linux/security/selinux/ss/services.c
<<
>>
Prefs
   1/*
   2 * Implementation of the security services.
   3 *
   4 * Authors : Stephen Smalley, <sds@epoch.ncsc.mil>
   5 *           James Morris <jmorris@redhat.com>
   6 *
   7 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
   8 *
   9 *      Support for enhanced MLS infrastructure.
  10 *      Support for context based audit filters.
  11 *
  12 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
  13 *
  14 *      Added conditional policy language extensions
  15 *
  16 * Updated: Hewlett-Packard <paul@paul-moore.com>
  17 *
  18 *      Added support for NetLabel
  19 *      Added support for the policy capability bitmap
  20 *
  21 * Updated: Chad Sellers <csellers@tresys.com>
  22 *
  23 *  Added validation of kernel classes and permissions
  24 *
  25 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
  26 *
  27 *  Added support for bounds domain and audit messaged on masked permissions
  28 *
  29 * Updated: Guido Trentalancia <guido@trentalancia.com>
  30 *
  31 *  Added support for runtime switching of the policy type
  32 *
  33 * Copyright (C) 2008, 2009 NEC Corporation
  34 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
  35 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
  36 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
  37 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
  38 *      This program is free software; you can redistribute it and/or modify
  39 *      it under the terms of the GNU General Public License as published by
  40 *      the Free Software Foundation, version 2.
  41 */
  42#include <linux/kernel.h>
  43#include <linux/slab.h>
  44#include <linux/string.h>
  45#include <linux/spinlock.h>
  46#include <linux/rcupdate.h>
  47#include <linux/errno.h>
  48#include <linux/in.h>
  49#include <linux/sched.h>
  50#include <linux/audit.h>
  51#include <linux/mutex.h>
  52#include <linux/selinux.h>
  53#include <linux/flex_array.h>
  54#include <linux/vmalloc.h>
  55#include <net/netlabel.h>
  56
  57#include "flask.h"
  58#include "avc.h"
  59#include "avc_ss.h"
  60#include "security.h"
  61#include "context.h"
  62#include "policydb.h"
  63#include "sidtab.h"
  64#include "services.h"
  65#include "conditional.h"
  66#include "mls.h"
  67#include "objsec.h"
  68#include "netlabel.h"
  69#include "xfrm.h"
  70#include "ebitmap.h"
  71#include "audit.h"
  72
  73int selinux_policycap_netpeer;
  74int selinux_policycap_openperm;
  75int selinux_policycap_alwaysnetwork;
  76
  77static DEFINE_RWLOCK(policy_rwlock);
  78
  79static struct sidtab sidtab;
  80struct policydb policydb;
  81int ss_initialized;
  82
  83/*
  84 * The largest sequence number that has been used when
  85 * providing an access decision to the access vector cache.
  86 * The sequence number only changes when a policy change
  87 * occurs.
  88 */
  89static u32 latest_granting;
  90
  91/* Forward declaration. */
  92static int context_struct_to_string(struct context *context, char **scontext,
  93                                    u32 *scontext_len);
  94
  95static void context_struct_compute_av(struct context *scontext,
  96                                      struct context *tcontext,
  97                                      u16 tclass,
  98                                      struct av_decision *avd);
  99
 100struct selinux_mapping {
 101        u16 value; /* policy value */
 102        unsigned num_perms;
 103        u32 perms[sizeof(u32) * 8];
 104};
 105
 106static struct selinux_mapping *current_mapping;
 107static u16 current_mapping_size;
 108
 109static int selinux_set_mapping(struct policydb *pol,
 110                               struct security_class_mapping *map,
 111                               struct selinux_mapping **out_map_p,
 112                               u16 *out_map_size)
 113{
 114        struct selinux_mapping *out_map = NULL;
 115        size_t size = sizeof(struct selinux_mapping);
 116        u16 i, j;
 117        unsigned k;
 118        bool print_unknown_handle = false;
 119
 120        /* Find number of classes in the input mapping */
 121        if (!map)
 122                return -EINVAL;
 123        i = 0;
 124        while (map[i].name)
 125                i++;
 126
 127        /* Allocate space for the class records, plus one for class zero */
 128        out_map = kcalloc(++i, size, GFP_ATOMIC);
 129        if (!out_map)
 130                return -ENOMEM;
 131
 132        /* Store the raw class and permission values */
 133        j = 0;
 134        while (map[j].name) {
 135                struct security_class_mapping *p_in = map + (j++);
 136                struct selinux_mapping *p_out = out_map + j;
 137
 138                /* An empty class string skips ahead */
 139                if (!strcmp(p_in->name, "")) {
 140                        p_out->num_perms = 0;
 141                        continue;
 142                }
 143
 144                p_out->value = string_to_security_class(pol, p_in->name);
 145                if (!p_out->value) {
 146                        printk(KERN_INFO
 147                               "SELinux:  Class %s not defined in policy.\n",
 148                               p_in->name);
 149                        if (pol->reject_unknown)
 150                                goto err;
 151                        p_out->num_perms = 0;
 152                        print_unknown_handle = true;
 153                        continue;
 154                }
 155
 156                k = 0;
 157                while (p_in->perms && p_in->perms[k]) {
 158                        /* An empty permission string skips ahead */
 159                        if (!*p_in->perms[k]) {
 160                                k++;
 161                                continue;
 162                        }
 163                        p_out->perms[k] = string_to_av_perm(pol, p_out->value,
 164                                                            p_in->perms[k]);
 165                        if (!p_out->perms[k]) {
 166                                printk(KERN_INFO
 167                                       "SELinux:  Permission %s in class %s not defined in policy.\n",
 168                                       p_in->perms[k], p_in->name);
 169                                if (pol->reject_unknown)
 170                                        goto err;
 171                                print_unknown_handle = true;
 172                        }
 173
 174                        k++;
 175                }
 176                p_out->num_perms = k;
 177        }
 178
 179        if (print_unknown_handle)
 180                printk(KERN_INFO "SELinux: the above unknown classes and permissions will be %s\n",
 181                       pol->allow_unknown ? "allowed" : "denied");
 182
 183        *out_map_p = out_map;
 184        *out_map_size = i;
 185        return 0;
 186err:
 187        kfree(out_map);
 188        return -EINVAL;
 189}
 190
 191/*
 192 * Get real, policy values from mapped values
 193 */
 194
 195static u16 unmap_class(u16 tclass)
 196{
 197        if (tclass < current_mapping_size)
 198                return current_mapping[tclass].value;
 199
 200        return tclass;
 201}
 202
 203/*
 204 * Get kernel value for class from its policy value
 205 */
 206static u16 map_class(u16 pol_value)
 207{
 208        u16 i;
 209
 210        for (i = 1; i < current_mapping_size; i++) {
 211                if (current_mapping[i].value == pol_value)
 212                        return i;
 213        }
 214
 215        return SECCLASS_NULL;
 216}
 217
 218static void map_decision(u16 tclass, struct av_decision *avd,
 219                         int allow_unknown)
 220{
 221        if (tclass < current_mapping_size) {
 222                unsigned i, n = current_mapping[tclass].num_perms;
 223                u32 result;
 224
 225                for (i = 0, result = 0; i < n; i++) {
 226                        if (avd->allowed & current_mapping[tclass].perms[i])
 227                                result |= 1<<i;
 228                        if (allow_unknown && !current_mapping[tclass].perms[i])
 229                                result |= 1<<i;
 230                }
 231                avd->allowed = result;
 232
 233                for (i = 0, result = 0; i < n; i++)
 234                        if (avd->auditallow & current_mapping[tclass].perms[i])
 235                                result |= 1<<i;
 236                avd->auditallow = result;
 237
 238                for (i = 0, result = 0; i < n; i++) {
 239                        if (avd->auditdeny & current_mapping[tclass].perms[i])
 240                                result |= 1<<i;
 241                        if (!allow_unknown && !current_mapping[tclass].perms[i])
 242                                result |= 1<<i;
 243                }
 244                /*
 245                 * In case the kernel has a bug and requests a permission
 246                 * between num_perms and the maximum permission number, we
 247                 * should audit that denial
 248                 */
 249                for (; i < (sizeof(u32)*8); i++)
 250                        result |= 1<<i;
 251                avd->auditdeny = result;
 252        }
 253}
 254
 255int security_mls_enabled(void)
 256{
 257        return policydb.mls_enabled;
 258}
 259
 260/*
 261 * Return the boolean value of a constraint expression
 262 * when it is applied to the specified source and target
 263 * security contexts.
 264 *
 265 * xcontext is a special beast...  It is used by the validatetrans rules
 266 * only.  For these rules, scontext is the context before the transition,
 267 * tcontext is the context after the transition, and xcontext is the context
 268 * of the process performing the transition.  All other callers of
 269 * constraint_expr_eval should pass in NULL for xcontext.
 270 */
 271static int constraint_expr_eval(struct context *scontext,
 272                                struct context *tcontext,
 273                                struct context *xcontext,
 274                                struct constraint_expr *cexpr)
 275{
 276        u32 val1, val2;
 277        struct context *c;
 278        struct role_datum *r1, *r2;
 279        struct mls_level *l1, *l2;
 280        struct constraint_expr *e;
 281        int s[CEXPR_MAXDEPTH];
 282        int sp = -1;
 283
 284        for (e = cexpr; e; e = e->next) {
 285                switch (e->expr_type) {
 286                case CEXPR_NOT:
 287                        BUG_ON(sp < 0);
 288                        s[sp] = !s[sp];
 289                        break;
 290                case CEXPR_AND:
 291                        BUG_ON(sp < 1);
 292                        sp--;
 293                        s[sp] &= s[sp + 1];
 294                        break;
 295                case CEXPR_OR:
 296                        BUG_ON(sp < 1);
 297                        sp--;
 298                        s[sp] |= s[sp + 1];
 299                        break;
 300                case CEXPR_ATTR:
 301                        if (sp == (CEXPR_MAXDEPTH - 1))
 302                                return 0;
 303                        switch (e->attr) {
 304                        case CEXPR_USER:
 305                                val1 = scontext->user;
 306                                val2 = tcontext->user;
 307                                break;
 308                        case CEXPR_TYPE:
 309                                val1 = scontext->type;
 310                                val2 = tcontext->type;
 311                                break;
 312                        case CEXPR_ROLE:
 313                                val1 = scontext->role;
 314                                val2 = tcontext->role;
 315                                r1 = policydb.role_val_to_struct[val1 - 1];
 316                                r2 = policydb.role_val_to_struct[val2 - 1];
 317                                switch (e->op) {
 318                                case CEXPR_DOM:
 319                                        s[++sp] = ebitmap_get_bit(&r1->dominates,
 320                                                                  val2 - 1);
 321                                        continue;
 322                                case CEXPR_DOMBY:
 323                                        s[++sp] = ebitmap_get_bit(&r2->dominates,
 324                                                                  val1 - 1);
 325                                        continue;
 326                                case CEXPR_INCOMP:
 327                                        s[++sp] = (!ebitmap_get_bit(&r1->dominates,
 328                                                                    val2 - 1) &&
 329                                                   !ebitmap_get_bit(&r2->dominates,
 330                                                                    val1 - 1));
 331                                        continue;
 332                                default:
 333                                        break;
 334                                }
 335                                break;
 336                        case CEXPR_L1L2:
 337                                l1 = &(scontext->range.level[0]);
 338                                l2 = &(tcontext->range.level[0]);
 339                                goto mls_ops;
 340                        case CEXPR_L1H2:
 341                                l1 = &(scontext->range.level[0]);
 342                                l2 = &(tcontext->range.level[1]);
 343                                goto mls_ops;
 344                        case CEXPR_H1L2:
 345                                l1 = &(scontext->range.level[1]);
 346                                l2 = &(tcontext->range.level[0]);
 347                                goto mls_ops;
 348                        case CEXPR_H1H2:
 349                                l1 = &(scontext->range.level[1]);
 350                                l2 = &(tcontext->range.level[1]);
 351                                goto mls_ops;
 352                        case CEXPR_L1H1:
 353                                l1 = &(scontext->range.level[0]);
 354                                l2 = &(scontext->range.level[1]);
 355                                goto mls_ops;
 356                        case CEXPR_L2H2:
 357                                l1 = &(tcontext->range.level[0]);
 358                                l2 = &(tcontext->range.level[1]);
 359                                goto mls_ops;
 360mls_ops:
 361                        switch (e->op) {
 362                        case CEXPR_EQ:
 363                                s[++sp] = mls_level_eq(l1, l2);
 364                                continue;
 365                        case CEXPR_NEQ:
 366                                s[++sp] = !mls_level_eq(l1, l2);
 367                                continue;
 368                        case CEXPR_DOM:
 369                                s[++sp] = mls_level_dom(l1, l2);
 370                                continue;
 371                        case CEXPR_DOMBY:
 372                                s[++sp] = mls_level_dom(l2, l1);
 373                                continue;
 374                        case CEXPR_INCOMP:
 375                                s[++sp] = mls_level_incomp(l2, l1);
 376                                continue;
 377                        default:
 378                                BUG();
 379                                return 0;
 380                        }
 381                        break;
 382                        default:
 383                                BUG();
 384                                return 0;
 385                        }
 386
 387                        switch (e->op) {
 388                        case CEXPR_EQ:
 389                                s[++sp] = (val1 == val2);
 390                                break;
 391                        case CEXPR_NEQ:
 392                                s[++sp] = (val1 != val2);
 393                                break;
 394                        default:
 395                                BUG();
 396                                return 0;
 397                        }
 398                        break;
 399                case CEXPR_NAMES:
 400                        if (sp == (CEXPR_MAXDEPTH-1))
 401                                return 0;
