linux/mm/kmemleak.c
<<
>>
Prefs
   1/*
   2 * mm/kmemleak.c
   3 *
   4 * Copyright (C) 2008 ARM Limited
   5 * Written by Catalin Marinas <catalin.marinas@arm.com>
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, write to the Free Software
  18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  19 *
  20 *
  21 * For more information on the algorithm and kmemleak usage, please see
  22 * Documentation/kmemleak.txt.
  23 *
  24 * Notes on locking
  25 * ----------------
  26 *
  27 * The following locks and mutexes are used by kmemleak:
  28 *
  29 * - kmemleak_lock (rwlock): protects the object_list modifications and
  30 *   accesses to the object_tree_root. The object_list is the main list
  31 *   holding the metadata (struct kmemleak_object) for the allocated memory
  32 *   blocks. The object_tree_root is a red black tree used to look-up
  33 *   metadata based on a pointer to the corresponding memory block.  The
  34 *   kmemleak_object structures are added to the object_list and
  35 *   object_tree_root in the create_object() function called from the
  36 *   kmemleak_alloc() callback and removed in delete_object() called from the
  37 *   kmemleak_free() callback
  38 * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
  39 *   the metadata (e.g. count) are protected by this lock. Note that some
  40 *   members of this structure may be protected by other means (atomic or
  41 *   kmemleak_lock). This lock is also held when scanning the corresponding
  42 *   memory block to avoid the kernel freeing it via the kmemleak_free()
  43 *   callback. This is less heavyweight than holding a global lock like
  44 *   kmemleak_lock during scanning
  45 * - scan_mutex (mutex): ensures that only one thread may scan the memory for
  46 *   unreferenced objects at a time. The gray_list contains the objects which
  47 *   are already referenced or marked as false positives and need to be
  48 *   scanned. This list is only modified during a scanning episode when the
  49 *   scan_mutex is held. At the end of a scan, the gray_list is always empty.
  50 *   Note that the kmemleak_object.use_count is incremented when an object is
  51 *   added to the gray_list and therefore cannot be freed. This mutex also
  52 *   prevents multiple users of the "kmemleak" debugfs file together with
  53 *   modifications to the memory scanning parameters including the scan_thread
  54 *   pointer
  55 *
  56 * The kmemleak_object structures have a use_count incremented or decremented
  57 * using the get_object()/put_object() functions. When the use_count becomes
  58 * 0, this count can no longer be incremented and put_object() schedules the
  59 * kmemleak_object freeing via an RCU callback. All calls to the get_object()
  60 * function must be protected by rcu_read_lock() to avoid accessing a freed
  61 * structure.
  62 */
  63
  64#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  65
  66#include <linux/init.h>
  67#include <linux/kernel.h>
  68#include <linux/list.h>
  69#include <linux/sched.h>
  70#include <linux/jiffies.h>
  71#include <linux/delay.h>
  72#include <linux/export.h>
  73#include <linux/kthread.h>
  74#include <linux/rbtree.h>
  75#include <linux/fs.h>
  76#include <linux/debugfs.h>
  77#include <linux/seq_file.h>
  78#include <linux/cpumask.h>
  79#include <linux/spinlock.h>
  80#include <linux/mutex.h>
  81#include <linux/rcupdate.h>
  82#include <linux/stacktrace.h>
  83#include <linux/cache.h>
  84#include <linux/percpu.h>
  85#include <linux/hardirq.h>
  86#include <linux/mmzone.h>
  87#include <linux/slab.h>
  88#include <linux/thread_info.h>
  89#include <linux/err.h>
  90#include <linux/uaccess.h>
  91#include <linux/string.h>
  92#include <linux/nodemask.h>
  93#include <linux/mm.h>
  94#include <linux/workqueue.h>
  95#include <linux/crc32.h>
  96
  97#include <asm/sections.h>
  98#include <asm/processor.h>
  99#include <linux/atomic.h>
 100
 101#include <linux/kmemcheck.h>
 102#include <linux/kmemleak.h>
 103#include <linux/memory_hotplug.h>
 104
 105/*
 106 * Kmemleak configuration and common defines.
 107 */
 108#define MAX_TRACE               16      /* stack trace length */
 109#define MSECS_MIN_AGE           5000    /* minimum object age for reporting */
 110#define SECS_FIRST_SCAN         60      /* delay before the first scan */
 111#define SECS_SCAN_WAIT          600     /* subsequent auto scanning delay */
 112#define MAX_SCAN_SIZE           4096    /* maximum size of a scanned block */
 113
 114#define BYTES_PER_POINTER       sizeof(void *)
 115
 116/* GFP bitmask for kmemleak internal allocations */
 117#define gfp_kmemleak_mask(gfp)  (((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \
 118                                 __GFP_NORETRY | __GFP_NOMEMALLOC | \
 119                                 __GFP_NOWARN)
 120
 121/* scanning area inside a memory block */
 122struct kmemleak_scan_area {
 123        struct hlist_node node;
 124        unsigned long start;
 125        size_t size;
 126};
 127
 128#define KMEMLEAK_GREY   0
 129#define KMEMLEAK_BLACK  -1
 130
 131/*
 132 * Structure holding the metadata for each allocated memory block.
 133 * Modifications to such objects should be made while holding the
 134 * object->lock. Insertions or deletions from object_list, gray_list or
 135 * rb_node are already protected by the corresponding locks or mutex (see
 136 * the notes on locking above). These objects are reference-counted
 137 * (use_count) and freed using the RCU mechanism.
 138 */
 139struct kmemleak_object {
 140        spinlock_t lock;
 141        unsigned long flags;            /* object status flags */
 142        struct list_head object_list;
 143        struct list_head gray_list;
 144        struct rb_node rb_node;
 145        struct rcu_head rcu;            /* object_list lockless traversal */
 146        /* object usage count; object freed when use_count == 0 */
 147        atomic_t use_count;
 148        unsigned long pointer;
 149        size_t size;
 150        /* minimum number of a pointers found before it is considered leak */
 151        int min_count;
 152        /* the total number of pointers found pointing to this object */
 153        int count;
 154        /* checksum for detecting modified objects */
 155        u32 checksum;
 156        /* memory ranges to be scanned inside an object (empty for all) */
 157        struct hlist_head area_list;
 158        unsigned long trace[MAX_TRACE];
 159        unsigned int trace_len;
 160        unsigned long jiffies;          /* creation timestamp */
 161        pid_t pid;                      /* pid of the current task */
 162        char comm[TASK_COMM_LEN];       /* executable name */
 163};
 164
 165/* flag representing the memory block allocation status */
 166#define OBJECT_ALLOCATED        (1 << 0)
 167/* flag set after the first reporting of an unreference object */
 168#define OBJECT_REPORTED         (1 << 1)
 169/* flag set to not scan the object */
 170#define OBJECT_NO_SCAN          (1 << 2)
 171
 172/* number of bytes to print per line; must be 16 or 32 */
 173#define HEX_ROW_SIZE            16
 174/* number of bytes to print at a time (1, 2, 4, 8) */
 175#define HEX_GROUP_SIZE          1
 176/* include ASCII after the hex output */
 177#define HEX_ASCII               1
 178/* max number of lines to be printed */
 179#define HEX_MAX_LINES           2
 180
 181/* the list of all allocated objects */
 182static LIST_HEAD(object_list);
 183/* the list of gray-colored objects (see color_gray comment below) */
 184static LIST_HEAD(gray_list);
 185/* search tree for object boundaries */
 186static struct rb_root object_tree_root = RB_ROOT;
 187/* rw_lock protecting the access to object_list and object_tree_root */
 188static DEFINE_RWLOCK(kmemleak_lock);
 189
 190/* allocation caches for kmemleak internal data */
 191static struct kmem_cache *object_cache;
 192static struct kmem_cache *scan_area_cache;
 193
 194/* set if tracing memory operations is enabled */
 195static int kmemleak_enabled;
 196/* set in the late_initcall if there were no errors */
 197static int kmemleak_initialized;
 198/* enables or disables early logging of the memory operations */
 199static int kmemleak_early_log = 1;
 200/* set if a kmemleak warning was issued */
 201static int kmemleak_warning;
 202/* set if a fatal kmemleak error has occurred */
 203static int kmemleak_error;
 204
 205/* minimum and maximum address that may be valid pointers */
 206static unsigned long min_addr = ULONG_MAX;
 207static unsigned long max_addr;
 208
 209static struct task_struct *scan_thread;
 210/* used to avoid reporting of recently allocated objects */
 211static unsigned long jiffies_min_age;
 212static unsigned long jiffies_last_scan;
 213/* delay between automatic memory scannings */
 214static signed long jiffies_scan_wait;
 215/* enables or disables the task stacks scanning */
 216static int kmemleak_stack_scan = 1;
 217/* protects the memory scanning, parameters and debug/kmemleak file access */
 218static DEFINE_MUTEX(scan_mutex);
 219/* setting kmemleak=on, will set this var, skipping the disable */
 220static int kmemleak_skip_disable;
 221/* If there are leaks that can be reported */
 222static bool kmemleak_found_leaks;
 223
 224/*
 225 * Early object allocation/freeing logging. Kmemleak is initialized after the
 226 * kernel allocator. However, both the kernel allocator and kmemleak may
 227 * allocate memory blocks which need to be tracked. Kmemleak defines an
 228 * arbitrary buffer to hold the allocation/freeing information before it is
 229 * fully initialized.
