linux/mm/rmap.c
<<
>>
Prefs
   1/*
   2 * mm/rmap.c - physical to virtual reverse mappings
   3 *
   4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
   5 * Released under the General Public License (GPL).
   6 *
   7 * Simple, low overhead reverse mapping scheme.
   8 * Please try to keep this thing as modular as possible.
   9 *
  10 * Provides methods for unmapping each kind of mapped page:
  11 * the anon methods track anonymous pages, and
  12 * the file methods track pages belonging to an inode.
  13 *
  14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
  15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
  16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
  17 * Contributions by Hugh Dickins 2003, 2004
  18 */
  19
  20/*
  21 * Lock ordering in mm:
  22 *
  23 * inode->i_mutex       (while writing or truncating, not reading or faulting)
  24 *   mm->mmap_sem
  25 *     page->flags PG_locked (lock_page)
  26 *       mapping->i_mmap_mutex
  27 *         anon_vma->rwsem
  28 *           mm->page_table_lock or pte_lock
  29 *             zone->lru_lock (in mark_page_accessed, isolate_lru_page)
  30 *             swap_lock (in swap_duplicate, swap_info_get)
  31 *               mmlist_lock (in mmput, drain_mmlist and others)
  32 *               mapping->private_lock (in __set_page_dirty_buffers)
  33 *               inode->i_lock (in set_page_dirty's __mark_inode_dirty)
  34 *               bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
  35 *                 sb_lock (within inode_lock in fs/fs-writeback.c)
  36 *                 mapping->tree_lock (widely used, in set_page_dirty,
  37 *                           in arch-dependent flush_dcache_mmap_lock,
  38 *                           within bdi.wb->list_lock in __sync_single_inode)
  39 *
  40 * anon_vma->rwsem,mapping->i_mutex      (memory_failure, collect_procs_anon)
  41 *   ->tasklist_lock
  42 *     pte map lock
  43 */
  44
  45#include <linux/mm.h>
  46#include <linux/pagemap.h>
  47#include <linux/swap.h>
  48#include <linux/swapops.h>
  49#include <linux/slab.h>
  50#include <linux/init.h>
  51#include <linux/ksm.h>
  52#include <linux/rmap.h>
  53#include <linux/rcupdate.h>
  54#include <linux/export.h>
  55#include <linux/memcontrol.h>
  56#include <linux/mmu_notifier.h>
  57#include <linux/migrate.h>
  58#include <linux/hugetlb.h>
  59#include <linux/backing-dev.h>
  60
  61#include <asm/tlbflush.h>
  62
  63#include "internal.h"
  64
  65static struct kmem_cache *anon_vma_cachep;
  66static struct kmem_cache *anon_vma_chain_cachep;
  67
  68static inline struct anon_vma *anon_vma_alloc(void)
  69{
  70        struct anon_vma *anon_vma;
  71
  72        anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
  73        if (anon_vma) {
  74                atomic_set(&anon_vma->refcount, 1);
  75                /*
  76                 * Initialise the anon_vma root to point to itself. If called
  77                 * from fork, the root will be reset to the parents anon_vma.
  78                 */
  79                anon_vma->root = anon_vma;
  80        }
  81
  82        return anon_vma;
  83}
  84
  85static inline void anon_vma_free(struct anon_vma *anon_vma)
  86{
  87        VM_BUG_ON(atomic_read(&anon_vma->refcount));
  88
  89        /*
  90         * Synchronize against page_lock_anon_vma_read() such that
  91         * we can safely hold the lock without the anon_vma getting
  92         * freed.
  93         *
  94         * Relies on the full mb implied by the atomic_dec_and_test() from
  95         * put_anon_vma() against the acquire barrier implied by
  96         * down_read_trylock() from page_lock_anon_vma_read(). This orders:
  97         *
  98         * page_lock_anon_vma_read()    VS      put_anon_vma()
  99         *   down_read_trylock()                  atomic_dec_and_test()
 100         *   LOCK                                 MB
 101         *   atomic_read()                        rwsem_is_locked()
 102         *
 103         * LOCK should suffice since the actual taking of the lock must
 104         * happen _before_ what follows.
 105         */
 106        might_sleep();
 107        if (rwsem_is_locked(&anon_vma->root->rwsem)) {
 108                anon_vma_lock_write(anon_vma);
 109                anon_vma_unlock_write(anon_vma);
 110        }
 111
 112        kmem_cache_free(anon_vma_cachep, anon_vma);
 113}
 114
 115static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
 116{
 117        return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
 118}
 119
 120static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
 121{
 122        kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
 123}
 124
 125static void anon_vma_chain_link(struct vm_area_struct *vma,
 126                                struct anon_vma_chain *avc,
 127                                struct anon_vma *anon_vma)
 128{
 129        avc->vma = vma;
 130        avc->anon_vma = anon_vma;
 131        list_add(&avc->same_vma, &vma->anon_vma_chain);
 132        anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
 133}
 134
 135/**
 136 * anon_vma_prepare - attach an anon_vma to a memory region
 137 * @vma: the memory region in question
 138 *
 139 * This makes sure the memory mapping described by 'vma' has
 140 * an 'anon_vma' attached to it, so that we can associate the
 141 * anonymous pages mapped into it with that anon_vma.
 142 *
 143 * The common case will be that we already have one, but if
 144 * not we either need to find an adjacent mapping that we
 145 * can re-use the anon_vma from (very common when the only
 146 * reason for splitting a vma has been mprotect()), or we
 147 * allocate a new one.
 148 *
 149 * Anon-vma allocations are very subtle, because we may have
 150 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
 151 * and that may actually touch the spinlock even in the newly
 152 * allocated vma (it depends on RCU to make sure that the
 153 * anon_vma isn't actually destroyed).
 154 *
 155 * As a result, we need to do proper anon_vma locking even
 156 * for the new allocation. At the same time, we do not want
 157 * to do any locking for the common case of already having
 158 * an anon_vma.
 159 *
 160 * This must be called with the mmap_sem held for reading.
 161 */
 162int anon_vma_prepare(struct vm_area_struct *vma)
 163{
 164        struct anon_vma *anon_vma = vma->anon_vma;
 165        struct anon_vma_chain *avc;
 166
 167        might_sleep();
 168        if (unlikely(!anon_vma)) {
 169                struct mm_struct *mm = vma->vm_mm;
 170                struct anon_vma *allocated;
 171
 172                avc = anon_vma_chain_alloc(GFP_KERNEL);
 173                if (!avc)
 174                        goto out_enomem;
 175
 176                anon_vma = find_mergeable_anon_vma(vma);
 177                allocated = NULL;
 178                if (!anon_vma) {
 179                        anon_vma = anon_vma_alloc();
 180                        if (unlikely(!anon_vma))
 181                                goto out_enomem_free_avc;
 182                        allocated = anon_vma;
 183                }
 184
 185                anon_vma_lock_write(anon_vma);
 186                /* page_table_lock to protect against threads */
 187                spin_lock(&mm->page_table_lock);
 188                if (likely(!vma->anon_vma)) {
 189                        vma->anon_vma = anon_vma;
 190                        anon_vma_chain_link(vma, avc, anon_vma);
 191                        allocated = NULL;
 192                        avc = NULL;
 193                }
 194                spin_unlock(&mm->page_table_lock);
 195                anon_vma_unlock_write(anon_vma);
 196
 197                if (unlikely(allocated))
 198                        put_anon_vma(allocated);
 199                if (unlikely(avc))
 200                        anon_vma_chain_free(avc);
 201        }
 202        return 0;
 203
 204 out_enomem_free_avc:
 205        anon_vma_chain_free(avc);
 206 out_enomem:
 207        return -ENOMEM;
 208}
 209
 210/*
 211 * This is a useful helper function for locking the anon_vma root as
 212 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
 213 * have the same vma.