 402                        c = scontext;
 403                        if (e->attr & CEXPR_TARGET)
 404                                c = tcontext;
 405                        else if (e->attr & CEXPR_XTARGET) {
 406                                c = xcontext;
 407                                if (!c) {
 408                                        BUG();
 409                                        return 0;
 410                                }
 411                        }
 412                        if (e->attr & CEXPR_USER)
 413                                val1 = c->user;
 414                        else if (e->attr & CEXPR_ROLE)
 415                                val1 = c->role;
 416                        else if (e->attr & CEXPR_TYPE)
 417                                val1 = c->type;
 418                        else {
 419                                BUG();
 420                                return 0;
 421                        }
 422
 423                        switch (e->op) {
 424                        case CEXPR_EQ:
 425                                s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
 426                                break;
 427                        case CEXPR_NEQ:
 428                                s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
 429                                break;
 430                        default:
 431                                BUG();
 432                                return 0;
 433                        }
 434                        break;
 435                default:
 436                        BUG();
 437                        return 0;
 438                }
 439        }
 440
 441        BUG_ON(sp != 0);
 442        return s[0];
 443}
 444
 445/*
 446 * security_dump_masked_av - dumps masked permissions during
 447 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
 448 */
 449static int dump_masked_av_helper(void *k, void *d, void *args)
 450{
 451        struct perm_datum *pdatum = d;
 452        char **permission_names = args;
 453
 454        BUG_ON(pdatum->value < 1 || pdatum->value > 32);
 455
 456        permission_names[pdatum->value - 1] = (char *)k;
 457
 458        return 0;
 459}
 460
 461static void security_dump_masked_av(struct context *scontext,
 462                                    struct context *tcontext,
 463                                    u16 tclass,
 464                                    u32 permissions,
 465                                    const char *reason)
 466{
 467        struct common_datum *common_dat;
 468        struct class_datum *tclass_dat;
 469        struct audit_buffer *ab;
 470        char *tclass_name;
 471        char *scontext_name = NULL;
 472        char *tcontext_name = NULL;
 473        char *permission_names[32];
 474        int index;
 475        u32 length;
 476        bool need_comma = false;
 477
 478        if (!permissions)
 479                return;
 480
 481        tclass_name = sym_name(&policydb, SYM_CLASSES, tclass - 1);
 482        tclass_dat = policydb.class_val_to_struct[tclass - 1];
 483        common_dat = tclass_dat->comdatum;
 484
 485        /* init permission_names */
 486        if (common_dat &&
 487            hashtab_map(common_dat->permissions.table,
 488                        dump_masked_av_helper, permission_names) < 0)
 489                goto out;
 490
 491        if (hashtab_map(tclass_dat->permissions.table,
 492                        dump_masked_av_helper, permission_names) < 0)
 493                goto out;
 494
 495        /* get scontext/tcontext in text form */
 496        if (context_struct_to_string(scontext,
 497                                     &scontext_name, &length) < 0)
 498                goto out;
 499
 500        if (context_struct_to_string(tcontext,
 501                                     &tcontext_name, &length) < 0)
 502                goto out;
 503
 504        /* audit a message */
 505        ab = audit_log_start(current->audit_context,
 506                             GFP_ATOMIC, AUDIT_SELINUX_ERR);
 507        if (!ab)
 508                goto out;
 509
 510        audit_log_format(ab, "op=security_compute_av reason=%s "
 511                         "scontext=%s tcontext=%s tclass=%s perms=",
 512                         reason, scontext_name, tcontext_name, tclass_name);
 513
 514        for (index = 0; index < 32; index++) {
 515                u32 mask = (1 << index);
 516
 517                if ((mask & permissions) == 0)
 518                        continue;
 519
 520                audit_log_format(ab, "%s%s",
 521                                 need_comma ? "," : "",
 522                                 permission_names[index]
 523                                 ? permission_names[index] : "????");
 524                need_comma = true;
 525        }
 526        audit_log_end(ab);
 527out:
 528        /* release scontext/tcontext */
 529        kfree(tcontext_name);
 530        kfree(scontext_name);
 531
 532        return;
 533}
 534
 535/*
 536 * security_boundary_permission - drops violated permissions
 537 * on boundary constraint.
 538 */
 539static void type_attribute_bounds_av(struct context *scontext,
 540                                     struct context *tcontext,
 541                                     u16 tclass,
 542                                     struct av_decision *avd)
 543{
 544        struct context lo_scontext;
 545        struct context lo_tcontext;
 546        struct av_decision lo_avd;
 547        struct type_datum *source;
 548        struct type_datum *target;
 549        u32 masked = 0;
 550
 551        source = flex_array_get_ptr(policydb.type_val_to_struct_array,
 552                                    scontext->type - 1);
 553        BUG_ON(!source);
 554
 555        target = flex_array_get_ptr(policydb.type_val_to_struct_array,
 556                                    tcontext->type - 1);
 557        BUG_ON(!target);
 558
 559        if (source->bounds) {
 560                memset(&lo_avd, 0, sizeof(lo_avd));
 561
 562                memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
 563                lo_scontext.type = source->bounds;
 564
 565                context_struct_compute_av(&lo_scontext,
 566                                          tcontext,
 567                                          tclass,
 568                                          &lo_avd);
 569                if ((lo_avd.allowed & avd->allowed) == avd->allowed)
 570                        return;         /* no masked permission */
 571                masked = ~lo_avd.allowed & avd->allowed;
 572        }
 573
 574        if (target->bounds) {
 575                memset(&lo_avd, 0, sizeof(lo_avd));
 576
 577                memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
 578                lo_tcontext.type = target->bounds;
 579
 580                context_struct_compute_av(scontext,
 581                                          &lo_tcontext,
 582                                          tclass,
 583                                          &lo_avd);
 584                if ((lo_avd.allowed & avd->allowed) == avd->allowed)
 585                        return;         /* no masked permission */
 586                masked = ~lo_avd.allowed & avd->allowed;
 587        }
 588
 589        if (source->bounds && target->bounds) {
 590                memset(&lo_avd, 0, sizeof(lo_avd));
 591                /*
 592                 * lo_scontext and lo_tcontext are already
 593                 * set up.
 594                 */
 595
 596                context_struct_compute_av(&lo_scontext,
 597                                          &lo_tcontext,
 598                                          tclass,
 599                                          &lo_avd);
 600                if ((lo_avd.allowed & avd->allowed) == avd->allowed)
 601                        return;         /* no masked permission */
 602                masked = ~lo_avd.allowed & avd->allowed;
 603        }
 604
 605        if (masked) {
 606                /* mask violated permissions */
 607                avd->allowed &= ~masked;
 608
 609                /* audit masked permissions */
 610                security_dump_masked_av(scontext, tcontext,
 611                                        tclass, masked, "bounds");
 612        }
 613}
 614
 615/*
 616 * Compute access vectors based on a context structure pair for
 617 * the permissions in a particular class.
 618 */
 619static void context_struct_compute_av(struct context *scontext,
 620                                      struct context *tcontext,
 621                                      u16 tclass,
 622                                      struct av_decision *avd)
 623{
 624        struct constraint_node *constraint;
 625        struct role_allow *ra;
 626        struct avtab_key avkey;
 627        struct avtab_node *node;
 628        struct class_datum *tclass_datum;
 629        struct ebitmap *sattr, *tattr;
 630        struct ebitmap_node *snode, *tnode;
 631        unsigned int i, j;
 632
 633        avd->allowed = 0;
 634        avd->auditallow = 0;
 635        avd->auditdeny = 0xffffffff;
 636
 637        if (unlikely(!tclass || tclass > policydb.p_classes.nprim)) {
 638                if (printk_ratelimit())
 639                        printk(KERN_WARNING "SELinux:  Invalid class %hu\n", tclass);
 640                return;
 641        }
 642
 643        tclass_datum = policydb.class_val_to_struct[tclass - 1];
 644
 645        /*
 646         * If a specific type enforcement rule was defined for
 647         * this permission check, then use it.
 648         */
 649        avkey.target_class = tclass;
 650        avkey.specified = AVTAB_AV;
 651        sattr = flex_array_get(policydb.type_attr_map_array, scontext->type - 1);
 652        BUG_ON(!sattr);
 653        tattr = flex_array_get(policydb.type_attr_map_array, tcontext->type - 1);
 654        BUG_ON(!tattr);
 655        ebitmap_for_each_positive_bit(sattr, snode, i) {
 656                ebitmap_for_each_positive_bit(tattr, tnode, j) {
 657                        avkey.source_type = i + 1;
 658                        avkey.target_type = j + 1;
 659                        for (node = avtab_search_node(&policydb.te_avtab, &avkey);
 660                             node;
 661                             node = avtab_search_node_next(node, avkey.specified)) {
 662                                if (node->key.specified == AVTAB_ALLOWED)
 663                                        avd->allowed |= node->datum.data;
 664                                else if (node->key.specified == AVTAB_AUDITALLOW)
 665                                        avd->auditallow |= node->datum.data;
 666                                else if (node->key.specified == AVTAB_AUDITDENY)
 667                                        avd->auditdeny &= node->datum.data;
 668                        }
 669
 670                        /* Check conditional av table for additional permissions */
 671                        cond_compute_av(&policydb.te_cond_avtab, &avkey, avd);
 672
 673                }
 674        }
 675
 676        /*
 677         * Remove any permissions prohibited by a constraint (this includes
 678         * the MLS policy).
 679         */
 680        constraint = tclass_datum->constraints;
 681        while (constraint) {
 682                if ((constraint->permissions & (avd->allowed)) &&
 683                    !constraint_expr_eval(scontext, tcontext, NULL,
 684                                          constraint->expr)) {
 685                        avd->allowed &= ~(constraint->permissions);
 686                }
 687                constraint = constraint->next;
 688        }
 689
 690        /*
 691         * If checking process transition permission and the
 692         * role is changing, then check the (current_role, new_role)
 693         * pair.
 694         */
 695        if (tclass == policydb.process_class &&
 696            (avd->allowed & policydb.process_trans_perms) &&
 697            scontext->role != tcontext->role) {
 698                for (ra = policydb.role_allow; ra; ra = ra->next) {
 699                        if (scontext->role == ra->role &&
 700                            tcontext->role == ra->new_role)
 701                                break;
 702                }
 703                if (!ra)
 704                        avd->allowed &= ~policydb.process_trans_perms;
 705        }
 706
 707        /*
 708         * If the given source and target types have boundary
 709         * constraint, lazy checks have to mask any violated
 710         * permission and notice it to userspace via audit.
 711         */
 712        type_attribute_bounds_av(scontext, tcontext,
 713                                 tclass, avd);
 714}
 715
 716static int security_validtrans_handle_fail(struct context *ocontext,
 717                                           struct context *ncontext,
 718                                           struct context *tcontext,
 719                                           u16 tclass)
 720{
 721        char *o = NULL, *n = NULL, *t = NULL;
 722        u32 olen, nlen, tlen;
 723
 724        if (context_struct_to_string(ocontext, &o, &olen))
 725                goto out;
 726        if (context_struct_to_string(ncontext, &n, &nlen))
 727                goto out;
 728        if (context_struct_to_string(tcontext, &t, &tlen))
 729                goto out;
 730        audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
 731                  "security_validate_transition:  denied for"
 732                  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
 733                  o, n, t, sym_name(&policydb, SYM_CLASSES, tclass-1));
 734out:
 735        kfree(o);
 736        kfree(n);
 737        kfree(t);
 738
 739        if (!selinux_enforcing)
 740                return 0;
 741        return -EPERM;
 742}
 743
 744int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
 745                                 u16 orig_tclass)
 746{
 747        struct context *ocontext;
 748        struct context *ncontext;
 749        struct context *tcontext;
 750        struct class_datum *tclass_datum;
 751        struct constraint_node *constraint;
 752        u16 tclass;
 753        int rc = 0;
 754
 755        if (!ss_initialized)
 756                return 0;
 757
 758        read_lock(&policy_rwlock);
 759
 760        tclass = unmap_class(orig_tclass);
 761
 762        if (!tclass || tclass > policydb.p_classes.nprim) {
 763                printk(KERN_ERR "SELinux: %s:  unrecognized class %d\n",
 764                        __func__, tclass);
 765                rc = -EINVAL;
 766                goto out;
 767        }
 768        tclass_datum = policydb.class_val_to_struct[tclass - 1];
 769
 770        ocontext = sidtab_search(&sidtab, oldsid);
 771        if (!ocontext) {
 772                printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 773                        __func__, oldsid);
 774                rc = -EINVAL;
 775                goto out;
 776        }
 777
 778        ncontext = sidtab_search(&sidtab, newsid);
 779        if (!ncontext) {
 780                printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 781                        __func__, newsid);
 782                rc = -EINVAL;
 783                goto out;
 784        }
 785
 786        tcontext = sidtab_search(&sidtab, tasksid);
 787        if (!tcontext) {
 788                printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 789                        __func__, tasksid);
 790                rc = -EINVAL;
 791                goto out;
 792        }
 793
 794        constraint = tclass_datum->validatetrans;
 795        while (constraint) {
 796                if (!constraint_expr_eval(ocontext, ncontext, tcontext,
 797                                          constraint->expr)) {
 798                        rc = security_validtrans_handle_fail(ocontext, ncontext,
 799                                                             tcontext, tclass);
 800                        goto out;
 801                }
 802                constraint = constraint->next;
 803        }
 804
 805out:
 806        read_unlock(&policy_rwlock);
 807        return rc;
 808}
 809
 810/*
 811 * security_bounded_transition - check whether the given
 812 * transition is directed to bounded, or not.