 230 */
 231
 232/* kmemleak operation type for early logging */
 233enum {
 234        KMEMLEAK_ALLOC,
 235        KMEMLEAK_ALLOC_PERCPU,
 236        KMEMLEAK_FREE,
 237        KMEMLEAK_FREE_PART,
 238        KMEMLEAK_FREE_PERCPU,
 239        KMEMLEAK_NOT_LEAK,
 240        KMEMLEAK_IGNORE,
 241        KMEMLEAK_SCAN_AREA,
 242        KMEMLEAK_NO_SCAN
 243};
 244
 245/*
 246 * Structure holding the information passed to kmemleak callbacks during the
 247 * early logging.
 248 */
 249struct early_log {
 250        int op_type;                    /* kmemleak operation type */
 251        const void *ptr;                /* allocated/freed memory block */
 252        size_t size;                    /* memory block size */
 253        int min_count;                  /* minimum reference count */
 254        unsigned long trace[MAX_TRACE]; /* stack trace */
 255        unsigned int trace_len;         /* stack trace length */
 256};
 257
 258/* early logging buffer and current position */
 259static struct early_log
 260        early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata;
 261static int crt_early_log __initdata;
 262
 263static void kmemleak_disable(void);
 264
 265/*
 266 * Print a warning and dump the stack trace.
 267 */
 268#define kmemleak_warn(x...)     do {            \
 269        pr_warning(x);                          \
 270        dump_stack();                           \
 271        kmemleak_warning = 1;                   \
 272} while (0)
 273
 274/*
 275 * Macro invoked when a serious kmemleak condition occurred and cannot be
 276 * recovered from. Kmemleak will be disabled and further allocation/freeing
 277 * tracing no longer available.
 278 */
 279#define kmemleak_stop(x...)     do {    \
 280        kmemleak_warn(x);               \
 281        kmemleak_disable();             \
 282} while (0)
 283
 284/*
 285 * Printing of the objects hex dump to the seq file. The number of lines to be
 286 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
 287 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
 288 * with the object->lock held.
 289 */
 290static void hex_dump_object(struct seq_file *seq,
 291                            struct kmemleak_object *object)
 292{
 293        const u8 *ptr = (const u8 *)object->pointer;
 294        int i, len, remaining;
 295        unsigned char linebuf[HEX_ROW_SIZE * 5];
 296
 297        /* limit the number of lines to HEX_MAX_LINES */
 298        remaining = len =
 299                min(object->size, (size_t)(HEX_MAX_LINES * HEX_ROW_SIZE));
 300
 301        seq_printf(seq, "  hex dump (first %d bytes):\n", len);
 302        for (i = 0; i < len; i += HEX_ROW_SIZE) {
 303                int linelen = min(remaining, HEX_ROW_SIZE);
 304
 305                remaining -= HEX_ROW_SIZE;
 306                hex_dump_to_buffer(ptr + i, linelen, HEX_ROW_SIZE,
 307                                   HEX_GROUP_SIZE, linebuf, sizeof(linebuf),
 308                                   HEX_ASCII);
 309                seq_printf(seq, "    %s\n", linebuf);
 310        }
 311}
 312
 313/*
 314 * Object colors, encoded with count and min_count:
 315 * - white - orphan object, not enough references to it (count < min_count)
 316 * - gray  - not orphan, not marked as false positive (min_count == 0) or
 317 *              sufficient references to it (count >= min_count)
 318 * - black - ignore, it doesn't contain references (e.g. text section)
 319 *              (min_count == -1). No function defined for this color.
 320 * Newly created objects don't have any color assigned (object->count == -1)
 321 * before the next memory scan when they become white.
 322 */
 323static bool color_white(const struct kmemleak_object *object)
 324{
 325        return object->count != KMEMLEAK_BLACK &&
 326                object->count < object->min_count;
 327}
 328
 329static bool color_gray(const struct kmemleak_object *object)
 330{
 331        return object->min_count != KMEMLEAK_BLACK &&
 332                object->count >= object->min_count;
 333}
 334
 335/*
 336 * Objects are considered unreferenced only if their color is white, they have
 337 * not be deleted and have a minimum age to avoid false positives caused by
 338 * pointers temporarily stored in CPU registers.
 339 */
 340static bool unreferenced_object(struct kmemleak_object *object)
 341{
 342        return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
 343                time_before_eq(object->jiffies + jiffies_min_age,
 344                               jiffies_last_scan);
 345}
 346
 347/*
 348 * Printing of the unreferenced objects information to the seq file. The
 349 * print_unreferenced function must be called with the object->lock held.
 350 */
 351static void print_unreferenced(struct seq_file *seq,
 352                               struct kmemleak_object *object)
 353{
 354        int i;
 355        unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
 356
 357        seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
 358                   object->pointer, object->size);
 359        seq_printf(seq, "  comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
 360                   object->comm, object->pid, object->jiffies,
 361                   msecs_age / 1000, msecs_age % 1000);
 362        hex_dump_object(seq, object);
 363        seq_printf(seq, "  backtrace:\n");
 364
 365        for (i = 0; i < object->trace_len; i++) {
 366                void *ptr = (void *)object->trace[i];
 367                seq_printf(seq, "    [<%p>] %pS\n", ptr, ptr);
 368        }
 369}
 370
 371/*
 372 * Print the kmemleak_object information. This function is used mainly for
 373 * debugging special cases when kmemleak operations. It must be called with
 374 * the object->lock held.
 375 */
 376static void dump_object_info(struct kmemleak_object *object)
 377{
 378        struct stack_trace trace;
 379
 380        trace.nr_entries = object->trace_len;
 381        trace.entries = object->trace;
 382
 383        pr_notice("Object 0x%08lx (size %zu):\n",
 384                  object->pointer, object->size);
 385        pr_notice("  comm \"%s\", pid %d, jiffies %lu\n",
 386                  object->comm, object->pid, object->jiffies);
 387        pr_notice("  min_count = %d\n", object->min_count);
 388        pr_notice("  count = %d\n", object->count);
 389        pr_notice("  flags = 0x%lx\n", object->flags);
 390        pr_notice("  checksum = %u\n", object->checksum);
 391        pr_notice("  backtrace:\n");
 392        print_stack_trace(&trace, 4);
 393}
 394
 395/*
 396 * Look-up a memory block metadata (kmemleak_object) in the object search
 397 * tree based on a pointer value. If alias is 0, only values pointing to the
 398 * beginning of the memory block are allowed. The kmemleak_lock must be held
 399 * when calling this function.
 400 */
 401static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
 402{
 403        struct rb_node *rb = object_tree_root.rb_node;
 404
 405        while (rb) {
 406                struct kmemleak_object *object =
 407                        rb_entry(rb, struct kmemleak_object, rb_node);
 408                if (ptr < object->pointer)
 409                        rb = object->rb_node.rb_left;
 410                else if (object->pointer + object->size <= ptr)
 411                        rb = object->rb_node.rb_right;
 412                else if (object->pointer == ptr || alias)
 413                        return object;
 414                else {
 415                        kmemleak_warn("Found object by alias at 0x%08lx\n",
 416                                      ptr);
 417                        dump_object_info(object);
 418                        break;
 419                }
 420        }
 421        return NULL;
 422}
 423
 424/*
 425 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
 426 * that once an object's use_count reached 0, the RCU freeing was already
 427 * registered and the object should no longer be used. This function must be
 428 * called under the protection of rcu_read_lock().
