linux/net/sunrpc/cache.c
<<
>>
Prefs
   1/*
   2 * net/sunrpc/cache.c
   3 *
   4 * Generic code for various authentication-related caches
   5 * used by sunrpc clients and servers.
   6 *
   7 * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
   8 *
   9 * Released under terms in GPL version 2.  See COPYING.
  10 *
  11 */
  12
  13#include <linux/types.h>
  14#include <linux/fs.h>
  15#include <linux/file.h>
  16#include <linux/slab.h>
  17#include <linux/signal.h>
  18#include <linux/sched.h>
  19#include <linux/kmod.h>
  20#include <linux/list.h>
  21#include <linux/module.h>
  22#include <linux/ctype.h>
  23#include <asm/uaccess.h>
  24#include <linux/poll.h>
  25#include <linux/seq_file.h>
  26#include <linux/proc_fs.h>
  27#include <linux/net.h>
  28#include <linux/workqueue.h>
  29#include <linux/mutex.h>
  30#include <linux/pagemap.h>
  31#include <asm/ioctls.h>
  32#include <linux/sunrpc/types.h>
  33#include <linux/sunrpc/cache.h>
  34#include <linux/sunrpc/stats.h>
  35#include <linux/sunrpc/rpc_pipe_fs.h>
  36#include "netns.h"
  37
  38#define  RPCDBG_FACILITY RPCDBG_CACHE
  39
  40static bool cache_defer_req(struct cache_req *req, struct cache_head *item);
  41static void cache_revisit_request(struct cache_head *item);
  42
  43static void cache_init(struct cache_head *h)
  44{
  45        time_t now = seconds_since_boot();
  46        h->next = NULL;
  47        h->flags = 0;
  48        kref_init(&h->ref);
  49        h->expiry_time = now + CACHE_NEW_EXPIRY;
  50        h->last_refresh = now;
  51}
  52
  53struct cache_head *sunrpc_cache_lookup(struct cache_detail *detail,
  54                                       struct cache_head *key, int hash)
  55{
  56        struct cache_head **head,  **hp;
  57        struct cache_head *new = NULL, *freeme = NULL;
  58
  59        head = &detail->hash_table[hash];
  60
  61        read_lock(&detail->hash_lock);
  62
  63        for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
  64                struct cache_head *tmp = *hp;
  65                if (detail->match(tmp, key)) {
  66                        if (cache_is_expired(detail, tmp))
  67                                /* This entry is expired, we will discard it. */
  68                                break;
  69                        cache_get(tmp);
  70                        read_unlock(&detail->hash_lock);
  71                        return tmp;
  72                }
  73        }
  74        read_unlock(&detail->hash_lock);
  75        /* Didn't find anything, insert an empty entry */
  76
  77        new = detail->alloc();
  78        if (!new)
  79                return NULL;
  80        /* must fully initialise 'new', else
  81         * we might get lose if we need to
  82         * cache_put it soon.
  83         */
  84        cache_init(new);
  85        detail->init(new, key);
  86
  87        write_lock(&detail->hash_lock);
  88
  89        /* check if entry appeared while we slept */
  90        for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
  91                struct cache_head *tmp = *hp;
  92                if (detail->match(tmp, key)) {
  93                        if (cache_is_expired(detail, tmp)) {
  94                                *hp = tmp->next;
  95                                tmp->next = NULL;
  96                                detail->entries --;
  97                                freeme = tmp;
  98                                break;
  99                        }
 100                        cache_get(tmp);
 101                        write_unlock(&detail->hash_lock);
 102                        cache_put(new, detail);
 103                        return tmp;
 104                }
 105        }
 106        new->next = *head;
 107        *head = new;
 108        detail->entries++;
 109        cache_get(new);
 110        write_unlock(&detail->hash_lock);
 111
 112        if (freeme)
 113                cache_put(freeme, detail);
 114        return new;
 115}
 116EXPORT_SYMBOL_GPL(sunrpc_cache_lookup);
 117
 118
 119static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch);
 120
 121static void cache_fresh_locked(struct cache_head *head, time_t expiry)
 122{
 123        head->expiry_time = expiry;
 124        head->last_refresh = seconds_since_boot();
 125        smp_wmb(); /* paired with smp_rmb() in cache_is_valid() */
 126        set_bit(CACHE_VALID, &head->flags);
 127}
 128
 129static void cache_fresh_unlocked(struct cache_head *head,
 130                                 struct cache_detail *detail)
 131{
 132        if (test_and_clear_bit(CACHE_PENDING, &head->flags)) {
 133                cache_revisit_request(head);
 134                cache_dequeue(detail, head);
 135        }
 136}
 137
 138struct cache_head *sunrpc_cache_update(struct cache_detail *detail,
 139                                       struct cache_head *new, struct cache_head *old, int hash)
 140{
 141        /* The 'old' entry is to be replaced by 'new'.
 142         * If 'old' is not VALID, we update it directly,
 143         * otherwise we need to replace it
 144         */
 145        struct cache_head **head;
 146        struct cache_head *tmp;
 147
 148        if (!test_bit(CACHE_VALID, &old->flags)) {
 149                write_lock(&detail->hash_lock);
 150                if (!test_bit(CACHE_VALID, &old->flags)) {
 151                        if (test_bit(CACHE_NEGATIVE, &new->flags))
 152                                set_bit(CACHE_NEGATIVE, &old->flags);
 153                        else
 154                                detail->update(old, new);
 155                        cache_fresh_locked(old, new->expiry_time);
 156                        write_unlock(&detail->hash_lock);
 157                        cache_fresh_unlocked(old, detail);
 158                        return old;
 159                }
 160                write_unlock(&detail->hash_lock);
 161        }
 162        /* We need to insert a new entry */
 163        tmp = detail->alloc();
 164        if (!tmp) {
 165                cache_put(old, detail);
 166                return NULL;
 167        }
 168        cache_init(tmp);
 169        detail->init(tmp, old);
 170        head = &detail->hash_table[hash];
 171
 172        write_lock(&detail->hash_lock);
 173        if (test_bit(CACHE_NEGATIVE, &new->flags))
 174                set_bit(CACHE_NEGATIVE, &tmp->flags);
 175        else
 176                detail->update(tmp, new);
 177        tmp->next = *head;
 178        *head = tmp;
 179        detail->entries++;
 180        cache_get(tmp);
 181        cache_fresh_locked(tmp, new->expiry_time);
 182        cache_fresh_locked(old, 0);
 183        write_unlock(&detail->hash_lock);
 184        cache_fresh_unlocked(tmp, detail);
 185        cache_fresh_unlocked(old, detail);
 186        cache_put(old, detail);
 187        return tmp;
 188}
 189EXPORT_SYMBOL_GPL(sunrpc_cache_update);
 190
 191static int cache_make_upcall(struct cache_detail *cd, struct cache_head *h)
 192{
 193        if (cd->cache_upcall)
 194                return cd->cache_upcall(cd, h);
 195        return sunrpc_cache_pipe_upcall(cd, h);
 196}
 197
 198static inline int cache_is_valid(struct cache_head *h)
 199{
 200        if (!test_bit(CACHE_VALID, &h->flags))
 201                return -EAGAIN;
 202        else {
 203                /* entry is valid */
 204                if (test_bit(CACHE_NEGATIVE, &h->flags))
 205                        return -ENOENT;
 206                else {
 207                        /*
 208                         * In combination with write barrier in
 209                         * sunrpc_cache_update, ensures that anyone
 210                         * using the cache entry after this sees the
 211                         * updated contents:
 212                         */
 213                        smp_rmb();
 214                        return 0;
 215                }
 216        }
 217}
 218
 219static int try_to_negate_entry(struct cache_detail *detail, struct cache_head *h)
 220{
 221        int rv;
 222
 223        write_lock(&detail->hash_lock);
 224        rv = cache_is_valid(h);
 225        if (rv == -EAGAIN) {
 226                set_bit(CACHE_NEGATIVE, &h->flags);
 227                cache_fresh_locked(h, seconds_since_boot()+CACHE_NEW_EXPIRY);
 228                rv = -ENOENT;
 229        }
 230        write_unlock(&detail->hash_lock);
 231        cache_fresh_unlocked(h, detail);
 232        return rv;
 233}
 234
 235/*
 236 * This is the generic cache management routine for all
 237 * the authentication caches.