 813 * It returns 0, if @newsid is bounded by @oldsid.
 814 * Otherwise, it returns error code.
 815 *
 816 * @oldsid : current security identifier
 817 * @newsid : destinated security identifier
 818 */
 819int security_bounded_transition(u32 old_sid, u32 new_sid)
 820{
 821        struct context *old_context, *new_context;
 822        struct type_datum *type;
 823        int index;
 824        int rc;
 825
 826        read_lock(&policy_rwlock);
 827
 828        rc = -EINVAL;
 829        old_context = sidtab_search(&sidtab, old_sid);
 830        if (!old_context) {
 831                printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
 832                       __func__, old_sid);
 833                goto out;
 834        }
 835
 836        rc = -EINVAL;
 837        new_context = sidtab_search(&sidtab, new_sid);
 838        if (!new_context) {
 839                printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
 840                       __func__, new_sid);
 841                goto out;
 842        }
 843
 844        rc = 0;
 845        /* type/domain unchanged */
 846        if (old_context->type == new_context->type)
 847                goto out;
 848
 849        index = new_context->type;
 850        while (true) {
 851                type = flex_array_get_ptr(policydb.type_val_to_struct_array,
 852                                          index - 1);
 853                BUG_ON(!type);
 854
 855                /* not bounded anymore */
 856                rc = -EPERM;
 857                if (!type->bounds)
 858                        break;
 859
 860                /* @newsid is bounded by @oldsid */
 861                rc = 0;
 862                if (type->bounds == old_context->type)
 863                        break;
 864
 865                index = type->bounds;
 866        }
 867
 868        if (rc) {
 869                char *old_name = NULL;
 870                char *new_name = NULL;
 871                u32 length;
 872
 873                if (!context_struct_to_string(old_context,
 874                                              &old_name, &length) &&
 875                    !context_struct_to_string(new_context,
 876                                              &new_name, &length)) {
 877                        audit_log(current->audit_context,
 878                                  GFP_ATOMIC, AUDIT_SELINUX_ERR,
 879                                  "op=security_bounded_transition "
 880                                  "result=denied "
 881                                  "oldcontext=%s newcontext=%s",
 882                                  old_name, new_name);
 883                }
 884                kfree(new_name);
 885                kfree(old_name);
 886        }
 887out:
 888        read_unlock(&policy_rwlock);
 889
 890        return rc;
 891}
 892
 893static void avd_init(struct av_decision *avd)
 894{
 895        avd->allowed = 0;
 896        avd->auditallow = 0;
 897        avd->auditdeny = 0xffffffff;
 898        avd->seqno = latest_granting;
 899        avd->flags = 0;
 900}
 901
 902
 903/**
 904 * security_compute_av - Compute access vector decisions.
 905 * @ssid: source security identifier
 906 * @tsid: target security identifier
 907 * @tclass: target security class
 908 * @avd: access vector decisions
 909 *
 910 * Compute a set of access vector decisions based on the
 911 * SID pair (@ssid, @tsid) for the permissions in @tclass.
 912 */
 913void security_compute_av(u32 ssid,
 914                         u32 tsid,
 915                         u16 orig_tclass,
 916                         struct av_decision *avd)
 917{
 918        u16 tclass;
 919        struct context *scontext = NULL, *tcontext = NULL;
 920
 921        read_lock(&policy_rwlock);
 922        avd_init(avd);
 923        if (!ss_initialized)
 924                goto allow;
 925
 926        scontext = sidtab_search(&sidtab, ssid);
 927        if (!scontext) {
 928                printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 929                       __func__, ssid);
 930                goto out;
 931        }
 932
 933        /* permissive domain? */
 934        if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
 935                avd->flags |= AVD_FLAGS_PERMISSIVE;
 936
 937        tcontext = sidtab_search(&sidtab, tsid);
 938        if (!tcontext) {
 939                printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 940                       __func__, tsid);
 941                goto out;
 942        }
 943
 944        tclass = unmap_class(orig_tclass);
 945        if (unlikely(orig_tclass && !tclass)) {
 946                if (policydb.allow_unknown)
 947                        goto allow;
 948                goto out;
 949        }
 950        context_struct_compute_av(scontext, tcontext, tclass, avd);
 951        map_decision(orig_tclass, avd, policydb.allow_unknown);
 952out:
 953        read_unlock(&policy_rwlock);
 954        return;
 955allow:
 956        avd->allowed = 0xffffffff;
 957        goto out;
 958}
 959
 960void security_compute_av_user(u32 ssid,
 961                              u32 tsid,
 962                              u16 tclass,
 963                              struct av_decision *avd)
 964{
 965        struct context *scontext = NULL, *tcontext = NULL;
 966
 967        read_lock(&policy_rwlock);
 968        avd_init(avd);
 969        if (!ss_initialized)
 970                goto allow;
 971
 972        scontext = sidtab_search(&sidtab, ssid);
 973        if (!scontext) {
 974                printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 975                       __func__, ssid);
 976                goto out;
 977        }
 978
 979        /* permissive domain? */
 980        if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
 981                avd->flags |= AVD_FLAGS_PERMISSIVE;
 982
 983        tcontext = sidtab_search(&sidtab, tsid);
 984        if (!tcontext) {
 985                printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 986                       __func__, tsid);
 987                goto out;
 988        }
 989
 990        if (unlikely(!tclass)) {
 991                if (policydb.allow_unknown)
 992                        goto allow;
 993                goto out;
 994        }
 995
 996        context_struct_compute_av(scontext, tcontext, tclass, avd);
 997 out:
 998        read_unlock(&policy_rwlock);
 999        return;
1000allow:
1001        avd->allowed = 0xffffffff;
1002        goto out;
1003}
1004
1005/*
1006 * Write the security context string representation of
1007 * the context structure `context' into a dynamically
1008 * allocated string of the correct size.  Set `*scontext'
1009 * to point to this string and set `*scontext_len' to
1010 * the length of the string.
1011 */
1012static int context_struct_to_string(struct context *context, char **scontext, u32 *scontext_len)
1013{
1014        char *scontextp;
1015
1016        if (scontext)
1017                *scontext = NULL;
1018        *scontext_len = 0;
1019
1020        if (context->len) {
1021                *scontext_len = context->len;
1022                if (scontext) {
1023                        *scontext = kstrdup(context->str, GFP_ATOMIC);
1024                        if (!(*scontext))
1025                                return -ENOMEM;
1026                }
1027                return 0;
1028        }
1029
1030        /* Compute the size of the context. */
1031        *scontext_len += strlen(sym_name(&policydb, SYM_USERS, context->user - 1)) + 1;
1032        *scontext_len += strlen(sym_name(&policydb, SYM_ROLES, context->role - 1)) + 1;
1033        *scontext_len += strlen(sym_name(&policydb, SYM_TYPES, context->type - 1)) + 1;
1034        *scontext_len += mls_compute_context_len(context);
1035
1036        if (!scontext)
1037                return 0;
1038
1039        /* Allocate space for the context; caller must free this space. */
1040        scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1041        if (!scontextp)
1042                return -ENOMEM;
1043        *scontext = scontextp;
1044
1045        /*
1046         * Copy the user name, role name and type name into the context.
1047         */
1048        sprintf(scontextp, "%s:%s:%s",
1049                sym_name(&policydb, SYM_USERS, context->user - 1),
1050                sym_name(&policydb, SYM_ROLES, context->role - 1),
1051                sym_name(&policydb, SYM_TYPES, context->type - 1));
1052        scontextp += strlen(sym_name(&policydb, SYM_USERS, context->user - 1)) +
1053                     1 + strlen(sym_name(&policydb, SYM_ROLES, context->role - 1)) +
1054                     1 + strlen(sym_name(&policydb, SYM_TYPES, context->type - 1));
1055
1056        mls_sid_to_context(context, &scontextp);
1057
1058        *scontextp = 0;
1059
1060        return 0;
1061}
1062
1063#include "initial_sid_to_string.h"
1064
1065const char *security_get_initial_sid_context(u32 sid)
1066{
1067        if (unlikely(sid > SECINITSID_NUM))
1068                return NULL;
1069        return initial_sid_to_string[sid];
1070}
1071
1072static int security_sid_to_context_core(u32 sid, char **scontext,
1073                                        u32 *scontext_len, int force)
1074{
1075        struct context *context;
1076        int rc = 0;
1077
1078        if (scontext)
1079                *scontext = NULL;
1080        *scontext_len  = 0;
1081
1082        if (!ss_initialized) {
1083                if (sid <= SECINITSID_NUM) {
1084                        char *scontextp;
1085
1086                        *scontext_len = strlen(initial_sid_to_string[sid]) + 1;
1087                        if (!scontext)
1088                                goto out;
1089                        scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1090                        if (!scontextp) {
1091                                rc = -ENOMEM;
1092                                goto out;
1093                        }
1094                        strcpy(scontextp, initial_sid_to_string[sid]);
1095                        *scontext = scontextp;
1096                        goto out;
1097                }
1098                printk(KERN_ERR "SELinux: %s:  called before initial "
1099                       "load_policy on unknown SID %d\n", __func__, sid);
1100                rc = -EINVAL;
1101                goto out;
1102        }
1103        read_lock(&policy_rwlock);
1104        if (force)
1105                context = sidtab_search_force(&sidtab, sid);
1106        else
1107                context = sidtab_search(&sidtab, sid);
1108        if (!context) {
1109                printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1110                        __func__, sid);
1111                rc = -EINVAL;
1112                goto out_unlock;
1113        }
1114        rc = context_struct_to_string(context, scontext, scontext_len);
1115out_unlock:
1116        read_unlock(&policy_rwlock);
1117out:
1118        return rc;
1119
1120}
1121
1122/**
1123 * security_sid_to_context - Obtain a context for a given SID.
1124 * @sid: security identifier, SID
1125 * @scontext: security context
1126 * @scontext_len: length in bytes
1127 *
1128 * Write the string representation of the context associated with @sid
1129 * into a dynamically allocated string of the correct size.  Set @scontext
1130 * to point to this string and set @scontext_len to the length of the string.
1131 */
1132int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
1133{
1134        return security_sid_to_context_core(sid, scontext, scontext_len, 0);
1135}
1136
1137int security_sid_to_context_force(u32 sid, char **scontext, u32 *scontext_len)
1138{
1139        return security_sid_to_context_core(sid, scontext, scontext_len, 1);
1140}
1141
1142/*
1143 * Caveat:  Mutates scontext.
