linux/mm/memory_hotplug.c
<<
>>
Prefs
   1/*
   2 *  linux/mm/memory_hotplug.c
   3 *
   4 *  Copyright (C)
   5 */
   6
   7#include <linux/stddef.h>
   8#include <linux/mm.h>
   9#include <linux/swap.h>
  10#include <linux/interrupt.h>
  11#include <linux/pagemap.h>
  12#include <linux/compiler.h>
  13#include <linux/export.h>
  14#include <linux/pagevec.h>
  15#include <linux/writeback.h>
  16#include <linux/slab.h>
  17#include <linux/sysctl.h>
  18#include <linux/cpu.h>
  19#include <linux/memory.h>
  20#include <linux/memory_hotplug.h>
  21#include <linux/highmem.h>
  22#include <linux/vmalloc.h>
  23#include <linux/ioport.h>
  24#include <linux/delay.h>
  25#include <linux/migrate.h>
  26#include <linux/page-isolation.h>
  27#include <linux/pfn.h>
  28#include <linux/suspend.h>
  29#include <linux/mm_inline.h>
  30#include <linux/firmware-map.h>
  31#include <linux/stop_machine.h>
  32#include <linux/hugetlb.h>
  33#include <linux/memblock.h>
  34
  35#include <asm/tlbflush.h>
  36
  37#include "internal.h"
  38
  39/*
  40 * online_page_callback contains pointer to current page onlining function.
  41 * Initially it is generic_online_page(). If it is required it could be
  42 * changed by calling set_online_page_callback() for callback registration
  43 * and restore_online_page_callback() for generic callback restore.
  44 */
  45
  46static void generic_online_page(struct page *page);
  47
  48static online_page_callback_t online_page_callback = generic_online_page;
  49static DEFINE_MUTEX(online_page_callback_lock);
  50
  51/* The same as the cpu_hotplug lock, but for memory hotplug. */
  52static struct {
  53        struct task_struct *active_writer;
  54        struct mutex lock; /* Synchronizes accesses to refcount, */
  55        /*
  56         * Also blocks the new readers during
  57         * an ongoing mem hotplug operation.
  58         */
  59        int refcount;
  60
  61#ifdef CONFIG_DEBUG_LOCK_ALLOC
  62        struct lockdep_map dep_map;
  63#endif
  64} mem_hotplug = {
  65        .active_writer = NULL,
  66        .lock = __MUTEX_INITIALIZER(mem_hotplug.lock),
  67        .refcount = 0,
  68#ifdef CONFIG_DEBUG_LOCK_ALLOC
  69        .dep_map = {.name = "mem_hotplug.lock" },
  70#endif
  71};
  72
  73/* Lockdep annotations for get/put_online_mems() and mem_hotplug_begin/end() */
  74#define memhp_lock_acquire_read() lock_map_acquire_read(&mem_hotplug.dep_map)
  75#define memhp_lock_acquire()      lock_map_acquire(&mem_hotplug.dep_map)
  76#define memhp_lock_release()      lock_map_release(&mem_hotplug.dep_map)
  77
  78void get_online_mems(void)
  79{
  80        might_sleep();
  81        if (mem_hotplug.active_writer == current)
  82                return;
  83        memhp_lock_acquire_read();
  84        mutex_lock(&mem_hotplug.lock);
  85        mem_hotplug.refcount++;
  86        mutex_unlock(&mem_hotplug.lock);
  87
  88}
  89
  90void put_online_mems(void)
  91{
  92        if (mem_hotplug.active_writer == current)
  93                return;
  94        mutex_lock(&mem_hotplug.lock);
  95
  96        if (WARN_ON(!mem_hotplug.refcount))
  97                mem_hotplug.refcount++; /* try to fix things up */
  98
  99        if (!--mem_hotplug.refcount && unlikely(mem_hotplug.active_writer))
 100                wake_up_process(mem_hotplug.active_writer);
 101        mutex_unlock(&mem_hotplug.lock);
 102        memhp_lock_release();
 103
 104}
 105
 106static void mem_hotplug_begin(void)
 107{
 108        mem_hotplug.active_writer = current;
 109
 110        memhp_lock_acquire();
 111        for (;;) {
 112                mutex_lock(&mem_hotplug.lock);
 113                if (likely(!mem_hotplug.refcount))
 114                        break;
 115                __set_current_state(TASK_UNINTERRUPTIBLE);
 116                mutex_unlock(&mem_hotplug.lock);
 117                schedule();
 118        }
 119}
 120
 121static void mem_hotplug_done(void)
 122{
 123        mem_hotplug.active_writer = NULL;
 124        mutex_unlock(&mem_hotplug.lock);
 125        memhp_lock_release();
 126}
 127
 128/* add this memory to iomem resource */
 129static struct resource *register_memory_resource(u64 start, u64 size)
 130{
 131        struct resource *res;
 132        res = kzalloc(sizeof(struct resource), GFP_KERNEL);
 133        BUG_ON(!res);
 134
 135        res->name = "System RAM";
 136        res->start = start;
 137        res->end = start + size - 1;
 138        res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
 139        if (request_resource(&iomem_resource, res) < 0) {
 140                pr_debug("System RAM resource %pR cannot be added\n", res);
 141                kfree(res);
 142                res = NULL;
 143        }
 144        return res;
 145}
 146
 147static void release_memory_resource(struct resource *res)
 148{
 149        if (!res)
 150                return;
 151        release_resource(res);
 152        kfree(res);
 153        return;
 154}
 155
 156#ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
 157void get_page_bootmem(unsigned long info,  struct page *page,
 158                      unsigned long type)
 159{
 160        page->lru.next = (struct list_head *) type;
 161        SetPagePrivate(page);
 162        set_page_private(page, info);
 163        atomic_inc(&page->_count);
 164}
 165
 166void put_page_bootmem(struct page *page)
 167{
 168        unsigned long type;
 169
 170        type = (unsigned long) page->lru.next;
 171        BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE ||
 172               type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE);
 173
 174        if (atomic_dec_return(&page->_count) == 1) {
 175                ClearPagePrivate(page);
 176                set_page_private(page, 0);
 177                INIT_LIST_HEAD(&page->lru);
 178                free_reserved_page(page);
 179        }
 180}
 181
 182#ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
 183#ifndef CONFIG_SPARSEMEM_VMEMMAP
 184static void register_page_bootmem_info_section(unsigned long start_pfn)
 185{
 186        unsigned long *usemap, mapsize, section_nr, i;
 187        struct mem_section *ms;
 188        struct page *page, *memmap;
 189
 190        section_nr = pfn_to_section_nr(start_pfn);
 191        ms = __nr_to_section(section_nr);
 192
 193        /* Get section's memmap address */
 194        memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
 195
 196        /*
 197         * Get page for the memmap's phys address
 198         * XXX: need more consideration for sparse_vmemmap...
 199         */
 200        page = virt_to_page(memmap);
 201        mapsize = sizeof(struct page) * PAGES_PER_SECTION;
 202        mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT;
 203
 204        /* remember memmap's page */
 205        for (i = 0; i < mapsize; i++, page++)
 206                get_page_bootmem(section_nr, page, SECTION_INFO);
 207
 208        usemap = __nr_to_section(section_nr)->pageblock_flags;
 209        page = virt_to_page(usemap);
 210
 211        mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
 212
 213        for (i = 0; i < mapsize; i++, page++)
 214                get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
 215
 216}
 217#else /* CONFIG_SPARSEMEM_VMEMMAP */
 218static void register_page_bootmem_info_section(unsigned long start_pfn)
 219{
 220        unsigned long *usemap, mapsize, section_nr, i;
 221        struct mem_section *ms;
 222        struct page *page, *memmap;
 223
 224        if (!pfn_valid(start_pfn))
 225                return;
 226
 227        section_nr = pfn_to_section_nr(start_pfn);
 228        ms = __nr_to_section(section_nr);
 229
 230        memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
 231
 232        register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION);
 233
 234        usemap = __nr_to_section(section_nr)->pageblock_flags;
 235        page = virt_to_page(usemap);
 236
 237        mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
 238
 239        for (i = 0; i < mapsize; i++, page++)
 240                get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
 241}
 242#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
 243
 244void register_page_bootmem_info_node(struct pglist_data *pgdat)
 245{
 246        unsigned long i, pfn, end_pfn, nr_pages;
 247        int node = pgdat->node_id;
 248        struct page *page;
 249        struct zone *zone;
 250
 251        nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT;
 252        page = virt_to_page(pgdat);
 253
 254        for (i = 0; i < nr_pages; i++, page++)
 255                get_page_bootmem(node, page, NODE_INFO);
 256
 257        zone = &pgdat->node_zones[0];
 258        for (; zone < pgdat->node_zones + MAX_NR_ZONES - 1; zone++) {
 259                if (zone_is_initialized(zone)) {
 260                        nr_pages = zone->wait_table_hash_nr_entries
 261                                * sizeof(wait_queue_head_t);
 262                        nr_pages = PAGE_ALIGN(nr_pages) >> PAGE_SHIFT;
 263                        page = virt_to_page(zone->wait_table);
 264
 265                        for (i = 0; i < nr_pages; i++, page++)
 266                                get_page_bootmem(node, page, NODE_INFO);
 267                }
 268        }
 269
 270        pfn = pgdat->node_start_pfn;
 271        end_pfn = pgdat_end_pfn(pgdat);
 272
 273        /* register section info */
 274        for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
 275                /*
 276                 * Some platforms can assign the same pfn to multiple nodes - on
 277                 * node0 as well as nodeN.  To avoid registering a pfn against
 278                 * multiple nodes we check that this pfn does not already
 279                 * reside in some other nodes.