 238 * It checks the currency of a cache item and will (later)
 239 * initiate an upcall to fill it if needed.
 240 *
 241 *
 242 * Returns 0 if the cache_head can be used, or cache_puts it and returns
 243 * -EAGAIN if upcall is pending and request has been queued
 244 * -ETIMEDOUT if upcall failed or request could not be queue or
 245 *           upcall completed but item is still invalid (implying that
 246 *           the cache item has been replaced with a newer one).
 247 * -ENOENT if cache entry was negative
 248 */
 249int cache_check(struct cache_detail *detail,
 250                    struct cache_head *h, struct cache_req *rqstp)
 251{
 252        int rv;
 253        long refresh_age, age;
 254
 255        /* First decide return status as best we can */
 256        rv = cache_is_valid(h);
 257
 258        /* now see if we want to start an upcall */
 259        refresh_age = (h->expiry_time - h->last_refresh);
 260        age = seconds_since_boot() - h->last_refresh;
 261
 262        if (rqstp == NULL) {
 263                if (rv == -EAGAIN)
 264                        rv = -ENOENT;
 265        } else if (rv == -EAGAIN ||
 266                   (h->expiry_time != 0 && age > refresh_age/2)) {
 267                dprintk("RPC:       Want update, refage=%ld, age=%ld\n",
 268                                refresh_age, age);
 269                if (!test_and_set_bit(CACHE_PENDING, &h->flags)) {
 270                        switch (cache_make_upcall(detail, h)) {
 271                        case -EINVAL:
 272                                rv = try_to_negate_entry(detail, h);
 273                                break;
 274                        case -EAGAIN:
 275                                cache_fresh_unlocked(h, detail);
 276                                break;
 277                        }
 278                }
 279        }
 280
 281        if (rv == -EAGAIN) {
 282                if (!cache_defer_req(rqstp, h)) {
 283                        /*
 284                         * Request was not deferred; handle it as best
 285                         * we can ourselves:
 286                         */
 287                        rv = cache_is_valid(h);
 288                        if (rv == -EAGAIN)
 289                                rv = -ETIMEDOUT;
 290                }
 291        }
 292        if (rv)
 293                cache_put(h, detail);
 294        return rv;
 295}
 296EXPORT_SYMBOL_GPL(cache_check);
 297
 298/*
 299 * caches need to be periodically cleaned.
 300 * For this we maintain a list of cache_detail and
 301 * a current pointer into that list and into the table
 302 * for that entry.
 303 *
 304 * Each time cache_clean is called it finds the next non-empty entry
 305 * in the current table and walks the list in that entry
 306 * looking for entries that can be removed.
 307 *
 308 * An entry gets removed if:
 309 * - The expiry is before current time
 310 * - The last_refresh time is before the flush_time for that cache
 311 *
 312 * later we might drop old entries with non-NEVER expiry if that table
 313 * is getting 'full' for some definition of 'full'
 314 *
 315 * The question of "how often to scan a table" is an interesting one
 316 * and is answered in part by the use of the "nextcheck" field in the
 317 * cache_detail.
 318 * When a scan of a table begins, the nextcheck field is set to a time
 319 * that is well into the future.
 320 * While scanning, if an expiry time is found that is earlier than the
 321 * current nextcheck time, nextcheck is set to that expiry time.
 322 * If the flush_time is ever set to a time earlier than the nextcheck
 323 * time, the nextcheck time is then set to that flush_time.
 324 *
 325 * A table is then only scanned if the current time is at least
 326 * the nextcheck time.
 327 *
 328 */
 329
 330static LIST_HEAD(cache_list);
 331static DEFINE_SPINLOCK(cache_list_lock);
 332static struct cache_detail *current_detail;
 333static int current_index;
 334
 335static void do_cache_clean(struct work_struct *work);
 336static struct delayed_work cache_cleaner;
 337
 338void sunrpc_init_cache_detail(struct cache_detail *cd)
 339{
 340        rwlock_init(&cd->hash_lock);
 341        INIT_LIST_HEAD(&cd->queue);
 342        spin_lock(&cache_list_lock);
 343        cd->nextcheck = 0;
 344        cd->entries = 0;
 345        atomic_set(&cd->readers, 0);
 346        cd->last_close = 0;
 347        cd->last_warn = -1;
 348        list_add(&cd->others, &cache_list);
 349        spin_unlock(&cache_list_lock);
 350
 351        /* start the cleaning process */
 352        schedule_delayed_work(&cache_cleaner, 0);
 353}
 354EXPORT_SYMBOL_GPL(sunrpc_init_cache_detail);
 355
 356void sunrpc_destroy_cache_detail(struct cache_detail *cd)
 357{
 358        cache_purge(cd);
 359        spin_lock(&cache_list_lock);
 360        write_lock(&cd->hash_lock);
 361        if (cd->entries || atomic_read(&cd->inuse)) {
 362                write_unlock(&cd->hash_lock);
 363                spin_unlock(&cache_list_lock);
 364                goto out;
 365        }
 366        if (current_detail == cd)
 367                current_detail = NULL;
 368        list_del_init(&cd->others);
 369        write_unlock(&cd->hash_lock);
 370        spin_unlock(&cache_list_lock);
 371        if (list_empty(&cache_list)) {
 372                /* module must be being unloaded so its safe to kill the worker */
 373                cancel_delayed_work_sync(&cache_cleaner);
 374        }
 375        return;
 376out:
 377        printk(KERN_ERR "RPC: failed to unregister %s cache\n", cd->name);
 378}
 379EXPORT_SYMBOL_GPL(sunrpc_destroy_cache_detail);
 380
 381/* clean cache tries to find something to clean
 382 * and cleans it.
 383 * It returns 1 if it cleaned something,
 384 *            0 if it didn't find anything this time
 385 *           -1 if it fell off the end of the list.
 386 */
 387static int cache_clean(void)
 388{
 389        int rv = 0;
 390        struct list_head *next;
 391
 392        spin_lock(&cache_list_lock);
 393
 394        /* find a suitable table if we don't already have one */
 395        while (current_detail == NULL ||
 396            current_index >= current_detail->hash_size) {
 397                if (current_detail)
 398                        next = current_detail->others.next;
 399                else
 400                        next = cache_list.next;
 401                if (next == &cache_list) {
 402                        current_detail = NULL;
 403                        spin_unlock(&cache_list_lock);
 404                        return -1;
 405                }
 406                current_detail = list_entry(next, struct cache_detail, others);
 407                if (current_detail->nextcheck > seconds_since_boot())
 408                        current_index = current_detail->hash_size;
 409                else {
 410                        current_index = 0;
 411                        current_detail->nextcheck = seconds_since_boot()+30*60;
 412                }
 413        }
 414
 415        /* find a non-empty bucket in the table */
 416        while (current_detail &&
 417               current_index < current_detail->hash_size &&
 418               current_detail->hash_table[current_index] == NULL)
 419                current_index++;
 420
 421        /* find a cleanable entry in the bucket and clean it, or set to next bucket */
 422
 423        if (current_detail && current_index < current_detail->hash_size) {
 424                struct cache_head *ch, **cp;
 425                struct cache_detail *d;
 426
 427                write_lock(&current_detail->hash_lock);
 428
 429                /* Ok, now to clean this strand */
 430
 431                cp = & current_detail->hash_table[current_index];
 432                for (ch = *cp ; ch ; cp = & ch->next, ch = *cp) {
 433                        if (current_detail->nextcheck > ch->expiry_time)
 434                                current_detail->nextcheck = ch->expiry_time+1;
 435                        if (!cache_is_expired(current_detail, ch))
 436                                continue;
 437
 438                        *cp = ch->next;
 439                        ch->next = NULL;
 440                        current_detail->entries--;
 441                        rv = 1;
 442                        break;
 443                }
 444
 445                write_unlock(&current_detail->hash_lock);
 446                d = current_detail;
 447                if (!ch)
 448                        current_index ++;
 449                spin_unlock(&cache_list_lock);
 450                if (ch) {
 451                        set_bit(CACHE_CLEANED, &ch->flags);
 452                        cache_fresh_unlocked(ch, d);
 453                        cache_put(ch, d);
 454                }
 455        } else
 456                spin_unlock(&cache_list_lock);
 457
 458        return rv;
 459}
 460
 461/*
 462 * We want to regularly clean the cache, so we need to schedule some work ...