 214 *
 215 * Such anon_vma's should have the same root, so you'd expect to see
 216 * just a single mutex_lock for the whole traversal.
 217 */
 218static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
 219{
 220        struct anon_vma *new_root = anon_vma->root;
 221        if (new_root != root) {
 222                if (WARN_ON_ONCE(root))
 223                        up_write(&root->rwsem);
 224                root = new_root;
 225                down_write(&root->rwsem);
 226        }
 227        return root;
 228}
 229
 230static inline void unlock_anon_vma_root(struct anon_vma *root)
 231{
 232        if (root)
 233                up_write(&root->rwsem);
 234}
 235
 236/*
 237 * Attach the anon_vmas from src to dst.
 238 * Returns 0 on success, -ENOMEM on failure.
 239 */
 240int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
 241{
 242        struct anon_vma_chain *avc, *pavc;
 243        struct anon_vma *root = NULL;
 244
 245        list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
 246                struct anon_vma *anon_vma;
 247
 248                avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
 249                if (unlikely(!avc)) {
 250                        unlock_anon_vma_root(root);
 251                        root = NULL;
 252                        avc = anon_vma_chain_alloc(GFP_KERNEL);
 253                        if (!avc)
 254                                goto enomem_failure;
 255                }
 256                anon_vma = pavc->anon_vma;
 257                root = lock_anon_vma_root(root, anon_vma);
 258                anon_vma_chain_link(dst, avc, anon_vma);
 259        }
 260        unlock_anon_vma_root(root);
 261        return 0;
 262
 263 enomem_failure:
 264        unlink_anon_vmas(dst);
 265        return -ENOMEM;
 266}
 267
 268/*
 269 * Attach vma to its own anon_vma, as well as to the anon_vmas that
 270 * the corresponding VMA in the parent process is attached to.
 271 * Returns 0 on success, non-zero on failure.
 272 */
 273int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
 274{
 275        struct anon_vma_chain *avc;
 276        struct anon_vma *anon_vma;
 277
 278        /* Don't bother if the parent process has no anon_vma here. */
 279        if (!pvma->anon_vma)
 280                return 0;
 281
 282        /*
 283         * First, attach the new VMA to the parent VMA's anon_vmas,
 284         * so rmap can find non-COWed pages in child processes.
 285         */
 286        if (anon_vma_clone(vma, pvma))
 287                return -ENOMEM;
 288
 289        /* Then add our own anon_vma. */
 290        anon_vma = anon_vma_alloc();
 291        if (!anon_vma)
 292                goto out_error;
 293        avc = anon_vma_chain_alloc(GFP_KERNEL);
 294        if (!avc)
 295                goto out_error_free_anon_vma;
 296
 297        /*
 298         * The root anon_vma's spinlock is the lock actually used when we
 299         * lock any of the anon_vmas in this anon_vma tree.
 300         */
 301        anon_vma->root = pvma->anon_vma->root;
 302        /*
 303         * With refcounts, an anon_vma can stay around longer than the
 304         * process it belongs to. The root anon_vma needs to be pinned until
 305         * this anon_vma is freed, because the lock lives in the root.
 306         */
 307        get_anon_vma(anon_vma->root);
 308        /* Mark this anon_vma as the one where our new (COWed) pages go. */
 309        vma->anon_vma = anon_vma;
 310        anon_vma_lock_write(anon_vma);
 311        anon_vma_chain_link(vma, avc, anon_vma);
 312        anon_vma_unlock_write(anon_vma);
 313
 314        return 0;
 315
 316 out_error_free_anon_vma:
 317        put_anon_vma(anon_vma);
 318 out_error:
 319        unlink_anon_vmas(vma);
 320        return -ENOMEM;
 321}
 322
 323void unlink_anon_vmas(struct vm_area_struct *vma)
 324{
 325        struct anon_vma_chain *avc, *next;
 326        struct anon_vma *root = NULL;
 327
 328        /*
 329         * Unlink each anon_vma chained to the VMA.  This list is ordered
 330         * from newest to oldest, ensuring the root anon_vma gets freed last.
 331         */
 332        list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
 333                struct anon_vma *anon_vma = avc->anon_vma;
 334
 335                root = lock_anon_vma_root(root, anon_vma);
 336                anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
 337
 338                /*
 339                 * Leave empty anon_vmas on the list - we'll need
 340                 * to free them outside the lock.
 341                 */
 342                if (RB_EMPTY_ROOT(&anon_vma->rb_root))
 343                        continue;
 344
 345                list_del(&avc->same_vma);
 346                anon_vma_chain_free(avc);
 347        }
 348        unlock_anon_vma_root(root);
 349
 350        /*
 351         * Iterate the list once more, it now only contains empty and unlinked
 352         * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
 353         * needing to write-acquire the anon_vma->root->rwsem.
 354         */
 355        list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
 356                struct anon_vma *anon_vma = avc->anon_vma;
 357
 358                put_anon_vma(anon_vma);
 359
 360                list_del(&avc->same_vma);
 361                anon_vma_chain_free(avc);
 362        }
 363}
 364
 365static void anon_vma_ctor(void *data)
 366{
 367        struct anon_vma *anon_vma = data;
 368
 369        init_rwsem(&anon_vma->rwsem);
 370        atomic_set(&anon_vma->refcount, 0);
 371        anon_vma->rb_root = RB_ROOT;
 372}
 373
 374void __init anon_vma_init(void)
 375{
 376        anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
 377                        0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
 378        anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
 379}
 380
 381/*
 382 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
 383 *
 384 * Since there is no serialization what so ever against page_remove_rmap()
 385 * the best this function can do is return a locked anon_vma that might
 386 * have been relevant to this page.
 387 *
 388 * The page might have been remapped to a different anon_vma or the anon_vma
 389 * returned may already be freed (and even reused).
 390 *
 391 * In case it was remapped to a different anon_vma, the new anon_vma will be a
 392 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
 393 * ensure that any anon_vma obtained from the page will still be valid for as
 394 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
 395 *
 396 * All users of this function must be very careful when walking the anon_vma
 397 * chain and verify that the page in question is indeed mapped in it
 398 * [ something equivalent to page_mapped_in_vma() ].
 399 *
 400 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
 401 * that the anon_vma pointer from page->mapping is valid if there is a
 402 * mapcount, we can dereference the anon_vma after observing those.
 403 */
 404struct anon_vma *page_get_anon_vma(struct page *page)
 405{
 406        struct anon_vma *anon_vma = NULL;
 407        unsigned long anon_mapping;
 408
 409        rcu_read_lock();
 410        anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
 411        if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
 412                goto out;
 413        if (!page_mapped(page))
 414                goto out;
 415
 416        anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
 417        if (!atomic_inc_not_zero(&anon_vma->refcount)) {
 418                anon_vma = NULL;
 419                goto out;
 420        }
 421
 422        /*
 423         * If this page is still mapped, then its anon_vma cannot have been
 424         * freed.  But if it has been unmapped, we have no security against the
 425         * anon_vma structure being freed and reused (for another anon_vma:
 426         * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
 427         * above cannot corrupt).
 428         */
 429        if (!page_mapped(page)) {
 430                rcu_read_unlock();
 431                put_anon_vma(anon_vma);
 432                return NULL;
 433        }
 434out:
 435        rcu_read_unlock();
 436
 437        return anon_vma;
 438}
 439
 440/*
 441 * Similar to page_get_anon_vma() except it locks the anon_vma.
