linux/kernel/time/hrtimer.c
<<
>>
Prefs
   1/*
   2 *  linux/kernel/hrtimer.c
   3 *
   4 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
   5 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
   6 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
   7 *
   8 *  High-resolution kernel timers
   9 *
  10 *  In contrast to the low-resolution timeout API implemented in
  11 *  kernel/timer.c, hrtimers provide finer resolution and accuracy
  12 *  depending on system configuration and capabilities.
  13 *
  14 *  These timers are currently used for:
  15 *   - itimers
  16 *   - POSIX timers
  17 *   - nanosleep
  18 *   - precise in-kernel timing
  19 *
  20 *  Started by: Thomas Gleixner and Ingo Molnar
  21 *
  22 *  Credits:
  23 *      based on kernel/timer.c
  24 *
  25 *      Help, testing, suggestions, bugfixes, improvements were
  26 *      provided by:
  27 *
  28 *      George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
  29 *      et. al.
  30 *
  31 *  For licencing details see kernel-base/COPYING
  32 */
  33
  34#include <linux/cpu.h>
  35#include <linux/export.h>
  36#include <linux/percpu.h>
  37#include <linux/hrtimer.h>
  38#include <linux/notifier.h>
  39#include <linux/syscalls.h>
  40#include <linux/kallsyms.h>
  41#include <linux/interrupt.h>
  42#include <linux/tick.h>
  43#include <linux/seq_file.h>
  44#include <linux/err.h>
  45#include <linux/debugobjects.h>
  46#include <linux/sched.h>
  47#include <linux/sched/sysctl.h>
  48#include <linux/sched/rt.h>
  49#include <linux/sched/deadline.h>
  50#include <linux/timer.h>
  51#include <linux/freezer.h>
  52
  53#include <asm/uaccess.h>
  54
  55#include <trace/events/timer.h>
  56
  57#include "timekeeping.h"
  58
  59/*
  60 * The timer bases:
  61 *
  62 * There are more clockids then hrtimer bases. Thus, we index
  63 * into the timer bases by the hrtimer_base_type enum. When trying
  64 * to reach a base using a clockid, hrtimer_clockid_to_base()
  65 * is used to convert from clockid to the proper hrtimer_base_type.
  66 */
  67DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
  68{
  69
  70        .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
  71        .clock_base =
  72        {
  73                {
  74                        .index = HRTIMER_BASE_MONOTONIC,
  75                        .clockid = CLOCK_MONOTONIC,
  76                        .get_time = &ktime_get,
  77                        .resolution = KTIME_LOW_RES,
  78                },
  79                {
  80                        .index = HRTIMER_BASE_REALTIME,
  81                        .clockid = CLOCK_REALTIME,
  82                        .get_time = &ktime_get_real,
  83                        .resolution = KTIME_LOW_RES,
  84                },
  85                {
  86                        .index = HRTIMER_BASE_BOOTTIME,
  87                        .clockid = CLOCK_BOOTTIME,
  88                        .get_time = &ktime_get_boottime,
  89                        .resolution = KTIME_LOW_RES,
  90                },
  91                {
  92                        .index = HRTIMER_BASE_TAI,
  93                        .clockid = CLOCK_TAI,
  94                        .get_time = &ktime_get_clocktai,
  95                        .resolution = KTIME_LOW_RES,
  96                },
  97        }
  98};
  99
 100static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
 101        [CLOCK_REALTIME]        = HRTIMER_BASE_REALTIME,
 102        [CLOCK_MONOTONIC]       = HRTIMER_BASE_MONOTONIC,
 103        [CLOCK_BOOTTIME]        = HRTIMER_BASE_BOOTTIME,
 104        [CLOCK_TAI]             = HRTIMER_BASE_TAI,
 105};
 106
 107static inline int hrtimer_clockid_to_base(clockid_t clock_id)
 108{
 109        return hrtimer_clock_to_base_table[clock_id];
 110}
 111
 112
 113/*
 114 * Get the coarse grained time at the softirq based on xtime and
 115 * wall_to_monotonic.
 116 */
 117static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
 118{
 119        ktime_t xtim, mono, boot, tai;
 120        ktime_t off_real, off_boot, off_tai;
 121
 122        mono = ktime_get_update_offsets_tick(&off_real, &off_boot, &off_tai);
 123        boot = ktime_add(mono, off_boot);
 124        xtim = ktime_add(mono, off_real);
 125        tai = ktime_add(xtim, off_tai);
 126
 127        base->clock_base[HRTIMER_BASE_REALTIME].softirq_time = xtim;
 128        base->clock_base[HRTIMER_BASE_MONOTONIC].softirq_time = mono;
 129        base->clock_base[HRTIMER_BASE_BOOTTIME].softirq_time = boot;
 130        base->clock_base[HRTIMER_BASE_TAI].softirq_time = tai;
 131}
 132
 133/*
 134 * Functions and macros which are different for UP/SMP systems are kept in a
 135 * single place
 136 */
 137#ifdef CONFIG_SMP
 138
 139/*
 140 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
 141 * means that all timers which are tied to this base via timer->base are
 142 * locked, and the base itself is locked too.
 143 *
 144 * So __run_timers/migrate_timers can safely modify all timers which could
 145 * be found on the lists/queues.
 146 *
 147 * When the timer's base is locked, and the timer removed from list, it is
 148 * possible to set timer->base = NULL and drop the lock: the timer remains
 149 * locked.
 150 */
 151static
 152struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
 153                                             unsigned long *flags)
 154{
 155        struct hrtimer_clock_base *base;
 156
 157        for (;;) {
 158                base = timer->base;
 159                if (likely(base != NULL)) {
 160                        raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
 161                        if (likely(base == timer->base))
 162                                return base;
 163                        /* The timer has migrated to another CPU: */
 164                        raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
 165                }
 166                cpu_relax();
 167        }
 168}
 169
 170/*
 171 * With HIGHRES=y we do not migrate the timer when it is expiring
 172 * before the next event on the target cpu because we cannot reprogram
 173 * the target cpu hardware and we would cause it to fire late.
 174 *
 175 * Called with cpu_base->lock of target cpu held.
 176 */
 177static int
 178hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
 179{
 180#ifdef CONFIG_HIGH_RES_TIMERS
 181        ktime_t expires;
 182
 183        if (!new_base->cpu_base->hres_active)
 184                return 0;
 185
 186        expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
 187        return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
 188#else
 189        return 0;
 190#endif
 191}
 192
 193/*
 194 * Switch the timer base to the current CPU when possible.
 195 */
 196static inline struct hrtimer_clock_base *
 197switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
 198                    int pinned)
 199{
 200        struct hrtimer_clock_base *new_base;
 201        struct hrtimer_cpu_base *new_cpu_base;
 202        int this_cpu = smp_processor_id();
 203        int cpu = get_nohz_timer_target(pinned);
 204        int basenum = base->index;
 205
 206again:
 207        new_cpu_base = &per_cpu(hrtimer_bases, cpu);
 208        new_base = &new_cpu_base->clock_base[basenum];
 209
 210        if (base != new_base) {
 211                /*
 212                 * We are trying to move timer to new_base.
 213                 * However we can't change timer's base while it is running,
 214                 * so we keep it on the same CPU. No hassle vs. reprogramming
 215                 * the event source in the high resolution case. The softirq
 216                 * code will take care of this when the timer function has
 217                 * completed. There is no conflict as we hold the lock until
 218                 * the timer is enqueued.