 280                 */
 281                if (pfn_valid(pfn) && (pfn_to_nid(pfn) == node))
 282                        register_page_bootmem_info_section(pfn);
 283        }
 284}
 285#endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */
 286
 287static void __meminit grow_zone_span(struct zone *zone, unsigned long start_pfn,
 288                                     unsigned long end_pfn)
 289{
 290        unsigned long old_zone_end_pfn;
 291
 292        zone_span_writelock(zone);
 293
 294        old_zone_end_pfn = zone_end_pfn(zone);
 295        if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
 296                zone->zone_start_pfn = start_pfn;
 297
 298        zone->spanned_pages = max(old_zone_end_pfn, end_pfn) -
 299                                zone->zone_start_pfn;
 300
 301        zone_span_writeunlock(zone);
 302}
 303
 304static void resize_zone(struct zone *zone, unsigned long start_pfn,
 305                unsigned long end_pfn)
 306{
 307        zone_span_writelock(zone);
 308
 309        if (end_pfn - start_pfn) {
 310                zone->zone_start_pfn = start_pfn;
 311                zone->spanned_pages = end_pfn - start_pfn;
 312        } else {
 313                /*
 314                 * make it consist as free_area_init_core(),
 315                 * if spanned_pages = 0, then keep start_pfn = 0
 316                 */
 317                zone->zone_start_pfn = 0;
 318                zone->spanned_pages = 0;
 319        }
 320
 321        zone_span_writeunlock(zone);
 322}
 323
 324static void fix_zone_id(struct zone *zone, unsigned long start_pfn,
 325                unsigned long end_pfn)
 326{
 327        enum zone_type zid = zone_idx(zone);
 328        int nid = zone->zone_pgdat->node_id;
 329        unsigned long pfn;
 330
 331        for (pfn = start_pfn; pfn < end_pfn; pfn++)
 332                set_page_links(pfn_to_page(pfn), zid, nid, pfn);
 333}
 334
 335/* Can fail with -ENOMEM from allocating a wait table with vmalloc() or
 336 * alloc_bootmem_node_nopanic()/memblock_virt_alloc_node_nopanic() */
 337static int __ref ensure_zone_is_initialized(struct zone *zone,
 338                        unsigned long start_pfn, unsigned long num_pages)
 339{
 340        if (!zone_is_initialized(zone))
 341                return init_currently_empty_zone(zone, start_pfn, num_pages,
 342                                                 MEMMAP_HOTPLUG);
 343        return 0;
 344}
 345
 346static int __meminit move_pfn_range_left(struct zone *z1, struct zone *z2,
 347                unsigned long start_pfn, unsigned long end_pfn)
 348{
 349        int ret;
 350        unsigned long flags;
 351        unsigned long z1_start_pfn;
 352
 353        ret = ensure_zone_is_initialized(z1, start_pfn, end_pfn - start_pfn);
 354        if (ret)
 355                return ret;
 356
 357        pgdat_resize_lock(z1->zone_pgdat, &flags);
 358
 359        /* can't move pfns which are higher than @z2 */
 360        if (end_pfn > zone_end_pfn(z2))
 361                goto out_fail;
 362        /* the move out part must be at the left most of @z2 */
 363        if (start_pfn > z2->zone_start_pfn)
 364                goto out_fail;
 365        /* must included/overlap */
 366        if (end_pfn <= z2->zone_start_pfn)
 367                goto out_fail;
 368
 369        /* use start_pfn for z1's start_pfn if z1 is empty */
 370        if (!zone_is_empty(z1))
 371                z1_start_pfn = z1->zone_start_pfn;
 372        else
 373                z1_start_pfn = start_pfn;
 374
 375        resize_zone(z1, z1_start_pfn, end_pfn);
 376        resize_zone(z2, end_pfn, zone_end_pfn(z2));
 377
 378        pgdat_resize_unlock(z1->zone_pgdat, &flags);
 379
 380        fix_zone_id(z1, start_pfn, end_pfn);
 381
 382        return 0;
 383out_fail:
 384        pgdat_resize_unlock(z1->zone_pgdat, &flags);
 385        return -1;
 386}
 387
 388static int __meminit move_pfn_range_right(struct zone *z1, struct zone *z2,
 389                unsigned long start_pfn, unsigned long end_pfn)
 390{
 391        int ret;
 392        unsigned long flags;
 393        unsigned long z2_end_pfn;
 394
 395        ret = ensure_zone_is_initialized(z2, start_pfn, end_pfn - start_pfn);
 396        if (ret)
 397                return ret;
 398
 399        pgdat_resize_lock(z1->zone_pgdat, &flags);
 400
 401        /* can't move pfns which are lower than @z1 */
 402        if (z1->zone_start_pfn > start_pfn)
 403                goto out_fail;
 404        /* the move out part mast at the right most of @z1 */
 405        if (zone_end_pfn(z1) >  end_pfn)
 406                goto out_fail;
 407        /* must included/overlap */
 408        if (start_pfn >= zone_end_pfn(z1))
 409                goto out_fail;
 410
 411        /* use end_pfn for z2's end_pfn if z2 is empty */
 412        if (!zone_is_empty(z2))
 413                z2_end_pfn = zone_end_pfn(z2);
 414        else
 415                z2_end_pfn = end_pfn;
 416
 417        resize_zone(z1, z1->zone_start_pfn, start_pfn);
 418        resize_zone(z2, start_pfn, z2_end_pfn);
 419
 420        pgdat_resize_unlock(z1->zone_pgdat, &flags);
 421
 422        fix_zone_id(z2, start_pfn, end_pfn);
 423
 424        return 0;
 425out_fail:
 426        pgdat_resize_unlock(z1->zone_pgdat, &flags);
 427        return -1;
 428}
 429
 430static void __meminit grow_pgdat_span(struct pglist_data *pgdat, unsigned long start_pfn,
 431                                      unsigned long end_pfn)
 432{
 433        unsigned long old_pgdat_end_pfn = pgdat_end_pfn(pgdat);
 434
 435        if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
 436                pgdat->node_start_pfn = start_pfn;
 437
 438        pgdat->node_spanned_pages = max(old_pgdat_end_pfn, end_pfn) -
 439                                        pgdat->node_start_pfn;
 440}
 441
 442static int __meminit __add_zone(struct zone *zone, unsigned long phys_start_pfn)
 443{
 444        struct pglist_data *pgdat = zone->zone_pgdat;
 445        int nr_pages = PAGES_PER_SECTION;
 446        int nid = pgdat->node_id;
 447        int zone_type;
 448        unsigned long flags;
 449        int ret;
 450
 451        zone_type = zone - pgdat->node_zones;
 452        ret = ensure_zone_is_initialized(zone, phys_start_pfn, nr_pages);
 453        if (ret)
 454                return ret;
 455
 456        pgdat_resize_lock(zone->zone_pgdat, &flags);
 457        grow_zone_span(zone, phys_start_pfn, phys_start_pfn + nr_pages);
 458        grow_pgdat_span(zone->zone_pgdat, phys_start_pfn,
 459                        phys_start_pfn + nr_pages);
 460        pgdat_resize_unlock(zone->zone_pgdat, &flags);
 461        memmap_init_zone(nr_pages, nid, zone_type,
 462                         phys_start_pfn, MEMMAP_HOTPLUG);
 463        return 0;
 464}
 465
 466static int __meminit __add_section(int nid, struct zone *zone,
 467                                        unsigned long phys_start_pfn)
 468{
 469        int ret;
 470
 471        if (pfn_valid(phys_start_pfn))
 472                return -EEXIST;
 473
 474        ret = sparse_add_one_section(zone, phys_start_pfn);
 475
 476        if (ret < 0)
 477                return ret;
 478
 479        ret = __add_zone(zone, phys_start_pfn);
 480
 481        if (ret < 0)
 482                return ret;
 483
 484        return register_new_memory(nid, __pfn_to_section(phys_start_pfn));
 485}
 486
 487/*
 488 * Reasonably generic function for adding memory.  It is
 489 * expected that archs that support memory hotplug will
 490 * call this function after deciding the zone to which to
 491 * add the new pages.