 442 *
 443 * Its a little more complex as it tries to keep the fast path to a single
 444 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
 445 * reference like with page_get_anon_vma() and then block on the mutex.
 446 */
 447struct anon_vma *page_lock_anon_vma_read(struct page *page)
 448{
 449        struct anon_vma *anon_vma = NULL;
 450        struct anon_vma *root_anon_vma;
 451        unsigned long anon_mapping;
 452
 453        rcu_read_lock();
 454        anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
 455        if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
 456                goto out;
 457        if (!page_mapped(page))
 458                goto out;
 459
 460        anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
 461        root_anon_vma = ACCESS_ONCE(anon_vma->root);
 462        if (down_read_trylock(&root_anon_vma->rwsem)) {
 463                /*
 464                 * If the page is still mapped, then this anon_vma is still
 465                 * its anon_vma, and holding the mutex ensures that it will
 466                 * not go away, see anon_vma_free().
 467                 */
 468                if (!page_mapped(page)) {
 469                        up_read(&root_anon_vma->rwsem);
 470                        anon_vma = NULL;
 471                }
 472                goto out;
 473        }
 474
 475        /* trylock failed, we got to sleep */
 476        if (!atomic_inc_not_zero(&anon_vma->refcount)) {
 477                anon_vma = NULL;
 478                goto out;
 479        }
 480
 481        if (!page_mapped(page)) {
 482                rcu_read_unlock();
 483                put_anon_vma(anon_vma);
 484                return NULL;
 485        }
 486
 487        /* we pinned the anon_vma, its safe to sleep */
 488        rcu_read_unlock();
 489        anon_vma_lock_read(anon_vma);
 490
 491        if (atomic_dec_and_test(&anon_vma->refcount)) {
 492                /*
 493                 * Oops, we held the last refcount, release the lock
 494                 * and bail -- can't simply use put_anon_vma() because
 495                 * we'll deadlock on the anon_vma_lock_write() recursion.
 496                 */
 497                anon_vma_unlock_read(anon_vma);
 498                __put_anon_vma(anon_vma);
 499                anon_vma = NULL;
 500        }
 501
 502        return anon_vma;
 503
 504out:
 505        rcu_read_unlock();
 506        return anon_vma;
 507}
 508
 509void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
 510{
 511        anon_vma_unlock_read(anon_vma);
 512}
 513
 514/*
 515 * At what user virtual address is page expected in @vma?
 516 */
 517static inline unsigned long
 518__vma_address(struct page *page, struct vm_area_struct *vma)
 519{
 520        pgoff_t pgoff = page_to_pgoff(page);
 521        return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
 522}
 523
 524inline unsigned long
 525vma_address(struct page *page, struct vm_area_struct *vma)
 526{
 527        unsigned long address = __vma_address(page, vma);
 528
 529        /* page should be within @vma mapping range */
 530        VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
 531
 532        return address;
 533}
 534
 535/*
 536 * At what user virtual address is page expected in vma?
 537 * Caller should check the page is actually part of the vma.
 538 */
 539unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
 540{
 541        unsigned long address;
 542        if (PageAnon(page)) {
 543                struct anon_vma *page__anon_vma = page_anon_vma(page);
 544                /*
 545                 * Note: swapoff's unuse_vma() is more efficient with this
 546                 * check, and needs it to match anon_vma when KSM is active.
 547                 */
 548                if (!vma->anon_vma || !page__anon_vma ||
 549                    vma->anon_vma->root != page__anon_vma->root)
 550                        return -EFAULT;
 551        } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
 552                if (!vma->vm_file ||
 553                    vma->vm_file->f_mapping != page->mapping)
 554                        return -EFAULT;
 555        } else
 556                return -EFAULT;
 557        address = __vma_address(page, vma);
 558        if (unlikely(address < vma->vm_start || address >= vma->vm_end))
 559                return -EFAULT;
 560        return address;
 561}
 562
 563pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
 564{
 565        pgd_t *pgd;
 566        pud_t *pud;
 567        pmd_t *pmd = NULL;
 568        pmd_t pmde;
 569
 570        pgd = pgd_offset(mm, address);
 571        if (!pgd_present(*pgd))
 572                goto out;
 573
 574        pud = pud_offset(pgd, address);
 575        if (!pud_present(*pud))
 576                goto out;
 577
 578        pmd = pmd_offset(pud, address);
 579        /*
 580         * Some THP functions use the sequence pmdp_clear_flush(), set_pmd_at()
 581         * without holding anon_vma lock for write.  So when looking for a
 582         * genuine pmde (in which to find pte), test present and !THP together.
 583         */
 584        pmde = ACCESS_ONCE(*pmd);
 585        if (!pmd_present(pmde) || pmd_trans_huge(pmde))
 586                pmd = NULL;
 587out:
 588        return pmd;
 589}
 590
 591/*
 592 * Check that @page is mapped at @address into @mm.
 593 *
 594 * If @sync is false, page_check_address may perform a racy check to avoid
 595 * the page table lock when the pte is not present (helpful when reclaiming
 596 * highly shared pages).
 597 *
 598 * On success returns with pte mapped and locked.
 599 */
 600pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
 601                          unsigned long address, spinlock_t **ptlp, int sync)
 602{
 603        pmd_t *pmd;
 604        pte_t *pte;
 605        spinlock_t *ptl;
 606
 607        if (unlikely(PageHuge(page))) {
 608                /* when pud is not present, pte will be NULL */
 609                pte = huge_pte_offset(mm, address);
 610                if (!pte)
 611                        return NULL;
 612
 613                ptl = huge_pte_lockptr(page_hstate(page), mm, pte);
 614                goto check;
 615        }
 616
 617        pmd = mm_find_pmd(mm, address);
 618        if (!pmd)
 619                return NULL;
 620
 621        pte = pte_offset_map(pmd, address);
 622        /* Make a quick check before getting the lock */
 623        if (!sync && !pte_present(*pte)) {
 624                pte_unmap(pte);
 625                return NULL;
 626        }
 627
 628        ptl = pte_lockptr(mm, pmd);
 629check:
 630        spin_lock(ptl);
 631        if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
 632                *ptlp = ptl;
 633                return pte;
 634        }
 635        pte_unmap_unlock(pte, ptl);
 636        return NULL;
 637}
 638
 639/**
 640 * page_mapped_in_vma - check whether a page is really mapped in a VMA
 641 * @page: the page to test
 642 * @vma: the VMA to test
 643 *
 644 * Returns 1 if the page is mapped into the page tables of the VMA, 0
 645 * if the page is not mapped into the page tables of this VMA.  Only
 646 * valid for normal file or anonymous VMAs.
 647 */
 648int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
 649{
 650        unsigned long address;
 651        pte_t *pte;
 652        spinlock_t *ptl;
 653
 654        address = __vma_address(page, vma);
 655        if (unlikely(address < vma->vm_start || address >= vma->vm_end))
 656                return 0;
 657        pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
 658        if (!pte)                       /* the page is not in this mm */
 659                return 0;
 660        pte_unmap_unlock(pte, ptl);
 661
 662        return 1;
 663}
 664
 665struct page_referenced_arg {
 666        int mapcount;
 667        int referenced;
 668        unsigned long vm_flags;
 669        struct mem_cgroup *memcg;
 670};
 671/*
 672 * arg: page_referenced_arg will be passed
 673 */
 674static int page_referenced_one(struct page *page, struct vm_area_struct *vma,
 675                        unsigned long address, void *arg)
 676{
 677        struct mm_struct *mm = vma->vm_mm;
 678        spinlock_t *ptl;
 679        int referenced = 0;
 680        struct page_referenced_arg *pra = arg;
 681
 682        if (unlikely(PageTransHuge(page))) {
 683                pmd_t *pmd;
 684
 685                /*
 686                 * rmap might return false positives; we must filter
 687                 * these out using page_check_address_pmd().
