linux/virt/kvm/arm/vgic.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2012 ARM Ltd.
   3 * Author: Marc Zyngier <marc.zyngier@arm.com>
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License version 2 as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write to the Free Software
  16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  17 */
  18
  19#include <linux/cpu.h>
  20#include <linux/kvm.h>
  21#include <linux/kvm_host.h>
  22#include <linux/interrupt.h>
  23#include <linux/io.h>
  24#include <linux/of.h>
  25#include <linux/of_address.h>
  26#include <linux/of_irq.h>
  27#include <linux/uaccess.h>
  28
  29#include <linux/irqchip/arm-gic.h>
  30
  31#include <asm/kvm_emulate.h>
  32#include <asm/kvm_arm.h>
  33#include <asm/kvm_mmu.h>
  34
  35/*
  36 * How the whole thing works (courtesy of Christoffer Dall):
  37 *
  38 * - At any time, the dist->irq_pending_on_cpu is the oracle that knows if
  39 *   something is pending
  40 * - VGIC pending interrupts are stored on the vgic.irq_state vgic
  41 *   bitmap (this bitmap is updated by both user land ioctls and guest
  42 *   mmio ops, and other in-kernel peripherals such as the
  43 *   arch. timers) and indicate the 'wire' state.
  44 * - Every time the bitmap changes, the irq_pending_on_cpu oracle is
  45 *   recalculated
  46 * - To calculate the oracle, we need info for each cpu from
  47 *   compute_pending_for_cpu, which considers:
  48 *   - PPI: dist->irq_state & dist->irq_enable
  49 *   - SPI: dist->irq_state & dist->irq_enable & dist->irq_spi_target
  50 *   - irq_spi_target is a 'formatted' version of the GICD_ICFGR
  51 *     registers, stored on each vcpu. We only keep one bit of
  52 *     information per interrupt, making sure that only one vcpu can
  53 *     accept the interrupt.
  54 * - The same is true when injecting an interrupt, except that we only
  55 *   consider a single interrupt at a time. The irq_spi_cpu array
  56 *   contains the target CPU for each SPI.
  57 *
  58 * The handling of level interrupts adds some extra complexity. We
  59 * need to track when the interrupt has been EOIed, so we can sample
  60 * the 'line' again. This is achieved as such:
  61 *
  62 * - When a level interrupt is moved onto a vcpu, the corresponding
  63 *   bit in irq_active is set. As long as this bit is set, the line
  64 *   will be ignored for further interrupts. The interrupt is injected
  65 *   into the vcpu with the GICH_LR_EOI bit set (generate a
  66 *   maintenance interrupt on EOI).
  67 * - When the interrupt is EOIed, the maintenance interrupt fires,
  68 *   and clears the corresponding bit in irq_active. This allow the
  69 *   interrupt line to be sampled again.
  70 */
  71
  72#define VGIC_ADDR_UNDEF         (-1)
  73#define IS_VGIC_ADDR_UNDEF(_x)  ((_x) == VGIC_ADDR_UNDEF)
  74
  75#define PRODUCT_ID_KVM          0x4b    /* ASCII code K */
  76#define IMPLEMENTER_ARM         0x43b
  77#define GICC_ARCH_VERSION_V2    0x2
  78
  79#define ACCESS_READ_VALUE       (1 << 0)
  80#define ACCESS_READ_RAZ         (0 << 0)
  81#define ACCESS_READ_MASK(x)     ((x) & (1 << 0))
  82#define ACCESS_WRITE_IGNORED    (0 << 1)
  83#define ACCESS_WRITE_SETBIT     (1 << 1)
  84#define ACCESS_WRITE_CLEARBIT   (2 << 1)
  85#define ACCESS_WRITE_VALUE      (3 << 1)
  86#define ACCESS_WRITE_MASK(x)    ((x) & (3 << 1))
  87
  88static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu);
  89static void vgic_retire_lr(int lr_nr, int irq, struct kvm_vcpu *vcpu);
  90static void vgic_update_state(struct kvm *kvm);
  91static void vgic_kick_vcpus(struct kvm *kvm);
  92static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg);
  93static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr);
  94static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr, struct vgic_lr lr_desc);
  95static void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr);
  96static void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr);
  97
  98static const struct vgic_ops *vgic_ops;
  99static const struct vgic_params *vgic;
 100
 101/*
 102 * struct vgic_bitmap contains unions that provide two views of
 103 * the same data. In one case it is an array of registers of
 104 * u32's, and in the other case it is a bitmap of unsigned
 105 * longs.