 429 */
 430static int get_object(struct kmemleak_object *object)
 431{
 432        return atomic_inc_not_zero(&object->use_count);
 433}
 434
 435/*
 436 * RCU callback to free a kmemleak_object.
 437 */
 438static void free_object_rcu(struct rcu_head *rcu)
 439{
 440        struct hlist_node *tmp;
 441        struct kmemleak_scan_area *area;
 442        struct kmemleak_object *object =
 443                container_of(rcu, struct kmemleak_object, rcu);
 444
 445        /*
 446         * Once use_count is 0 (guaranteed by put_object), there is no other
 447         * code accessing this object, hence no need for locking.
 448         */
 449        hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
 450                hlist_del(&area->node);
 451                kmem_cache_free(scan_area_cache, area);
 452        }
 453        kmem_cache_free(object_cache, object);
 454}
 455
 456/*
 457 * Decrement the object use_count. Once the count is 0, free the object using
 458 * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
 459 * delete_object() path, the delayed RCU freeing ensures that there is no
 460 * recursive call to the kernel allocator. Lock-less RCU object_list traversal
 461 * is also possible.
 462 */
 463static void put_object(struct kmemleak_object *object)
 464{
 465        if (!atomic_dec_and_test(&object->use_count))
 466                return;
 467
 468        /* should only get here after delete_object was called */
 469        WARN_ON(object->flags & OBJECT_ALLOCATED);
 470
 471        call_rcu(&object->rcu, free_object_rcu);
 472}
 473
 474/*
 475 * Look up an object in the object search tree and increase its use_count.
 476 */
 477static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
 478{
 479        unsigned long flags;
 480        struct kmemleak_object *object = NULL;
 481
 482        rcu_read_lock();
 483        read_lock_irqsave(&kmemleak_lock, flags);
 484        if (ptr >= min_addr && ptr < max_addr)
 485                object = lookup_object(ptr, alias);
 486        read_unlock_irqrestore(&kmemleak_lock, flags);
 487
 488        /* check whether the object is still available */
 489        if (object && !get_object(object))
 490                object = NULL;
 491        rcu_read_unlock();
 492
 493        return object;
 494}
 495
 496/*
 497 * Save stack trace to the given array of MAX_TRACE size.
 498 */
 499static int __save_stack_trace(unsigned long *trace)
 500{
 501        struct stack_trace stack_trace;
 502
 503        stack_trace.max_entries = MAX_TRACE;
 504        stack_trace.nr_entries = 0;
 505        stack_trace.entries = trace;
 506        stack_trace.skip = 2;
 507        save_stack_trace(&stack_trace);
 508
 509        return stack_trace.nr_entries;
 510}
 511
 512/*
 513 * Create the metadata (struct kmemleak_object) corresponding to an allocated
 514 * memory block and add it to the object_list and object_tree_root.
 515 */
 516static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
 517                                             int min_count, gfp_t gfp)
 518{
 519        unsigned long flags;
 520        struct kmemleak_object *object, *parent;
 521        struct rb_node **link, *rb_parent;
 522
 523        object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
 524        if (!object) {
 525                pr_warning("Cannot allocate a kmemleak_object structure\n");
 526                kmemleak_disable();
 527                return NULL;
 528        }
 529
 530        INIT_LIST_HEAD(&object->object_list);
 531        INIT_LIST_HEAD(&object->gray_list);
 532        INIT_HLIST_HEAD(&object->area_list);
 533        spin_lock_init(&object->lock);
 534        atomic_set(&object->use_count, 1);
 535        object->flags = OBJECT_ALLOCATED;
 536        object->pointer = ptr;
 537        object->size = size;
 538        object->min_count = min_count;
 539        object->count = 0;                      /* white color initially */
 540        object->jiffies = jiffies;
 541        object->checksum = 0;
 542
 543        /* task information */
 544        if (in_irq()) {
 545                object->pid = 0;
 546                strncpy(object->comm, "hardirq", sizeof(object->comm));
 547        } else if (in_softirq()) {
 548                object->pid = 0;
 549                strncpy(object->comm, "softirq", sizeof(object->comm));
 550        } else {
 551                object->pid = current->pid;
 552                /*
 553                 * There is a small chance of a race with set_task_comm(),
 554                 * however using get_task_comm() here may cause locking
 555                 * dependency issues with current->alloc_lock. In the worst
 556                 * case, the command line is not correct.
 557                 */
 558                strncpy(object->comm, current->comm, sizeof(object->comm));
 559        }
 560
 561        /* kernel backtrace */
 562        object->trace_len = __save_stack_trace(object->trace);
 563
 564        write_lock_irqsave(&kmemleak_lock, flags);
 565
 566        min_addr = min(min_addr, ptr);
 567        max_addr = max(max_addr, ptr + size);
 568        link = &object_tree_root.rb_node;
 569        rb_parent = NULL;
 570        while (*link) {
 571                rb_parent = *link;
 572                parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
 573                if (ptr + size <= parent->pointer)
 574                        link = &parent->rb_node.rb_left;
 575                else if (parent->pointer + parent->size <= ptr)
 576                        link = &parent->rb_node.rb_right;
 577                else {
 578                        kmemleak_stop("Cannot insert 0x%lx into the object "
 579                                      "search tree (overlaps existing)\n",
 580                                      ptr);
 581                        kmem_cache_free(object_cache, object);
 582                        object = parent;
 583                        spin_lock(&object->lock);
 584                        dump_object_info(object);
 585                        spin_unlock(&object->lock);
 586                        goto out;
 587                }
 588        }
 589        rb_link_node(&object->rb_node, rb_parent, link);
 590        rb_insert_color(&object->rb_node, &object_tree_root);
 591
 592        list_add_tail_rcu(&object->object_list, &object_list);
 593out:
 594        write_unlock_irqrestore(&kmemleak_lock, flags);
 595        return object;
 596}
 597
 598/*
 599 * Remove the metadata (struct kmemleak_object) for a memory block from the
 600 * object_list and object_tree_root and decrement its use_count.
 601 */
 602static void __delete_object(struct kmemleak_object *object)
 603{
 604        unsigned long flags;
 605
 606        write_lock_irqsave(&kmemleak_lock, flags);
 607        rb_erase(&object->rb_node, &object_tree_root);
 608        list_del_rcu(&object->object_list);
 609        write_unlock_irqrestore(&kmemleak_lock, flags);
 610
 611        WARN_ON(!(object->flags & OBJECT_ALLOCATED));
 612        WARN_ON(atomic_read(&object->use_count) < 2);
 613
 614        /*
 615         * Locking here also ensures that the corresponding memory block
 616         * cannot be freed when it is being scanned.
 617         */
 618        spin_lock_irqsave(&object->lock, flags);
 619        object->flags &= ~OBJECT_ALLOCATED;
 620        spin_unlock_irqrestore(&object->lock, flags);
 621        put_object(object);
 622}
 623
 624/*
 625 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
 626 * delete it.
 627 */
 628static void delete_object_full(unsigned long ptr)
 629{
 630        struct kmemleak_object *object;
 631
 632        object = find_and_get_object(ptr, 0);
 633        if (!object) {
 634#ifdef DEBUG
 635                kmemleak_warn("Freeing unknown object at 0x%08lx\n",
 636                              ptr);
 637#endif
 638                return;
 639        }
 640        __delete_object(object);
 641        put_object(object);
 642}
 643
 644/*
 645 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
 646 * delete it. If the memory block is partially freed, the function may create
 647 * additional metadata for the remaining parts of the block.
 648 */
 649static void delete_object_part(unsigned long ptr, size_t size)
 650{
 651        struct kmemleak_object *object;
 652        unsigned long start, end;
 653
 654        object = find_and_get_object(ptr, 1);
 655        if (!object) {
 656#ifdef DEBUG
 657                kmemleak_warn("Partially freeing unknown object at 0x%08lx "
 658                              "(size %zu)\n", ptr, size);
 659#endif
 660                return;
 661        }
 662        __delete_object(object);
 663
 664        /*
 665         * Create one or two objects that may result from the memory block
 666         * split. Note that partial freeing is only done by free_bootmem() and
 667         * this happens before kmemleak_init() is called. The path below is
 668         * only executed during early log recording in kmemleak_init(), so
 669         * GFP_KERNEL is enough.