 219                 */
 220                if (unlikely(hrtimer_callback_running(timer)))
 221                        return base;
 222
 223                /* See the comment in lock_timer_base() */
 224                timer->base = NULL;
 225                raw_spin_unlock(&base->cpu_base->lock);
 226                raw_spin_lock(&new_base->cpu_base->lock);
 227
 228                if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
 229                        cpu = this_cpu;
 230                        raw_spin_unlock(&new_base->cpu_base->lock);
 231                        raw_spin_lock(&base->cpu_base->lock);
 232                        timer->base = base;
 233                        goto again;
 234                }
 235                timer->base = new_base;
 236        } else {
 237                if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
 238                        cpu = this_cpu;
 239                        goto again;
 240                }
 241        }
 242        return new_base;
 243}
 244
 245#else /* CONFIG_SMP */
 246
 247static inline struct hrtimer_clock_base *
 248lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
 249{
 250        struct hrtimer_clock_base *base = timer->base;
 251
 252        raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
 253
 254        return base;
 255}
 256
 257# define switch_hrtimer_base(t, b, p)   (b)
 258
 259#endif  /* !CONFIG_SMP */
 260
 261/*
 262 * Functions for the union type storage format of ktime_t which are
 263 * too large for inlining:
 264 */
 265#if BITS_PER_LONG < 64
 266/*
 267 * Divide a ktime value by a nanosecond value
 268 */
 269u64 ktime_divns(const ktime_t kt, s64 div)
 270{
 271        u64 dclc;
 272        int sft = 0;
 273
 274        dclc = ktime_to_ns(kt);
 275        /* Make sure the divisor is less than 2^32: */
 276        while (div >> 32) {
 277                sft++;
 278                div >>= 1;
 279        }
 280        dclc >>= sft;
 281        do_div(dclc, (unsigned long) div);
 282
 283        return dclc;
 284}
 285EXPORT_SYMBOL_GPL(ktime_divns);
 286#endif /* BITS_PER_LONG >= 64 */
 287
 288/*
 289 * Add two ktime values and do a safety check for overflow:
 290 */
 291ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
 292{
 293        ktime_t res = ktime_add(lhs, rhs);
 294
 295        /*
 296         * We use KTIME_SEC_MAX here, the maximum timeout which we can
 297         * return to user space in a timespec:
 298         */
 299        if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
 300                res = ktime_set(KTIME_SEC_MAX, 0);
 301
 302        return res;
 303}
 304
 305EXPORT_SYMBOL_GPL(ktime_add_safe);
 306
 307#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
 308
 309static struct debug_obj_descr hrtimer_debug_descr;
 310
 311static void *hrtimer_debug_hint(void *addr)
 312{
 313        return ((struct hrtimer *) addr)->function;
 314}
 315
 316/*
 317 * fixup_init is called when:
 318 * - an active object is initialized
 319 */
 320static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
 321{
 322        struct hrtimer *timer = addr;
 323
 324        switch (state) {
 325        case ODEBUG_STATE_ACTIVE:
 326                hrtimer_cancel(timer);
 327                debug_object_init(timer, &hrtimer_debug_descr);
 328                return 1;
 329        default:
 330                return 0;
 331        }
 332}
 333
 334/*
 335 * fixup_activate is called when:
 336 * - an active object is activated
 337 * - an unknown object is activated (might be a statically initialized object)
 338 */
 339static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
 340{
 341        switch (state) {
 342
 343        case ODEBUG_STATE_NOTAVAILABLE:
 344                WARN_ON_ONCE(1);
 345                return 0;
 346
 347        case ODEBUG_STATE_ACTIVE:
 348                WARN_ON(1);
 349
 350        default:
 351                return 0;
 352        }
 353}
 354
 355/*
 356 * fixup_free is called when:
 357 * - an active object is freed
 358 */
 359static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
 360{
 361        struct hrtimer *timer = addr;
 362
 363        switch (state) {
 364        case ODEBUG_STATE_ACTIVE:
 365                hrtimer_cancel(timer);
 366                debug_object_free(timer, &hrtimer_debug_descr);
 367                return 1;
 368        default:
 369                return 0;
 370        }
 371}
 372
 373static struct debug_obj_descr hrtimer_debug_descr = {
 374        .name           = "hrtimer",
 375        .debug_hint     = hrtimer_debug_hint,
 376        .fixup_init     = hrtimer_fixup_init,
 377        .fixup_activate = hrtimer_fixup_activate,
 378        .fixup_free     = hrtimer_fixup_free,
 379};
 380
 381static inline void debug_hrtimer_init(struct hrtimer *timer)
 382{
 383        debug_object_init(timer, &hrtimer_debug_descr);
 384}
 385
 386static inline void debug_hrtimer_activate(struct hrtimer *timer)
 387{
 388        debug_object_activate(timer, &hrtimer_debug_descr);
 389}
 390
 391static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
 392{
 393        debug_object_deactivate(timer, &hrtimer_debug_descr);
 394}
 395
 396static inline void debug_hrtimer_free(struct hrtimer *timer)
 397{
 398        debug_object_free(timer, &hrtimer_debug_descr);
 399}
 400
 401static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
 402                           enum hrtimer_mode mode);
 403
 404void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
 405                           enum hrtimer_mode mode)
 406{
 407        debug_object_init_on_stack(timer, &hrtimer_debug_descr);
 408        __hrtimer_init(timer, clock_id, mode);
 409}
 410EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
 411
 412void destroy_hrtimer_on_stack(struct hrtimer *timer)
 413{
 414        debug_object_free(timer, &hrtimer_debug_descr);
 415}
 416
 417#else
 418static inline void debug_hrtimer_init(struct hrtimer *timer) { }
 419static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
 420static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
 421#endif
 422
 423static inline void
 424debug_init(struct hrtimer *timer, clockid_t clockid,
 425           enum hrtimer_mode mode)
 426{
 427        debug_hrtimer_init(timer);
 428        trace_hrtimer_init(timer, clockid, mode);
 429}
 430
 431static inline void debug_activate(struct hrtimer *timer)
 432{
 433        debug_hrtimer_activate(timer);
 434        trace_hrtimer_start(timer);
 435}
 436
 437static inline void debug_deactivate(struct hrtimer *timer)
 438{
 439        debug_hrtimer_deactivate(timer);
 440        trace_hrtimer_cancel(timer);
 441}
 442
 443/* High resolution timer related functions */
 444#ifdef CONFIG_HIGH_RES_TIMERS
 445
 446/*
 447 * High resolution timer enabled ?
 448 */
 449static int hrtimer_hres_enabled __read_mostly  = 1;
 450
 451/*
 452 * Enable / Disable high resolution mode
 453 */
 454static int __init setup_hrtimer_hres(char *str)
 455{
 456        if (!strcmp(str, "off"))
 457                hrtimer_hres_enabled = 0;
 458        else if (!strcmp(str, "on"))
 459                hrtimer_hres_enabled = 1;
 460        else
 461                return 0;
 462        return 1;
 463}
 464
 465__setup("highres=", setup_hrtimer_hres);
 466
 467/*
 468 * hrtimer_high_res_enabled - query, if the highres mode is enabled
 469 */
 470static inline int hrtimer_is_hres_enabled(void)
 471{
 472        return hrtimer_hres_enabled;
 473}
 474
 475/*
 476 * Is the high resolution mode active ?