 106 *
 107 * This does not work on 64-bit BE systems, because the bitmap access
 108 * will store two consecutive 32-bit words with the higher-addressed
 109 * register's bits at the lower index and the lower-addressed register's
 110 * bits at the higher index.
 111 *
 112 * Therefore, swizzle the register index when accessing the 32-bit word
 113 * registers to access the right register's value.
 114 */
 115#if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 64
 116#define REG_OFFSET_SWIZZLE      1
 117#else
 118#define REG_OFFSET_SWIZZLE      0
 119#endif
 120
 121static u32 *vgic_bitmap_get_reg(struct vgic_bitmap *x,
 122                                int cpuid, u32 offset)
 123{
 124        offset >>= 2;
 125        if (!offset)
 126                return x->percpu[cpuid].reg + (offset ^ REG_OFFSET_SWIZZLE);
 127        else
 128                return x->shared.reg + ((offset - 1) ^ REG_OFFSET_SWIZZLE);
 129}
 130
 131static int vgic_bitmap_get_irq_val(struct vgic_bitmap *x,
 132                                   int cpuid, int irq)
 133{
 134        if (irq < VGIC_NR_PRIVATE_IRQS)
 135                return test_bit(irq, x->percpu[cpuid].reg_ul);
 136
 137        return test_bit(irq - VGIC_NR_PRIVATE_IRQS, x->shared.reg_ul);
 138}
 139
 140static void vgic_bitmap_set_irq_val(struct vgic_bitmap *x, int cpuid,
 141                                    int irq, int val)
 142{
 143        unsigned long *reg;
 144
 145        if (irq < VGIC_NR_PRIVATE_IRQS) {
 146                reg = x->percpu[cpuid].reg_ul;
 147        } else {
 148                reg =  x->shared.reg_ul;
 149                irq -= VGIC_NR_PRIVATE_IRQS;
 150        }
 151
 152        if (val)
 153                set_bit(irq, reg);
 154        else
 155                clear_bit(irq, reg);
 156}
 157
 158static unsigned long *vgic_bitmap_get_cpu_map(struct vgic_bitmap *x, int cpuid)
 159{
 160        if (unlikely(cpuid >= VGIC_MAX_CPUS))
 161                return NULL;
 162        return x->percpu[cpuid].reg_ul;
 163}
 164
 165static unsigned long *vgic_bitmap_get_shared_map(struct vgic_bitmap *x)
 166{
 167        return x->shared.reg_ul;
 168}
 169
 170static u32 *vgic_bytemap_get_reg(struct vgic_bytemap *x, int cpuid, u32 offset)
 171{
 172        offset >>= 2;
 173        BUG_ON(offset > (VGIC_NR_IRQS / 4));
 174        if (offset < 8)
 175                return x->percpu[cpuid] + offset;
 176        else
 177                return x->shared + offset - 8;
 178}
 179
 180#define VGIC_CFG_LEVEL  0
 181#define VGIC_CFG_EDGE   1
 182
 183static bool vgic_irq_is_edge(struct kvm_vcpu *vcpu, int irq)
 184{
 185        struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
 186        int irq_val;
 187
 188        irq_val = vgic_bitmap_get_irq_val(&dist->irq_cfg, vcpu->vcpu_id, irq);
 189        return irq_val == VGIC_CFG_EDGE;
 190}
 191
 192static int vgic_irq_is_enabled(struct kvm_vcpu *vcpu, int irq)
 193{
 194        struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
 195
 196        return vgic_bitmap_get_irq_val(&dist->irq_enabled, vcpu->vcpu_id, irq);
 197}
 198
 199static int vgic_irq_is_active(struct kvm_vcpu *vcpu, int irq)
 200{
 201        struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