 463 */
 464static void do_cache_clean(struct work_struct *work)
 465{
 466        int delay = 5;
 467        if (cache_clean() == -1)
 468                delay = round_jiffies_relative(30*HZ);
 469
 470        if (list_empty(&cache_list))
 471                delay = 0;
 472
 473        if (delay)
 474                schedule_delayed_work(&cache_cleaner, delay);
 475}
 476
 477
 478/*
 479 * Clean all caches promptly.  This just calls cache_clean
 480 * repeatedly until we are sure that every cache has had a chance to
 481 * be fully cleaned
 482 */
 483void cache_flush(void)
 484{
 485        while (cache_clean() != -1)
 486                cond_resched();
 487        while (cache_clean() != -1)
 488                cond_resched();
 489}
 490EXPORT_SYMBOL_GPL(cache_flush);
 491
 492void cache_purge(struct cache_detail *detail)
 493{
 494        detail->flush_time = LONG_MAX;
 495        detail->nextcheck = seconds_since_boot();
 496        cache_flush();
 497        detail->flush_time = 1;
 498}
 499EXPORT_SYMBOL_GPL(cache_purge);
 500
 501
 502/*
 503 * Deferral and Revisiting of Requests.
 504 *
 505 * If a cache lookup finds a pending entry, we
 506 * need to defer the request and revisit it later.
 507 * All deferred requests are stored in a hash table,
 508 * indexed by "struct cache_head *".
 509 * As it may be wasteful to store a whole request
 510 * structure, we allow the request to provide a
 511 * deferred form, which must contain a
 512 * 'struct cache_deferred_req'
 513 * This cache_deferred_req contains a method to allow
 514 * it to be revisited when cache info is available
 515 */
 516
 517#define DFR_HASHSIZE    (PAGE_SIZE/sizeof(struct list_head))
 518#define DFR_HASH(item)  ((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
 519
 520#define DFR_MAX 300     /* ??? */
 521
 522static DEFINE_SPINLOCK(cache_defer_lock);
 523static LIST_HEAD(cache_defer_list);
 524static struct hlist_head cache_defer_hash[DFR_HASHSIZE];
 525static int cache_defer_cnt;
 526
 527static void __unhash_deferred_req(struct cache_deferred_req *dreq)
 528{
 529        hlist_del_init(&dreq->hash);
 530        if (!list_empty(&dreq->recent)) {
 531                list_del_init(&dreq->recent);
 532                cache_defer_cnt--;
 533        }
 534}
 535
 536static void __hash_deferred_req(struct cache_deferred_req *dreq, struct cache_head *item)
 537{
 538        int hash = DFR_HASH(item);
 539
 540        INIT_LIST_HEAD(&dreq->recent);
 541        hlist_add_head(&dreq->hash, &cache_defer_hash[hash]);
 542}
 543
 544static void setup_deferral(struct cache_deferred_req *dreq,
 545                           struct cache_head *item,
 546                           int count_me)
 547{
 548
 549        dreq->item = item;
 550
 551        spin_lock(&cache_defer_lock);
 552
 553        __hash_deferred_req(dreq, item);
 554
 555        if (count_me) {
 556                cache_defer_cnt++;
 557                list_add(&dreq->recent, &cache_defer_list);
 558        }
 559
 560        spin_unlock(&cache_defer_lock);
 561
 562}
 563
 564struct thread_deferred_req {
 565        struct cache_deferred_req handle;
 566        struct completion completion;
 567};
 568
 569static void cache_restart_thread(struct cache_deferred_req *dreq, int too_many)
 570{
 571        struct thread_deferred_req *dr =
 572                container_of(dreq, struct thread_deferred_req, handle);
 573        complete(&dr->completion);
 574}
 575
 576static void cache_wait_req(struct cache_req *req, struct cache_head *item)
 577{
 578        struct thread_deferred_req sleeper;
 579        struct cache_deferred_req *dreq = &sleeper.handle;
 580
 581        sleeper.completion = COMPLETION_INITIALIZER_ONSTACK(sleeper.completion);
 582        dreq->revisit = cache_restart_thread;
 583
 584        setup_deferral(dreq, item, 0);
 585
 586        if (!test_bit(CACHE_PENDING, &item->flags) ||
 587            wait_for_completion_interruptible_timeout(
 588                    &sleeper.completion, req->thread_wait) <= 0) {
 589                /* The completion wasn't completed, so we need
 590                 * to clean up
 591                 */
 592                spin_lock(&cache_defer_lock);
 593                if (!hlist_unhashed(&sleeper.handle.hash)) {
 594                        __unhash_deferred_req(&sleeper.handle);
 595                        spin_unlock(&cache_defer_lock);
 596                } else {
 597                        /* cache_revisit_request already removed
 598                         * this from the hash table, but hasn't
 599                         * called ->revisit yet.  It will very soon
 600                         * and we need to wait for it.
 601                         */
 602                        spin_unlock(&cache_defer_lock);
 603                        wait_for_completion(&sleeper.completion);
 604                }
 605        }
 606}
 607
 608static void cache_limit_defers(void)
 609{
 610        /* Make sure we haven't exceed the limit of allowed deferred
 611         * requests.
 612         */
 613        struct cache_deferred_req *discard = NULL;
 614
 615        if (cache_defer_cnt <= DFR_MAX)
 616                return;
 617
 618        spin_lock(&cache_defer_lock);
 619
 620        /* Consider removing either the first or the last */
 621        if (cache_defer_cnt > DFR_MAX) {
 622                if (prandom_u32() & 1)
 623                        discard = list_entry(cache_defer_list.next,
 624                                             struct cache_deferred_req, recent);
 625                else
 626                        discard = list_entry(cache_defer_list.prev,
 627                                             struct cache_deferred_req, recent);
 628                __unhash_deferred_req(discard);
 629        }
 630        spin_unlock(&cache_defer_lock);
 631        if (discard)
 632                discard->revisit(discard, 1);
 633}
 634
 635/* Return true if and only if a deferred request is queued. */
 636static bool cache_defer_req(struct cache_req *req, struct cache_head *item)
 637{
 638        struct cache_deferred_req *dreq;
 639
 640        if (req->thread_wait) {
 641                cache_wait_req(req, item);
 642                if (!test_bit(CACHE_PENDING, &item->flags))
 643                        return false;
 644        }
 645        dreq = req->defer(req);
 646        if (dreq == NULL)
 647                return false;
 648        setup_deferral(dreq, item, 1);
 649        if (!test_bit(CACHE_PENDING, &item->flags))
 650                /* Bit could have been cleared before we managed to
 651                 * set up the deferral, so need to revisit just in case
 652                 */
 653                cache_revisit_request(item);
 654
 655        cache_limit_defers();
 656        return true;
 657}
 658
 659static void cache_revisit_request(struct cache_head *item)
 660{
 661        struct cache_deferred_req *dreq;
 662        struct list_head pending;
 663        struct hlist_node *tmp;
 664        int hash = DFR_HASH(item);
 665
 666        INIT_LIST_HEAD(&pending);
 667        spin_lock(&cache_defer_lock);
 668
 669        hlist_for_each_entry_safe(dreq, tmp, &cache_defer_hash[hash], hash)
 670                if (dreq->item == item) {
 671                        __unhash_deferred_req(dreq);
 672                        list_add(&dreq->recent, &pending);
 673                }
 674
 675        spin_unlock(&cache_defer_lock);
 676
 677        while (!list_empty(&pending)) {
 678                dreq = list_entry(pending.next, struct cache_deferred_req, recent);
 679                list_del_init(&dreq->recent);
 680                dreq->revisit(dreq, 0);
 681        }
 682}
 683
 684void cache_clean_deferred(void *owner)
 685{
 686        struct cache_deferred_req *dreq, *tmp;
 687        struct list_head pending;
 688
 689
 690        INIT_LIST_HEAD(&pending);
 691        spin_lock(&cache_defer_lock);
 692
 693        list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
 694                if (dreq->owner == owner) {
 695                        __unhash_deferred_req(dreq);
 696                        list_add(&dreq->recent, &pending);
 697                }
 698        }
 699        spin_unlock(&cache_defer_lock);
 700
 701        while (!list_empty(&pending)) {
 702                dreq = list_entry(pending.next, struct cache_deferred_req, recent);
 703                list_del_init(&dreq->recent);
 704                dreq->revisit(dreq, 1);
 705        }
 706}
 707
 708/*
 709 * communicate with user-space
 710 *
 711 * We have a magic /proc file - /proc/sunrpc/<cachename>/channel.