 688                 */
 689                pmd = page_check_address_pmd(page, mm, address,
 690                                             PAGE_CHECK_ADDRESS_PMD_FLAG, &ptl);
 691                if (!pmd)
 692                        return SWAP_AGAIN;
 693
 694                if (vma->vm_flags & VM_LOCKED) {
 695                        spin_unlock(ptl);
 696                        pra->vm_flags |= VM_LOCKED;
 697                        return SWAP_FAIL; /* To break the loop */
 698                }
 699
 700                /* go ahead even if the pmd is pmd_trans_splitting() */
 701                if (pmdp_clear_flush_young_notify(vma, address, pmd))
 702                        referenced++;
 703                spin_unlock(ptl);
 704        } else {
 705                pte_t *pte;
 706
 707                /*
 708                 * rmap might return false positives; we must filter
 709                 * these out using page_check_address().
 710                 */
 711                pte = page_check_address(page, mm, address, &ptl, 0);
 712                if (!pte)
 713                        return SWAP_AGAIN;
 714
 715                if (vma->vm_flags & VM_LOCKED) {
 716                        pte_unmap_unlock(pte, ptl);
 717                        pra->vm_flags |= VM_LOCKED;
 718                        return SWAP_FAIL; /* To break the loop */
 719                }
 720
 721                if (ptep_clear_flush_young_notify(vma, address, pte)) {
 722                        /*
 723                         * Don't treat a reference through a sequentially read
 724                         * mapping as such.  If the page has been used in
 725                         * another mapping, we will catch it; if this other
 726                         * mapping is already gone, the unmap path will have
 727                         * set PG_referenced or activated the page.
 728                         */
 729                        if (likely(!(vma->vm_flags & VM_SEQ_READ)))
 730                                referenced++;
 731                }
 732                pte_unmap_unlock(pte, ptl);
 733        }
 734
 735        if (referenced) {
 736                pra->referenced++;
 737                pra->vm_flags |= vma->vm_flags;
 738        }
 739
 740        pra->mapcount--;
 741        if (!pra->mapcount)
 742                return SWAP_SUCCESS; /* To break the loop */
 743
 744        return SWAP_AGAIN;
 745}
 746
 747static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
 748{
 749        struct page_referenced_arg *pra = arg;
 750        struct mem_cgroup *memcg = pra->memcg;
 751
 752        if (!mm_match_cgroup(vma->vm_mm, memcg))
 753                return true;
 754
 755        return false;
 756}
 757
 758/**
 759 * page_referenced - test if the page was referenced
 760 * @page: the page to test
 761 * @is_locked: caller holds lock on the page
 762 * @memcg: target memory cgroup
 763 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
 764 *
 765 * Quick test_and_clear_referenced for all mappings to a page,
 766 * returns the number of ptes which referenced the page.
 767 */
 768int page_referenced(struct page *page,
 769                    int is_locked,
 770                    struct mem_cgroup *memcg,
 771                    unsigned long *vm_flags)
 772{
 773        int ret;
 774        int we_locked = 0;
 775        struct page_referenced_arg pra = {
 776                .mapcount = page_mapcount(page),
 777                .memcg = memcg,
 778        };
 779        struct rmap_walk_control rwc = {
 780                .rmap_one = page_referenced_one,
 781                .arg = (void *)&pra,
 782                .anon_lock = page_lock_anon_vma_read,
 783        };
 784
 785        *vm_flags = 0;
 786        if (!page_mapped(page))
 787                return 0;
 788
 789        if (!page_rmapping(page))
 790                return 0;
 791
 792        if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
 793                we_locked = trylock_page(page);
 794                if (!we_locked)
 795                        return 1;
 796        }
 797
 798        /*
 799         * If we are reclaiming on behalf of a cgroup, skip
 800         * counting on behalf of references from different
 801         * cgroups
 802         */
 803        if (memcg) {
 804                rwc.invalid_vma = invalid_page_referenced_vma;
 805        }
 806
 807        ret = rmap_walk(page, &rwc);
 808        *vm_flags = pra.vm_flags;
 809
 810        if (we_locked)
 811                unlock_page(page);
 812
 813        return pra.referenced;
 814}
 815
 816static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
 817                            unsigned long address, void *arg)
 818{
 819        struct mm_struct *mm = vma->vm_mm;
 820        pte_t *pte;
 821        spinlock_t *ptl;
 822        int ret = 0;
 823        int *cleaned = arg;
 824
 825        pte = page_check_address(page, mm, address, &ptl, 1);
 826        if (!pte)
 827                goto out;
 828
 829        if (pte_dirty(*pte) || pte_write(*pte)) {
 830                pte_t entry;
 831
 832                flush_cache_page(vma, address, pte_pfn(*pte));
 833                entry = ptep_clear_flush(vma, address, pte);
 834                entry = pte_wrprotect(entry);
 835                entry = pte_mkclean(entry);
 836                set_pte_at(mm, address, pte, entry);
 837                ret = 1;
 838        }
 839
 840        pte_unmap_unlock(pte, ptl);
 841
 842        if (ret) {
 843                mmu_notifier_invalidate_page(mm, address);
 844                (*cleaned)++;
 845        }
 846out:
 847        return SWAP_AGAIN;
 848}
 849
 850static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
 851{
 852        if (vma->vm_flags & VM_SHARED)
 853                return false;
 854
 855        return true;
 856}
 857
 858int page_mkclean(struct page *page)
 859{
 860        int cleaned = 0;
 861        struct address_space *mapping;
 862        struct rmap_walk_control rwc = {
 863                .arg = (void *)&cleaned,
 864                .rmap_one = page_mkclean_one,
 865                .invalid_vma = invalid_mkclean_vma,
 866        };
 867
 868        BUG_ON(!PageLocked(page));
 869
 870        if (!page_mapped(page))
 871                return 0;
 872
 873        mapping = page_mapping(page);
 874        if (!mapping)
 875                return 0;
 876
 877        rmap_walk(page, &rwc);
 878
 879        return cleaned;
 880}
 881EXPORT_SYMBOL_GPL(page_mkclean);
 882
 883/**
 884 * page_move_anon_rmap - move a page to our anon_vma
 885 * @page:       the page to move to our anon_vma
 886 * @vma:        the vma the page belongs to
 887 * @address:    the user virtual address mapped
 888 *
 889 * When a page belongs exclusively to one process after a COW event,
 890 * that page can be moved into the anon_vma that belongs to just that
 891 * process, so the rmap code will not search the parent or sibling
 892 * processes.
 893 */
 894void page_move_anon_rmap(struct page *page,
 895        struct vm_area_struct *vma, unsigned long address)
 896{
 897        struct anon_vma *anon_vma = vma->anon_vma;
 898
 899        VM_BUG_ON_PAGE(!PageLocked(page), page);
 900        VM_BUG_ON(!anon_vma);
 901        VM_BUG_ON_PAGE(page->index != linear_page_index(vma, address), page);
 902
 903        anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
 904        page->mapping = (struct address_space *) anon_vma;
 905}
 906
 907/**
 908 * __page_set_anon_rmap - set up new anonymous rmap
 909 * @page:       Page to add to rmap     
 910 * @vma:        VM area to add page to.
