linux/security/security.c
<<
>>
Prefs
   1/*
   2 * Security plug functions
   3 *
   4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
   5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
   6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
   7 *
   8 *      This program is free software; you can redistribute it and/or modify
   9 *      it under the terms of the GNU General Public License as published by
  10 *      the Free Software Foundation; either version 2 of the License, or
  11 *      (at your option) any later version.
  12 */
  13
  14#include <linux/capability.h>
  15#include <linux/dcache.h>
  16#include <linux/module.h>
  17#include <linux/init.h>
  18#include <linux/kernel.h>
  19#include <linux/security.h>
  20#include <linux/integrity.h>
  21#include <linux/ima.h>
  22#include <linux/evm.h>
  23#include <linux/fsnotify.h>
  24#include <linux/mman.h>
  25#include <linux/mount.h>
  26#include <linux/personality.h>
  27#include <linux/backing-dev.h>
  28#include <net/flow.h>
  29
  30#define MAX_LSM_EVM_XATTR       2
  31
  32/* Boot-time LSM user choice */
  33static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
  34        CONFIG_DEFAULT_SECURITY;
  35
  36static struct security_operations *security_ops;
  37static struct security_operations default_security_ops = {
  38        .name   = "default",
  39};
  40
  41static inline int __init verify(struct security_operations *ops)
  42{
  43        /* verify the security_operations structure exists */
  44        if (!ops)
  45                return -EINVAL;
  46        security_fixup_ops(ops);
  47        return 0;
  48}
  49
  50static void __init do_security_initcalls(void)
  51{
  52        initcall_t *call;
  53        call = __security_initcall_start;
  54        while (call < __security_initcall_end) {
  55                (*call) ();
  56                call++;
  57        }
  58}
  59
  60/**
  61 * security_init - initializes the security framework
  62 *
  63 * This should be called early in the kernel initialization sequence.
  64 */
  65int __init security_init(void)
  66{
  67        printk(KERN_INFO "Security Framework initialized\n");
  68
  69        security_fixup_ops(&default_security_ops);
  70        security_ops = &default_security_ops;
  71        do_security_initcalls();
  72
  73        return 0;
  74}
  75
  76void reset_security_ops(void)
  77{
  78        security_ops = &default_security_ops;
  79}
  80
  81/* Save user chosen LSM */
  82static int __init choose_lsm(char *str)
  83{
  84        strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
  85        return 1;
  86}
  87__setup("security=", choose_lsm);
  88
  89/**
  90 * security_module_enable - Load given security module on boot ?
  91 * @ops: a pointer to the struct security_operations that is to be checked.
  92 *
  93 * Each LSM must pass this method before registering its own operations
  94 * to avoid security registration races. This method may also be used
  95 * to check if your LSM is currently loaded during kernel initialization.
  96 *
  97 * Return true if:
  98 *      -The passed LSM is the one chosen by user at boot time,
  99 *      -or the passed LSM is configured as the default and the user did not
 100 *       choose an alternate LSM at boot time.
 101 * Otherwise, return false.
 102 */
 103int __init security_module_enable(struct security_operations *ops)
 104{
 105        return !strcmp(ops->name, chosen_lsm);
 106}
 107
 108/**
 109 * register_security - registers a security framework with the kernel
 110 * @ops: a pointer to the struct security_options that is to be registered
 111 *
 112 * This function allows a security module to register itself with the
 113 * kernel security subsystem.  Some rudimentary checking is done on the @ops
 114 * value passed to this function. You'll need to check first if your LSM
 115 * is allowed to register its @ops by calling security_module_enable(@ops).
 116 *
 117 * If there is already a security module registered with the kernel,
 118 * an error will be returned.  Otherwise %0 is returned on success.
 119 */
 120int __init register_security(struct security_operations *ops)
 121{
 122        if (verify(ops)) {
 123                printk(KERN_DEBUG "%s could not verify "
 124                       "security_operations structure.\n", __func__);
 125                return -EINVAL;
 126        }
 127
 128        if (security_ops != &default_security_ops)
 129                return -EAGAIN;
 130
 131        security_ops = ops;
 132
 133        return 0;
 134}
 135
 136/* Security operations */
 137
 138int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
 139{
 140#ifdef CONFIG_SECURITY_YAMA_STACKED
 141        int rc;
 142        rc = yama_ptrace_access_check(child, mode);
 143        if (rc)
 144                return rc;
 145#endif
 146        return security_ops->ptrace_access_check(child, mode);
 147}
 148
 149int security_ptrace_traceme(struct task_struct *parent)
 150{
 151#ifdef CONFIG_SECURITY_YAMA_STACKED
 152        int rc;
 153        rc = yama_ptrace_traceme(parent);
 154        if (rc)
 155                return rc;
 156#endif
 157        return security_ops->ptrace_traceme(parent);
 158}
 159
 160int security_capget(struct task_struct *target,
 161                     kernel_cap_t *effective,
 162                     kernel_cap_t *inheritable,
 163                     kernel_cap_t *permitted)
 164{
 165        return security_ops->capget(target, effective, inheritable, permitted);
 166}
 167
 168int security_capset(struct cred *new, const struct cred *old,
 169                    const kernel_cap_t *effective,
 170                    const kernel_cap_t *inheritable,
 171                    const kernel_cap_t *permitted)
 172{
 173        return security_ops->capset(new, old,
 174                                    effective, inheritable, permitted);
 175}
 176
 177int security_capable(const struct cred *cred, struct user_namespace *ns,
 178                     int cap)
 179{
 180        return security_ops->capable(cred, ns, cap, SECURITY_CAP_AUDIT);