 712 * On read, you get a full request, or block.
 713 * On write, an update request is processed.
 714 * Poll works if anything to read, and always allows write.
 715 *
 716 * Implemented by linked list of requests.  Each open file has
 717 * a ->private that also exists in this list.  New requests are added
 718 * to the end and may wakeup and preceding readers.
 719 * New readers are added to the head.  If, on read, an item is found with
 720 * CACHE_UPCALLING clear, we free it from the list.
 721 *
 722 */
 723
 724static DEFINE_SPINLOCK(queue_lock);
 725static DEFINE_MUTEX(queue_io_mutex);
 726
 727struct cache_queue {
 728        struct list_head        list;
 729        int                     reader; /* if 0, then request */
 730};
 731struct cache_request {
 732        struct cache_queue      q;
 733        struct cache_head       *item;
 734        char                    * buf;
 735        int                     len;
 736        int                     readers;
 737};
 738struct cache_reader {
 739        struct cache_queue      q;
 740        int                     offset; /* if non-0, we have a refcnt on next request */
 741};
 742
 743static int cache_request(struct cache_detail *detail,
 744                               struct cache_request *crq)
 745{
 746        char *bp = crq->buf;
 747        int len = PAGE_SIZE;
 748
 749        detail->cache_request(detail, crq->item, &bp, &len);
 750        if (len < 0)
 751                return -EAGAIN;
 752        return PAGE_SIZE - len;
 753}
 754
 755static ssize_t cache_read(struct file *filp, char __user *buf, size_t count,
 756                          loff_t *ppos, struct cache_detail *cd)
 757{
 758        struct cache_reader *rp = filp->private_data;
 759        struct cache_request *rq;
 760        struct inode *inode = file_inode(filp);
 761        int err;
 762
 763        if (count == 0)
 764                return 0;
 765
 766        mutex_lock(&inode->i_mutex); /* protect against multiple concurrent
 767                              * readers on this file */
 768 again:
 769        spin_lock(&queue_lock);
 770        /* need to find next request */
 771        while (rp->q.list.next != &cd->queue &&
 772               list_entry(rp->q.list.next, struct cache_queue, list)
 773               ->reader) {
 774                struct list_head *next = rp->q.list.next;
 775                list_move(&rp->q.list, next);
 776        }
 777        if (rp->q.list.next == &cd->queue) {
 778                spin_unlock(&queue_lock);
 779                mutex_unlock(&inode->i_mutex);
 780                WARN_ON_ONCE(rp->offset);
 781                return 0;
 782        }
 783        rq = container_of(rp->q.list.next, struct cache_request, q.list);
 784        WARN_ON_ONCE(rq->q.reader);
 785        if (rp->offset == 0)
 786                rq->readers++;
 787        spin_unlock(&queue_lock);
 788
 789        if (rq->len == 0) {
 790                err = cache_request(cd, rq);
 791                if (err < 0)
 792                        goto out;
 793                rq->len = err;
 794        }
 795
 796        if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
 797                err = -EAGAIN;
 798                spin_lock(&queue_lock);
 799                list_move(&rp->q.list, &rq->q.list);
 800                spin_unlock(&queue_lock);
 801        } else {
 802                if (rp->offset + count > rq->len)
 803                        count = rq->len - rp->offset;
 804                err = -EFAULT;
 805                if (copy_to_user(buf, rq->buf + rp->offset, count))
 806                        goto out;
 807                rp->offset += count;
 808                if (rp->offset >= rq->len) {
 809                        rp->offset = 0;
 810                        spin_lock(&queue_lock);
 811                        list_move(&rp->q.list, &rq->q.list);
 812                        spin_unlock(&queue_lock);
 813                }
 814                err = 0;
 815        }
 816 out:
 817        if (rp->offset == 0) {
 818                /* need to release rq */
 819                spin_lock(&queue_lock);
 820                rq->readers--;
 821                if (rq->readers == 0 &&
 822                    !test_bit(CACHE_PENDING, &rq->item->flags)) {
 823                        list_del(&rq->q.list);
 824                        spin_unlock(&queue_lock);
 825                        cache_put(rq->item, cd);
 826                        kfree(rq->buf);
 827                        kfree(rq);
 828                } else
 829                        spin_unlock(&queue_lock);
 830        }
 831        if (err == -EAGAIN)
 832                goto again;
 833        mutex_unlock(&inode->i_mutex);
 834        return err ? err :  count;
 835}
 836
 837static ssize_t cache_do_downcall(char *kaddr, const char __user *buf,
 838                                 size_t count, struct cache_detail *cd)
 839{
 840        ssize_t ret;
 841
 842        if (count == 0)
 843                return -EINVAL;
 844        if (copy_from_user(kaddr, buf, count))
 845                return -EFAULT;
 846        kaddr[count] = '\0';
 847        ret = cd->cache_parse(cd, kaddr, count);
 848        if (!ret)
 849                ret = count;
 850        return ret;
 851}
 852
 853static ssize_t cache_slow_downcall(const char __user *buf,
 854                                   size_t count, struct cache_detail *cd)
 855{
 856        static char write_buf[8192]; /* protected by queue_io_mutex */
 857        ssize_t ret = -EINVAL;
 858
 859        if (count >= sizeof(write_buf))
 860                goto out;
 861        mutex_lock(&queue_io_mutex);
 862        ret = cache_do_downcall(write_buf, buf, count, cd);
 863        mutex_unlock(&queue_io_mutex);
 864out:
 865        return ret;
 866}
 867
 868static ssize_t cache_downcall(struct address_space *mapping,
 869                              const char __user *buf,
 870                              size_t count, struct cache_detail *cd)
 871{
 872        struct page *page;
 873        char *kaddr;
 874        ssize_t ret = -ENOMEM;
 875
 876        if (count >= PAGE_CACHE_SIZE)
 877                goto out_slow;
 878
 879        page = find_or_create_page(mapping, 0, GFP_KERNEL);
 880        if (!page)
 881                goto out_slow;
 882
 883        kaddr = kmap(page);
 884        ret = cache_do_downcall(kaddr, buf, count, cd);
 885        kunmap(page);
 886        unlock_page(page);
 887        page_cache_release(page);
 888        return ret;
 889out_slow:
 890        return cache_slow_downcall(buf, count, cd);
 891}
 892
 893static ssize_t cache_write(struct file *filp, const char __user *buf,
 894                           size_t count, loff_t *ppos,
 895                           struct cache_detail *cd)
 896{
 897        struct address_space *mapping = filp->f_mapping;
 898        struct inode *inode = file_inode(filp);
 899        ssize_t ret = -EINVAL;
 900
 901        if (!cd->cache_parse)
 902                goto out;
 903
 904        mutex_lock(&inode->i_mutex);
 905        ret = cache_downcall(mapping, buf, count, cd);
 906        mutex_unlock(&inode->i_mutex);
 907out:
 908        return ret;
 909}
 910
 911static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
 912
 913static unsigned int cache_poll(struct file *filp, poll_table *wait,
 914                               struct cache_detail *cd)
 915{
 916        unsigned int mask;
 917        struct cache_reader *rp = filp->private_data;
 918        struct cache_queue *cq;
 919
 920        poll_wait(filp, &queue_wait, wait);
 921
 922        /* alway allow write */
 923        mask = POLL_OUT | POLLWRNORM;
 924
 925        if (!rp)
 926                return mask;
 927
 928        spin_lock(&queue_lock);
 929
 930        for (cq= &rp->q; &cq->list != &cd->queue;