 492 */
 493int __ref __add_pages(int nid, struct zone *zone, unsigned long phys_start_pfn,
 494                        unsigned long nr_pages)
 495{
 496        unsigned long i;
 497        int err = 0;
 498        int start_sec, end_sec;
 499        /* during initialize mem_map, align hot-added range to section */
 500        start_sec = pfn_to_section_nr(phys_start_pfn);
 501        end_sec = pfn_to_section_nr(phys_start_pfn + nr_pages - 1);
 502
 503        for (i = start_sec; i <= end_sec; i++) {
 504                err = __add_section(nid, zone, i << PFN_SECTION_SHIFT);
 505
 506                /*
 507                 * EEXIST is finally dealt with by ioresource collision
 508                 * check. see add_memory() => register_memory_resource()
 509                 * Warning will be printed if there is collision.
 510                 */
 511                if (err && (err != -EEXIST))
 512                        break;
 513                err = 0;
 514        }
 515
 516        return err;
 517}
 518EXPORT_SYMBOL_GPL(__add_pages);
 519
 520#ifdef CONFIG_MEMORY_HOTREMOVE
 521/* find the smallest valid pfn in the range [start_pfn, end_pfn) */
 522static int find_smallest_section_pfn(int nid, struct zone *zone,
 523                                     unsigned long start_pfn,
 524                                     unsigned long end_pfn)
 525{
 526        struct mem_section *ms;
 527
 528        for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SECTION) {
 529                ms = __pfn_to_section(start_pfn);
 530
 531                if (unlikely(!valid_section(ms)))
 532                        continue;
 533
 534                if (unlikely(pfn_to_nid(start_pfn) != nid))
 535                        continue;
 536
 537                if (zone && zone != page_zone(pfn_to_page(start_pfn)))
 538                        continue;
 539
 540                return start_pfn;
 541        }
 542
 543        return 0;
 544}
 545
 546/* find the biggest valid pfn in the range [start_pfn, end_pfn). */
 547static int find_biggest_section_pfn(int nid, struct zone *zone,
 548                                    unsigned long start_pfn,
 549                                    unsigned long end_pfn)
 550{
 551        struct mem_section *ms;
 552        unsigned long pfn;
 553
 554        /* pfn is the end pfn of a memory section. */
 555        pfn = end_pfn - 1;
 556        for (; pfn >= start_pfn; pfn -= PAGES_PER_SECTION) {
 557                ms = __pfn_to_section(pfn);
 558
 559                if (unlikely(!valid_section(ms)))
 560                        continue;
 561
 562                if (unlikely(pfn_to_nid(pfn) != nid))
 563                        continue;
 564
 565                if (zone && zone != page_zone(pfn_to_page(pfn)))
 566                        continue;
 567
 568                return pfn;
 569        }
 570
 571        return 0;
 572}
 573
 574static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
 575                             unsigned long end_pfn)
 576{
 577        unsigned long zone_start_pfn = zone->zone_start_pfn;
 578        unsigned long z = zone_end_pfn(zone); /* zone_end_pfn namespace clash */
 579        unsigned long zone_end_pfn = z;
 580        unsigned long pfn;
 581        struct mem_section *ms;
 582        int nid = zone_to_nid(zone);
 583
 584        zone_span_writelock(zone);
 585        if (zone_start_pfn == start_pfn) {
 586                /*
 587                 * If the section is smallest section in the zone, it need
 588                 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
 589                 * In this case, we find second smallest valid mem_section
 590                 * for shrinking zone.
 591                 */
 592                pfn = find_smallest_section_pfn(nid, zone, end_pfn,
 593                                                zone_end_pfn);
 594                if (pfn) {
 595                        zone->zone_start_pfn = pfn;
 596                        zone->spanned_pages = zone_end_pfn - pfn;
 597                }
 598        } else if (zone_end_pfn == end_pfn) {
 599                /*
 600                 * If the section is biggest section in the zone, it need
 601                 * shrink zone->spanned_pages.
 602                 * In this case, we find second biggest valid mem_section for
 603                 * shrinking zone.
 604                 */
 605                pfn = find_biggest_section_pfn(nid, zone, zone_start_pfn,
 606                                               start_pfn);
 607                if (pfn)
 608                        zone->spanned_pages = pfn - zone_start_pfn + 1;
 609        }
 610
 611        /*
 612         * The section is not biggest or smallest mem_section in the zone, it
 613         * only creates a hole in the zone. So in this case, we need not
 614         * change the zone. But perhaps, the zone has only hole data. Thus
 615         * it check the zone has only hole or not.
 616         */
 617        pfn = zone_start_pfn;
 618        for (; pfn < zone_end_pfn; pfn += PAGES_PER_SECTION) {
 619                ms = __pfn_to_section(pfn);
 620
 621                if (unlikely(!valid_section(ms)))
 622                        continue;
 623
 624                if (page_zone(pfn_to_page(pfn)) != zone)
 625                        continue;
 626
 627                 /* If the section is current section, it continues the loop */
 628                if (start_pfn == pfn)
 629                        continue;
 630
 631                /* If we find valid section, we have nothing to do */
 632                zone_span_writeunlock(zone);
 633                return;
 634        }
 635
 636        /* The zone has no valid section */
 637        zone->zone_start_pfn = 0;
 638        zone->spanned_pages = 0;
 639        zone_span_writeunlock(zone);
 640}
 641
 642static void shrink_pgdat_span(struct pglist_data *pgdat,
 643                              unsigned long start_pfn, unsigned long end_pfn)
 644{
 645        unsigned long pgdat_start_pfn = pgdat->node_start_pfn;
 646        unsigned long p = pgdat_end_pfn(pgdat); /* pgdat_end_pfn namespace clash */
 647        unsigned long pgdat_end_pfn = p;
 648        unsigned long pfn;
 649        struct mem_section *ms;
 650        int nid = pgdat->node_id;
 651
 652        if (pgdat_start_pfn == start_pfn) {
 653                /*
 654                 * If the section is smallest section in the pgdat, it need
 655                 * shrink pgdat->node_start_pfn and pgdat->node_spanned_pages.
 656                 * In this case, we find second smallest valid mem_section
 657                 * for shrinking zone.
 658                 */
 659                pfn = find_smallest_section_pfn(nid, NULL, end_pfn,
 660                                                pgdat_end_pfn);
 661                if (pfn) {
 662                        pgdat->node_start_pfn = pfn;
 663                        pgdat->node_spanned_pages = pgdat_end_pfn - pfn;
 664                }
 665        } else if (pgdat_end_pfn == end_pfn) {
 666                /*
 667                 * If the section is biggest section in the pgdat, it need
 668                 * shrink pgdat->node_spanned_pages.
 669                 * In this case, we find second biggest valid mem_section for
 670                 * shrinking zone.
 671                 */
 672                pfn = find_biggest_section_pfn(nid, NULL, pgdat_start_pfn,
 673                                               start_pfn);
 674                if (pfn)
 675                        pgdat->node_spanned_pages = pfn - pgdat_start_pfn + 1;
 676        }
 677
 678        /*
 679         * If the section is not biggest or smallest mem_section in the pgdat,
 680         * it only creates a hole in the pgdat. So in this case, we need not
 681         * change the pgdat.
 682         * But perhaps, the pgdat has only hole data. Thus it check the pgdat
 683         * has only hole or not.
 684         */
 685        pfn = pgdat_start_pfn;
 686        for (; pfn < pgdat_end_pfn; pfn += PAGES_PER_SECTION) {
 687                ms = __pfn_to_section(pfn);
 688
 689                if (unlikely(!valid_section(ms)))
 690                        continue;
 691
 692                if (pfn_to_nid(pfn) != nid)
 693                        continue;
 694
 695                 /* If the section is current section, it continues the loop */
 696                if (start_pfn == pfn)
 697                        continue;
 698
 699                /* If we find valid section, we have nothing to do */
 700                return;
 701        }
 702
 703        /* The pgdat has no valid section */
 704        pgdat->node_start_pfn = 0;
 705        pgdat->node_spanned_pages = 0;
 706}
 707
 708static void __remove_zone(struct zone *zone, unsigned long start_pfn)
 709{
 710        struct pglist_data *pgdat = zone->zone_pgdat;
 711        int nr_pages = PAGES_PER_SECTION;
 712        int zone_type;
 713        unsigned long flags;
 714
 715        zone_type = zone - pgdat->node_zones;
 716
 717        pgdat_resize_lock(zone->zone_pgdat, &flags);
 718        shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
 719        shrink_pgdat_span(pgdat, start_pfn, start_pfn + nr_pages);
 720        pgdat_resize_unlock(zone->zone_pgdat, &flags);
 721}
 722
 723static int __remove_section(struct zone *zone, struct mem_section *ms)
 724{
 725        unsigned long start_pfn;
 726        int scn_nr;
 727        int ret = -EINVAL;
 728
 729        if (!valid_section(ms))
 730                return ret;
 731
 732        ret = unregister_memory_section(ms);
 733        if (ret)
 734                return ret;
 735
 736        scn_nr = __section_nr(ms);
 737        start_pfn = section_nr_to_pfn(scn_nr);
 738        __remove_zone(zone, start_pfn);
 739
 740        sparse_remove_one_section(zone, ms);
 741        return 0;
 742}
 743
 744/**
 745 * __remove_pages() - remove sections of pages from a zone
 746 * @zone: zone from which pages need to be removed
 747 * @phys_start_pfn: starting pageframe (must be aligned to start of a section)
 748 * @nr_pages: number of pages to remove (must be multiple of section size)
 749 *
 750 * Generic helper function to remove section mappings and sysfs entries
 751 * for the section of the memory we are removing. Caller needs to make
 752 * sure that pages are marked reserved and zones are adjust properly by
 753 * calling offline_pages().
