linux/security/selinux/hooks.c
<<
>>
Prefs
   1/*
   2 *  NSA Security-Enhanced Linux (SELinux) security module
   3 *
   4 *  This file contains the SELinux hook function implementations.
   5 *
   6 *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
   7 *            Chris Vance, <cvance@nai.com>
   8 *            Wayne Salamon, <wsalamon@nai.com>
   9 *            James Morris <jmorris@redhat.com>
  10 *
  11 *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
  12 *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
  13 *                                         Eric Paris <eparis@redhat.com>
  14 *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
  15 *                          <dgoeddel@trustedcs.com>
  16 *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
  17 *      Paul Moore <paul@paul-moore.com>
  18 *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
  19 *                     Yuichi Nakamura <ynakam@hitachisoft.jp>
  20 *
  21 *      This program is free software; you can redistribute it and/or modify
  22 *      it under the terms of the GNU General Public License version 2,
  23 *      as published by the Free Software Foundation.
  24 */
  25
  26#include <linux/init.h>
  27#include <linux/kd.h>
  28#include <linux/kernel.h>
  29#include <linux/tracehook.h>
  30#include <linux/errno.h>
  31#include <linux/sched.h>
  32#include <linux/security.h>
  33#include <linux/xattr.h>
  34#include <linux/capability.h>
  35#include <linux/unistd.h>
  36#include <linux/mm.h>
  37#include <linux/mman.h>
  38#include <linux/slab.h>
  39#include <linux/pagemap.h>
  40#include <linux/proc_fs.h>
  41#include <linux/swap.h>
  42#include <linux/spinlock.h>
  43#include <linux/syscalls.h>
  44#include <linux/dcache.h>
  45#include <linux/file.h>
  46#include <linux/fdtable.h>
  47#include <linux/namei.h>
  48#include <linux/mount.h>
  49#include <linux/netfilter_ipv4.h>
  50#include <linux/netfilter_ipv6.h>
  51#include <linux/tty.h>
  52#include <net/icmp.h>
  53#include <net/ip.h>             /* for local_port_range[] */
  54#include <net/sock.h>
  55#include <net/tcp.h>            /* struct or_callable used in sock_rcv_skb */
  56#include <net/inet_connection_sock.h>
  57#include <net/net_namespace.h>
  58#include <net/netlabel.h>
  59#include <linux/uaccess.h>
  60#include <asm/ioctls.h>
  61#include <linux/atomic.h>
  62#include <linux/bitops.h>
  63#include <linux/interrupt.h>
  64#include <linux/netdevice.h>    /* for network interface checks */
  65#include <net/netlink.h>
  66#include <linux/tcp.h>
  67#include <linux/udp.h>
  68#include <linux/dccp.h>
  69#include <linux/quota.h>
  70#include <linux/un.h>           /* for Unix socket types */
  71#include <net/af_unix.h>        /* for Unix socket types */
  72#include <linux/parser.h>
  73#include <linux/nfs_mount.h>
  74#include <net/ipv6.h>
  75#include <linux/hugetlb.h>
  76#include <linux/personality.h>
  77#include <linux/audit.h>
  78#include <linux/string.h>
  79#include <linux/selinux.h>
  80#include <linux/mutex.h>
  81#include <linux/posix-timers.h>
  82#include <linux/syslog.h>
  83#include <linux/user_namespace.h>
  84#include <linux/export.h>
  85#include <linux/msg.h>
  86#include <linux/shm.h>
  87
  88#include "avc.h"
  89#include "objsec.h"
  90#include "netif.h"
  91#include "netnode.h"
  92#include "netport.h"
  93#include "xfrm.h"
  94#include "netlabel.h"
  95#include "audit.h"
  96#include "avc_ss.h"
  97
  98extern struct security_operations *security_ops;
  99
 100/* SECMARK reference count */
 101static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
 102
 103#ifdef CONFIG_SECURITY_SELINUX_DEVELOP
 104int selinux_enforcing;
 105
 106static int __init enforcing_setup(char *str)
 107{
 108        unsigned long enforcing;
 109        if (!kstrtoul(str, 0, &enforcing))
 110                selinux_enforcing = enforcing ? 1 : 0;
 111        return 1;
 112}
 113__setup("enforcing=", enforcing_setup);
 114#endif
 115
 116#ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
 117int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
 118
 119static int __init selinux_enabled_setup(char *str)
 120{
 121        unsigned long enabled;
 122        if (!kstrtoul(str, 0, &enabled))
 123                selinux_enabled = enabled ? 1 : 0;
 124        return 1;
 125}
 126__setup("selinux=", selinux_enabled_setup);
 127#else
 128int selinux_enabled = 1;
 129#endif
 130
 131static struct kmem_cache *sel_inode_cache;
 132
 133/**
 134 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
 135 *
 136 * Description:
 137 * This function checks the SECMARK reference counter to see if any SECMARK
 138 * targets are currently configured, if the reference counter is greater than
 139 * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
 140 * enabled, false (0) if SECMARK is disabled.  If the always_check_network
 141 * policy capability is enabled, SECMARK is always considered enabled.
 142 *
 143 */
 144static int selinux_secmark_enabled(void)
 145{
 146        return (selinux_policycap_alwaysnetwork || atomic_read(&selinux_secmark_refcount));
 147}
 148
 149/**
 150 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
 151 *
 152 * Description:
 153 * This function checks if NetLabel or labeled IPSEC is enabled.  Returns true
 154 * (1) if any are enabled or false (0) if neither are enabled.  If the
 155 * always_check_network policy capability is enabled, peer labeling
 156 * is always considered enabled.
 157 *
 158 */
 159static int selinux_peerlbl_enabled(void)
 160{
 161        return (selinux_policycap_alwaysnetwork || netlbl_enabled() || selinux_xfrm_enabled());
 162}
 163
 164static int selinux_netcache_avc_callback(u32 event)
 165{
 166        if (event == AVC_CALLBACK_RESET) {
 167                sel_netif_flush();
 168                sel_netnode_flush();
 169                sel_netport_flush();
 170                synchronize_net();
 171        }
 172        return 0;
 173}
 174
 175/*
 176 * initialise the security for the init task
 177 */
 178static void cred_init_security(void)
 179{
 180        struct cred *cred = (struct cred *) current->real_cred;
 181        struct task_security_struct *tsec;
 182
 183        tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
 184        if (!tsec)
 185                panic("SELinux:  Failed to initialize initial task.\n");
 186
 187        tsec->osid = tsec->sid = SECINITSID_KERNEL;
 188        cred->security = tsec;
 189}
 190
 191/*
 192 * get the security ID of a set of credentials
 193 */
 194static inline u32 cred_sid(const struct cred *cred)
 195{
 196        const struct task_security_struct *tsec;
 197
 198        tsec = cred->security;
 199        return tsec->sid;
 200}
 201
 202/*
 203 * get the objective security ID of a task
 204 */
 205static inline u32 task_sid(const struct task_struct *task)
 206{
 207        u32 sid;
 208
 209        rcu_read_lock();
 210        sid = cred_sid(__task_cred(task));
 211        rcu_read_unlock();
 212        return sid;
 213}
 214
 215/*
 216 * get the subjective security ID of the current task
 217 */
 218static inline u32 current_sid(void)
 219{
 220        const struct task_security_struct *tsec = current_security();
 221
 222        return tsec->sid;
 223}
 224
 225/* Allocate and free functions for each kind of security blob. */
 226
 227static int inode_alloc_security(struct inode *inode)
 228{
 229        struct inode_security_struct *isec;
 230        u32 sid = current_sid();
 231
 232        isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
 233        if (!isec)
 234                return -ENOMEM;
 235
 236        mutex_init(&isec->lock);
 237        INIT_LIST_HEAD(&isec->list);
 238        isec->inode = inode;
 239        isec->sid = SECINITSID_UNLABELED;
 240        isec->sclass = SECCLASS_FILE;
 241        isec->task_sid = sid;
 242        inode->i_security = isec;
 243
 244        return 0;
 245}
 246
 247static void inode_free_rcu(struct rcu_head *head)
 248{
 249        struct inode_security_struct *isec;
 250
 251        isec = container_of(head, struct inode_security_struct, rcu);
 252        kmem_cache_free(sel_inode_cache, isec);
 253}
 254
 255static void inode_free_security(struct inode *inode)
 256{
 257        struct inode_security_struct *isec = inode->i_security;
 258        struct superblock_security_struct *sbsec = inode->i_sb->s_security;
 259
 260        spin_lock(&sbsec->isec_lock);
 261        if (!list_empty(&isec->list))
 262                list_del_init(&isec->list);
 263        spin_unlock(&sbsec->isec_lock);
 264
 265        /*
 266         * The inode may still be referenced in a path walk and
 267         * a call to selinux_inode_permission() can be made
 268         * after inode_free_security() is called. Ideally, the VFS
 269         * wouldn't do this, but fixing that is a much harder
 270         * job. For now, simply free the i_security via RCU, and
 271         * leave the current inode->i_security pointer intact.
 272         * The inode will be freed after the RCU grace period too.
 273         */
 274        call_rcu(&isec->rcu, inode_free_rcu);
 275}
 276
 277static int file_alloc_security(struct file *file)
 278{
 279        struct file_security_struct *fsec;
 280        u32 sid = current_sid();
 281
 282        fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
 283        if (!fsec)
 284                return -ENOMEM;
 285
 286        fsec->sid = sid;
 287        fsec->fown_sid = sid;
 288        file->f_security = fsec;
 289
 290        return 0;
 291}
 292
 293static void file_free_security(struct file *file)
 294{
 295        struct file_security_struct *fsec = file->f_security;
 296        file->f_security = NULL;
 297        kfree(fsec);
 298}
 299
 300static int superblock_alloc_security(struct super_block *sb)
 301{
 302        struct superblock_security_struct *sbsec;
 303
 304        sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
 305        if (!sbsec)
 306                return -ENOMEM;
 307
 308        mutex_init(&sbsec->lock);
 309        INIT_LIST_HEAD(&sbsec->isec_head);
 310        spin_lock_init(&sbsec->isec_lock);
 311        sbsec->sb = sb;
 312        sbsec->sid = SECINITSID_UNLABELED;
 313        sbsec->def_sid = SECINITSID_FILE;
 314        sbsec->mntpoint_sid = SECINITSID_UNLABELED;
 315        sb->s_security = sbsec;
 316
 317        return 0;
 318}
 319
 320static void superblock_free_security(struct super_block *sb)
 321{
 322        struct superblock_security_struct *sbsec = sb->s_security;
 323        sb->s_security = NULL;
 324        kfree(sbsec);
 325}
 326
 327/* The file system's label must be initialized prior to use. */
 328
 329static const char *labeling_behaviors[7] = {
 330        "uses xattr",
 331        "uses transition SIDs",
 332        "uses task SIDs",
 333        "uses genfs_contexts",
 334        "not configured for labeling",
 335        "uses mountpoint labeling",
 336        "uses native labeling",
 337};
 338
 339static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
 340
 341static inline int inode_doinit(struct inode *inode)
 342{
 343        return inode_doinit_with_dentry(inode, NULL);
 344}
 345
 346enum {
 347        Opt_error = -1,
 348        Opt_context = 1,
 349        Opt_fscontext = 2,
 350        Opt_defcontext = 3,
 351        Opt_rootcontext = 4,
 352        Opt_labelsupport = 5,
 353        Opt_nextmntopt = 6,
 354};
 355
 356#define NUM_SEL_MNT_OPTS        (Opt_nextmntopt - 1)
 357
 358static const match_table_t tokens = {
 359        {Opt_context, CONTEXT_STR "%s"},
 360        {Opt_fscontext, FSCONTEXT_STR "%s"},
 361        {Opt_defcontext, DEFCONTEXT_STR "%s"},
 362        {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
 363        {Opt_labelsupport, LABELSUPP_STR},
 364        {Opt_error, NULL},
 365};
 366
 367#define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
 368
 369static int may_context_mount_sb_relabel(u32 sid,
 370                        struct superblock_security_struct *sbsec,
 371                        const struct cred *cred)
 372{
 373        const struct task_security_struct *tsec = cred->security;
 374        int rc;
 375
 376        rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
 377                          FILESYSTEM__RELABELFROM, NULL);
 378        if (rc)
 379                return rc;
 380
 381        rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
 382                          FILESYSTEM__RELABELTO, NULL);
 383        return rc;
 384}
 385
 386static int may_context_mount_inode_relabel(u32 sid,
 387                        struct superblock_security_struct *sbsec,
 388                        const struct cred *cred)
 389{
 390        const struct task_security_struct *tsec = cred->security;
 391        int rc;
 392        rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
 393                          FILESYSTEM__RELABELFROM, NULL);
 394        if (rc)
 395                return rc;
 396
 397        rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
 398                          FILESYSTEM__ASSOCIATE, NULL);
 399        return rc;
 400}
 401
 402static int selinux_is_sblabel_mnt(struct super_block *sb)
 403{
 404        struct superblock_security_struct *sbsec = sb->s_security;
 405
 406        if (sbsec->behavior == SECURITY_FS_USE_XATTR ||
 407            sbsec->behavior == SECURITY_FS_USE_TRANS ||
 408            sbsec->behavior == SECURITY_FS_USE_TASK)
 409                return 1;
 410
 411        /* Special handling for sysfs. Is genfs but also has setxattr handler*/
 412        if (strncmp(sb->s_type->name, "sysfs", sizeof("sysfs")) == 0)
 413                return 1;
 414
 415        /*
 416         * Special handling for rootfs. Is genfs but supports
 417         * setting SELinux context on in-core inodes.
 418         */
 419        if (strncmp(sb->s_type->name, "rootfs", sizeof("rootfs")) == 0)
 420                return 1;
 421
 422        return 0;
 423}
 424
 425static int sb_finish_set_opts(struct super_block *sb)
 426{
 427        struct superblock_security_struct *sbsec = sb->s_security;
 428        struct dentry *root = sb->s_root;
 429        struct inode *root_inode = root->d_inode;
 430        int rc = 0;
 431
 432        if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
 433                /* Make sure that the xattr handler exists and that no
 434                   error other than -ENODATA is returned by getxattr on
 435                   the root directory.  -ENODATA is ok, as this may be
 436                   the first boot of the SELinux kernel before we have
 437                   assigned xattr values to the filesystem. */
 438                if (!root_inode->i_op->getxattr) {
 439                        printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
 440                               "xattr support\n", sb->s_id, sb->s_type->name);
 441                        rc = -EOPNOTSUPP;
 442                        goto out;
 443                }
 444                rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
 445                if (rc < 0 && rc != -ENODATA) {
 446                        if (rc == -EOPNOTSUPP)
 447                                printk(KERN_WARNING "SELinux: (dev %s, type "
 448                                       "%s) has no security xattr handler\n",
 449                                       sb->s_id, sb->s_type->name);
 450                        else
 451                                printk(KERN_WARNING "SELinux: (dev %s, type "
 452                                       "%s) getxattr errno %d\n", sb->s_id,
 453                                       sb->s_type->name, -rc);
 454                        goto out;
 455                }
 456        }
 457
 458        if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
 459                printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
 460                       sb->s_id, sb->s_type->name);
 461        else
 462                printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
 463                       sb->s_id, sb->s_type->name,
 464                       labeling_behaviors[sbsec->behavior-1]);
 465
 466        sbsec->flags |= SE_SBINITIALIZED;
 467        if (selinux_is_sblabel_mnt(sb))
 468                sbsec->flags |= SBLABEL_MNT;
 469
 470        /* Initialize the root inode. */
 471        rc = inode_doinit_with_dentry(root_inode, root);
 472
 473        /* Initialize any other inodes associated with the superblock, e.g.
 474           inodes created prior to initial policy load or inodes created
 475           during get_sb by a pseudo filesystem that directly
 476           populates itself. */
 477        spin_lock(&sbsec->isec_lock);
 478next_inode:
 479        if (!list_empty(&sbsec->isec_head)) {
 480                struct inode_security_struct *isec =
 481                                list_entry(sbsec->isec_head.next,
 482                                           struct inode_security_struct, list);
 483                struct inode *inode = isec->inode;
 484                spin_unlock(&sbsec->isec_lock);
 485                inode = igrab(inode);
 486                if (inode) {
 487                        if (!IS_PRIVATE(inode))
 488                                inode_doinit(inode);
 489                        iput(inode);
 490                }
 491                spin_lock(&sbsec->isec_lock);
 492                list_del_init(&isec->list);
 493                goto next_inode;
 494        }
 495        spin_unlock(&sbsec->isec_lock);
 496out:
 497        return rc;
 498}
 499
 500/*
 501 * This function should allow an FS to ask what it's mount security
 502 * options were so it can use those later for submounts, displaying
 503 * mount options, or whatever.
 504 */
 505static int selinux_get_mnt_opts(const struct super_block *sb,
 506                                struct security_mnt_opts *opts)
 507{
 508        int rc = 0, i;
 509        struct superblock_security_struct *sbsec = sb->s_security;
 510        char *context = NULL;
 511        u32 len;
 512        char tmp;
 513
 514        security_init_mnt_opts(opts);
 515
 516        if (!(sbsec->flags & SE_SBINITIALIZED))
 517                return -EINVAL;
 518
 519        if (!ss_initialized)
 520                return -EINVAL;
 521
 522        /* make sure we always check enough bits to cover the mask */
 523        BUILD_BUG_ON(SE_MNTMASK >= (1 << NUM_SEL_MNT_OPTS));
 524
 525        tmp = sbsec->flags & SE_MNTMASK;
 526        /* count the number of mount options for this sb */
 527        for (i = 0; i < NUM_SEL_MNT_OPTS; i++) {
 528                if (tmp & 0x01)
 529                        opts->num_mnt_opts++;
 530                tmp >>= 1;
 531        }
 532        /* Check if the Label support flag is set */
 533        if (sbsec->flags & SBLABEL_MNT)
 534                opts->num_mnt_opts++;
 535
 536        opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
 537        if (!opts->mnt_opts) {
 538                rc = -ENOMEM;
 539                goto out_free;
 540        }
 541
 542        opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
 543        if (!opts->mnt_opts_flags) {
 544                rc = -ENOMEM;
 545                goto out_free;
 546        }
 547
 548        i = 0;
 549        if (sbsec->flags & FSCONTEXT_MNT) {
 550                rc = security_sid_to_context(sbsec->sid, &context, &len);
 551                if (rc)
 552                        goto out_free;
 553                opts->mnt_opts[i] = context;
 554                opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
 555        }
 556        if (sbsec->flags & CONTEXT_MNT) {
 557                rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
 558                if (rc)
 559                        goto out_free;
 560                opts->mnt_opts[i] = context;
 561                opts->mnt_opts_flags[i++] = CONTEXT_MNT;
 562        }
 563        if (sbsec->flags & DEFCONTEXT_MNT) {
 564                rc = security_sid_to_context(sbsec->def_sid, &context, &len);
 565                if (rc)
 566                        goto out_free;
 567                opts->mnt_opts[i] = context;
 568                opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
 569        }
 570        if (sbsec->flags & ROOTCONTEXT_MNT) {
 571                struct inode *root = sbsec->sb->s_root->d_inode;
 572                struct inode_security_struct *isec = root->i_security;
 573
 574                rc = security_sid_to_context(isec->sid, &context, &len);
 575                if (rc)
 576                        goto out_free;
 577                opts->mnt_opts[i] = context;
 578                opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
 579        }
 580        if (sbsec->flags & SBLABEL_MNT) {
 581                opts->mnt_opts[i] = NULL;
 582                opts->mnt_opts_flags[i++] = SBLABEL_MNT;
 583        }
 584
 585        BUG_ON(i != opts->num_mnt_opts);
 586
 587        return 0;
 588
 589out_free:
 590        security_free_mnt_opts(opts);
 591        return rc;
 592}
 593
 594static int bad_option(struct superblock_security_struct *sbsec, char flag,
 595                      u32 old_sid, u32 new_sid)
 596{
 597        char mnt_flags = sbsec->flags & SE_MNTMASK;
 598
 599        /* check if the old mount command had the same options */
 600        if (sbsec->flags & SE_SBINITIALIZED)
 601                if (!(sbsec->flags & flag) ||
 602                    (old_sid != new_sid))
 603                        return 1;
 604
 605        /* check if we were passed the same options twice,
 606         * aka someone passed context=a,context=b
 607         */
 608        if (!(sbsec->flags & SE_SBINITIALIZED))
 609                if (mnt_flags & flag)
 610                        return 1;
 611        return 0;
 612}
 613
 614/*
 615 * Allow filesystems with binary mount data to explicitly set mount point
 616 * labeling information.
 617 */
 618static int selinux_set_mnt_opts(struct super_block *sb,
 619                                struct security_mnt_opts *opts,
 620                                unsigned long kern_flags,
 621                                unsigned long *set_kern_flags)
 622{
 623        const struct cred *cred = current_cred();
 624        int rc = 0, i;
 625        struct superblock_security_struct *sbsec = sb->s_security;
 626        const char *name = sb->s_type->name;
 627        struct inode *inode = sbsec->sb->s_root->d_inode;
 628        struct inode_security_struct *root_isec = inode->i_security;
 629        u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
 630        u32 defcontext_sid = 0;
 631        char **mount_options = opts->mnt_opts;
 632        int *flags = opts->mnt_opts_flags;
 633        int num_opts = opts->num_mnt_opts;
 634
 635        mutex_lock(&sbsec->lock);
 636
 637        if (!ss_initialized) {
 638                if (!num_opts) {
 639                        /* Defer initialization until selinux_complete_init,
 640                           after the initial policy is loaded and the security
 641                           server is ready to handle calls. */
 642                        goto out;
 643                }
 644                rc = -EINVAL;
 645                printk(KERN_WARNING "SELinux: Unable to set superblock options "
 646                        "before the security server is initialized\n");
 647                goto out;
 648        }
 649        if (kern_flags && !set_kern_flags) {
 650                /* Specifying internal flags without providing a place to
 651                 * place the results is not allowed */
 652                rc = -EINVAL;
 653                goto out;
 654        }
 655
 656        /*
 657         * Binary mount data FS will come through this function twice.  Once
 658         * from an explicit call and once from the generic calls from the vfs.
 659         * Since the generic VFS calls will not contain any security mount data
 660         * we need to skip the double mount verification.
 661         *
 662         * This does open a hole in which we will not notice if the first
 663         * mount using this sb set explict options and a second mount using
 664         * this sb does not set any security options.  (The first options
 665         * will be used for both mounts)
 666         */
 667        if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
 668            && (num_opts == 0))
 669                goto out;
 670
 671        /*
 672         * parse the mount options, check if they are valid sids.
 673         * also check if someone is trying to mount the same sb more
 674         * than once with different security options.
 675         */
 676        for (i = 0; i < num_opts; i++) {
 677                u32 sid;
 678
 679                if (flags[i] == SBLABEL_MNT)
 680                        continue;
 681                rc = security_context_to_sid(mount_options[i],
 682                                             strlen(mount_options[i]), &sid, GFP_KERNEL);
 683                if (rc) {
 684                        printk(KERN_WARNING "SELinux: security_context_to_sid"
 685                               "(%s) failed for (dev %s, type %s) errno=%d\n",
 686                               mount_options[i], sb->s_id, name, rc);
 687                        goto out;
 688                }
 689                switch (flags[i]) {
 690                case FSCONTEXT_MNT:
 691                        fscontext_sid = sid;
 692
 693                        if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
 694                                        fscontext_sid))
 695                                goto out_double_mount;
 696
 697                        sbsec->flags |= FSCONTEXT_MNT;
 698                        break;
 699                case CONTEXT_MNT:
 700                        context_sid = sid;
 701
 702                        if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
 703                                        context_sid))
 704                                goto out_double_mount;
 705
 706                        sbsec->flags |= CONTEXT_MNT;
 707                        break;
 708                case ROOTCONTEXT_MNT:
 709                        rootcontext_sid = sid;
 710
 711                        if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
 712                                        rootcontext_sid))
 713                                goto out_double_mount;
 714
 715                        sbsec->flags |= ROOTCONTEXT_MNT;
 716
 717                        break;
 718                case DEFCONTEXT_MNT:
 719                        defcontext_sid = sid;
 720
 721                        if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
 722                                        defcontext_sid))
 723                                goto out_double_mount;
 724
 725                        sbsec->flags |= DEFCONTEXT_MNT;
 726
 727                        break;
 728                default:
 729                        rc = -EINVAL;
 730                        goto out;
 731                }
 732        }
 733
 734        if (sbsec->flags & SE_SBINITIALIZED) {
 735                /* previously mounted with options, but not on this attempt? */
 736                if ((sbsec->flags & SE_MNTMASK) && !num_opts)
 737                        goto out_double_mount;
 738                rc = 0;
 739                goto out;
 740        }
 741
 742        if (strcmp(sb->s_type->name, "proc") == 0)
 743                sbsec->flags |= SE_SBPROC;
 744
 745        if (!sbsec->behavior) {
 746                /*
 747                 * Determine the labeling behavior to use for this
 748                 * filesystem type.