 931             cq = list_entry(cq->list.next, struct cache_queue, list))
 932                if (!cq->reader) {
 933                        mask |= POLLIN | POLLRDNORM;
 934                        break;
 935                }
 936        spin_unlock(&queue_lock);
 937        return mask;
 938}
 939
 940static int cache_ioctl(struct inode *ino, struct file *filp,
 941                       unsigned int cmd, unsigned long arg,
 942                       struct cache_detail *cd)
 943{
 944        int len = 0;
 945        struct cache_reader *rp = filp->private_data;
 946        struct cache_queue *cq;
 947
 948        if (cmd != FIONREAD || !rp)
 949                return -EINVAL;
 950
 951        spin_lock(&queue_lock);
 952
 953        /* only find the length remaining in current request,
 954         * or the length of the next request
 955         */
 956        for (cq= &rp->q; &cq->list != &cd->queue;
 957             cq = list_entry(cq->list.next, struct cache_queue, list))
 958                if (!cq->reader) {
 959                        struct cache_request *cr =
 960                                container_of(cq, struct cache_request, q);
 961                        len = cr->len - rp->offset;
 962                        break;
 963                }
 964        spin_unlock(&queue_lock);
 965
 966        return put_user(len, (int __user *)arg);
 967}
 968
 969static int cache_open(struct inode *inode, struct file *filp,
 970                      struct cache_detail *cd)
 971{
 972        struct cache_reader *rp = NULL;
 973
 974        if (!cd || !try_module_get(cd->owner))
 975                return -EACCES;
 976        nonseekable_open(inode, filp);
 977        if (filp->f_mode & FMODE_READ) {
 978                rp = kmalloc(sizeof(*rp), GFP_KERNEL);
 979                if (!rp) {
 980                        module_put(cd->owner);
 981                        return -ENOMEM;
 982                }
 983                rp->offset = 0;
 984                rp->q.reader = 1;
 985                atomic_inc(&cd->readers);
 986                spin_lock(&queue_lock);
 987                list_add(&rp->q.list, &cd->queue);
 988                spin_unlock(&queue_lock);
 989        }
 990        filp->private_data = rp;
 991        return 0;
 992}
 993
 994static int cache_release(struct inode *inode, struct file *filp,
 995                         struct cache_detail *cd)
 996{
 997        struct cache_reader *rp = filp->private_data;
 998
 999        if (rp) {
1000                spin_lock(&queue_lock);
1001                if (rp->offset) {
1002                        struct cache_queue *cq;
1003                        for (cq= &rp->q; &cq->list != &cd->queue;
1004                             cq = list_entry(cq->list.next, struct cache_queue, list))
1005                                if (!cq->reader) {
1006                                        container_of(cq, struct cache_request, q)
1007                                                ->readers--;
1008                                        break;
1009                                }
1010                        rp->offset = 0;
1011                }
1012                list_del(&rp->q.list);
1013                spin_unlock(&queue_lock);
1014
1015                filp->private_data = NULL;
1016                kfree(rp);
1017
1018                cd->last_close = seconds_since_boot();
1019                atomic_dec(&cd->readers);
1020        }
1021        module_put(cd->owner);
1022        return 0;
1023}
1024
1025
1026
1027static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch)
1028{
1029        struct cache_queue *cq, *tmp;
1030        struct cache_request *cr;
1031        struct list_head dequeued;
1032
1033        INIT_LIST_HEAD(&dequeued);
1034        spin_lock(&queue_lock);
1035        list_for_each_entry_safe(cq, tmp, &detail->queue, list)
1036                if (!cq->reader) {
1037                        cr = container_of(cq, struct cache_request, q);
1038                        if (cr->item != ch)
1039                                continue;
1040                        if (test_bit(CACHE_PENDING, &ch->flags))
1041                                /* Lost a race and it is pending again */
1042                                break;
1043                        if (cr->readers != 0)
1044                                continue;
1045                        list_move(&cr->q.list, &dequeued);
1046                }
1047        spin_unlock(&queue_lock);
1048        while (!list_empty(&dequeued)) {
1049                cr = list_entry(dequeued.next, struct cache_request, q.list);
1050                list_del(&cr->q.list);
1051                cache_put(cr->item, detail);
1052                kfree(cr->buf);
1053                kfree(cr);
1054        }
1055}
1056
1057/*
1058 * Support routines for text-based upcalls.
1059 * Fields are separated by spaces.
1060 * Fields are either mangled to quote space tab newline slosh with slosh
1061 * or a hexified with a leading \x
1062 * Record is terminated with newline.
1063 *
1064 */
1065
1066void qword_add(char **bpp, int *lp, char *str)
1067{
1068        char *bp = *bpp;
1069        int len = *lp;
1070        char c;
1071
1072        if (len < 0) return;
1073
1074        while ((c=*str++) && len)
1075                switch(c) {
1076                case ' ':
1077                case '\t':
1078                case '\n':
1079                case '\\':
1080                        if (len >= 4) {
1081                                *bp++ = '\\';
1082                                *bp++ = '0' + ((c & 0300)>>6);
1083                                *bp++ = '0' + ((c & 0070)>>3);
1084                                *bp++ = '0' + ((c & 0007)>>0);
1085                        }
1086                        len -= 4;
1087                        break;
1088                default:
1089                        *bp++ = c;
1090                        len--;
1091                }
1092        if (c || len <1) len = -1;
1093        else {
1094                *bp++ = ' ';
1095                len--;
1096        }
1097        *bpp = bp;
1098        *lp = len;
1099}
1100EXPORT_SYMBOL_GPL(qword_add);
1101
1102void qword_addhex(char **bpp, int *lp, char *buf, int blen)
1103{
1104        char *bp = *bpp;
1105        int len = *lp;
1106
1107        if (len < 0) return;
1108
1109        if (len > 2) {
1110                *bp++ = '\\';
1111                *bp++ = 'x';
1112                len -= 2;
1113                while (blen && len >= 2) {
1114                        bp = hex_byte_pack(bp, *buf++);
1115                        len -= 2;
1116                        blen--;
1117                }
1118        }
1119        if (blen || len<1) len = -1;
1120        else {
1121                *bp++ = ' ';
1122                len--;
1123        }
1124        *bpp = bp;
1125        *lp = len;
1126}
1127EXPORT_SYMBOL_GPL(qword_addhex);
1128
1129static void warn_no_listener(struct cache_detail *detail)
1130{
1131        if (detail->last_warn != detail->last_close) {
1132                detail->last_warn = detail->last_close;
1133                if (detail->warn_no_listener)
1134                        detail->warn_no_listener(detail, detail->last_close != 0);
1135        }
1136}
1137
1138static bool cache_listeners_exist(struct cache_detail *detail)
1139{
1140        if (atomic_read(&detail->readers))
1141                return true;
1142        if (detail->last_close == 0)
1143                /* This cache was never opened */
1144                return false;
1145        if (detail->last_close < seconds_since_boot() - 30)
1146                /*
1147                 * We allow for the possibility that someone might
1148                 * restart a userspace daemon without restarting the
1149                 * server; but after 30 seconds, we give up.