 754 */
 755int __remove_pages(struct zone *zone, unsigned long phys_start_pfn,
 756                 unsigned long nr_pages)
 757{
 758        unsigned long i;
 759        int sections_to_remove;
 760        resource_size_t start, size;
 761        int ret = 0;
 762
 763        /*
 764         * We can only remove entire sections
 765         */
 766        BUG_ON(phys_start_pfn & ~PAGE_SECTION_MASK);
 767        BUG_ON(nr_pages % PAGES_PER_SECTION);
 768
 769        start = phys_start_pfn << PAGE_SHIFT;
 770        size = nr_pages * PAGE_SIZE;
 771        ret = release_mem_region_adjustable(&iomem_resource, start, size);
 772        if (ret) {
 773                resource_size_t endres = start + size - 1;
 774
 775                pr_warn("Unable to release resource <%pa-%pa> (%d)\n",
 776                                &start, &endres, ret);
 777        }
 778
 779        sections_to_remove = nr_pages / PAGES_PER_SECTION;
 780        for (i = 0; i < sections_to_remove; i++) {
 781                unsigned long pfn = phys_start_pfn + i*PAGES_PER_SECTION;
 782                ret = __remove_section(zone, __pfn_to_section(pfn));
 783                if (ret)
 784                        break;
 785        }
 786        return ret;
 787}
 788EXPORT_SYMBOL_GPL(__remove_pages);
 789#endif /* CONFIG_MEMORY_HOTREMOVE */
 790
 791int set_online_page_callback(online_page_callback_t callback)
 792{
 793        int rc = -EINVAL;
 794
 795        get_online_mems();
 796        mutex_lock(&online_page_callback_lock);
 797
 798        if (online_page_callback == generic_online_page) {
 799                online_page_callback = callback;
 800                rc = 0;
 801        }
 802
 803        mutex_unlock(&online_page_callback_lock);
 804        put_online_mems();
 805
 806        return rc;
 807}
 808EXPORT_SYMBOL_GPL(set_online_page_callback);
 809
 810int restore_online_page_callback(online_page_callback_t callback)
 811{
 812        int rc = -EINVAL;
 813
 814        get_online_mems();
 815        mutex_lock(&online_page_callback_lock);
 816
 817        if (online_page_callback == callback) {
 818                online_page_callback = generic_online_page;
 819                rc = 0;
 820        }
 821
 822        mutex_unlock(&online_page_callback_lock);
 823        put_online_mems();
 824
 825        return rc;
 826}
 827EXPORT_SYMBOL_GPL(restore_online_page_callback);
 828
 829void __online_page_set_limits(struct page *page)
 830{
 831}
 832EXPORT_SYMBOL_GPL(__online_page_set_limits);
 833
 834void __online_page_increment_counters(struct page *page)
 835{
 836        adjust_managed_page_count(page, 1);
 837}
 838EXPORT_SYMBOL_GPL(__online_page_increment_counters);
 839
 840void __online_page_free(struct page *page)
 841{
 842        __free_reserved_page(page);
 843}
 844EXPORT_SYMBOL_GPL(__online_page_free);
 845
 846static void generic_online_page(struct page *page)
 847{
 848        __online_page_set_limits(page);
 849        __online_page_increment_counters(page);
 850        __online_page_free(page);
 851}
 852
 853static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages,
 854                        void *arg)
 855{
 856        unsigned long i;
 857        unsigned long onlined_pages = *(unsigned long *)arg;
 858        struct page *page;
 859        if (PageReserved(pfn_to_page(start_pfn)))
 860                for (i = 0; i < nr_pages; i++) {
 861                        page = pfn_to_page(start_pfn + i);
 862                        (*online_page_callback)(page);
 863                        onlined_pages++;
 864                }
 865        *(unsigned long *)arg = onlined_pages;
 866        return 0;
 867}
 868
 869#ifdef CONFIG_MOVABLE_NODE
 870/*
 871 * When CONFIG_MOVABLE_NODE, we permit onlining of a node which doesn't have
 872 * normal memory.
 873 */
 874static bool can_online_high_movable(struct zone *zone)
 875{
 876        return true;
 877}
 878#else /* CONFIG_MOVABLE_NODE */
 879/* ensure every online node has NORMAL memory */
 880static bool can_online_high_movable(struct zone *zone)
 881{
 882        return node_state(zone_to_nid(zone), N_NORMAL_MEMORY);
 883}
 884#endif /* CONFIG_MOVABLE_NODE */
 885
 886/* check which state of node_states will be changed when online memory */
 887static void node_states_check_changes_online(unsigned long nr_pages,
 888        struct zone *zone, struct memory_notify *arg)
 889{
 890        int nid = zone_to_nid(zone);
 891        enum zone_type zone_last = ZONE_NORMAL;
 892
 893        /*
 894         * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY]
 895         * contains nodes which have zones of 0...ZONE_NORMAL,
 896         * set zone_last to ZONE_NORMAL.
 897         *
 898         * If we don't have HIGHMEM nor movable node,
 899         * node_states[N_NORMAL_MEMORY] contains nodes which have zones of
 900         * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE.
 901         */
 902        if (N_MEMORY == N_NORMAL_MEMORY)
 903                zone_last = ZONE_MOVABLE;
 904
 905        /*
 906         * if the memory to be online is in a zone of 0...zone_last, and
 907         * the zones of 0...zone_last don't have memory before online, we will
 908         * need to set the node to node_states[N_NORMAL_MEMORY] after
 909         * the memory is online.
 910         */
 911        if (zone_idx(zone) <= zone_last && !node_state(nid, N_NORMAL_MEMORY))
 912                arg->status_change_nid_normal = nid;
 913        else
 914                arg->status_change_nid_normal = -1;
 915
 916#ifdef CONFIG_HIGHMEM
 917        /*
 918         * If we have movable node, node_states[N_HIGH_MEMORY]
 919         * contains nodes which have zones of 0...ZONE_HIGHMEM,
 920         * set zone_last to ZONE_HIGHMEM.
 921         *
 922         * If we don't have movable node, node_states[N_NORMAL_MEMORY]
 923         * contains nodes which have zones of 0...ZONE_MOVABLE,
 924         * set zone_last to ZONE_MOVABLE.
 925         */
 926        zone_last = ZONE_HIGHMEM;
 927        if (N_MEMORY == N_HIGH_MEMORY)
 928                zone_last = ZONE_MOVABLE;
 929
 930        if (zone_idx(zone) <= zone_last && !node_state(nid, N_HIGH_MEMORY))
 931                arg->status_change_nid_high = nid;
 932        else
 933                arg->status_change_nid_high = -1;
 934#else
 935        arg->status_change_nid_high = arg->status_change_nid_normal;
 936#endif
 937
 938        /*
 939         * if the node don't have memory befor online, we will need to
 940         * set the node to node_states[N_MEMORY] after the memory
 941         * is online.
 942         */
 943        if (!node_state(nid, N_MEMORY))
 944                arg->status_change_nid = nid;
 945        else
 946                arg->status_change_nid = -1;
 947}
 948
 949static void node_states_set_node(int node, struct memory_notify *arg)
 950{
 951        if (arg->status_change_nid_normal >= 0)
 952                node_set_state(node, N_NORMAL_MEMORY);
 953
 954        if (arg->status_change_nid_high >= 0)
 955                node_set_state(node, N_HIGH_MEMORY);
 956
 957        node_set_state(node, N_MEMORY);
 958}
 959
 960
 961int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_type)
 962{
 963        unsigned long flags;
 964        unsigned long onlined_pages = 0;
 965        struct zone *zone;
 966        int need_zonelists_rebuild = 0;
 967        int nid;
 968        int ret;
 969        struct memory_notify arg;
 970
 971        mem_hotplug_begin();
 972        /*
 973         * This doesn't need a lock to do pfn_to_page().
 974         * The section can't be removed here because of the
 975         * memory_block->state_mutex.