1144 */
1145static int string_to_context_struct(struct policydb *pol,
1146                                    struct sidtab *sidtabp,
1147                                    char *scontext,
1148                                    u32 scontext_len,
1149                                    struct context *ctx,
1150                                    u32 def_sid)
1151{
1152        struct role_datum *role;
1153        struct type_datum *typdatum;
1154        struct user_datum *usrdatum;
1155        char *scontextp, *p, oldc;
1156        int rc = 0;
1157
1158        context_init(ctx);
1159
1160        /* Parse the security context. */
1161
1162        rc = -EINVAL;
1163        scontextp = (char *) scontext;
1164
1165        /* Extract the user. */
1166        p = scontextp;
1167        while (*p && *p != ':')
1168                p++;
1169
1170        if (*p == 0)
1171                goto out;
1172
1173        *p++ = 0;
1174
1175        usrdatum = hashtab_search(pol->p_users.table, scontextp);
1176        if (!usrdatum)
1177                goto out;
1178
1179        ctx->user = usrdatum->value;
1180
1181        /* Extract role. */
1182        scontextp = p;
1183        while (*p && *p != ':')
1184                p++;
1185
1186        if (*p == 0)
1187                goto out;
1188
1189        *p++ = 0;
1190
1191        role = hashtab_search(pol->p_roles.table, scontextp);
1192        if (!role)
1193                goto out;
1194        ctx->role = role->value;
1195
1196        /* Extract type. */
1197        scontextp = p;
1198        while (*p && *p != ':')
1199                p++;
1200        oldc = *p;
1201        *p++ = 0;
1202
1203        typdatum = hashtab_search(pol->p_types.table, scontextp);
1204        if (!typdatum || typdatum->attribute)
1205                goto out;
1206
1207        ctx->type = typdatum->value;
1208
1209        rc = mls_context_to_sid(pol, oldc, &p, ctx, sidtabp, def_sid);
1210        if (rc)
1211                goto out;
1212
1213        rc = -EINVAL;
1214        if ((p - scontext) < scontext_len)
1215                goto out;
1216
1217        /* Check the validity of the new context. */
1218        if (!policydb_context_isvalid(pol, ctx))
1219                goto out;
1220        rc = 0;
1221out:
1222        if (rc)
1223                context_destroy(ctx);
1224        return rc;
1225}
1226
1227static int security_context_to_sid_core(const char *scontext, u32 scontext_len,
1228                                        u32 *sid, u32 def_sid, gfp_t gfp_flags,
1229                                        int force)
1230{
1231        char *scontext2, *str = NULL;
1232        struct context context;
1233        int rc = 0;
1234
1235        /* An empty security context is never valid. */
1236        if (!scontext_len)
1237                return -EINVAL;
1238
1239        if (!ss_initialized) {
1240                int i;
1241
1242                for (i = 1; i < SECINITSID_NUM; i++) {
1243                        if (!strcmp(initial_sid_to_string[i], scontext)) {
1244                                *sid = i;
1245                                return 0;
1246                        }
1247                }
1248                *sid = SECINITSID_KERNEL;
1249                return 0;
1250        }
1251        *sid = SECSID_NULL;
1252
1253        /* Copy the string so that we can modify the copy as we parse it. */
1254        scontext2 = kmalloc(scontext_len + 1, gfp_flags);
1255        if (!scontext2)
1256                return -ENOMEM;
1257        memcpy(scontext2, scontext, scontext_len);
1258        scontext2[scontext_len] = 0;
1259
1260        if (force) {
1261                /* Save another copy for storing in uninterpreted form */
1262                rc = -ENOMEM;
1263                str = kstrdup(scontext2, gfp_flags);
1264                if (!str)
1265                        goto out;
1266        }
1267
1268        read_lock(&policy_rwlock);
1269        rc = string_to_context_struct(&policydb, &sidtab, scontext2,
1270                                      scontext_len, &context, def_sid);
1271        if (rc == -EINVAL && force) {
1272                context.str = str;
1273                context.len = scontext_len;
1274                str = NULL;
1275        } else if (rc)
1276                goto out_unlock;
1277        rc = sidtab_context_to_sid(&sidtab, &context, sid);
1278        context_destroy(&context);
1279out_unlock:
1280        read_unlock(&policy_rwlock);
1281out:
1282        kfree(scontext2);
1283        kfree(str);
1284        return rc;
1285}
1286
1287/**
1288 * security_context_to_sid - Obtain a SID for a given security context.
1289 * @scontext: security context
1290 * @scontext_len: length in bytes
1291 * @sid: security identifier, SID
1292 * @gfp: context for the allocation
1293 *
1294 * Obtains a SID associated with the security context that
1295 * has the string representation specified by @scontext.
1296 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1297 * memory is available, or 0 on success.
1298 */
1299int security_context_to_sid(const char *scontext, u32 scontext_len, u32 *sid,
1300                            gfp_t gfp)
1301{
1302        return security_context_to_sid_core(scontext, scontext_len,
1303                                            sid, SECSID_NULL, gfp, 0);
1304}
1305
1306/**
1307 * security_context_to_sid_default - Obtain a SID for a given security context,
1308 * falling back to specified default if needed.
1309 *
1310 * @scontext: security context
1311 * @scontext_len: length in bytes
1312 * @sid: security identifier, SID
1313 * @def_sid: default SID to assign on error
1314 *
1315 * Obtains a SID associated with the security context that
1316 * has the string representation specified by @scontext.
1317 * The default SID is passed to the MLS layer to be used to allow
1318 * kernel labeling of the MLS field if the MLS field is not present
1319 * (for upgrading to MLS without full relabel).
1320 * Implicitly forces adding of the context even if it cannot be mapped yet.
1321 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1322 * memory is available, or 0 on success.
1323 */
1324int security_context_to_sid_default(const char *scontext, u32 scontext_len,
1325                                    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1326{
1327        return security_context_to_sid_core(scontext, scontext_len,
1328                                            sid, def_sid, gfp_flags, 1);
1329}
1330
1331int security_context_to_sid_force(const char *scontext, u32 scontext_len,
1332                                  u32 *sid)
1333{
1334        return security_context_to_sid_core(scontext, scontext_len,
1335                                            sid, SECSID_NULL, GFP_KERNEL, 1);
1336}
1337
1338static int compute_sid_handle_invalid_context(
1339        struct context *scontext,
1340        struct context *tcontext,
1341        u16 tclass,
1342        struct context *newcontext)
1343{
1344        char *s = NULL, *t = NULL, *n = NULL;
1345        u32 slen, tlen, nlen;
1346
1347        if (context_struct_to_string(scontext, &s, &slen))
1348                goto out;
1349        if (context_struct_to_string(tcontext, &t, &tlen))
1350                goto out;
1351        if (context_struct_to_string(newcontext, &n, &nlen))
1352                goto out;
1353        audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
1354                  "security_compute_sid:  invalid context %s"
1355                  " for scontext=%s"
1356                  " tcontext=%s"
1357                  " tclass=%s",
1358                  n, s, t, sym_name(&policydb, SYM_CLASSES, tclass-1));
1359out:
1360        kfree(s);
1361        kfree(t);
1362        kfree(n);
1363        if (!selinux_enforcing)
1364                return 0;
1365        return -EACCES;
1366}
1367
1368static void filename_compute_type(struct policydb *p, struct context *newcontext,
1369                                  u32 stype, u32 ttype, u16 tclass,
1370                                  const char *objname)
1371{
1372        struct filename_trans ft;
1373        struct filename_trans_datum *otype;
1374
1375        /*
1376         * Most filename trans rules are going to live in specific directories
1377         * like /dev or /var/run.  This bitmap will quickly skip rule searches
1378         * if the ttype does not contain any rules.
1379         */
1380        if (!ebitmap_get_bit(&p->filename_trans_ttypes, ttype))
1381                return;
1382
1383        ft.stype = stype;
1384        ft.ttype = ttype;
1385        ft.tclass = tclass;
1386        ft.name = objname;
1387
1388        otype = hashtab_search(p->filename_trans, &ft);
1389        if (otype)
1390                newcontext->type = otype->otype;
1391}
1392
1393static int security_compute_sid(u32 ssid,
1394                                u32 tsid,
1395                                u16 orig_tclass,
1396                                u32 specified,
1397                                const char *objname,
1398                                u32 *out_sid,
1399                                bool kern)
1400{
1401        struct class_datum *cladatum = NULL;
1402        struct context *scontext = NULL, *tcontext = NULL, newcontext;
1403        struct role_trans *roletr = NULL;
1404        struct avtab_key avkey;
1405        struct avtab_datum *avdatum;
1406        struct avtab_node *node;
1407        u16 tclass;
1408        int rc = 0;
1409        bool sock;
1410
1411        if (!ss_initialized) {
1412                switch (orig_tclass) {
1413                case SECCLASS_PROCESS: /* kernel value */
1414                        *out_sid = ssid;
1415                        break;
1416                default:
1417                        *out_sid = tsid;
1418                        break;
1419                }
1420                goto out;
1421        }
1422
1423        context_init(&newcontext);
1424
1425        read_lock(&policy_rwlock);
1426
1427        if (kern) {
1428                tclass = unmap_class(orig_tclass);
1429                sock = security_is_socket_class(orig_tclass);
1430        } else {
1431                tclass = orig_tclass;
1432                sock = security_is_socket_class(map_class(tclass));
1433        }
1434
1435        scontext = sidtab_search(&sidtab, ssid);
1436        if (!scontext) {
1437                printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1438                       __func__, ssid);
1439                rc = -EINVAL;
1440                goto out_unlock;
1441        }
1442        tcontext = sidtab_search(&sidtab, tsid);
1443        if (!tcontext) {
1444                printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1445                       __func__, tsid);
1446                rc = -EINVAL;
1447                goto out_unlock;
1448        }
1449
1450        if (tclass && tclass <= policydb.p_classes.nprim)
1451                cladatum = policydb.class_val_to_struct[tclass - 1];
1452
1453        /* Set the user identity. */
1454        switch (specified) {
1455        case AVTAB_TRANSITION:
1456        case AVTAB_CHANGE:
1457                if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1458                        newcontext.user = tcontext->user;
1459                } else {
1460                        /* notice this gets both DEFAULT_SOURCE and unset */
1461                        /* Use the process user identity. */
1462                        newcontext.user = scontext->user;
1463                }
1464                break;
1465        case AVTAB_MEMBER:
1466                /* Use the related object owner. */
1467                newcontext.user = tcontext->user;
1468                break;
1469        }
1470
1471        /* Set the role to default values. */
1472        if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1473                newcontext.role = scontext->role;
1474        } else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1475                newcontext.role = tcontext->role;
1476        } else {
1477                if ((tclass == policydb.process_class) || (sock == true))
1478                        newcontext.role = scontext->role;
1479                else
1480                        newcontext.role = OBJECT_R_VAL;
1481        }
1482
1483        /* Set the type to default values. */
1484        if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1485                newcontext.type = scontext->type;
1486        } else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1487                newcontext.type = tcontext->type;
1488        } else {
1489                if ((tclass == policydb.process_class) || (sock == true)) {
1490                        /* Use the type of process. */
1491                        newcontext.type = scontext->type;
1492                } else {
1493                        /* Use the type of the related object. */
1494                        newcontext.type = tcontext->type;
1495                }
1496        }
1497
1498        /* Look for a type transition/member/change rule. */
1499        avkey.source_type = scontext->type;
1500        avkey.target_type = tcontext->type;
1501        avkey.target_class = tclass;
1502        avkey.specified = specified;
1503        avdatum = avtab_search(&policydb.te_avtab, &avkey);
1504
1505        /* If no permanent rule, also check for enabled conditional rules */
1506        if (!avdatum) {
1507                node = avtab_search_node(&policydb.te_cond_avtab, &avkey);
1508                for (; node; node = avtab_search_node_next(node, specified)) {
1509                        if (node->key.specified & AVTAB_ENABLED) {
1510                                avdatum = &node->datum;
1511                                break;
1512                        }
1513                }
1514        }
1515
1516        if (avdatum) {
1517                /* Use the type from the type transition/member/change rule. */
1518                newcontext.type = avdatum->data;
1519        }
1520
1521        /* if we have a objname this is a file trans check so check those rules */
1522        if (objname)
1523                filename_compute_type(&policydb, &newcontext, scontext->type,
1524                                      tcontext->type, tclass, objname);
1525
1526        /* Check for class-specific changes. */
1527        if (specified & AVTAB_TRANSITION) {
1528                /* Look for a role transition rule. */
1529                for (roletr = policydb.role_tr; roletr; roletr = roletr->next) {
1530                        if ((roletr->role == scontext->role) &&
1531                            (roletr->type == tcontext->type) &&
1532                            (roletr->tclass == tclass)) {
1533                                /* Use the role transition rule. */
1534                                newcontext.role = roletr->new_role;
1535                                break;
1536                        }
1537                }
1538        }
1539
1540        /* Set the MLS attributes.
1541           This is done last because it may allocate memory. */
1542        rc = mls_compute_sid(scontext, tcontext, tclass, specified,
1543                             &newcontext, sock);
1544        if (rc)
1545                goto out_unlock;
1546
1547        /* Check the validity of the context. */
1548        if (!policydb_context_isvalid(&policydb, &newcontext)) {
1549                rc = compute_sid_handle_invalid_context(scontext,
1550                                                        tcontext,
1551                                                        tclass,
1552                                                        &newcontext);
1553                if (rc)
1554                        goto out_unlock;
1555        }
1556        /* Obtain the sid for the context. */
1557        rc = sidtab_context_to_sid(&sidtab, &newcontext, out_sid);
1558out_unlock:
1559        read_unlock(&policy_rwlock);
1560        context_destroy(&newcontext);
1561out:
1562        return rc;
1563}
1564
1565/**
1566 * security_transition_sid - Compute the SID for a new subject/object.
1567 * @ssid: source security identifier
1568 * @tsid: target security identifier
1569 * @tclass: target security class
1570 * @out_sid: security identifier for new subject/object
1571 *
1572 * Compute a SID to use for labeling a new subject or object in the
1573 * class @tclass based on a SID pair (@ssid, @tsid).
1574 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1575 * if insufficient memory is available, or %0 if the new SID was
1576 * computed successfully.
1577 */
1578int security_transition_sid(u32 ssid, u32 tsid, u16 tclass,
1579                            const struct qstr *qstr, u32 *out_sid)
1580{
1581        return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
1582                                    qstr ? qstr->name : NULL, out_sid, true);
1583}
1584
1585int security_transition_sid_user(u32 ssid, u32 tsid, u16 tclass,
1586                                 const char *objname, u32 *out_sid)
1587{
1588        return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
1589                                    objname, out_sid, false);
1590}
1591
1592/**
1593 * security_member_sid - Compute the SID for member selection.
1594 * @ssid: source security identifier
1595 * @tsid: target security identifier
1596 * @tclass: target security class
1597 * @out_sid: security identifier for selected member
1598 *
1599 * Compute a SID to use when selecting a member of a polyinstantiated
1600 * object of class @tclass based on a SID pair (@ssid, @tsid).