 477 */
 478static inline int hrtimer_hres_active(void)
 479{
 480        return __this_cpu_read(hrtimer_bases.hres_active);
 481}
 482
 483/*
 484 * Reprogram the event source with checking both queues for the
 485 * next event
 486 * Called with interrupts disabled and base->lock held
 487 */
 488static void
 489hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
 490{
 491        int i;
 492        struct hrtimer_clock_base *base = cpu_base->clock_base;
 493        ktime_t expires, expires_next;
 494
 495        expires_next.tv64 = KTIME_MAX;
 496
 497        for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
 498                struct hrtimer *timer;
 499                struct timerqueue_node *next;
 500
 501                next = timerqueue_getnext(&base->active);
 502                if (!next)
 503                        continue;
 504                timer = container_of(next, struct hrtimer, node);
 505
 506                expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
 507                /*
 508                 * clock_was_set() has changed base->offset so the
 509                 * result might be negative. Fix it up to prevent a
 510                 * false positive in clockevents_program_event()
 511                 */
 512                if (expires.tv64 < 0)
 513                        expires.tv64 = 0;
 514                if (expires.tv64 < expires_next.tv64)
 515                        expires_next = expires;
 516        }
 517
 518        if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
 519                return;
 520
 521        cpu_base->expires_next.tv64 = expires_next.tv64;
 522
 523        /*
 524         * If a hang was detected in the last timer interrupt then we
 525         * leave the hang delay active in the hardware. We want the
 526         * system to make progress. That also prevents the following
 527         * scenario:
 528         * T1 expires 50ms from now
 529         * T2 expires 5s from now
 530         *
 531         * T1 is removed, so this code is called and would reprogram
 532         * the hardware to 5s from now. Any hrtimer_start after that
 533         * will not reprogram the hardware due to hang_detected being
 534         * set. So we'd effectivly block all timers until the T2 event
 535         * fires.
 536         */
 537        if (cpu_base->hang_detected)
 538                return;
 539
 540        if (cpu_base->expires_next.tv64 != KTIME_MAX)
 541                tick_program_event(cpu_base->expires_next, 1);
 542}
 543
 544/*
 545 * Shared reprogramming for clock_realtime and clock_monotonic
 546 *
 547 * When a timer is enqueued and expires earlier than the already enqueued
 548 * timers, we have to check, whether it expires earlier than the timer for
 549 * which the clock event device was armed.
 550 *
 551 * Note, that in case the state has HRTIMER_STATE_CALLBACK set, no reprogramming
 552 * and no expiry check happens. The timer gets enqueued into the rbtree. The
 553 * reprogramming and expiry check is done in the hrtimer_interrupt or in the
 554 * softirq.
 555 *
 556 * Called with interrupts disabled and base->cpu_base.lock held
 557 */
 558static int hrtimer_reprogram(struct hrtimer *timer,
 559                             struct hrtimer_clock_base *base)
 560{
 561        struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
 562        ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
 563        int res;
 564
 565        WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
 566
 567        /*
 568         * When the callback is running, we do not reprogram the clock event
 569         * device. The timer callback is either running on a different CPU or
 570         * the callback is executed in the hrtimer_interrupt context. The
 571         * reprogramming is handled either by the softirq, which called the
 572         * callback or at the end of the hrtimer_interrupt.
 573         */
 574        if (hrtimer_callback_running(timer))
 575                return 0;
 576
 577        /*
 578         * CLOCK_REALTIME timer might be requested with an absolute
 579         * expiry time which is less than base->offset. Nothing wrong
 580         * about that, just avoid to call into the tick code, which
 581         * has now objections against negative expiry values.
 582         */
 583        if (expires.tv64 < 0)
 584                return -ETIME;
 585
 586        if (expires.tv64 >= cpu_base->expires_next.tv64)
 587                return 0;
 588
 589        /*
 590         * If a hang was detected in the last timer interrupt then we
 591         * do not schedule a timer which is earlier than the expiry
 592         * which we enforced in the hang detection. We want the system
 593         * to make progress.
 594         */
 595        if (cpu_base->hang_detected)
 596                return 0;
 597
 598        /*
 599         * Clockevents returns -ETIME, when the event was in the past.
 600         */
 601        res = tick_program_event(expires, 0);
 602        if (!IS_ERR_VALUE(res))
 603                cpu_base->expires_next = expires;
 604        return res;
 605}
 606
 607/*
 608 * Initialize the high resolution related parts of cpu_base
 609 */
 610static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
 611{
 612        base->expires_next.tv64 = KTIME_MAX;
 613        base->hres_active = 0;
 614}
 615
 616static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
 617{
 618        ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
 619        ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
 620        ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
 621
 622        return ktime_get_update_offsets_now(offs_real, offs_boot, offs_tai);
 623}
 624
 625/*
 626 * Retrigger next event is called after clock was set
 627 *
 628 * Called with interrupts disabled via on_each_cpu()
 629 */
 630static void retrigger_next_event(void *arg)
 631{
 632        struct hrtimer_cpu_base *base = &__get_cpu_var(hrtimer_bases);
 633
 634        if (!hrtimer_hres_active())
 635                return;
 636
 637        raw_spin_lock(&base->lock);
 638        hrtimer_update_base(base);
 639        hrtimer_force_reprogram(base, 0);
 640        raw_spin_unlock(&base->lock);
 641}
 642
 643/*
 644 * Switch to high resolution mode
 645 */
 646static int hrtimer_switch_to_hres(void)
 647{
 648        int i, cpu = smp_processor_id();
 649        struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
 650        unsigned long flags;
 651
 652        if (base->hres_active)
 653                return 1;
 654
 655        local_irq_save(flags);
 656
 657        if (tick_init_highres()) {
 658                local_irq_restore(flags);
 659                printk(KERN_WARNING "Could not switch to high resolution "
 660                                    "mode on CPU %d\n", cpu);
 661                return 0;
 662        }
 663        base->hres_active = 1;
 664        for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
 665                base->clock_base[i].resolution = KTIME_HIGH_RES;
 666
 667        tick_setup_sched_timer();
 668        /* "Retrigger" the interrupt to get things going */
 669        retrigger_next_event(NULL);
 670        local_irq_restore(flags);
 671        return 1;
 672}
 673
 674static void clock_was_set_work(struct work_struct *work)
 675{
 676        clock_was_set();
 677}
 678
 679static DECLARE_WORK(hrtimer_work, clock_was_set_work);
 680
 681/*
 682 * Called from timekeeping and resume code to reprogramm the hrtimer
 683 * interrupt device on all cpus.
 684 */
 685void clock_was_set_delayed(void)
 686{
 687        schedule_work(&hrtimer_work);
 688}
 689
 690#else
 691
 692static inline int hrtimer_hres_active(void) { return 0; }
 693static inline int hrtimer_is_hres_enabled(void) { return 0; }
 694static inline int hrtimer_switch_to_hres(void) { return 0; }
 695static inline void
 696hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
 697static inline int hrtimer_reprogram(struct hrtimer *timer,
 698                                    struct hrtimer_clock_base *base)
 699{
 700        return 0;
 701}
 702static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
 703static inline void retrigger_next_event(void *arg) { }
 704
 705#endif /* CONFIG_HIGH_RES_TIMERS */
 706
 707/*
 708 * Clock realtime was set
 709 *
 710 * Change the offset of the realtime clock vs. the monotonic
 711 * clock.