 202
 203        return vgic_bitmap_get_irq_val(&dist->irq_active, vcpu->vcpu_id, irq);
 204}
 205
 206static void vgic_irq_set_active(struct kvm_vcpu *vcpu, int irq)
 207{
 208        struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
 209
 210        vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 1);
 211}
 212
 213static void vgic_irq_clear_active(struct kvm_vcpu *vcpu, int irq)
 214{
 215        struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
 216
 217        vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 0);
 218}
 219
 220static int vgic_dist_irq_is_pending(struct kvm_vcpu *vcpu, int irq)
 221{
 222        struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
 223
 224        return vgic_bitmap_get_irq_val(&dist->irq_state, vcpu->vcpu_id, irq);
 225}
 226
 227static void vgic_dist_irq_set(struct kvm_vcpu *vcpu, int irq)
 228{
 229        struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
 230
 231        vgic_bitmap_set_irq_val(&dist->irq_state, vcpu->vcpu_id, irq, 1);
 232}
 233
 234static void vgic_dist_irq_clear(struct kvm_vcpu *vcpu, int irq)
 235{
 236        struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
 237
 238        vgic_bitmap_set_irq_val(&dist->irq_state, vcpu->vcpu_id, irq, 0);
 239}
 240
 241static void vgic_cpu_irq_set(struct kvm_vcpu *vcpu, int irq)
 242{
 243        if (irq < VGIC_NR_PRIVATE_IRQS)
 244                set_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
 245        else
 246                set_bit(irq - VGIC_NR_PRIVATE_IRQS,
 247                        vcpu->arch.vgic_cpu.pending_shared);
 248}
 249
 250static void vgic_cpu_irq_clear(struct kvm_vcpu *vcpu, int irq)
 251{
 252        if (irq < VGIC_NR_PRIVATE_IRQS)
 253                clear_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
 254        else
 255                clear_bit(irq - VGIC_NR_PRIVATE_IRQS,
 256                          vcpu->arch.vgic_cpu.pending_shared);
 257}
 258
 259static u32 mmio_data_read(struct kvm_exit_mmio *mmio, u32 mask)
 260{
 261        return le32_to_cpu(*((u32 *)mmio->data)) & mask;
 262}
 263
 264static void mmio_data_write(struct kvm_exit_mmio *mmio, u32 mask, u32 value)
 265{
 266        *((u32 *)mmio->data) = cpu_to_le32(value) & mask;
 267}
 268
 269/**
 270 * vgic_reg_access - access vgic register
 271 * @mmio:   pointer to the data describing the mmio access
 272 * @reg:    pointer to the virtual backing of vgic distributor data
 273 * @offset: least significant 2 bits used for word offset
 274 * @mode:   ACCESS_ mode (see defines above)
 275 *
 276 * Helper to make vgic register access easier using one of the access
 277 * modes defined for vgic register access
 278 * (read,raz,write-ignored,setbit,clearbit,write)
 279 */
 280static void vgic_reg_access(struct kvm_exit_mmio *mmio, u32 *reg,
 281                            phys_addr_t offset, int mode)
 282{
 283        int word_offset = (offset & 3) * 8;
 284        u32 mask = (1UL << (mmio->len * 8)) - 1;
 285        u32 regval;
 286
 287        /*
 288         * Any alignment fault should have been delivered to the guest
 289         * directly (ARM ARM B3.12.7 "Prioritization of aborts").