1150                 */
1151                 return false;
1152        return true;
1153}
1154
1155/*
1156 * register an upcall request to user-space and queue it up for read() by the
1157 * upcall daemon.
1158 *
1159 * Each request is at most one page long.
1160 */
1161int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h)
1162{
1163
1164        char *buf;
1165        struct cache_request *crq;
1166        int ret = 0;
1167
1168        if (!detail->cache_request)
1169                return -EINVAL;
1170
1171        if (!cache_listeners_exist(detail)) {
1172                warn_no_listener(detail);
1173                return -EINVAL;
1174        }
1175        if (test_bit(CACHE_CLEANED, &h->flags))
1176                /* Too late to make an upcall */
1177                return -EAGAIN;
1178
1179        buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1180        if (!buf)
1181                return -EAGAIN;
1182
1183        crq = kmalloc(sizeof (*crq), GFP_KERNEL);
1184        if (!crq) {
1185                kfree(buf);
1186                return -EAGAIN;
1187        }
1188
1189        crq->q.reader = 0;
1190        crq->item = cache_get(h);
1191        crq->buf = buf;
1192        crq->len = 0;
1193        crq->readers = 0;
1194        spin_lock(&queue_lock);
1195        if (test_bit(CACHE_PENDING, &h->flags))
1196                list_add_tail(&crq->q.list, &detail->queue);
1197        else
1198                /* Lost a race, no longer PENDING, so don't enqueue */
1199                ret = -EAGAIN;
1200        spin_unlock(&queue_lock);
1201        wake_up(&queue_wait);
1202        if (ret == -EAGAIN) {
1203                kfree(buf);
1204                kfree(crq);
1205        }
1206        return ret;
1207}
1208EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall);
1209
1210/*
1211 * parse a message from user-space and pass it
1212 * to an appropriate cache
1213 * Messages are, like requests, separated into fields by
1214 * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1215 *
1216 * Message is
1217 *   reply cachename expiry key ... content....
1218 *
1219 * key and content are both parsed by cache
1220 */
1221
1222int qword_get(char **bpp, char *dest, int bufsize)
1223{
1224        /* return bytes copied, or -1 on error */
1225        char *bp = *bpp;
1226        int len = 0;
1227
1228        while (*bp == ' ') bp++;
1229
1230        if (bp[0] == '\\' && bp[1] == 'x') {
1231                /* HEX STRING */
1232                bp += 2;
1233                while (len < bufsize) {
1234                        int h, l;
1235
1236                        h = hex_to_bin(bp[0]);
1237                        if (h < 0)
1238                                break;
1239
1240                        l = hex_to_bin(bp[1]);
1241                        if (l < 0)
1242                                break;
1243
1244                        *dest++ = (h << 4) | l;
1245                        bp += 2;
1246                        len++;
1247                }
1248        } else {
1249                /* text with \nnn octal quoting */
1250                while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
1251                        if (*bp == '\\' &&
1252                            isodigit(bp[1]) && (bp[1] <= '3') &&
1253                            isodigit(bp[2]) &&
1254                            isodigit(bp[3])) {
1255                                int byte = (*++bp -'0');
1256                                bp++;
1257                                byte = (byte << 3) | (*bp++ - '0');
1258                                byte = (byte << 3) | (*bp++ - '0');
1259                                *dest++ = byte;
1260                                len++;
1261                        } else {
1262                                *dest++ = *bp++;
1263                                len++;
1264                        }
1265                }
1266        }
1267
1268        if (*bp != ' ' && *bp != '\n' && *bp != '\0')
1269                return -1;
1270        while (*bp == ' ') bp++;
1271        *bpp = bp;
1272        *dest = '\0';
1273        return len;
1274}
1275EXPORT_SYMBOL_GPL(qword_get);
1276
1277
1278/*
1279 * support /proc/sunrpc/cache/$CACHENAME/content
1280 * as a seqfile.
1281 * We call ->cache_show passing NULL for the item to
1282 * get a header, then pass each real item in the cache
1283 */
1284
1285struct handle {
1286        struct cache_detail *cd;
1287};
1288
1289static void *c_start(struct seq_file *m, loff_t *pos)
1290        __acquires(cd->hash_lock)
1291{
1292        loff_t n = *pos;
1293        unsigned int hash, entry;
1294        struct cache_head *ch;
1295        struct cache_detail *cd = ((struct handle*)m->private)->cd;
1296
1297
1298        read_lock(&cd->hash_lock);
1299        if (!n--)
1300                return SEQ_START_TOKEN;
1301        hash = n >> 32;
1302        entry = n & ((1LL<<32) - 1);
1303
1304        for (ch=cd->hash_table[hash]; ch; ch=ch->next)
1305                if (!entry--)
1306                        return ch;
1307        n &= ~((1LL<<32) - 1);
1308        do {
1309                hash++;
1310                n += 1LL<<32;
1311        } while(hash < cd->hash_size &&
1312                cd->hash_table[hash]==NULL);
1313        if (hash >= cd->hash_size)
1314                return NULL;
1315        *pos = n+1;
1316        return cd->hash_table[hash];
1317}
1318
1319static void *c_next(struct seq_file *m, void *p, loff_t *pos)
1320{
1321        struct cache_head *ch = p;
1322        int hash = (*pos >> 32);
1323        struct cache_detail *cd = ((struct handle*)m->private)->cd;
1324
1325        if (p == SEQ_START_TOKEN)
1326                hash = 0;
1327        else if (ch->next == NULL) {
1328                hash++;
1329                *pos += 1LL<<32;
1330        } else {
1331                ++*pos;
1332                return ch->next;
1333        }
1334        *pos &= ~((1LL<<32) - 1);
1335        while (hash < cd->hash_size &&
1336               cd->hash_table[hash] == NULL) {
1337                hash++;
1338                *pos += 1LL<<32;
1339        }
1340        if (hash >= cd->hash_size)
1341                return NULL;
1342        ++*pos;
1343        return cd->hash_table[hash];
1344}
1345
1346static void c_stop(struct seq_file *m, void *p)
1347        __releases(cd->hash_lock)
1348{
1349        struct cache_detail *cd = ((struct handle*)m->private)->cd;
1350        read_unlock(&cd->hash_lock);
1351}
1352
1353static int c_show(struct seq_file *m, void *p)
1354{
1355        struct cache_head *cp = p;
1356        struct cache_detail *cd = ((struct handle*)m->private)->cd;
1357
1358        if (p == SEQ_START_TOKEN)
1359                return cd->cache_show(m, cd, NULL);
1360
1361        ifdebug(CACHE)
1362                seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n",
1363                           convert_to_wallclock(cp->expiry_time),
1364                           atomic_read(&cp->ref.refcount), cp->flags);
1365        cache_get(cp);
1366        if (cache_check(cd, cp, NULL))
1367                /* cache_check does a cache_put on failure */
1368                seq_printf(m, "# ");
1369        else {
1370                if (cache_is_expired(cd, cp))
1371                        seq_printf(m, "# ");
1372                cache_put(cp, cd);
1373        }
1374
1375        return cd->cache_show(m, cd, cp);
1376}
1377
1378static const struct seq_operations cache_content_op = {
1379        .start  = c_start,
1380        .next   = c_next,
1381        .stop   = c_stop,
1382        .show   = c_show,
1383};
1384
1385static int content_open(struct inode *inode, struct file *file,
1386                        struct cache_detail *cd)
