigaddsetmask(&new_blocked, new_set);
3310                        break;
3311                case SIG_UNBLOCK:
3312                        sigdelsetmask(&new_blocked, new_set);
3313                        break;
3314                case SIG_SETMASK:
3315                        new_blocked.sig[0] = new_set;
3316                        break;
3317                default:
3318                        return -EINVAL;
3319                }
3320
3321                set_current_blocked(&new_blocked);
3322        }
3323
3324        if (oset) {
3325                if (copy_to_user(oset, &old_set, sizeof(*oset)))
3326                        return -EFAULT;
3327        }
3328
3329        return 0;
3330}
3331#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3332
3333#ifndef CONFIG_ODD_RT_SIGACTION
3334/**
3335 *  sys_rt_sigaction - alter an action taken by a process
3336 *  @sig: signal to be sent
3337 *  @act: new sigaction
3338 *  @oact: used to save the previous sigaction
3339 *  @sigsetsize: size of sigset_t type
3340 */
3341SYSCALL_DEFINE4(rt_sigaction, int, sig,
3342                const struct sigaction __user *, act,
3343                struct sigaction __user *, oact,
3344                size_t, sigsetsize)
3345{
3346        struct k_sigaction new_sa, old_sa;
3347        int ret = -EINVAL;
3348
3349        /* XXX: Don't preclude handling different sized sigset_t's.  */
3350        if (sigsetsize != sizeof(sigset_t))
3351                goto out;
3352
3353        if (act) {
3354                if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3355                        return -EFAULT;
3356        }
3357
3358        ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3359
3360        if (!ret && oact) {
3361                if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3362                        return -EFAULT;
3363        }
3364out:
3365        return ret;
3366}
3367#ifdef CONFIG_COMPAT
3368COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
3369                const struct compat_sigaction __user *, act,
3370                struct compat_sigaction __user *, oact,
3371                compat_size_t, sigsetsize)
3372{
3373        struct k_sigaction new_ka, old_ka;
3374        compat_sigset_t mask;
3375#ifdef __ARCH_HAS_SA_RESTORER
3376        compat_uptr_t restorer;
3377#endif
3378        int ret;
3379
3380        /* XXX: Don't preclude handling different sized sigset_t's.  */
3381        if (sigsetsize != sizeof(compat_sigset_t))
3382                return -EINVAL;
3383
3384        if (act) {
3385                compat_uptr_t handler;
3386                ret = get_user(handler, &act->sa_handler);
3387                new_ka.sa.sa_handler = compat_ptr(handler);
3388#ifdef __ARCH_HAS_SA_RESTORER
3389                ret |= get_user(restorer, &act->sa_restorer);
3390                new_ka.sa.sa_restorer = compat_ptr(restorer);
3391#endif
3392                ret |= copy_from_user(&mask, &act->sa_mask, sizeof(mask));
3393                ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
3394                if (ret)
3395                        return -EFAULT;
3396                sigset_from_compat(&new_ka.sa.sa_mask, &mask);
3397        }
3398
3399        ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3400        if (!ret && oact) {
3401                sigset_to_compat(&mask, &old_ka.sa.sa_mask);
3402                ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 
3403                               &oact->sa_handler);
3404                ret |= copy_to_user(&oact->sa_mask, &mask, sizeof(mask));
3405                ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
3406#ifdef __ARCH_HAS_SA_RESTORER
3407                ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3408                                &oact->sa_restorer);
3409#endif
3410        }
3411        return ret;
3412}
3413#endif
3414#endif /* !CONFIG_ODD_RT_SIGACTION */
3415
3416#ifdef CONFIG_OLD_SIGACTION
3417SYSCALL_DEFINE3(sigaction, int, sig,
3418                const struct old_sigaction __user *, act,
3419                struct old_sigaction __user *, oact)
3420{
3421        struct k_sigaction new_ka, old_ka;
3422        int ret;
3423
3424        if (act) {
3425                old_sigset_t mask;
3426                if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3427                    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
3428                    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
3429                    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3430                    __get_user(mask, &act->sa_mask))
3431                        return -EFAULT;
3432#ifdef __ARCH_HAS_KA_RESTORER
3433                new_ka.ka_restorer = NULL;
3434#endif
3435                siginitset(&new_ka.sa.sa_mask, mask);
3436        }
3437
3438        ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3439
3440        if (!ret && oact) {
3441                if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3442                    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
3443                    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
3444                    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3445                    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3446                        return -EFAULT;
3447        }
3448
3449        return ret;
3450}
3451#endif
3452#ifdef CONFIG_COMPAT_OLD_SIGACTION
3453COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
3454                const struct compat_old_sigaction __user *, act,
3455                struct compat_old_sigaction __user *, oact)
3456{
3457        struct k_sigaction new_ka, old_ka;
3458        int ret;
3459        compat_old_sigset_t mask;
3460        compat_uptr_t handler, restorer;
3461
3462        if (act) {
3463                if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3464                    __get_user(handler, &act->sa_handler) ||
3465                    __get_user(restorer, &act->sa_restorer) ||
3466                    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3467                    __get_user(mask, &act->sa_mask))
3468                        return -EFAULT;
3469
3470#ifdef __ARCH_HAS_KA_RESTORER
3471                new_ka.ka_restorer = NULL;
3472#endif
3473                new_ka.sa.sa_handler = compat_ptr(handler);
3474                new_ka.sa.sa_restorer = compat_ptr(restorer);
3475                siginitset(&new_ka.sa.sa_mask, mask);
3476        }
3477
3478        ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3479
3480        if (!ret && oact) {
3481                if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3482                    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
3483                               &oact->sa_handler) ||
3484                    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3485                               &oact->sa_restorer) ||
3486                    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3487                    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3488                        return -EFAULT;
3489        }
3490        return ret;
3491}
3492#endif
3493
3494#ifdef CONFIG_SGETMASK_SYSCALL
3495
3496/*
3497 * For backwards compatibility.  Functionality superseded by sigprocmask.