 670         */
 671        start = object->pointer;
 672        end = object->pointer + object->size;
 673        if (ptr > start)
 674                create_object(start, ptr - start, object->min_count,
 675                              GFP_KERNEL);
 676        if (ptr + size < end)
 677                create_object(ptr + size, end - ptr - size, object->min_count,
 678                              GFP_KERNEL);
 679
 680        put_object(object);
 681}
 682
 683static void __paint_it(struct kmemleak_object *object, int color)
 684{
 685        object->min_count = color;
 686        if (color == KMEMLEAK_BLACK)
 687                object->flags |= OBJECT_NO_SCAN;
 688}
 689
 690static void paint_it(struct kmemleak_object *object, int color)
 691{
 692        unsigned long flags;
 693
 694        spin_lock_irqsave(&object->lock, flags);
 695        __paint_it(object, color);
 696        spin_unlock_irqrestore(&object->lock, flags);
 697}
 698
 699static void paint_ptr(unsigned long ptr, int color)
 700{
 701        struct kmemleak_object *object;
 702
 703        object = find_and_get_object(ptr, 0);
 704        if (!object) {
 705                kmemleak_warn("Trying to color unknown object "
 706                              "at 0x%08lx as %s\n", ptr,
 707                              (color == KMEMLEAK_GREY) ? "Grey" :
 708                              (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
 709                return;
 710        }
 711        paint_it(object, color);
 712        put_object(object);
 713}
 714
 715/*
 716 * Mark an object permanently as gray-colored so that it can no longer be
 717 * reported as a leak. This is used in general to mark a false positive.
 718 */
 719static void make_gray_object(unsigned long ptr)
 720{
 721        paint_ptr(ptr, KMEMLEAK_GREY);
 722}
 723
 724/*
 725 * Mark the object as black-colored so that it is ignored from scans and
 726 * reporting.
 727 */
 728static void make_black_object(unsigned long ptr)
 729{
 730        paint_ptr(ptr, KMEMLEAK_BLACK);
 731}
 732
 733/*
 734 * Add a scanning area to the object. If at least one such area is added,
 735 * kmemleak will only scan these ranges rather than the whole memory block.
 736 */
 737static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
 738{
 739        unsigned long flags;
 740        struct kmemleak_object *object;
 741        struct kmemleak_scan_area *area;
 742
 743        object = find_and_get_object(ptr, 1);
 744        if (!object) {
 745                kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
 746                              ptr);
 747                return;
 748        }
 749
 750        area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
 751        if (!area) {
 752                pr_warning("Cannot allocate a scan area\n");
 753                goto out;
 754        }
 755
 756        spin_lock_irqsave(&object->lock, flags);
 757        if (size == SIZE_MAX) {
 758                size = object->pointer + object->size - ptr;
 759        } else if (ptr + size > object->pointer + object->size) {
 760                kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
 761                dump_object_info(object);
 762                kmem_cache_free(scan_area_cache, area);
 763                goto out_unlock;
 764        }
 765
 766        INIT_HLIST_NODE(&area->node);
 767        area->start = ptr;
 768        area->size = size;
 769
 770        hlist_add_head(&area->node, &object->area_list);
 771out_unlock:
 772        spin_unlock_irqrestore(&object->lock, flags);
 773out:
 774        put_object(object);
 775}
 776
 777/*
 778 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
 779 * pointer. Such object will not be scanned by kmemleak but references to it
 780 * are searched.
 781 */
 782static void object_no_scan(unsigned long ptr)
 783{
 784        unsigned long flags;
 785        struct kmemleak_object *object;
 786
 787        object = find_and_get_object(ptr, 0);
 788        if (!object) {
 789                kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
 790                return;
 791        }
 792
 793        spin_lock_irqsave(&object->lock, flags);
 794        object->flags |= OBJECT_NO_SCAN;
 795        spin_unlock_irqrestore(&object->lock, flags);
 796        put_object(object);
 797}
 798
 799/*
 800 * Log an early kmemleak_* call to the early_log buffer. These calls will be
 801 * processed later once kmemleak is fully initialized.
 802 */
 803static void __init log_early(int op_type, const void *ptr, size_t size,
 804                             int min_count)
 805{
 806        unsigned long flags;
 807        struct early_log *log;
 808
 809        if (kmemleak_error) {
 810                /* kmemleak stopped recording, just count the requests */
 811                crt_early_log++;
 812                return;
 813        }
 814
 815        if (crt_early_log >= ARRAY_SIZE(early_log)) {
 816                kmemleak_disable();
 817                return;
 818        }
 819
 820        /*
 821         * There is no need for locking since the kernel is still in UP mode
 822         * at this stage. Disabling the IRQs is enough.
 823         */
 824        local_irq_save(flags);
 825        log = &early_log[crt_early_log];
 826        log->op_type = op_type;
 827        log->ptr = ptr;
 828        log->size = size;
 829        log->min_count = min_count;
 830        log->trace_len = __save_stack_trace(log->trace);
 831        crt_early_log++;
 832        local_irq_restore(flags);
 833}
 834
 835/*
 836 * Log an early allocated block and populate the stack trace.
 837 */
 838static void early_alloc(struct early_log *log)
 839{
 840        struct kmemleak_object *object;
 841        unsigned long flags;
 842        int i;
 843
 844        if (!kmemleak_enabled || !log->ptr || IS_ERR(log->ptr))
 845                return;
 846
 847        /*
 848         * RCU locking needed to ensure object is not freed via put_object().
 849         */
 850        rcu_read_lock();
 851        object = create_object((unsigned long)log->ptr, log->size,
 852                               log->min_count, GFP_ATOMIC);
 853        if (!object)
 854                goto out;
 855        spin_lock_irqsave(&object->lock, flags);
 856        for (i = 0; i < log->trace_len; i++)
 857                object->trace[i] = log->trace[i];
 858        object->trace_len = log->trace_len;
 859        spin_unlock_irqrestore(&object->lock, flags);
 860out:
 861        rcu_read_unlock();
 862}
 863
 864/*
 865 * Log an early allocated block and populate the stack trace.
 866 */
 867static void early_alloc_percpu(struct early_log *log)
 868{
 869        unsigned int cpu;
 870        const void __percpu *ptr = log->ptr;
 871
 872        for_each_possible_cpu(cpu) {
 873                log->ptr = per_cpu_ptr(ptr, cpu);
 874                early_alloc(log);
 875        }
 876}
 877
 878/**
 879 * kmemleak_alloc - register a newly allocated object
 880 * @ptr:        pointer to beginning of the object
 881 * @size:       size of the object
 882 * @min_count:  minimum number of references to this object. If during memory
 883 *              scanning a number of references less than @min_count is found,
 884 *              the object is reported as a memory leak. If @min_count is 0,
 885 *              the object is never reported as a leak. If @min_count is -1,
 886 *              the object is ignored (not scanned and not reported as a leak)
 887 * @gfp:        kmalloc() flags used for kmemleak internal memory allocations
 888 *
 889 * This function is called from the kernel allocators when a new object
 890 * (memory block) is allocated (kmem_cache_alloc, kmalloc, vmalloc etc.).
 891 */
 892void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
 893                          gfp_t gfp)
 894{
 895        pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
 896
 897        if (kmemleak_enabled && ptr && !IS_ERR(ptr))
 898                create_object((unsigned long)ptr, size, min_count, gfp);
 899        else if (kmemleak_early_log)
 900                log_early(KMEMLEAK_ALLOC, ptr, size, min_count);
 901}
 902EXPORT_SYMBOL_GPL(kmemleak_alloc);
 903
 904/**
 905 * kmemleak_alloc_percpu - register a newly allocated __percpu object
 906 * @ptr:        __percpu pointer to beginning of the object
 907 * @size:       size of the object
 908 *
 909 * This function is called from the kernel percpu allocator when a new object
 910 * (memory block) is allocated (alloc_percpu). It assumes GFP_KERNEL
 911 * allocation.
 912 */
 913void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size)
 914{
 915        unsigned int cpu;
 916
 917        pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
 918
 919        /*
 920         * Percpu allocations are only scanned and not reported as leaks
 921         * (min_count is set to 0).