 749                 */
 750                rc = security_fs_use(sb);
 751                if (rc) {
 752                        printk(KERN_WARNING
 753                                "%s: security_fs_use(%s) returned %d\n",
 754                                        __func__, sb->s_type->name, rc);
 755                        goto out;
 756                }
 757        }
 758        /* sets the context of the superblock for the fs being mounted. */
 759        if (fscontext_sid) {
 760                rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
 761                if (rc)
 762                        goto out;
 763
 764                sbsec->sid = fscontext_sid;
 765        }
 766
 767        /*
 768         * Switch to using mount point labeling behavior.
 769         * sets the label used on all file below the mountpoint, and will set
 770         * the superblock context if not already set.
 771         */
 772        if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
 773                sbsec->behavior = SECURITY_FS_USE_NATIVE;
 774                *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
 775        }
 776
 777        if (context_sid) {
 778                if (!fscontext_sid) {
 779                        rc = may_context_mount_sb_relabel(context_sid, sbsec,
 780                                                          cred);
 781                        if (rc)
 782                                goto out;
 783                        sbsec->sid = context_sid;
 784                } else {
 785                        rc = may_context_mount_inode_relabel(context_sid, sbsec,
 786                                                             cred);
 787                        if (rc)
 788                                goto out;
 789                }
 790                if (!rootcontext_sid)
 791                        rootcontext_sid = context_sid;
 792
 793                sbsec->mntpoint_sid = context_sid;
 794                sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
 795        }
 796
 797        if (rootcontext_sid) {
 798                rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
 799                                                     cred);
 800                if (rc)
 801                        goto out;
 802
 803                root_isec->sid = rootcontext_sid;
 804                root_isec->initialized = 1;
 805        }
 806
 807        if (defcontext_sid) {
 808                if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
 809                        sbsec->behavior != SECURITY_FS_USE_NATIVE) {
 810                        rc = -EINVAL;
 811                        printk(KERN_WARNING "SELinux: defcontext option is "
 812                               "invalid for this filesystem type\n");
 813                        goto out;
 814                }
 815
 816                if (defcontext_sid != sbsec->def_sid) {
 817                        rc = may_context_mount_inode_relabel(defcontext_sid,
 818                                                             sbsec, cred);
 819                        if (rc)
 820                                goto out;
 821                }
 822
 823                sbsec->def_sid = defcontext_sid;
 824        }
 825
 826        rc = sb_finish_set_opts(sb);
 827out:
 828        mutex_unlock(&sbsec->lock);
 829        return rc;
 830out_double_mount:
 831        rc = -EINVAL;
 832        printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
 833               "security settings for (dev %s, type %s)\n", sb->s_id, name);
 834        goto out;
 835}
 836
 837static int selinux_cmp_sb_context(const struct super_block *oldsb,
 838                                    const struct super_block *newsb)
 839{
 840        struct superblock_security_struct *old = oldsb->s_security;
 841        struct superblock_security_struct *new = newsb->s_security;
 842        char oldflags = old->flags & SE_MNTMASK;
 843        char newflags = new->flags & SE_MNTMASK;
 844
 845        if (oldflags != newflags)
 846                goto mismatch;
 847        if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
 848                goto mismatch;
 849        if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
 850                goto mismatch;
 851        if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
 852                goto mismatch;
 853        if (oldflags & ROOTCONTEXT_MNT) {
 854                struct inode_security_struct *oldroot = oldsb->s_root->d_inode->i_security;
 855                struct inode_security_struct *newroot = newsb->s_root->d_inode->i_security;
 856                if (oldroot->sid != newroot->sid)
 857                        goto mismatch;
 858        }
 859        return 0;
 860mismatch:
 861        printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, "
 862                            "different security settings for (dev %s, "
 863                            "type %s)\n", newsb->s_id, newsb->s_type->name);
 864        return -EBUSY;
 865}
 866
 867static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
 868                                        struct super_block *newsb)
 869{
 870        const struct superblock_security_struct *oldsbsec = oldsb->s_security;
 871        struct superblock_security_struct *newsbsec = newsb->s_security;
 872
 873        int set_fscontext =     (oldsbsec->flags & FSCONTEXT_MNT);
 874        int set_context =       (oldsbsec->flags & CONTEXT_MNT);
 875        int set_rootcontext =   (oldsbsec->flags & ROOTCONTEXT_MNT);
 876
 877        /*
 878         * if the parent was able to be mounted it clearly had no special lsm
 879         * mount options.  thus we can safely deal with this superblock later
 880         */
 881        if (!ss_initialized)
 882                return 0;
 883
 884        /* how can we clone if the old one wasn't set up?? */
 885        BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
 886
 887        /* if fs is reusing a sb, make sure that the contexts match */
 888        if (newsbsec->flags & SE_SBINITIALIZED)
 889                return selinux_cmp_sb_context(oldsb, newsb);
 890
 891        mutex_lock(&newsbsec->lock);
 892
 893        newsbsec->flags = oldsbsec->flags;
 894
 895        newsbsec->sid = oldsbsec->sid;
 896        newsbsec->def_sid = oldsbsec->def_sid;
 897        newsbsec->behavior = oldsbsec->behavior;
 898
 899        if (set_context) {
 900                u32 sid = oldsbsec->mntpoint_sid;
 901
 902                if (!set_fscontext)
 903                        newsbsec->sid = sid;
 904                if (!set_rootcontext) {
 905                        struct inode *newinode = newsb->s_root->d_inode;
 906                        struct inode_security_struct *newisec = newinode->i_security;
 907                        newisec->sid = sid;
 908                }
 909                newsbsec->mntpoint_sid = sid;
 910        }
 911        if (set_rootcontext) {
 912                const struct inode *oldinode = oldsb->s_root->d_inode;
 913                const struct inode_security_struct *oldisec = oldinode->i_security;
 914                struct inode *newinode = newsb->s_root->d_inode;
 915                struct inode_security_struct *newisec = newinode->i_security;
 916
 917                newisec->sid = oldisec->sid;
 918        }
 919
 920        sb_finish_set_opts(newsb);
 921        mutex_unlock(&newsbsec->lock);
 922        return 0;
 923}
 924
 925static int selinux_parse_opts_str(char *options,
 926                                  struct security_mnt_opts *opts)
 927{
 928        char *p;
 929        char *context = NULL, *defcontext = NULL;
 930        char *fscontext = NULL, *rootcontext = NULL;
 931        int rc, num_mnt_opts = 0;
 932
 933        opts->num_mnt_opts = 0;
 934
 935        /* Standard string-based options. */
 936        while ((p = strsep(&options, "|")) != NULL) {
 937                int token;
 938                substring_t args[MAX_OPT_ARGS];
 939
 940                if (!*p)
 941                        continue;
 942
 943                token = match_token(p, tokens, args);
 944
 945                switch (token) {
 946                case Opt_context:
 947                        if (context || defcontext) {
 948                                rc = -EINVAL;
 949                                printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
 950                                goto out_err;
 951                        }
 952                        context = match_strdup(&args[0]);
 953                        if (!context) {
 954                                rc = -ENOMEM;
 955                                goto out_err;
 956                        }
 957                        break;
 958
 959                case Opt_fscontext:
 960                        if (fscontext) {
 961                                rc = -EINVAL;
 962                                printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
 963                                goto out_err;
 964                        }
 965                        fscontext = match_strdup(&args[0]);
 966                        if (!fscontext) {
 967                                rc = -ENOMEM;
 968                                goto out_err;
 969                        }
 970                        break;
 971
 972                case Opt_rootcontext:
 973                        if (rootcontext) {
 974                                rc = -EINVAL;
 975                                printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
 976                                goto out_err;
 977                        }
 978                        rootcontext = match_strdup(&args[0]);
 979                        if (!rootcontext) {
 980                                rc = -ENOMEM;
 981                                goto out_err;
 982                        }
 983                        break;
 984
 985                case Opt_defcontext:
 986                        if (context || defcontext) {
 987                                rc = -EINVAL;
 988                                printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
 989                                goto out_err;
 990                        }
 991                        defcontext = match_strdup(&args[0]);
 992                        if (!defcontext) {
 993                                rc = -ENOMEM;
 994                                goto out_err;
 995                        }
 996                        break;
 997                case Opt_labelsupport:
 998                        break;
 999                default:
1000                        rc = -EINVAL;
1001                        printk(KERN_WARNING "SELinux:  unknown mount option\n");
1002                        goto out_err;
1003
1004                }
1005        }
1006
1007        rc = -ENOMEM;
1008        opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
1009        if (!opts->mnt_opts)
1010                goto out_err;
1011
1012        opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
1013        if (!opts->mnt_opts_flags) {
1014                kfree(opts->mnt_opts);
1015                goto out_err;
1016        }
1017
1018        if (fscontext) {
1019                opts->mnt_opts[num_mnt_opts] = fscontext;
1020                opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
1021        }
1022        if (context) {
1023                opts->mnt_opts[num_mnt_opts] = context;
1024                opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
1025        }
1026        if (rootcontext) {
1027                opts->mnt_opts[num_mnt_opts] = rootcontext;
1028                opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
1029        }
1030        if (defcontext) {
1031                opts->mnt_opts[num_mnt_opts] = defcontext;
1032                opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
1033        }
1034
1035        opts->num_mnt_opts = num_mnt_opts;
1036        return 0;
1037
1038out_err:
1039        kfree(context);
1040        kfree(defcontext);
1041        kfree(fscontext);
1042        kfree(rootcontext);
1043        return rc;
1044}
1045/*
1046 * string mount options parsing and call set the sbsec
1047 */
1048static int superblock_doinit(struct super_block *sb, void *data)
1049{
1050        int rc = 0;
1051        char *options = data;
1052        struct security_mnt_opts opts;
1053
1054        security_init_mnt_opts(&opts);
1055
1056        if (!data)
1057                goto out;
1058
1059        BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
1060
1061        rc = selinux_parse_opts_str(options, &opts);
1062        if (rc)
1063                goto out_err;
1064
1065out:
1066        rc = selinux_set_mnt_opts(sb, &opts, 0, NULL);
1067
1068out_err:
1069        security_free_mnt_opts(&opts);
1070        return rc;
1071}
1072
1073static void selinux_write_opts(struct seq_file *m,
1074                               struct security_mnt_opts *opts)
1075{
1076        int i;
1077        char *prefix;
1078
1079        for (i = 0; i < opts->num_mnt_opts; i++) {
1080                char *has_comma;
1081
1082                if (opts->mnt_opts[i])
1083                        has_comma = strchr(opts->mnt_opts[i], ',');
1084                else
1085                        has_comma = NULL;
1086
1087                switch (opts->mnt_opts_flags[i]) {
1088                case CONTEXT_MNT:
1089                        prefix = CONTEXT_STR;
1090                        break;
1091                case FSCONTEXT_MNT:
1092                        prefix = FSCONTEXT_STR;
1093                        break;
1094                case ROOTCONTEXT_MNT:
1095                        prefix = ROOTCONTEXT_STR;
1096                        break;
1097                case DEFCONTEXT_MNT:
1098                        prefix = DEFCONTEXT_STR;
1099                        break;
1100                case SBLABEL_MNT:
1101                        seq_putc(m, ',');
1102                        seq_puts(m, LABELSUPP_STR);
1103                        continue;
1104                default:
1105                        BUG();
1106                        return;
1107                };
1108                /* we need a comma before each option */
1109                seq_putc(m, ',');
1110                seq_puts(m, prefix);
1111                if (has_comma)
1112                        seq_putc(m, '\"');
1113                seq_puts(m, opts->mnt_opts[i]);
1114                if (has_comma)
1115                        seq_putc(m, '\"');
1116        }
1117}
1118
1119static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1120{
1121        struct security_mnt_opts opts;
1122        int rc;
1123
1124        rc = selinux_get_mnt_opts(sb, &opts);
1125        if (rc) {
1126                /* before policy load we may get EINVAL, don't show anything */
1127                if (rc == -EINVAL)
1128                        rc = 0;
1129                return rc;
1130        }
1131
1132        selinux_write_opts(m, &opts);
1133
1134        security_free_mnt_opts(&opts);
1135
1136        return rc;
1137}
1138
1139static inline u16 inode_mode_to_security_class(umode_t mode)
1140{
1141        switch (mode & S_IFMT) {
1142        case S_IFSOCK:
1143                return SECCLASS_SOCK_FILE;
1144        case S_IFLNK:
1145                return SECCLASS_LNK_FILE;
1146        case S_IFREG:
1147                return SECCLASS_FILE;
1148        case S_IFBLK:
1149                return SECCLASS_BLK_FILE;
1150        case S_IFDIR:
1151                return SECCLASS_DIR;
1152        case S_IFCHR:
1153                return SECCLASS_CHR_FILE;
1154        case S_IFIFO:
1155                return SECCLASS_FIFO_FILE;
1156
1157        }
1158
1159        return SECCLASS_FILE;
1160}
1161
1162static inline int default_protocol_stream(int protocol)
1163{
1164        return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1165}
1166
1167static inline int default_protocol_dgram(int protocol)
1168{
1169        return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1170}
1171
1172static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1173{
1174        switch (family) {
1175        case PF_UNIX:
1176                switch (type) {
1177                case SOCK_STREAM:
1178                case SOCK_SEQPACKET:
1179                        return SECCLASS_UNIX_STREAM_SOCKET;
1180                case SOCK_DGRAM:
1181                        return SECCLASS_UNIX_DGRAM_SOCKET;
1182                }
1183                break;
1184        case PF_INET:
1185        case PF_INET6:
1186                switch (type) {
1187                case SOCK_STREAM:
1188                        if (default_protocol_stream(protocol))
1189                                return SECCLASS_TCP_SOCKET;
1190                        else
1191                                return SECCLASS_RAWIP_SOCKET;
1192                case SOCK_DGRAM:
1193                        if (default_protocol_dgram(protocol))
1194                                return SECCLASS_UDP_SOCKET;
1195                        else
1196                                return SECCLASS_RAWIP_SOCKET;
1197                case SOCK_DCCP:
1198                        return SECCLASS_DCCP_SOCKET;
1199                default:
1200                        return SECCLASS_RAWIP_SOCKET;
1201                }
1202                break;
1203        case PF_NETLINK:
1204                switch (protocol) {
1205                case NETLINK_ROUTE:
1206                        return SECCLASS_NETLINK_ROUTE_SOCKET;
1207                case NETLINK_FIREWALL:
1208                        return SECCLASS_NETLINK_FIREWALL_SOCKET;
1209                case NETLINK_SOCK_DIAG:
1210                        return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1211                case NETLINK_NFLOG:
1212                        return SECCLASS_NETLINK_NFLOG_SOCKET;
1213                case NETLINK_XFRM:
1214                        return SECCLASS_NETLINK_XFRM_SOCKET;
1215                case NETLINK_SELINUX:
1216                        return SECCLASS_NETLINK_SELINUX_SOCKET;
1217                case NETLINK_AUDIT:
1218                        return SECCLASS_NETLINK_AUDIT_SOCKET;
1219                case NETLINK_IP6_FW:
1220                        return SECCLASS_NETLINK_IP6FW_SOCKET;
1221                case NETLINK_DNRTMSG:
1222                        return SECCLASS_NETLINK_DNRT_SOCKET;
1223                case NETLINK_KOBJECT_UEVENT:
1224                        return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1225                default:
1226                        return SECCLASS_NETLINK_SOCKET;
1227                }
1228        case PF_PACKET:
1229                return SECCLASS_PACKET_SOCKET;
1230        case PF_KEY:
1231                return SECCLASS_KEY_SOCKET;
1232        case PF_APPLETALK:
1233                return SECCLASS_APPLETALK_SOCKET;
1234        }
1235
1236        return SECCLASS_SOCKET;
1237}
1238
1239#ifdef CONFIG_PROC_FS
1240static int selinux_proc_get_sid(struct dentry *dentry,
1241                                u16 tclass,
1242                                u32 *sid)
1243{
1244        int rc;
1245        char *buffer, *path;
1246
1247        buffer = (char *)__get_free_page(GFP_KERNEL);
1248        if (!buffer)
1249                return -ENOMEM;
1250
1251        path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1252        if (IS_ERR(path))
1253                rc = PTR_ERR(path);
1254        else {
1255                /* each process gets a /proc/PID/ entry. Strip off the
1256                 * PID part to get a valid selinux labeling.
1257                 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1258                while (path[1] >= '0' && path[1] <= '9') {
1259                        path[1] = '/';
1260                        path++;
1261                }
1262                rc = security_genfs_sid("proc", path, tclass, sid);
1263        }
1264        free_page((unsigned long)buffer);
1265        return rc;
1266}
1267#else
1268static int selinux_proc_get_sid(struct dentry *dentry,
1269                                u16 tclass,
1270                                u32 *sid)
1271{
1272        return -EINVAL;
1273}
1274#endif
1275
1276/* The inode's security attributes must be initialized before first use. */
1277static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1278{
1279        struct superblock_security_struct *sbsec = NULL;
1280        struct inode_security_struct *isec = inode->i_security;
1281        u32 sid;
1282        struct dentry *dentry;
1283#define INITCONTEXTLEN 255
1284        char *context = NULL;
1285        unsigned len = 0;
1286        int rc = 0;
1287
1288        if (isec->initialized)
1289                goto out;
1290
1291        mutex_lock(&isec->lock);
1292        if (isec->initialized)
1293                goto out_unlock;
1294
1295        sbsec = inode->i_sb->s_security;
1296        if (!(sbsec->flags & SE_SBINITIALIZED)) {
1297                /* Defer initialization until selinux_complete_init,
1298                   after the initial policy is loaded and the security
1299                   server is ready to handle calls. */
1300                spin_lock(&sbsec->isec_lock);
1301                if (list_empty(&isec->list))
1302                        list_add(&isec->list, &sbsec->isec_head);
1303                spin_unlock(&sbsec->isec_lock);
1304                goto out_unlock;
1305        }
1306
1307        switch (sbsec->behavior) {
1308        case SECURITY_FS_USE_NATIVE:
1309                break;
1310        case SECURITY_FS_USE_XATTR:
1311                if (!inode->i_op->getxattr) {
1312                        isec->sid = sbsec->def_sid;
1313                        break;
1314                }
1315
1316                /* Need a dentry, since the xattr API requires one.
1317                   Life would be simpler if we could just pass the inode. */
1318                if (opt_dentry) {
1319                        /* Called from d_instantiate or d_splice_alias. */
1320                        dentry = dget(opt_dentry);
1321                } else {
1322                        /* Called from selinux_complete_init, try to find a dentry. */
1323                        dentry = d_find_alias(inode);
1324                }
1325                if (!dentry) {
1326                        /*
1327                         * this is can be hit on boot when a file is accessed
1328                         * before the policy is loaded.  When we load policy we
1329                         * may find inodes that have no dentry on the
1330                         * sbsec->isec_head list.  No reason to complain as these
1331                         * will get fixed up the next time we go through
1332                         * inode_doinit with a dentry, before these inodes could
1333                         * be used again by userspace.
1334                         */
1335                        goto out_unlock;
1336                }
1337
1338                len = INITCONTEXTLEN;
1339                context = kmalloc(len+1, GFP_NOFS);
1340                if (!context) {
1341                        rc = -ENOMEM;
1342                        dput(dentry);
1343                        goto out_unlock;
1344                }
1345                context[len] = '\0';
1346                rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1347                                           context, len);
1348                if (rc == -ERANGE) {
1349                        kfree(context);
1350
1351                        /* Need a larger buffer.  Query for the right size. */
1352                        rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1353                                                   NULL, 0);
1354                        if (rc < 0) {
1355                                dput(dentry);
1356                                goto out_unlock;
1357                        }
1358                        len = rc;
1359                        context = kmalloc(len+1, GFP_NOFS);
1360                        if (!context) {
1361                                rc = -ENOMEM;
1362                                dput(dentry);
1363                                goto out_unlock;
1364                        }
1365                        context[len] = '\0';
1366                        rc = inode->i_op->getxattr(dentry,
1367                                                   XATTR_NAME_SELINUX,
1368                                                   context, len);
1369                }
1370                dput(dentry);
1371                if (rc < 0) {
1372                        if (rc != -ENODATA) {
1373                                printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1374                                       "%d for dev=%s ino=%ld\n", __func__,
1375                                       -rc, inode->i_sb->s_id, inode->i_ino);
1376                                kfree(context);
1377                                goto out_unlock;
1378                        }
1379                        /* Map ENODATA to the default file SID */
1380                        sid = sbsec->def_sid;
1381                        rc = 0;
1382                } else {
1383                        rc = security_context_to_sid_default(context, rc, &sid,
1384                                                             sbsec->def_sid,
1385                                                             GFP_NOFS);
1386                        if (rc) {
1387                                char *dev = inode->i_sb->s_id;
1388                                unsigned long ino = inode->i_ino;
1389
1390                                if (rc == -EINVAL) {
1391                                        if (printk_ratelimit())
1392                                                printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1393                                                        "context=%s.  This indicates you may need to relabel the inode or the "
1394                                                        "filesystem in question.\n", ino, dev, context);
1395                                } else {
1396                                        printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1397                                               "returned %d for dev=%s ino=%ld\n",
1398                                               __func__, context, -rc, dev, ino);
1399                                }
1400                                kfree(context);
1401                                /* Leave with the unlabeled SID */
1402                                rc = 0;
1403                                break;
1404                        }
1405                }
1406                kfree(context);
1407                isec->sid = sid;
1408                break;
1409        case SECURITY_FS_USE_TASK:
1410                isec->sid = isec->task_sid;
1411                break;
1412        case SECURITY_FS_USE_TRANS:
1413                /* Default to the fs SID. */
1414                isec->sid = sbsec->sid;
1415
1416                /* Try to obtain a transition SID. */
1417                isec->sclass = inode_mode_to_security_class(inode->i_mode);
1418                rc = security_transition_sid(isec->task_sid, sbsec->sid,
1419                                             isec->sclass, NULL, &sid);
1420                if (rc)
1421                        goto out_unlock;
1422                isec->sid = sid;
1423                break;
1424        case SECURITY_FS_USE_MNTPOINT:
1425                isec->sid = sbsec->mntpoint_sid;
1426                break;
1427        default:
1428                /* Default to the fs superblock SID. */
1429                isec->sid = sbsec->sid;
1430
1431                if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) {
1432                        /* We must have a dentry to determine the label on
1433                         * procfs inodes */
1434                        if (opt_dentry)
1435                                /* Called from d_instantiate or
1436                                 * d_splice_alias. */
1437                                dentry = dget(opt_dentry);
1438                        else
1439                                /* Called from selinux_complete_init, try to
1440                                 * find a dentry. */
1441                                dentry = d_find_alias(inode);
1442                        /*
1443                         * This can be hit on boot when a file is accessed
1444                         * before the policy is loaded.  When we load policy we
1445                         * may find inodes that have no dentry on the
1446                         * sbsec->isec_head list.  No reason to complain as
1447                         * these will get fixed up the next time we go through
1448                         * inode_doinit() with a dentry, before these inodes
1449                         * could be used again by userspace.