 976         */
 977        zone = page_zone(pfn_to_page(pfn));
 978
 979        ret = -EINVAL;
 980        if ((zone_idx(zone) > ZONE_NORMAL ||
 981            online_type == MMOP_ONLINE_MOVABLE) &&
 982            !can_online_high_movable(zone))
 983                goto out;
 984
 985        if (online_type == MMOP_ONLINE_KERNEL &&
 986            zone_idx(zone) == ZONE_MOVABLE) {
 987                if (move_pfn_range_left(zone - 1, zone, pfn, pfn + nr_pages))
 988                        goto out;
 989        }
 990        if (online_type == MMOP_ONLINE_MOVABLE &&
 991            zone_idx(zone) == ZONE_MOVABLE - 1) {
 992                if (move_pfn_range_right(zone, zone + 1, pfn, pfn + nr_pages))
 993                        goto out;
 994        }
 995
 996        /* Previous code may changed the zone of the pfn range */
 997        zone = page_zone(pfn_to_page(pfn));
 998
 999        arg.start_pfn = pfn;
1000        arg.nr_pages = nr_pages;
1001        node_states_check_changes_online(nr_pages, zone, &arg);
1002
1003        nid = pfn_to_nid(pfn);
1004
1005        ret = memory_notify(MEM_GOING_ONLINE, &arg);
1006        ret = notifier_to_errno(ret);
1007        if (ret) {
1008                memory_notify(MEM_CANCEL_ONLINE, &arg);
1009                goto out;
1010        }
1011        /*
1012         * If this zone is not populated, then it is not in zonelist.
1013         * This means the page allocator ignores this zone.
1014         * So, zonelist must be updated after online.
1015         */
1016        mutex_lock(&zonelists_mutex);
1017        if (!populated_zone(zone)) {
1018                need_zonelists_rebuild = 1;
1019                build_all_zonelists(NULL, zone);
1020        }
1021
1022        ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages,
1023                online_pages_range);
1024        if (ret) {
1025                if (need_zonelists_rebuild)
1026                        zone_pcp_reset(zone);
1027                mutex_unlock(&zonelists_mutex);
1028                printk(KERN_DEBUG "online_pages [mem %#010llx-%#010llx] failed\n",
1029                       (unsigned long long) pfn << PAGE_SHIFT,
1030                       (((unsigned long long) pfn + nr_pages)
1031                            << PAGE_SHIFT) - 1);
1032                memory_notify(MEM_CANCEL_ONLINE, &arg);
1033                goto out;
1034        }
1035
1036        zone->present_pages += onlined_pages;
1037
1038        pgdat_resize_lock(zone->zone_pgdat, &flags);
1039        zone->zone_pgdat->node_present_pages += onlined_pages;
1040        pgdat_resize_unlock(zone->zone_pgdat, &flags);
1041
1042        if (onlined_pages) {
1043                node_states_set_node(zone_to_nid(zone), &arg);
1044                if (need_zonelists_rebuild)
1045                        build_all_zonelists(NULL, NULL);
1046                else
1047                        zone_pcp_update(zone);
1048        }
1049
1050        mutex_unlock(&zonelists_mutex);
1051
1052        init_per_zone_wmark_min();
1053
1054        if (onlined_pages)
1055                kswapd_run(zone_to_nid(zone));
1056
1057        vm_total_pages = nr_free_pagecache_pages();
1058
1059        writeback_set_ratelimit();
1060
1061        if (onlined_pages)
1062                memory_notify(MEM_ONLINE, &arg);
1063out:
1064        mem_hotplug_done();
1065        return ret;
1066}
1067#endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
1068
1069/* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1070static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start)
1071{
1072        struct pglist_data *pgdat;
1073        unsigned long zones_size[MAX_NR_ZONES] = {0};
1074        unsigned long zholes_size[MAX_NR_ZONES] = {0};
1075        unsigned long start_pfn = PFN_DOWN(start);
1076
1077        pgdat = NODE_DATA(nid);
1078        if (!pgdat) {
1079                pgdat = arch_alloc_nodedata(nid);
1080                if (!pgdat)
1081                        return NULL;
1082
1083                arch_refresh_nodedata(nid, pgdat);
1084        }
1085
1086        /* we can use NODE_DATA(nid) from here */
1087
1088        /* init node's zones as empty zones, we don't have any present pages.*/
1089        free_area_init_node(nid, zones_size, start_pfn, zholes_size);
1090
1091        /*
1092         * The node we allocated has no zone fallback lists. For avoiding
1093         * to access not-initialized zonelist, build here.
1094         */
1095        mutex_lock(&zonelists_mutex);
1096        build_all_zonelists(pgdat, NULL);
1097        mutex_unlock(&zonelists_mutex);
1098
1099        return pgdat;
1100}
1101
1102static void rollback_node_hotadd(int nid, pg_data_t *pgdat)
1103{
1104        arch_refresh_nodedata(nid, NULL);
1105        arch_free_nodedata(pgdat);
1106        return;
1107}
1108
1109
1110/**
1111 * try_online_node - online a node if offlined
1112 *
1113 * called by cpu_up() to online a node without onlined memory.
1114 */
1115int try_online_node(int nid)
1116{
1117        pg_data_t       *pgdat;
1118        int     ret;
1119
1120        if (node_online(nid))
1121                return 0;
1122
1123        mem_hotplug_begin();
1124        pgdat = hotadd_new_pgdat(nid, 0);
1125        if (!pgdat) {
1126                pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1127                ret = -ENOMEM;
1128                goto out;
1129        }
1130        node_set_online(nid);
1131        ret = register_one_node(nid);
1132        BUG_ON(ret);
1133
1134        if (pgdat->node_zonelists->_zonerefs->zone == NULL) {
1135                mutex_lock(&zonelists_mutex);
1136                build_all_zonelists(NULL, NULL);
1137                mutex_unlock(&zonelists_mutex);
1138        }
1139
1140out:
1141        mem_hotplug_done();
1142        return ret;
1143}
1144
1145static int check_hotplug_memory_range(u64 start, u64 size)
1146{
1147        u64 start_pfn = PFN_DOWN(start);
1148        u64 nr_pages = size >> PAGE_SHIFT;
1149
1150        /* Memory range must be aligned with section */
1151        if ((start_pfn & ~PAGE_SECTION_MASK) ||
1152            (nr_pages % PAGES_PER_SECTION) || (!nr_pages)) {
1153                pr_err("Section-unaligned hotplug range: start 0x%llx, size 0x%llx\n",
1154                                (unsigned long long)start,
1155                                (unsigned long long)size);
1156                return -EINVAL;
1157        }
1158
1159        return 0;
1160}
1161
1162/*
1163 * If movable zone has already been setup, newly added memory should be check.
1164 * If its address is higher than movable zone, it should be added as movable.
1165 * Without this check, movable zone may overlap with other zone.
1166 */
1167static int should_add_memory_movable(int nid, u64 start, u64 size)
1168{
1169        unsigned long start_pfn = start >> PAGE_SHIFT;
1170        pg_data_t *pgdat = NODE_DATA(nid);
1171        struct zone *movable_zone = pgdat->node_zones + ZONE_MOVABLE;
1172
1173        if (zone_is_empty(movable_zone))
1174                return 0;
1175
1176        if (movable_zone->zone_start_pfn <= start_pfn)
1177                return 1;
1178
1179        return 0;
1180}
1181
1182int zone_for_memory(int nid, u64 start, u64 size, int zone_default)
1183{
1184        if (should_add_memory_movable(nid, start, size))
1185                return ZONE_MOVABLE;
1186
1187        return zone_default;
1188}
1189
1190/* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1191int __ref add_memory(int nid, u64 start, u64 size)
1192{
1193        pg_data_t *pgdat = NULL;
1194        bool new_pgdat;
1195        bool new_node;
1196        struct resource *res;
1197        int ret;
1198
1199        ret = check_hotplug_memory_range(start, size);
1200        if (ret)
1201                return ret;
1202
1203        res = register_memory_resource(start, size);
1204        ret = -EEXIST;
1205        if (!res)
1206                return ret;
1207
1208        {       /* Stupid hack to suppress address-never-null warning */
1209                void *p = NODE_DATA(nid);
1210                new_pgdat = !p;
1211        }
1212
1213        mem_hotplug_begin();
1214
1215        new_node = !node_online(nid);
1216        if (new_node) {
1217                pgdat = hotadd_new_pgdat(nid, start);
1218                ret = -ENOMEM;
1219                if (!pgdat)
1220                        goto error;
1221        }
1222
1223        /* call arch's memory hotadd */
1224        ret = arch_add_memory(nid, start, size);
1225
1226        if (ret < 0)
1227                goto error;
1228
1229        /* we online node here. we can't roll back from here. */
1230        node_set_online(nid);
1231
1232        if (new_node) {
1233                ret = register_one_node(nid);
1234                /*
1235                 * If sysfs file of new node can't create, cpu on the node
1236                 * can't be hot-added. There is no rollback way now.