 181}
 182
 183int security_capable_noaudit(const struct cred *cred, struct user_namespace *ns,
 184                             int cap)
 185{
 186        return security_ops->capable(cred, ns, cap, SECURITY_CAP_NOAUDIT);
 187}
 188
 189int security_quotactl(int cmds, int type, int id, struct super_block *sb)
 190{
 191        return security_ops->quotactl(cmds, type, id, sb);
 192}
 193
 194int security_quota_on(struct dentry *dentry)
 195{
 196        return security_ops->quota_on(dentry);
 197}
 198
 199int security_syslog(int type)
 200{
 201        return security_ops->syslog(type);
 202}
 203
 204int security_settime(const struct timespec *ts, const struct timezone *tz)
 205{
 206        return security_ops->settime(ts, tz);
 207}
 208
 209int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
 210{
 211        return security_ops->vm_enough_memory(mm, pages);
 212}
 213
 214int security_bprm_set_creds(struct linux_binprm *bprm)
 215{
 216        return security_ops->bprm_set_creds(bprm);
 217}
 218
 219int security_bprm_check(struct linux_binprm *bprm)
 220{
 221        int ret;
 222
 223        ret = security_ops->bprm_check_security(bprm);
 224        if (ret)
 225                return ret;
 226        return ima_bprm_check(bprm);
 227}
 228
 229void security_bprm_committing_creds(struct linux_binprm *bprm)
 230{
 231        security_ops->bprm_committing_creds(bprm);
 232}
 233
 234void security_bprm_committed_creds(struct linux_binprm *bprm)
 235{
 236        security_ops->bprm_committed_creds(bprm);
 237}
 238
 239int security_bprm_secureexec(struct linux_binprm *bprm)
 240{
 241        return security_ops->bprm_secureexec(bprm);
 242}
 243
 244int security_sb_alloc(struct super_block *sb)
 245{
 246        return security_ops->sb_alloc_security(sb);
 247}
 248
 249void security_sb_free(struct super_block *sb)
 250{
 251        security_ops->sb_free_security(sb);
 252}
 253
 254int security_sb_copy_data(char *orig, char *copy)
 255{
 256        return security_ops->sb_copy_data(orig, copy);
 257}
 258EXPORT_SYMBOL(security_sb_copy_data);
 259
 260int security_sb_remount(struct super_block *sb, void *data)
 261{
 262        return security_ops->sb_remount(sb, data);
 263}
 264
 265int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
 266{
 267        return security_ops->sb_kern_mount(sb, flags, data);
 268}
 269
 270int security_sb_show_options(struct seq_file *m, struct super_block *sb)
 271{
 272        return security_ops->sb_show_options(m, sb);
 273}
 274
 275int security_sb_statfs(struct dentry *dentry)
 276{
 277        return security_ops->sb_statfs(dentry);
 278}
 279
 280int security_sb_mount(const char *dev_name, struct path *path,
 281                       const char *type, unsigned long flags, void *data)
 282{
 283        return security_ops->sb_mount(dev_name, path, type, flags, data);
 284}
 285
 286int security_sb_umount(struct vfsmount *mnt, int flags)
 287{
 288        return security_ops->sb_umount(mnt, flags);
 289}
 290
 291int security_sb_pivotroot(struct path *old_path, struct path *new_path)
 292{
 293        return security_ops->sb_pivotroot(old_path, new_path);
 294}
 295
 296int security_sb_set_mnt_opts(struct super_block *sb,
 297                                struct security_mnt_opts *opts,
 298                                unsigned long kern_flags,
 299                                unsigned long *set_kern_flags)
 300{
 301        return security_ops->sb_set_mnt_opts(sb, opts, kern_flags,
 302                                                set_kern_flags);
 303}
 304EXPORT_SYMBOL(security_sb_set_mnt_opts);
 305
 306int security_sb_clone_mnt_opts(const struct super_block *oldsb,
 307                                struct super_block *newsb)
 308{
 309        return security_ops->sb_clone_mnt_opts(oldsb, newsb);
 310}
 311EXPORT_SYMBOL(security_sb_clone_mnt_opts);
 312
 313int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
 314{
 315        return security_ops->sb_parse_opts_str(options, opts);
 316}
 317EXPORT_SYMBOL(security_sb_parse_opts_str);
 318
 319int security_inode_alloc(struct inode *inode)
 320{
 321        inode->i_security = NULL;
 322        return security_ops->inode_alloc_security(inode);
 323}
 324
 325void security_inode_free(struct inode *inode)
 326{
 327        integrity_inode_free(inode);
 328        security_ops->inode_free_security(inode);
 329}
 330
 331int security_dentry_init_security(struct dentry *dentry, int mode,
 332                                        struct qstr *name, void **ctx,
 333                                        u32 *ctxlen)
 334{
 335        return security_ops->dentry_init_security(dentry, mode, name,
 336                                                        ctx, ctxlen);
 337}
 338EXPORT_SYMBOL(security_dentry_init_security);
 339
 340int security_inode_init_security(struct inode *inode, struct inode *dir,
 341                                 const struct qstr *qstr,
 342                                 const initxattrs initxattrs, void *fs_data)
 343{
 344        struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
 345        struct xattr *lsm_xattr, *evm_xattr, *xattr;
 346        int ret;
 347
 348        if (unlikely(IS_PRIVATE(inode)))
 349                return 0;
 350
 351        if (!initxattrs)
 352                return security_ops->inode_init_security(inode, dir, qstr,
 353                                                         NULL, NULL, NULL);
 354        memset(new_xattrs, 0, sizeof(new_xattrs));
 355        lsm_xattr = new_xattrs;
 356        ret = security_ops->inode_init_security(inode, dir, qstr,
 357                                                &lsm_xattr->name,
 358                                                &lsm_xattr->value,
 359                                                &lsm_xattr->value_len);
 360        if (ret)
 361                goto out;
 362
 363        evm_xattr = lsm_xattr + 1;
 364        ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
 365        if (ret)
 366                goto out;
 367        ret = initxattrs(inode, new_xattrs, fs_data);