 290         */
 291
 292        if (reg) {
 293                regval = *reg;
 294        } else {
 295                BUG_ON(mode != (ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED));
 296                regval = 0;
 297        }
 298
 299        if (mmio->is_write) {
 300                u32 data = mmio_data_read(mmio, mask) << word_offset;
 301                switch (ACCESS_WRITE_MASK(mode)) {
 302                case ACCESS_WRITE_IGNORED:
 303                        return;
 304
 305                case ACCESS_WRITE_SETBIT:
 306                        regval |= data;
 307                        break;
 308
 309                case ACCESS_WRITE_CLEARBIT:
 310                        regval &= ~data;
 311                        break;
 312
 313                case ACCESS_WRITE_VALUE:
 314                        regval = (regval & ~(mask << word_offset)) | data;
 315                        break;
 316                }
 317                *reg = regval;
 318        } else {
 319                switch (ACCESS_READ_MASK(mode)) {
 320                case ACCESS_READ_RAZ:
 321                        regval = 0;
 322                        /* fall through */
 323
 324                case ACCESS_READ_VALUE:
 325                        mmio_data_write(mmio, mask, regval >> word_offset);
 326                }
 327        }
 328}
 329
 330static bool handle_mmio_misc(struct kvm_vcpu *vcpu,
 331                             struct kvm_exit_mmio *mmio, phys_addr_t offset)
 332{
 333        u32 reg;
 334        u32 word_offset = offset & 3;
 335
 336        switch (offset & ~3) {
 337        case 0:                 /* GICD_CTLR */
 338                reg = vcpu->kvm->arch.vgic.enabled;
 339                vgic_reg_access(mmio, &reg, word_offset,
 340                                ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
 341                if (mmio->is_write) {
 342                        vcpu->kvm->arch.vgic.enabled = reg & 1;
 343                        vgic_update_state(vcpu->kvm);
 344                        return true;
 345                }
 346                break;
 347
 348        case 4:                 /* GICD_TYPER */
 349                reg  = (atomic_read(&vcpu->kvm->online_vcpus) - 1) << 5;
 350                reg |= (VGIC_NR_IRQS >> 5) - 1;
 351                vgic_reg_access(mmio, &reg, word_offset,
 352                                ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
 353                break;
 354
 355        case 8:                 /* GICD_IIDR */
 356                reg = (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
 357                vgic_reg_access(mmio, &reg, word_offset,
 358                                ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
 359                break;
 360        }
 361
 362        return false;
 363}
 364
 365static bool handle_mmio_raz_wi(struct kvm_vcpu *vcpu,
 366                               struct kvm_exit_mmio *mmio, phys_addr_t offset)
 367{
 368        vgic_reg_access(mmio, NULL, offset,
 369                        ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
 370        return false;
 371}
 372
 373static bool handle_mmio_set_enable_reg(struct kvm_vcpu *vcpu,
 374                                       struct kvm_exit_mmio *mmio,
 375                                       phys_addr_t offset)
 376{
 377        u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_enabled,
 378                                       vcpu->vcpu_id, offset);
 379        vgic_reg_access(mmio, reg, offset,
 380                        ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
 381        if (mmio->is_write) {
 382                vgic_update_state(vcpu->kvm);
 383                return true;
 384        }
 385
 386        return false;
 387}
 388
 389static bool handle_mmio_clear_enable_reg(struct kvm_vcpu *vcpu,
 390                                         struct kvm_exit_mmio *mmio,
 391                                         phys_addr_t offset)
 392{
 393        u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_enabled,
 394                                       vcpu->vcpu_id, offset);
 395        vgic_reg_access(mmio, reg, offset,
 396                        ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
 397        if (mmio->is_write) {
 398                if (offset < 4) /* Force SGI enabled */
 399                        *reg |= 0xffff;
 400                vgic_retire_disabled_irqs(vcpu);
 401                vgic_update_state(vcpu->kvm);
 402                return true;
 403        }
 404
 405        return false;
 406}
 407
 408static bool handle_mmio_set_pending_reg(struct kvm_vcpu *vcpu,
 409                                        struct kvm_exit_mmio *mmio,