1450                         */
1451                        if (!dentry)
1452                                goto out_unlock;
1453                        isec->sclass = inode_mode_to_security_class(inode->i_mode);
1454                        rc = selinux_proc_get_sid(dentry, isec->sclass, &sid);
1455                        dput(dentry);
1456                        if (rc)
1457                                goto out_unlock;
1458                        isec->sid = sid;
1459                }
1460                break;
1461        }
1462
1463        isec->initialized = 1;
1464
1465out_unlock:
1466        mutex_unlock(&isec->lock);
1467out:
1468        if (isec->sclass == SECCLASS_FILE)
1469                isec->sclass = inode_mode_to_security_class(inode->i_mode);
1470        return rc;
1471}
1472
1473/* Convert a Linux signal to an access vector. */
1474static inline u32 signal_to_av(int sig)
1475{
1476        u32 perm = 0;
1477
1478        switch (sig) {
1479        case SIGCHLD:
1480                /* Commonly granted from child to parent. */
1481                perm = PROCESS__SIGCHLD;
1482                break;
1483        case SIGKILL:
1484                /* Cannot be caught or ignored */
1485                perm = PROCESS__SIGKILL;
1486                break;
1487        case SIGSTOP:
1488                /* Cannot be caught or ignored */
1489                perm = PROCESS__SIGSTOP;
1490                break;
1491        default:
1492                /* All other signals. */
1493                perm = PROCESS__SIGNAL;
1494                break;
1495        }
1496
1497        return perm;
1498}
1499
1500/*
1501 * Check permission between a pair of credentials
1502 * fork check, ptrace check, etc.
1503 */
1504static int cred_has_perm(const struct cred *actor,
1505                         const struct cred *target,
1506                         u32 perms)
1507{
1508        u32 asid = cred_sid(actor), tsid = cred_sid(target);
1509
1510        return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1511}
1512
1513/*
1514 * Check permission between a pair of tasks, e.g. signal checks,
1515 * fork check, ptrace check, etc.
1516 * tsk1 is the actor and tsk2 is the target
1517 * - this uses the default subjective creds of tsk1
1518 */
1519static int task_has_perm(const struct task_struct *tsk1,
1520                         const struct task_struct *tsk2,
1521                         u32 perms)
1522{
1523        const struct task_security_struct *__tsec1, *__tsec2;
1524        u32 sid1, sid2;
1525
1526        rcu_read_lock();
1527        __tsec1 = __task_cred(tsk1)->security;  sid1 = __tsec1->sid;
1528        __tsec2 = __task_cred(tsk2)->security;  sid2 = __tsec2->sid;
1529        rcu_read_unlock();
1530        return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1531}
1532
1533/*
1534 * Check permission between current and another task, e.g. signal checks,
1535 * fork check, ptrace check, etc.
1536 * current is the actor and tsk2 is the target
1537 * - this uses current's subjective creds
1538 */
1539static int current_has_perm(const struct task_struct *tsk,
1540                            u32 perms)
1541{
1542        u32 sid, tsid;
1543
1544        sid = current_sid();
1545        tsid = task_sid(tsk);
1546        return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1547}
1548
1549#if CAP_LAST_CAP > 63
1550#error Fix SELinux to handle capabilities > 63.
1551#endif
1552
1553/* Check whether a task is allowed to use a capability. */
1554static int cred_has_capability(const struct cred *cred,
1555                               int cap, int audit)
1556{
1557        struct common_audit_data ad;
1558        struct av_decision avd;
1559        u16 sclass;
1560        u32 sid = cred_sid(cred);
1561        u32 av = CAP_TO_MASK(cap);
1562        int rc;
1563
1564        ad.type = LSM_AUDIT_DATA_CAP;
1565        ad.u.cap = cap;
1566
1567        switch (CAP_TO_INDEX(cap)) {
1568        case 0:
1569                sclass = SECCLASS_CAPABILITY;
1570                break;
1571        case 1:
1572                sclass = SECCLASS_CAPABILITY2;
1573                break;
1574        default:
1575                printk(KERN_ERR
1576                       "SELinux:  out of range capability %d\n", cap);
1577                BUG();
1578                return -EINVAL;
1579        }
1580
1581        rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1582        if (audit == SECURITY_CAP_AUDIT) {
1583                int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad);
1584                if (rc2)
1585                        return rc2;
1586        }
1587        return rc;
1588}
1589
1590/* Check whether a task is allowed to use a system operation. */
1591static int task_has_system(struct task_struct *tsk,
1592                           u32 perms)
1593{
1594        u32 sid = task_sid(tsk);
1595
1596        return avc_has_perm(sid, SECINITSID_KERNEL,
1597                            SECCLASS_SYSTEM, perms, NULL);
1598}
1599
1600/* Check whether a task has a particular permission to an inode.
1601   The 'adp' parameter is optional and allows other audit
1602   data to be passed (e.g. the dentry). */
1603static int inode_has_perm(const struct cred *cred,
1604                          struct inode *inode,
1605                          u32 perms,
1606                          struct common_audit_data *adp)
1607{
1608        struct inode_security_struct *isec;
1609        u32 sid;
1610
1611        validate_creds(cred);
1612
1613        if (unlikely(IS_PRIVATE(inode)))
1614                return 0;
1615
1616        sid = cred_sid(cred);
1617        isec = inode->i_security;
1618
1619        return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
1620}
1621
1622/* Same as inode_has_perm, but pass explicit audit data containing
1623   the dentry to help the auditing code to more easily generate the
1624   pathname if needed. */
1625static inline int dentry_has_perm(const struct cred *cred,
1626                                  struct dentry *dentry,
1627                                  u32 av)
1628{
1629        struct inode *inode = dentry->d_inode;
1630        struct common_audit_data ad;
1631
1632        ad.type = LSM_AUDIT_DATA_DENTRY;
1633        ad.u.dentry = dentry;
1634        return inode_has_perm(cred, inode, av, &ad);
1635}
1636
1637/* Same as inode_has_perm, but pass explicit audit data containing
1638   the path to help the auditing code to more easily generate the
1639   pathname if needed. */
1640static inline int path_has_perm(const struct cred *cred,
1641                                struct path *path,
1642                                u32 av)
1643{
1644        struct inode *inode = path->dentry->d_inode;
1645        struct common_audit_data ad;
1646
1647        ad.type = LSM_AUDIT_DATA_PATH;
1648        ad.u.path = *path;
1649        return inode_has_perm(cred, inode, av, &ad);
1650}
1651
1652/* Same as path_has_perm, but uses the inode from the file struct. */
1653static inline int file_path_has_perm(const struct cred *cred,
1654                                     struct file *file,
1655                                     u32 av)
1656{
1657        struct common_audit_data ad;
1658
1659        ad.type = LSM_AUDIT_DATA_PATH;
1660        ad.u.path = file->f_path;
1661        return inode_has_perm(cred, file_inode(file), av, &ad);
1662}
1663
1664/* Check whether a task can use an open file descriptor to
1665   access an inode in a given way.  Check access to the
1666   descriptor itself, and then use dentry_has_perm to
1667   check a particular permission to the file.
1668   Access to the descriptor is implicitly granted if it
1669   has the same SID as the process.  If av is zero, then
1670   access to the file is not checked, e.g. for cases
1671   where only the descriptor is affected like seek. */
1672static int file_has_perm(const struct cred *cred,
1673                         struct file *file,
1674                         u32 av)
1675{
1676        struct file_security_struct *fsec = file->f_security;
1677        struct inode *inode = file_inode(file);
1678        struct common_audit_data ad;
1679        u32 sid = cred_sid(cred);
1680        int rc;
1681
1682        ad.type = LSM_AUDIT_DATA_PATH;
1683        ad.u.path = file->f_path;
1684
1685        if (sid != fsec->sid) {
1686                rc = avc_has_perm(sid, fsec->sid,
1687                                  SECCLASS_FD,
1688                                  FD__USE,
1689                                  &ad);
1690                if (rc)
1691                        goto out;
1692        }
1693
1694        /* av is zero if only checking access to the descriptor. */
1695        rc = 0;
1696        if (av)
1697                rc = inode_has_perm(cred, inode, av, &ad);
1698
1699out:
1700        return rc;
1701}
1702
1703/* Check whether a task can create a file. */
1704static int may_create(struct inode *dir,
1705                      struct dentry *dentry,
1706                      u16 tclass)
1707{
1708        const struct task_security_struct *tsec = current_security();
1709        struct inode_security_struct *dsec;
1710        struct superblock_security_struct *sbsec;
1711        u32 sid, newsid;
1712        struct common_audit_data ad;
1713        int rc;
1714
1715        dsec = dir->i_security;
1716        sbsec = dir->i_sb->s_security;
1717
1718        sid = tsec->sid;
1719        newsid = tsec->create_sid;
1720
1721        ad.type = LSM_AUDIT_DATA_DENTRY;
1722        ad.u.dentry = dentry;
1723
1724        rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1725                          DIR__ADD_NAME | DIR__SEARCH,
1726                          &ad);
1727        if (rc)
1728                return rc;
1729
1730        if (!newsid || !(sbsec->flags & SBLABEL_MNT)) {
1731                rc = security_transition_sid(sid, dsec->sid, tclass,
1732                                             &dentry->d_name, &newsid);
1733                if (rc)
1734                        return rc;
1735        }
1736
1737        rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1738        if (rc)
1739                return rc;
1740
1741        return avc_has_perm(newsid, sbsec->sid,
1742                            SECCLASS_FILESYSTEM,
1743                            FILESYSTEM__ASSOCIATE, &ad);
1744}
1745
1746/* Check whether a task can create a key. */
1747static int may_create_key(u32 ksid,
1748                          struct task_struct *ctx)
1749{
1750        u32 sid = task_sid(ctx);
1751
1752        return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1753}
1754
1755#define MAY_LINK        0
1756#define MAY_UNLINK      1
1757#define MAY_RMDIR       2
1758
1759/* Check whether a task can link, unlink, or rmdir a file/directory. */
1760static int may_link(struct inode *dir,
1761                    struct dentry *dentry,
1762                    int kind)
1763
1764{
1765        struct inode_security_struct *dsec, *isec;
1766        struct common_audit_data ad;
1767        u32 sid = current_sid();
1768        u32 av;
1769        int rc;
1770
1771        dsec = dir->i_security;
1772        isec = dentry->d_inode->i_security;
1773
1774        ad.type = LSM_AUDIT_DATA_DENTRY;
1775        ad.u.dentry = dentry;
1776
1777        av = DIR__SEARCH;
1778        av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1779        rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1780        if (rc)
1781                return rc;
1782
1783        switch (kind) {
1784        case MAY_LINK:
1785                av = FILE__LINK;
1786                break;
1787        case MAY_UNLINK:
1788                av = FILE__UNLINK;
1789                break;
1790        case MAY_RMDIR:
1791                av = DIR__RMDIR;
1792                break;
1793        default:
1794                printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
1795                        __func__, kind);
1796                return 0;
1797        }
1798
1799        rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1800        return rc;
1801}
1802
1803static inline int may_rename(struct inode *old_dir,
1804                             struct dentry *old_dentry,
1805                             struct inode *new_dir,
1806                             struct dentry *new_dentry)
1807{
1808        struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1809        struct common_audit_data ad;
1810        u32 sid = current_sid();
1811        u32 av;
1812        int old_is_dir, new_is_dir;
1813        int rc;
1814
1815        old_dsec = old_dir->i_security;
1816        old_isec = old_dentry->d_inode->i_security;
1817        old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1818        new_dsec = new_dir->i_security;
1819
1820        ad.type = LSM_AUDIT_DATA_DENTRY;
1821
1822        ad.u.dentry = old_dentry;
1823        rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1824                          DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1825        if (rc)
1826                return rc;
1827        rc = avc_has_perm(sid, old_isec->sid,
1828                          old_isec->sclass, FILE__RENAME, &ad);
1829        if (rc)
1830                return rc;
1831        if (old_is_dir && new_dir != old_dir) {
1832                rc = avc_has_perm(sid, old_isec->sid,
1833                                  old_isec->sclass, DIR__REPARENT, &ad);
1834                if (rc)
1835                        return rc;
1836        }
1837
1838        ad.u.dentry = new_dentry;
1839        av = DIR__ADD_NAME | DIR__SEARCH;
1840        if (new_dentry->d_inode)
1841                av |= DIR__REMOVE_NAME;
1842        rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1843        if (rc)
1844                return rc;
1845        if (new_dentry->d_inode) {
1846                new_isec = new_dentry->d_inode->i_security;
1847                new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1848                rc = avc_has_perm(sid, new_isec->sid,
1849                                  new_isec->sclass,
1850                                  (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1851                if (rc)
1852                        return rc;
1853        }
1854
1855        return 0;
1856}
1857
1858/* Check whether a task can perform a filesystem operation. */
1859static int superblock_has_perm(const struct cred *cred,
1860                               struct super_block *sb,
1861                               u32 perms,
1862                               struct common_audit_data *ad)
1863{
1864        struct superblock_security_struct *sbsec;
1865        u32 sid = cred_sid(cred);
1866
1867        sbsec = sb->s_security;
1868        return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1869}
1870
1871/* Convert a Linux mode and permission mask to an access vector. */
1872static inline u32 file_mask_to_av(int mode, int mask)
1873{
1874        u32 av = 0;
1875
1876        if (!S_ISDIR(mode)) {
1877                if (mask & MAY_EXEC)
1878                        av |= FILE__EXECUTE;
1879                if (mask & MAY_READ)
1880                        av |= FILE__READ;
1881
1882                if (mask & MAY_APPEND)
1883                        av |= FILE__APPEND;
1884                else if (mask & MAY_WRITE)
1885                        av |= FILE__WRITE;
1886
1887        } else {
1888                if (mask & MAY_EXEC)
1889                        av |= DIR__SEARCH;
1890                if (mask & MAY_WRITE)
1891                        av |= DIR__WRITE;
1892                if (mask & MAY_READ)
1893                        av |= DIR__READ;
1894        }
1895
1896        return av;
1897}
1898
1899/* Convert a Linux file to an access vector. */
1900static inline u32 file_to_av(struct file *file)
1901{
1902        u32 av = 0;
1903
1904        if (file->f_mode & FMODE_READ)
1905                av |= FILE__READ;
1906        if (file->f_mode & FMODE_WRITE) {
1907                if (file->f_flags & O_APPEND)
1908                        av |= FILE__APPEND;
1909                else
1910                        av |= FILE__WRITE;
1911        }
1912        if (!av) {
1913                /*
1914                 * Special file opened with flags 3 for ioctl-only use.
1915                 */
1916                av = FILE__IOCTL;
1917        }
1918
1919        return av;
1920}
1921
1922/*
1923 * Convert a file to an access vector and include the correct open
1924 * open permission.
1925 */
1926static inline u32 open_file_to_av(struct file *file)
1927{
1928        u32 av = file_to_av(file);
1929
1930        if (selinux_policycap_openperm)
1931                av |= FILE__OPEN;
1932
1933        return av;
1934}
1935
1936/* Hook functions begin here. */
1937
1938static int selinux_ptrace_access_check(struct task_struct *child,
1939                                     unsigned int mode)
1940{
1941        int rc;
1942
1943        rc = cap_ptrace_access_check(child, mode);
1944        if (rc)
1945                return rc;
1946
1947        if (mode & PTRACE_MODE_READ) {
1948                u32 sid = current_sid();
1949                u32 csid = task_sid(child);
1950                return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
1951        }
1952
1953        return current_has_perm(child, PROCESS__PTRACE);
1954}
1955
1956static int selinux_ptrace_traceme(struct task_struct *parent)
1957{
1958        int rc;
1959
1960        rc = cap_ptrace_traceme(parent);
1961        if (rc)
1962                return rc;
1963
1964        return task_has_perm(parent, current, PROCESS__PTRACE);
1965}
1966
1967static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1968                          kernel_cap_t *inheritable, kernel_cap_t *permitted)
1969{
1970        int error;
1971
1972        error = current_has_perm(target, PROCESS__GETCAP);
1973        if (error)
1974                return error;
1975
1976        return cap_capget(target, effective, inheritable, permitted);
1977}
1978
1979static int selinux_capset(struct cred *new, const struct cred *old,
1980                          const kernel_cap_t *effective,
1981                          const kernel_cap_t *inheritable,
1982                          const kernel_cap_t *permitted)
1983{
1984        int error;
1985
1986        error = cap_capset(new, old,
1987                                      effective, inheritable, permitted);
1988        if (error)
1989                return error;
1990
1991        return cred_has_perm(old, new, PROCESS__SETCAP);
1992}
1993
1994/*
1995 * (This comment used to live with the selinux_task_setuid hook,
1996 * which was removed).
1997 *
1998 * Since setuid only affects the current process, and since the SELinux
1999 * controls are not based on the Linux identity attributes, SELinux does not
2000 * need to control this operation.  However, SELinux does control the use of
2001 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2002 */
2003
2004static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2005                           int cap, int audit)
2006{
2007        int rc;
2008
2009        rc = cap_capable(cred, ns, cap, audit);
2010        if (rc)
2011                return rc;
2012
2013        return cred_has_capability(cred, cap, audit);
2014}
2015
2016static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2017{
2018        const struct cred *cred = current_cred();
2019        int rc = 0;
2020
2021        if (!sb)
2022                return 0;
2023
2024        switch (cmds) {
2025        case Q_SYNC:
2026        case Q_QUOTAON:
2027        case Q_QUOTAOFF:
2028        case Q_SETINFO:
2029        case Q_SETQUOTA:
2030                rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2031                break;
2032        case Q_GETFMT:
2033        case Q_GETINFO:
2034        case Q_GETQUOTA:
2035                rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2036                break;
2037        default:
2038                rc = 0;  /* let the kernel handle invalid cmds */
2039                break;
2040        }
2041        return rc;
2042}
2043
2044static int selinux_quota_on(struct dentry *dentry)
2045{
2046        const struct cred *cred = current_cred();
2047
2048        return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2049}
2050
2051static int selinux_syslog(int type)
2052{
2053        int rc;
2054
2055        switch (type) {
2056        case SYSLOG_ACTION_READ_ALL:    /* Read last kernel messages */
2057        case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */
2058                rc = task_has_system(current, SYSTEM__SYSLOG_READ);
2059                break;
2060        case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */
2061        case SYSLOG_ACTION_CONSOLE_ON:  /* Enable logging to console */
2062        /* Set level of messages printed to console */
2063        case SYSLOG_ACTION_CONSOLE_LEVEL:
2064                rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
2065                break;
2066        case SYSLOG_ACTION_CLOSE:       /* Close log */
2067        case SYSLOG_ACTION_OPEN:        /* Open log */
2068        case SYSLOG_ACTION_READ:        /* Read from log */
2069        case SYSLOG_ACTION_READ_CLEAR:  /* Read/clear last kernel messages */
2070        case SYSLOG_ACTION_CLEAR:       /* Clear ring buffer */
2071        default:
2072                rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
2073                break;
2074        }
2075        return rc;
2076}
2077
2078/*
2079 * Check that a process has enough memory to allocate a new virtual
2080 * mapping. 0 means there is enough memory for the allocation to
2081 * succeed and -ENOMEM implies there is not.
2082 *
2083 * Do not audit the selinux permission check, as this is applied to all
2084 * processes that allocate mappings.
2085 */
2086static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2087{
2088        int rc, cap_sys_admin = 0;
2089
2090        rc = selinux_capable(current_cred(), &init_user_ns, CAP_SYS_ADMIN,
2091                             SECURITY_CAP_NOAUDIT);
2092        if (rc == 0)
2093                cap_sys_admin = 1;
2094
2095        return __vm_enough_memory(mm, pages, cap_sys_admin);
2096}
2097
2098/* binprm security operations */
2099
2100static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2101{
2102        const struct task_security_struct *old_tsec;
2103        struct task_security_struct *new_tsec;
2104        struct inode_security_struct *isec;
2105        struct common_audit_data ad;
2106        struct inode *inode = file_inode(bprm->file);
2107        int rc;
2108
2109        rc = cap_bprm_set_creds(bprm);
2110        if (rc)
2111                return rc;
2112
2113        /* SELinux context only depends on initial program or script and not
2114         * the script interpreter */
2115        if (bprm->cred_prepared)
2116                return 0;
2117
2118        old_tsec = current_security();
2119        new_tsec = bprm->cred->security;
2120        isec = inode->i_security;
2121
2122        /* Default to the current task SID. */
2123        new_tsec->sid = old_tsec->sid;
2124        new_tsec->osid = old_tsec->sid;
2125
2126        /* Reset fs, key, and sock SIDs on execve. */
2127        new_tsec->create_sid = 0;
2128        new_tsec->keycreate_sid = 0;
2129        new_tsec->sockcreate_sid = 0;
2130
2131        if (old_tsec->exec_sid) {
2132                new_tsec->sid = old_tsec->exec_sid;
2133                /* Reset exec SID on execve. */
2134                new_tsec->exec_sid = 0;
2135
2136                /*
2137                 * Minimize confusion: if no_new_privs or nosuid and a
2138                 * transition is explicitly requested, then fail the exec.
2139                 */
2140                if (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS)
2141                        return -EPERM;
2142                if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
2143                        return -EACCES;
2144        } else {
2145                /* Check for a default transition on this program. */
2146                rc = security_transition_sid(old_tsec->sid, isec->sid,
2147                                             SECCLASS_PROCESS, NULL,
2148                                             &new_tsec->sid);
2149                if (rc)
2150                        return rc;
2151        }
2152
2153        ad.type = LSM_AUDIT_DATA_PATH;
2154        ad.u.path = bprm->file->f_path;
2155
2156        if ((bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) ||
2157            (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS))
2158                new_tsec->sid = old_tsec->sid;
2159
2160        if (new_tsec->sid == old_tsec->sid) {
2161                rc = avc_has_perm(old_tsec->sid, isec->sid,
2162                                  SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2163                if (rc)
2164                        return rc;
2165        } else {
2166                /* Check permissions for the transition. */
2167                rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2168                                  SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2169                if (rc)
2170                        return rc;
2171
2172                rc = avc_has_perm(new_tsec->sid, isec->sid,
2173                                  SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2174                if (rc)
2175                        return rc;
2176
2177                /* Check for shared state */
2178                if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2179                        rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2180                                          SECCLASS_PROCESS, PROCESS__SHARE,
2181                                          NULL);
2182                        if (rc)
2183                                return -EPERM;
2184                }
2185
2186                /* Make sure that anyone attempting to ptrace over a task that
2187                 * changes its SID has the appropriate permit */
2188                if (bprm->unsafe &
2189                    (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2190                        struct task_struct *tracer;
2191                        struct task_security_struct *sec;
2192                        u32 ptsid = 0;
2193
2194                        rcu_read_lock();
2195                        tracer = ptrace_parent(current);
2196                        if (likely(tracer != NULL)) {
2197                                sec = __task_cred(tracer)->security;
2198                                ptsid = sec->sid;
2199                        }
2200                        rcu_read_unlock();
2201
2202                        if (ptsid != 0) {
2203                                rc = avc_has_perm(ptsid, new_tsec->sid,
2204                                                  SECCLASS_PROCESS,
2205                                                  PROCESS__PTRACE, NULL);
2206                                if (rc)
2207                                        return -EPERM;
2208                        }
2209                }
2210
2211                /* Clear any possibly unsafe personality bits on exec: */
2212                bprm->per_clear |= PER_CLEAR_ON_SETID;
2213        }
2214
2215        return 0;
2216}
2217
2218static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2219{
2220        const struct task_security_struct *tsec = current_security();
2221        u32 sid, osid;
2222        int atsecure = 0;
2223
2224        sid = tsec->sid;
2225        osid = tsec->osid;
2226
2227        if (osid != sid) {
2228                /* Enable secure mode for SIDs transitions unless
2229                   the noatsecure permission is granted between
2230                   the two SIDs, i.e. ahp returns 0. */
2231                atsecure = avc_has_perm(osid, sid,
2232                                        SECCLASS_PROCESS,
2233                                        PROCESS__NOATSECURE, NULL);
2234        }
2235
2236        return (atsecure || cap_bprm_secureexec(bprm));
2237}
2238
2239static int match_file(const void *p, struct file *file, unsigned fd)
2240{
2241        return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2242}
2243
2244/* Derived from fs/exec.c:flush_old_files. */
2245static inline void flush_unauthorized_files(const struct cred *cred,
2246                                            struct files_struct *files)
2247{
2248        struct file *file, *devnull = NULL;
2249        struct tty_struct *tty;
2250        int drop_tty = 0;
2251        unsigned n;
2252
2253        tty = get_current_tty();
2254        if (tty) {
2255                spin_lock(&tty_files_lock);
2256                if (!list_empty(&tty->tty_files)) {
2257                        struct tty_file_private *file_priv;
2258
2259                        /* Revalidate access to controlling tty.