1601 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1602 * if insufficient memory is available, or %0 if the SID was
1603 * computed successfully.
1604 */
1605int security_member_sid(u32 ssid,
1606                        u32 tsid,
1607                        u16 tclass,
1608                        u32 *out_sid)
1609{
1610        return security_compute_sid(ssid, tsid, tclass, AVTAB_MEMBER, NULL,
1611                                    out_sid, false);
1612}
1613
1614/**
1615 * security_change_sid - Compute the SID for object relabeling.
1616 * @ssid: source security identifier
1617 * @tsid: target security identifier
1618 * @tclass: target security class
1619 * @out_sid: security identifier for selected member
1620 *
1621 * Compute a SID to use for relabeling an object of class @tclass
1622 * based on a SID pair (@ssid, @tsid).
1623 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1624 * if insufficient memory is available, or %0 if the SID was
1625 * computed successfully.
1626 */
1627int security_change_sid(u32 ssid,
1628                        u32 tsid,
1629                        u16 tclass,
1630                        u32 *out_sid)
1631{
1632        return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1633                                    out_sid, false);
1634}
1635
1636/* Clone the SID into the new SID table. */
1637static int clone_sid(u32 sid,
1638                     struct context *context,
1639                     void *arg)
1640{
1641        struct sidtab *s = arg;
1642
1643        if (sid > SECINITSID_NUM)
1644                return sidtab_insert(s, sid, context);
1645        else
1646                return 0;
1647}
1648
1649static inline int convert_context_handle_invalid_context(struct context *context)
1650{
1651        char *s;
1652        u32 len;
1653
1654        if (selinux_enforcing)
1655                return -EINVAL;
1656
1657        if (!context_struct_to_string(context, &s, &len)) {
1658                printk(KERN_WARNING "SELinux:  Context %s would be invalid if enforcing\n", s);
1659                kfree(s);
1660        }
1661        return 0;
1662}
1663
1664struct convert_context_args {
1665        struct policydb *oldp;
1666        struct policydb *newp;
1667};
1668
1669/*
1670 * Convert the values in the security context
1671 * structure `c' from the values specified
1672 * in the policy `p->oldp' to the values specified
1673 * in the policy `p->newp'.  Verify that the
1674 * context is valid under the new policy.
1675 */
1676static int convert_context(u32 key,
1677                           struct context *c,
1678                           void *p)
1679{
1680        struct convert_context_args *args;
1681        struct context oldc;
1682        struct ocontext *oc;
1683        struct mls_range *range;
1684        struct role_datum *role;
1685        struct type_datum *typdatum;
1686        struct user_datum *usrdatum;
1687        char *s;
1688        u32 len;
1689        int rc = 0;
1690
1691        if (key <= SECINITSID_NUM)
1692                goto out;
1693
1694        args = p;
1695
1696        if (c->str) {
1697                struct context ctx;
1698
1699                rc = -ENOMEM;
1700                s = kstrdup(c->str, GFP_KERNEL);
1701                if (!s)
1702                        goto out;
1703
1704                rc = string_to_context_struct(args->newp, NULL, s,
1705                                              c->len, &ctx, SECSID_NULL);
1706                kfree(s);
1707                if (!rc) {
1708                        printk(KERN_INFO "SELinux:  Context %s became valid (mapped).\n",
1709                               c->str);
1710                        /* Replace string with mapped representation. */
1711                        kfree(c->str);
1712                        memcpy(c, &ctx, sizeof(*c));
1713                        goto out;
1714                } else if (rc == -EINVAL) {
1715                        /* Retain string representation for later mapping. */
1716                        rc = 0;
1717                        goto out;
1718                } else {
1719                        /* Other error condition, e.g. ENOMEM. */
1720                        printk(KERN_ERR "SELinux:   Unable to map context %s, rc = %d.\n",
1721                               c->str, -rc);
1722                        goto out;
1723                }
1724        }
1725
1726        rc = context_cpy(&oldc, c);
1727        if (rc)
1728                goto out;
1729
1730        /* Convert the user. */
1731        rc = -EINVAL;
1732        usrdatum = hashtab_search(args->newp->p_users.table,
1733                                  sym_name(args->oldp, SYM_USERS, c->user - 1));
1734        if (!usrdatum)
1735                goto bad;
1736        c->user = usrdatum->value;
1737
1738        /* Convert the role. */
1739        rc = -EINVAL;
1740        role = hashtab_search(args->newp->p_roles.table,
1741                              sym_name(args->oldp, SYM_ROLES, c->role - 1));
1742        if (!role)
1743                goto bad;
1744        c->role = role->value;
1745
1746        /* Convert the type. */
1747        rc = -EINVAL;
1748        typdatum = hashtab_search(args->newp->p_types.table,
1749                                  sym_name(args->oldp, SYM_TYPES, c->type - 1));
1750        if (!typdatum)
1751                goto bad;
1752        c->type = typdatum->value;
1753
1754        /* Convert the MLS fields if dealing with MLS policies */
1755        if (args->oldp->mls_enabled && args->newp->mls_enabled) {
1756                rc = mls_convert_context(args->oldp, args->newp, c);
1757                if (rc)
1758                        goto bad;
1759        } else if (args->oldp->mls_enabled && !args->newp->mls_enabled) {
1760                /*
1761                 * Switching between MLS and non-MLS policy:
1762                 * free any storage used by the MLS fields in the
1763                 * context for all existing entries in the sidtab.
1764                 */
1765                mls_context_destroy(c);
1766        } else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
1767                /*
1768                 * Switching between non-MLS and MLS policy:
1769                 * ensure that the MLS fields of the context for all
1770                 * existing entries in the sidtab are filled in with a
1771                 * suitable default value, likely taken from one of the
1772                 * initial SIDs.
1773                 */
1774                oc = args->newp->ocontexts[OCON_ISID];
1775                while (oc && oc->sid[0] != SECINITSID_UNLABELED)
1776                        oc = oc->next;
1777                rc = -EINVAL;
1778                if (!oc) {
1779                        printk(KERN_ERR "SELinux:  unable to look up"
1780                                " the initial SIDs list\n");
1781                        goto bad;
1782                }
1783                range = &oc->context[0].range;
1784                rc = mls_range_set(c, range);
1785                if (rc)
1786                        goto bad;
1787        }
1788
1789        /* Check the validity of the new context. */
1790        if (!policydb_context_isvalid(args->newp, c)) {
1791                rc = convert_context_handle_invalid_context(&oldc);
1792                if (rc)
1793                        goto bad;
1794        }
1795
1796        context_destroy(&oldc);
1797
1798        rc = 0;
1799out:
1800        return rc;
1801bad:
1802        /* Map old representation to string and save it. */
1803        rc = context_struct_to_string(&oldc, &s, &len);
1804        if (rc)
1805                return rc;
1806        context_destroy(&oldc);
1807        context_destroy(c);
1808        c->str = s;
1809        c->len = len;
1810        printk(KERN_INFO "SELinux:  Context %s became invalid (unmapped).\n",
1811               c->str);
1812        rc = 0;
1813        goto out;
1814}
1815
1816static void security_load_policycaps(void)
1817{
1818        selinux_policycap_netpeer = ebitmap_get_bit(&policydb.policycaps,
1819                                                  POLICYDB_CAPABILITY_NETPEER);
1820        selinux_policycap_openperm = ebitmap_get_bit(&policydb.policycaps,
1821                                                  POLICYDB_CAPABILITY_OPENPERM);
1822        selinux_policycap_alwaysnetwork = ebitmap_get_bit(&policydb.policycaps,
1823                                                  POLICYDB_CAPABILITY_ALWAYSNETWORK);
1824}
1825
1826static int security_preserve_bools(struct policydb *p);
1827
1828/**
1829 * security_load_policy - Load a security policy configuration.
1830 * @data: binary policy data
1831 * @len: length of data in bytes
1832 *
1833 * Load a new set of security policy configuration data,
1834 * validate it and convert the SID table as necessary.
1835 * This function will flush the access vector cache after
1836 * loading the new policy.
1837 */
1838int security_load_policy(void *data, size_t len)
1839{
1840        struct policydb *oldpolicydb, *newpolicydb;
1841        struct sidtab oldsidtab, newsidtab;
1842        struct selinux_mapping *oldmap, *map = NULL;
1843        struct convert_context_args args;
1844        u32 seqno;
1845        u16 map_size;
1846        int rc = 0;
1847        struct policy_file file = { data, len }, *fp = &file;
1848
1849        oldpolicydb = kzalloc(2 * sizeof(*oldpolicydb), GFP_KERNEL);
1850        if (!oldpolicydb) {
1851                rc = -ENOMEM;
1852                goto out;
1853        }
1854        newpolicydb = oldpolicydb + 1;
1855
1856        if (!ss_initialized) {
1857                avtab_cache_init();
1858                rc = policydb_read(&policydb, fp);
1859                if (rc) {
1860                        avtab_cache_destroy();
1861                        goto out;
1862                }
1863
1864                policydb.len = len;
1865                rc = selinux_set_mapping(&policydb, secclass_map,
1866                                         &current_mapping,
1867                                         &current_mapping_size);
1868                if (rc) {
1869                        policydb_destroy(&policydb);
1870                        avtab_cache_destroy();
1871                        goto out;
1872                }
1873
1874                rc = policydb_load_isids(&policydb, &sidtab);
1875                if (rc) {
1876                        policydb_destroy(&policydb);
1877                        avtab_cache_destroy();
1878                        goto out;
1879                }
1880
1881                security_load_policycaps();
1882                ss_initialized = 1;
1883                seqno = ++latest_granting;
1884                selinux_complete_init();
1885                avc_ss_reset(seqno);
1886                selnl_notify_policyload(seqno);
1887                selinux_status_update_policyload(seqno);
1888                selinux_netlbl_cache_invalidate();
1889                selinux_xfrm_notify_policyload();
1890                goto out;
1891        }
1892
1893#if 0
1894        sidtab_hash_eval(&sidtab, "sids");
1895#endif
1896
1897        rc = policydb_read(newpolicydb, fp);
1898        if (rc)
1899                goto out;
1900
1901        newpolicydb->len = len;
1902        /* If switching between different policy types, log MLS status */
1903        if (policydb.mls_enabled && !newpolicydb->mls_enabled)
1904                printk(KERN_INFO "SELinux: Disabling MLS support...\n");
1905        else if (!policydb.mls_enabled && newpolicydb->mls_enabled)
1906                printk(KERN_INFO "SELinux: Enabling MLS support...\n");
1907
1908        rc = policydb_load_isids(newpolicydb, &newsidtab);
1909        if (rc) {
1910                printk(KERN_ERR "SELinux:  unable to load the initial SIDs\n");
1911                policydb_destroy(newpolicydb);
1912                goto out;
1913        }
1914
1915        rc = selinux_set_mapping(newpolicydb, secclass_map, &map, &map_size);
1916        if (rc)
1917                goto err;
1918
1919        rc = security_preserve_bools(newpolicydb);
1920        if (rc) {
1921                printk(KERN_ERR "SELinux:  unable to preserve booleans\n");
1922                goto err;
1923        }
1924
1925        /* Clone the SID table. */
1926        sidtab_shutdown(&sidtab);
1927
1928        rc = sidtab_map(&sidtab, clone_sid, &newsidtab);
1929        if (rc)
1930                goto err;
1931
1932        /*
1933         * Convert the internal representations of contexts
1934         * in the new SID table.
1935         */
1936        args.oldp = &policydb;
1937        args.newp = newpolicydb;
1938        rc = sidtab_map(&newsidtab, convert_context, &args);
1939        if (rc) {
1940                printk(KERN_ERR "SELinux:  unable to convert the internal"
1941                        " representation of contexts in the new SID"
1942                        " table\n");
1943                goto err;
1944        }
1945
1946        /* Save the old policydb and SID table to free later. */
1947        memcpy(oldpolicydb, &policydb, sizeof(policydb));
1948        sidtab_set(&oldsidtab, &sidtab);
1949
1950        /* Install the new policydb and SID table. */
1951        write_lock_irq(&policy_rwlock);
1952        memcpy(&policydb, newpolicydb, sizeof(policydb));
1953        sidtab_set(&sidtab, &newsidtab);
1954        security_load_policycaps();
1955        oldmap = current_mapping;
1956        current_mapping = map;
1957        current_mapping_size = map_size;
1958        seqno = ++latest_granting;
1959        write_unlock_irq(&policy_rwlock);
1960
1961        /* Free the old policydb and SID table. */
1962        policydb_destroy(oldpolicydb);
1963        sidtab_destroy(&oldsidtab);
1964        kfree(oldmap);
1965
1966        avc_ss_reset(seqno);
1967        selnl_notify_policyload(seqno);
1968        selinux_status_update_policyload(seqno);
1969        selinux_netlbl_cache_invalidate();
1970        selinux_xfrm_notify_policyload();
1971
1972        rc = 0;
1973        goto out;
1974
1975err:
1976        kfree(map);
1977        sidtab_destroy(&newsidtab);
1978        policydb_destroy(newpolicydb);
1979
1980out:
1981        kfree(oldpolicydb);
1982        return rc;
1983}
1984
1985size_t security_policydb_len(void)
1986{
1987        size_t len;
1988
1989        read_lock(&policy_rwlock);
1990        len = policydb.len;
1991        read_unlock(&policy_rwlock);
1992
1993        return len;
1994}
1995
1996/**
1997 * security_port_sid - Obtain the SID for a port.