 922         */
 923        if (kmemleak_enabled && ptr && !IS_ERR(ptr))
 924                for_each_possible_cpu(cpu)
 925                        create_object((unsigned long)per_cpu_ptr(ptr, cpu),
 926                                      size, 0, GFP_KERNEL);
 927        else if (kmemleak_early_log)
 928                log_early(KMEMLEAK_ALLOC_PERCPU, ptr, size, 0);
 929}
 930EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
 931
 932/**
 933 * kmemleak_free - unregister a previously registered object
 934 * @ptr:        pointer to beginning of the object
 935 *
 936 * This function is called from the kernel allocators when an object (memory
 937 * block) is freed (kmem_cache_free, kfree, vfree etc.).
 938 */
 939void __ref kmemleak_free(const void *ptr)
 940{
 941        pr_debug("%s(0x%p)\n", __func__, ptr);
 942
 943        if (kmemleak_enabled && ptr && !IS_ERR(ptr))
 944                delete_object_full((unsigned long)ptr);
 945        else if (kmemleak_early_log)
 946                log_early(KMEMLEAK_FREE, ptr, 0, 0);
 947}
 948EXPORT_SYMBOL_GPL(kmemleak_free);
 949
 950/**
 951 * kmemleak_free_part - partially unregister a previously registered object
 952 * @ptr:        pointer to the beginning or inside the object. This also
 953 *              represents the start of the range to be freed
 954 * @size:       size to be unregistered
 955 *
 956 * This function is called when only a part of a memory block is freed
 957 * (usually from the bootmem allocator).
 958 */
 959void __ref kmemleak_free_part(const void *ptr, size_t size)
 960{
 961        pr_debug("%s(0x%p)\n", __func__, ptr);
 962
 963        if (kmemleak_enabled && ptr && !IS_ERR(ptr))
 964                delete_object_part((unsigned long)ptr, size);
 965        else if (kmemleak_early_log)
 966                log_early(KMEMLEAK_FREE_PART, ptr, size, 0);
 967}
 968EXPORT_SYMBOL_GPL(kmemleak_free_part);
 969
 970/**
 971 * kmemleak_free_percpu - unregister a previously registered __percpu object
 972 * @ptr:        __percpu pointer to beginning of the object
 973 *
 974 * This function is called from the kernel percpu allocator when an object
 975 * (memory block) is freed (free_percpu).
 976 */
 977void __ref kmemleak_free_percpu(const void __percpu *ptr)
 978{
 979        unsigned int cpu;
 980
 981        pr_debug("%s(0x%p)\n", __func__, ptr);
 982
 983        if (kmemleak_enabled && ptr && !IS_ERR(ptr))
 984                for_each_possible_cpu(cpu)
 985                        delete_object_full((unsigned long)per_cpu_ptr(ptr,
 986                                                                      cpu));
 987        else if (kmemleak_early_log)
 988                log_early(KMEMLEAK_FREE_PERCPU, ptr, 0, 0);
 989}
 990EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
 991
 992/**
 993 * kmemleak_update_trace - update object allocation stack trace
 994 * @ptr:        pointer to beginning of the object
 995 *
 996 * Override the object allocation stack trace for cases where the actual
 997 * allocation place is not always useful.
 998 */
 999void __ref kmemleak_update_trace(const void *ptr)
1000{
1001        struct kmemleak_object *object;
1002        unsigned long flags;
1003
1004        pr_debug("%s(0x%p)\n", __func__, ptr);
1005
1006        if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1007                return;
1008
1009        object = find_and_get_object((unsigned long)ptr, 1);
1010        if (!object) {
1011#ifdef DEBUG
1012                kmemleak_warn("Updating stack trace for unknown object at %p\n",
1013                              ptr);
1014#endif
1015                return;
1016        }
1017
1018        spin_lock_irqsave(&object->lock, flags);
1019        object->trace_len = __save_stack_trace(object->trace);
1020        spin_unlock_irqrestore(&object->lock, flags);
1021
1022        put_object(object);
1023}
1024EXPORT_SYMBOL(kmemleak_update_trace);
1025
1026/**
1027 * kmemleak_not_leak - mark an allocated object as false positive
1028 * @ptr:        pointer to beginning of the object
1029 *
1030 * Calling this function on an object will cause the memory block to no longer
1031 * be reported as leak and always be scanned.
1032 */
1033void __ref kmemleak_not_leak(const void *ptr)
1034{
1035        pr_debug("%s(0x%p)\n", __func__, ptr);
1036
1037        if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1038                make_gray_object((unsigned long)ptr);
1039        else if (kmemleak_early_log)
1040                log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0);
1041}
1042EXPORT_SYMBOL(kmemleak_not_leak);
1043
1044/**
1045 * kmemleak_ignore - ignore an allocated object
1046 * @ptr:        pointer to beginning of the object
1047 *
1048 * Calling this function on an object will cause the memory block to be
1049 * ignored (not scanned and not reported as a leak). This is usually done when
1050 * it is known that the corresponding block is not a leak and does not contain
1051 * any references to other allocated memory blocks.
1052 */
1053void __ref kmemleak_ignore(const void *ptr)
1054{
1055        pr_debug("%s(0x%p)\n", __func__, ptr);
1056
1057        if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1058                make_black_object((unsigned long)ptr);
1059        else if (kmemleak_early_log)
1060                log_early(KMEMLEAK_IGNORE, ptr, 0, 0);
1061}
1062EXPORT_SYMBOL(kmemleak_ignore);
1063
1064/**
1065 * kmemleak_scan_area - limit the range to be scanned in an allocated object
1066 * @ptr:        pointer to beginning or inside the object. This also
1067 *              represents the start of the scan area
1068 * @size:       size of the scan area
1069 * @gfp:        kmalloc() flags used for kmemleak internal memory allocations
1070 *
1071 * This function is used when it is known that only certain parts of an object
1072 * contain references to other objects. Kmemleak will only scan these areas
1073 * reducing the number false negatives.
1074 */
1075void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1076{
1077        pr_debug("%s(0x%p)\n", __func__, ptr);
1078
1079        if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1080                add_scan_area((unsigned long)ptr, size, gfp);
1081        else if (kmemleak_early_log)
1082                log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0);
1083}
1084EXPORT_SYMBOL(kmemleak_scan_area);
1085
1086/**
1087 * kmemleak_no_scan - do not scan an allocated object
1088 * @ptr:        pointer to beginning of the object
1089 *
1090 * This function notifies kmemleak not to scan the given memory block. Useful
1091 * in situations where it is known that the given object does not contain any
1092 * references to other objects. Kmemleak will not scan such objects reducing
1093 * the number of false negatives.
1094 */
1095void __ref kmemleak_no_scan(const void *ptr)
1096{
1097        pr_debug("%s(0x%p)\n", __func__, ptr);
1098
1099        if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1100                object_no_scan((unsigned long)ptr);
1101        else if (kmemleak_early_log)
1102                log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0);
1103}
1104EXPORT_SYMBOL(kmemleak_no_scan);
1105
1106/*
1107 * Update an object's checksum and return true if it was modified.
1108 */
1109static bool update_checksum(struct kmemleak_object *object)
1110{
1111        u32 old_csum = object->checksum;
1112
1113        if (!kmemcheck_is_obj_initialized(object->pointer, object->size))
1114                return false;
1115
1116        object->checksum = crc32(0, (void *)object->pointer, object->size);
1117        return object->checksum != old_csum;
1118}
1119
1120/*
1121 * Memory scanning is a long process and it needs to be interruptable. This
1122 * function checks whether such interrupt condition occurred.
1123 */
1124static int scan_should_stop(void)
1125{
1126        if (!kmemleak_enabled)
1127                return 1;
1128
1129        /*
1130         * This function may be called from either process or kthread context,
1131         * hence the need to check for both stop conditions.
1132         */
1133        if (current->mm)
1134                return signal_pending(current);
1135        else
1136                return kthread_should_stop();
1137
1138        return 0;
1139}
1140
1141/*
1142 * Scan a memory block (exclusive range) for valid pointers and add those
1143 * found to the gray list.