1237                 * So, check by BUG_ON() to catch it reluctantly..
1238                 */
1239                BUG_ON(ret);
1240        }
1241
1242        /* create new memmap entry */
1243        firmware_map_add_hotplug(start, start + size, "System RAM");
1244
1245        goto out;
1246
1247error:
1248        /* rollback pgdat allocation and others */
1249        if (new_pgdat)
1250                rollback_node_hotadd(nid, pgdat);
1251        release_memory_resource(res);
1252
1253out:
1254        mem_hotplug_done();
1255        return ret;
1256}
1257EXPORT_SYMBOL_GPL(add_memory);
1258
1259#ifdef CONFIG_MEMORY_HOTREMOVE
1260/*
1261 * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy
1262 * set and the size of the free page is given by page_order(). Using this,
1263 * the function determines if the pageblock contains only free pages.
1264 * Due to buddy contraints, a free page at least the size of a pageblock will
1265 * be located at the start of the pageblock
1266 */
1267static inline int pageblock_free(struct page *page)
1268{
1269        return PageBuddy(page) && page_order(page) >= pageblock_order;
1270}
1271
1272/* Return the start of the next active pageblock after a given page */
1273static struct page *next_active_pageblock(struct page *page)
1274{
1275        /* Ensure the starting page is pageblock-aligned */
1276        BUG_ON(page_to_pfn(page) & (pageblock_nr_pages - 1));
1277
1278        /* If the entire pageblock is free, move to the end of free page */
1279        if (pageblock_free(page)) {
1280                int order;
1281                /* be careful. we don't have locks, page_order can be changed.*/
1282                order = page_order(page);
1283                if ((order < MAX_ORDER) && (order >= pageblock_order))
1284                        return page + (1 << order);
1285        }
1286
1287        return page + pageblock_nr_pages;
1288}
1289
1290/* Checks if this range of memory is likely to be hot-removable. */
1291int is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages)
1292{
1293        struct page *page = pfn_to_page(start_pfn);
1294        struct page *end_page = page + nr_pages;
1295
1296        /* Check the starting page of each pageblock within the range */
1297        for (; page < end_page; page = next_active_pageblock(page)) {
1298                if (!is_pageblock_removable_nolock(page))
1299                        return 0;
1300                cond_resched();
1301        }
1302
1303        /* All pageblocks in the memory block are likely to be hot-removable */
1304        return 1;
1305}
1306
1307/*
1308 * Confirm all pages in a range [start, end) is belongs to the same zone.
1309 */
1310static int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn)
1311{
1312        unsigned long pfn;
1313        struct zone *zone = NULL;
1314        struct page *page;
1315        int i;
1316        for (pfn = start_pfn;
1317             pfn < end_pfn;
1318             pfn += MAX_ORDER_NR_PAGES) {
1319                i = 0;
1320                /* This is just a CONFIG_HOLES_IN_ZONE check.*/
1321                while ((i < MAX_ORDER_NR_PAGES) && !pfn_valid_within(pfn + i))
1322                        i++;
1323                if (i == MAX_ORDER_NR_PAGES)
1324                        continue;
1325                page = pfn_to_page(pfn + i);
1326                if (zone && page_zone(page) != zone)
1327                        return 0;
1328                zone = page_zone(page);
1329        }
1330        return 1;
1331}
1332
1333/*
1334 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages
1335 * and hugepages). We scan pfn because it's much easier than scanning over
1336 * linked list. This function returns the pfn of the first found movable
1337 * page if it's found, otherwise 0.
1338 */
1339static unsigned long scan_movable_pages(unsigned long start, unsigned long end)
1340{
1341        unsigned long pfn;
1342        struct page *page;
1343        for (pfn = start; pfn < end; pfn++) {
1344                if (pfn_valid(pfn)) {
1345                        page = pfn_to_page(pfn);
1346                        if (PageLRU(page))
1347                                return pfn;
1348                        if (PageHuge(page)) {
1349                                if (is_hugepage_active(page))
1350                                        return pfn;
1351                                else
1352                                        pfn = round_up(pfn + 1,
1353                                                1 << compound_order(page)) - 1;
1354                        }
1355                }
1356        }
1357        return 0;
1358}
1359
1360#define NR_OFFLINE_AT_ONCE_PAGES        (256)
1361static int
1362do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1363{
1364        unsigned long pfn;
1365        struct page *page;
1366        int move_pages = NR_OFFLINE_AT_ONCE_PAGES;
1367        int not_managed = 0;
1368        int ret = 0;
1369        LIST_HEAD(source);
1370
1371        for (pfn = start_pfn; pfn < end_pfn && move_pages > 0; pfn++) {
1372                if (!pfn_valid(pfn))
1373                        continue;
1374                page = pfn_to_page(pfn);
1375
1376                if (PageHuge(page)) {
1377                        struct page *head = compound_head(page);
1378                        pfn = page_to_pfn(head) + (1<<compound_order(head)) - 1;
1379                        if (compound_order(head) > PFN_SECTION_SHIFT) {
1380                                ret = -EBUSY;
1381                                break;
1382                        }
1383                        if (isolate_huge_page(page, &source))
1384                                move_pages -= 1 << compound_order(head);
1385                        continue;
1386                }
1387
1388                if (!get_page_unless_zero(page))
1389                        continue;
1390                /*
1391                 * We can skip free pages. And we can only deal with pages on
1392                 * LRU.
1393                 */
1394                ret = isolate_lru_page(page);
1395                if (!ret) { /* Success */
1396                        put_page(page);
1397                        list_add_tail(&page->lru, &source);
1398                        move_pages--;
1399                        inc_zone_page_state(page, NR_ISOLATED_ANON +
1400                                            page_is_file_cache(page));
1401
1402                } else {
1403#ifdef CONFIG_DEBUG_VM
1404                        printk(KERN_ALERT "removing pfn %lx from LRU failed\n",
1405                               pfn);
1406                        dump_page(page, "failed to remove from LRU");
1407#endif
1408                        put_page(page);
1409                        /* Because we don't have big zone->lock. we should
1410                           check this again here. */
1411                        if (page_count(page)) {
1412                                not_managed++;
1413                                ret = -EBUSY;
1414                                break;
1415                        }
1416                }
1417        }
1418        if (!list_empty(&source)) {
1419                if (not_managed) {
1420                        putback_movable_pages(&source);
1421                        goto out;
1422                }
1423
1424                /*
1425                 * alloc_migrate_target should be improooooved!!
1426                 * migrate_pages returns # of failed pages.
1427                 */
1428                ret = migrate_pages(&source, alloc_migrate_target, NULL, 0,
1429                                        MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
1430                if (ret)
1431                        putback_movable_pages(&source);
1432        }
1433out:
1434        return ret;
1435}
1436
1437/*
1438 * remove from free_area[] and mark all as Reserved.
1439 */
1440static int
1441offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages,
1442                        void *data)
1443{
1444        __offline_isolated_pages(start, start + nr_pages);
1445        return 0;
1446}
1447
1448static void
1449offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
1450{
1451        walk_system_ram_range(start_pfn, end_pfn - start_pfn, NULL,
1452                                offline_isolated_pages_cb);
1453}
1454
1455/*
1456 * Check all pages in range, recoreded as memory resource, are isolated.
1457 */
1458static int
1459check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages,
1460                        void *data)
1461{
1462        int ret;
1463        long offlined = *(long *)data;
1464        ret = test_pages_isolated(start_pfn, start_pfn + nr_pages, true);
1465        offlined = nr_pages;
1466        if (!ret)
1467                *(long *)data += offlined;
1468        return ret;
1469}
1470
1471static long
1472check_pages_isolated(unsigned long start_pfn, unsigned long end_pfn)
1473{
1474        long offlined = 0;
1475        int ret;
1476
1477        ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn, &offlined,
1478                        check_pages_isolated_cb);
1479        if (ret < 0)
1480                offlined = (long)ret;
1481        return offlined;
1482}
1483
1484#ifdef CONFIG_MOVABLE_NODE
1485/*
1486 * When CONFIG_MOVABLE_NODE, we permit offlining of a node which doesn't have
1487 * normal memory.
1488 */
1489static bool can_offline_normal(struct zone *zone, unsigned long nr_pages)
1490{
1491        return true;
1492}
1493#else /* CONFIG_MOVABLE_NODE */
1494/* ensure the node has NORMAL memory if it is still online */
1495static bool can_offline_normal(struct zone *zone, unsigned long nr_pages)
1496{
1497        struct pglist_data *pgdat = zone->zone_pgdat;
1498        unsigned long present_pages = 0;
1499        enum zone_type zt;
1500
1501        for (zt = 0; zt <= ZONE_NORMAL; zt++)
1502                present_pages += pgdat->node_zones[zt].present_pages;
1503
1504        if (present_pages > nr_pages)
1505                return true;
1506
1507        present_pages = 0;
1508        for (; zt <= ZONE_MOVABLE; zt++)
1509                present_pages += pgdat->node_zones[zt].present_pages;
1510
1511        /*
1512         * we can't offline the last normal memory until all
1513         * higher memory is offlined.