 368out:
 369        for (xattr = new_xattrs; xattr->value != NULL; xattr++)
 370                kfree(xattr->value);
 371        return (ret == -EOPNOTSUPP) ? 0 : ret;
 372}
 373EXPORT_SYMBOL(security_inode_init_security);
 374
 375int security_old_inode_init_security(struct inode *inode, struct inode *dir,
 376                                     const struct qstr *qstr, const char **name,
 377                                     void **value, size_t *len)
 378{
 379        if (unlikely(IS_PRIVATE(inode)))
 380                return -EOPNOTSUPP;
 381        return security_ops->inode_init_security(inode, dir, qstr, name, value,
 382                                                 len);
 383}
 384EXPORT_SYMBOL(security_old_inode_init_security);
 385
 386#ifdef CONFIG_SECURITY_PATH
 387int security_path_mknod(struct path *dir, struct dentry *dentry, umode_t mode,
 388                        unsigned int dev)
 389{
 390        if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
 391                return 0;
 392        return security_ops->path_mknod(dir, dentry, mode, dev);
 393}
 394EXPORT_SYMBOL(security_path_mknod);
 395
 396int security_path_mkdir(struct path *dir, struct dentry *dentry, umode_t mode)
 397{
 398        if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
 399                return 0;
 400        return security_ops->path_mkdir(dir, dentry, mode);
 401}
 402EXPORT_SYMBOL(security_path_mkdir);
 403
 404int security_path_rmdir(struct path *dir, struct dentry *dentry)
 405{
 406        if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
 407                return 0;
 408        return security_ops->path_rmdir(dir, dentry);
 409}
 410
 411int security_path_unlink(struct path *dir, struct dentry *dentry)
 412{
 413        if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
 414                return 0;
 415        return security_ops->path_unlink(dir, dentry);
 416}
 417EXPORT_SYMBOL(security_path_unlink);
 418
 419int security_path_symlink(struct path *dir, struct dentry *dentry,
 420                          const char *old_name)
 421{
 422        if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
 423                return 0;
 424        return security_ops->path_symlink(dir, dentry, old_name);
 425}
 426
 427int security_path_link(struct dentry *old_dentry, struct path *new_dir,
 428                       struct dentry *new_dentry)
 429{
 430        if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
 431                return 0;
 432        return security_ops->path_link(old_dentry, new_dir, new_dentry);
 433}
 434
 435int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
 436                         struct path *new_dir, struct dentry *new_dentry,
 437                         unsigned int flags)
 438{
 439        if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
 440                     (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
 441                return 0;
 442
 443        if (flags & RENAME_EXCHANGE) {
 444                int err = security_ops->path_rename(new_dir, new_dentry,
 445                                                    old_dir, old_dentry);
 446                if (err)
 447                        return err;
 448        }
 449
 450        return security_ops->path_rename(old_dir, old_dentry, new_dir,
 451                                         new_dentry);
 452}
 453EXPORT_SYMBOL(security_path_rename);
 454
 455int security_path_truncate(struct path *path)
 456{
 457        if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
 458                return 0;
 459        return security_ops->path_truncate(path);
 460}
 461
 462int security_path_chmod(struct path *path, umode_t mode)
 463{
 464        if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
 465                return 0;
 466        return security_ops->path_chmod(path, mode);
 467}
 468
 469int security_path_chown(struct path *path, kuid_t uid, kgid_t gid)
 470{
 471        if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
 472                return 0;
 473        return security_ops->path_chown(path, uid, gid);
 474}
 475
 476int security_path_chroot(struct path *path)
 477{
 478        return security_ops->path_chroot(path);
 479}
 480#endif
 481
 482int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
 483{
 484        if (unlikely(IS_PRIVATE(dir)))
 485                return 0;
 486        return security_ops->inode_create(dir, dentry, mode);
 487}
 488EXPORT_SYMBOL_GPL(security_inode_create);
 489
 490int security_inode_link(struct dentry *old_dentry, struct inode *dir,
 491                         struct dentry *new_dentry)
 492{
 493        if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
 494                return 0;
 495        return security_ops->inode_link(old_dentry, dir, new_dentry);
 496}
 497
 498int security_inode_unlink(struct inode *dir, struct dentry *dentry)
 499{
 500        if (unlikely(IS_PRIVATE(dentry->d_inode)))
 501                return 0;
 502        return security_ops->inode_unlink(dir, dentry);
 503}
 504
 505int security_inode_symlink(struct inode *dir, struct dentry *dentry,
 506                            const char *old_name)
 507{
 508        if (unlikely(IS_PRIVATE(dir)))
 509                return 0;
 510        return security_ops->inode_symlink(dir, dentry, old_name);
 511}
 512
 513int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
 514{
 515        if (unlikely(IS_PRIVATE(dir)))
 516                return 0;
 517        return security_ops->inode_mkdir(dir, dentry, mode);
 518}
 519EXPORT_SYMBOL_GPL(security_inode_mkdir);
 520
 521int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
 522{
 523        if (unlikely(IS_PRIVATE(dentry->d_inode)))
 524                return 0;
 525        return security_ops->inode_rmdir(dir, dentry);
 526}
 527
 528int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
 529{
 530        if (unlikely(IS_PRIVATE(dir)))
 531                return 0;
 532        return security_ops->inode_mknod(dir, dentry, mode, dev);