 911 * @address:    User virtual address of the mapping     
 912 * @exclusive:  the page is exclusively owned by the current process
 913 */
 914static void __page_set_anon_rmap(struct page *page,
 915        struct vm_area_struct *vma, unsigned long address, int exclusive)
 916{
 917        struct anon_vma *anon_vma = vma->anon_vma;
 918
 919        BUG_ON(!anon_vma);
 920
 921        if (PageAnon(page))
 922                return;
 923
 924        /*
 925         * If the page isn't exclusively mapped into this vma,
 926         * we must use the _oldest_ possible anon_vma for the
 927         * page mapping!
 928         */
 929        if (!exclusive)
 930                anon_vma = anon_vma->root;
 931
 932        anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
 933        page->mapping = (struct address_space *) anon_vma;
 934        page->index = linear_page_index(vma, address);
 935}
 936
 937/**
 938 * __page_check_anon_rmap - sanity check anonymous rmap addition
 939 * @page:       the page to add the mapping to
 940 * @vma:        the vm area in which the mapping is added
 941 * @address:    the user virtual address mapped
 942 */
 943static void __page_check_anon_rmap(struct page *page,
 944        struct vm_area_struct *vma, unsigned long address)
 945{
 946#ifdef CONFIG_DEBUG_VM
 947        /*
 948         * The page's anon-rmap details (mapping and index) are guaranteed to
 949         * be set up correctly at this point.
 950         *
 951         * We have exclusion against page_add_anon_rmap because the caller
 952         * always holds the page locked, except if called from page_dup_rmap,
 953         * in which case the page is already known to be setup.
 954         *
 955         * We have exclusion against page_add_new_anon_rmap because those pages
 956         * are initially only visible via the pagetables, and the pte is locked
 957         * over the call to page_add_new_anon_rmap.
 958         */
 959        BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
 960        BUG_ON(page->index != linear_page_index(vma, address));
 961#endif
 962}
 963
 964/**
 965 * page_add_anon_rmap - add pte mapping to an anonymous page
 966 * @page:       the page to add the mapping to
 967 * @vma:        the vm area in which the mapping is added
 968 * @address:    the user virtual address mapped
 969 *
 970 * The caller needs to hold the pte lock, and the page must be locked in
 971 * the anon_vma case: to serialize mapping,index checking after setting,
 972 * and to ensure that PageAnon is not being upgraded racily to PageKsm
 973 * (but PageKsm is never downgraded to PageAnon).
 974 */
 975void page_add_anon_rmap(struct page *page,
 976        struct vm_area_struct *vma, unsigned long address)
 977{
 978        do_page_add_anon_rmap(page, vma, address, 0);
 979}
 980
 981/*
 982 * Special version of the above for do_swap_page, which often runs
 983 * into pages that are exclusively owned by the current process.
 984 * Everybody else should continue to use page_add_anon_rmap above.
 985 */
 986void do_page_add_anon_rmap(struct page *page,
 987        struct vm_area_struct *vma, unsigned long address, int exclusive)
 988{
 989        int first = atomic_inc_and_test(&page->_mapcount);
 990        if (first) {
 991                /*
 992                 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
 993                 * these counters are not modified in interrupt context, and
 994                 * pte lock(a spinlock) is held, which implies preemption
 995                 * disabled.
 996                 */
 997                if (PageTransHuge(page))
 998                        __inc_zone_page_state(page,
 999                                              NR_ANON_TRANSPARENT_HUGEPAGES);
1000                __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1001                                hpage_nr_pages(page));
1002        }
1003        if (unlikely(PageKsm(page)))
1004                return;
1005
1006        VM_BUG_ON_PAGE(!PageLocked(page), page);
1007        /* address might be in next vma when migration races vma_adjust */
1008        if (first)
1009                __page_set_anon_rmap(page, vma, address, exclusive);
1010        else
1011                __page_check_anon_rmap(page, vma, address);
1012}
1013
1014/**
1015 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1016 * @page:       the page to add the mapping to
1017 * @vma:        the vm area in which the mapping is added
1018 * @address:    the user virtual address mapped
1019 *
1020 * Same as page_add_anon_rmap but must only be called on *new* pages.
1021 * This means the inc-and-test can be bypassed.
1022 * Page does not have to be locked.
1023 */
1024void page_add_new_anon_rmap(struct page *page,
1025        struct vm_area_struct *vma, unsigned long address)
1026{
1027        VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1028        SetPageSwapBacked(page);
1029        atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
1030        if (PageTransHuge(page))
1031                __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1032        __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1033                        hpage_nr_pages(page));
1034        __page_set_anon_rmap(page, vma, address, 1);
1035}
1036
1037/**
1038 * page_add_file_rmap - add pte mapping to a file page
1039 * @page: the page to add the mapping to
1040 *
1041 * The caller needs to hold the pte lock.
1042 */
1043void page_add_file_rmap(struct page *page)
1044{
1045        bool locked;
1046        unsigned long flags;
1047
1048        mem_cgroup_begin_update_page_stat(page, &locked, &flags);
1049        if (atomic_inc_and_test(&page->_mapcount)) {
1050                __inc_zone_page_state(page, NR_FILE_MAPPED);
1051                mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_FILE_MAPPED);
1052        }
1053        mem_cgroup_end_update_page_stat(page, &locked, &flags);
1054}
1055
1056/**
1057 * page_remove_rmap - take down pte mapping from a page
1058 * @page: page to remove mapping from
1059 *
1060 * The caller needs to hold the pte lock.
1061 */
1062void page_remove_rmap(struct page *page)
1063{
1064        bool anon = PageAnon(page);
1065        bool locked;
1066        unsigned long flags;
1067
1068        /*
1069         * The anon case has no mem_cgroup page_stat to update; but may
1070         * uncharge_page() below, where the lock ordering can deadlock if
1071         * we hold the lock against page_stat move: so avoid it on anon.
1072         */
1073        if (!anon)
1074                mem_cgroup_begin_update_page_stat(page, &locked, &flags);
1075
1076        /* page still mapped by someone else? */
1077        if (!atomic_add_negative(-1, &page->_mapcount))
1078                goto out;
1079
1080        /*
1081         * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
1082         * and not charged by memcg for now.
1083         *
1084         * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1085         * these counters are not modified in interrupt context, and
1086         * these counters are not modified in interrupt context, and
1087         * pte lock(a spinlock) is held, which implies preemption disabled.
1088         */
1089        if (unlikely(PageHuge(page)))
1090                goto out;
1091        if (anon) {
1092                if (PageTransHuge(page))
1093                        __dec_zone_page_state(page,
1094                                              NR_ANON_TRANSPARENT_HUGEPAGES);
1095                __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1096                                -hpage_nr_pages(page));
1097        } else {
1098                __dec_zone_page_state(page, NR_FILE_MAPPED);
1099                mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_FILE_MAPPED);
1100                mem_cgroup_end_update_page_stat(page, &locked, &flags);
1101        }
1102        if (unlikely(PageMlocked(page)))
1103                clear_page_mlock(page);
1104        /*
1105         * It would be tidy to reset the PageAnon mapping here,
1106         * but that might overwrite a racing page_add_anon_rmap
1107         * which increments mapcount after us but sets mapping
1108         * before us: so leave the reset to free_hot_cold_page,
1109         * and remember that it's only reliable while mapped.
1110         * Leaving it set also helps swapoff to reinstate ptes
1111         * faster for those pages still in swapcache.