2260                           Use file_path_has_perm on the tty path directly
2261                           rather than using file_has_perm, as this particular
2262                           open file may belong to another process and we are
2263                           only interested in the inode-based check here. */
2264                        file_priv = list_first_entry(&tty->tty_files,
2265                                                struct tty_file_private, list);
2266                        file = file_priv->file;
2267                        if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2268                                drop_tty = 1;
2269                }
2270                spin_unlock(&tty_files_lock);
2271                tty_kref_put(tty);
2272        }
2273        /* Reset controlling tty. */
2274        if (drop_tty)
2275                no_tty();
2276
2277        /* Revalidate access to inherited open files. */
2278        n = iterate_fd(files, 0, match_file, cred);
2279        if (!n) /* none found? */
2280                return;
2281
2282        devnull = dentry_open(&selinux_null, O_RDWR, cred);
2283        if (IS_ERR(devnull))
2284                devnull = NULL;
2285        /* replace all the matching ones with this */
2286        do {
2287                replace_fd(n - 1, devnull, 0);
2288        } while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2289        if (devnull)
2290                fput(devnull);
2291}
2292
2293/*
2294 * Prepare a process for imminent new credential changes due to exec
2295 */
2296static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2297{
2298        struct task_security_struct *new_tsec;
2299        struct rlimit *rlim, *initrlim;
2300        int rc, i;
2301
2302        new_tsec = bprm->cred->security;
2303        if (new_tsec->sid == new_tsec->osid)
2304                return;
2305
2306        /* Close files for which the new task SID is not authorized. */
2307        flush_unauthorized_files(bprm->cred, current->files);
2308
2309        /* Always clear parent death signal on SID transitions. */
2310        current->pdeath_signal = 0;
2311
2312        /* Check whether the new SID can inherit resource limits from the old
2313         * SID.  If not, reset all soft limits to the lower of the current
2314         * task's hard limit and the init task's soft limit.
2315         *
2316         * Note that the setting of hard limits (even to lower them) can be
2317         * controlled by the setrlimit check.  The inclusion of the init task's
2318         * soft limit into the computation is to avoid resetting soft limits
2319         * higher than the default soft limit for cases where the default is
2320         * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2321         */
2322        rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2323                          PROCESS__RLIMITINH, NULL);
2324        if (rc) {
2325                /* protect against do_prlimit() */
2326                task_lock(current);
2327                for (i = 0; i < RLIM_NLIMITS; i++) {
2328                        rlim = current->signal->rlim + i;
2329                        initrlim = init_task.signal->rlim + i;
2330                        rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2331                }
2332                task_unlock(current);
2333                update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2334        }
2335}
2336
2337/*
2338 * Clean up the process immediately after the installation of new credentials
2339 * due to exec
2340 */
2341static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2342{
2343        const struct task_security_struct *tsec = current_security();
2344        struct itimerval itimer;
2345        u32 osid, sid;
2346        int rc, i;
2347
2348        osid = tsec->osid;
2349        sid = tsec->sid;
2350
2351        if (sid == osid)
2352                return;
2353
2354        /* Check whether the new SID can inherit signal state from the old SID.
2355         * If not, clear itimers to avoid subsequent signal generation and
2356         * flush and unblock signals.
2357         *
2358         * This must occur _after_ the task SID has been updated so that any
2359         * kill done after the flush will be checked against the new SID.
2360         */
2361        rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2362        if (rc) {
2363                memset(&itimer, 0, sizeof itimer);
2364                for (i = 0; i < 3; i++)
2365                        do_setitimer(i, &itimer, NULL);
2366                spin_lock_irq(&current->sighand->siglock);
2367                if (!(current->signal->flags & SIGNAL_GROUP_EXIT)) {
2368                        __flush_signals(current);
2369                        flush_signal_handlers(current, 1);
2370                        sigemptyset(&current->blocked);
2371                }
2372                spin_unlock_irq(&current->sighand->siglock);
2373        }
2374
2375        /* Wake up the parent if it is waiting so that it can recheck
2376         * wait permission to the new task SID. */
2377        read_lock(&tasklist_lock);
2378        __wake_up_parent(current, current->real_parent);
2379        read_unlock(&tasklist_lock);
2380}
2381
2382/* superblock security operations */
2383
2384static int selinux_sb_alloc_security(struct super_block *sb)
2385{
2386        return superblock_alloc_security(sb);
2387}
2388
2389static void selinux_sb_free_security(struct super_block *sb)
2390{
2391        superblock_free_security(sb);
2392}
2393
2394static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2395{
2396        if (plen > olen)
2397                return 0;
2398
2399        return !memcmp(prefix, option, plen);
2400}
2401
2402static inline int selinux_option(char *option, int len)
2403{
2404        return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2405                match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2406                match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2407                match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2408                match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2409}
2410
2411static inline void take_option(char **to, char *from, int *first, int len)
2412{
2413        if (!*first) {
2414                **to = ',';
2415                *to += 1;
2416        } else
2417                *first = 0;
2418        memcpy(*to, from, len);
2419        *to += len;
2420}
2421
2422static inline void take_selinux_option(char **to, char *from, int *first,
2423                                       int len)
2424{
2425        int current_size = 0;
2426
2427        if (!*first) {
2428                **to = '|';
2429                *to += 1;
2430        } else
2431                *first = 0;
2432
2433        while (current_size < len) {
2434                if (*from != '"') {
2435                        **to = *from;
2436                        *to += 1;
2437                }
2438                from += 1;
2439                current_size += 1;
2440        }
2441}
2442
2443static int selinux_sb_copy_data(char *orig, char *copy)
2444{
2445        int fnosec, fsec, rc = 0;
2446        char *in_save, *in_curr, *in_end;
2447        char *sec_curr, *nosec_save, *nosec;
2448        int open_quote = 0;
2449
2450        in_curr = orig;
2451        sec_curr = copy;
2452
2453        nosec = (char *)get_zeroed_page(GFP_KERNEL);
2454        if (!nosec) {
2455                rc = -ENOMEM;
2456                goto out;
2457        }
2458
2459        nosec_save = nosec;
2460        fnosec = fsec = 1;
2461        in_save = in_end = orig;
2462
2463        do {
2464                if (*in_end == '"')
2465                        open_quote = !open_quote;
2466                if ((*in_end == ',' && open_quote == 0) ||
2467                                *in_end == '\0') {
2468                        int len = in_end - in_curr;
2469
2470                        if (selinux_option(in_curr, len))
2471                                take_selinux_option(&sec_curr, in_curr, &fsec, len);
2472                        else
2473                                take_option(&nosec, in_curr, &fnosec, len);
2474
2475                        in_curr = in_end + 1;
2476                }
2477        } while (*in_end++);
2478
2479        strcpy(in_save, nosec_save);
2480        free_page((unsigned long)nosec_save);
2481out:
2482        return rc;
2483}
2484
2485static int selinux_sb_remount(struct super_block *sb, void *data)
2486{
2487        int rc, i, *flags;
2488        struct security_mnt_opts opts;
2489        char *secdata, **mount_options;
2490        struct superblock_security_struct *sbsec = sb->s_security;
2491
2492        if (!(sbsec->flags & SE_SBINITIALIZED))
2493                return 0;
2494
2495        if (!data)
2496                return 0;
2497
2498        if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
2499                return 0;
2500
2501        security_init_mnt_opts(&opts);
2502        secdata = alloc_secdata();
2503        if (!secdata)
2504                return -ENOMEM;
2505        rc = selinux_sb_copy_data(data, secdata);
2506        if (rc)
2507                goto out_free_secdata;
2508
2509        rc = selinux_parse_opts_str(secdata, &opts);
2510        if (rc)
2511                goto out_free_secdata;
2512
2513        mount_options = opts.mnt_opts;
2514        flags = opts.mnt_opts_flags;
2515
2516        for (i = 0; i < opts.num_mnt_opts; i++) {
2517                u32 sid;
2518                size_t len;
2519
2520                if (flags[i] == SBLABEL_MNT)
2521                        continue;
2522                len = strlen(mount_options[i]);
2523                rc = security_context_to_sid(mount_options[i], len, &sid,
2524                                             GFP_KERNEL);
2525                if (rc) {
2526                        printk(KERN_WARNING "SELinux: security_context_to_sid"
2527                               "(%s) failed for (dev %s, type %s) errno=%d\n",
2528                               mount_options[i], sb->s_id, sb->s_type->name, rc);
2529                        goto out_free_opts;
2530                }
2531                rc = -EINVAL;
2532                switch (flags[i]) {
2533                case FSCONTEXT_MNT:
2534                        if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2535                                goto out_bad_option;
2536                        break;
2537                case CONTEXT_MNT:
2538                        if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2539                                goto out_bad_option;
2540                        break;
2541                case ROOTCONTEXT_MNT: {
2542                        struct inode_security_struct *root_isec;
2543                        root_isec = sb->s_root->d_inode->i_security;
2544
2545                        if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2546                                goto out_bad_option;
2547                        break;
2548                }
2549                case DEFCONTEXT_MNT:
2550                        if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2551                                goto out_bad_option;
2552                        break;
2553                default:
2554                        goto out_free_opts;
2555                }
2556        }
2557
2558        rc = 0;
2559out_free_opts:
2560        security_free_mnt_opts(&opts);
2561out_free_secdata:
2562        free_secdata(secdata);
2563        return rc;
2564out_bad_option:
2565        printk(KERN_WARNING "SELinux: unable to change security options "
2566               "during remount (dev %s, type=%s)\n", sb->s_id,
2567               sb->s_type->name);
2568        goto out_free_opts;
2569}
2570
2571static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2572{
2573        const struct cred *cred = current_cred();
2574        struct common_audit_data ad;
2575        int rc;
2576
2577        rc = superblock_doinit(sb, data);
2578        if (rc)
2579                return rc;
2580
2581        /* Allow all mounts performed by the kernel */
2582        if (flags & MS_KERNMOUNT)
2583                return 0;
2584
2585        ad.type = LSM_AUDIT_DATA_DENTRY;
2586        ad.u.dentry = sb->s_root;
2587        return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2588}
2589
2590static int selinux_sb_statfs(struct dentry *dentry)
2591{
2592        const struct cred *cred = current_cred();
2593        struct common_audit_data ad;
2594
2595        ad.type = LSM_AUDIT_DATA_DENTRY;
2596        ad.u.dentry = dentry->d_sb->s_root;
2597        return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2598}
2599
2600static int selinux_mount(const char *dev_name,
2601                         struct path *path,
2602                         const char *type,
2603                         unsigned long flags,
2604                         void *data)
2605{
2606        const struct cred *cred = current_cred();
2607
2608        if (flags & MS_REMOUNT)
2609                return superblock_has_perm(cred, path->dentry->d_sb,
2610                                           FILESYSTEM__REMOUNT, NULL);
2611        else
2612                return path_has_perm(cred, path, FILE__MOUNTON);
2613}
2614
2615static int selinux_umount(struct vfsmount *mnt, int flags)
2616{
2617        const struct cred *cred = current_cred();
2618
2619        return superblock_has_perm(cred, mnt->mnt_sb,
2620                                   FILESYSTEM__UNMOUNT, NULL);
2621}
2622
2623/* inode security operations */
2624
2625static int selinux_inode_alloc_security(struct inode *inode)
2626{
2627        return inode_alloc_security(inode);
2628}
2629
2630static void selinux_inode_free_security(struct inode *inode)
2631{
2632        inode_free_security(inode);
2633}
2634
2635static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2636                                        struct qstr *name, void **ctx,
2637                                        u32 *ctxlen)
2638{
2639        const struct cred *cred = current_cred();
2640        struct task_security_struct *tsec;
2641        struct inode_security_struct *dsec;
2642        struct superblock_security_struct *sbsec;
2643        struct inode *dir = dentry->d_parent->d_inode;
2644        u32 newsid;
2645        int rc;
2646
2647        tsec = cred->security;
2648        dsec = dir->i_security;
2649        sbsec = dir->i_sb->s_security;
2650
2651        if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
2652                newsid = tsec->create_sid;
2653        } else {
2654                rc = security_transition_sid(tsec->sid, dsec->sid,
2655                                             inode_mode_to_security_class(mode),
2656                                             name,
2657                                             &newsid);
2658                if (rc) {
2659                        printk(KERN_WARNING
2660                                "%s: security_transition_sid failed, rc=%d\n",
2661                               __func__, -rc);
2662                        return rc;
2663                }
2664        }
2665
2666        return security_sid_to_context(newsid, (char **)ctx, ctxlen);
2667}
2668
2669static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2670                                       const struct qstr *qstr,
2671                                       const char **name,
2672                                       void **value, size_t *len)
2673{
2674        const struct task_security_struct *tsec = current_security();
2675        struct inode_security_struct *dsec;
2676        struct superblock_security_struct *sbsec;
2677        u32 sid, newsid, clen;
2678        int rc;
2679        char *context;
2680
2681        dsec = dir->i_security;
2682        sbsec = dir->i_sb->s_security;
2683
2684        sid = tsec->sid;
2685        newsid = tsec->create_sid;
2686
2687        if ((sbsec->flags & SE_SBINITIALIZED) &&
2688            (sbsec->behavior == SECURITY_FS_USE_MNTPOINT))
2689                newsid = sbsec->mntpoint_sid;
2690        else if (!newsid || !(sbsec->flags & SBLABEL_MNT)) {
2691                rc = security_transition_sid(sid, dsec->sid,
2692                                             inode_mode_to_security_class(inode->i_mode),
2693                                             qstr, &newsid);
2694                if (rc) {
2695                        printk(KERN_WARNING "%s:  "
2696                               "security_transition_sid failed, rc=%d (dev=%s "
2697                               "ino=%ld)\n",
2698                               __func__,
2699                               -rc, inode->i_sb->s_id, inode->i_ino);
2700                        return rc;
2701                }
2702        }
2703
2704        /* Possibly defer initialization to selinux_complete_init. */
2705        if (sbsec->flags & SE_SBINITIALIZED) {
2706                struct inode_security_struct *isec = inode->i_security;
2707                isec->sclass = inode_mode_to_security_class(inode->i_mode);
2708                isec->sid = newsid;
2709                isec->initialized = 1;
2710        }
2711
2712        if (!ss_initialized || !(sbsec->flags & SBLABEL_MNT))
2713                return -EOPNOTSUPP;
2714
2715        if (name)
2716                *name = XATTR_SELINUX_SUFFIX;
2717
2718        if (value && len) {
2719                rc = security_sid_to_context_force(newsid, &context, &clen);
2720                if (rc)
2721                        return rc;
2722                *value = context;
2723                *len = clen;
2724        }
2725
2726        return 0;
2727}
2728
2729static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2730{
2731        return may_create(dir, dentry, SECCLASS_FILE);
2732}
2733
2734static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2735{
2736        return may_link(dir, old_dentry, MAY_LINK);
2737}
2738
2739static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2740{
2741        return may_link(dir, dentry, MAY_UNLINK);
2742}
2743
2744static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2745{
2746        return may_create(dir, dentry, SECCLASS_LNK_FILE);
2747}
2748
2749static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2750{
2751        return may_create(dir, dentry, SECCLASS_DIR);
2752}
2753
2754static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2755{
2756        return may_link(dir, dentry, MAY_RMDIR);
2757}
2758
2759static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2760{
2761        return may_create(dir, dentry, inode_mode_to_security_class(mode));
2762}
2763
2764static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2765                                struct inode *new_inode, struct dentry *new_dentry)
2766{
2767        return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2768}
2769
2770static int selinux_inode_readlink(struct dentry *dentry)
2771{
2772        const struct cred *cred = current_cred();
2773
2774        return dentry_has_perm(cred, dentry, FILE__READ);
2775}
2776
2777static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2778{
2779        const struct cred *cred = current_cred();
2780
2781        return dentry_has_perm(cred, dentry, FILE__READ);
2782}
2783
2784static noinline int audit_inode_permission(struct inode *inode,
2785                                           u32 perms, u32 audited, u32 denied,
2786                                           int result,
2787                                           unsigned flags)
2788{
2789        struct common_audit_data ad;
2790        struct inode_security_struct *isec = inode->i_security;
2791        int rc;
2792
2793        ad.type = LSM_AUDIT_DATA_INODE;
2794        ad.u.inode = inode;
2795
2796        rc = slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms,
2797                            audited, denied, result, &ad, flags);
2798        if (rc)
2799                return rc;
2800        return 0;
2801}
2802
2803static int selinux_inode_permission(struct inode *inode, int mask)
2804{
2805        const struct cred *cred = current_cred();
2806        u32 perms;
2807        bool from_access;
2808        unsigned flags = mask & MAY_NOT_BLOCK;
2809        struct inode_security_struct *isec;
2810        u32 sid;
2811        struct av_decision avd;
2812        int rc, rc2;
2813        u32 audited, denied;
2814
2815        from_access = mask & MAY_ACCESS;
2816        mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
2817
2818        /* No permission to check.  Existence test. */
2819        if (!mask)
2820                return 0;
2821
2822        validate_creds(cred);
2823
2824        if (unlikely(IS_PRIVATE(inode)))
2825                return 0;
2826
2827        perms = file_mask_to_av(inode->i_mode, mask);
2828
2829        sid = cred_sid(cred);
2830        isec = inode->i_security;
2831
2832        rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0, &avd);
2833        audited = avc_audit_required(perms, &avd, rc,
2834                                     from_access ? FILE__AUDIT_ACCESS : 0,
2835                                     &denied);
2836        if (likely(!audited))
2837                return rc;
2838
2839        rc2 = audit_inode_permission(inode, perms, audited, denied, rc, flags);
2840        if (rc2)
2841                return rc2;
2842        return rc;
2843}
2844
2845static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2846{
2847        const struct cred *cred = current_cred();
2848        unsigned int ia_valid = iattr->ia_valid;
2849        __u32 av = FILE__WRITE;
2850
2851        /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
2852        if (ia_valid & ATTR_FORCE) {
2853                ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
2854                              ATTR_FORCE);
2855                if (!ia_valid)
2856                        return 0;
2857        }
2858
2859        if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2860                        ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
2861                return dentry_has_perm(cred, dentry, FILE__SETATTR);
2862
2863        if (selinux_policycap_openperm && (ia_valid & ATTR_SIZE))
2864                av |= FILE__OPEN;
2865
2866        return dentry_has_perm(cred, dentry, av);
2867}
2868
2869static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2870{
2871        const struct cred *cred = current_cred();
2872        struct path path;
2873
2874        path.dentry = dentry;
2875        path.mnt = mnt;
2876
2877        return path_has_perm(cred, &path, FILE__GETATTR);
2878}
2879
2880static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2881{
2882        const struct cred *cred = current_cred();
2883
2884        if (!strncmp(name, XATTR_SECURITY_PREFIX,
2885                     sizeof XATTR_SECURITY_PREFIX - 1)) {
2886                if (!strcmp(name, XATTR_NAME_CAPS)) {
2887                        if (!capable(CAP_SETFCAP))
2888                                return -EPERM;
2889                } else if (!capable(CAP_SYS_ADMIN)) {
2890                        /* A different attribute in the security namespace.
2891                           Restrict to administrator. */
2892                        return -EPERM;
2893                }
2894        }
2895
2896        /* Not an attribute we recognize, so just check the
2897           ordinary setattr permission. */
2898        return dentry_has_perm(cred, dentry, FILE__SETATTR);
2899}
2900
2901static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2902                                  const void *value, size_t size, int flags)
2903{
2904        struct inode *inode = dentry->d_inode;
2905        struct inode_security_struct *isec = inode->i_security;
2906        struct superblock_security_struct *sbsec;
2907        struct common_audit_data ad;
2908        u32 newsid, sid = current_sid();
2909        int rc = 0;
2910
2911        if (strcmp(name, XATTR_NAME_SELINUX))
2912                return selinux_inode_setotherxattr(dentry, name);
2913
2914        sbsec = inode->i_sb->s_security;
2915        if (!(sbsec->flags & SBLABEL_MNT))
2916                return -EOPNOTSUPP;
2917
2918        if (!inode_owner_or_capable(inode))
2919                return -EPERM;
2920
2921        ad.type = LSM_AUDIT_DATA_DENTRY;
2922        ad.u.dentry = dentry;
2923
2924        rc = avc_has_perm(sid, isec->sid, isec->sclass,
2925                          FILE__RELABELFROM, &ad);
2926        if (rc)
2927                return rc;
2928
2929        rc = security_context_to_sid(value, size, &newsid, GFP_KERNEL);
2930        if (rc == -EINVAL) {
2931                if (!capable(CAP_MAC_ADMIN)) {
2932                        struct audit_buffer *ab;
2933                        size_t audit_size;
2934                        const char *str;
2935
2936                        /* We strip a nul only if it is at the end, otherwise the
2937                         * context contains a nul and we should audit that */
2938                        if (value) {
2939                                str = value;
2940                                if (str[size - 1] == '\0')
2941                                        audit_size = size - 1;
2942                                else
2943                                        audit_size = size;
2944                        } else {
2945                                str = "";
2946                                audit_size = 0;
2947                        }
2948                        ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
2949                        audit_log_format(ab, "op=setxattr invalid_context=");
2950                        audit_log_n_untrustedstring(ab, value, audit_size);
2951                        audit_log_end(ab);
2952
2953                        return rc;
2954                }
2955                rc = security_context_to_sid_force(value, size, &newsid);
2956        }
2957        if (rc)
2958                return rc;
2959
2960        rc = avc_has_perm(sid, newsid, isec->sclass,
2961                          FILE__RELABELTO, &ad);
2962        if (rc)
2963                return rc;
2964
2965        rc = security_validate_transition(isec->sid, newsid, sid,
2966                                          isec->sclass);
2967        if (rc)
2968                return rc;
2969
2970        return avc_has_perm(newsid,
2971                            sbsec->sid,
2972                            SECCLASS_FILESYSTEM,
2973                            FILESYSTEM__ASSOCIATE,
2974                            &ad);
2975}
2976
2977static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2978                                        const void *value, size_t size,
2979                                        int flags)
2980{
2981        struct inode *inode = dentry->d_inode;
2982        struct inode_security_struct *isec = inode->i_security;
2983        u32 newsid;
2984        int rc;
2985
2986        if (strcmp(name, XATTR_NAME_SELINUX)) {
2987                /* Not an attribute we recognize, so nothing to do. */
2988                return;
2989        }
2990
2991        rc = security_context_to_sid_force(value, size, &newsid);
2992        if (rc) {
2993                printk(KERN_ERR "SELinux:  unable to map context to SID"
2994                       "for (%s, %lu), rc=%d\n",
2995                       inode->i_sb->s_id, inode->i_ino, -rc);
2996                return;
2997        }
2998
2999        isec->sclass = inode_mode_to_security_class(inode->i_mode);
3000        isec->sid = newsid;
3001        isec->initialized = 1;
3002
3003        return;
3004}
3005
3006static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3007{
3008        const struct cred *cred = current_cred();
3009
3010        return dentry_has_perm(cred, dentry, FILE__GETATTR);
3011}
3012
3013static int selinux_inode_listxattr(struct dentry *dentry)
3014{
3015        const struct cred *cred = current_cred();
3016
3017        return dentry_has_perm(cred, dentry, FILE__GETATTR);
3018}
3019
3020static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
3021{
3022        if (strcmp(name, XATTR_NAME_SELINUX))
3023                return selinux_inode_setotherxattr(dentry, name);
3024
3025        /* No one is allowed to remove a SELinux security label.
3026           You can change the label, but all data must be labeled. */
3027        return -EACCES;
3028}
3029
3030/*
3031 * Copy the inode security context value to the user.
3032 *
3033 * Permission check is handled by selinux_inode_getxattr hook.
3034 */
3035static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
3036{
3037        u32 size;
3038        int error;
3039        char *context = NULL;
3040        struct inode_security_struct *isec = inode->i_security;
3041
3042        if (strcmp(name, XATTR_SELINUX_SUFFIX))
3043                return -EOPNOTSUPP;
3044
3045        /*
3046         * If the caller has CAP_MAC_ADMIN, then get the raw context
3047         * value even if it is not defined by current policy; otherwise,
3048         * use the in-core value under current policy.