 533}
 534
 535int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
 536                           struct inode *new_dir, struct dentry *new_dentry,
 537                           unsigned int flags)
 538{
 539        if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
 540            (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
 541                return 0;
 542
 543        if (flags & RENAME_EXCHANGE) {
 544                int err = security_ops->inode_rename(new_dir, new_dentry,
 545                                                     old_dir, old_dentry);
 546                if (err)
 547                        return err;
 548        }
 549
 550        return security_ops->inode_rename(old_dir, old_dentry,
 551                                           new_dir, new_dentry);
 552}
 553
 554int security_inode_readlink(struct dentry *dentry)
 555{
 556        if (unlikely(IS_PRIVATE(dentry->d_inode)))
 557                return 0;
 558        return security_ops->inode_readlink(dentry);
 559}
 560
 561int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
 562{
 563        if (unlikely(IS_PRIVATE(dentry->d_inode)))
 564                return 0;
 565        return security_ops->inode_follow_link(dentry, nd);
 566}
 567
 568int security_inode_permission(struct inode *inode, int mask)
 569{
 570        if (unlikely(IS_PRIVATE(inode)))
 571                return 0;
 572        return security_ops->inode_permission(inode, mask);
 573}
 574
 575int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
 576{
 577        int ret;
 578
 579        if (unlikely(IS_PRIVATE(dentry->d_inode)))
 580                return 0;
 581        ret = security_ops->inode_setattr(dentry, attr);
 582        if (ret)
 583                return ret;
 584        return evm_inode_setattr(dentry, attr);
 585}
 586EXPORT_SYMBOL_GPL(security_inode_setattr);
 587
 588int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
 589{
 590        if (unlikely(IS_PRIVATE(dentry->d_inode)))
 591                return 0;
 592        return security_ops->inode_getattr(mnt, dentry);
 593}
 594
 595int security_inode_setxattr(struct dentry *dentry, const char *name,
 596                            const void *value, size_t size, int flags)
 597{
 598        int ret;
 599
 600        if (unlikely(IS_PRIVATE(dentry->d_inode)))
 601                return 0;
 602        ret = security_ops->inode_setxattr(dentry, name, value, size, flags);
 603        if (ret)
 604                return ret;
 605        ret = ima_inode_setxattr(dentry, name, value, size);
 606        if (ret)
 607                return ret;
 608        return evm_inode_setxattr(dentry, name, value, size);
 609}
 610
 611void security_inode_post_setxattr(struct dentry *dentry, const char *name,
 612                                  const void *value, size_t size, int flags)
 613{
 614        if (unlikely(IS_PRIVATE(dentry->d_inode)))
 615                return;
 616        security_ops->inode_post_setxattr(dentry, name, value, size, flags);
 617        evm_inode_post_setxattr(dentry, name, value, size);
 618}
 619
 620int security_inode_getxattr(struct dentry *dentry, const char *name)
 621{
 622        if (unlikely(IS_PRIVATE(dentry->d_inode)))
 623                return 0;
 624        return security_ops->inode_getxattr(dentry, name);
 625}
 626
 627int security_inode_listxattr(struct dentry *dentry)
 628{
 629        if (unlikely(IS_PRIVATE(dentry->d_inode)))
 630                return 0;
 631        return security_ops->inode_listxattr(dentry);
 632}
 633
 634int security_inode_removexattr(struct dentry *dentry, const char *name)
 635{
 636        int ret;
 637
 638        if (unlikely(IS_PRIVATE(dentry->d_inode)))
 639                return 0;
 640        ret = security_ops->inode_removexattr(dentry, name);
 641        if (ret)
 642                return ret;
 643        ret = ima_inode_removexattr(dentry, name);
 644        if (ret)
 645                return ret;
 646        return evm_inode_removexattr(dentry, name);
 647}
 648
 649int security_inode_need_killpriv(struct dentry *dentry)
 650{
 651        return security_ops->inode_need_killpriv(dentry);
 652}
 653
 654int security_inode_killpriv(struct dentry *dentry)
 655{
 656        return security_ops->inode_killpriv(dentry);
 657}
 658
 659int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
 660{
 661        if (unlikely(IS_PRIVATE(inode)))
 662                return -EOPNOTSUPP;
 663        return security_ops->inode_getsecurity(inode, name, buffer, alloc);
 664}
 665
 666int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
 667{
 668        if (unlikely(IS_PRIVATE(inode)))
 669                return -EOPNOTSUPP;
 670        return security_ops->inode_setsecurity(inode, name, value, size, flags);
 671}
 672
 673int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
 674{
 675        if (unlikely(IS_PRIVATE(inode)))
 676                return 0;
 677        return security_ops->inode_listsecurity(inode, buffer, buffer_size);
 678}
 679EXPORT_SYMBOL(security_inode_listsecurity);
 680
 681void security_inode_getsecid(const struct inode *inode, u32 *secid)
 682{
 683        security_ops->inode_getsecid(inode, secid);
 684}
 685
 686int security_file_permission(struct file *file, int mask)
 687{
 688        int ret;
 689
 690        ret = security_ops->file_permission(file, mask);
 691        if (ret)
 692                return ret;
 693
 694        return fsnotify_perm(file, mask);
 695}
 696
 697int security_file_alloc(struct file *file)
 698{
 699        return security_ops->file_alloc_security(file);
 700}
 701
 702void security_file_free(struct file *file)
 703{
 704        security_ops->file_free_security(file);
 705}
 706
 707int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
 708{
 709        return security_ops->file_ioctl(file, cmd, arg);
 710}
 711
 712static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
 713{
 714        /*
 715         * Does we have PROT_READ and does the application expect
 716         * it to imply PROT_EXEC?  If not, nothing to talk about...