 410                                        phys_addr_t offset)
 411{
 412        u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_state,
 413                                       vcpu->vcpu_id, offset);
 414        vgic_reg_access(mmio, reg, offset,
 415                        ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
 416        if (mmio->is_write) {
 417                vgic_update_state(vcpu->kvm);
 418                return true;
 419        }
 420
 421        return false;
 422}
 423
 424static bool handle_mmio_clear_pending_reg(struct kvm_vcpu *vcpu,
 425                                          struct kvm_exit_mmio *mmio,
 426                                          phys_addr_t offset)
 427{
 428        u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_state,
 429                                       vcpu->vcpu_id, offset);
 430        vgic_reg_access(mmio, reg, offset,
 431                        ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
 432        if (mmio->is_write) {
 433                vgic_update_state(vcpu->kvm);
 434                return true;
 435        }
 436
 437        return false;
 438}
 439
 440static bool handle_mmio_priority_reg(struct kvm_vcpu *vcpu,
 441                                     struct kvm_exit_mmio *mmio,
 442                                     phys_addr_t offset)
 443{
 444        u32 *reg = vgic_bytemap_get_reg(&vcpu->kvm->arch.vgic.irq_priority,
 445                                        vcpu->vcpu_id, offset);
 446        vgic_reg_access(mmio, reg, offset,
 447                        ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
 448        return false;
 449}
 450
 451#define GICD_ITARGETSR_SIZE     32
 452#define GICD_CPUTARGETS_BITS    8
 453#define GICD_IRQS_PER_ITARGETSR (GICD_ITARGETSR_SIZE / GICD_CPUTARGETS_BITS)
 454static u32 vgic_get_target_reg(struct kvm *kvm, int irq)
 455{
 456        struct vgic_dist *dist = &kvm->arch.vgic;
 457        int i;
 458        u32 val = 0;
 459
 460        irq -= VGIC_NR_PRIVATE_IRQS;
 461
 462        for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++)
 463                val |= 1 << (dist->irq_spi_cpu[irq + i] + i * 8);
 464
 465        return val;
 466}
 467
 468static void vgic_set_target_reg(struct kvm *kvm, u32 val, int irq)
 469{
 470        struct vgic_dist *dist = &kvm->arch.vgic;
 471        struct kvm_vcpu *vcpu;
 472        int i, c;
 473        unsigned long *bmap;
 474        u32 target;
 475
 476        irq -= VGIC_NR_PRIVATE_IRQS;
 477
 478        /*
 479         * Pick the LSB in each byte. This ensures we target exactly
 480         * one vcpu per IRQ. If the byte is null, assume we target
 481         * CPU0.
 482         */
 483        for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++) {
 484                int shift = i * GICD_CPUTARGETS_BITS;
 485                target = ffs((val >> shift) & 0xffU);
 486                target = target ? (target - 1) : 0;
 487                dist->irq_spi_cpu[irq + i] = target;
 488                kvm_for_each_vcpu(c, vcpu, kvm) {
 489                        bmap = vgic_bitmap_get_shared_map(&dist->irq_spi_target[c]);
 490                        if (c == target)
 491                                set_bit(irq + i, bmap);
 492                        else
 493                                clear_bit(irq + i, bmap);
 494                }
 495        }
 496}
 497
 498static bool handle_mmio_target_reg(struct kvm_vcpu *vcpu,
 499                                   struct kvm_exit_mmio *mmio,
 500                                   phys_addr_t offset)
 501{
 502        u32 reg;
 503
 504        /* We treat the banked interrupts targets as read-only */
 505        if (offset < 32) {
 506                u32 roreg = 1 << vcpu->vcpu_id;
 507                roreg |= roreg << 8;
 508                roreg |= roreg << 16;
 509
 510                vgic_reg_access(mmio, &roreg, offset,
 511                                ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
 512                return false;
 513        }
 514
 515        reg = vgic_get_target_reg(vcpu->kvm, offset & ~3U);
 516        vgic_reg_access(mmio, &reg, offset,
 517                        ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
 518        if (mmio->is_write) {
 519                vgic_set_target_reg(vcpu->kvm, reg, offset & ~3U);
 520                vgic_update_state(vcpu->kvm);
 521                return true;
 522        }
 523
 524        return false;
 525}
 526
 527static u32 vgic_cfg_expand(u16 val)
 528{
 529        u32 res = 0;
 530        int i;
 531
 532        /*
 533         * Turn a 16bit value like abcd...mnop into a 32bit word
 534         * a0b0c0d0...m0n0o0p0, which is what the HW cfg register is.