1144 */
1145static void scan_block(void *_start, void *_end,
1146                       struct kmemleak_object *scanned, int allow_resched)
1147{
1148        unsigned long *ptr;
1149        unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1150        unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1151
1152        for (ptr = start; ptr < end; ptr++) {
1153                struct kmemleak_object *object;
1154                unsigned long flags;
1155                unsigned long pointer;
1156
1157                if (allow_resched)
1158                        cond_resched();
1159                if (scan_should_stop())
1160                        break;
1161
1162                /* don't scan uninitialized memory */
1163                if (!kmemcheck_is_obj_initialized((unsigned long)ptr,
1164                                                  BYTES_PER_POINTER))
1165                        continue;
1166
1167                pointer = *ptr;
1168
1169                object = find_and_get_object(pointer, 1);
1170                if (!object)
1171                        continue;
1172                if (object == scanned) {
1173                        /* self referenced, ignore */
1174                        put_object(object);
1175                        continue;
1176                }
1177
1178                /*
1179                 * Avoid the lockdep recursive warning on object->lock being
1180                 * previously acquired in scan_object(). These locks are
1181                 * enclosed by scan_mutex.
1182                 */
1183                spin_lock_irqsave_nested(&object->lock, flags,
1184                                         SINGLE_DEPTH_NESTING);
1185                if (!color_white(object)) {
1186                        /* non-orphan, ignored or new */
1187                        spin_unlock_irqrestore(&object->lock, flags);
1188                        put_object(object);
1189                        continue;
1190                }
1191
1192                /*
1193                 * Increase the object's reference count (number of pointers
1194                 * to the memory block). If this count reaches the required
1195                 * minimum, the object's color will become gray and it will be
1196                 * added to the gray_list.
1197                 */
1198                object->count++;
1199                if (color_gray(object)) {
1200                        list_add_tail(&object->gray_list, &gray_list);
1201                        spin_unlock_irqrestore(&object->lock, flags);
1202                        continue;
1203                }
1204
1205                spin_unlock_irqrestore(&object->lock, flags);
1206                put_object(object);
1207        }
1208}
1209
1210/*
1211 * Scan a memory block corresponding to a kmemleak_object. A condition is
1212 * that object->use_count >= 1.
1213 */
1214static void scan_object(struct kmemleak_object *object)
1215{
1216        struct kmemleak_scan_area *area;
1217        unsigned long flags;
1218
1219        /*
1220         * Once the object->lock is acquired, the corresponding memory block
1221         * cannot be freed (the same lock is acquired in delete_object).
1222         */
1223        spin_lock_irqsave(&object->lock, flags);
1224        if (object->flags & OBJECT_NO_SCAN)
1225                goto out;
1226        if (!(object->flags & OBJECT_ALLOCATED))
1227                /* already freed object */
1228                goto out;
1229        if (hlist_empty(&object->area_list)) {
1230                void *start = (void *)object->pointer;
1231                void *end = (void *)(object->pointer + object->size);
1232
1233                while (start < end && (object->flags & OBJECT_ALLOCATED) &&
1234                       !(object->flags & OBJECT_NO_SCAN)) {
1235                        scan_block(start, min(start + MAX_SCAN_SIZE, end),
1236                                   object, 0);
1237                        start += MAX_SCAN_SIZE;
1238
1239                        spin_unlock_irqrestore(&object->lock, flags);
1240                        cond_resched();
1241                        spin_lock_irqsave(&object->lock, flags);
1242                }
1243        } else
1244                hlist_for_each_entry(area, &object->area_list, node)
1245                        scan_block((void *)area->start,
1246                                   (void *)(area->start + area->size),
1247                                   object, 0);
1248out:
1249        spin_unlock_irqrestore(&object->lock, flags);
1250}
1251
1252/*
1253 * Scan the objects already referenced (gray objects). More objects will be
1254 * referenced and, if there are no memory leaks, all the objects are scanned.
1255 */
1256static void scan_gray_list(void)
1257{
1258        struct kmemleak_object *object, *tmp;
1259
1260        /*
1261         * The list traversal is safe for both tail additions and removals
1262         * from inside the loop. The kmemleak objects cannot be freed from
1263         * outside the loop because their use_count was incremented.
1264         */
1265        object = list_entry(gray_list.next, typeof(*object), gray_list);
1266        while (&object->gray_list != &gray_list) {
1267                cond_resched();
1268
1269                /* may add new objects to the list */
1270                if (!scan_should_stop())
1271                        scan_object(object);
1272
1273                tmp = list_entry(object->gray_list.next, typeof(*object),
1274                                 gray_list);
1275
1276                /* remove the object from the list and release it */
1277                list_del(&object->gray_list);
1278                put_object(object);
1279
1280                object = tmp;
1281        }
1282        WARN_ON(!list_empty(&gray_list));
1283}
1284
1285/*
1286 * Scan data sections and all the referenced memory blocks allocated via the
1287 * kernel's standard allocators. This function must be called with the
1288 * scan_mutex held.
1289 */
1290static void kmemleak_scan(void)
1291{
1292        unsigned long flags;
1293        struct kmemleak_object *object;
1294        int i;
1295        int new_leaks = 0;
1296
1297        jiffies_last_scan = jiffies;
1298
1299        /* prepare the kmemleak_object's */
1300        rcu_read_lock();
1301        list_for_each_entry_rcu(object, &object_list, object_list) {
1302                spin_lock_irqsave(&object->lock, flags);
1303#ifdef DEBUG
1304                /*
1305                 * With a few exceptions there should be a maximum of
1306                 * 1 reference to any object at this point.
1307                 */
1308                if (atomic_read(&object->use_count) > 1) {
1309                        pr_debug("object->use_count = %d\n",
1310                                 atomic_read(&object->use_count));
1311                        dump_object_info(object);
1312                }
1313#endif
1314                /* reset the reference count (whiten the object) */
1315                object->count = 0;
1316                if (color_gray(object) && get_object(object))
1317                        list_add_tail(&object->gray_list, &gray_list);
1318
1319                spin_unlock_irqrestore(&object->lock, flags);
1320        }
1321        rcu_read_unlock();
1322
1323        /* data/bss scanning */
1324        scan_block(_sdata, _edata, NULL, 1);
1325        scan_block(__bss_start, __bss_stop, NULL, 1);
1326
1327#ifdef CONFIG_SMP
1328        /* per-cpu sections scanning */
1329        for_each_possible_cpu(i)
1330                scan_block(__per_cpu_start + per_cpu_offset(i),
1331                           __per_cpu_end + per_cpu_offset(i), NULL, 1);
1332#endif
1333
1334        /*
1335         * Struct page scanning for each node.
1336         */
1337        get_online_mems();
1338        for_each_online_node(i) {
1339                unsigned long start_pfn = node_start_pfn(i);
1340                unsigned long end_pfn = node_end_pfn(i);
1341                unsigned long pfn;
1342
1343                for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1344                        struct page *page;
1345
1346                        if (!pfn_valid(pfn))
1347                                continue;
1348                        page = pfn_to_page(pfn);
1349                        /* only scan if page is in use */
1350                        if (page_count(page) == 0)
1351                                continue;
1352                        scan_block(page, page + 1, NULL, 1);
1353                }
1354        }
1355        put_online_mems();
1356
1357        /*
1358         * Scanning the task stacks (may introduce false negatives).
1359         */
1360        if (kmemleak_stack_scan) {
1361                struct task_struct *p, *g;
1362
1363                read_lock(&tasklist_lock);
1364                do_each_thread(g, p) {
1365                        scan_block(task_stack_page(p), task_stack_page(p) +
1366                                   THREAD_SIZE, NULL, 0);
1367                } while_each_thread(g, p);
1368                read_unlock(&tasklist_lock);
1369        }
1370
1371        /*
1372         * Scan the objects already referenced from the sections scanned
1373         * above.
1374         */
1375        scan_gray_list();
1376
1377        /*
1378         * Check for new or unreferenced objects modified since the previous
1379         * scan and color them gray until the next scan.
1380         */
1381        rcu_read_lock();
1382        list_for_each_entry_rcu(object, &object_list, object_list) {
1383                spin_lock_irqsave(&object->lock, flags);
1384                if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1385                    && update_checksum(object) && get_object(object)) {
1386                        /* color it gray temporarily */
1387                        object->count = object->min_count;
1388                        list_add_tail(&object->gray_list, &gray_list);
1389                }
1390                spin_unlock_irqrestore(&object->lock, flags);
1391        }
1392        rcu_read_unlock();
1393
1394        /*
1395         * Re-scan the gray list for modified unreferenced objects.