 712 *
 713 * We might have to reprogram the high resolution timer interrupt. On
 714 * SMP we call the architecture specific code to retrigger _all_ high
 715 * resolution timer interrupts. On UP we just disable interrupts and
 716 * call the high resolution interrupt code.
 717 */
 718void clock_was_set(void)
 719{
 720#ifdef CONFIG_HIGH_RES_TIMERS
 721        /* Retrigger the CPU local events everywhere */
 722        on_each_cpu(retrigger_next_event, NULL, 1);
 723#endif
 724        timerfd_clock_was_set();
 725}
 726
 727/*
 728 * During resume we might have to reprogram the high resolution timer
 729 * interrupt on all online CPUs.  However, all other CPUs will be
 730 * stopped with IRQs interrupts disabled so the clock_was_set() call
 731 * must be deferred.
 732 */
 733void hrtimers_resume(void)
 734{
 735        WARN_ONCE(!irqs_disabled(),
 736                  KERN_INFO "hrtimers_resume() called with IRQs enabled!");
 737
 738        /* Retrigger on the local CPU */
 739        retrigger_next_event(NULL);
 740        /* And schedule a retrigger for all others */
 741        clock_was_set_delayed();
 742}
 743
 744static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
 745{
 746#ifdef CONFIG_TIMER_STATS
 747        if (timer->start_site)
 748                return;
 749        timer->start_site = __builtin_return_address(0);
 750        memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
 751        timer->start_pid = current->pid;
 752#endif
 753}
 754
 755static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
 756{
 757#ifdef CONFIG_TIMER_STATS
 758        timer->start_site = NULL;
 759#endif
 760}
 761
 762static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
 763{
 764#ifdef CONFIG_TIMER_STATS
 765        if (likely(!timer_stats_active))
 766                return;
 767        timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
 768                                 timer->function, timer->start_comm, 0);
 769#endif
 770}
 771
 772/*
 773 * Counterpart to lock_hrtimer_base above:
 774 */
 775static inline
 776void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
 777{
 778        raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
 779}
 780
 781/**
 782 * hrtimer_forward - forward the timer expiry
 783 * @timer:      hrtimer to forward
 784 * @now:        forward past this time
 785 * @interval:   the interval to forward
 786 *
 787 * Forward the timer expiry so it will expire in the future.
 788 * Returns the number of overruns.
 789 */
 790u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
 791{
 792        u64 orun = 1;
 793        ktime_t delta;
 794
 795        delta = ktime_sub(now, hrtimer_get_expires(timer));
 796
 797        if (delta.tv64 < 0)
 798                return 0;
 799
 800        if (interval.tv64 < timer->base->resolution.tv64)
 801                interval.tv64 = timer->base->resolution.tv64;
 802
 803        if (unlikely(delta.tv64 >= interval.tv64)) {
 804                s64 incr = ktime_to_ns(interval);
 805
 806                orun = ktime_divns(delta, incr);
 807                hrtimer_add_expires_ns(timer, incr * orun);
 808                if (hrtimer_get_expires_tv64(timer) > now.tv64)
 809                        return orun;
 810                /*
 811                 * This (and the ktime_add() below) is the
 812                 * correction for exact:
 813                 */
 814                orun++;
 815        }
 816        hrtimer_add_expires(timer, interval);
 817
 818        return orun;
 819}
 820EXPORT_SYMBOL_GPL(hrtimer_forward);
 821
 822/*
 823 * enqueue_hrtimer - internal function to (re)start a timer
 824 *
 825 * The timer is inserted in expiry order. Insertion into the
 826 * red black tree is O(log(n)). Must hold the base lock.
 827 *
 828 * Returns 1 when the new timer is the leftmost timer in the tree.
 829 */
 830static int enqueue_hrtimer(struct hrtimer *timer,
 831                           struct hrtimer_clock_base *base)
 832{
 833        debug_activate(timer);
 834
 835        timerqueue_add(&base->active, &timer->node);
 836        base->cpu_base->active_bases |= 1 << base->index;
 837
 838        /*
 839         * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
 840         * state of a possibly running callback.
 841         */
 842        timer->state |= HRTIMER_STATE_ENQUEUED;
 843
 844        return (&timer->node == base->active.next);
 845}
 846
 847/*
 848 * __remove_hrtimer - internal function to remove a timer
 849 *
 850 * Caller must hold the base lock.
 851 *
 852 * High resolution timer mode reprograms the clock event device when the
 853 * timer is the one which expires next. The caller can disable this by setting
 854 * reprogram to zero. This is useful, when the context does a reprogramming
 855 * anyway (e.g. timer interrupt)
 856 */
 857static void __remove_hrtimer(struct hrtimer *timer,
 858                             struct hrtimer_clock_base *base,
 859                             unsigned long newstate, int reprogram)
 860{
 861        struct timerqueue_node *next_timer;
 862        if (!(timer->state & HRTIMER_STATE_ENQUEUED))
 863                goto out;
 864
 865        next_timer = timerqueue_getnext(&base->active);
 866        timerqueue_del(&base->active, &timer->node);
 867        if (&timer->node == next_timer) {
 868#ifdef CONFIG_HIGH_RES_TIMERS
 869                /* Reprogram the clock event device. if enabled */
 870                if (reprogram && hrtimer_hres_active()) {
 871                        ktime_t expires;
 872
 873                        expires = ktime_sub(hrtimer_get_expires(timer),
 874                                            base->offset);
 875                        if (base->cpu_base->expires_next.tv64 == expires.tv64)
 876                                hrtimer_force_reprogram(base->cpu_base, 1);
 877                }
 878#endif
 879        }
 880        if (!timerqueue_getnext(&base->active))
 881                base->cpu_base->active_bases &= ~(1 << base->index);
 882out:
 883        timer->state = newstate;
 884}
 885
 886/*
 887 * remove hrtimer, called with base lock held
 888 */
 889static inline int
 890remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
 891{
 892        if (hrtimer_is_queued(timer)) {
 893                unsigned long state;
 894                int reprogram;
 895
 896                /*
 897                 * Remove the timer and force reprogramming when high
 898                 * resolution mode is active and the timer is on the current
 899                 * CPU. If we remove a timer on another CPU, reprogramming is
 900                 * skipped. The interrupt event on this CPU is fired and
 901                 * reprogramming happens in the interrupt handler. This is a
 902                 * rare case and less expensive than a smp call.
 903                 */
 904                debug_deactivate(timer);
 905                timer_stats_hrtimer_clear_start_info(timer);
 906                reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
 907                /*
 908                 * We must preserve the CALLBACK state flag here,
 909                 * otherwise we could move the timer base in
 910                 * switch_hrtimer_base.
 911                 */
 912                state = timer->state & HRTIMER_STATE_CALLBACK;
 913                __remove_hrtimer(timer, base, state, reprogram);
 914                return 1;
 915        }
 916        return 0;
 917}
 918
 919int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
 920                unsigned long delta_ns, const enum hrtimer_mode mode,
 921                int wakeup)
 922{
 923        struct hrtimer_clock_base *base, *new_base;
 924        unsigned long flags;
 925        int ret, leftmost;
 926
 927        base = lock_hrtimer_base(timer, &flags);
 928
 929        /* Remove an active timer from the queue: */
 930        ret = remove_hrtimer(timer, base);
 931
 932        if (mode & HRTIMER_MODE_REL) {
 933                tim = ktime_add_safe(tim, base->get_time());
 934                /*
 935                 * CONFIG_TIME_LOW_RES is a temporary way for architectures
 936                 * to signal that they simply return xtime in
 937                 * do_gettimeoffset(). In this case we want to round up by
 938                 * resolution when starting a relative timer, to avoid short
 939                 * timeouts. This will go away with the GTOD framework.