 717         */
 718        if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
 719                return prot;
 720        if (!(current->personality & READ_IMPLIES_EXEC))
 721                return prot;
 722        /*
 723         * if that's an anonymous mapping, let it.
 724         */
 725        if (!file)
 726                return prot | PROT_EXEC;
 727        /*
 728         * ditto if it's not on noexec mount, except that on !MMU we need
 729         * BDI_CAP_EXEC_MMAP (== VM_MAYEXEC) in this case
 730         */
 731        if (!(file->f_path.mnt->mnt_flags & MNT_NOEXEC)) {
 732#ifndef CONFIG_MMU
 733                unsigned long caps = 0;
 734                struct address_space *mapping = file->f_mapping;
 735                if (mapping && mapping->backing_dev_info)
 736                        caps = mapping->backing_dev_info->capabilities;
 737                if (!(caps & BDI_CAP_EXEC_MAP))
 738                        return prot;
 739#endif
 740                return prot | PROT_EXEC;
 741        }
 742        /* anything on noexec mount won't get PROT_EXEC */
 743        return prot;
 744}
 745
 746int security_mmap_file(struct file *file, unsigned long prot,
 747                        unsigned long flags)
 748{
 749        int ret;
 750        ret = security_ops->mmap_file(file, prot,
 751                                        mmap_prot(file, prot), flags);
 752        if (ret)
 753                return ret;
 754        return ima_file_mmap(file, prot);
 755}
 756
 757int security_mmap_addr(unsigned long addr)
 758{
 759        return security_ops->mmap_addr(addr);
 760}
 761
 762int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
 763                            unsigned long prot)
 764{
 765        return security_ops->file_mprotect(vma, reqprot, prot);
 766}
 767
 768int security_file_lock(struct file *file, unsigned int cmd)
 769{
 770        return security_ops->file_lock(file, cmd);
 771}
 772
 773int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
 774{
 775        return security_ops->file_fcntl(file, cmd, arg);
 776}
 777
 778int security_file_set_fowner(struct file *file)
 779{
 780        return security_ops->file_set_fowner(file);
 781}
 782
 783int security_file_send_sigiotask(struct task_struct *tsk,
 784                                  struct fown_struct *fown, int sig)
 785{
 786        return security_ops->file_send_sigiotask(tsk, fown, sig);
 787}
 788
 789int security_file_receive(struct file *file)
 790{
 791        return security_ops->file_receive(file);
 792}
 793
 794int security_file_open(struct file *file, const struct cred *cred)
 795{
 796        int ret;
 797
 798        ret = security_ops->file_open(file, cred);
 799        if (ret)
 800                return ret;
 801
 802        return fsnotify_perm(file, MAY_OPEN);
 803}
 804
 805int security_task_create(unsigned long clone_flags)
 806{
 807        return security_ops->task_create(clone_flags);
 808}
 809
 810void security_task_free(struct task_struct *task)
 811{
 812#ifdef CONFIG_SECURITY_YAMA_STACKED
 813        yama_task_free(task);
 814#endif
 815        security_ops->task_free(task);
 816}
 817
 818int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
 819{
 820        return security_ops->cred_alloc_blank(cred, gfp);
 821}
 822
 823void security_cred_free(struct cred *cred)
 824{
 825        security_ops->cred_free(cred);
 826}
 827
 828int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
 829{
 830        return security_ops->cred_prepare(new, old, gfp);
 831}
 832
 833void security_transfer_creds(struct cred *new, const struct cred *old)
 834{
 835        security_ops->cred_transfer(new, old);
 836}
 837
 838int security_kernel_act_as(struct cred *new, u32 secid)
 839{
 840        return security_ops->kernel_act_as(new, secid);
 841}
 842
 843int security_kernel_create_files_as(struct cred *new, struct inode *inode)
 844{
 845        return security_ops->kernel_create_files_as(new, inode);
 846}
 847
 848int security_kernel_fw_from_file(struct file *file, char *buf, size_t size)
 849{
 850        int ret;
 851
 852        ret = security_ops->kernel_fw_from_file(file, buf, size);
 853        if (ret)
 854                return ret;
 855        return ima_fw_from_file(file, buf, size);
 856}
 857EXPORT_SYMBOL_GPL(security_kernel_fw_from_file);
 858
 859int security_kernel_module_request(char *kmod_name)
 860{
 861        return security_ops->kernel_module_request(kmod_name);
 862}
 863
 864int security_kernel_module_from_file(struct file *file)
 865{
 866        int ret;
 867
 868        ret = security_ops->kernel_module_from_file(file);
 869        if (ret)
 870                return ret;
 871        return ima_module_check(file);
 872}
 873
 874int security_task_fix_setuid(struct cred *new, const struct cred *old,
 875                             int flags)
 876{
 877        return security_ops->task_fix_setuid(new, old, flags);
 878}
 879
 880int security_task_setpgid(struct task_struct *p, pid_t pgid)
 881{
 882        return security_ops->task_setpgid(p, pgid);
 883}
 884
 885int security_task_getpgid(struct task_struct *p)
 886{
 887        return security_ops->task_getpgid(p);
 888}
 889
 890int security_task_getsid(struct task_struct *p)
 891{
 892        return security_ops->task_getsid(p);
 893}
 894
 895void security_task_getsecid(struct task_struct *p, u32 *secid)
 896{
 897        security_ops->task_getsecid(p, secid);
 898}
 899EXPORT_SYMBOL(security_task_getsecid);
 900
 901int security_task_setnice(struct task_struct *p, int nice)
 902{
 903        return security_ops->task_setnice(p, nice);
 904}
 905
 906int security_task_setioprio(struct task_struct *p, int ioprio)