1514         */
1515        return present_pages == 0;
1516}
1517#endif /* CONFIG_MOVABLE_NODE */
1518
1519static int __init cmdline_parse_movable_node(char *p)
1520{
1521#ifdef CONFIG_MOVABLE_NODE
1522        /*
1523         * Memory used by the kernel cannot be hot-removed because Linux
1524         * cannot migrate the kernel pages. When memory hotplug is
1525         * enabled, we should prevent memblock from allocating memory
1526         * for the kernel.
1527         *
1528         * ACPI SRAT records all hotpluggable memory ranges. But before
1529         * SRAT is parsed, we don't know about it.
1530         *
1531         * The kernel image is loaded into memory at very early time. We
1532         * cannot prevent this anyway. So on NUMA system, we set any
1533         * node the kernel resides in as un-hotpluggable.
1534         *
1535         * Since on modern servers, one node could have double-digit
1536         * gigabytes memory, we can assume the memory around the kernel
1537         * image is also un-hotpluggable. So before SRAT is parsed, just
1538         * allocate memory near the kernel image to try the best to keep
1539         * the kernel away from hotpluggable memory.
1540         */
1541        memblock_set_bottom_up(true);
1542        movable_node_enabled = true;
1543#else
1544        pr_warn("movable_node option not supported\n");
1545#endif
1546        return 0;
1547}
1548early_param("movable_node", cmdline_parse_movable_node);
1549
1550/* check which state of node_states will be changed when offline memory */
1551static void node_states_check_changes_offline(unsigned long nr_pages,
1552                struct zone *zone, struct memory_notify *arg)
1553{
1554        struct pglist_data *pgdat = zone->zone_pgdat;
1555        unsigned long present_pages = 0;
1556        enum zone_type zt, zone_last = ZONE_NORMAL;
1557
1558        /*
1559         * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY]
1560         * contains nodes which have zones of 0...ZONE_NORMAL,
1561         * set zone_last to ZONE_NORMAL.
1562         *
1563         * If we don't have HIGHMEM nor movable node,
1564         * node_states[N_NORMAL_MEMORY] contains nodes which have zones of
1565         * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE.
1566         */
1567        if (N_MEMORY == N_NORMAL_MEMORY)
1568                zone_last = ZONE_MOVABLE;
1569
1570        /*
1571         * check whether node_states[N_NORMAL_MEMORY] will be changed.
1572         * If the memory to be offline is in a zone of 0...zone_last,
1573         * and it is the last present memory, 0...zone_last will
1574         * become empty after offline , thus we can determind we will
1575         * need to clear the node from node_states[N_NORMAL_MEMORY].
1576         */
1577        for (zt = 0; zt <= zone_last; zt++)
1578                present_pages += pgdat->node_zones[zt].present_pages;
1579        if (zone_idx(zone) <= zone_last && nr_pages >= present_pages)
1580                arg->status_change_nid_normal = zone_to_nid(zone);
1581        else
1582                arg->status_change_nid_normal = -1;
1583
1584#ifdef CONFIG_HIGHMEM
1585        /*
1586         * If we have movable node, node_states[N_HIGH_MEMORY]
1587         * contains nodes which have zones of 0...ZONE_HIGHMEM,
1588         * set zone_last to ZONE_HIGHMEM.
1589         *
1590         * If we don't have movable node, node_states[N_NORMAL_MEMORY]
1591         * contains nodes which have zones of 0...ZONE_MOVABLE,
1592         * set zone_last to ZONE_MOVABLE.
1593         */
1594        zone_last = ZONE_HIGHMEM;
1595        if (N_MEMORY == N_HIGH_MEMORY)
1596                zone_last = ZONE_MOVABLE;
1597
1598        for (; zt <= zone_last; zt++)
1599                present_pages += pgdat->node_zones[zt].present_pages;
1600        if (zone_idx(zone) <= zone_last && nr_pages >= present_pages)
1601                arg->status_change_nid_high = zone_to_nid(zone);
1602        else
1603                arg->status_change_nid_high = -1;
1604#else
1605        arg->status_change_nid_high = arg->status_change_nid_normal;
1606#endif
1607
1608        /*
1609         * node_states[N_HIGH_MEMORY] contains nodes which have 0...ZONE_MOVABLE
1610         */
1611        zone_last = ZONE_MOVABLE;
1612
1613        /*
1614         * check whether node_states[N_HIGH_MEMORY] will be changed
1615         * If we try to offline the last present @nr_pages from the node,
1616         * we can determind we will need to clear the node from
1617         * node_states[N_HIGH_MEMORY].
1618         */
1619        for (; zt <= zone_last; zt++)
1620                present_pages += pgdat->node_zones[zt].present_pages;
1621        if (nr_pages >= present_pages)
1622                arg->status_change_nid = zone_to_nid(zone);
1623        else
1624                arg->status_change_nid = -1;
1625}
1626
1627static void node_states_clear_node(int node, struct memory_notify *arg)
1628{
1629        if (arg->status_change_nid_normal >= 0)
1630                node_clear_state(node, N_NORMAL_MEMORY);
1631
1632        if ((N_MEMORY != N_NORMAL_MEMORY) &&
1633            (arg->status_change_nid_high >= 0))
1634                node_clear_state(node, N_HIGH_MEMORY);
1635
1636        if ((N_MEMORY != N_HIGH_MEMORY) &&
1637            (arg->status_change_nid >= 0))
1638                node_clear_state(node, N_MEMORY);
1639}
1640
1641static int __ref __offline_pages(unsigned long start_pfn,
1642                  unsigned long end_pfn, unsigned long timeout)
1643{
1644        unsigned long pfn, nr_pages, expire;
1645        long offlined_pages;
1646        int ret, drain, retry_max, node;
1647        unsigned long flags;
1648        struct zone *zone;
1649        struct memory_notify arg;
1650
1651        /* at least, alignment against pageblock is necessary */
1652        if (!IS_ALIGNED(start_pfn, pageblock_nr_pages))
1653                return -EINVAL;
1654        if (!IS_ALIGNED(end_pfn, pageblock_nr_pages))
1655                return -EINVAL;
1656        /* This makes hotplug much easier...and readable.
1657           we assume this for now. .*/
1658        if (!test_pages_in_a_zone(start_pfn, end_pfn))
1659                return -EINVAL;
1660
1661        mem_hotplug_begin();
1662
1663        zone = page_zone(pfn_to_page(start_pfn));
1664        node = zone_to_nid(zone);
1665        nr_pages = end_pfn - start_pfn;
1666
1667        ret = -EINVAL;
1668        if (zone_idx(zone) <= ZONE_NORMAL && !can_offline_normal(zone, nr_pages))
1669                goto out;
1670
1671        /* set above range as isolated */
1672        ret = start_isolate_page_range(start_pfn, end_pfn,
1673                                       MIGRATE_MOVABLE, true);
1674        if (ret)
1675                goto out;
1676
1677        arg.start_pfn = start_pfn;
1678        arg.nr_pages = nr_pages;
1679        node_states_check_changes_offline(nr_pages, zone, &arg);
1680
1681        ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1682        ret = notifier_to_errno(ret);
1683        if (ret)
1684                goto failed_removal;
1685
1686        pfn = start_pfn;
1687        expire = jiffies + timeout;
1688        drain = 0;
1689        retry_max = 5;
1690repeat:
1691        /* start memory hot removal */
1692        ret = -EAGAIN;
1693        if (time_after(jiffies, expire))
1694                goto failed_removal;
1695        ret = -EINTR;
1696        if (signal_pending(current))
1697                goto failed_removal;
1698        ret = 0;
1699        if (drain) {
1700                lru_add_drain_all();
1701                cond_resched();
1702                drain_all_pages();
1703        }
1704
1705        pfn = scan_movable_pages(start_pfn, end_pfn);
1706        if (pfn) { /* We have movable pages */
1707                ret = do_migrate_range(pfn, end_pfn);
1708                if (!ret) {
1709                        drain = 1;
1710                        goto repeat;
1711                } else {
1712                        if (ret < 0)
1713                                if (--retry_max == 0)
1714                                        goto failed_removal;
1715                        yield();
1716                        drain = 1;
1717                        goto repeat;
1718                }
1719        }
1720        /* drain all zone's lru pagevec, this is asynchronous... */
1721        lru_add_drain_all();
1722        yield();
1723        /* drain pcp pages, this is synchronous. */
1724        drain_all_pages();
1725        /*
1726         * dissolve free hugepages in the memory block before doing offlining
1727         * actually in order to make hugetlbfs's object counting consistent.