1998 * @protocol: protocol number
1999 * @port: port number
2000 * @out_sid: security identifier
2001 */
2002int security_port_sid(u8 protocol, u16 port, u32 *out_sid)
2003{
2004        struct ocontext *c;
2005        int rc = 0;
2006
2007        read_lock(&policy_rwlock);
2008
2009        c = policydb.ocontexts[OCON_PORT];
2010        while (c) {
2011                if (c->u.port.protocol == protocol &&
2012                    c->u.port.low_port <= port &&
2013                    c->u.port.high_port >= port)
2014                        break;
2015                c = c->next;
2016        }
2017
2018        if (c) {
2019                if (!c->sid[0]) {
2020                        rc = sidtab_context_to_sid(&sidtab,
2021                                                   &c->context[0],
2022                                                   &c->sid[0]);
2023                        if (rc)
2024                                goto out;
2025                }
2026                *out_sid = c->sid[0];
2027        } else {
2028                *out_sid = SECINITSID_PORT;
2029        }
2030
2031out:
2032        read_unlock(&policy_rwlock);
2033        return rc;
2034}
2035
2036/**
2037 * security_netif_sid - Obtain the SID for a network interface.
2038 * @name: interface name
2039 * @if_sid: interface SID
2040 */
2041int security_netif_sid(char *name, u32 *if_sid)
2042{
2043        int rc = 0;
2044        struct ocontext *c;
2045
2046        read_lock(&policy_rwlock);
2047
2048        c = policydb.ocontexts[OCON_NETIF];
2049        while (c) {
2050                if (strcmp(name, c->u.name) == 0)
2051                        break;
2052                c = c->next;
2053        }
2054
2055        if (c) {
2056                if (!c->sid[0] || !c->sid[1]) {
2057                        rc = sidtab_context_to_sid(&sidtab,
2058                                                  &c->context[0],
2059                                                  &c->sid[0]);
2060                        if (rc)
2061                                goto out;
2062                        rc = sidtab_context_to_sid(&sidtab,
2063                                                   &c->context[1],
2064                                                   &c->sid[1]);
2065                        if (rc)
2066                                goto out;
2067                }
2068                *if_sid = c->sid[0];
2069        } else
2070                *if_sid = SECINITSID_NETIF;
2071
2072out:
2073        read_unlock(&policy_rwlock);
2074        return rc;
2075}
2076
2077static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2078{
2079        int i, fail = 0;
2080
2081        for (i = 0; i < 4; i++)
2082                if (addr[i] != (input[i] & mask[i])) {
2083                        fail = 1;
2084                        break;
2085                }
2086
2087        return !fail;
2088}
2089
2090/**
2091 * security_node_sid - Obtain the SID for a node (host).
2092 * @domain: communication domain aka address family
2093 * @addrp: address
2094 * @addrlen: address length in bytes
2095 * @out_sid: security identifier
2096 */
2097int security_node_sid(u16 domain,
2098                      void *addrp,
2099                      u32 addrlen,
2100                      u32 *out_sid)
2101{
2102        int rc;
2103        struct ocontext *c;
2104
2105        read_lock(&policy_rwlock);
2106
2107        switch (domain) {
2108        case AF_INET: {
2109                u32 addr;
2110
2111                rc = -EINVAL;
2112                if (addrlen != sizeof(u32))
2113                        goto out;
2114
2115                addr = *((u32 *)addrp);
2116
2117                c = policydb.ocontexts[OCON_NODE];
2118                while (c) {
2119                        if (c->u.node.addr == (addr & c->u.node.mask))
2120                                break;
2121                        c = c->next;
2122                }
2123                break;
2124        }
2125
2126        case AF_INET6:
2127                rc = -EINVAL;
2128                if (addrlen != sizeof(u64) * 2)
2129                        goto out;
2130                c = policydb.ocontexts[OCON_NODE6];
2131                while (c) {
2132                        if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2133                                                c->u.node6.mask))
2134                                break;
2135                        c = c->next;
2136                }
2137                break;
2138
2139        default:
2140                rc = 0;
2141                *out_sid = SECINITSID_NODE;
2142                goto out;
2143        }
2144
2145        if (c) {
2146                if (!c->sid[0]) {
2147                        rc = sidtab_context_to_sid(&sidtab,
2148                                                   &c->context[0],
2149                                                   &c->sid[0]);
2150                        if (rc)
2151                                goto out;
2152                }
2153                *out_sid = c->sid[0];
2154        } else {
2155                *out_sid = SECINITSID_NODE;
2156        }
2157
2158        rc = 0;
2159out:
2160        read_unlock(&policy_rwlock);
2161        return rc;
2162}
2163
2164#define SIDS_NEL 25
2165
2166/**
2167 * security_get_user_sids - Obtain reachable SIDs for a user.
2168 * @fromsid: starting SID
2169 * @username: username
2170 * @sids: array of reachable SIDs for user
2171 * @nel: number of elements in @sids
2172 *
2173 * Generate the set of SIDs for legal security contexts
2174 * for a given user that can be reached by @fromsid.
2175 * Set *@sids to point to a dynamically allocated
2176 * array containing the set of SIDs.  Set *@nel to the
2177 * number of elements in the array.
2178 */
2179
2180int security_get_user_sids(u32 fromsid,
2181                           char *username,
2182                           u32 **sids,
2183                           u32 *nel)
2184{
2185        struct context *fromcon, usercon;
2186        u32 *mysids = NULL, *mysids2, sid;
2187        u32 mynel = 0, maxnel = SIDS_NEL;
2188        struct user_datum *user;
2189        struct role_datum *role;
2190        struct ebitmap_node *rnode, *tnode;
2191        int rc = 0, i, j;
2192
2193        *sids = NULL;
2194        *nel = 0;
2195
2196        if (!ss_initialized)
2197                goto out;
2198
2199        read_lock(&policy_rwlock);
2200
2201        context_init(&usercon);
2202
2203        rc = -EINVAL;
2204        fromcon = sidtab_search(&sidtab, fromsid);
2205        if (!fromcon)
2206                goto out_unlock;
2207
2208        rc = -EINVAL;
2209        user = hashtab_search(policydb.p_users.table, username);
2210        if (!user)
2211                goto out_unlock;
2212
2213        usercon.user = user->value;
2214
2215        rc = -ENOMEM;
2216        mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
2217        if (!mysids)
2218                goto out_unlock;
2219
2220        ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2221                role = policydb.role_val_to_struct[i];
2222                usercon.role = i + 1;
2223                ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2224                        usercon.type = j + 1;
2225
2226                        if (mls_setup_user_range(fromcon, user, &usercon))
2227                                continue;
2228
2229                        rc = sidtab_context_to_sid(&sidtab, &usercon, &sid);
2230                        if (rc)
2231                                goto out_unlock;
2232                        if (mynel < maxnel) {
2233                                mysids[mynel++] = sid;
2234                        } else {
2235                                rc = -ENOMEM;
2236                                maxnel += SIDS_NEL;
2237                                mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2238                                if (!mysids2)
2239                                        goto out_unlock;
2240                                memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2241                                kfree(mysids);
2242                                mysids = mysids2;
2243                                mysids[mynel++] = sid;
2244                        }
2245                }
2246        }
2247        rc = 0;
2248out_unlock:
2249        read_unlock(&policy_rwlock);
2250        if (rc || !mynel) {
2251                kfree(mysids);
2252                goto out;
2253        }
2254
2255        rc = -ENOMEM;
2256        mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2257        if (!mysids2) {
2258                kfree(mysids);
2259                goto out;
2260        }
2261        for (i = 0, j = 0; i < mynel; i++) {
2262                struct av_decision dummy_avd;
2263                rc = avc_has_perm_noaudit(fromsid, mysids[i],
2264                                          SECCLASS_PROCESS, /* kernel value */
2265                                          PROCESS__TRANSITION, AVC_STRICT,
2266                                          &dummy_avd);
2267                if (!rc)
2268                        mysids2[j++] = mysids[i];
2269                cond_resched();
2270        }
2271        rc = 0;
2272        kfree(mysids);
2273        *sids = mysids2;
2274        *nel = j;
2275out:
2276        return rc;
2277}
2278
2279/**
2280 * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2281 * @fstype: filesystem type
2282 * @path: path from root of mount
2283 * @sclass: file security class
2284 * @sid: SID for path
2285 *
2286 * Obtain a SID to use for a file in a filesystem that
2287 * cannot support xattr or use a fixed labeling behavior like
2288 * transition SIDs or task SIDs.
2289 *
2290 * The caller must acquire the policy_rwlock before calling this function.
2291 */
2292static inline int __security_genfs_sid(const char *fstype,
2293                                       char *path,
2294                                       u16 orig_sclass,
2295                                       u32 *sid)
2296{
2297        int len;
2298        u16 sclass;
2299        struct genfs *genfs;
2300        struct ocontext *c;
2301        int rc, cmp = 0;
2302
2303        while (path[0] == '/' && path[1] == '/')
2304                path++;
2305
2306        sclass = unmap_class(orig_sclass);
2307        *sid = SECINITSID_UNLABELED;
2308
2309        for (genfs = policydb.genfs; genfs; genfs = genfs->next) {
2310                cmp = strcmp(fstype, genfs->fstype);
2311                if (cmp <= 0)
2312                        break;
2313        }
2314
2315        rc = -ENOENT;
2316        if (!genfs || cmp)
2317                goto out;
2318
2319        for (c = genfs->head; c; c = c->next) {
2320                len = strlen(c->u.name);
2321                if ((!c->v.sclass || sclass == c->v.sclass) &&
2322                    (strncmp(c->u.name, path, len) == 0))
2323                        break;
2324        }
2325
2326        rc = -ENOENT;
2327        if (!c)
2328                goto out;
2329
2330        if (!c->sid[0]) {
2331                rc = sidtab_context_to_sid(&sidtab, &c->context[0], &c->sid[0]);
2332                if (rc)
2333                        goto out;
2334        }
2335
2336        *sid = c->sid[0];
2337        rc = 0;
2338out:
2339        return rc;
2340}
2341
2342/**
2343 * security_genfs_sid - Obtain a SID for a file in a filesystem
2344 * @fstype: filesystem type
2345 * @path: path from root of mount
2346 * @sclass: file security class
2347 * @sid: SID for path
2348 *
2349 * Acquire policy_rwlock before calling __security_genfs_sid() and release
2350 * it afterward.
2351 */
2352int security_genfs_sid(const char *fstype,
2353                       char *path,
2354                       u16 orig_sclass,
2355                       u32 *sid)
2356{
2357        int retval;
2358
2359        read_lock(&policy_rwlock);
2360        retval = __security_genfs_sid(fstype, path, orig_sclass, sid);
2361        read_unlock(&policy_rwlock);
2362        return retval;
2363}
2364
2365/**
2366 * security_fs_use - Determine how to handle labeling for a filesystem.