 535         */
 536        for (i = 0; i < 16; i++)
 537                res |= ((val >> i) & VGIC_CFG_EDGE) << (2 * i + 1);
 538
 539        return res;
 540}
 541
 542static u16 vgic_cfg_compress(u32 val)
 543{
 544        u16 res = 0;
 545        int i;
 546
 547        /*
 548         * Turn a 32bit word a0b0c0d0...m0n0o0p0 into 16bit value like
 549         * abcd...mnop which is what we really care about.
 550         */
 551        for (i = 0; i < 16; i++)
 552                res |= ((val >> (i * 2 + 1)) & VGIC_CFG_EDGE) << i;
 553
 554        return res;
 555}
 556
 557/*
 558 * The distributor uses 2 bits per IRQ for the CFG register, but the
 559 * LSB is always 0. As such, we only keep the upper bit, and use the
 560 * two above functions to compress/expand the bits
 561 */
 562static bool handle_mmio_cfg_reg(struct kvm_vcpu *vcpu,
 563                                struct kvm_exit_mmio *mmio, phys_addr_t offset)
 564{
 565        u32 val;
 566        u32 *reg;
 567
 568        reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_cfg,
 569                                  vcpu->vcpu_id, offset >> 1);
 570
 571        if (offset & 4)
 572                val = *reg >> 16;
 573        else
 574                val = *reg & 0xffff;
 575
 576        val = vgic_cfg_expand(val);
 577        vgic_reg_access(mmio, &val, offset,
 578                        ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
 579        if (mmio->is_write) {
 580                if (offset < 8) {
 581                        *reg = ~0U; /* Force PPIs/SGIs to 1 */
 582                        return false;
 583                }
 584
 585                val = vgic_cfg_compress(val);
 586                if (offset & 4) {
 587                        *reg &= 0xffff;
 588                        *reg |= val << 16;
 589                } else {
 590                        *reg &= 0xffff << 16;
 591                        *reg |= val;
 592                }
 593        }
 594
 595        return false;
 596}
 597
 598static bool handle_mmio_sgi_reg(struct kvm_vcpu *vcpu,
 599                                struct kvm_exit_mmio *mmio, phys_addr_t offset)
 600{
 601        u32 reg;
 602        vgic_reg_access(mmio, &reg, offset,
 603                        ACCESS_READ_RAZ | ACCESS_WRITE_VALUE);
 604        if (mmio->is_write) {
 605                vgic_dispatch_sgi(vcpu, reg);
 606                vgic_update_state(vcpu->kvm);
 607                return true;
 608        }
 609
 610        return false;
 611}
 612
 613/**
 614 * vgic_unqueue_irqs - move pending IRQs from LRs to the distributor
 615 * @vgic_cpu: Pointer to the vgic_cpu struct holding the LRs
 616 *
 617 * Move any pending IRQs that have already been assigned to LRs back to the
 618 * emulated distributor state so that the complete emulated state can be read
 619 * from the main emulation structures without investigating the LRs.
 620 *
 621 * Note that IRQs in the active state in the LRs get their pending state moved
 622 * to the distributor but the active state stays in the LRs, because we don't
 623 * track the active state on the distributor side.
 624 */
 625static void vgic_unqueue_irqs(struct kvm_vcpu *vcpu)
 626{
 627        struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
 628        struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
 629        int vcpu_id = vcpu->vcpu_id;
 630        int i;
 631
 632        for_each_set_bit(i, vgic_cpu->lr_used, vgic_cpu->nr_lr) {
 633                struct vgic_lr lr = vgic_get_lr(vcpu, i);
 634
 635                /*
 636                 * There are three options for the state bits:
 637                 *
 638                 * 01: pending
 639                 * 10: active
 640                 * 11: pending and active
 641                 *
 642                 * If the LR holds only an active interrupt (not pending) then
 643                 * just leave it alone.
 644                 */
 645                if ((lr.state & LR_STATE_MASK) == LR_STATE_ACTIVE)
 646                        continue;
 647
 648                /*
 649                 * Reestablish the pending state on the distributor and the
 650                 * CPU interface.  It may have already been pending, but that
 651                 * is fine, then we are only setting a few bits that were
 652                 * already set.