 940                 */
 941#ifdef CONFIG_TIME_LOW_RES
 942                tim = ktime_add_safe(tim, base->resolution);
 943#endif
 944        }
 945
 946        hrtimer_set_expires_range_ns(timer, tim, delta_ns);
 947
 948        /* Switch the timer base, if necessary: */
 949        new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
 950
 951        timer_stats_hrtimer_set_start_info(timer);
 952
 953        leftmost = enqueue_hrtimer(timer, new_base);
 954
 955        if (!leftmost) {
 956                unlock_hrtimer_base(timer, &flags);
 957                return ret;
 958        }
 959
 960        if (!hrtimer_is_hres_active(timer)) {
 961                /*
 962                 * Kick to reschedule the next tick to handle the new timer
 963                 * on dynticks target.
 964                 */
 965                wake_up_nohz_cpu(new_base->cpu_base->cpu);
 966        } else if (new_base->cpu_base == &__get_cpu_var(hrtimer_bases) &&
 967                        hrtimer_reprogram(timer, new_base)) {
 968                /*
 969                 * Only allow reprogramming if the new base is on this CPU.
 970                 * (it might still be on another CPU if the timer was pending)
 971                 *
 972                 * XXX send_remote_softirq() ?
 973                 */
 974                if (wakeup) {
 975                        /*
 976                         * We need to drop cpu_base->lock to avoid a
 977                         * lock ordering issue vs. rq->lock.
 978                         */
 979                        raw_spin_unlock(&new_base->cpu_base->lock);
 980                        raise_softirq_irqoff(HRTIMER_SOFTIRQ);
 981                        local_irq_restore(flags);
 982                        return ret;
 983                } else {
 984                        __raise_softirq_irqoff(HRTIMER_SOFTIRQ);
 985                }
 986        }
 987
 988        unlock_hrtimer_base(timer, &flags);
 989
 990        return ret;
 991}
 992EXPORT_SYMBOL_GPL(__hrtimer_start_range_ns);
 993
 994/**
 995 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
 996 * @timer:      the timer to be added
 997 * @tim:        expiry time
 998 * @delta_ns:   "slack" range for the timer
 999 * @mode:       expiry mode: absolute (HRTIMER_MODE_ABS) or
1000 *              relative (HRTIMER_MODE_REL)
1001 *
1002 * Returns:
1003 *  0 on success
1004 *  1 when the timer was active
1005 */
1006int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1007                unsigned long delta_ns, const enum hrtimer_mode mode)
1008{
1009        return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
1010}
1011EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1012
1013/**
1014 * hrtimer_start - (re)start an hrtimer on the current CPU
1015 * @timer:      the timer to be added
1016 * @tim:        expiry time
1017 * @mode:       expiry mode: absolute (HRTIMER_MODE_ABS) or
1018 *              relative (HRTIMER_MODE_REL)
1019 *
1020 * Returns:
1021 *  0 on success
1022 *  1 when the timer was active
1023 */
1024int
1025hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
1026{
1027        return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
1028}
1029EXPORT_SYMBOL_GPL(hrtimer_start);
1030
1031
1032/**
1033 * hrtimer_try_to_cancel - try to deactivate a timer
1034 * @timer:      hrtimer to stop
1035 *
1036 * Returns:
1037 *  0 when the timer was not active
1038 *  1 when the timer was active
1039 * -1 when the timer is currently excuting the callback function and
1040 *    cannot be stopped
1041 */
1042int hrtimer_try_to_cancel(struct hrtimer *timer)
1043{
1044        struct hrtimer_clock_base *base;
1045        unsigned long flags;
1046        int ret = -1;
1047
1048        base = lock_hrtimer_base(timer, &flags);
1049
1050        if (!hrtimer_callback_running(timer))
1051                ret = remove_hrtimer(timer, base);
1052
1053        unlock_hrtimer_base(timer, &flags);
1054
1055        return ret;
1056
1057}
1058EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1059
1060/**
1061 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1062 * @timer:      the timer to be cancelled
1063 *
1064 * Returns:
1065 *  0 when the timer was not active
1066 *  1 when the timer was active
1067 */
1068int hrtimer_cancel(struct hrtimer *timer)
1069{
1070        for (;;) {
1071                int ret = hrtimer_try_to_cancel(timer);
1072
1073                if (ret >= 0)
1074                        return ret;
1075                cpu_relax();
1076        }
1077}
1078EXPORT_SYMBOL_GPL(hrtimer_cancel);
1079
1080/**
1081 * hrtimer_get_remaining - get remaining time for the timer
1082 * @timer:      the timer to read
1083 */
1084ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
1085{
1086        unsigned long flags;
1087        ktime_t rem;
1088
1089        lock_hrtimer_base(timer, &flags);
1090        rem = hrtimer_expires_remaining(timer);
1091        unlock_hrtimer_base(timer, &flags);
1092
1093        return rem;
1094}
1095EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1096
1097#ifdef CONFIG_NO_HZ_COMMON
1098/**
1099 * hrtimer_get_next_event - get the time until next expiry event
1100 *
1101 * Returns the delta to the next expiry event or KTIME_MAX if no timer
1102 * is pending.
1103 */
1104ktime_t hrtimer_get_next_event(void)
1105{
1106        struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1107        struct hrtimer_clock_base *base = cpu_base->clock_base;
1108        ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
1109        unsigned long flags;
1110        int i;
1111
1112        raw_spin_lock_irqsave(&cpu_base->lock, flags);
1113
1114        if (!hrtimer_hres_active()) {
1115                for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
1116                        struct hrtimer *timer;
1117                        struct timerqueue_node *next;
1118
1119                        next = timerqueue_getnext(&base->active);
1120                        if (!next)
1121                                continue;
1122
1123                        timer = container_of(next, struct hrtimer, node);
1124                        delta.tv64 = hrtimer_get_expires_tv64(timer);
1125                        delta = ktime_sub(delta, base->get_time());
1126                        if (delta.tv64 < mindelta.tv64)
1127                                mindelta.tv64 = delta.tv64;
1128                }
1129        }
1130
1131        raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1132
1133        if (mindelta.tv64 < 0)
1134                mindelta.tv64 = 0;
1135        return mindelta;
1136}
1137#endif
1138
1139static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1140                           enum hrtimer_mode mode)
1141{
1142        struct hrtimer_cpu_base *cpu_base;
1143        int base;
1144
1145        memset(timer, 0, sizeof(struct hrtimer));
1146
1147        cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1148
1149        if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1150                clock_id = CLOCK_MONOTONIC;
1151
1152        base = hrtimer_clockid_to_base(clock_id);
1153        timer->base = &cpu_base->clock_base[base];
1154        timerqueue_init(&timer->node);
1155
1156#ifdef CONFIG_TIMER_STATS
1157        timer->start_site = NULL;
1158        timer->start_pid = -1;
1159        memset(timer->start_comm, 0, TASK_COMM_LEN);
1160#endif
1161}
1162
1163/**
1164 * hrtimer_init - initialize a timer to the given clock
1165 * @timer:      the timer to be initialized
1166 * @clock_id:   the clock to be used
1167 * @mode:       timer mode abs/rel
1168 */
1169void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1170                  enum hrtimer_mode mode)
1171{
1172        debug_init(timer, clock_id, mode);
1173        __hrtimer_init(timer, clock_id, mode);
1174}
1175EXPORT_SYMBOL_GPL(hrtimer_init);
1176
1177/**
1178 * hrtimer_get_res - get the timer resolution for a clock
1179 * @which_clock: which clock to query
1180 * @tp:          pointer to timespec variable to store the resolution
1181 *
1182 * Store the resolution of the clock selected by @which_clock in the
1183 * variable pointed to by @tp.