 907{
 908        return security_ops->task_setioprio(p, ioprio);
 909}
 910
 911int security_task_getioprio(struct task_struct *p)
 912{
 913        return security_ops->task_getioprio(p);
 914}
 915
 916int security_task_setrlimit(struct task_struct *p, unsigned int resource,
 917                struct rlimit *new_rlim)
 918{
 919        return security_ops->task_setrlimit(p, resource, new_rlim);
 920}
 921
 922int security_task_setscheduler(struct task_struct *p)
 923{
 924        return security_ops->task_setscheduler(p);
 925}
 926
 927int security_task_getscheduler(struct task_struct *p)
 928{
 929        return security_ops->task_getscheduler(p);
 930}
 931
 932int security_task_movememory(struct task_struct *p)
 933{
 934        return security_ops->task_movememory(p);
 935}
 936
 937int security_task_kill(struct task_struct *p, struct siginfo *info,
 938                        int sig, u32 secid)
 939{
 940        return security_ops->task_kill(p, info, sig, secid);
 941}
 942
 943int security_task_wait(struct task_struct *p)
 944{
 945        return security_ops->task_wait(p);
 946}
 947
 948int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
 949                         unsigned long arg4, unsigned long arg5)
 950{
 951#ifdef CONFIG_SECURITY_YAMA_STACKED
 952        int rc;
 953        rc = yama_task_prctl(option, arg2, arg3, arg4, arg5);
 954        if (rc != -ENOSYS)
 955                return rc;
 956#endif
 957        return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
 958}
 959
 960void security_task_to_inode(struct task_struct *p, struct inode *inode)
 961{
 962        security_ops->task_to_inode(p, inode);
 963}
 964
 965int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
 966{
 967        return security_ops->ipc_permission(ipcp, flag);
 968}
 969
 970void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
 971{
 972        security_ops->ipc_getsecid(ipcp, secid);
 973}
 974
 975int security_msg_msg_alloc(struct msg_msg *msg)
 976{
 977        return security_ops->msg_msg_alloc_security(msg);
 978}
 979
 980void security_msg_msg_free(struct msg_msg *msg)
 981{
 982        security_ops->msg_msg_free_security(msg);
 983}
 984
 985int security_msg_queue_alloc(struct msg_queue *msq)
 986{
 987        return security_ops->msg_queue_alloc_security(msq);
 988}
 989
 990void security_msg_queue_free(struct msg_queue *msq)
 991{
 992        security_ops->msg_queue_free_security(msq);
 993}
 994
 995int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
 996{
 997        return security_ops->msg_queue_associate(msq, msqflg);
 998}
 999
1000int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
1001{
1002        return security_ops->msg_queue_msgctl(msq, cmd);
1003}
1004
1005int security_msg_queue_msgsnd(struct msg_queue *msq,
1006                               struct msg_msg *msg, int msqflg)
1007{
1008        return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
1009}
1010
1011int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
1012                               struct task_struct *target, long type, int mode)
1013{
1014        return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
1015}
1016
1017int security_shm_alloc(struct shmid_kernel *shp)
1018{
1019        return security_ops->shm_alloc_security(shp);
1020}
1021
1022void security_shm_free(struct shmid_kernel *shp)
1023{
1024        security_ops->shm_free_security(shp);
1025}
1026
1027int security_shm_associate(struct shmid_kernel *shp, int shmflg)
1028{
1029        return security_ops->shm_associate(shp, shmflg);
1030}
1031
1032int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
1033{
1034        return security_ops->shm_shmctl(shp, cmd);
1035}
1036
1037int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
1038{
1039        return security_ops->shm_shmat(shp, shmaddr, shmflg);
1040}
1041
1042int security_sem_alloc(struct sem_array *sma)
1043{
1044        return security_ops->sem_alloc_security(sma);
1045}
1046
1047void security_sem_free(struct sem_array *sma)
1048{
1049        security_ops->sem_free_security(sma);
1050}
1051
1052int security_sem_associate(struct sem_array *sma, int semflg)
1053{
1054        return security_ops->sem_associate(sma, semflg);
1055}
1056
1057int security_sem_semctl(struct sem_array *sma, int cmd)
1058{
1059        return security_ops->sem_semctl(sma, cmd);
1060}
1061
1062int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
1063                        unsigned nsops, int alter)
1064{
1065        return security_ops->sem_semop(sma, sops, nsops, alter);
1066}
1067
1068void security_d_instantiate(struct dentry *dentry, struct inode *inode)
1069{
1070        if (unlikely(inode && IS_PRIVATE(inode)))
1071                return;
1072        security_ops->d_instantiate(dentry, inode);
1073}
1074EXPORT_SYMBOL(security_d_instantiate);
1075
1076int security_getprocattr(struct task_struct *p, char *name, char **value)
1077{
1078        return security_ops->getprocattr(p, name, value);
1079}
1080
1081int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
1082{
1083        return security_ops->setprocattr(p, name, value, size);
1084}
1085
1086int security_netlink_send(struct sock *sk, struct sk_buff *skb)
1087{
1088        return security_ops->netlink_send(sk, skb);
1089}
1090
1091int security_ismaclabel(const char *name)
1092{
1093        return security_ops->ismaclabel(name);
1094}
1095EXPORT_SYMBOL(security_ismaclabel);
1096
1097int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1098{
1099        return security_ops->secid_to_secctx(secid, secdata, seclen);
1100}
1101EXPORT_SYMBOL(security_secid_to_secctx);
1102
1103int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1104{