3049         * Use the non-auditing forms of the permission checks since
3050         * getxattr may be called by unprivileged processes commonly
3051         * and lack of permission just means that we fall back to the
3052         * in-core context value, not a denial.
3053         */
3054        error = selinux_capable(current_cred(), &init_user_ns, CAP_MAC_ADMIN,
3055                                SECURITY_CAP_NOAUDIT);
3056        if (!error)
3057                error = security_sid_to_context_force(isec->sid, &context,
3058                                                      &size);
3059        else
3060                error = security_sid_to_context(isec->sid, &context, &size);
3061        if (error)
3062                return error;
3063        error = size;
3064        if (alloc) {
3065                *buffer = context;
3066                goto out_nofree;
3067        }
3068        kfree(context);
3069out_nofree:
3070        return error;
3071}
3072
3073static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3074                                     const void *value, size_t size, int flags)
3075{
3076        struct inode_security_struct *isec = inode->i_security;
3077        u32 newsid;
3078        int rc;
3079
3080        if (strcmp(name, XATTR_SELINUX_SUFFIX))
3081                return -EOPNOTSUPP;
3082
3083        if (!value || !size)
3084                return -EACCES;
3085
3086        rc = security_context_to_sid((void *)value, size, &newsid, GFP_KERNEL);
3087        if (rc)
3088                return rc;
3089
3090        isec->sclass = inode_mode_to_security_class(inode->i_mode);
3091        isec->sid = newsid;
3092        isec->initialized = 1;
3093        return 0;
3094}
3095
3096static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3097{
3098        const int len = sizeof(XATTR_NAME_SELINUX);
3099        if (buffer && len <= buffer_size)
3100                memcpy(buffer, XATTR_NAME_SELINUX, len);
3101        return len;
3102}
3103
3104static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
3105{
3106        struct inode_security_struct *isec = inode->i_security;
3107        *secid = isec->sid;
3108}
3109
3110/* file security operations */
3111
3112static int selinux_revalidate_file_permission(struct file *file, int mask)
3113{
3114        const struct cred *cred = current_cred();
3115        struct inode *inode = file_inode(file);
3116
3117        /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3118        if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3119                mask |= MAY_APPEND;
3120
3121        return file_has_perm(cred, file,
3122                             file_mask_to_av(inode->i_mode, mask));
3123}
3124
3125static int selinux_file_permission(struct file *file, int mask)
3126{
3127        struct inode *inode = file_inode(file);
3128        struct file_security_struct *fsec = file->f_security;
3129        struct inode_security_struct *isec = inode->i_security;
3130        u32 sid = current_sid();
3131
3132        if (!mask)
3133                /* No permission to check.  Existence test. */
3134                return 0;
3135
3136        if (sid == fsec->sid && fsec->isid == isec->sid &&
3137            fsec->pseqno == avc_policy_seqno())
3138                /* No change since file_open check. */
3139                return 0;
3140
3141        return selinux_revalidate_file_permission(file, mask);
3142}
3143
3144static int selinux_file_alloc_security(struct file *file)
3145{
3146        return file_alloc_security(file);
3147}
3148
3149static void selinux_file_free_security(struct file *file)
3150{
3151        file_free_security(file);
3152}
3153
3154static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3155                              unsigned long arg)
3156{
3157        const struct cred *cred = current_cred();
3158        int error = 0;
3159
3160        switch (cmd) {
3161        case FIONREAD:
3162        /* fall through */
3163        case FIBMAP:
3164        /* fall through */
3165        case FIGETBSZ:
3166        /* fall through */
3167        case FS_IOC_GETFLAGS:
3168        /* fall through */
3169        case FS_IOC_GETVERSION:
3170                error = file_has_perm(cred, file, FILE__GETATTR);
3171                break;
3172
3173        case FS_IOC_SETFLAGS:
3174        /* fall through */
3175        case FS_IOC_SETVERSION:
3176                error = file_has_perm(cred, file, FILE__SETATTR);
3177                break;
3178
3179        /* sys_ioctl() checks */
3180        case FIONBIO:
3181        /* fall through */
3182        case FIOASYNC:
3183                error = file_has_perm(cred, file, 0);
3184                break;
3185
3186        case KDSKBENT:
3187        case KDSKBSENT:
3188                error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3189                                            SECURITY_CAP_AUDIT);
3190                break;
3191
3192        /* default case assumes that the command will go
3193         * to the file's ioctl() function.
3194         */
3195        default:
3196                error = file_has_perm(cred, file, FILE__IOCTL);
3197        }
3198        return error;
3199}
3200
3201static int default_noexec;
3202
3203static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3204{
3205        const struct cred *cred = current_cred();
3206        int rc = 0;
3207
3208        if (default_noexec &&
3209            (prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
3210                /*
3211                 * We are making executable an anonymous mapping or a
3212                 * private file mapping that will also be writable.
3213                 * This has an additional check.
3214                 */
3215                rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
3216                if (rc)
3217                        goto error;
3218        }
3219
3220        if (file) {
3221                /* read access is always possible with a mapping */
3222                u32 av = FILE__READ;
3223
3224                /* write access only matters if the mapping is shared */
3225                if (shared && (prot & PROT_WRITE))
3226                        av |= FILE__WRITE;
3227
3228                if (prot & PROT_EXEC)
3229                        av |= FILE__EXECUTE;
3230
3231                return file_has_perm(cred, file, av);
3232        }
3233
3234error:
3235        return rc;
3236}
3237
3238static int selinux_mmap_addr(unsigned long addr)
3239{
3240        int rc;
3241
3242        /* do DAC check on address space usage */
3243        rc = cap_mmap_addr(addr);
3244        if (rc)
3245                return rc;
3246
3247        if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3248                u32 sid = current_sid();
3249                rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3250                                  MEMPROTECT__MMAP_ZERO, NULL);
3251        }
3252
3253        return rc;
3254}
3255
3256static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3257                             unsigned long prot, unsigned long flags)
3258{
3259        if (selinux_checkreqprot)
3260                prot = reqprot;
3261
3262        return file_map_prot_check(file, prot,
3263                                   (flags & MAP_TYPE) == MAP_SHARED);
3264}
3265
3266static int selinux_file_mprotect(struct vm_area_struct *vma,
3267                                 unsigned long reqprot,
3268                                 unsigned long prot)
3269{
3270        const struct cred *cred = current_cred();
3271
3272        if (selinux_checkreqprot)
3273                prot = reqprot;
3274
3275        if (default_noexec &&
3276            (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3277                int rc = 0;
3278                if (vma->vm_start >= vma->vm_mm->start_brk &&
3279                    vma->vm_end <= vma->vm_mm->brk) {
3280                        rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
3281                } else if (!vma->vm_file &&
3282                           vma->vm_start <= vma->vm_mm->start_stack &&
3283                           vma->vm_end >= vma->vm_mm->start_stack) {
3284                        rc = current_has_perm(current, PROCESS__EXECSTACK);
3285                } else if (vma->vm_file && vma->anon_vma) {
3286                        /*
3287                         * We are making executable a file mapping that has
3288                         * had some COW done. Since pages might have been
3289                         * written, check ability to execute the possibly
3290                         * modified content.  This typically should only
3291                         * occur for text relocations.
3292                         */
3293                        rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3294                }
3295                if (rc)
3296                        return rc;
3297        }
3298
3299        return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3300}
3301
3302static int selinux_file_lock(struct file *file, unsigned int cmd)
3303{
3304        const struct cred *cred = current_cred();
3305
3306        return file_has_perm(cred, file, FILE__LOCK);
3307}
3308
3309static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3310                              unsigned long arg)
3311{
3312        const struct cred *cred = current_cred();
3313        int err = 0;
3314
3315        switch (cmd) {
3316        case F_SETFL:
3317                if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3318                        err = file_has_perm(cred, file, FILE__WRITE);
3319                        break;
3320                }
3321                /* fall through */
3322        case F_SETOWN:
3323        case F_SETSIG:
3324        case F_GETFL:
3325        case F_GETOWN:
3326        case F_GETSIG:
3327        case F_GETOWNER_UIDS:
3328                /* Just check FD__USE permission */
3329                err = file_has_perm(cred, file, 0);
3330                break;
3331        case F_GETLK:
3332        case F_SETLK:
3333        case F_SETLKW:
3334        case F_OFD_GETLK:
3335        case F_OFD_SETLK:
3336        case F_OFD_SETLKW:
3337#if BITS_PER_LONG == 32
3338        case F_GETLK64:
3339        case F_SETLK64:
3340        case F_SETLKW64:
3341#endif
3342                err = file_has_perm(cred, file, FILE__LOCK);
3343                break;
3344        }
3345
3346        return err;
3347}
3348
3349static int selinux_file_set_fowner(struct file *file)
3350{
3351        struct file_security_struct *fsec;
3352
3353        fsec = file->f_security;
3354        fsec->fown_sid = current_sid();
3355
3356        return 0;
3357}
3358
3359static int selinux_file_send_sigiotask(struct task_struct *tsk,
3360                                       struct fown_struct *fown, int signum)
3361{
3362        struct file *file;
3363        u32 sid = task_sid(tsk);
3364        u32 perm;
3365        struct file_security_struct *fsec;
3366
3367        /* struct fown_struct is never outside the context of a struct file */
3368        file = container_of(fown, struct file, f_owner);
3369
3370        fsec = file->f_security;
3371
3372        if (!signum)
3373                perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3374        else
3375                perm = signal_to_av(signum);
3376
3377        return avc_has_perm(fsec->fown_sid, sid,
3378                            SECCLASS_PROCESS, perm, NULL);
3379}
3380
3381static int selinux_file_receive(struct file *file)
3382{
3383        const struct cred *cred = current_cred();
3384
3385        return file_has_perm(cred, file, file_to_av(file));
3386}
3387
3388static int selinux_file_open(struct file *file, const struct cred *cred)
3389{
3390        struct file_security_struct *fsec;
3391        struct inode_security_struct *isec;
3392
3393        fsec = file->f_security;
3394        isec = file_inode(file)->i_security;
3395        /*
3396         * Save inode label and policy sequence number
3397         * at open-time so that selinux_file_permission
3398         * can determine whether revalidation is necessary.
3399         * Task label is already saved in the file security
3400         * struct as its SID.
3401         */
3402        fsec->isid = isec->sid;
3403        fsec->pseqno = avc_policy_seqno();
3404        /*
3405         * Since the inode label or policy seqno may have changed
3406         * between the selinux_inode_permission check and the saving
3407         * of state above, recheck that access is still permitted.
3408         * Otherwise, access might never be revalidated against the
3409         * new inode label or new policy.
3410         * This check is not redundant - do not remove.
3411         */
3412        return file_path_has_perm(cred, file, open_file_to_av(file));
3413}
3414
3415/* task security operations */
3416
3417static int selinux_task_create(unsigned long clone_flags)
3418{
3419        return current_has_perm(current, PROCESS__FORK);
3420}
3421
3422/*
3423 * allocate the SELinux part of blank credentials
3424 */
3425static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3426{
3427        struct task_security_struct *tsec;
3428
3429        tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3430        if (!tsec)
3431                return -ENOMEM;
3432
3433        cred->security = tsec;
3434        return 0;
3435}
3436
3437/*
3438 * detach and free the LSM part of a set of credentials
3439 */
3440static void selinux_cred_free(struct cred *cred)
3441{
3442        struct task_security_struct *tsec = cred->security;
3443
3444        /*
3445         * cred->security == NULL if security_cred_alloc_blank() or
3446         * security_prepare_creds() returned an error.
3447         */
3448        BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE);
3449        cred->security = (void *) 0x7UL;
3450        kfree(tsec);
3451}
3452
3453/*
3454 * prepare a new set of credentials for modification
3455 */
3456static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3457                                gfp_t gfp)
3458{
3459        const struct task_security_struct *old_tsec;
3460        struct task_security_struct *tsec;
3461
3462        old_tsec = old->security;
3463
3464        tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3465        if (!tsec)
3466                return -ENOMEM;
3467
3468        new->security = tsec;
3469        return 0;
3470}
3471
3472/*
3473 * transfer the SELinux data to a blank set of creds
3474 */
3475static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3476{
3477        const struct task_security_struct *old_tsec = old->security;
3478        struct task_security_struct *tsec = new->security;
3479
3480        *tsec = *old_tsec;
3481}
3482
3483/*
3484 * set the security data for a kernel service
3485 * - all the creation contexts are set to unlabelled
3486 */
3487static int selinux_kernel_act_as(struct cred *new, u32 secid)
3488{
3489        struct task_security_struct *tsec = new->security;
3490        u32 sid = current_sid();
3491        int ret;
3492
3493        ret = avc_has_perm(sid, secid,
3494                           SECCLASS_KERNEL_SERVICE,
3495                           KERNEL_SERVICE__USE_AS_OVERRIDE,
3496                           NULL);
3497        if (ret == 0) {
3498                tsec->sid = secid;
3499                tsec->create_sid = 0;
3500                tsec->keycreate_sid = 0;
3501                tsec->sockcreate_sid = 0;
3502        }
3503        return ret;
3504}
3505
3506/*
3507 * set the file creation context in a security record to the same as the
3508 * objective context of the specified inode
3509 */
3510static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3511{
3512        struct inode_security_struct *isec = inode->i_security;
3513        struct task_security_struct *tsec = new->security;
3514        u32 sid = current_sid();
3515        int ret;
3516
3517        ret = avc_has_perm(sid, isec->sid,
3518                           SECCLASS_KERNEL_SERVICE,
3519                           KERNEL_SERVICE__CREATE_FILES_AS,
3520                           NULL);
3521
3522        if (ret == 0)
3523                tsec->create_sid = isec->sid;
3524        return ret;
3525}
3526
3527static int selinux_kernel_module_request(char *kmod_name)
3528{
3529        u32 sid;
3530        struct common_audit_data ad;
3531
3532        sid = task_sid(current);
3533
3534        ad.type = LSM_AUDIT_DATA_KMOD;
3535        ad.u.kmod_name = kmod_name;
3536
3537        return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM,
3538                            SYSTEM__MODULE_REQUEST, &ad);
3539}
3540
3541static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3542{
3543        return current_has_perm(p, PROCESS__SETPGID);
3544}
3545
3546static int selinux_task_getpgid(struct task_struct *p)
3547{
3548        return current_has_perm(p, PROCESS__GETPGID);
3549}
3550
3551static int selinux_task_getsid(struct task_struct *p)
3552{
3553        return current_has_perm(p, PROCESS__GETSESSION);
3554}
3555
3556static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3557{
3558        *secid = task_sid(p);
3559}
3560
3561static int selinux_task_setnice(struct task_struct *p, int nice)
3562{
3563        int rc;
3564
3565        rc = cap_task_setnice(p, nice);
3566        if (rc)
3567                return rc;
3568
3569        return current_has_perm(p, PROCESS__SETSCHED);
3570}
3571
3572static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3573{
3574        int rc;
3575
3576        rc = cap_task_setioprio(p, ioprio);
3577        if (rc)
3578                return rc;
3579
3580        return current_has_perm(p, PROCESS__SETSCHED);
3581}
3582
3583static int selinux_task_getioprio(struct task_struct *p)
3584{
3585        return current_has_perm(p, PROCESS__GETSCHED);
3586}
3587
3588static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
3589                struct rlimit *new_rlim)
3590{
3591        struct rlimit *old_rlim = p->signal->rlim + resource;
3592
3593        /* Control the ability to change the hard limit (whether
3594           lowering or raising it), so that the hard limit can
3595           later be used as a safe reset point for the soft limit
3596           upon context transitions.  See selinux_bprm_committing_creds. */
3597        if (old_rlim->rlim_max != new_rlim->rlim_max)
3598                return current_has_perm(p, PROCESS__SETRLIMIT);
3599
3600        return 0;
3601}
3602
3603static int selinux_task_setscheduler(struct task_struct *p)
3604{
3605        int rc;
3606
3607        rc = cap_task_setscheduler(p);
3608        if (rc)
3609                return rc;
3610
3611        return current_has_perm(p, PROCESS__SETSCHED);
3612}
3613
3614static int selinux_task_getscheduler(struct task_struct *p)
3615{
3616        return current_has_perm(p, PROCESS__GETSCHED);
3617}
3618
3619static int selinux_task_movememory(struct task_struct *p)
3620{
3621        return current_has_perm(p, PROCESS__SETSCHED);
3622}
3623
3624static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3625                                int sig, u32 secid)
3626{
3627        u32 perm;
3628        int rc;
3629
3630        if (!sig)
3631                perm = PROCESS__SIGNULL; /* null signal; existence test */
3632        else
3633                perm = signal_to_av(sig);
3634        if (secid)
3635                rc = avc_has_perm(secid, task_sid(p),
3636                                  SECCLASS_PROCESS, perm, NULL);
3637        else
3638                rc = current_has_perm(p, perm);
3639        return rc;
3640}
3641
3642static int selinux_task_wait(struct task_struct *p)
3643{
3644        return task_has_perm(p, current, PROCESS__SIGCHLD);
3645}
3646
3647static void selinux_task_to_inode(struct task_struct *p,
3648                                  struct inode *inode)
3649{
3650        struct inode_security_struct *isec = inode->i_security;
3651        u32 sid = task_sid(p);
3652
3653        isec->sid = sid;
3654        isec->initialized = 1;
3655}
3656
3657/* Returns error only if unable to parse addresses */
3658static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3659                        struct common_audit_data *ad, u8 *proto)
3660{
3661        int offset, ihlen, ret = -EINVAL;
3662        struct iphdr _iph, *ih;
3663
3664        offset = skb_network_offset(skb);
3665        ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3666        if (ih == NULL)
3667                goto out;
3668
3669        ihlen = ih->ihl * 4;
3670        if (ihlen < sizeof(_iph))
3671                goto out;
3672
3673        ad->u.net->v4info.saddr = ih->saddr;
3674        ad->u.net->v4info.daddr = ih->daddr;
3675        ret = 0;
3676
3677        if (proto)
3678                *proto = ih->protocol;
3679
3680        switch (ih->protocol) {
3681        case IPPROTO_TCP: {
3682                struct tcphdr _tcph, *th;
3683
3684                if (ntohs(ih->frag_off) & IP_OFFSET)
3685                        break;
3686
3687                offset += ihlen;
3688                th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3689                if (th == NULL)
3690                        break;
3691
3692                ad->u.net->sport = th->source;
3693                ad->u.net->dport = th->dest;
3694                break;
3695        }
3696
3697        case IPPROTO_UDP: {
3698                struct udphdr _udph, *uh;
3699
3700                if (ntohs(ih->frag_off) & IP_OFFSET)
3701                        break;
3702
3703                offset += ihlen;
3704                uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3705                if (uh == NULL)
3706                        break;
3707
3708                ad->u.net->sport = uh->source;
3709                ad->u.net->dport = uh->dest;
3710                break;
3711        }
3712
3713        case IPPROTO_DCCP: {
3714                struct dccp_hdr _dccph, *dh;
3715
3716                if (ntohs(ih->frag_off) & IP_OFFSET)
3717                        break;
3718
3719                offset += ihlen;
3720                dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3721                if (dh == NULL)
3722                        break;
3723
3724                ad->u.net->sport = dh->dccph_sport;
3725                ad->u.net->dport = dh->dccph_dport;
3726                break;
3727        }
3728
3729        default:
3730                break;
3731        }
3732out:
3733        return ret;
3734}
3735
3736#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3737
3738/* Returns error only if unable to parse addresses */
3739static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3740                        struct common_audit_data *ad, u8 *proto)
3741{
3742        u8 nexthdr;
3743        int ret = -EINVAL, offset;
3744        struct ipv6hdr _ipv6h, *ip6;
3745        __be16 frag_off;
3746
3747        offset = skb_network_offset(skb);
3748        ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3749        if (ip6 == NULL)
3750                goto out;
3751
3752        ad->u.net->v6info.saddr = ip6->saddr;
3753        ad->u.net->v6info.daddr = ip6->daddr;
3754        ret = 0;
3755
3756        nexthdr = ip6->nexthdr;
3757        offset += sizeof(_ipv6h);
3758        offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
3759        if (offset < 0)
3760                goto out;
3761
3762        if (proto)
3763                *proto = nexthdr;
3764
3765        switch (nexthdr) {
3766        case IPPROTO_TCP: {
3767                struct tcphdr _tcph, *th;
3768
3769                th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3770                if (th == NULL)
3771                        break;
3772
3773                ad->u.net->sport = th->source;
3774                ad->u.net->dport = th->dest;
3775                break;
3776        }
3777
3778        case IPPROTO_UDP: {
3779                struct udphdr _udph, *uh;
3780
3781                uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3782                if (uh == NULL)
3783                        break;
3784
3785                ad->u.net->sport = uh->source;
3786                ad->u.net->dport = uh->dest;
3787                break;
3788        }
3789
3790        case IPPROTO_DCCP: {
3791                struct dccp_hdr _dccph, *dh;
3792
3793                dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3794                if (dh == NULL)
3795                        break;
3796
3797                ad->u.net->sport = dh->dccph_sport;
3798                ad->u.net->dport = dh->dccph_dport;
3799                break;
3800        }
3801
3802        /* includes fragments */
3803        default:
3804                break;
3805        }
3806out:
3807        return ret;
3808}
3809
3810#endif /* IPV6 */
3811
3812static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
3813                             char **_addrp, int src, u8 *proto)
3814{
3815        char *addrp;
3816        int ret;
3817
3818        switch (ad->u.net->family) {
3819        case PF_INET:
3820                ret = selinux_parse_skb_ipv4(skb, ad, proto);
3821                if (ret)
3822                        goto parse_error;
3823                addrp = (char *)(src ? &ad->u.net->v4info.saddr :
3824                                       &ad->u.net->v4info.daddr);
3825                goto okay;
3826
3827#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3828        case PF_INET6:
3829                ret = selinux_parse_skb_ipv6(skb, ad, proto);
3830                if (ret)
3831                        goto parse_error;
3832                addrp = (char *)(src ? &ad->u.net->v6info.saddr :
3833                                       &ad->u.net->v6info.daddr);
3834                goto okay;
3835#endif  /* IPV6 */
3836        default:
3837                addrp = NULL;
3838                goto okay;
3839        }
3840
3841parse_error:
3842        printk(KERN_WARNING
3843               "SELinux: failure in selinux_parse_skb(),"
3844               " unable to parse packet\n");
3845        return ret;
3846
3847okay:
3848        if (_addrp)
3849                *_addrp = addrp;
3850        return 0;
3851}
3852
3853/**
3854 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3855 * @skb: the packet
3856 * @family: protocol family
3857 * @sid: the packet's peer label SID
3858 *
3859 * Description:
3860 * Check the various different forms of network peer labeling and determine
3861 * the peer label/SID for the packet; most of the magic actually occurs in
3862 * the security server function security_net_peersid_cmp().  The function
3863 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3864 * or -EACCES if @sid is invalid due to inconsistencies with the different
3865 * peer labels.
3866 *
3867 */
3868static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3869{
3870        int err;
3871        u32 xfrm_sid;
3872        u32 nlbl_sid;
3873        u32 nlbl_type;
3874
3875        err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
3876        if (unlikely(err))
3877                return -EACCES;
3878        err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3879        if (unlikely(err))
3880                return -EACCES;
3881
3882        err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3883        if (unlikely(err)) {
3884                printk(KERN_WARNING
3885                       "SELinux: failure in selinux_skb_peerlbl_sid(),"
3886                       " unable to determine packet's peer label\n");
3887                return -EACCES;
3888        }
3889
3890        return 0;
3891}
3892
3893/**
3894 * selinux_conn_sid - Determine the child socket label for a connection
3895 * @sk_sid: the parent socket's SID
3896 * @skb_sid: the packet's SID
3897 * @conn_sid: the resulting connection SID
3898 *
3899 * If @skb_sid is valid then the user:role:type information from @sk_sid is
3900 * combined with the MLS information from @skb_sid in order to create
3901 * @conn_sid.  If @skb_sid is not valid then then @conn_sid is simply a copy
3902 * of @sk_sid.  Returns zero on success, negative values on failure.