1184 */
1185int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
1186{
1187        struct hrtimer_cpu_base *cpu_base;
1188        int base = hrtimer_clockid_to_base(which_clock);
1189
1190        cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1191        *tp = ktime_to_timespec(cpu_base->clock_base[base].resolution);
1192
1193        return 0;
1194}
1195EXPORT_SYMBOL_GPL(hrtimer_get_res);
1196
1197static void __run_hrtimer(struct hrtimer *timer, ktime_t *now)
1198{
1199        struct hrtimer_clock_base *base = timer->base;
1200        struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1201        enum hrtimer_restart (*fn)(struct hrtimer *);
1202        int restart;
1203
1204        WARN_ON(!irqs_disabled());
1205
1206        debug_deactivate(timer);
1207        __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1208        timer_stats_account_hrtimer(timer);
1209        fn = timer->function;
1210
1211        /*
1212         * Because we run timers from hardirq context, there is no chance
1213         * they get migrated to another cpu, therefore its safe to unlock
1214         * the timer base.
1215         */
1216        raw_spin_unlock(&cpu_base->lock);
1217        trace_hrtimer_expire_entry(timer, now);
1218        restart = fn(timer);
1219        trace_hrtimer_expire_exit(timer);
1220        raw_spin_lock(&cpu_base->lock);
1221
1222        /*
1223         * Note: We clear the CALLBACK bit after enqueue_hrtimer and
1224         * we do not reprogramm the event hardware. Happens either in
1225         * hrtimer_start_range_ns() or in hrtimer_interrupt()
1226         */
1227        if (restart != HRTIMER_NORESTART) {
1228                BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1229                enqueue_hrtimer(timer, base);
1230        }
1231
1232        WARN_ON_ONCE(!(timer->state & HRTIMER_STATE_CALLBACK));
1233
1234        timer->state &= ~HRTIMER_STATE_CALLBACK;
1235}
1236
1237#ifdef CONFIG_HIGH_RES_TIMERS
1238
1239/*
1240 * High resolution timer interrupt
1241 * Called with interrupts disabled
1242 */
1243void hrtimer_interrupt(struct clock_event_device *dev)
1244{
1245        struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1246        ktime_t expires_next, now, entry_time, delta;
1247        int i, retries = 0;
1248
1249        BUG_ON(!cpu_base->hres_active);
1250        cpu_base->nr_events++;
1251        dev->next_event.tv64 = KTIME_MAX;
1252
1253        raw_spin_lock(&cpu_base->lock);
1254        entry_time = now = hrtimer_update_base(cpu_base);
1255retry:
1256        expires_next.tv64 = KTIME_MAX;
1257        /*
1258         * We set expires_next to KTIME_MAX here with cpu_base->lock
1259         * held to prevent that a timer is enqueued in our queue via
1260         * the migration code. This does not affect enqueueing of
1261         * timers which run their callback and need to be requeued on
1262         * this CPU.
1263         */
1264        cpu_base->expires_next.tv64 = KTIME_MAX;
1265
1266        for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1267                struct hrtimer_clock_base *base;
1268                struct timerqueue_node *node;
1269                ktime_t basenow;
1270
1271                if (!(cpu_base->active_bases & (1 << i)))
1272                        continue;
1273
1274                base = cpu_base->clock_base + i;
1275                basenow = ktime_add(now, base->offset);
1276
1277                while ((node = timerqueue_getnext(&base->active))) {
1278                        struct hrtimer *timer;
1279
1280                        timer = container_of(node, struct hrtimer, node);
1281
1282                        /*
1283                         * The immediate goal for using the softexpires is
1284                         * minimizing wakeups, not running timers at the
1285                         * earliest interrupt after their soft expiration.
1286                         * This allows us to avoid using a Priority Search
1287                         * Tree, which can answer a stabbing querry for
1288                         * overlapping intervals and instead use the simple
1289                         * BST we already have.
1290                         * We don't add extra wakeups by delaying timers that
1291                         * are right-of a not yet expired timer, because that
1292                         * timer will have to trigger a wakeup anyway.
1293                         */
1294
1295                        if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
1296                                ktime_t expires;
1297
1298                                expires = ktime_sub(hrtimer_get_expires(timer),
1299                                                    base->offset);
1300                                if (expires.tv64 < 0)
1301                                        expires.tv64 = KTIME_MAX;
1302                                if (expires.tv64 < expires_next.tv64)
1303                                        expires_next = expires;
1304                                break;
1305                        }
1306
1307                        __run_hrtimer(timer, &basenow);
1308                }
1309        }
1310
1311        /*
1312         * Store the new expiry value so the migration code can verify
1313         * against it.
1314         */
1315        cpu_base->expires_next = expires_next;
1316        raw_spin_unlock(&cpu_base->lock);
1317
1318        /* Reprogramming necessary ? */
1319        if (expires_next.tv64 == KTIME_MAX ||
1320            !tick_program_event(expires_next, 0)) {
1321                cpu_base->hang_detected = 0;
1322                return;
1323        }
1324
1325        /*
1326         * The next timer was already expired due to:
1327         * - tracing
1328         * - long lasting callbacks
1329         * - being scheduled away when running in a VM
1330         *
1331         * We need to prevent that we loop forever in the hrtimer
1332         * interrupt routine. We give it 3 attempts to avoid
1333         * overreacting on some spurious event.
1334         *
1335         * Acquire base lock for updating the offsets and retrieving
1336         * the current time.
1337         */
1338        raw_spin_lock(&cpu_base->lock);
1339        now = hrtimer_update_base(cpu_base);
1340        cpu_base->nr_retries++;
1341        if (++retries < 3)
1342                goto retry;
1343        /*
1344         * Give the system a chance to do something else than looping
1345         * here. We stored the entry time, so we know exactly how long
1346         * we spent here. We schedule the next event this amount of
1347         * time away.
1348         */
1349        cpu_base->nr_hangs++;
1350        cpu_base->hang_detected = 1;
1351        raw_spin_unlock(&cpu_base->lock);
1352        delta = ktime_sub(now, entry_time);
1353        if (delta.tv64 > cpu_base->max_hang_time.tv64)
1354                cpu_base->max_hang_time = delta;
1355        /*
1356         * Limit it to a sensible value as we enforce a longer
1357         * delay. Give the CPU at least 100ms to catch up.
1358         */
1359        if (delta.tv64 > 100 * NSEC_PER_MSEC)
1360                expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1361        else
1362                expires_next = ktime_add(now, delta);
1363        tick_program_event(expires_next, 1);
1364        printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1365                    ktime_to_ns(delta));
1366}
1367
1368/*
1369 * local version of hrtimer_peek_ahead_timers() called with interrupts
1370 * disabled.