 653                 */
 654                vgic_dist_irq_set(vcpu, lr.irq);
 655                if (lr.irq < VGIC_NR_SGIS)
 656                        dist->irq_sgi_sources[vcpu_id][lr.irq] |= 1 << lr.source;
 657                lr.state &= ~LR_STATE_PENDING;
 658                vgic_set_lr(vcpu, i, lr);
 659
 660                /*
 661                 * If there's no state left on the LR (it could still be
 662                 * active), then the LR does not hold any useful info and can
 663                 * be marked as free for other use.
 664                 */
 665                if (!(lr.state & LR_STATE_MASK))
 666                        vgic_retire_lr(i, lr.irq, vcpu);
 667
 668                /* Finally update the VGIC state. */
 669                vgic_update_state(vcpu->kvm);
 670        }
 671}
 672
 673/* Handle reads of GICD_CPENDSGIRn and GICD_SPENDSGIRn */
 674static bool read_set_clear_sgi_pend_reg(struct kvm_vcpu *vcpu,
 675                                        struct kvm_exit_mmio *mmio,
 676                                        phys_addr_t offset)
 677{
 678        struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
 679        int sgi;
 680        int min_sgi = (offset & ~0x3) * 4;
 681        int max_sgi = min_sgi + 3;
 682        int vcpu_id = vcpu->vcpu_id;
 683        u32 reg = 0;
 684
 685        /* Copy source SGIs from distributor side */
 686        for (sgi = min_sgi; sgi <= max_sgi; sgi++) {
 687                int shift = 8 * (sgi - min_sgi);
 688                reg |= (u32)dist->irq_sgi_sources[vcpu_id][sgi] << shift;
 689        }
 690
 691        mmio_data_write(mmio, ~0, reg);
 692        return false;
 693}
 694
 695static bool write_set_clear_sgi_pend_reg(struct kvm_vcpu *vcpu,
 696                                         struct kvm_exit_mmio *mmio,
 697                                         phys_addr_t offset, bool set)
 698{
 699        struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
 700        int sgi;
 701        int min_sgi = (offset & ~0x3) * 4;
 702        int max_sgi = min_sgi + 3;
 703        int vcpu_id = vcpu->vcpu_id;
 704        u32 reg;
 705        bool updated = false;
 706
 707        reg = mmio_data_read(mmio, ~0);
 708
 709        /* Clear pending SGIs on the distributor */
 710        for (sgi = min_sgi; sgi <= max_sgi; sgi++) {
 711                u8 mask = reg >> (8 * (sgi - min_sgi));
 712                if (set) {
 713                        if ((dist->irq_sgi_sources[vcpu_id][sgi] & mask) != mask)
 714                                updated = true;
 715                        dist->irq_sgi_sources[vcpu_id][sgi] |= mask;
 716                } else {
 717                        if (dist->irq_sgi_sources[vcpu_id][sgi] & mask)
 718                                updated = true;
 719                        dist->irq_sgi_sources[vcpu_id][sgi] &= ~mask;
 720                }
 721        }
 722
 723        if (updated)
 724                vgic_update_state(vcpu->kvm);
 725
 726        return updated;
 727}
 728
 729static bool handle_mmio_sgi_set(struct kvm_vcpu *vcpu,
 730                                struct kvm_exit_mmio *mmio,
 731                                phys_addr_t offset)
 732{
 733        if (!mmio->is_write)
 734                return read_set_clear_sgi_pend_reg(vcpu, mmio, offset);
 735        else
 736                return write_set_clear_sgi_pend_reg(vcpu, mmio, offset, true);
 737}
 738
 739static bool handle_mmio_sgi_clear(struct kvm_vcpu *vcpu,
 740                                  struct kvm_exit_mmio *mmio,
 741                                  phys_addr_t offset)
 742{
 743        if (!mmio->is_write)
 744                return read_set_clear_sgi_pend_reg(vcpu, mmio, offset);
 745        else
 746                return write_set_clear_sgi_pend_reg(vcpu, mmio, offset, false);
 747}
 748
 749/*
 750 * I would have liked to use the kvm_bus_io_*() API instead, but it
 751 * cannot cope with banked registers (only the VM pointer is passed
 752 * around, and we need the vcpu). One of these days, someone please
 753 * fix it!