1387{
1388        struct handle *han;
1389
1390        if (!cd || !try_module_get(cd->owner))
1391                return -EACCES;
1392        han = __seq_open_private(file, &cache_content_op, sizeof(*han));
1393        if (han == NULL) {
1394                module_put(cd->owner);
1395                return -ENOMEM;
1396        }
1397
1398        han->cd = cd;
1399        return 0;
1400}
1401
1402static int content_release(struct inode *inode, struct file *file,
1403                struct cache_detail *cd)
1404{
1405        int ret = seq_release_private(inode, file);
1406        module_put(cd->owner);
1407        return ret;
1408}
1409
1410static int open_flush(struct inode *inode, struct file *file,
1411                        struct cache_detail *cd)
1412{
1413        if (!cd || !try_module_get(cd->owner))
1414                return -EACCES;
1415        return nonseekable_open(inode, file);
1416}
1417
1418static int release_flush(struct inode *inode, struct file *file,
1419                        struct cache_detail *cd)
1420{
1421        module_put(cd->owner);
1422        return 0;
1423}
1424
1425static ssize_t read_flush(struct file *file, char __user *buf,
1426                          size_t count, loff_t *ppos,
1427                          struct cache_detail *cd)
1428{
1429        char tbuf[22];
1430        unsigned long p = *ppos;
1431        size_t len;
1432
1433        snprintf(tbuf, sizeof(tbuf), "%lu\n", convert_to_wallclock(cd->flush_time));
1434        len = strlen(tbuf);
1435        if (p >= len)
1436                return 0;
1437        len -= p;
1438        if (len > count)
1439                len = count;
1440        if (copy_to_user(buf, (void*)(tbuf+p), len))
1441                return -EFAULT;
1442        *ppos += len;
1443        return len;
1444}
1445
1446static ssize_t write_flush(struct file *file, const char __user *buf,
1447                           size_t count, loff_t *ppos,
1448                           struct cache_detail *cd)
1449{
1450        char tbuf[20];
1451        char *bp, *ep;
1452
1453        if (*ppos || count > sizeof(tbuf)-1)
1454                return -EINVAL;
1455        if (copy_from_user(tbuf, buf, count))
1456                return -EFAULT;
1457        tbuf[count] = 0;
1458        simple_strtoul(tbuf, &ep, 0);
1459        if (*ep && *ep != '\n')
1460                return -EINVAL;
1461
1462        bp = tbuf;
1463        cd->flush_time = get_expiry(&bp);
1464        cd->nextcheck = seconds_since_boot();
1465        cache_flush();
1466
1467        *ppos += count;
1468        return count;
1469}
1470
1471static ssize_t cache_read_procfs(struct file *filp, char __user *buf,
1472                                 size_t count, loff_t *ppos)
1473{
1474        struct cache_detail *cd = PDE_DATA(file_inode(filp));
1475
1476        return cache_read(filp, buf, count, ppos, cd);
1477}
1478
1479static ssize_t cache_write_procfs(struct file *filp, const char __user *buf,
1480                                  size_t count, loff_t *ppos)
1481{
1482        struct cache_detail *cd = PDE_DATA(file_inode(filp));
1483
1484        return cache_write(filp, buf, count, ppos, cd);
1485}
1486
1487static unsigned int cache_poll_procfs(struct file *filp, poll_table *wait)
1488{
1489        struct cache_detail *cd = PDE_DATA(file_inode(filp));
1490
1491        return cache_poll(filp, wait, cd);
1492}
1493
1494static long cache_ioctl_procfs(struct file *filp,
1495                               unsigned int cmd, unsigned long arg)
1496{
1497        struct inode *inode = file_inode(filp);
1498        struct cache_detail *cd = PDE_DATA(inode);
1499
1500        return cache_ioctl(inode, filp, cmd, arg, cd);
1501}
1502
1503static int cache_open_procfs(struct inode *inode, struct file *filp)
1504{
1505        struct cache_detail *cd = PDE_DATA(inode);
1506
1507        return cache_open(inode, filp, cd);
1508}
1509
1510static int cache_release_procfs(struct inode *inode, struct file *filp)
1511{
1512        struct cache_detail *cd = PDE_DATA(inode);
1513
1514        return cache_release(inode, filp, cd);
1515}
1516
1517static const struct file_operations cache_file_operations_procfs = {
1518        .owner          = THIS_MODULE,
1519        .llseek         = no_llseek,
1520        .read           = cache_read_procfs,
1521        .write          = cache_write_procfs,
1522        .poll           = cache_poll_procfs,
1523        .unlocked_ioctl = cache_ioctl_procfs, /* for FIONREAD */
1524        .open           = cache_open_procfs,
1525        .release        = cache_release_procfs,
1526};
1527
1528static int content_open_procfs(struct inode *inode, struct file *filp)
1529{
1530        struct cache_detail *cd = PDE_DATA(inode);
1531
1532        return content_open(inode, filp, cd);
1533}
1534
1535static int content_release_procfs(struct inode *inode, struct file *filp)
1536{
1537        struct cache_detail *cd = PDE_DATA(inode);
1538
1539        return content_release(inode, filp, cd);
1540}
1541
1542static const struct file_operations content_file_operations_procfs = {
1543        .open           = content_open_procfs,
1544        .read           = seq_read,
1545        .llseek         = seq_lseek,
1546        .release        = content_release_procfs,
1547};
1548
1549static int open_flush_procfs(struct inode *inode, struct file *filp)
1550{
1551        struct cache_detail *cd = PDE_DATA(inode);
1552
1553        return open_flush(inode, filp, cd);
1554}
1555
1556static int release_flush_procfs(struct inode *inode, struct file *filp)
1557{
1558        struct cache_detail *cd = PDE_DATA(inode);
1559
1560        return release_flush(inode, filp, cd);
1561}
1562
1563static ssize_t read_flush_procfs(struct file *filp, char __user *buf,
1564                            size_t count, loff_t *ppos)
1565{
1566        struct cache_detail *cd = PDE_DATA(file_inode(filp));
1567
1568        return read_flush(filp, buf, count, ppos, cd);
1569}
1570
1571static ssize_t write_flush_procfs(struct file *filp,
1572                                  const char __user *buf,
1573                                  size_t count, loff_t *ppos)
1574{
1575        struct cache_detail *cd = PDE_DATA(file_inode(filp));
1576
1577        return write_flush(filp, buf, count, ppos, cd);
1578}
1579
1580static const struct file_operations cache_flush_operations_procfs = {
1581        .open           = open_flush_procfs,
1582        .read           = read_flush_procfs,
1583        .write          = write_flush_procfs,
1584        .release        = release_flush_procfs,
1585        .llseek         = no_llseek,
1586};
1587
1588static void remove_cache_proc_entries(struct cache_detail *cd, struct net *net)
1589{
1590        struct sunrpc_net *sn;
1591
1592        if (cd->u.procfs.proc_ent == NULL)
1593                return;
1594        if (cd->u.procfs.flush_ent)
1595                remove_proc_entry("flush", cd->u.procfs.proc_ent);
1596        if (cd->u.procfs.channel_ent)
1597                remove_proc_entry("channel", cd->u.procfs.proc_ent);
1598        if (cd->u.procfs.content_ent)
1599                remove_proc_entry("content", cd->u.procfs.proc_ent);
1600        cd->u.procfs.proc_ent = NULL;
1601        sn = net_generic(net, sunrpc_net_id);
1602        remove_proc_entry(cd->name, sn->proc_net_rpc);
1603}
1604
1605#ifdef CONFIG_PROC_FS
1606static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1607{
1608        struct proc_dir_entry *p;
1609        struct sunrpc_net *sn;
1610
1611        sn = net_generic(net, sunrpc_net_id);
1612        cd->u.procfs.proc_ent = proc_mkdir(cd->name, sn->proc_net_rpc);
1613        if (cd->u.procfs.proc_ent == NULL)
1614                goto out_nomem;