3903 *
3904 */
3905static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
3906{
3907        int err = 0;
3908
3909        if (skb_sid != SECSID_NULL)
3910                err = security_sid_mls_copy(sk_sid, skb_sid, conn_sid);
3911        else
3912                *conn_sid = sk_sid;
3913
3914        return err;
3915}
3916
3917/* socket security operations */
3918
3919static int socket_sockcreate_sid(const struct task_security_struct *tsec,
3920                                 u16 secclass, u32 *socksid)
3921{
3922        if (tsec->sockcreate_sid > SECSID_NULL) {
3923                *socksid = tsec->sockcreate_sid;
3924                return 0;
3925        }
3926
3927        return security_transition_sid(tsec->sid, tsec->sid, secclass, NULL,
3928                                       socksid);
3929}
3930
3931static int sock_has_perm(struct task_struct *task, struct sock *sk, u32 perms)
3932{
3933        struct sk_security_struct *sksec = sk->sk_security;
3934        struct common_audit_data ad;
3935        struct lsm_network_audit net = {0,};
3936        u32 tsid = task_sid(task);
3937
3938        if (sksec->sid == SECINITSID_KERNEL)
3939                return 0;
3940
3941        ad.type = LSM_AUDIT_DATA_NET;
3942        ad.u.net = &net;
3943        ad.u.net->sk = sk;
3944
3945        return avc_has_perm(tsid, sksec->sid, sksec->sclass, perms, &ad);
3946}
3947
3948static int selinux_socket_create(int family, int type,
3949                                 int protocol, int kern)
3950{
3951        const struct task_security_struct *tsec = current_security();
3952        u32 newsid;
3953        u16 secclass;
3954        int rc;
3955
3956        if (kern)
3957                return 0;
3958
3959        secclass = socket_type_to_security_class(family, type, protocol);
3960        rc = socket_sockcreate_sid(tsec, secclass, &newsid);
3961        if (rc)
3962                return rc;
3963
3964        return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
3965}
3966
3967static int selinux_socket_post_create(struct socket *sock, int family,
3968                                      int type, int protocol, int kern)
3969{
3970        const struct task_security_struct *tsec = current_security();
3971        struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
3972        struct sk_security_struct *sksec;
3973        int err = 0;
3974
3975        isec->sclass = socket_type_to_security_class(family, type, protocol);
3976
3977        if (kern)
3978                isec->sid = SECINITSID_KERNEL;
3979        else {
3980                err = socket_sockcreate_sid(tsec, isec->sclass, &(isec->sid));
3981                if (err)
3982                        return err;
3983        }
3984
3985        isec->initialized = 1;
3986
3987        if (sock->sk) {
3988                sksec = sock->sk->sk_security;
3989                sksec->sid = isec->sid;
3990                sksec->sclass = isec->sclass;
3991                err = selinux_netlbl_socket_post_create(sock->sk, family);
3992        }
3993
3994        return err;
3995}
3996
3997/* Range of port numbers used to automatically bind.
3998   Need to determine whether we should perform a name_bind
3999   permission check between the socket and the port number. */
4000
4001static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4002{
4003        struct sock *sk = sock->sk;
4004        u16 family;
4005        int err;
4006
4007        err = sock_has_perm(current, sk, SOCKET__BIND);
4008        if (err)
4009                goto out;
4010
4011        /*
4012         * If PF_INET or PF_INET6, check name_bind permission for the port.
4013         * Multiple address binding for SCTP is not supported yet: we just
4014         * check the first address now.
4015         */
4016        family = sk->sk_family;
4017        if (family == PF_INET || family == PF_INET6) {
4018                char *addrp;
4019                struct sk_security_struct *sksec = sk->sk_security;
4020                struct common_audit_data ad;
4021                struct lsm_network_audit net = {0,};
4022                struct sockaddr_in *addr4 = NULL;
4023                struct sockaddr_in6 *addr6 = NULL;
4024                unsigned short snum;
4025                u32 sid, node_perm;
4026
4027                if (family == PF_INET) {
4028                        addr4 = (struct sockaddr_in *)address;
4029                        snum = ntohs(addr4->sin_port);
4030                        addrp = (char *)&addr4->sin_addr.s_addr;
4031                } else {
4032                        addr6 = (struct sockaddr_in6 *)address;
4033                        snum = ntohs(addr6->sin6_port);
4034                        addrp = (char *)&addr6->sin6_addr.s6_addr;
4035                }
4036
4037                if (snum) {
4038                        int low, high;
4039
4040                        inet_get_local_port_range(sock_net(sk), &low, &high);
4041
4042                        if (snum < max(PROT_SOCK, low) || snum > high) {
4043                                err = sel_netport_sid(sk->sk_protocol,
4044                                                      snum, &sid);
4045                                if (err)
4046                                        goto out;
4047                                ad.type = LSM_AUDIT_DATA_NET;
4048                                ad.u.net = &net;
4049                                ad.u.net->sport = htons(snum);
4050                                ad.u.net->family = family;
4051                                err = avc_has_perm(sksec->sid, sid,
4052                                                   sksec->sclass,
4053                                                   SOCKET__NAME_BIND, &ad);
4054                                if (err)
4055                                        goto out;
4056                        }
4057                }
4058
4059                switch (sksec->sclass) {
4060                case SECCLASS_TCP_SOCKET:
4061                        node_perm = TCP_SOCKET__NODE_BIND;
4062                        break;
4063
4064                case SECCLASS_UDP_SOCKET:
4065                        node_perm = UDP_SOCKET__NODE_BIND;
4066                        break;
4067
4068                case SECCLASS_DCCP_SOCKET:
4069                        node_perm = DCCP_SOCKET__NODE_BIND;
4070                        break;
4071
4072                default:
4073                        node_perm = RAWIP_SOCKET__NODE_BIND;
4074                        break;
4075                }
4076
4077                err = sel_netnode_sid(addrp, family, &sid);
4078                if (err)
4079                        goto out;
4080
4081                ad.type = LSM_AUDIT_DATA_NET;
4082                ad.u.net = &net;
4083                ad.u.net->sport = htons(snum);
4084                ad.u.net->family = family;
4085
4086                if (family == PF_INET)
4087                        ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4088                else
4089                        ad.u.net->v6info.saddr = addr6->sin6_addr;
4090
4091                err = avc_has_perm(sksec->sid, sid,
4092                                   sksec->sclass, node_perm, &ad);
4093                if (err)
4094                        goto out;
4095        }
4096out:
4097        return err;
4098}
4099
4100static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
4101{
4102        struct sock *sk = sock->sk;
4103        struct sk_security_struct *sksec = sk->sk_security;
4104        int err;
4105
4106        err = sock_has_perm(current, sk, SOCKET__CONNECT);
4107        if (err)
4108                return err;
4109
4110        /*
4111         * If a TCP or DCCP socket, check name_connect permission for the port.
4112         */
4113        if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4114            sksec->sclass == SECCLASS_DCCP_SOCKET) {
4115                struct common_audit_data ad;
4116                struct lsm_network_audit net = {0,};
4117                struct sockaddr_in *addr4 = NULL;
4118                struct sockaddr_in6 *addr6 = NULL;
4119                unsigned short snum;
4120                u32 sid, perm;
4121
4122                if (sk->sk_family == PF_INET) {
4123                        addr4 = (struct sockaddr_in *)address;
4124                        if (addrlen < sizeof(struct sockaddr_in))
4125                                return -EINVAL;
4126                        snum = ntohs(addr4->sin_port);
4127                } else {
4128                        addr6 = (struct sockaddr_in6 *)address;
4129                        if (addrlen < SIN6_LEN_RFC2133)
4130                                return -EINVAL;
4131                        snum = ntohs(addr6->sin6_port);
4132                }
4133
4134                err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4135                if (err)
4136                        goto out;
4137
4138                perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ?
4139                       TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
4140
4141                ad.type = LSM_AUDIT_DATA_NET;
4142                ad.u.net = &net;
4143                ad.u.net->dport = htons(snum);
4144                ad.u.net->family = sk->sk_family;
4145                err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
4146                if (err)
4147                        goto out;
4148        }
4149
4150        err = selinux_netlbl_socket_connect(sk, address);
4151
4152out:
4153        return err;
4154}
4155
4156static int selinux_socket_listen(struct socket *sock, int backlog)
4157{
4158        return sock_has_perm(current, sock->sk, SOCKET__LISTEN);
4159}
4160
4161static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4162{
4163        int err;
4164        struct inode_security_struct *isec;
4165        struct inode_security_struct *newisec;
4166
4167        err = sock_has_perm(current, sock->sk, SOCKET__ACCEPT);
4168        if (err)
4169                return err;
4170
4171        newisec = SOCK_INODE(newsock)->i_security;
4172
4173        isec = SOCK_INODE(sock)->i_security;
4174        newisec->sclass = isec->sclass;
4175        newisec->sid = isec->sid;
4176        newisec->initialized = 1;
4177
4178        return 0;
4179}
4180
4181static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4182                                  int size)
4183{
4184        return sock_has_perm(current, sock->sk, SOCKET__WRITE);
4185}
4186
4187static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4188                                  int size, int flags)
4189{
4190        return sock_has_perm(current, sock->sk, SOCKET__READ);
4191}
4192
4193static int selinux_socket_getsockname(struct socket *sock)
4194{
4195        return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4196}
4197
4198static int selinux_socket_getpeername(struct socket *sock)
4199{
4200        return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4201}
4202
4203static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4204{
4205        int err;
4206
4207        err = sock_has_perm(current, sock->sk, SOCKET__SETOPT);
4208        if (err)
4209                return err;
4210
4211        return selinux_netlbl_socket_setsockopt(sock, level, optname);
4212}
4213
4214static int selinux_socket_getsockopt(struct socket *sock, int level,
4215                                     int optname)
4216{
4217        return sock_has_perm(current, sock->sk, SOCKET__GETOPT);
4218}
4219
4220static int selinux_socket_shutdown(struct socket *sock, int how)
4221{
4222        return sock_has_perm(current, sock->sk, SOCKET__SHUTDOWN);
4223}
4224
4225static int selinux_socket_unix_stream_connect(struct sock *sock,
4226                                              struct sock *other,
4227                                              struct sock *newsk)
4228{
4229        struct sk_security_struct *sksec_sock = sock->sk_security;
4230        struct sk_security_struct *sksec_other = other->sk_security;
4231        struct sk_security_struct *sksec_new = newsk->sk_security;
4232        struct common_audit_data ad;
4233        struct lsm_network_audit net = {0,};
4234        int err;
4235
4236        ad.type = LSM_AUDIT_DATA_NET;
4237        ad.u.net = &net;
4238        ad.u.net->sk = other;
4239
4240        err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
4241                           sksec_other->sclass,
4242                           UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4243        if (err)
4244                return err;
4245
4246        /* server child socket */
4247        sksec_new->peer_sid = sksec_sock->sid;
4248        err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid,
4249                                    &sksec_new->sid);
4250        if (err)
4251                return err;
4252
4253        /* connecting socket */
4254        sksec_sock->peer_sid = sksec_new->sid;
4255
4256        return 0;
4257}
4258
4259static int selinux_socket_unix_may_send(struct socket *sock,
4260                                        struct socket *other)
4261{
4262        struct sk_security_struct *ssec = sock->sk->sk_security;
4263        struct sk_security_struct *osec = other->sk->sk_security;
4264        struct common_audit_data ad;
4265        struct lsm_network_audit net = {0,};
4266
4267        ad.type = LSM_AUDIT_DATA_NET;
4268        ad.u.net = &net;
4269        ad.u.net->sk = other->sk;
4270
4271        return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4272                            &ad);
4273}
4274
4275static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
4276                                    u32 peer_sid,
4277                                    struct common_audit_data *ad)
4278{
4279        int err;
4280        u32 if_sid;
4281        u32 node_sid;
4282
4283        err = sel_netif_sid(ifindex, &if_sid);
4284        if (err)
4285                return err;
4286        err = avc_has_perm(peer_sid, if_sid,
4287                           SECCLASS_NETIF, NETIF__INGRESS, ad);
4288        if (err)
4289                return err;
4290
4291        err = sel_netnode_sid(addrp, family, &node_sid);
4292        if (err)
4293                return err;
4294        return avc_has_perm(peer_sid, node_sid,
4295                            SECCLASS_NODE, NODE__RECVFROM, ad);
4296}
4297
4298static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4299                                       u16 family)
4300{
4301        int err = 0;
4302        struct sk_security_struct *sksec = sk->sk_security;
4303        u32 sk_sid = sksec->sid;
4304        struct common_audit_data ad;
4305        struct lsm_network_audit net = {0,};
4306        char *addrp;
4307
4308        ad.type = LSM_AUDIT_DATA_NET;
4309        ad.u.net = &net;
4310        ad.u.net->netif = skb->skb_iif;
4311        ad.u.net->family = family;
4312        err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4313        if (err)
4314                return err;
4315
4316        if (selinux_secmark_enabled()) {
4317                err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4318                                   PACKET__RECV, &ad);
4319                if (err)
4320                        return err;
4321        }
4322
4323        err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4324        if (err)
4325                return err;
4326        err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4327
4328        return err;
4329}
4330
4331static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4332{
4333        int err;
4334        struct sk_security_struct *sksec = sk->sk_security;
4335        u16 family = sk->sk_family;
4336        u32 sk_sid = sksec->sid;
4337        struct common_audit_data ad;
4338        struct lsm_network_audit net = {0,};
4339        char *addrp;
4340        u8 secmark_active;
4341        u8 peerlbl_active;
4342
4343        if (family != PF_INET && family != PF_INET6)
4344                return 0;
4345
4346        /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4347        if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4348                family = PF_INET;
4349
4350        /* If any sort of compatibility mode is enabled then handoff processing
4351         * to the selinux_sock_rcv_skb_compat() function to deal with the
4352         * special handling.  We do this in an attempt to keep this function
4353         * as fast and as clean as possible. */
4354        if (!selinux_policycap_netpeer)
4355                return selinux_sock_rcv_skb_compat(sk, skb, family);
4356
4357        secmark_active = selinux_secmark_enabled();
4358        peerlbl_active = selinux_peerlbl_enabled();
4359        if (!secmark_active && !peerlbl_active)
4360                return 0;
4361
4362        ad.type = LSM_AUDIT_DATA_NET;
4363        ad.u.net = &net;
4364        ad.u.net->netif = skb->skb_iif;
4365        ad.u.net->family = family;
4366        err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4367        if (err)
4368                return err;
4369
4370        if (peerlbl_active) {
4371                u32 peer_sid;
4372
4373                err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4374                if (err)
4375                        return err;
4376                err = selinux_inet_sys_rcv_skb(skb->skb_iif, addrp, family,
4377                                               peer_sid, &ad);
4378                if (err) {
4379                        selinux_netlbl_err(skb, err, 0);
4380                        return err;
4381                }
4382                err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4383                                   PEER__RECV, &ad);
4384                if (err) {
4385                        selinux_netlbl_err(skb, err, 0);
4386                        return err;
4387                }
4388        }
4389
4390        if (secmark_active) {
4391                err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4392                                   PACKET__RECV, &ad);
4393                if (err)
4394                        return err;
4395        }
4396
4397        return err;
4398}
4399
4400static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4401                                            int __user *optlen, unsigned len)
4402{
4403        int err = 0;
4404        char *scontext;
4405        u32 scontext_len;
4406        struct sk_security_struct *sksec = sock->sk->sk_security;
4407        u32 peer_sid = SECSID_NULL;
4408
4409        if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4410            sksec->sclass == SECCLASS_TCP_SOCKET)
4411                peer_sid = sksec->peer_sid;
4412        if (peer_sid == SECSID_NULL)
4413                return -ENOPROTOOPT;
4414
4415        err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4416        if (err)
4417                return err;
4418
4419        if (scontext_len > len) {
4420                err = -ERANGE;
4421                goto out_len;
4422        }
4423
4424        if (copy_to_user(optval, scontext, scontext_len))
4425                err = -EFAULT;
4426
4427out_len:
4428        if (put_user(scontext_len, optlen))
4429                err = -EFAULT;
4430        kfree(scontext);
4431        return err;
4432}
4433
4434static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4435{
4436        u32 peer_secid = SECSID_NULL;
4437        u16 family;
4438
4439        if (skb && skb->protocol == htons(ETH_P_IP))
4440                family = PF_INET;
4441        else if (skb && skb->protocol == htons(ETH_P_IPV6))
4442                family = PF_INET6;
4443        else if (sock)
4444                family = sock->sk->sk_family;
4445        else
4446                goto out;
4447
4448        if (sock && family == PF_UNIX)
4449                selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4450        else if (skb)
4451                selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4452
4453out:
4454        *secid = peer_secid;
4455        if (peer_secid == SECSID_NULL)
4456                return -EINVAL;
4457        return 0;
4458}
4459
4460static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4461{
4462        struct sk_security_struct *sksec;
4463
4464        sksec = kzalloc(sizeof(*sksec), priority);
4465        if (!sksec)
4466                return -ENOMEM;
4467
4468        sksec->peer_sid = SECINITSID_UNLABELED;
4469        sksec->sid = SECINITSID_UNLABELED;
4470        selinux_netlbl_sk_security_reset(sksec);
4471        sk->sk_security = sksec;
4472
4473        return 0;
4474}
4475
4476static void selinux_sk_free_security(struct sock *sk)
4477{
4478        struct sk_security_struct *sksec = sk->sk_security;
4479
4480        sk->sk_security = NULL;
4481        selinux_netlbl_sk_security_free(sksec);
4482        kfree(sksec);
4483}
4484
4485static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4486{
4487        struct sk_security_struct *sksec = sk->sk_security;
4488        struct sk_security_struct *newsksec = newsk->sk_security;
4489
4490        newsksec->sid = sksec->sid;
4491        newsksec->peer_sid = sksec->peer_sid;
4492        newsksec->sclass = sksec->sclass;
4493
4494        selinux_netlbl_sk_security_reset(newsksec);
4495}
4496
4497static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4498{
4499        if (!sk)
4500                *secid = SECINITSID_ANY_SOCKET;
4501        else {
4502                struct sk_security_struct *sksec = sk->sk_security;
4503
4504                *secid = sksec->sid;
4505        }
4506}
4507
4508static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4509{
4510        struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4511        struct sk_security_struct *sksec = sk->sk_security;
4512
4513        if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4514            sk->sk_family == PF_UNIX)
4515                isec->sid = sksec->sid;
4516        sksec->sclass = isec->sclass;
4517}
4518
4519static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4520                                     struct request_sock *req)
4521{
4522        struct sk_security_struct *sksec = sk->sk_security;
4523        int err;
4524        u16 family = req->rsk_ops->family;
4525        u32 connsid;
4526        u32 peersid;
4527
4528        err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4529        if (err)
4530                return err;
4531        err = selinux_conn_sid(sksec->sid, peersid, &connsid);
4532        if (err)
4533                return err;
4534        req->secid = connsid;
4535        req->peer_secid = peersid;
4536
4537        return selinux_netlbl_inet_conn_request(req, family);
4538}
4539
4540static void selinux_inet_csk_clone(struct sock *newsk,
4541                                   const struct request_sock *req)
4542{
4543        struct sk_security_struct *newsksec = newsk->sk_security;
4544
4545        newsksec->sid = req->secid;
4546        newsksec->peer_sid = req->peer_secid;
4547        /* NOTE: Ideally, we should also get the isec->sid for the
4548           new socket in sync, but we don't have the isec available yet.
4549           So we will wait until sock_graft to do it, by which
4550           time it will have been created and available. */
4551
4552        /* We don't need to take any sort of lock here as we are the only
4553         * thread with access to newsksec */
4554        selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4555}
4556
4557static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4558{
4559        u16 family = sk->sk_family;
4560        struct sk_security_struct *sksec = sk->sk_security;
4561
4562        /* handle mapped IPv4 packets arriving via IPv6 sockets */
4563        if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4564                family = PF_INET;
4565
4566        selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4567}
4568
4569static void selinux_skb_owned_by(struct sk_buff *skb, struct sock *sk)
4570{
4571        skb_set_owner_w(skb, sk);
4572}
4573
4574static int selinux_secmark_relabel_packet(u32 sid)
4575{
4576        const struct task_security_struct *__tsec;
4577        u32 tsid;
4578
4579        __tsec = current_security();
4580        tsid = __tsec->sid;
4581
4582        return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, NULL);
4583}
4584
4585static void selinux_secmark_refcount_inc(void)
4586{
4587        atomic_inc(&selinux_secmark_refcount);
4588}
4589
4590static void selinux_secmark_refcount_dec(void)
4591{
4592        atomic_dec(&selinux_secmark_refcount);
4593}
4594
4595static void selinux_req_classify_flow(const struct request_sock *req,
4596                                      struct flowi *fl)
4597{
4598        fl->flowi_secid = req->secid;
4599}
4600
4601static int selinux_tun_dev_alloc_security(void **security)
4602{
4603        struct tun_security_struct *tunsec;
4604
4605        tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
4606        if (!tunsec)
4607                return -ENOMEM;
4608        tunsec->sid = current_sid();
4609
4610        *security = tunsec;
4611        return 0;
4612}
4613
4614static void selinux_tun_dev_free_security(void *security)
4615{
4616        kfree(security);
4617}
4618
4619static int selinux_tun_dev_create(void)
4620{
4621        u32 sid = current_sid();
4622
4623        /* we aren't taking into account the "sockcreate" SID since the socket
4624         * that is being created here is not a socket in the traditional sense,
4625         * instead it is a private sock, accessible only to the kernel, and
4626         * representing a wide range of network traffic spanning multiple
4627         * connections unlike traditional sockets - check the TUN driver to
4628         * get a better understanding of why this socket is special */
4629
4630        return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
4631                            NULL);
4632}
4633
4634static int selinux_tun_dev_attach_queue(void *security)
4635{
4636        struct tun_security_struct *tunsec = security;
4637
4638        return avc_has_perm(current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
4639                            TUN_SOCKET__ATTACH_QUEUE, NULL);
4640}
4641
4642static int selinux_tun_dev_attach(struct sock *sk, void *security)
4643{
4644        struct tun_security_struct *tunsec = security;
4645        struct sk_security_struct *sksec = sk->sk_security;
4646
4647        /* we don't currently perform any NetLabel based labeling here and it
4648         * isn't clear that we would want to do so anyway; while we could apply
4649         * labeling without the support of the TUN user the resulting labeled
4650         * traffic from the other end of the connection would almost certainly
4651         * cause confusion to the TUN user that had no idea network labeling
4652         * protocols were being used */
4653
4654        sksec->sid = tunsec->sid;
4655        sksec->sclass = SECCLASS_TUN_SOCKET;
4656
4657        return 0;
4658}
4659
4660static int selinux_tun_dev_open(void *security)
4661{
4662        struct tun_security_struct *tunsec = security;
4663        u32 sid = current_sid();
4664        int err;
4665
4666        err = avc_has_perm(sid, tunsec->sid, SECCLASS_TUN_SOCKET,
4667                           TUN_SOCKET__RELABELFROM, NULL);
4668        if (err)
4669                return err;
4670        err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
4671                           TUN_SOCKET__RELABELTO, NULL);
4672        if (err)
4673                return err;
4674        tunsec->sid = sid;
4675
4676        return 0;
4677}
4678
4679static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4680{
4681        int err = 0;
4682        u32 perm;
4683        struct nlmsghdr *nlh;
4684        struct sk_security_struct *sksec = sk->sk_security;
4685
4686        if (skb->len < NLMSG_HDRLEN) {
4687                err = -EINVAL;
4688                goto out;
4689        }
4690        nlh = nlmsg_hdr(skb);
4691
4692        err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
4693        if (err) {
4694                if (err == -EINVAL) {
4695                        audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4696                                  "SELinux:  unrecognized netlink message"
4697                                  " type=%hu for sclass=%hu\n",
4698                                  nlh->nlmsg_type, sksec->sclass);
4699                        if (!selinux_enforcing || security_get_allow_unknown())
4700                                err = 0;
4701                }
4702
4703                /* Ignore */
4704                if (err == -ENOENT)
4705                        err = 0;
4706                goto out;
4707        }
4708
4709        err = sock_has_perm(current, sk, perm);
4710out:
4711        return err;
4712}
4713
4714#ifdef CONFIG_NETFILTER
4715
4716static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
4717                                       u16 family)
4718{
4719        int err;
4720        char *addrp;
4721        u32 peer_sid;
4722        struct common_audit_data ad;
4723        struct lsm_network_audit net = {0,};
4724        u8 secmark_active;
4725        u8 netlbl_active;
4726        u8 peerlbl_active;
4727
4728        if (!selinux_policycap_netpeer)
4729                return NF_ACCEPT;
4730
4731        secmark_active = selinux_secmark_enabled();
4732        netlbl_active = netlbl_enabled();
4733        peerlbl_active = selinux_peerlbl_enabled();
4734        if (!secmark_active && !peerlbl_active)
4735                return NF_ACCEPT;
4736
4737        if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4738                return NF_DROP;
4739
4740        ad.type = LSM_AUDIT_DATA_NET;
4741        ad.u.net = &net;
4742        ad.u.net->netif = ifindex;
4743        ad.u.net->family = family;
4744        if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4745                return NF_DROP;
4746
4747        if (peerlbl_active) {
4748                err = selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4749                                               peer_sid, &ad);
4750                if (err) {
4751                        selinux_netlbl_err(skb, err, 1);
4752                        return NF_DROP;
4753                }
4754        }
4755
4756        if (secmark_active)
4757                if (avc_has_perm(peer_sid, skb->secmark,
4758                                 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4759                        return NF_DROP;
4760
4761        if (netlbl_active)
4762                /* we do this in the FORWARD path and not the POST_ROUTING
4763                 * path because we want to make sure we apply the necessary
4764                 * labeling before IPsec is applied so we can leverage AH
4765                 * protection */
4766                if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4767                        return NF_DROP;
4768
4769        return NF_ACCEPT;
4770}
4771
4772static unsigned int selinux_ipv4_forward(const struct nf_hook_ops *ops,
4773                                         struct sk_buff *skb,
4774                                         const struct net_device *in,
4775                                         const struct net_device *out,
4776                                         int (*okfn)(struct sk_buff *))
4777{
4778        return selinux_ip_forward(skb, in->ifindex, PF_INET);
4779}
4780
4781#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4782static unsigned int selinux_ipv6_forward(const struct nf_hook_ops *ops,
4783                                         struct sk_buff *skb,
4784                                         const struct net_device *in,
4785                                         const struct net_device *out,
4786                                         int (*okfn)(struct sk_buff *))
4787{
4788        return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4789}
4790#endif  /* IPV6 */
4791
4792static unsigned int selinux_ip_output(struct sk_buff *skb,
4793                                      u16 family)
4794{
4795        struct sock *sk;
4796        u32 sid;
4797
4798        if (!netlbl_enabled())
4799                return NF_ACCEPT;
4800
4801        /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4802         * because we want to make sure we apply the necessary labeling
4803         * before IPsec is applied so we can leverage AH protection */
4804        sk = skb->sk;
4805        if (sk) {
4806                struct sk_security_struct *sksec;
4807
4808                if (sk->sk_state == TCP_LISTEN)
4809                        /* if the socket is the listening state then this
4810                         * packet is a SYN-ACK packet which means it needs to
4811                         * be labeled based on the connection/request_sock and
4812                         * not the parent socket.  unfortunately, we can't
4813                         * lookup the request_sock yet as it isn't queued on
4814                         * the parent socket until after the SYN-ACK is sent.