1371 */
1372static void __hrtimer_peek_ahead_timers(void)
1373{
1374        struct tick_device *td;
1375
1376        if (!hrtimer_hres_active())
1377                return;
1378
1379        td = &__get_cpu_var(tick_cpu_device);
1380        if (td && td->evtdev)
1381                hrtimer_interrupt(td->evtdev);
1382}
1383
1384/**
1385 * hrtimer_peek_ahead_timers -- run soft-expired timers now
1386 *
1387 * hrtimer_peek_ahead_timers will peek at the timer queue of
1388 * the current cpu and check if there are any timers for which
1389 * the soft expires time has passed. If any such timers exist,
1390 * they are run immediately and then removed from the timer queue.
1391 *
1392 */
1393void hrtimer_peek_ahead_timers(void)
1394{
1395        unsigned long flags;
1396
1397        local_irq_save(flags);
1398        __hrtimer_peek_ahead_timers();
1399        local_irq_restore(flags);
1400}
1401
1402static void run_hrtimer_softirq(struct softirq_action *h)
1403{
1404        hrtimer_peek_ahead_timers();
1405}
1406
1407#else /* CONFIG_HIGH_RES_TIMERS */
1408
1409static inline void __hrtimer_peek_ahead_timers(void) { }
1410
1411#endif  /* !CONFIG_HIGH_RES_TIMERS */
1412
1413/*
1414 * Called from timer softirq every jiffy, expire hrtimers:
1415 *
1416 * For HRT its the fall back code to run the softirq in the timer
1417 * softirq context in case the hrtimer initialization failed or has
1418 * not been done yet.
1419 */
1420void hrtimer_run_pending(void)
1421{
1422        if (hrtimer_hres_active())
1423                return;
1424
1425        /*
1426         * This _is_ ugly: We have to check in the softirq context,
1427         * whether we can switch to highres and / or nohz mode. The
1428         * clocksource switch happens in the timer interrupt with
1429         * xtime_lock held. Notification from there only sets the
1430         * check bit in the tick_oneshot code, otherwise we might
1431         * deadlock vs. xtime_lock.
1432         */
1433        if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1434                hrtimer_switch_to_hres();
1435}
1436
1437/*
1438 * Called from hardirq context every jiffy
1439 */
1440void hrtimer_run_queues(void)
1441{
1442        struct timerqueue_node *node;
1443        struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1444        struct hrtimer_clock_base *base;
1445        int index, gettime = 1;
1446
1447        if (hrtimer_hres_active())
1448                return;
1449
1450        for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
1451                base = &cpu_base->clock_base[index];
1452                if (!timerqueue_getnext(&base->active))
1453                        continue;
1454
1455                if (gettime) {
1456                        hrtimer_get_softirq_time(cpu_base);
1457                        gettime = 0;
1458                }
1459
1460                raw_spin_lock(&cpu_base->lock);
1461
1462                while ((node = timerqueue_getnext(&base->active))) {
1463                        struct hrtimer *timer;
1464
1465                        timer = container_of(node, struct hrtimer, node);
1466                        if (base->softirq_time.tv64 <=
1467                                        hrtimer_get_expires_tv64(timer))
1468                                break;
1469
1470                        __run_hrtimer(timer, &base->softirq_time);
1471                }
1472                raw_spin_unlock(&cpu_base->lock);
1473        }
1474}
1475
1476/*
1477 * Sleep related functions:
1478 */
1479static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1480{
1481        struct hrtimer_sleeper *t =
1482                container_of(timer, struct hrtimer_sleeper, timer);
1483        struct task_struct *task = t->task;
1484
1485        t->task = NULL;
1486        if (task)
1487                wake_up_process(task);
1488
1489        return HRTIMER_NORESTART;
1490}
1491
1492void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1493{
1494        sl->timer.function = hrtimer_wakeup;
1495        sl->task = task;
1496}
1497EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1498
1499static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1500{
1501        hrtimer_init_sleeper(t, current);
1502
1503        do {
1504                set_current_state(TASK_INTERRUPTIBLE);
1505                hrtimer_start_expires(&t->timer, mode);
1506                if (!hrtimer_active(&t->timer))
1507                        t->task = NULL;
1508
1509                if (likely(t->task))
1510                        freezable_schedule();
1511
1512                hrtimer_cancel(&t->timer);
1513                mode = HRTIMER_MODE_ABS;
1514
1515        } while (t->task && !signal_pending(current));
1516
1517        __set_current_state(TASK_RUNNING);
1518
1519        return t->task == NULL;
1520}
1521
1522static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1523{
1524        struct timespec rmt;
1525        ktime_t rem;
1526
1527        rem = hrtimer_expires_remaining(timer);
1528        if (rem.tv64 <= 0)
1529                return 0;
1530        rmt = ktime_to_timespec(rem);
1531
1532        if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1533                return -EFAULT;
1534
1535        return 1;
1536}
1537
1538long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1539{
1540        struct hrtimer_sleeper t;
1541        struct timespec __user  *rmtp;
1542        int ret = 0;
1543
1544        hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1545                                HRTIMER_MODE_ABS);
1546        hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1547
1548        if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1549                goto out;
1550
1551        rmtp = restart->nanosleep.rmtp;
1552        if (rmtp) {
1553                ret = update_rmtp(&t.timer, rmtp);
1554                if (ret <= 0)
1555                        goto out;
1556        }
1557
1558        /* The other values in restart are already filled in */
1559        ret = -ERESTART_RESTARTBLOCK;
1560out:
1561        destroy_hrtimer_on_stack(&t.timer);
1562        return ret;
1563}
1564
1565long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1566                       const enum hrtimer_mode mode, const clockid_t clockid)
1567{
1568        struct restart_block *restart;
1569        struct hrtimer_sleeper t;
1570        int ret = 0;
1571        unsigned long slack;
1572
1573        slack = current->timer_slack_ns;
1574        if (dl_task(current) || rt_task(current))
1575                slack = 0;
1576
1577        hrtimer_init_on_stack(&t.timer, clockid, mode);
1578        hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1579        if (do_nanosleep(&t, mode))
1580                goto out;
1581
1582        /* Absolute timers do not update the rmtp value and restart: */
1583        if (mode == HRTIMER_MODE_ABS) {
1584                ret = -ERESTARTNOHAND;
1585                goto out;
1586        }
1587
1588        if (rmtp) {
1589                ret = update_rmtp(&t.timer, rmtp);
1590                if (ret <= 0)
1591                        goto out;
1592        }
1593
1594        restart = &current_thread_info()->restart_block;
1595        restart->fn = hrtimer_nanosleep_restart;
1596        restart->nanosleep.clockid = t.timer.base->clockid;
1597        restart->nanosleep.rmtp = rmtp;
1598        restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1599
1600        ret = -ERESTART_RESTARTBLOCK;
1601out:
1602        destroy_hrtimer_on_stack(&t.timer);
1603        return ret;
1604}
1605
1606SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1607                struct timespec __user *, rmtp)
1608{
1609        struct timespec tu;
1610
1611        if (copy_from_user(&tu, rqtp, sizeof(tu)))
1612                return -EFAULT;
1613
1614        if (!timespec_valid(&tu))
1615                return -EINVAL;
1616
1617        return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1618}
1619
1620/*
1621 * Functions related to boot-time initialization:
1622 */
1623static void init_hrtimers_cpu(int cpu)
1624{
1625        struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1626        int i;
1627
1628        for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1629                cpu_base->clock_base[i].cpu_base = cpu_base;
1630                timerqueue_init_head(&cpu_base->clock_base[i].active);
1631        }
1632
1633        cpu_base->cpu = cpu;
1634        hrtimer_init_hres(cpu_base);
1635}
1636
1637#ifdef CONFIG_HOTPLUG_CPU
1638
1639static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1640                                struct hrtimer_clock_base *new_base)
1641{
1642        struct hrtimer *timer;
1643        struct timerqueue_node *node;
1644
1645        while ((node = timerqueue_getnext(&old_base->active))) {
1646                timer = container_of(node, struct hrtimer, node);
1647                BUG_ON(hrtimer_callback_running(timer));
1648                debug_deactivate(timer);
1649
1650                /*
1651                 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1652                 * timer could be seen as !active and just vanish away
1653                 * under us on another CPU
1654                 */
1655                __remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1656                timer->base = new_base;
1657                /*
1658                 * Enqueue the timers on the new cpu. This does not
1659                 * reprogram the event device in case the timer
1660                 * expires before the earliest on this CPU, but we run
1661                 * hrtimer_interrupt after we migrated everything to
1662                 * sort out already expired timers and reprogram the
1663                 * event device.