3498 */
3499SYSCALL_DEFINE0(sgetmask)
3500{
3501        /* SMP safe */
3502        return current->blocked.sig[0];
3503}
3504
3505SYSCALL_DEFINE1(ssetmask, int, newmask)
3506{
3507        int old = current->blocked.sig[0];
3508        sigset_t newset;
3509
3510        siginitset(&newset, newmask);
3511        set_current_blocked(&newset);
3512
3513        return old;
3514}
3515#endif /* CONFIG_SGETMASK_SYSCALL */
3516
3517#ifdef __ARCH_WANT_SYS_SIGNAL
3518/*
3519 * For backwards compatibility.  Functionality superseded by sigaction.
3520 */
3521SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3522{
3523        struct k_sigaction new_sa, old_sa;
3524        int ret;
3525
3526        new_sa.sa.sa_handler = handler;
3527        new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3528        sigemptyset(&new_sa.sa.sa_mask);
3529
3530        ret = do_sigaction(sig, &new_sa, &old_sa);
3531
3532        return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3533}
3534#endif /* __ARCH_WANT_SYS_SIGNAL */
3535
3536#ifdef __ARCH_WANT_SYS_PAUSE
3537
3538SYSCALL_DEFINE0(pause)
3539{
3540        while (!signal_pending(current)) {
3541                current->state = TASK_INTERRUPTIBLE;
3542                schedule();
3543        }
3544        return -ERESTARTNOHAND;
3545}
3546
3547#endif
3548
3549int sigsuspend(sigset_t *set)
3550{
3551        current->saved_sigmask = current->blocked;
3552        set_current_blocked(set);
3553
3554        current->state = TASK_INTERRUPTIBLE;
3555        schedule();
3556        set_restore_sigmask();
3557        return -ERESTARTNOHAND;
3558}
3559
3560/**
3561 *  sys_rt_sigsuspend - replace the signal mask for a value with the
3562 *      @unewset value until a signal is received
3563 *  @unewset: new signal mask value
3564 *  @sigsetsize: size of sigset_t type
3565 */
3566SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3567{
3568        sigset_t newset;
3569
3570        /* XXX: Don't preclude handling different sized sigset_t's.  */
3571        if (sigsetsize != sizeof(sigset_t))
3572                return -EINVAL;
3573
3574        if (copy_from_user(&newset, unewset, sizeof(newset)))
3575                return -EFAULT;
3576        return sigsuspend(&newset);
3577}
3578 
3579#ifdef CONFIG_COMPAT
3580COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
3581{
3582#ifdef __BIG_ENDIAN
3583        sigset_t newset;
3584        compat_sigset_t newset32;
3585
3586        /* XXX: Don't preclude handling different sized sigset_t's.  */
3587        if (sigsetsize != sizeof(sigset_t))
3588                return -EINVAL;
3589
3590        if (copy_from_user(&newset32, unewset, sizeof(compat_sigset_t)))
3591                return -EFAULT;
3592        sigset_from_compat(&newset, &newset32);
3593        return sigsuspend(&newset);
3594#else
3595        /* on little-endian bitmaps don't care about granularity */
3596        return sys_rt_sigsuspend((sigset_t __user *)unewset, sigsetsize);
3597#endif
3598}
3599#endif
3600
3601#ifdef CONFIG_OLD_SIGSUSPEND
3602SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
3603{
3604        sigset_t blocked;
3605        siginitset(&blocked, mask);
3606        return sigsuspend(&blocked);
3607}
3608#endif
3609#ifdef CONFIG_OLD_SIGSUSPEND3
3610SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
3611{
3612        sigset_t blocked;
3613        siginitset(&blocked, mask);
3614        return sigsuspend(&blocked);
3615}
3616#endif
3617
3618__weak const char *arch_vma_name(struct vm_area_struct *vma)
3619{
3620        return NULL;
3621}
3622
3623void __init signals_init(void)
3624{
3625        sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
3626}
3627
3628#ifdef CONFIG_KGDB_KDB
3629#include <linux/kdb.h>
3630/*
3631 * kdb_send_sig_info - Allows kdb to send signals without exposing
3632 * signal internals.  This function checks if the required locks are
3633 * available before calling the main signal code, to avoid kdb
3634 * deadlocks.
3635 */
3636void
3637kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
3638{
3639        static struct task_struct *kdb_prev_t;
3640        int sig, new_t;
3641        if (!spin_trylock(&t->sighand->siglock)) {
3642                kdb_printf("Can't do kill command now.\n"
3643                           "The sigmask lock is held somewhere else in "
3644                           "kernel, try again later\n");
3645                return;
3646        }
3647        spin_unlock(&t->sighand->siglock);
3648        new_t = kdb_prev_t != t;
3649        kdb_prev_t = t;
3650        if (t->state != TASK_RUNNING && new_t) {
3651                kdb_printf("Process is not RUNNING, sending a signal from "
3652                           "kdb risks deadlock\n"
3653                           "on the run queue locks. "
3654                           "The signal has _not_ been sent.\n"
3655                           "Reissue the kill command if you want to risk "
3656                           "the deadlock.\n");
3657                return;
3658        }
3659        sig = info->si_signo;
3660        if (send_sig_info(sig, info, t))
3661                kdb_printf("Fail to deliver Signal %d to process %d.\n",
3662                           sig, t->pid);
3663        else
3664                kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
3665}
3666#endif  /* CONFIG_KGDB_KDB */
3667