1396         */
1397        scan_gray_list();
1398
1399        /*
1400         * If scanning was stopped do not report any new unreferenced objects.
1401         */
1402        if (scan_should_stop())
1403                return;
1404
1405        /*
1406         * Scanning result reporting.
1407         */
1408        rcu_read_lock();
1409        list_for_each_entry_rcu(object, &object_list, object_list) {
1410                spin_lock_irqsave(&object->lock, flags);
1411                if (unreferenced_object(object) &&
1412                    !(object->flags & OBJECT_REPORTED)) {
1413                        object->flags |= OBJECT_REPORTED;
1414                        new_leaks++;
1415                }
1416                spin_unlock_irqrestore(&object->lock, flags);
1417        }
1418        rcu_read_unlock();
1419
1420        if (new_leaks) {
1421                kmemleak_found_leaks = true;
1422
1423                pr_info("%d new suspected memory leaks (see "
1424                        "/sys/kernel/debug/kmemleak)\n", new_leaks);
1425        }
1426
1427}
1428
1429/*
1430 * Thread function performing automatic memory scanning. Unreferenced objects
1431 * at the end of a memory scan are reported but only the first time.
1432 */
1433static int kmemleak_scan_thread(void *arg)
1434{
1435        static int first_run = 1;
1436
1437        pr_info("Automatic memory scanning thread started\n");
1438        set_user_nice(current, 10);
1439
1440        /*
1441         * Wait before the first scan to allow the system to fully initialize.
1442         */
1443        if (first_run) {
1444                first_run = 0;
1445                ssleep(SECS_FIRST_SCAN);
1446        }
1447
1448        while (!kthread_should_stop()) {
1449                signed long timeout = jiffies_scan_wait;
1450
1451                mutex_lock(&scan_mutex);
1452                kmemleak_scan();
1453                mutex_unlock(&scan_mutex);
1454
1455                /* wait before the next scan */
1456                while (timeout && !kthread_should_stop())
1457                        timeout = schedule_timeout_interruptible(timeout);
1458        }
1459
1460        pr_info("Automatic memory scanning thread ended\n");
1461
1462        return 0;
1463}
1464
1465/*
1466 * Start the automatic memory scanning thread. This function must be called
1467 * with the scan_mutex held.
1468 */
1469static void start_scan_thread(void)
1470{
1471        if (scan_thread)
1472                return;
1473        scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1474        if (IS_ERR(scan_thread)) {
1475                pr_warning("Failed to create the scan thread\n");
1476                scan_thread = NULL;
1477        }
1478}
1479
1480/*
1481 * Stop the automatic memory scanning thread. This function must be called
1482 * with the scan_mutex held.
1483 */
1484static void stop_scan_thread(void)
1485{
1486        if (scan_thread) {
1487                kthread_stop(scan_thread);
1488                scan_thread = NULL;
1489        }
1490}
1491
1492/*
1493 * Iterate over the object_list and return the first valid object at or after
1494 * the required position with its use_count incremented. The function triggers
1495 * a memory scanning when the pos argument points to the first position.
1496 */
1497static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1498{
1499        struct kmemleak_object *object;
1500        loff_t n = *pos;
1501        int err;
1502
1503        err = mutex_lock_interruptible(&scan_mutex);
1504        if (err < 0)
1505                return ERR_PTR(err);
1506
1507        rcu_read_lock();
1508        list_for_each_entry_rcu(object, &object_list, object_list) {
1509                if (n-- > 0)
1510                        continue;
1511                if (get_object(object))
1512                        goto out;
1513        }
1514        object = NULL;
1515out:
1516        return object;
1517}
1518
1519/*
1520 * Return the next object in the object_list. The function decrements the
1521 * use_count of the previous object and increases that of the next one.
1522 */
1523static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1524{
1525        struct kmemleak_object *prev_obj = v;
1526        struct kmemleak_object *next_obj = NULL;
1527        struct kmemleak_object *obj = prev_obj;
1528
1529        ++(*pos);
1530
1531        list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1532                if (get_object(obj)) {
1533                        next_obj = obj;
1534                        break;
1535                }
1536        }
1537
1538        put_object(prev_obj);
1539        return next_obj;
1540}
1541
1542/*
1543 * Decrement the use_count of the last object required, if any.
1544 */
1545static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1546{
1547        if (!IS_ERR(v)) {
1548                /*
1549                 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1550                 * waiting was interrupted, so only release it if !IS_ERR.
1551                 */
1552                rcu_read_unlock();
1553                mutex_unlock(&scan_mutex);
1554                if (v)
1555                        put_object(v);
1556        }
1557}
1558
1559/*
1560 * Print the information for an unreferenced object to the seq file.
1561 */
1562static int kmemleak_seq_show(struct seq_file *seq, void *v)
1563{
1564        struct kmemleak_object *object = v;
1565        unsigned long flags;
1566
1567        spin_lock_irqsave(&object->lock, flags);
1568        if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1569                print_unreferenced(seq, object);
1570        spin_unlock_irqrestore(&object->lock, flags);
1571        return 0;
1572}
1573
1574static const struct seq_operations kmemleak_seq_ops = {
1575        .start = kmemleak_seq_start,
1576        .next  = kmemleak_seq_next,
1577        .stop  = kmemleak_seq_stop,
1578        .show  = kmemleak_seq_show,
1579};
1580
1581static int kmemleak_open(struct inode *inode, struct file *file)
1582{
1583        return seq_open(file, &kmemleak_seq_ops);
1584}
1585
1586static int dump_str_object_info(const char *str)
1587{
1588        unsigned long flags;
1589        struct kmemleak_object *object;
1590        unsigned long addr;
1591
1592        if (kstrtoul(str, 0, &addr))
1593                return -EINVAL;
1594        object = find_and_get_object(addr, 0);
1595        if (!object) {
1596                pr_info("Unknown object at 0x%08lx\n", addr);
1597                return -EINVAL;
1598        }
1599
1600        spin_lock_irqsave(&object->lock, flags);
1601        dump_object_info(object);
1602        spin_unlock_irqrestore(&object->lock, flags);
1603
1604        put_object(object);
1605        return 0;
1606}
1607
1608/*
1609 * We use grey instead of black to ensure we can do future scans on the same
1610 * objects. If we did not do future scans these black objects could
1611 * potentially contain references to newly allocated objects in the future and
1612 * we'd end up with false positives.
1613 */
1614static void kmemleak_clear(void)
1615{
1616        struct kmemleak_object *object;
1617        unsigned long flags;
1618
1619        rcu_read_lock();
1620        list_for_each_entry_rcu(object, &object_list, object_list) {
1621                spin_lock_irqsave(&object->lock, flags);
1622                if ((object->flags & OBJECT_REPORTED) &&
1623                    unreferenced_object(object))
1624                        __paint_it(object, KMEMLEAK_GREY);
1625                spin_unlock_irqrestore(&object->lock, flags);
1626        }
1627        rcu_read_unlock();
1628
1629        kmemleak_found_leaks = false;
1630}
1631
1632static void __kmemleak_do_cleanup(void);
1633
1634/*
1635 * File write operation to configure kmemleak at run-time. The following
1636 * commands can be written to the /sys/kernel/debug/kmemleak file:
1637 *   off        - disable kmemleak (irreversible)
1638 *   stack=on   - enable the task stacks scanning
1639 *   stack=off  - disable the tasks stacks scanning
1640 *   scan=on    - start the automatic memory scanning thread
1641 *   scan=off   - stop the automatic memory scanning thread
1642 *   scan=...   - set the automatic memory scanning period in seconds (0 to
1643 *                disable it)
1644 *   scan       - trigger a memory scan
1645 *   clear      - mark all current reported unreferenced kmemleak objects as
1646 *                grey to ignore printing them, or free all kmemleak objects
1647 *                if kmemleak has been disabled.