4815                         * the "solution" is to simply pass the packet as-is
4816                         * as any IP option based labeling should be copied
4817                         * from the initial connection request (in the IP
4818                         * layer).  it is far from ideal, but until we get a
4819                         * security label in the packet itself this is the
4820                         * best we can do. */
4821                        return NF_ACCEPT;
4822
4823                /* standard practice, label using the parent socket */
4824                sksec = sk->sk_security;
4825                sid = sksec->sid;
4826        } else
4827                sid = SECINITSID_KERNEL;
4828        if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4829                return NF_DROP;
4830
4831        return NF_ACCEPT;
4832}
4833
4834static unsigned int selinux_ipv4_output(const struct nf_hook_ops *ops,
4835                                        struct sk_buff *skb,
4836                                        const struct net_device *in,
4837                                        const struct net_device *out,
4838                                        int (*okfn)(struct sk_buff *))
4839{
4840        return selinux_ip_output(skb, PF_INET);
4841}
4842
4843static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4844                                                int ifindex,
4845                                                u16 family)
4846{
4847        struct sock *sk = skb->sk;
4848        struct sk_security_struct *sksec;
4849        struct common_audit_data ad;
4850        struct lsm_network_audit net = {0,};
4851        char *addrp;
4852        u8 proto;
4853
4854        if (sk == NULL)
4855                return NF_ACCEPT;
4856        sksec = sk->sk_security;
4857
4858        ad.type = LSM_AUDIT_DATA_NET;
4859        ad.u.net = &net;
4860        ad.u.net->netif = ifindex;
4861        ad.u.net->family = family;
4862        if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4863                return NF_DROP;
4864
4865        if (selinux_secmark_enabled())
4866                if (avc_has_perm(sksec->sid, skb->secmark,
4867                                 SECCLASS_PACKET, PACKET__SEND, &ad))
4868                        return NF_DROP_ERR(-ECONNREFUSED);
4869
4870        if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4871                return NF_DROP_ERR(-ECONNREFUSED);
4872
4873        return NF_ACCEPT;
4874}
4875
4876static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
4877                                         u16 family)
4878{
4879        u32 secmark_perm;
4880        u32 peer_sid;
4881        struct sock *sk;
4882        struct common_audit_data ad;
4883        struct lsm_network_audit net = {0,};
4884        char *addrp;
4885        u8 secmark_active;
4886        u8 peerlbl_active;
4887
4888        /* If any sort of compatibility mode is enabled then handoff processing
4889         * to the selinux_ip_postroute_compat() function to deal with the
4890         * special handling.  We do this in an attempt to keep this function
4891         * as fast and as clean as possible. */
4892        if (!selinux_policycap_netpeer)
4893                return selinux_ip_postroute_compat(skb, ifindex, family);
4894
4895        secmark_active = selinux_secmark_enabled();
4896        peerlbl_active = selinux_peerlbl_enabled();
4897        if (!secmark_active && !peerlbl_active)
4898                return NF_ACCEPT;
4899
4900        sk = skb->sk;
4901
4902#ifdef CONFIG_XFRM
4903        /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4904         * packet transformation so allow the packet to pass without any checks
4905         * since we'll have another chance to perform access control checks
4906         * when the packet is on it's final way out.
4907         * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4908         *       is NULL, in this case go ahead and apply access control.
4909         * NOTE: if this is a local socket (skb->sk != NULL) that is in the
4910         *       TCP listening state we cannot wait until the XFRM processing
4911         *       is done as we will miss out on the SA label if we do;
4912         *       unfortunately, this means more work, but it is only once per
4913         *       connection. */
4914        if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
4915            !(sk != NULL && sk->sk_state == TCP_LISTEN))
4916                return NF_ACCEPT;
4917#endif
4918
4919        if (sk == NULL) {
4920                /* Without an associated socket the packet is either coming
4921                 * from the kernel or it is being forwarded; check the packet
4922                 * to determine which and if the packet is being forwarded
4923                 * query the packet directly to determine the security label. */
4924                if (skb->skb_iif) {
4925                        secmark_perm = PACKET__FORWARD_OUT;
4926                        if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4927                                return NF_DROP;
4928                } else {
4929                        secmark_perm = PACKET__SEND;
4930                        peer_sid = SECINITSID_KERNEL;
4931                }
4932        } else if (sk->sk_state == TCP_LISTEN) {
4933                /* Locally generated packet but the associated socket is in the
4934                 * listening state which means this is a SYN-ACK packet.  In
4935                 * this particular case the correct security label is assigned
4936                 * to the connection/request_sock but unfortunately we can't
4937                 * query the request_sock as it isn't queued on the parent
4938                 * socket until after the SYN-ACK packet is sent; the only
4939                 * viable choice is to regenerate the label like we do in
4940                 * selinux_inet_conn_request().  See also selinux_ip_output()
4941                 * for similar problems. */
4942                u32 skb_sid;
4943                struct sk_security_struct *sksec = sk->sk_security;
4944                if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
4945                        return NF_DROP;
4946                /* At this point, if the returned skb peerlbl is SECSID_NULL
4947                 * and the packet has been through at least one XFRM
4948                 * transformation then we must be dealing with the "final"
4949                 * form of labeled IPsec packet; since we've already applied
4950                 * all of our access controls on this packet we can safely
4951                 * pass the packet. */
4952                if (skb_sid == SECSID_NULL) {
4953                        switch (family) {
4954                        case PF_INET:
4955                                if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
4956                                        return NF_ACCEPT;
4957                                break;
4958                        case PF_INET6:
4959                                if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
4960                                        return NF_ACCEPT;
4961                        default:
4962                                return NF_DROP_ERR(-ECONNREFUSED);
4963                        }
4964                }
4965                if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
4966                        return NF_DROP;
4967                secmark_perm = PACKET__SEND;
4968        } else {
4969                /* Locally generated packet, fetch the security label from the
4970                 * associated socket. */
4971                struct sk_security_struct *sksec = sk->sk_security;
4972                peer_sid = sksec->sid;
4973                secmark_perm = PACKET__SEND;
4974        }
4975
4976        ad.type = LSM_AUDIT_DATA_NET;
4977        ad.u.net = &net;
4978        ad.u.net->netif = ifindex;
4979        ad.u.net->family = family;
4980        if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
4981                return NF_DROP;
4982
4983        if (secmark_active)
4984                if (avc_has_perm(peer_sid, skb->secmark,
4985                                 SECCLASS_PACKET, secmark_perm, &ad))
4986                        return NF_DROP_ERR(-ECONNREFUSED);
4987
4988        if (peerlbl_active) {
4989                u32 if_sid;
4990                u32 node_sid;
4991
4992                if (sel_netif_sid(ifindex, &if_sid))
4993                        return NF_DROP;
4994                if (avc_has_perm(peer_sid, if_sid,
4995                                 SECCLASS_NETIF, NETIF__EGRESS, &ad))
4996                        return NF_DROP_ERR(-ECONNREFUSED);
4997
4998                if (sel_netnode_sid(addrp, family, &node_sid))
4999                        return NF_DROP;
5000                if (avc_has_perm(peer_sid, node_sid,
5001                                 SECCLASS_NODE, NODE__SENDTO, &ad))
5002                        return NF_DROP_ERR(-ECONNREFUSED);
5003        }
5004
5005        return NF_ACCEPT;
5006}
5007
5008static unsigned int selinux_ipv4_postroute(const struct nf_hook_ops *ops,
5009                                           struct sk_buff *skb,
5010                                           const struct net_device *in,
5011                                           const struct net_device *out,
5012                                           int (*okfn)(struct sk_buff *))
5013{
5014        return selinux_ip_postroute(skb, out->ifindex, PF_INET);
5015}
5016
5017#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5018static unsigned int selinux_ipv6_postroute(const struct nf_hook_ops *ops,
5019                                           struct sk_buff *skb,
5020                                           const struct net_device *in,
5021                                           const struct net_device *out,
5022                                           int (*okfn)(struct sk_buff *))
5023{
5024        return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
5025}
5026#endif  /* IPV6 */
5027
5028#endif  /* CONFIG_NETFILTER */
5029
5030static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5031{
5032        int err;
5033
5034        err = cap_netlink_send(sk, skb);
5035        if (err)
5036                return err;
5037
5038        return selinux_nlmsg_perm(sk, skb);
5039}
5040
5041static int ipc_alloc_security(struct task_struct *task,
5042                              struct kern_ipc_perm *perm,
5043                              u16 sclass)
5044{
5045        struct ipc_security_struct *isec;
5046        u32 sid;
5047
5048        isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
5049        if (!isec)
5050                return -ENOMEM;
5051
5052        sid = task_sid(task);
5053        isec->sclass = sclass;
5054        isec->sid = sid;
5055        perm->security = isec;
5056
5057        return 0;
5058}
5059
5060static void ipc_free_security(struct kern_ipc_perm *perm)
5061{
5062        struct ipc_security_struct *isec = perm->security;
5063        perm->security = NULL;
5064        kfree(isec);
5065}
5066
5067static int msg_msg_alloc_security(struct msg_msg *msg)
5068{
5069        struct msg_security_struct *msec;
5070
5071        msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
5072        if (!msec)
5073                return -ENOMEM;
5074
5075        msec->sid = SECINITSID_UNLABELED;
5076        msg->security = msec;
5077
5078        return 0;
5079}
5080
5081static void msg_msg_free_security(struct msg_msg *msg)
5082{
5083        struct msg_security_struct *msec = msg->security;
5084
5085        msg->security = NULL;
5086        kfree(msec);
5087}
5088
5089static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
5090                        u32 perms)
5091{
5092        struct ipc_security_struct *isec;
5093        struct common_audit_data ad;
5094        u32 sid = current_sid();
5095
5096        isec = ipc_perms->security;
5097
5098        ad.type = LSM_AUDIT_DATA_IPC;
5099        ad.u.ipc_id = ipc_perms->key;
5100
5101        return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
5102}
5103
5104static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
5105{
5106        return msg_msg_alloc_security(msg);
5107}
5108
5109static void selinux_msg_msg_free_security(struct msg_msg *msg)
5110{
5111        msg_msg_free_security(msg);
5112}
5113
5114/* message queue security operations */
5115static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
5116{
5117        struct ipc_security_struct *isec;
5118        struct common_audit_data ad;
5119        u32 sid = current_sid();
5120        int rc;
5121
5122        rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
5123        if (rc)
5124                return rc;
5125
5126        isec = msq->q_perm.security;
5127
5128        ad.type = LSM_AUDIT_DATA_IPC;
5129        ad.u.ipc_id = msq->q_perm.key;
5130
5131        rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5132                          MSGQ__CREATE, &ad);
5133        if (rc) {
5134                ipc_free_security(&msq->q_perm);
5135                return rc;
5136        }
5137        return 0;
5138}
5139
5140static void selinux_msg_queue_free_security(struct msg_queue *msq)
5141{
5142        ipc_free_security(&msq->q_perm);
5143}
5144
5145static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
5146{
5147        struct ipc_security_struct *isec;
5148        struct common_audit_data ad;
5149        u32 sid = current_sid();
5150
5151        isec = msq->q_perm.security;
5152
5153        ad.type = LSM_AUDIT_DATA_IPC;
5154        ad.u.ipc_id = msq->q_perm.key;
5155
5156        return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5157                            MSGQ__ASSOCIATE, &ad);
5158}
5159
5160static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
5161{
5162        int err;
5163        int perms;
5164
5165        switch (cmd) {
5166        case IPC_INFO:
5167        case MSG_INFO:
5168                /* No specific object, just general system-wide information. */
5169                return task_has_system(current, SYSTEM__IPC_INFO);
5170        case IPC_STAT:
5171        case MSG_STAT:
5172                perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
5173                break;
5174        case IPC_SET:
5175                perms = MSGQ__SETATTR;
5176                break;
5177        case IPC_RMID:
5178                perms = MSGQ__DESTROY;
5179                break;
5180        default:
5181                return 0;
5182        }
5183
5184        err = ipc_has_perm(&msq->q_perm, perms);
5185        return err;
5186}
5187
5188static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
5189{
5190        struct ipc_security_struct *isec;
5191        struct msg_security_struct *msec;
5192        struct common_audit_data ad;
5193        u32 sid = current_sid();
5194        int rc;
5195
5196        isec = msq->q_perm.security;
5197        msec = msg->security;
5198
5199        /*
5200         * First time through, need to assign label to the message
5201         */
5202        if (msec->sid == SECINITSID_UNLABELED) {
5203                /*
5204                 * Compute new sid based on current process and
5205                 * message queue this message will be stored in
5206                 */
5207                rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
5208                                             NULL, &msec->sid);
5209                if (rc)
5210                        return rc;
5211        }
5212
5213        ad.type = LSM_AUDIT_DATA_IPC;
5214        ad.u.ipc_id = msq->q_perm.key;
5215
5216        /* Can this process write to the queue? */
5217        rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5218                          MSGQ__WRITE, &ad);
5219        if (!rc)
5220                /* Can this process send the message */
5221                rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
5222                                  MSG__SEND, &ad);
5223        if (!rc)
5224                /* Can the message be put in the queue? */
5225                rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
5226                                  MSGQ__ENQUEUE, &ad);
5227
5228        return rc;
5229}
5230
5231static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
5232                                    struct task_struct *target,
5233                                    long type, int mode)
5234{
5235        struct ipc_security_struct *isec;
5236        struct msg_security_struct *msec;
5237        struct common_audit_data ad;
5238        u32 sid = task_sid(target);
5239        int rc;
5240
5241        isec = msq->q_perm.security;
5242        msec = msg->security;
5243
5244        ad.type = LSM_AUDIT_DATA_IPC;
5245        ad.u.ipc_id = msq->q_perm.key;
5246
5247        rc = avc_has_perm(sid, isec->sid,
5248                          SECCLASS_MSGQ, MSGQ__READ, &ad);
5249        if (!rc)
5250                rc = avc_has_perm(sid, msec->sid,
5251                                  SECCLASS_MSG, MSG__RECEIVE, &ad);
5252        return rc;
5253}
5254
5255/* Shared Memory security operations */
5256static int selinux_shm_alloc_security(struct shmid_kernel *shp)
5257{
5258        struct ipc_security_struct *isec;
5259        struct common_audit_data ad;
5260        u32 sid = current_sid();
5261        int rc;
5262
5263        rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
5264        if (rc)
5265                return rc;
5266
5267        isec = shp->shm_perm.security;
5268
5269        ad.type = LSM_AUDIT_DATA_IPC;
5270        ad.u.ipc_id = shp->shm_perm.key;
5271
5272        rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5273                          SHM__CREATE, &ad);
5274        if (rc) {
5275                ipc_free_security(&shp->shm_perm);
5276                return rc;
5277        }
5278        return 0;
5279}
5280
5281static void selinux_shm_free_security(struct shmid_kernel *shp)
5282{
5283        ipc_free_security(&shp->shm_perm);
5284}
5285
5286static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
5287{
5288        struct ipc_security_struct *isec;
5289        struct common_audit_data ad;
5290        u32 sid = current_sid();
5291
5292        isec = shp->shm_perm.security;
5293
5294        ad.type = LSM_AUDIT_DATA_IPC;
5295        ad.u.ipc_id = shp->shm_perm.key;
5296
5297        return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5298                            SHM__ASSOCIATE, &ad);
5299}
5300
5301/* Note, at this point, shp is locked down */
5302static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5303{
5304        int perms;
5305        int err;
5306
5307        switch (cmd) {
5308        case IPC_INFO:
5309        case SHM_INFO:
5310                /* No specific object, just general system-wide information. */
5311                return task_has_system(current, SYSTEM__IPC_INFO);
5312        case IPC_STAT:
5313        case SHM_STAT:
5314                perms = SHM__GETATTR | SHM__ASSOCIATE;
5315                break;
5316        case IPC_SET:
5317                perms = SHM__SETATTR;
5318                break;
5319        case SHM_LOCK:
5320        case SHM_UNLOCK:
5321                perms = SHM__LOCK;
5322                break;
5323        case IPC_RMID:
5324                perms = SHM__DESTROY;
5325                break;
5326        default:
5327                return 0;
5328        }
5329
5330        err = ipc_has_perm(&shp->shm_perm, perms);
5331        return err;
5332}
5333
5334static int selinux_shm_shmat(struct shmid_kernel *shp,
5335                             char __user *shmaddr, int shmflg)
5336{
5337        u32 perms;
5338
5339        if (shmflg & SHM_RDONLY)
5340                perms = SHM__READ;
5341        else
5342                perms = SHM__READ | SHM__WRITE;
5343
5344        return ipc_has_perm(&shp->shm_perm, perms);
5345}
5346
5347/* Semaphore security operations */
5348static int selinux_sem_alloc_security(struct sem_array *sma)
5349{
5350        struct ipc_security_struct *isec;
5351        struct common_audit_data ad;
5352        u32 sid = current_sid();
5353        int rc;
5354
5355        rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5356        if (rc)
5357                return rc;
5358
5359        isec = sma->sem_perm.security;
5360
5361        ad.type = LSM_AUDIT_DATA_IPC;
5362        ad.u.ipc_id = sma->sem_perm.key;
5363
5364        rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5365                          SEM__CREATE, &ad);
5366        if (rc) {
5367                ipc_free_security(&sma->sem_perm);
5368                return rc;
5369        }
5370        return 0;
5371}
5372
5373static void selinux_sem_free_security(struct sem_array *sma)
5374{
5375        ipc_free_security(&sma->sem_perm);
5376}
5377
5378static int selinux_sem_associate(struct sem_array *sma, int semflg)
5379{
5380        struct ipc_security_struct *isec;
5381        struct common_audit_data ad;
5382        u32 sid = current_sid();
5383
5384        isec = sma->sem_perm.security;
5385
5386        ad.type = LSM_AUDIT_DATA_IPC;
5387        ad.u.ipc_id = sma->sem_perm.key;
5388
5389        return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5390                            SEM__ASSOCIATE, &ad);
5391}
5392
5393/* Note, at this point, sma is locked down */
5394static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5395{
5396        int err;
5397        u32 perms;
5398
5399        switch (cmd) {
5400        case IPC_INFO:
5401        case SEM_INFO:
5402                /* No specific object, just general system-wide information. */
5403                return task_has_system(current, SYSTEM__IPC_INFO);
5404        case GETPID:
5405        case GETNCNT:
5406        case GETZCNT:
5407                perms = SEM__GETATTR;
5408                break;
5409        case GETVAL:
5410        case GETALL:
5411                perms = SEM__READ;
5412                break;
5413        case SETVAL:
5414        case SETALL:
5415                perms = SEM__WRITE;
5416                break;
5417        case IPC_RMID:
5418                perms = SEM__DESTROY;
5419                break;
5420        case IPC_SET:
5421                perms = SEM__SETATTR;
5422                break;
5423        case IPC_STAT:
5424        case SEM_STAT:
5425                perms = SEM__GETATTR | SEM__ASSOCIATE;
5426                break;
5427        default:
5428                return 0;
5429        }
5430
5431        err = ipc_has_perm(&sma->sem_perm, perms);
5432        return err;
5433}
5434
5435static int selinux_sem_semop(struct sem_array *sma,
5436                             struct sembuf *sops, unsigned nsops, int alter)
5437{
5438        u32 perms;
5439
5440        if (alter)
5441                perms = SEM__READ | SEM__WRITE;
5442        else
5443                perms = SEM__READ;
5444
5445        return ipc_has_perm(&sma->sem_perm, perms);
5446}
5447
5448static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5449{
5450        u32 av = 0;
5451
5452        av = 0;
5453        if (flag & S_IRUGO)
5454                av |= IPC__UNIX_READ;
5455        if (flag & S_IWUGO)
5456                av |= IPC__UNIX_WRITE;
5457
5458        if (av == 0)
5459                return 0;
5460
5461        return ipc_has_perm(ipcp, av);
5462}
5463
5464static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5465{
5466        struct ipc_security_struct *isec = ipcp->security;
5467        *secid = isec->sid;
5468}
5469
5470static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5471{
5472        if (inode)
5473                inode_doinit_with_dentry(inode, dentry);
5474}
5475
5476static int selinux_getprocattr(struct task_struct *p,
5477                               char *name, char **value)
5478{
5479        const struct task_security_struct *__tsec;
5480        u32 sid;
5481        int error;
5482        unsigned len;
5483
5484        if (current != p) {
5485                error = current_has_perm(p, PROCESS__GETATTR);
5486                if (error)
5487                        return error;
5488        }
5489
5490        rcu_read_lock();
5491        __tsec = __task_cred(p)->security;
5492
5493        if (!strcmp(name, "current"))
5494                sid = __tsec->sid;
5495        else if (!strcmp(name, "prev"))
5496                sid = __tsec->osid;
5497        else if (!strcmp(name, "exec"))
5498                sid = __tsec->exec_sid;
5499        else if (!strcmp(name, "fscreate"))
5500                sid = __tsec->create_sid;
5501        else if (!strcmp(name, "keycreate"))
5502                sid = __tsec->keycreate_sid;
5503        else if (!strcmp(name, "sockcreate"))
5504                sid = __tsec->sockcreate_sid;
5505        else
5506                goto invalid;
5507        rcu_read_unlock();
5508
5509        if (!sid)
5510                return 0;
5511
5512        error = security_sid_to_context(sid, value, &len);
5513        if (error)
5514                return error;
5515        return len;
5516
5517invalid:
5518        rcu_read_unlock();
5519        return -EINVAL;
5520}
5521
5522static int selinux_setprocattr(struct task_struct *p,
5523                               char *name, void *value, size_t size)
5524{
5525        struct task_security_struct *tsec;
5526        struct task_struct *tracer;
5527        struct cred *new;
5528        u32 sid = 0, ptsid;
5529        int error;
5530        char *str = value;
5531
5532        if (current != p) {
5533                /* SELinux only allows a process to change its own
5534                   security attributes. */
5535                return -EACCES;
5536        }
5537
5538        /*
5539         * Basic control over ability to set these attributes at all.