1112         */
1113        return;
1114out:
1115        if (!anon)
1116                mem_cgroup_end_update_page_stat(page, &locked, &flags);
1117}
1118
1119/*
1120 * @arg: enum ttu_flags will be passed to this argument
1121 */
1122static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1123                     unsigned long address, void *arg)
1124{
1125        struct mm_struct *mm = vma->vm_mm;
1126        pte_t *pte;
1127        pte_t pteval;
1128        spinlock_t *ptl;
1129        int ret = SWAP_AGAIN;
1130        enum ttu_flags flags = (enum ttu_flags)arg;
1131
1132        pte = page_check_address(page, mm, address, &ptl, 0);
1133        if (!pte)
1134                goto out;
1135
1136        /*
1137         * If the page is mlock()d, we cannot swap it out.
1138         * If it's recently referenced (perhaps page_referenced
1139         * skipped over this mm) then we should reactivate it.
1140         */
1141        if (!(flags & TTU_IGNORE_MLOCK)) {
1142                if (vma->vm_flags & VM_LOCKED)
1143                        goto out_mlock;
1144
1145                if (flags & TTU_MUNLOCK)
1146                        goto out_unmap;
1147        }
1148        if (!(flags & TTU_IGNORE_ACCESS)) {
1149                if (ptep_clear_flush_young_notify(vma, address, pte)) {
1150                        ret = SWAP_FAIL;
1151                        goto out_unmap;
1152                }
1153        }
1154
1155        /* Nuke the page table entry. */
1156        flush_cache_page(vma, address, page_to_pfn(page));
1157        pteval = ptep_clear_flush(vma, address, pte);
1158
1159        /* Move the dirty bit to the physical page now the pte is gone. */
1160        if (pte_dirty(pteval))
1161                set_page_dirty(page);
1162
1163        /* Update high watermark before we lower rss */
1164        update_hiwater_rss(mm);
1165
1166        if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1167                if (!PageHuge(page)) {
1168                        if (PageAnon(page))
1169                                dec_mm_counter(mm, MM_ANONPAGES);
1170                        else
1171                                dec_mm_counter(mm, MM_FILEPAGES);
1172                }
1173                set_pte_at(mm, address, pte,
1174                           swp_entry_to_pte(make_hwpoison_entry(page)));
1175        } else if (pte_unused(pteval)) {
1176                /*
1177                 * The guest indicated that the page content is of no
1178                 * interest anymore. Simply discard the pte, vmscan
1179                 * will take care of the rest.
1180                 */
1181                if (PageAnon(page))
1182                        dec_mm_counter(mm, MM_ANONPAGES);
1183                else
1184                        dec_mm_counter(mm, MM_FILEPAGES);
1185        } else if (PageAnon(page)) {
1186                swp_entry_t entry = { .val = page_private(page) };
1187                pte_t swp_pte;
1188
1189                if (PageSwapCache(page)) {
1190                        /*
1191                         * Store the swap location in the pte.
1192                         * See handle_pte_fault() ...
1193                         */
1194                        if (swap_duplicate(entry) < 0) {
1195                                set_pte_at(mm, address, pte, pteval);
1196                                ret = SWAP_FAIL;
1197                                goto out_unmap;
1198                        }
1199                        if (list_empty(&mm->mmlist)) {
1200                                spin_lock(&mmlist_lock);
1201                                if (list_empty(&mm->mmlist))
1202                                        list_add(&mm->mmlist, &init_mm.mmlist);
1203                                spin_unlock(&mmlist_lock);
1204                        }
1205                        dec_mm_counter(mm, MM_ANONPAGES);
1206                        inc_mm_counter(mm, MM_SWAPENTS);
1207                } else if (IS_ENABLED(CONFIG_MIGRATION)) {
1208                        /*
1209                         * Store the pfn of the page in a special migration
1210                         * pte. do_swap_page() will wait until the migration
1211                         * pte is removed and then restart fault handling.
1212                         */
1213                        BUG_ON(!(flags & TTU_MIGRATION));
1214                        entry = make_migration_entry(page, pte_write(pteval));
1215                }
1216                swp_pte = swp_entry_to_pte(entry);
1217                if (pte_soft_dirty(pteval))
1218                        swp_pte = pte_swp_mksoft_dirty(swp_pte);
1219                set_pte_at(mm, address, pte, swp_pte);
1220                BUG_ON(pte_file(*pte));
1221        } else if (IS_ENABLED(CONFIG_MIGRATION) &&
1222                   (flags & TTU_MIGRATION)) {
1223                /* Establish migration entry for a file page */
1224                swp_entry_t entry;
1225                entry = make_migration_entry(page, pte_write(pteval));
1226                set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1227        } else
1228                dec_mm_counter(mm, MM_FILEPAGES);
1229
1230        page_remove_rmap(page);
1231        page_cache_release(page);
1232
1233out_unmap:
1234        pte_unmap_unlock(pte, ptl);
1235        if (ret != SWAP_FAIL && !(flags & TTU_MUNLOCK))
1236                mmu_notifier_invalidate_page(mm, address);
1237out:
1238        return ret;
1239
1240out_mlock:
1241        pte_unmap_unlock(pte, ptl);
1242
1243
1244        /*
1245         * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1246         * unstable result and race. Plus, We can't wait here because
1247         * we now hold anon_vma->rwsem or mapping->i_mmap_mutex.
1248         * if trylock failed, the page remain in evictable lru and later
1249         * vmscan could retry to move the page to unevictable lru if the
1250         * page is actually mlocked.
1251         */
1252        if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1253                if (vma->vm_flags & VM_LOCKED) {
1254                        mlock_vma_page(page);
1255                        ret = SWAP_MLOCK;
1256                }
1257                up_read(&vma->vm_mm->mmap_sem);
1258        }
1259        return ret;
1260}
1261
1262/*
1263 * objrmap doesn't work for nonlinear VMAs because the assumption that
1264 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1265 * Consequently, given a particular page and its ->index, we cannot locate the
1266 * ptes which are mapping that page without an exhaustive linear search.
1267 *
1268 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1269 * maps the file to which the target page belongs.  The ->vm_private_data field
1270 * holds the current cursor into that scan.  Successive searches will circulate
1271 * around the vma's virtual address space.
1272 *
1273 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1274 * more scanning pressure is placed against them as well.   Eventually pages
1275 * will become fully unmapped and are eligible for eviction.
1276 *
1277 * For very sparsely populated VMAs this is a little inefficient - chances are
1278 * there there won't be many ptes located within the scan cluster.  In this case
1279 * maybe we could scan further - to the end of the pte page, perhaps.
1280 *
1281 * Mlocked pages:  check VM_LOCKED under mmap_sem held for read, if we can
1282 * acquire it without blocking.  If vma locked, mlock the pages in the cluster,
1283 * rather than unmapping them.  If we encounter the "check_page" that vmscan is
1284 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1285 */
1286#define CLUSTER_SIZE    min(32*PAGE_SIZE, PMD_SIZE)
1287#define CLUSTER_MASK    (~(CLUSTER_SIZE - 1))
1288
1289static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1290                struct vm_area_struct *vma, struct page *check_page)
1291{
1292        struct mm_struct *mm = vma->vm_mm;
1293        pmd_t *pmd;
1294        pte_t *pte;
1295        pte_t pteval;
1296        spinlock_t *ptl;
1297        struct page *page;
1298        unsigned long address;
1299        unsigned long mmun_start;       /* For mmu_notifiers */
1300        unsigned long mmun_end;         /* For mmu_notifiers */
1301        unsigned long end;
1302        int ret = SWAP_AGAIN;
1303        int locked_vma = 0;
1304
1305        address = (vma->vm_start + cursor) & CLUSTER_MASK;
1306        end = address + CLUSTER_SIZE;
1307        if (address < vma->vm_start)
1308                address = vma->vm_start;
1309        if (end > vma->vm_end)
1310                end = vma->vm_end;
1311
1312        pmd = mm_find_pmd(mm, address);
1313        if (!pmd)
1314                return ret;
1315
1316        mmun_start = address;
1317        mmun_end   = end;
1318        mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1319
1320        /*
1321         * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1322         * keep the sem while scanning the cluster for mlocking pages.