1664                 */
1665                enqueue_hrtimer(timer, new_base);
1666
1667                /* Clear the migration state bit */
1668                timer->state &= ~HRTIMER_STATE_MIGRATE;
1669        }
1670}
1671
1672static void migrate_hrtimers(int scpu)
1673{
1674        struct hrtimer_cpu_base *old_base, *new_base;
1675        int i;
1676
1677        BUG_ON(cpu_online(scpu));
1678        tick_cancel_sched_timer(scpu);
1679
1680        local_irq_disable();
1681        old_base = &per_cpu(hrtimer_bases, scpu);
1682        new_base = &__get_cpu_var(hrtimer_bases);
1683        /*
1684         * The caller is globally serialized and nobody else
1685         * takes two locks at once, deadlock is not possible.
1686         */
1687        raw_spin_lock(&new_base->lock);
1688        raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1689
1690        for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1691                migrate_hrtimer_list(&old_base->clock_base[i],
1692                                     &new_base->clock_base[i]);
1693        }
1694
1695        raw_spin_unlock(&old_base->lock);
1696        raw_spin_unlock(&new_base->lock);
1697
1698        /* Check, if we got expired work to do */
1699        __hrtimer_peek_ahead_timers();
1700        local_irq_enable();
1701}
1702
1703#endif /* CONFIG_HOTPLUG_CPU */
1704
1705static int hrtimer_cpu_notify(struct notifier_block *self,
1706                                        unsigned long action, void *hcpu)
1707{
1708        int scpu = (long)hcpu;
1709
1710        switch (action) {
1711
1712        case CPU_UP_PREPARE:
1713        case CPU_UP_PREPARE_FROZEN:
1714                init_hrtimers_cpu(scpu);
1715                break;
1716
1717#ifdef CONFIG_HOTPLUG_CPU
1718        case CPU_DYING:
1719        case CPU_DYING_FROZEN:
1720                clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu);
1721                break;
1722        case CPU_DEAD:
1723        case CPU_DEAD_FROZEN:
1724        {
1725                clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
1726                migrate_hrtimers(scpu);
1727                break;
1728        }
1729#endif
1730
1731        default:
1732                break;
1733        }
1734
1735        return NOTIFY_OK;
1736}
1737
1738static struct notifier_block hrtimers_nb = {
1739        .notifier_call = hrtimer_cpu_notify,
1740};
1741
1742void __init hrtimers_init(void)
1743{
1744        hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1745                          (void *)(long)smp_processor_id());
1746        register_cpu_notifier(&hrtimers_nb);
1747#ifdef CONFIG_HIGH_RES_TIMERS
1748        open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
1749#endif
1750}
1751
1752/**
1753 * schedule_hrtimeout_range_clock - sleep until timeout
1754 * @expires:    timeout value (ktime_t)
1755 * @delta:      slack in expires timeout (ktime_t)
1756 * @mode:       timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1757 * @clock:      timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1758 */
1759int __sched
1760schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
1761                               const enum hrtimer_mode mode, int clock)
1762{
1763        struct hrtimer_sleeper t;
1764
1765        /*
1766         * Optimize when a zero timeout value is given. It does not
1767         * matter whether this is an absolute or a relative time.
1768         */
1769        if (expires && !expires->tv64) {
1770                __set_current_state(TASK_RUNNING);
1771                return 0;
1772        }
1773
1774        /*
1775         * A NULL parameter means "infinite"
1776         */
1777        if (!expires) {
1778                schedule();
1779                __set_current_state(TASK_RUNNING);
1780                return -EINTR;
1781        }
1782
1783        hrtimer_init_on_stack(&t.timer, clock, mode);
1784        hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1785
1786        hrtimer_init_sleeper(&t, current);
1787
1788        hrtimer_start_expires(&t.timer, mode);
1789        if (!hrtimer_active(&t.timer))
1790                t.task = NULL;
1791
1792        if (likely(t.task))
1793                schedule();
1794
1795        hrtimer_cancel(&t.timer);
1796        destroy_hrtimer_on_stack(&t.timer);
1797
1798        __set_current_state(TASK_RUNNING);
1799
1800        return !t.task ? 0 : -EINTR;
1801}
1802
1803/**
1804 * schedule_hrtimeout_range - sleep until timeout
1805 * @expires:    timeout value (ktime_t)
1806 * @delta:      slack in expires timeout (ktime_t)
1807 * @mode:       timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1808 *
1809 * Make the current task sleep until the given expiry time has
1810 * elapsed. The routine will return immediately unless
1811 * the current task state has been set (see set_current_state()).
1812 *
1813 * The @delta argument gives the kernel the freedom to schedule the
1814 * actual wakeup to a time that is both power and performance friendly.
1815 * The kernel give the normal best effort behavior for "@expires+@delta",
1816 * but may decide to fire the timer earlier, but no earlier than @expires.
1817 *
1818 * You can set the task state as follows -
1819 *
1820 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1821 * pass before the routine returns.
1822 *
1823 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1824 * delivered to the current task.
1825 *
1826 * The current task state is guaranteed to be TASK_RUNNING when this
1827 * routine returns.
1828 *
1829 * Returns 0 when the timer has expired otherwise -EINTR
1830 */
1831int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1832                                     const enum hrtimer_mode mode)
1833{
1834        return schedule_hrtimeout_range_clock(expires, delta, mode,
1835                                              CLOCK_MONOTONIC);
1836}
1837EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1838
1839/**
1840 * schedule_hrtimeout - sleep until timeout
1841 * @expires:    timeout value (ktime_t)
1842 * @mode:       timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1843 *
1844 * Make the current task sleep until the given expiry time has
1845 * elapsed. The routine will return immediately unless
1846 * the current task state has been set (see set_current_state()).
1847 *
1848 * You can set the task state as follows -
1849 *
1850 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1851 * pass before the routine returns.
1852 *
1853 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1854 * delivered to the current task.
1855 *
1856 * The current task state is guaranteed to be TASK_RUNNING when this
1857 * routine returns.
1858 *
1859 * Returns 0 when the timer has expired otherwise -EINTR
1860 */
1861int __sched schedule_hrtimeout(ktime_t *expires,
1862                               const enum hrtimer_mode mode)
1863{
1864        return schedule_hrtimeout_range(expires, 0, mode);
1865}
1866EXPORT_SYMBOL_GPL(schedule_hrtimeout);
1867