2367 * @sb: superblock in question
2368 */
2369int security_fs_use(struct super_block *sb)
2370{
2371        int rc = 0;
2372        struct ocontext *c;
2373        struct superblock_security_struct *sbsec = sb->s_security;
2374        const char *fstype = sb->s_type->name;
2375
2376        read_lock(&policy_rwlock);
2377
2378        c = policydb.ocontexts[OCON_FSUSE];
2379        while (c) {
2380                if (strcmp(fstype, c->u.name) == 0)
2381                        break;
2382                c = c->next;
2383        }
2384
2385        if (c) {
2386                sbsec->behavior = c->v.behavior;
2387                if (!c->sid[0]) {
2388                        rc = sidtab_context_to_sid(&sidtab, &c->context[0],
2389                                                   &c->sid[0]);
2390                        if (rc)
2391                                goto out;
2392                }
2393                sbsec->sid = c->sid[0];
2394        } else {
2395                rc = __security_genfs_sid(fstype, "/", SECCLASS_DIR,
2396                                          &sbsec->sid);
2397                if (rc) {
2398                        sbsec->behavior = SECURITY_FS_USE_NONE;
2399                        rc = 0;
2400                } else {
2401                        sbsec->behavior = SECURITY_FS_USE_GENFS;
2402                }
2403        }
2404
2405out:
2406        read_unlock(&policy_rwlock);
2407        return rc;
2408}
2409
2410int security_get_bools(int *len, char ***names, int **values)
2411{
2412        int i, rc;
2413
2414        read_lock(&policy_rwlock);
2415        *names = NULL;
2416        *values = NULL;
2417
2418        rc = 0;
2419        *len = policydb.p_bools.nprim;
2420        if (!*len)
2421                goto out;
2422
2423        rc = -ENOMEM;
2424        *names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2425        if (!*names)
2426                goto err;
2427
2428        rc = -ENOMEM;
2429        *values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2430        if (!*values)
2431                goto err;
2432
2433        for (i = 0; i < *len; i++) {
2434                size_t name_len;
2435
2436                (*values)[i] = policydb.bool_val_to_struct[i]->state;
2437                name_len = strlen(sym_name(&policydb, SYM_BOOLS, i)) + 1;
2438
2439                rc = -ENOMEM;
2440                (*names)[i] = kmalloc(sizeof(char) * name_len, GFP_ATOMIC);
2441                if (!(*names)[i])
2442                        goto err;
2443
2444                strncpy((*names)[i], sym_name(&policydb, SYM_BOOLS, i), name_len);
2445                (*names)[i][name_len - 1] = 0;
2446        }
2447        rc = 0;
2448out:
2449        read_unlock(&policy_rwlock);
2450        return rc;
2451err:
2452        if (*names) {
2453                for (i = 0; i < *len; i++)
2454                        kfree((*names)[i]);
2455        }
2456        kfree(*values);
2457        goto out;
2458}
2459
2460
2461int security_set_bools(int len, int *values)
2462{
2463        int i, rc;
2464        int lenp, seqno = 0;
2465        struct cond_node *cur;
2466
2467        write_lock_irq(&policy_rwlock);
2468
2469        rc = -EFAULT;
2470        lenp = policydb.p_bools.nprim;
2471        if (len != lenp)
2472                goto out;
2473
2474        for (i = 0; i < len; i++) {
2475                if (!!values[i] != policydb.bool_val_to_struct[i]->state) {
2476                        audit_log(current->audit_context, GFP_ATOMIC,
2477                                AUDIT_MAC_CONFIG_CHANGE,
2478                                "bool=%s val=%d old_val=%d auid=%u ses=%u",
2479                                sym_name(&policydb, SYM_BOOLS, i),
2480                                !!values[i],
2481                                policydb.bool_val_to_struct[i]->state,
2482                                from_kuid(&init_user_ns, audit_get_loginuid(current)),
2483                                audit_get_sessionid(current));
2484                }
2485                if (values[i])
2486                        policydb.bool_val_to_struct[i]->state = 1;
2487                else
2488                        policydb.bool_val_to_struct[i]->state = 0;
2489        }
2490
2491        for (cur = policydb.cond_list; cur; cur = cur->next) {
2492                rc = evaluate_cond_node(&policydb, cur);
2493                if (rc)
2494                        goto out;
2495        }
2496
2497        seqno = ++latest_granting;
2498        rc = 0;
2499out:
2500        write_unlock_irq(&policy_rwlock);
2501        if (!rc) {
2502                avc_ss_reset(seqno);
2503                selnl_notify_policyload(seqno);
2504                selinux_status_update_policyload(seqno);
2505                selinux_xfrm_notify_policyload();
2506        }
2507        return rc;
2508}
2509
2510int security_get_bool_value(int bool)
2511{
2512        int rc;
2513        int len;
2514
2515        read_lock(&policy_rwlock);
2516
2517        rc = -EFAULT;
2518        len = policydb.p_bools.nprim;
2519        if (bool >= len)
2520                goto out;
2521
2522        rc = policydb.bool_val_to_struct[bool]->state;
2523out:
2524        read_unlock(&policy_rwlock);
2525        return rc;
2526}
2527
2528static int security_preserve_bools(struct policydb *p)
2529{
2530        int rc, nbools = 0, *bvalues = NULL, i;
2531        char **bnames = NULL;
2532        struct cond_bool_datum *booldatum;
2533        struct cond_node *cur;
2534
2535        rc = security_get_bools(&nbools, &bnames, &bvalues);
2536        if (rc)
2537                goto out;
2538        for (i = 0; i < nbools; i++) {
2539                booldatum = hashtab_search(p->p_bools.table, bnames[i]);
2540                if (booldatum)
2541                        booldatum->state = bvalues[i];
2542        }
2543        for (cur = p->cond_list; cur; cur = cur->next) {
2544                rc = evaluate_cond_node(p, cur);
2545                if (rc)
2546                        goto out;
2547        }
2548
2549out:
2550        if (bnames) {
2551                for (i = 0; i < nbools; i++)
2552                        kfree(bnames[i]);
2553        }
2554        kfree(bnames);
2555        kfree(bvalues);
2556        return rc;
2557}
2558
2559/*
2560 * security_sid_mls_copy() - computes a new sid based on the given
2561 * sid and the mls portion of mls_sid.
2562 */
2563int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid)
2564{
2565        struct context *context1;
2566        struct context *context2;
2567        struct context newcon;
2568        char *s;
2569        u32 len;
2570        int rc;
2571
2572        rc = 0;
2573        if (!ss_initialized || !policydb.mls_enabled) {
2574                *new_sid = sid;
2575                goto out;
2576        }
2577
2578        context_init(&newcon);
2579
2580        read_lock(&policy_rwlock);
2581
2582        rc = -EINVAL;
2583        context1 = sidtab_search(&sidtab, sid);
2584        if (!context1) {
2585                printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2586                        __func__, sid);
2587                goto out_unlock;
2588        }
2589
2590        rc = -EINVAL;
2591        context2 = sidtab_search(&sidtab, mls_sid);
2592        if (!context2) {
2593                printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2594                        __func__, mls_sid);
2595                goto out_unlock;
2596        }
2597
2598        newcon.user = context1->user;
2599        newcon.role = context1->role;
2600        newcon.type = context1->type;
2601        rc = mls_context_cpy(&newcon, context2);
2602        if (rc)
2603                goto out_unlock;
2604
2605        /* Check the validity of the new context. */
2606        if (!policydb_context_isvalid(&policydb, &newcon)) {
2607                rc = convert_context_handle_invalid_context(&newcon);
2608                if (rc) {
2609                        if (!context_struct_to_string(&newcon, &s, &len)) {
2610                                audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2611                                          "security_sid_mls_copy: invalid context %s", s);
2612                                kfree(s);
2613                        }
2614                        goto out_unlock;
2615                }
2616        }
2617
2618        rc = sidtab_context_to_sid(&sidtab, &newcon, new_sid);
2619out_unlock:
2620        read_unlock(&policy_rwlock);
2621        context_destroy(&newcon);
2622out:
2623        return rc;
2624}
2625
2626/**
2627 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
2628 * @nlbl_sid: NetLabel SID
2629 * @nlbl_type: NetLabel labeling protocol type
2630 * @xfrm_sid: XFRM SID
2631 *
2632 * Description:
2633 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
2634 * resolved into a single SID it is returned via @peer_sid and the function
2635 * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
2636 * returns a negative value.  A table summarizing the behavior is below:
2637 *
2638 *                                 | function return |      @sid
2639 *   ------------------------------+-----------------+-----------------
2640 *   no peer labels                |        0        |    SECSID_NULL
2641 *   single peer label             |        0        |    <peer_label>
2642 *   multiple, consistent labels   |        0        |    <peer_label>
2643 *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
2644 *
2645 */
2646int security_net_peersid_resolve(u32 nlbl_sid, u32 nlbl_type,
2647                                 u32 xfrm_sid,
2648                                 u32 *peer_sid)
2649{
2650        int rc;
2651        struct context *nlbl_ctx;
2652        struct context *xfrm_ctx;
2653
2654        *peer_sid = SECSID_NULL;
2655
2656        /* handle the common (which also happens to be the set of easy) cases
2657         * right away, these two if statements catch everything involving a
2658         * single or absent peer SID/label */
2659        if (xfrm_sid == SECSID_NULL) {
2660                *peer_sid = nlbl_sid;
2661                return 0;
2662        }
2663        /* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
2664         * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
2665         * is present */
2666        if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
2667                *peer_sid = xfrm_sid;
2668                return 0;
2669        }
2670
2671        /* we don't need to check ss_initialized here since the only way both
2672         * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
2673         * security server was initialized and ss_initialized was true */
2674        if (!policydb.mls_enabled)
2675                return 0;
2676
2677        read_lock(&policy_rwlock);
2678
2679        rc = -EINVAL;
2680        nlbl_ctx = sidtab_search(&sidtab, nlbl_sid);
2681        if (!nlbl_ctx) {
2682                printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2683                       __func__, nlbl_sid);
2684                goto out;
2685        }
2686        rc = -EINVAL;
2687        xfrm_ctx = sidtab_search(&sidtab, xfrm_sid);
2688        if (!xfrm_ctx) {
2689                printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2690                       __func__, xfrm_sid);
2691                goto out;
2692        }
2693        rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
2694        if (rc)
2695                goto out;
2696
2697        /* at present NetLabel SIDs/labels really only carry MLS
2698         * information so if the MLS portion of the NetLabel SID
2699         * matches the MLS portion of the labeled XFRM SID/label
2700         * then pass along the XFRM SID as it is the most
2701         * expressive */
2702        *peer_sid = xfrm_sid;
2703out:
2704        read_unlock(&policy_rwlock);
2705        return rc;
2706}
2707
2708static int get_classes_callback(void *k, void *d, void *args)
2709{
2710        struct class_datum *datum = d;
2711        char *name = k, **classes = args;
2712        int value = datum->value - 1;
2713
2714        classes[value] = kstrdup(name, GFP_ATOMIC);
2715        if (!classes[value])
2716                return -ENOMEM;
2717
2718        return 0;
2719}
2720
2721int security_get_classes(char ***classes, int *nclasses)
2722{
2723        int rc;
2724
2725        read_lock(&policy_rwlock);
2726
2727        rc = -ENOMEM;
2728        *nclasses = policydb.p_classes.nprim;
2729        *classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
2730        if (!*classes)
2731                goto out;
2732
2733        rc = hashtab_map(policydb.p_classes.table, get_classes_callback,
2734                        *classes);
2735        if (rc) {
2736                int i;
2737                for (i = 0; i < *nclasses; i++)
2738                        kfree((*classes)[i]);
2739                kfree(*classes);
2740        }
2741
2742out:
2743        read_unlock(&policy_rwlock);
2744        return rc;
2745}
2746
2747static int get_permissions_callback(void *k, void *d, void *args)
2748{
2749        struct perm_datum *datum = d;
2750        char *name = k, **perms = args;
2751        int value = datum->value - 1;
2752
2753        perms[value] = kstrdup(name, GFP_ATOMIC);
2754        if (!perms[value])
2755                return -ENOMEM;
2756
2757        return 0;
2758}
2759
2760int security_get_permissions(char *class, char ***perms, int *nperms)
2761{
2762        int rc, i;
2763        struct class_datum *match;
2764
2765        read_lock(&policy_rwlock);
2766
2767        rc = -EINVAL;
2768        match = hashtab_search(policydb.p_classes.table, class);
2769        if (!match) {
2770                printk(KERN_ERR "SELinux: %s:  unrecognized class %s\n",
2771                        __func__, class);
2772                goto out;
2773        }
2774
2775        rc = -ENOMEM;
2776        *nperms = match->permissions.nprim;
2777        *perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
2778        if (!*perms)
2779                goto out;
2780
2781        if (match->comdatum) {
2782                rc = hashtab_map(match->comdatum->permissions.table,
2783                                get_permissions_callback, *perms);
2784                if (rc)
2785                        goto err;
2786        }
2787
2788        rc = hashtab_map(match->permissions.table, get_permissions_callback,
2789                        *perms);
2790        if (rc)
2791                goto err;
2792
2793out:
2794        read_unlock(&policy_rwlock);
2795        return rc;
2796
2797err:
2798        read_unlock(&policy_rwlock);
2799        for (i = 0; i < *nperms; i++)
2800                kfree((*perms)[i]);
2801        kfree(*perms);
2802        return rc;
2803}
2804
2805int security_get_reject_unknown(void)
2806{
2807        return policydb.reject_unknown;
2808}
2809
2810int security_get_allow_unknown(void)
2811{
2812        return policydb.allow_unknown;
2813}
2814
2815/**
2816 * security_policycap_supported - Check for a specific policy capability
2817 * @req_cap: capability
2818 *
2819 * Description:
2820 * This function queries the currently loaded policy to see if it supports the
2821 * capability specified by @req_cap.  Returns true (1) if the capability is
2822 * supported, false (0) if it isn't supported.