1105        return security_ops->secctx_to_secid(secdata, seclen, secid);
1106}
1107EXPORT_SYMBOL(security_secctx_to_secid);
1108
1109void security_release_secctx(char *secdata, u32 seclen)
1110{
1111        security_ops->release_secctx(secdata, seclen);
1112}
1113EXPORT_SYMBOL(security_release_secctx);
1114
1115int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1116{
1117        return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
1118}
1119EXPORT_SYMBOL(security_inode_notifysecctx);
1120
1121int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1122{
1123        return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
1124}
1125EXPORT_SYMBOL(security_inode_setsecctx);
1126
1127int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1128{
1129        return security_ops->inode_getsecctx(inode, ctx, ctxlen);
1130}
1131EXPORT_SYMBOL(security_inode_getsecctx);
1132
1133#ifdef CONFIG_SECURITY_NETWORK
1134
1135int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1136{
1137        return security_ops->unix_stream_connect(sock, other, newsk);
1138}
1139EXPORT_SYMBOL(security_unix_stream_connect);
1140
1141int security_unix_may_send(struct socket *sock,  struct socket *other)
1142{
1143        return security_ops->unix_may_send(sock, other);
1144}
1145EXPORT_SYMBOL(security_unix_may_send);
1146
1147int security_socket_create(int family, int type, int protocol, int kern)
1148{
1149        return security_ops->socket_create(family, type, protocol, kern);
1150}
1151
1152int security_socket_post_create(struct socket *sock, int family,
1153                                int type, int protocol, int kern)
1154{
1155        return security_ops->socket_post_create(sock, family, type,
1156                                                protocol, kern);
1157}
1158
1159int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1160{
1161        return security_ops->socket_bind(sock, address, addrlen);
1162}
1163
1164int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1165{
1166        return security_ops->socket_connect(sock, address, addrlen);
1167}
1168
1169int security_socket_listen(struct socket *sock, int backlog)
1170{
1171        return security_ops->socket_listen(sock, backlog);
1172}
1173
1174int security_socket_accept(struct socket *sock, struct socket *newsock)
1175{
1176        return security_ops->socket_accept(sock, newsock);
1177}
1178
1179int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1180{
1181        return security_ops->socket_sendmsg(sock, msg, size);
1182}
1183
1184int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1185                            int size, int flags)
1186{
1187        return security_ops->socket_recvmsg(sock, msg, size, flags);
1188}
1189
1190int security_socket_getsockname(struct socket *sock)
1191{
1192        return security_ops->socket_getsockname(sock);
1193}
1194
1195int security_socket_getpeername(struct socket *sock)
1196{
1197        return security_ops->socket_getpeername(sock);
1198}
1199
1200int security_socket_getsockopt(struct socket *sock, int level, int optname)
1201{
1202        return security_ops->socket_getsockopt(sock, level, optname);
1203}
1204
1205int security_socket_setsockopt(struct socket *sock, int level, int optname)
1206{
1207        return security_ops->socket_setsockopt(sock, level, optname);
1208}
1209
1210int security_socket_shutdown(struct socket *sock, int how)
1211{
1212        return security_ops->socket_shutdown(sock, how);
1213}
1214
1215int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1216{
1217        return security_ops->socket_sock_rcv_skb(sk, skb);
1218}
1219EXPORT_SYMBOL(security_sock_rcv_skb);
1220
1221int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1222                                      int __user *optlen, unsigned len)
1223{
1224        return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
1225}
1226
1227int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1228{
1229        return security_ops->socket_getpeersec_dgram(sock, skb, secid);
1230}
1231EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1232
1233int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1234{
1235        return security_ops->sk_alloc_security(sk, family, priority);
1236}
1237
1238void security_sk_free(struct sock *sk)
1239{
1240        security_ops->sk_free_security(sk);
1241}
1242
1243void security_sk_clone(const struct sock *sk, struct sock *newsk)
1244{
1245        security_ops->sk_clone_security(sk, newsk);
1246}
1247EXPORT_SYMBOL(security_sk_clone);
1248
1249void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1250{
1251        security_ops->sk_getsecid(sk, &fl->flowi_secid);
1252}
1253EXPORT_SYMBOL(security_sk_classify_flow);
1254
1255void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1256{
1257        security_ops->req_classify_flow(req, fl);
1258}
1259EXPORT_SYMBOL(security_req_classify_flow);
1260
1261void security_sock_graft(struct sock *sk, struct socket *parent)
1262{
1263        security_ops->sock_graft(sk, parent);
1264}
1265EXPORT_SYMBOL(security_sock_graft);
1266
1267int security_inet_conn_request(struct sock *sk,
1268                        struct sk_buff *skb, struct request_sock *req)
1269{
1270        return security_ops->inet_conn_request(sk, skb, req);
1271}
1272EXPORT_SYMBOL(security_inet_conn_request);
1273
1274void security_inet_csk_clone(struct sock *newsk,
1275                        const struct request_sock *req)
1276{
1277        security_ops->inet_csk_clone(newsk, req);
1278}
1279
1280void security_inet_conn_established(struct sock *sk,
1281                        struct sk_buff *skb)
1282{
1283        security_ops->inet_conn_established(sk, skb);
1284}