1648 *   dump=...   - dump information about the object found at the given address
1649 */
1650static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1651                              size_t size, loff_t *ppos)
1652{
1653        char buf[64];
1654        int buf_size;
1655        int ret;
1656
1657        buf_size = min(size, (sizeof(buf) - 1));
1658        if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1659                return -EFAULT;
1660        buf[buf_size] = 0;
1661
1662        ret = mutex_lock_interruptible(&scan_mutex);
1663        if (ret < 0)
1664                return ret;
1665
1666        if (strncmp(buf, "clear", 5) == 0) {
1667                if (kmemleak_enabled)
1668                        kmemleak_clear();
1669                else
1670                        __kmemleak_do_cleanup();
1671                goto out;
1672        }
1673
1674        if (!kmemleak_enabled) {
1675                ret = -EBUSY;
1676                goto out;
1677        }
1678
1679        if (strncmp(buf, "off", 3) == 0)
1680                kmemleak_disable();
1681        else if (strncmp(buf, "stack=on", 8) == 0)
1682                kmemleak_stack_scan = 1;
1683        else if (strncmp(buf, "stack=off", 9) == 0)
1684                kmemleak_stack_scan = 0;
1685        else if (strncmp(buf, "scan=on", 7) == 0)
1686                start_scan_thread();
1687        else if (strncmp(buf, "scan=off", 8) == 0)
1688                stop_scan_thread();
1689        else if (strncmp(buf, "scan=", 5) == 0) {
1690                unsigned long secs;
1691
1692                ret = kstrtoul(buf + 5, 0, &secs);
1693                if (ret < 0)
1694                        goto out;
1695                stop_scan_thread();
1696                if (secs) {
1697                        jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1698                        start_scan_thread();
1699                }
1700        } else if (strncmp(buf, "scan", 4) == 0)
1701                kmemleak_scan();
1702        else if (strncmp(buf, "dump=", 5) == 0)
1703                ret = dump_str_object_info(buf + 5);
1704        else
1705                ret = -EINVAL;
1706
1707out:
1708        mutex_unlock(&scan_mutex);
1709        if (ret < 0)
1710                return ret;
1711
1712        /* ignore the rest of the buffer, only one command at a time */
1713        *ppos += size;
1714        return size;
1715}
1716
1717static const struct file_operations kmemleak_fops = {
1718        .owner          = THIS_MODULE,
1719        .open           = kmemleak_open,
1720        .read           = seq_read,
1721        .write          = kmemleak_write,
1722        .llseek         = seq_lseek,
1723        .release        = seq_release,
1724};
1725
1726static void __kmemleak_do_cleanup(void)
1727{
1728        struct kmemleak_object *object;
1729
1730        rcu_read_lock();
1731        list_for_each_entry_rcu(object, &object_list, object_list)
1732                delete_object_full(object->pointer);
1733        rcu_read_unlock();
1734}
1735
1736/*
1737 * Stop the memory scanning thread and free the kmemleak internal objects if
1738 * no previous scan thread (otherwise, kmemleak may still have some useful
1739 * information on memory leaks).
1740 */
1741static void kmemleak_do_cleanup(struct work_struct *work)
1742{
1743        mutex_lock(&scan_mutex);
1744        stop_scan_thread();
1745
1746        if (!kmemleak_found_leaks)
1747                __kmemleak_do_cleanup();
1748        else
1749                pr_info("Kmemleak disabled without freeing internal data. "
1750                        "Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\"\n");
1751        mutex_unlock(&scan_mutex);
1752}
1753
1754static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
1755
1756/*
1757 * Disable kmemleak. No memory allocation/freeing will be traced once this
1758 * function is called. Disabling kmemleak is an irreversible operation.
1759 */
1760static void kmemleak_disable(void)
1761{
1762        /* atomically check whether it was already invoked */
1763        if (cmpxchg(&kmemleak_error, 0, 1))
1764                return;
1765
1766        /* stop any memory operation tracing */
1767        kmemleak_enabled = 0;
1768
1769        /* check whether it is too early for a kernel thread */
1770        if (kmemleak_initialized)
1771                schedule_work(&cleanup_work);
1772
1773        pr_info("Kernel memory leak detector disabled\n");
1774}
1775
1776/*
1777 * Allow boot-time kmemleak disabling (enabled by default).
1778 */
1779static int kmemleak_boot_config(char *str)
1780{
1781        if (!str)
1782                return -EINVAL;
1783        if (strcmp(str, "off") == 0)
1784                kmemleak_disable();
1785        else if (strcmp(str, "on") == 0)
1786                kmemleak_skip_disable = 1;
1787        else
1788                return -EINVAL;
1789        return 0;
1790}
1791early_param("kmemleak", kmemleak_boot_config);
1792
1793static void __init print_log_trace(struct early_log *log)
1794{
1795        struct stack_trace trace;
1796
1797        trace.nr_entries = log->trace_len;
1798        trace.entries = log->trace;
1799
1800        pr_notice("Early log backtrace:\n");
1801        print_stack_trace(&trace, 2);
1802}
1803
1804/*
1805 * Kmemleak initialization.
1806 */
1807void __init kmemleak_init(void)
1808{
1809        int i;
1810        unsigned long flags;
1811
1812#ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
1813        if (!kmemleak_skip_disable) {
1814                kmemleak_early_log = 0;
1815                kmemleak_disable();
1816                return;
1817        }
1818#endif
1819
1820        jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
1821        jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
1822
1823        object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
1824        scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
1825
1826        if (crt_early_log >= ARRAY_SIZE(early_log))
1827                pr_warning("Early log buffer exceeded (%d), please increase "
1828                           "DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n", crt_early_log);
1829
1830        /* the kernel is still in UP mode, so disabling the IRQs is enough */
1831        local_irq_save(flags);
1832        kmemleak_early_log = 0;
1833        if (kmemleak_error) {
1834                local_irq_restore(flags);
1835                return;
1836        } else
1837                kmemleak_enabled = 1;
1838        local_irq_restore(flags);
1839
1840        /*
1841         * This is the point where tracking allocations is safe. Automatic
1842         * scanning is started during the late initcall. Add the early logged
1843         * callbacks to the kmemleak infrastructure.
1844         */
1845        for (i = 0; i < crt_early_log; i++) {
1846                struct early_log *log = &early_log[i];
1847
1848                switch (log->op_type) {
1849                case KMEMLEAK_ALLOC:
1850                        early_alloc(log);
1851                        break;
1852                case KMEMLEAK_ALLOC_PERCPU:
1853                        early_alloc_percpu(log);
1854                        break;
1855                case KMEMLEAK_FREE:
1856                        kmemleak_free(log->ptr);
1857                        break;
1858                case KMEMLEAK_FREE_PART:
1859                        kmemleak_free_part(log->ptr, log->size);
1860                        break;
1861                case KMEMLEAK_FREE_PERCPU:
1862                        kmemleak_free_percpu(log->ptr);
1863                        break;
1864                case KMEMLEAK_NOT_LEAK:
1865                        kmemleak_not_leak(log->ptr);
1866                        break;
1867                case KMEMLEAK_IGNORE:
1868                        kmemleak_ignore(log->ptr);
1869                        break;
1870                case KMEMLEAK_SCAN_AREA:
1871                        kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL);
1872                        break;
1873                case KMEMLEAK_NO_SCAN:
1874                        kmemleak_no_scan(log->ptr);
1875                        break;
1876                default:
1877                        kmemleak_warn("Unknown early log operation: %d\n",
1878                                      log->op_type);
1879                }
1880
1881                if (kmemleak_warning) {
1882                        print_log_trace(log);
1883                        kmemleak_warning = 0;
1884                }
1885        }
1886}
1887
1888/*
1889 * Late initialization function.
1890 */
1891static int __init kmemleak_late_init(void)
1892{
1893        struct dentry *dentry;
1894
1895        kmemleak_initialized = 1;
1896
1897        if (kmemleak_error) {
1898                /*
1899                 * Some error occurred and kmemleak was disabled. There is a
1900                 * small chance that kmemleak_disable() was called immediately
1901                 * after setting kmemleak_initialized and we may end up with
1902                 * two clean-up threads but serialized by scan_mutex.
1903                 */
1904                schedule_work(&cleanup_work);
1905                return -ENOMEM;
1906        }
1907
1908        dentry = debugfs_create_file("kmemleak", S_IRUGO, NULL, NULL,
1909                                     &kmemleak_fops);
1910        if (!dentry)
1911                pr_warning("Failed to create the debugfs kmemleak file\n");
1912        mutex_lock(&scan_mutex);
1913        start_scan_thread();
1914        mutex_unlock(&scan_mutex);
1915
1916        pr_info("Kernel memory leak detector initialized\n");
1917
1918        return 0;
1919}
1920late_initcall(kmemleak_late_init);
1921