5540         * current == p, but we'll pass them separately in case the
5541         * above restriction is ever removed.
5542         */
5543        if (!strcmp(name, "exec"))
5544                error = current_has_perm(p, PROCESS__SETEXEC);
5545        else if (!strcmp(name, "fscreate"))
5546                error = current_has_perm(p, PROCESS__SETFSCREATE);
5547        else if (!strcmp(name, "keycreate"))
5548                error = current_has_perm(p, PROCESS__SETKEYCREATE);
5549        else if (!strcmp(name, "sockcreate"))
5550                error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5551        else if (!strcmp(name, "current"))
5552                error = current_has_perm(p, PROCESS__SETCURRENT);
5553        else
5554                error = -EINVAL;
5555        if (error)
5556                return error;
5557
5558        /* Obtain a SID for the context, if one was specified. */
5559        if (size && str[1] && str[1] != '\n') {
5560                if (str[size-1] == '\n') {
5561                        str[size-1] = 0;
5562                        size--;
5563                }
5564                error = security_context_to_sid(value, size, &sid, GFP_KERNEL);
5565                if (error == -EINVAL && !strcmp(name, "fscreate")) {
5566                        if (!capable(CAP_MAC_ADMIN)) {
5567                                struct audit_buffer *ab;
5568                                size_t audit_size;
5569
5570                                /* We strip a nul only if it is at the end, otherwise the
5571                                 * context contains a nul and we should audit that */
5572                                if (str[size - 1] == '\0')
5573                                        audit_size = size - 1;
5574                                else
5575                                        audit_size = size;
5576                                ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
5577                                audit_log_format(ab, "op=fscreate invalid_context=");
5578                                audit_log_n_untrustedstring(ab, value, audit_size);
5579                                audit_log_end(ab);
5580
5581                                return error;
5582                        }
5583                        error = security_context_to_sid_force(value, size,
5584                                                              &sid);
5585                }
5586                if (error)
5587                        return error;
5588        }
5589
5590        new = prepare_creds();
5591        if (!new)
5592                return -ENOMEM;
5593
5594        /* Permission checking based on the specified context is
5595           performed during the actual operation (execve,
5596           open/mkdir/...), when we know the full context of the
5597           operation.  See selinux_bprm_set_creds for the execve
5598           checks and may_create for the file creation checks. The
5599           operation will then fail if the context is not permitted. */
5600        tsec = new->security;
5601        if (!strcmp(name, "exec")) {
5602                tsec->exec_sid = sid;
5603        } else if (!strcmp(name, "fscreate")) {
5604                tsec->create_sid = sid;
5605        } else if (!strcmp(name, "keycreate")) {
5606                error = may_create_key(sid, p);
5607                if (error)
5608                        goto abort_change;
5609                tsec->keycreate_sid = sid;
5610        } else if (!strcmp(name, "sockcreate")) {
5611                tsec->sockcreate_sid = sid;
5612        } else if (!strcmp(name, "current")) {
5613                error = -EINVAL;
5614                if (sid == 0)
5615                        goto abort_change;
5616
5617                /* Only allow single threaded processes to change context */
5618                error = -EPERM;
5619                if (!current_is_single_threaded()) {
5620                        error = security_bounded_transition(tsec->sid, sid);
5621                        if (error)
5622                                goto abort_change;
5623                }
5624
5625                /* Check permissions for the transition. */
5626                error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5627                                     PROCESS__DYNTRANSITION, NULL);
5628                if (error)
5629                        goto abort_change;
5630
5631                /* Check for ptracing, and update the task SID if ok.
5632                   Otherwise, leave SID unchanged and fail. */
5633                ptsid = 0;
5634                rcu_read_lock();
5635                tracer = ptrace_parent(p);
5636                if (tracer)
5637                        ptsid = task_sid(tracer);
5638                rcu_read_unlock();
5639
5640                if (tracer) {
5641                        error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5642                                             PROCESS__PTRACE, NULL);
5643                        if (error)
5644                                goto abort_change;
5645                }
5646
5647                tsec->sid = sid;
5648        } else {
5649                error = -EINVAL;
5650                goto abort_change;
5651        }
5652
5653        commit_creds(new);
5654        return size;
5655
5656abort_change:
5657        abort_creds(new);
5658        return error;
5659}
5660
5661static int selinux_ismaclabel(const char *name)
5662{
5663        return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
5664}
5665
5666static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5667{
5668        return security_sid_to_context(secid, secdata, seclen);
5669}
5670
5671static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5672{
5673        return security_context_to_sid(secdata, seclen, secid, GFP_KERNEL);
5674}
5675
5676static void selinux_release_secctx(char *secdata, u32 seclen)
5677{
5678        kfree(secdata);
5679}
5680
5681/*
5682 *      called with inode->i_mutex locked
5683 */
5684static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
5685{
5686        return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
5687}
5688
5689/*
5690 *      called with inode->i_mutex locked
5691 */
5692static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
5693{
5694        return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
5695}
5696
5697static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
5698{
5699        int len = 0;
5700        len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
5701                                                ctx, true);
5702        if (len < 0)
5703                return len;
5704        *ctxlen = len;
5705        return 0;
5706}
5707#ifdef CONFIG_KEYS
5708
5709static int selinux_key_alloc(struct key *k, const struct cred *cred,
5710                             unsigned long flags)
5711{
5712        const struct task_security_struct *tsec;
5713        struct key_security_struct *ksec;
5714
5715        ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5716        if (!ksec)
5717                return -ENOMEM;
5718
5719        tsec = cred->security;
5720        if (tsec->keycreate_sid)
5721                ksec->sid = tsec->keycreate_sid;
5722        else
5723                ksec->sid = tsec->sid;
5724
5725        k->security = ksec;
5726        return 0;
5727}
5728
5729static void selinux_key_free(struct key *k)
5730{
5731        struct key_security_struct *ksec = k->security;
5732
5733        k->security = NULL;
5734        kfree(ksec);
5735}
5736
5737static int selinux_key_permission(key_ref_t key_ref,
5738                                  const struct cred *cred,
5739                                  unsigned perm)
5740{
5741        struct key *key;
5742        struct key_security_struct *ksec;
5743        u32 sid;
5744
5745        /* if no specific permissions are requested, we skip the
5746           permission check. No serious, additional covert channels
5747           appear to be created. */
5748        if (perm == 0)
5749                return 0;
5750
5751        sid = cred_sid(cred);
5752
5753        key = key_ref_to_ptr(key_ref);
5754        ksec = key->security;
5755
5756        return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
5757}
5758
5759static int selinux_key_getsecurity(struct key *key, char **_buffer)
5760{
5761        struct key_security_struct *ksec = key->security;
5762        char *context = NULL;
5763        unsigned len;
5764        int rc;
5765
5766        rc = security_sid_to_context(ksec->sid, &context, &len);
5767        if (!rc)
5768                rc = len;
5769        *_buffer = context;
5770        return rc;
5771}
5772
5773#endif
5774
5775static struct security_operations selinux_ops = {
5776        .name =                         "selinux",
5777
5778        .ptrace_access_check =          selinux_ptrace_access_check,
5779        .ptrace_traceme =               selinux_ptrace_traceme,
5780        .capget =                       selinux_capget,
5781        .capset =                       selinux_capset,
5782        .capable =                      selinux_capable,
5783        .quotactl =                     selinux_quotactl,
5784        .quota_on =                     selinux_quota_on,
5785        .syslog =                       selinux_syslog,
5786        .vm_enough_memory =             selinux_vm_enough_memory,
5787
5788        .netlink_send =                 selinux_netlink_send,
5789
5790        .bprm_set_creds =               selinux_bprm_set_creds,
5791        .bprm_committing_creds =        selinux_bprm_committing_creds,
5792        .bprm_committed_creds =         selinux_bprm_committed_creds,
5793        .bprm_secureexec =              selinux_bprm_secureexec,
5794
5795        .sb_alloc_security =            selinux_sb_alloc_security,
5796        .sb_free_security =             selinux_sb_free_security,
5797        .sb_copy_data =                 selinux_sb_copy_data,
5798        .sb_remount =                   selinux_sb_remount,
5799        .sb_kern_mount =                selinux_sb_kern_mount,
5800        .sb_show_options =              selinux_sb_show_options,
5801        .sb_statfs =                    selinux_sb_statfs,
5802        .sb_mount =                     selinux_mount,
5803        .sb_umount =                    selinux_umount,
5804        .sb_set_mnt_opts =              selinux_set_mnt_opts,
5805        .sb_clone_mnt_opts =            selinux_sb_clone_mnt_opts,
5806        .sb_parse_opts_str =            selinux_parse_opts_str,
5807
5808        .dentry_init_security =         selinux_dentry_init_security,
5809
5810        .inode_alloc_security =         selinux_inode_alloc_security,
5811        .inode_free_security =          selinux_inode_free_security,
5812        .inode_init_security =          selinux_inode_init_security,
5813        .inode_create =                 selinux_inode_create,
5814        .inode_link =                   selinux_inode_link,
5815        .inode_unlink =                 selinux_inode_unlink,
5816        .inode_symlink =                selinux_inode_symlink,
5817        .inode_mkdir =                  selinux_inode_mkdir,
5818        .inode_rmdir =                  selinux_inode_rmdir,
5819        .inode_mknod =                  selinux_inode_mknod,
5820        .inode_rename =                 selinux_inode_rename,
5821        .inode_readlink =               selinux_inode_readlink,
5822        .inode_follow_link =            selinux_inode_follow_link,
5823        .inode_permission =             selinux_inode_permission,
5824        .inode_setattr =                selinux_inode_setattr,
5825        .inode_getattr =                selinux_inode_getattr,
5826        .inode_setxattr =               selinux_inode_setxattr,
5827        .inode_post_setxattr =          selinux_inode_post_setxattr,
5828        .inode_getxattr =               selinux_inode_getxattr,
5829        .inode_listxattr =              selinux_inode_listxattr,
5830        .inode_removexattr =            selinux_inode_removexattr,
5831        .inode_getsecurity =            selinux_inode_getsecurity,
5832        .inode_setsecurity =            selinux_inode_setsecurity,
5833        .inode_listsecurity =           selinux_inode_listsecurity,
5834        .inode_getsecid =               selinux_inode_getsecid,
5835
5836        .file_permission =              selinux_file_permission,
5837        .file_alloc_security =          selinux_file_alloc_security,
5838        .file_free_security =           selinux_file_free_security,
5839        .file_ioctl =                   selinux_file_ioctl,
5840        .mmap_file =                    selinux_mmap_file,
5841        .mmap_addr =                    selinux_mmap_addr,
5842        .file_mprotect =                selinux_file_mprotect,
5843        .file_lock =                    selinux_file_lock,
5844        .file_fcntl =                   selinux_file_fcntl,
5845        .file_set_fowner =              selinux_file_set_fowner,
5846        .file_send_sigiotask =          selinux_file_send_sigiotask,
5847        .file_receive =                 selinux_file_receive,
5848
5849        .file_open =                    selinux_file_open,
5850
5851        .task_create =                  selinux_task_create,
5852        .cred_alloc_blank =             selinux_cred_alloc_blank,
5853        .cred_free =                    selinux_cred_free,
5854        .cred_prepare =                 selinux_cred_prepare,
5855        .cred_transfer =                selinux_cred_transfer,
5856        .kernel_act_as =                selinux_kernel_act_as,
5857        .kernel_create_files_as =       selinux_kernel_create_files_as,
5858        .kernel_module_request =        selinux_kernel_module_request,
5859        .task_setpgid =                 selinux_task_setpgid,
5860        .task_getpgid =                 selinux_task_getpgid,
5861        .task_getsid =                  selinux_task_getsid,
5862        .task_getsecid =                selinux_task_getsecid,
5863        .task_setnice =                 selinux_task_setnice,
5864        .task_setioprio =               selinux_task_setioprio,
5865        .task_getioprio =               selinux_task_getioprio,
5866        .task_setrlimit =               selinux_task_setrlimit,
5867        .task_setscheduler =            selinux_task_setscheduler,
5868        .task_getscheduler =            selinux_task_getscheduler,
5869        .task_movememory =              selinux_task_movememory,
5870        .task_kill =                    selinux_task_kill,
5871        .task_wait =                    selinux_task_wait,
5872        .task_to_inode =                selinux_task_to_inode,
5873
5874        .ipc_permission =               selinux_ipc_permission,
5875        .ipc_getsecid =                 selinux_ipc_getsecid,
5876
5877        .msg_msg_alloc_security =       selinux_msg_msg_alloc_security,
5878        .msg_msg_free_security =        selinux_msg_msg_free_security,
5879
5880        .msg_queue_alloc_security =     selinux_msg_queue_alloc_security,
5881        .msg_queue_free_security =      selinux_msg_queue_free_security,
5882        .msg_queue_associate =          selinux_msg_queue_associate,
5883        .msg_queue_msgctl =             selinux_msg_queue_msgctl,
5884        .msg_queue_msgsnd =             selinux_msg_queue_msgsnd,
5885        .msg_queue_msgrcv =             selinux_msg_queue_msgrcv,
5886
5887        .shm_alloc_security =           selinux_shm_alloc_security,
5888        .shm_free_security =            selinux_shm_free_security,
5889        .shm_associate =                selinux_shm_associate,
5890        .shm_shmctl =                   selinux_shm_shmctl,
5891        .shm_shmat =                    selinux_shm_shmat,
5892
5893        .sem_alloc_security =           selinux_sem_alloc_security,
5894        .sem_free_security =            selinux_sem_free_security,
5895        .sem_associate =                selinux_sem_associate,
5896        .sem_semctl =                   selinux_sem_semctl,
5897        .sem_semop =                    selinux_sem_semop,
5898
5899        .d_instantiate =                selinux_d_instantiate,
5900
5901        .getprocattr =                  selinux_getprocattr,
5902        .setprocattr =                  selinux_setprocattr,
5903
5904        .ismaclabel =                   selinux_ismaclabel,
5905        .secid_to_secctx =              selinux_secid_to_secctx,
5906        .secctx_to_secid =              selinux_secctx_to_secid,
5907        .release_secctx =               selinux_release_secctx,
5908        .inode_notifysecctx =           selinux_inode_notifysecctx,
5909        .inode_setsecctx =              selinux_inode_setsecctx,
5910        .inode_getsecctx =              selinux_inode_getsecctx,
5911
5912        .unix_stream_connect =          selinux_socket_unix_stream_connect,
5913        .unix_may_send =                selinux_socket_unix_may_send,
5914
5915        .socket_create =                selinux_socket_create,
5916        .socket_post_create =           selinux_socket_post_create,
5917        .socket_bind =                  selinux_socket_bind,
5918        .socket_connect =               selinux_socket_connect,
5919        .socket_listen =                selinux_socket_listen,
5920        .socket_accept =                selinux_socket_accept,
5921        .socket_sendmsg =               selinux_socket_sendmsg,
5922        .socket_recvmsg =               selinux_socket_recvmsg,
5923        .socket_getsockname =           selinux_socket_getsockname,
5924        .socket_getpeername =           selinux_socket_getpeername,
5925        .socket_getsockopt =            selinux_socket_getsockopt,
5926        .socket_setsockopt =            selinux_socket_setsockopt,
5927        .socket_shutdown =              selinux_socket_shutdown,
5928        .socket_sock_rcv_skb =          selinux_socket_sock_rcv_skb,
5929        .socket_getpeersec_stream =     selinux_socket_getpeersec_stream,
5930        .socket_getpeersec_dgram =      selinux_socket_getpeersec_dgram,
5931        .sk_alloc_security =            selinux_sk_alloc_security,
5932        .sk_free_security =             selinux_sk_free_security,
5933        .sk_clone_security =            selinux_sk_clone_security,
5934        .sk_getsecid =                  selinux_sk_getsecid,
5935        .sock_graft =                   selinux_sock_graft,
5936        .inet_conn_request =            selinux_inet_conn_request,
5937        .inet_csk_clone =               selinux_inet_csk_clone,
5938        .inet_conn_established =        selinux_inet_conn_established,
5939        .secmark_relabel_packet =       selinux_secmark_relabel_packet,
5940        .secmark_refcount_inc =         selinux_secmark_refcount_inc,
5941        .secmark_refcount_dec =         selinux_secmark_refcount_dec,
5942        .req_classify_flow =            selinux_req_classify_flow,
5943        .tun_dev_alloc_security =       selinux_tun_dev_alloc_security,
5944        .tun_dev_free_security =        selinux_tun_dev_free_security,
5945        .tun_dev_create =               selinux_tun_dev_create,
5946        .tun_dev_attach_queue =         selinux_tun_dev_attach_queue,
5947        .tun_dev_attach =               selinux_tun_dev_attach,
5948        .tun_dev_open =                 selinux_tun_dev_open,
5949        .skb_owned_by =                 selinux_skb_owned_by,
5950
5951#ifdef CONFIG_SECURITY_NETWORK_XFRM
5952        .xfrm_policy_alloc_security =   selinux_xfrm_policy_alloc,
5953        .xfrm_policy_clone_security =   selinux_xfrm_policy_clone,
5954        .xfrm_policy_free_security =    selinux_xfrm_policy_free,
5955        .xfrm_policy_delete_security =  selinux_xfrm_policy_delete,
5956        .xfrm_state_alloc =             selinux_xfrm_state_alloc,
5957        .xfrm_state_alloc_acquire =     selinux_xfrm_state_alloc_acquire,
5958        .xfrm_state_free_security =     selinux_xfrm_state_free,
5959        .xfrm_state_delete_security =   selinux_xfrm_state_delete,
5960        .xfrm_policy_lookup =           selinux_xfrm_policy_lookup,
5961        .xfrm_state_pol_flow_match =    selinux_xfrm_state_pol_flow_match,
5962        .xfrm_decode_session =          selinux_xfrm_decode_session,
5963#endif
5964
5965#ifdef CONFIG_KEYS
5966        .key_alloc =                    selinux_key_alloc,
5967        .key_free =                     selinux_key_free,
5968        .key_permission =               selinux_key_permission,
5969        .key_getsecurity =              selinux_key_getsecurity,
5970#endif
5971
5972#ifdef CONFIG_AUDIT
5973        .audit_rule_init =              selinux_audit_rule_init,
5974        .audit_rule_known =             selinux_audit_rule_known,
5975        .audit_rule_match =             selinux_audit_rule_match,
5976        .audit_rule_free =              selinux_audit_rule_free,
5977#endif
5978};
5979
5980static __init int selinux_init(void)
5981{
5982        if (!security_module_enable(&selinux_ops)) {
5983                selinux_enabled = 0;
5984                return 0;
5985        }
5986
5987        if (!selinux_enabled) {
5988                printk(KERN_INFO "SELinux:  Disabled at boot.\n");
5989                return 0;
5990        }
5991
5992        printk(KERN_INFO "SELinux:  Initializing.\n");
5993
5994        /* Set the security state for the initial task. */
5995        cred_init_security();
5996
5997        default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
5998
5999        sel_inode_cache = kmem_cache_create("selinux_inode_security",
6000                                            sizeof(struct inode_security_struct),
6001                                            0, SLAB_PANIC, NULL);
6002        avc_init();
6003
6004        if (register_security(&selinux_ops))
6005                panic("SELinux: Unable to register with kernel.\n");
6006
6007        if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
6008                panic("SELinux: Unable to register AVC netcache callback\n");
6009
6010        if (selinux_enforcing)
6011                printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
6012        else
6013                printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
6014
6015        return 0;
6016}
6017
6018static void delayed_superblock_init(struct super_block *sb, void *unused)
6019{
6020        superblock_doinit(sb, NULL);
6021}
6022
6023void selinux_complete_init(void)
6024{
6025        printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
6026
6027        /* Set up any superblocks initialized prior to the policy load. */
6028        printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
6029        iterate_supers(delayed_superblock_init, NULL);
6030}
6031
6032/* SELinux requires early initialization in order to label
6033   all processes and objects when they are created. */
6034security_initcall(selinux_init);
6035
6036#if defined(CONFIG_NETFILTER)
6037
6038static struct nf_hook_ops selinux_ipv4_ops[] = {
6039        {
6040                .hook =         selinux_ipv4_postroute,
6041                .owner =        THIS_MODULE,
6042                .pf =           NFPROTO_IPV4,
6043                .hooknum =      NF_INET_POST_ROUTING,
6044                .priority =     NF_IP_PRI_SELINUX_LAST,
6045        },
6046        {
6047                .hook =         selinux_ipv4_forward,
6048                .owner =        THIS_MODULE,
6049                .pf =           NFPROTO_IPV4,
6050                .hooknum =      NF_INET_FORWARD,
6051                .priority =     NF_IP_PRI_SELINUX_FIRST,
6052        },
6053        {
6054                .hook =         selinux_ipv4_output,
6055                .owner =        THIS_MODULE,
6056                .pf =           NFPROTO_IPV4,
6057                .hooknum =      NF_INET_LOCAL_OUT,
6058                .priority =     NF_IP_PRI_SELINUX_FIRST,
6059        }
6060};
6061
6062#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
6063
6064static struct nf_hook_ops selinux_ipv6_ops[] = {
6065        {
6066                .hook =         selinux_ipv6_postroute,
6067                .owner =        THIS_MODULE,
6068                .pf =           NFPROTO_IPV6,
6069                .hooknum =      NF_INET_POST_ROUTING,
6070                .priority =     NF_IP6_PRI_SELINUX_LAST,
6071        },
6072        {
6073                .hook =         selinux_ipv6_forward,
6074                .owner =        THIS_MODULE,
6075                .pf =           NFPROTO_IPV6,
6076                .hooknum =      NF_INET_FORWARD,
6077                .priority =     NF_IP6_PRI_SELINUX_FIRST,
6078        }
6079};
6080
6081#endif  /* IPV6 */
6082
6083static int __init selinux_nf_ip_init(void)
6084{
6085        int err = 0;
6086
6087        if (!selinux_enabled)
6088                goto out;
6089
6090        printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
6091
6092        err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
6093        if (err)
6094                panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
6095
6096#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
6097        err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
6098        if (err)
6099                panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
6100#endif  /* IPV6 */
6101
6102out:
6103        return err;
6104}
6105
6106__initcall(selinux_nf_ip_init);
6107
6108#ifdef CONFIG_SECURITY_SELINUX_DISABLE
6109static void selinux_nf_ip_exit(void)
6110{
6111        printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
6112
6113        nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
6114#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
6115        nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
6116#endif  /* IPV6 */
6117}
6118#endif
6119
6120#else /* CONFIG_NETFILTER */
6121
6122#ifdef CONFIG_SECURITY_SELINUX_DISABLE
6123#define selinux_nf_ip_exit()
6124#endif
6125
6126#endif /* CONFIG_NETFILTER */
6127
6128#ifdef CONFIG_SECURITY_SELINUX_DISABLE
6129static int selinux_disabled;
6130
6131int selinux_disable(void)
6132{
6133        if (ss_initialized) {
6134                /* Not permitted after initial policy load. */
6135                return -EINVAL;
6136        }
6137
6138        if (selinux_disabled) {
6139                /* Only do this once. */
6140                return -EINVAL;
6141        }
6142
6143        printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
6144
6145        selinux_disabled = 1;
6146        selinux_enabled = 0;
6147
6148        reset_security_ops();
6149
6150        /* Try to destroy the avc node cache */
6151        avc_disable();
6152
6153        /* Unregister netfilter hooks. */
6154        selinux_nf_ip_exit();
6155
6156        /* Unregister selinuxfs. */
6157        exit_sel_fs();
6158
6159        return 0;
6160}
6161#endif
6162