1285
1286int security_secmark_relabel_packet(u32 secid)
1287{
1288        return security_ops->secmark_relabel_packet(secid);
1289}
1290EXPORT_SYMBOL(security_secmark_relabel_packet);
1291
1292void security_secmark_refcount_inc(void)
1293{
1294        security_ops->secmark_refcount_inc();
1295}
1296EXPORT_SYMBOL(security_secmark_refcount_inc);
1297
1298void security_secmark_refcount_dec(void)
1299{
1300        security_ops->secmark_refcount_dec();
1301}
1302EXPORT_SYMBOL(security_secmark_refcount_dec);
1303
1304int security_tun_dev_alloc_security(void **security)
1305{
1306        return security_ops->tun_dev_alloc_security(security);
1307}
1308EXPORT_SYMBOL(security_tun_dev_alloc_security);
1309
1310void security_tun_dev_free_security(void *security)
1311{
1312        security_ops->tun_dev_free_security(security);
1313}
1314EXPORT_SYMBOL(security_tun_dev_free_security);
1315
1316int security_tun_dev_create(void)
1317{
1318        return security_ops->tun_dev_create();
1319}
1320EXPORT_SYMBOL(security_tun_dev_create);
1321
1322int security_tun_dev_attach_queue(void *security)
1323{
1324        return security_ops->tun_dev_attach_queue(security);
1325}
1326EXPORT_SYMBOL(security_tun_dev_attach_queue);
1327
1328int security_tun_dev_attach(struct sock *sk, void *security)
1329{
1330        return security_ops->tun_dev_attach(sk, security);
1331}
1332EXPORT_SYMBOL(security_tun_dev_attach);
1333
1334int security_tun_dev_open(void *security)
1335{
1336        return security_ops->tun_dev_open(security);
1337}
1338EXPORT_SYMBOL(security_tun_dev_open);
1339
1340void security_skb_owned_by(struct sk_buff *skb, struct sock *sk)
1341{
1342        security_ops->skb_owned_by(skb, sk);
1343}
1344
1345#endif  /* CONFIG_SECURITY_NETWORK */
1346
1347#ifdef CONFIG_SECURITY_NETWORK_XFRM
1348
1349int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
1350                               struct xfrm_user_sec_ctx *sec_ctx,
1351                               gfp_t gfp)
1352{
1353        return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx, gfp);
1354}
1355EXPORT_SYMBOL(security_xfrm_policy_alloc);
1356
1357int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1358                              struct xfrm_sec_ctx **new_ctxp)
1359{
1360        return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1361}
1362
1363void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1364{
1365        security_ops->xfrm_policy_free_security(ctx);
1366}
1367EXPORT_SYMBOL(security_xfrm_policy_free);
1368
1369int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1370{
1371        return security_ops->xfrm_policy_delete_security(ctx);
1372}
1373
1374int security_xfrm_state_alloc(struct xfrm_state *x,
1375                              struct xfrm_user_sec_ctx *sec_ctx)
1376{
1377        return security_ops->xfrm_state_alloc(x, sec_ctx);
1378}
1379EXPORT_SYMBOL(security_xfrm_state_alloc);
1380
1381int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1382                                      struct xfrm_sec_ctx *polsec, u32 secid)
1383{
1384        return security_ops->xfrm_state_alloc_acquire(x, polsec, secid);
1385}
1386
1387int security_xfrm_state_delete(struct xfrm_state *x)
1388{
1389        return security_ops->xfrm_state_delete_security(x);
1390}
1391EXPORT_SYMBOL(security_xfrm_state_delete);
1392
1393void security_xfrm_state_free(struct xfrm_state *x)
1394{
1395        security_ops->xfrm_state_free_security(x);
1396}
1397
1398int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1399{
1400        return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1401}
1402
1403int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1404                                       struct xfrm_policy *xp,
1405                                       const struct flowi *fl)
1406{
1407        return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1408}
1409
1410int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1411{
1412        return security_ops->xfrm_decode_session(skb, secid, 1);
1413}
1414
1415void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1416{
1417        int rc = security_ops->xfrm_decode_session(skb, &fl->flowi_secid, 0);
1418
1419        BUG_ON(rc);
1420}
1421EXPORT_SYMBOL(security_skb_classify_flow);
1422
1423#endif  /* CONFIG_SECURITY_NETWORK_XFRM */
1424
1425#ifdef CONFIG_KEYS
1426
1427int security_key_alloc(struct key *key, const struct cred *cred,
1428                       unsigned long flags)
1429{
1430        return security_ops->key_alloc(key, cred, flags);
1431}
1432
1433void security_key_free(struct key *key)
1434{
1435        security_ops->key_free(key);
1436}
1437
1438int security_key_permission(key_ref_t key_ref,
1439                            const struct cred *cred, unsigned perm)
1440{
1441        return security_ops->key_permission(key_ref, cred, perm);
1442}
1443
1444int security_key_getsecurity(struct key *key, char **_buffer)
1445{
1446        return security_ops->key_getsecurity(key, _buffer);
1447}
1448
1449#endif  /* CONFIG_KEYS */
1450
1451#ifdef CONFIG_AUDIT
1452
1453int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1454{
1455        return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1456}
1457
1458int security_audit_rule_known(struct audit_krule *krule)
1459{
1460        return security_ops->audit_rule_known(krule);
1461}
1462
1463void security_audit_rule_free(void *lsmrule)
1464{
1465        security_ops->audit_rule_free(lsmrule);
1466}
1467
1468int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1469                              struct audit_context *actx)
1470{
1471        return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1472}
1473
1474#endif /* CONFIG_AUDIT */
1475