1323         */
1324        if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1325                locked_vma = (vma->vm_flags & VM_LOCKED);
1326                if (!locked_vma)
1327                        up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1328        }
1329
1330        pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1331
1332        /* Update high watermark before we lower rss */
1333        update_hiwater_rss(mm);
1334
1335        for (; address < end; pte++, address += PAGE_SIZE) {
1336                if (!pte_present(*pte))
1337                        continue;
1338                page = vm_normal_page(vma, address, *pte);
1339                BUG_ON(!page || PageAnon(page));
1340
1341                if (locked_vma) {
1342                        if (page == check_page) {
1343                                /* we know we have check_page locked */
1344                                mlock_vma_page(page);
1345                                ret = SWAP_MLOCK;
1346                        } else if (trylock_page(page)) {
1347                                /*
1348                                 * If we can lock the page, perform mlock.
1349                                 * Otherwise leave the page alone, it will be
1350                                 * eventually encountered again later.
1351                                 */
1352                                mlock_vma_page(page);
1353                                unlock_page(page);
1354                        }
1355                        continue;       /* don't unmap */
1356                }
1357
1358                if (ptep_clear_flush_young_notify(vma, address, pte))
1359                        continue;
1360
1361                /* Nuke the page table entry. */
1362                flush_cache_page(vma, address, pte_pfn(*pte));
1363                pteval = ptep_clear_flush(vma, address, pte);
1364
1365                /* If nonlinear, store the file page offset in the pte. */
1366                if (page->index != linear_page_index(vma, address)) {
1367                        pte_t ptfile = pgoff_to_pte(page->index);
1368                        if (pte_soft_dirty(pteval))
1369                                ptfile = pte_file_mksoft_dirty(ptfile);
1370                        set_pte_at(mm, address, pte, ptfile);
1371                }
1372
1373                /* Move the dirty bit to the physical page now the pte is gone. */
1374                if (pte_dirty(pteval))
1375                        set_page_dirty(page);
1376
1377                page_remove_rmap(page);
1378                page_cache_release(page);
1379                dec_mm_counter(mm, MM_FILEPAGES);
1380                (*mapcount)--;
1381        }
1382        pte_unmap_unlock(pte - 1, ptl);
1383        mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1384        if (locked_vma)
1385                up_read(&vma->vm_mm->mmap_sem);
1386        return ret;
1387}
1388
1389static int try_to_unmap_nonlinear(struct page *page,
1390                struct address_space *mapping, void *arg)
1391{
1392        struct vm_area_struct *vma;
1393        int ret = SWAP_AGAIN;
1394        unsigned long cursor;
1395        unsigned long max_nl_cursor = 0;
1396        unsigned long max_nl_size = 0;
1397        unsigned int mapcount;
1398
1399        list_for_each_entry(vma,
1400                &mapping->i_mmap_nonlinear, shared.nonlinear) {
1401
1402                cursor = (unsigned long) vma->vm_private_data;
1403                if (cursor > max_nl_cursor)
1404                        max_nl_cursor = cursor;
1405                cursor = vma->vm_end - vma->vm_start;
1406                if (cursor > max_nl_size)
1407                        max_nl_size = cursor;
1408        }
1409
1410        if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
1411                return SWAP_FAIL;
1412        }
1413
1414        /*
1415         * We don't try to search for this page in the nonlinear vmas,
1416         * and page_referenced wouldn't have found it anyway.  Instead
1417         * just walk the nonlinear vmas trying to age and unmap some.
1418         * The mapcount of the page we came in with is irrelevant,
1419         * but even so use it as a guide to how hard we should try?
1420         */
1421        mapcount = page_mapcount(page);
1422        if (!mapcount)
1423                return ret;
1424
1425        cond_resched();
1426
1427        max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1428        if (max_nl_cursor == 0)
1429                max_nl_cursor = CLUSTER_SIZE;
1430
1431        do {
1432                list_for_each_entry(vma,
1433                        &mapping->i_mmap_nonlinear, shared.nonlinear) {
1434
1435                        cursor = (unsigned long) vma->vm_private_data;
1436                        while (cursor < max_nl_cursor &&
1437                                cursor < vma->vm_end - vma->vm_start) {
1438                                if (try_to_unmap_cluster(cursor, &mapcount,
1439                                                vma, page) == SWAP_MLOCK)
1440                                        ret = SWAP_MLOCK;
1441                                cursor += CLUSTER_SIZE;
1442                                vma->vm_private_data = (void *) cursor;
1443                                if ((int)mapcount <= 0)
1444                                        return ret;
1445                        }
1446                        vma->vm_private_data = (void *) max_nl_cursor;
1447                }
1448                cond_resched();
1449                max_nl_cursor += CLUSTER_SIZE;
1450        } while (max_nl_cursor <= max_nl_size);
1451
1452        /*
1453         * Don't loop forever (perhaps all the remaining pages are
1454         * in locked vmas).  Reset cursor on all unreserved nonlinear
1455         * vmas, now forgetting on which ones it had fallen behind.
1456         */
1457        list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.nonlinear)
1458                vma->vm_private_data = NULL;
1459
1460        return ret;
1461}
1462
1463bool is_vma_temporary_stack(struct vm_area_struct *vma)
1464{
1465        int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1466
1467        if (!maybe_stack)
1468                return false;
1469
1470        if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1471                                                VM_STACK_INCOMPLETE_SETUP)
1472                return true;
1473
1474        return false;
1475}
1476
1477static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1478{
1479        return is_vma_temporary_stack(vma);
1480}
1481
1482static int page_not_mapped(struct page *page)
1483{
1484        return !page_mapped(page);
1485};
1486
1487/**
1488 * try_to_unmap - try to remove all page table mappings to a page
1489 * @page: the page to get unmapped
1490 * @flags: action and flags
1491 *
1492 * Tries to remove all the page table entries which are mapping this
1493 * page, used in the pageout path.  Caller must hold the page lock.
1494 * Return values are:
1495 *
1496 * SWAP_SUCCESS - we succeeded in removing all mappings
1497 * SWAP_AGAIN   - we missed a mapping, try again later
1498 * SWAP_FAIL    - the page is unswappable
1499 * SWAP_MLOCK   - page is mlocked.
1500 */
1501int try_to_unmap(struct page *page, enum ttu_flags flags)
1502{
1503        int ret;
1504        struct rmap_walk_control rwc = {
1505                .rmap_one = try_to_unmap_one,
1506                .arg = (void *)flags,
1507                .done = page_not_mapped,
1508                .file_nonlinear = try_to_unmap_nonlinear,
1509                .anon_lock = page_lock_anon_vma_read,
1510        };
1511
1512        VM_BUG_ON_PAGE(!PageHuge(page) && PageTransHuge(page), page);
1513
1514        /*
1515         * During exec, a temporary VMA is setup and later moved.
1516         * The VMA is moved under the anon_vma lock but not the
1517         * page tables leading to a race where migration cannot
1518         * find the migration ptes. Rather than increasing the
1519         * locking requirements of exec(), migration skips
1520         * temporary VMAs until after exec() completes.