1615        cd->u.procfs.channel_ent = NULL;
1616        cd->u.procfs.content_ent = NULL;
1617
1618        p = proc_create_data("flush", S_IFREG|S_IRUSR|S_IWUSR,
1619                             cd->u.procfs.proc_ent,
1620                             &cache_flush_operations_procfs, cd);
1621        cd->u.procfs.flush_ent = p;
1622        if (p == NULL)
1623                goto out_nomem;
1624
1625        if (cd->cache_request || cd->cache_parse) {
1626                p = proc_create_data("channel", S_IFREG|S_IRUSR|S_IWUSR,
1627                                     cd->u.procfs.proc_ent,
1628                                     &cache_file_operations_procfs, cd);
1629                cd->u.procfs.channel_ent = p;
1630                if (p == NULL)
1631                        goto out_nomem;
1632        }
1633        if (cd->cache_show) {
1634                p = proc_create_data("content", S_IFREG|S_IRUSR,
1635                                cd->u.procfs.proc_ent,
1636                                &content_file_operations_procfs, cd);
1637                cd->u.procfs.content_ent = p;
1638                if (p == NULL)
1639                        goto out_nomem;
1640        }
1641        return 0;
1642out_nomem:
1643        remove_cache_proc_entries(cd, net);
1644        return -ENOMEM;
1645}
1646#else /* CONFIG_PROC_FS */
1647static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1648{
1649        return 0;
1650}
1651#endif
1652
1653void __init cache_initialize(void)
1654{
1655        INIT_DEFERRABLE_WORK(&cache_cleaner, do_cache_clean);
1656}
1657
1658int cache_register_net(struct cache_detail *cd, struct net *net)
1659{
1660        int ret;
1661
1662        sunrpc_init_cache_detail(cd);
1663        ret = create_cache_proc_entries(cd, net);
1664        if (ret)
1665                sunrpc_destroy_cache_detail(cd);
1666        return ret;
1667}
1668EXPORT_SYMBOL_GPL(cache_register_net);
1669
1670void cache_unregister_net(struct cache_detail *cd, struct net *net)
1671{
1672        remove_cache_proc_entries(cd, net);
1673        sunrpc_destroy_cache_detail(cd);
1674}
1675EXPORT_SYMBOL_GPL(cache_unregister_net);
1676
1677struct cache_detail *cache_create_net(struct cache_detail *tmpl, struct net *net)
1678{
1679        struct cache_detail *cd;
1680
1681        cd = kmemdup(tmpl, sizeof(struct cache_detail), GFP_KERNEL);
1682        if (cd == NULL)
1683                return ERR_PTR(-ENOMEM);
1684
1685        cd->hash_table = kzalloc(cd->hash_size * sizeof(struct cache_head *),
1686                                 GFP_KERNEL);
1687        if (cd->hash_table == NULL) {
1688                kfree(cd);
1689                return ERR_PTR(-ENOMEM);
1690        }
1691        cd->net = net;
1692        return cd;
1693}
1694EXPORT_SYMBOL_GPL(cache_create_net);
1695
1696void cache_destroy_net(struct cache_detail *cd, struct net *net)
1697{
1698        kfree(cd->hash_table);
1699        kfree(cd);
1700}
1701EXPORT_SYMBOL_GPL(cache_destroy_net);
1702
1703static ssize_t cache_read_pipefs(struct file *filp, char __user *buf,
1704                                 size_t count, loff_t *ppos)
1705{
1706        struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1707
1708        return cache_read(filp, buf, count, ppos, cd);
1709}
1710
1711static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf,
1712                                  size_t count, loff_t *ppos)
1713{
1714        struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1715
1716        return cache_write(filp, buf, count, ppos, cd);
1717}
1718
1719static unsigned int cache_poll_pipefs(struct file *filp, poll_table *wait)
1720{
1721        struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1722
1723        return cache_poll(filp, wait, cd);
1724}
1725
1726static long cache_ioctl_pipefs(struct file *filp,
1727                              unsigned int cmd, unsigned long arg)
1728{
1729        struct inode *inode = file_inode(filp);
1730        struct cache_detail *cd = RPC_I(inode)->private;
1731
1732        return cache_ioctl(inode, filp, cmd, arg, cd);
1733}
1734
1735static int cache_open_pipefs(struct inode *inode, struct file *filp)
1736{
1737        struct cache_detail *cd = RPC_I(inode)->private;
1738
1739        return cache_open(inode, filp, cd);
1740}
1741
1742static int cache_release_pipefs(struct inode *inode, struct file *filp)
1743{
1744        struct cache_detail *cd = RPC_I(inode)->private;
1745
1746        return cache_release(inode, filp, cd);
1747}
1748
1749const struct file_operations cache_file_operations_pipefs = {
1750        .owner          = THIS_MODULE,
1751        .llseek         = no_llseek,
1752        .read           = cache_read_pipefs,
1753        .write          = cache_write_pipefs,
1754        .poll           = cache_poll_pipefs,
1755        .unlocked_ioctl = cache_ioctl_pipefs, /* for FIONREAD */
1756        .open           = cache_open_pipefs,
1757        .release        = cache_release_pipefs,
1758};
1759
1760static int content_open_pipefs(struct inode *inode, struct file *filp)
1761{
1762        struct cache_detail *cd = RPC_I(inode)->private;
1763
1764        return content_open(inode, filp, cd);
1765}
1766
1767static int content_release_pipefs(struct inode *inode, struct file *filp)
1768{
1769        struct cache_detail *cd = RPC_I(inode)->private;
1770
1771        return content_release(inode, filp, cd);
1772}
1773
1774const struct file_operations content_file_operations_pipefs = {
1775        .open           = content_open_pipefs,
1776        .read           = seq_read,
1777        .llseek         = seq_lseek,
1778        .release        = content_release_pipefs,
1779};
1780
1781static int open_flush_pipefs(struct inode *inode, struct file *filp)
1782{
1783        struct cache_detail *cd = RPC_I(inode)->private;
1784
1785        return open_flush(inode, filp, cd);
1786}
1787
1788static int release_flush_pipefs(struct inode *inode, struct file *filp)
1789{
1790        struct cache_detail *cd = RPC_I(inode)->private;
1791
1792        return release_flush(inode, filp, cd);
1793}
1794
1795static ssize_t read_flush_pipefs(struct file *filp, char __user *buf,
1796                            size_t count, loff_t *ppos)
1797{
1798        struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1799
1800        return read_flush(filp, buf, count, ppos, cd);
1801}
1802
1803static ssize_t write_flush_pipefs(struct file *filp,
1804                                  const char __user *buf,
1805                                  size_t count, loff_t *ppos)
1806{
1807        struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1808
1809        return write_flush(filp, buf, count, ppos, cd);
1810}
1811
1812const struct file_operations cache_flush_operations_pipefs = {
1813        .open           = open_flush_pipefs,
1814        .read           = read_flush_pipefs,
1815        .write          = write_flush_pipefs,
1816        .release        = release_flush_pipefs,
1817        .llseek         = no_llseek,
1818};
1819
1820int sunrpc_cache_register_pipefs(struct dentry *parent,
1821                                 const char *name, umode_t umode,
1822                                 struct cache_detail *cd)
1823{
1824        struct dentry *dir = rpc_create_cache_dir(parent, name, umode, cd);
1825        if (IS_ERR(dir))
1826                return PTR_ERR(dir);
1827        cd->u.pipefs.dir = dir;
1828        return 0;
1829}
1830EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs);
1831
1832void sunrpc_cache_unregister_pipefs(struct cache_detail *cd)
1833{
1834        rpc_remove_cache_dir(cd->u.pipefs.dir);
1835        cd->u.pipefs.dir = NULL;
1836}
1837EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs);
1838
1839