1728         */
1729        dissolve_free_huge_pages(start_pfn, end_pfn);
1730        /* check again */
1731        offlined_pages = check_pages_isolated(start_pfn, end_pfn);
1732        if (offlined_pages < 0) {
1733                ret = -EBUSY;
1734                goto failed_removal;
1735        }
1736        printk(KERN_INFO "Offlined Pages %ld\n", offlined_pages);
1737        /* Ok, all of our target is isolated.
1738           We cannot do rollback at this point. */
1739        offline_isolated_pages(start_pfn, end_pfn);
1740        /* reset pagetype flags and makes migrate type to be MOVABLE */
1741        undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1742        /* removal success */
1743        adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages);
1744        zone->present_pages -= offlined_pages;
1745
1746        pgdat_resize_lock(zone->zone_pgdat, &flags);
1747        zone->zone_pgdat->node_present_pages -= offlined_pages;
1748        pgdat_resize_unlock(zone->zone_pgdat, &flags);
1749
1750        init_per_zone_wmark_min();
1751
1752        if (!populated_zone(zone)) {
1753                zone_pcp_reset(zone);
1754                mutex_lock(&zonelists_mutex);
1755                build_all_zonelists(NULL, NULL);
1756                mutex_unlock(&zonelists_mutex);
1757        } else
1758                zone_pcp_update(zone);
1759
1760        node_states_clear_node(node, &arg);
1761        if (arg.status_change_nid >= 0)
1762                kswapd_stop(node);
1763
1764        vm_total_pages = nr_free_pagecache_pages();
1765        writeback_set_ratelimit();
1766
1767        memory_notify(MEM_OFFLINE, &arg);
1768        mem_hotplug_done();
1769        return 0;
1770
1771failed_removal:
1772        printk(KERN_INFO "memory offlining [mem %#010llx-%#010llx] failed\n",
1773               (unsigned long long) start_pfn << PAGE_SHIFT,
1774               ((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
1775        memory_notify(MEM_CANCEL_OFFLINE, &arg);
1776        /* pushback to free area */
1777        undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1778
1779out:
1780        mem_hotplug_done();
1781        return ret;
1782}
1783
1784int offline_pages(unsigned long start_pfn, unsigned long nr_pages)
1785{
1786        return __offline_pages(start_pfn, start_pfn + nr_pages, 120 * HZ);
1787}
1788#endif /* CONFIG_MEMORY_HOTREMOVE */
1789
1790/**
1791 * walk_memory_range - walks through all mem sections in [start_pfn, end_pfn)
1792 * @start_pfn: start pfn of the memory range
1793 * @end_pfn: end pfn of the memory range
1794 * @arg: argument passed to func
1795 * @func: callback for each memory section walked
1796 *
1797 * This function walks through all present mem sections in range
1798 * [start_pfn, end_pfn) and call func on each mem section.
1799 *
1800 * Returns the return value of func.
1801 */
1802int walk_memory_range(unsigned long start_pfn, unsigned long end_pfn,
1803                void *arg, int (*func)(struct memory_block *, void *))
1804{
1805        struct memory_block *mem = NULL;
1806        struct mem_section *section;
1807        unsigned long pfn, section_nr;
1808        int ret;
1809
1810        for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1811                section_nr = pfn_to_section_nr(pfn);
1812                if (!present_section_nr(section_nr))
1813                        continue;
1814
1815                section = __nr_to_section(section_nr);
1816                /* same memblock? */
1817                if (mem)
1818                        if ((section_nr >= mem->start_section_nr) &&
1819                            (section_nr <= mem->end_section_nr))
1820                                continue;
1821
1822                mem = find_memory_block_hinted(section, mem);
1823                if (!mem)
1824                        continue;
1825
1826                ret = func(mem, arg);
1827                if (ret) {
1828                        kobject_put(&mem->dev.kobj);
1829                        return ret;
1830                }
1831        }
1832
1833        if (mem)
1834                kobject_put(&mem->dev.kobj);
1835
1836        return 0;
1837}
1838
1839#ifdef CONFIG_MEMORY_HOTREMOVE
1840static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
1841{
1842        int ret = !is_memblock_offlined(mem);
1843
1844        if (unlikely(ret)) {
1845                phys_addr_t beginpa, endpa;
1846
1847                beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
1848                endpa = PFN_PHYS(section_nr_to_pfn(mem->end_section_nr + 1))-1;
1849                pr_warn("removing memory fails, because memory "
1850                        "[%pa-%pa] is onlined\n",
1851                        &beginpa, &endpa);
1852        }
1853
1854        return ret;
1855}
1856
1857static int check_cpu_on_node(pg_data_t *pgdat)
1858{
1859        int cpu;
1860
1861        for_each_present_cpu(cpu) {
1862                if (cpu_to_node(cpu) == pgdat->node_id)
1863                        /*
1864                         * the cpu on this node isn't removed, and we can't
1865                         * offline this node.
1866                         */
1867                        return -EBUSY;
1868        }
1869
1870        return 0;
1871}
1872
1873static void unmap_cpu_on_node(pg_data_t *pgdat)
1874{
1875#ifdef CONFIG_ACPI_NUMA
1876        int cpu;
1877
1878        for_each_possible_cpu(cpu)
1879                if (cpu_to_node(cpu) == pgdat->node_id)
1880                        numa_clear_node(cpu);
1881#endif
1882}
1883
1884static int check_and_unmap_cpu_on_node(pg_data_t *pgdat)
1885{
1886        int ret;
1887
1888        ret = check_cpu_on_node(pgdat);
1889        if (ret)
1890                return ret;
1891
1892        /*
1893         * the node will be offlined when we come here, so we can clear
1894         * the cpu_to_node() now.
1895         */
1896
1897        unmap_cpu_on_node(pgdat);
1898        return 0;
1899}
1900
1901/**
1902 * try_offline_node
1903 *
1904 * Offline a node if all memory sections and cpus of the node are removed.
1905 *
1906 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1907 * and online/offline operations before this call.
1908 */
1909void try_offline_node(int nid)
1910{
1911        pg_data_t *pgdat = NODE_DATA(nid);
1912        unsigned long start_pfn = pgdat->node_start_pfn;
1913        unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
1914        unsigned long pfn;
1915        struct page *pgdat_page = virt_to_page(pgdat);
1916        int i;
1917
1918        for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1919                unsigned long section_nr = pfn_to_section_nr(pfn);
1920
1921                if (!present_section_nr(section_nr))
1922                        continue;
1923
1924                if (pfn_to_nid(pfn) != nid)
1925                        continue;
1926
1927                /*
1928                 * some memory sections of this node are not removed, and we
1929                 * can't offline node now.
1930                 */
1931                return;
1932        }
1933
1934        if (check_and_unmap_cpu_on_node(pgdat))
1935                return;
1936
1937        /*
1938         * all memory/cpu of this node are removed, we can offline this
1939         * node now.
1940         */
1941        node_set_offline(nid);
1942        unregister_one_node(nid);
1943
1944        if (!PageSlab(pgdat_page) && !PageCompound(pgdat_page))
1945                /* node data is allocated from boot memory */
1946                return;
1947
1948        /* free waittable in each zone */
1949        for (i = 0; i < MAX_NR_ZONES; i++) {
1950                struct zone *zone = pgdat->node_zones + i;
1951
1952                /*
1953                 * wait_table may be allocated from boot memory,
1954                 * here only free if it's allocated by vmalloc.
1955                 */
1956                if (is_vmalloc_addr(zone->wait_table))
1957                        vfree(zone->wait_table);
1958        }
1959
1960        /*
1961         * Since there is no way to guarentee the address of pgdat/zone is not
1962         * on stack of any kernel threads or used by other kernel objects
1963         * without reference counting or other symchronizing method, do not
1964         * reset node_data and free pgdat here. Just reset it to 0 and reuse
1965         * the memory when the node is online again.
1966         */
1967        memset(pgdat, 0, sizeof(*pgdat));
1968}
1969EXPORT_SYMBOL(try_offline_node);
1970
1971/**
1972 * remove_memory
1973 *
1974 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1975 * and online/offline operations before this call, as required by
1976 * try_offline_node().
1977 */
1978void __ref remove_memory(int nid, u64 start, u64 size)
1979{
1980        int ret;
1981
1982        BUG_ON(check_hotplug_memory_range(start, size));
1983
1984        mem_hotplug_begin();
1985
1986        /*
1987         * All memory blocks must be offlined before removing memory.  Check
1988         * whether all memory blocks in question are offline and trigger a BUG()
1989         * if this is not the case.
1990         */
1991        ret = walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1), NULL,
1992                                check_memblock_offlined_cb);
1993        if (ret)
1994                BUG();
1995
1996        /* remove memmap entry */
1997        firmware_map_remove(start, start + size, "System RAM");
1998
1999        arch_remove_memory(start, size);
2000
2001        try_offline_node(nid);
2002
2003        mem_hotplug_done();
2004}
2005EXPORT_SYMBOL_GPL(remove_memory);
2006#endif /* CONFIG_MEMORY_HOTREMOVE */
2007