1521         */
1522        if ((flags & TTU_MIGRATION) && !PageKsm(page) && PageAnon(page))
1523                rwc.invalid_vma = invalid_migration_vma;
1524
1525        ret = rmap_walk(page, &rwc);
1526
1527        if (ret != SWAP_MLOCK && !page_mapped(page))
1528                ret = SWAP_SUCCESS;
1529        return ret;
1530}
1531
1532/**
1533 * try_to_munlock - try to munlock a page
1534 * @page: the page to be munlocked
1535 *
1536 * Called from munlock code.  Checks all of the VMAs mapping the page
1537 * to make sure nobody else has this page mlocked. The page will be
1538 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1539 *
1540 * Return values are:
1541 *
1542 * SWAP_AGAIN   - no vma is holding page mlocked, or,
1543 * SWAP_AGAIN   - page mapped in mlocked vma -- couldn't acquire mmap sem
1544 * SWAP_FAIL    - page cannot be located at present
1545 * SWAP_MLOCK   - page is now mlocked.
1546 */
1547int try_to_munlock(struct page *page)
1548{
1549        int ret;
1550        struct rmap_walk_control rwc = {
1551                .rmap_one = try_to_unmap_one,
1552                .arg = (void *)TTU_MUNLOCK,
1553                .done = page_not_mapped,
1554                /*
1555                 * We don't bother to try to find the munlocked page in
1556                 * nonlinears. It's costly. Instead, later, page reclaim logic
1557                 * may call try_to_unmap() and recover PG_mlocked lazily.
1558                 */
1559                .file_nonlinear = NULL,
1560                .anon_lock = page_lock_anon_vma_read,
1561
1562        };
1563
1564        VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
1565
1566        ret = rmap_walk(page, &rwc);
1567        return ret;
1568}
1569
1570void __put_anon_vma(struct anon_vma *anon_vma)
1571{
1572        struct anon_vma *root = anon_vma->root;
1573
1574        anon_vma_free(anon_vma);
1575        if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1576                anon_vma_free(root);
1577}
1578
1579static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1580                                        struct rmap_walk_control *rwc)
1581{
1582        struct anon_vma *anon_vma;
1583
1584        if (rwc->anon_lock)
1585                return rwc->anon_lock(page);
1586
1587        /*
1588         * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1589         * because that depends on page_mapped(); but not all its usages
1590         * are holding mmap_sem. Users without mmap_sem are required to
1591         * take a reference count to prevent the anon_vma disappearing
1592         */
1593        anon_vma = page_anon_vma(page);
1594        if (!anon_vma)
1595                return NULL;
1596
1597        anon_vma_lock_read(anon_vma);
1598        return anon_vma;
1599}
1600
1601/*
1602 * rmap_walk_anon - do something to anonymous page using the object-based
1603 * rmap method
1604 * @page: the page to be handled
1605 * @rwc: control variable according to each walk type
1606 *
1607 * Find all the mappings of a page using the mapping pointer and the vma chains
1608 * contained in the anon_vma struct it points to.
1609 *
1610 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1611 * where the page was found will be held for write.  So, we won't recheck
1612 * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1613 * LOCKED.
1614 */
1615static int rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc)
1616{
1617        struct anon_vma *anon_vma;
1618        pgoff_t pgoff = page_to_pgoff(page);
1619        struct anon_vma_chain *avc;
1620        int ret = SWAP_AGAIN;
1621
1622        anon_vma = rmap_walk_anon_lock(page, rwc);
1623        if (!anon_vma)
1624                return ret;
1625
1626        anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1627                struct vm_area_struct *vma = avc->vma;
1628                unsigned long address = vma_address(page, vma);
1629
1630                if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1631                        continue;
1632
1633                ret = rwc->rmap_one(page, vma, address, rwc->arg);
1634                if (ret != SWAP_AGAIN)
1635                        break;
1636                if (rwc->done && rwc->done(page))
1637                        break;
1638        }
1639        anon_vma_unlock_read(anon_vma);
1640        return ret;
1641}
1642
1643/*
1644 * rmap_walk_file - do something to file page using the object-based rmap method
1645 * @page: the page to be handled
1646 * @rwc: control variable according to each walk type
1647 *
1648 * Find all the mappings of a page using the mapping pointer and the vma chains
1649 * contained in the address_space struct it points to.
1650 *
1651 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1652 * where the page was found will be held for write.  So, we won't recheck
1653 * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1654 * LOCKED.
1655 */
1656static int rmap_walk_file(struct page *page, struct rmap_walk_control *rwc)
1657{
1658        struct address_space *mapping = page->mapping;
1659        pgoff_t pgoff = page_to_pgoff(page);
1660        struct vm_area_struct *vma;
1661        int ret = SWAP_AGAIN;
1662
1663        /*
1664         * The page lock not only makes sure that page->mapping cannot
1665         * suddenly be NULLified by truncation, it makes sure that the
1666         * structure at mapping cannot be freed and reused yet,
1667         * so we can safely take mapping->i_mmap_mutex.
1668         */
1669        VM_BUG_ON(!PageLocked(page));
1670
1671        if (!mapping)
1672                return ret;
1673        mutex_lock(&mapping->i_mmap_mutex);
1674        vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1675                unsigned long address = vma_address(page, vma);
1676
1677                if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1678                        continue;
1679
1680                ret = rwc->rmap_one(page, vma, address, rwc->arg);
1681                if (ret != SWAP_AGAIN)
1682                        goto done;
1683                if (rwc->done && rwc->done(page))
1684                        goto done;
1685        }
1686
1687        if (!rwc->file_nonlinear)
1688                goto done;
1689
1690        if (list_empty(&mapping->i_mmap_nonlinear))
1691                goto done;
1692
1693        ret = rwc->file_nonlinear(page, mapping, rwc->arg);
1694
1695done:
1696        mutex_unlock(&mapping->i_mmap_mutex);
1697        return ret;
1698}
1699
1700int rmap_walk(struct page *page, struct rmap_walk_control *rwc)
1701{
1702        if (unlikely(PageKsm(page)))
1703                return rmap_walk_ksm(page, rwc);
1704        else if (PageAnon(page))
1705                return rmap_walk_anon(page, rwc);
1706        else
1707                return rmap_walk_file(page, rwc);
1708}
1709
1710#ifdef CONFIG_HUGETLB_PAGE
1711/*
1712 * The following three functions are for anonymous (private mapped) hugepages.
1713 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1714 * and no lru code, because we handle hugepages differently from common pages.
1715 */
1716static void __hugepage_set_anon_rmap(struct page *page,
1717        struct vm_area_struct *vma, unsigned long address, int exclusive)
1718{
1719        struct anon_vma *anon_vma = vma->anon_vma;
1720
1721        BUG_ON(!anon_vma);
1722
1723        if (PageAnon(page))
1724                return;
1725        if (!exclusive)
1726                anon_vma = anon_vma->root;
1727
1728        anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1729        page->mapping = (struct address_space *) anon_vma;
1730        page->index = linear_page_index(vma, address);
1731}
1732
1733void hugepage_add_anon_rmap(struct page *page,
1734                            struct vm_area_struct *vma, unsigned long address)
1735{
1736        struct anon_vma *anon_vma = vma->anon_vma;
1737        int first;
1738
1739        BUG_ON(!PageLocked(page));
1740        BUG_ON(!anon_vma);
1741        /* address might be in next vma when migration races vma_adjust */
1742        first = atomic_inc_and_test(&page->_mapcount);
1743        if (first)
1744                __hugepage_set_anon_rmap(page, vma, address, 0);
1745}
1746
1747void hugepage_add_new_anon_rmap(struct page *page,
1748                        struct vm_area_struct *vma, unsigned long address)
1749{
1750        BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1751        atomic_set(&page->_mapcount, 0);
1752        __hugepage_set_anon_rmap(page, vma, address, 1);
1753}
1754#endif /* CONFIG_HUGETLB_PAGE */
1755