2823 *
2824 */
2825int security_policycap_supported(unsigned int req_cap)
2826{
2827        int rc;
2828
2829        read_lock(&policy_rwlock);
2830        rc = ebitmap_get_bit(&policydb.policycaps, req_cap);
2831        read_unlock(&policy_rwlock);
2832
2833        return rc;
2834}
2835
2836struct selinux_audit_rule {
2837        u32 au_seqno;
2838        struct context au_ctxt;
2839};
2840
2841void selinux_audit_rule_free(void *vrule)
2842{
2843        struct selinux_audit_rule *rule = vrule;
2844
2845        if (rule) {
2846                context_destroy(&rule->au_ctxt);
2847                kfree(rule);
2848        }
2849}
2850
2851int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
2852{
2853        struct selinux_audit_rule *tmprule;
2854        struct role_datum *roledatum;
2855        struct type_datum *typedatum;
2856        struct user_datum *userdatum;
2857        struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
2858        int rc = 0;
2859
2860        *rule = NULL;
2861
2862        if (!ss_initialized)
2863                return -EOPNOTSUPP;
2864
2865        switch (field) {
2866        case AUDIT_SUBJ_USER:
2867        case AUDIT_SUBJ_ROLE:
2868        case AUDIT_SUBJ_TYPE:
2869        case AUDIT_OBJ_USER:
2870        case AUDIT_OBJ_ROLE:
2871        case AUDIT_OBJ_TYPE:
2872                /* only 'equals' and 'not equals' fit user, role, and type */
2873                if (op != Audit_equal && op != Audit_not_equal)
2874                        return -EINVAL;
2875                break;
2876        case AUDIT_SUBJ_SEN:
2877        case AUDIT_SUBJ_CLR:
2878        case AUDIT_OBJ_LEV_LOW:
2879        case AUDIT_OBJ_LEV_HIGH:
2880                /* we do not allow a range, indicated by the presence of '-' */
2881                if (strchr(rulestr, '-'))
2882                        return -EINVAL;
2883                break;
2884        default:
2885                /* only the above fields are valid */
2886                return -EINVAL;
2887        }
2888
2889        tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
2890        if (!tmprule)
2891                return -ENOMEM;
2892
2893        context_init(&tmprule->au_ctxt);
2894
2895        read_lock(&policy_rwlock);
2896
2897        tmprule->au_seqno = latest_granting;
2898
2899        switch (field) {
2900        case AUDIT_SUBJ_USER:
2901        case AUDIT_OBJ_USER:
2902                rc = -EINVAL;
2903                userdatum = hashtab_search(policydb.p_users.table, rulestr);
2904                if (!userdatum)
2905                        goto out;
2906                tmprule->au_ctxt.user = userdatum->value;
2907                break;
2908        case AUDIT_SUBJ_ROLE:
2909        case AUDIT_OBJ_ROLE:
2910                rc = -EINVAL;
2911                roledatum = hashtab_search(policydb.p_roles.table, rulestr);
2912                if (!roledatum)
2913                        goto out;
2914                tmprule->au_ctxt.role = roledatum->value;
2915                break;
2916        case AUDIT_SUBJ_TYPE:
2917        case AUDIT_OBJ_TYPE:
2918                rc = -EINVAL;
2919                typedatum = hashtab_search(policydb.p_types.table, rulestr);
2920                if (!typedatum)
2921                        goto out;
2922                tmprule->au_ctxt.type = typedatum->value;
2923                break;
2924        case AUDIT_SUBJ_SEN:
2925        case AUDIT_SUBJ_CLR:
2926        case AUDIT_OBJ_LEV_LOW:
2927        case AUDIT_OBJ_LEV_HIGH:
2928                rc = mls_from_string(rulestr, &tmprule->au_ctxt, GFP_ATOMIC);
2929                if (rc)
2930                        goto out;
2931                break;
2932        }
2933        rc = 0;
2934out:
2935        read_unlock(&policy_rwlock);
2936
2937        if (rc) {
2938                selinux_audit_rule_free(tmprule);
2939                tmprule = NULL;
2940        }
2941
2942        *rule = tmprule;
2943
2944        return rc;
2945}
2946
2947/* Check to see if the rule contains any selinux fields */
2948int selinux_audit_rule_known(struct audit_krule *rule)
2949{
2950        int i;
2951
2952        for (i = 0; i < rule->field_count; i++) {
2953                struct audit_field *f = &rule->fields[i];
2954                switch (f->type) {
2955                case AUDIT_SUBJ_USER:
2956                case AUDIT_SUBJ_ROLE:
2957                case AUDIT_SUBJ_TYPE:
2958                case AUDIT_SUBJ_SEN:
2959                case AUDIT_SUBJ_CLR:
2960                case AUDIT_OBJ_USER:
2961                case AUDIT_OBJ_ROLE:
2962                case AUDIT_OBJ_TYPE:
2963                case AUDIT_OBJ_LEV_LOW:
2964                case AUDIT_OBJ_LEV_HIGH:
2965                        return 1;
2966                }
2967        }
2968
2969        return 0;
2970}
2971
2972int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule,
2973                             struct audit_context *actx)
2974{
2975        struct context *ctxt;
2976        struct mls_level *level;
2977        struct selinux_audit_rule *rule = vrule;
2978        int match = 0;
2979
2980        if (unlikely(!rule)) {
2981                WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
2982                return -ENOENT;
2983        }
2984
2985        read_lock(&policy_rwlock);
2986
2987        if (rule->au_seqno < latest_granting) {
2988                match = -ESTALE;
2989                goto out;
2990        }
2991
2992        ctxt = sidtab_search(&sidtab, sid);
2993        if (unlikely(!ctxt)) {
2994                WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
2995                          sid);
2996                match = -ENOENT;
2997                goto out;
2998        }
2999
3000        /* a field/op pair that is not caught here will simply fall through
3001           without a match */
3002        switch (field) {
3003        case AUDIT_SUBJ_USER:
3004        case AUDIT_OBJ_USER:
3005                switch (op) {
3006                case Audit_equal:
3007                        match = (ctxt->user == rule->au_ctxt.user);
3008                        break;
3009                case Audit_not_equal:
3010                        match = (ctxt->user != rule->au_ctxt.user);
3011                        break;
3012                }
3013                break;
3014        case AUDIT_SUBJ_ROLE:
3015        case AUDIT_OBJ_ROLE:
3016                switch (op) {
3017                case Audit_equal:
3018                        match = (ctxt->role == rule->au_ctxt.role);
3019                        break;
3020                case Audit_not_equal:
3021                        match = (ctxt->role != rule->au_ctxt.role);
3022                        break;
3023                }
3024                break;
3025        case AUDIT_SUBJ_TYPE:
3026        case AUDIT_OBJ_TYPE:
3027                switch (op) {
3028                case Audit_equal:
3029                        match = (ctxt->type == rule->au_ctxt.type);
3030                        break;
3031                case Audit_not_equal:
3032                        match = (ctxt->type != rule->au_ctxt.type);
3033                        break;
3034                }
3035                break;
3036        case AUDIT_SUBJ_SEN:
3037        case AUDIT_SUBJ_CLR:
3038        case AUDIT_OBJ_LEV_LOW:
3039        case AUDIT_OBJ_LEV_HIGH:
3040                level = ((field == AUDIT_SUBJ_SEN ||
3041                          field == AUDIT_OBJ_LEV_LOW) ?
3042                         &ctxt->range.level[0] : &ctxt->range.level[1]);
3043                switch (op) {
3044                case Audit_equal:
3045                        match = mls_level_eq(&rule->au_ctxt.range.level[0],
3046                                             level);
3047                        break;
3048                case Audit_not_equal:
3049                        match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3050                                              level);
3051                        break;
3052                case Audit_lt:
3053                        match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3054                                               level) &&
3055                                 !mls_level_eq(&rule->au_ctxt.range.level[0],
3056                                               level));
3057                        break;
3058                case Audit_le:
3059                        match = mls_level_dom(&rule->au_ctxt.range.level[0],
3060                                              level);
3061                        break;
3062                case Audit_gt:
3063                        match = (mls_level_dom(level,
3064                                              &rule->au_ctxt.range.level[0]) &&
3065                                 !mls_level_eq(level,
3066                                               &rule->au_ctxt.range.level[0]));
3067                        break;
3068                case Audit_ge:
3069                        match = mls_level_dom(level,
3070                                              &rule->au_ctxt.range.level[0]);
3071                        break;
3072                }
3073        }
3074
3075out:
3076        read_unlock(&policy_rwlock);
3077        return match;
3078}
3079
3080static int (*aurule_callback)(void) = audit_update_lsm_rules;
3081
3082static int aurule_avc_callback(u32 event)
3083{
3084        int err = 0;
3085
3086        if (event == AVC_CALLBACK_RESET && aurule_callback)
3087                err = aurule_callback();
3088        return err;
3089}
3090
3091static int __init aurule_init(void)
3092{
3093        int err;
3094
3095        err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3096        if (err)
3097                panic("avc_add_callback() failed, error %d\n", err);
3098
3099        return err;
3100}
3101__initcall(aurule_init);
3102
3103#ifdef CONFIG_NETLABEL
3104/**
3105 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3106 * @secattr: the NetLabel packet security attributes
3107 * @sid: the SELinux SID
3108 *
3109 * Description:
3110 * Attempt to cache the context in @ctx, which was derived from the packet in
3111 * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3112 * already been initialized.
3113 *
3114 */
3115static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3116                                      u32 sid)
3117{
3118        u32 *sid_cache;
3119
3120        sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3121        if (sid_cache == NULL)
3122                return;
3123        secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3124        if (secattr->cache == NULL) {
3125                kfree(sid_cache);
3126                return;
3127        }
3128
3129        *sid_cache = sid;
3130        secattr->cache->free = kfree;
3131        secattr->cache->data = sid_cache;
3132        secattr->flags |= NETLBL_SECATTR_CACHE;
3133}
3134
3135/**
3136 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3137 * @secattr: the NetLabel packet security attributes
3138 * @sid: the SELinux SID
3139 *
3140 * Description:
3141 * Convert the given NetLabel security attributes in @secattr into a
3142 * SELinux SID.  If the @secattr field does not contain a full SELinux
3143 * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3144 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3145 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3146 * conversion for future lookups.  Returns zero on success, negative values on
3147 * failure.
3148 *
3149 */
3150int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr,
3151                                   u32 *sid)
3152{
3153        int rc;
3154        struct context *ctx;
3155        struct context ctx_new;
3156
3157        if (!ss_initialized) {
3158                *sid = SECSID_NULL;
3159                return 0;
3160        }
3161
3162        read_lock(&policy_rwlock);
3163
3164        if (secattr->flags & NETLBL_SECATTR_CACHE)
3165                *sid = *(u32 *)secattr->cache->data;
3166        else if (secattr->flags & NETLBL_SECATTR_SECID)
3167                *sid = secattr->attr.secid;
3168        else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3169                rc = -EIDRM;
3170                ctx = sidtab_search(&sidtab, SECINITSID_NETMSG);
3171                if (ctx == NULL)
3172                        goto out;
3173
3174                context_init(&ctx_new);
3175                ctx_new.user = ctx->user;
3176                ctx_new.role = ctx->role;
3177                ctx_new.type = ctx->type;
3178                mls_import_netlbl_lvl(&ctx_new, secattr);
3179                if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3180                        rc = ebitmap_netlbl_import(&ctx_new.range.level[0].cat,
3181                                                   secattr->attr.mls.cat);
3182                        if (rc)
3183                                goto out;
3184                        memcpy(&ctx_new.range.level[1].cat,
3185                               &ctx_new.range.level[0].cat,
3186                               sizeof(ctx_new.range.level[0].cat));
3187                }
3188                rc = -EIDRM;
3189                if (!mls_context_isvalid(&policydb, &ctx_new))
3190                        goto out_free;
3191
3192                rc = sidtab_context_to_sid(&sidtab, &ctx_new, sid);
3193                if (rc)
3194                        goto out_free;
3195
3196                security_netlbl_cache_add(secattr, *sid);
3197
3198                ebitmap_destroy(&ctx_new.range.level[0].cat);
3199        } else
3200                *sid = SECSID_NULL;
3201
3202        read_unlock(&policy_rwlock);
3203        return 0;
3204out_free:
3205        ebitmap_destroy(&ctx_new.range.level[0].cat);
3206out:
3207        read_unlock(&policy_rwlock);
3208        return rc;
3209}
3210
3211/**
3212 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3213 * @sid: the SELinux SID
3214 * @secattr: the NetLabel packet security attributes
3215 *
3216 * Description:
3217 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3218 * Returns zero on success, negative values on failure.
3219 *
3220 */
3221int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr)
3222{
3223        int rc;
3224        struct context *ctx;
3225
3226        if (!ss_initialized)
3227                return 0;
3228
3229        read_lock(&policy_rwlock);
3230
3231        rc = -ENOENT;
3232        ctx = sidtab_search(&sidtab, sid);
3233        if (ctx == NULL)
3234                goto out;
3235
3236        rc = -ENOMEM;
3237        secattr->domain = kstrdup(sym_name(&policydb, SYM_TYPES, ctx->type - 1),
3238                                  GFP_ATOMIC);
3239        if (secattr->domain == NULL)
3240                goto out;
3241
3242        secattr->attr.secid = sid;
3243        secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3244        mls_export_netlbl_lvl(ctx, secattr);
3245        rc = mls_export_netlbl_cat(ctx, secattr);
3246out:
3247        read_unlock(&policy_rwlock);
3248        return rc;
3249}
3250#endif /* CONFIG_NETLABEL */
3251
3252/**
3253 * security_read_policy - read the policy.
3254 * @data: binary policy data
3255 * @len: length of data in bytes
3256 *
3257 */
3258int security_read_policy(void **data, size_t *len)
3259{
3260        int rc;
3261        struct policy_file fp;
3262
3263        if (!ss_initialized)
3264                return -EINVAL;
3265
3266        *len = security_policydb_len();
3267
3268        *data = vmalloc_user(*len);
3269        if (!*data)
3270                return -ENOMEM;
3271
3272        fp.data = *data;
3273        fp.len = *len;
3274
3275        read_lock(&policy_rwlock);
3276        rc = policydb_write(&policydb, &fp);
3277        read_unlock(&policy_rwlock);
3278
3279        if (rc)
3280                return rc;
3281
3282        *len = (unsigned long)fp.data - (unsigned long)*data;
3283        return 0;
3284
3285}
3286