 754 */
 755struct mmio_range {
 756        phys_addr_t base;
 757        unsigned long len;
 758        bool (*handle_mmio)(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio,
 759                            phys_addr_t offset);
 760};
 761
 762static const struct mmio_range vgic_dist_ranges[] = {
 763        {
 764                .base           = GIC_DIST_CTRL,
 765                .len            = 12,
 766                .handle_mmio    = handle_mmio_misc,
 767        },
 768        {
 769                .base           = GIC_DIST_IGROUP,
 770                .len            = VGIC_NR_IRQS / 8,
 771                .handle_mmio    = handle_mmio_raz_wi,
 772        },
 773        {
 774                .base           = GIC_DIST_ENABLE_SET,
 775                .len            = VGIC_NR_IRQS / 8,
 776                .handle_mmio    = handle_mmio_set_enable_reg,
 777        },
 778        {
 779                .base           = GIC_DIST_ENABLE_CLEAR,
 780                .len            = VGIC_NR_IRQS / 8,
 781                .handle_mmio    = handle_mmio_clear_enable_reg,
 782        },
 783        {
 784                .base           = GIC_DIST_PENDING_SET,
 785                .len            = VGIC_NR_IRQS / 8,
 786                .handle_mmio    = handle_mmio_set_pending_reg,
 787        },
 788        {
 789                .base           = GIC_DIST_PENDING_CLEAR,
 790                .len            = VGIC_NR_IRQS / 8,
 791                .handle_mmio    = handle_mmio_clear_pending_reg,
 792        },
 793        {
 794                .base           = GIC_DIST_ACTIVE_SET,
 795                .len            = VGIC_NR_IRQS / 8,
 796                .handle_mmio    = handle_mmio_raz_wi,
 797        },
 798        {
 799                .base           = GIC_DIST_ACTIVE_CLEAR,
 800                .len            = VGIC_NR_IRQS / 8,
 801                .handle_mmio    = handle_mmio_raz_wi,
 802        },
 803        {
 804                .base           = GIC_DIST_PRI,
 805                .len            = VGIC_NR_IRQS,
 806                .handle_mmio    = handle_mmio_priority_reg,
 807        },
 808        {
 809                .base           = GIC_DIST_TARGET,
 810                .len            = VGIC_NR_IRQS,
 811                .handle_mmio    = handle_mmio_target_reg,
 812        },
 813        {
 814                .base           = GIC_DIST_CONFIG,
 815                .len            = VGIC_NR_IRQS / 4,
 816                .handle_mmio    = handle_mmio_cfg_reg,
 817        },
 818        {
 819                .base           = GIC_DIST_SOFTINT,
 820                .len            = 4,
 821                .handle_mmio    = handle_mmio_sgi_reg,
 822        },
 823        {
 824                .base           = GIC_DIST_SGI_PENDING_CLEAR,
 825                .len            = VGIC_NR_SGIS,
 826                .handle_mmio    = handle_mmio_sgi_clear,
 827        },
 828        {
 829                .base           = GIC_DIST_SGI_PENDING_SET,
 830                .len            = VGIC_NR_SGIS,
 831                .handle_mmio    = handle_mmio_sgi_set,
 832        },
 833        {}
 834};
 835
 836static const
 837struct mmio_range *find_matching_range(const struct mmio_range *ranges,
 838                                       struct kvm_exit_mmio *mmio,
 839                                       phys_addr_t offset)
 840{
 841        const struct mmio_range *r = ranges;
 842
 843        while (r->len) {
 844                if (offset >= r->base &&
 845                    (offset + mmio->len) <= (r->base + r->len))
 846                        return r;
 847                r++;
 848        }
 849
 850        return NULL;
 851}
 852
 853/**
 854 * vgic_handle_mmio - handle an in-kernel MMIO access
 855 * @vcpu:       pointer to the vcpu performing the access
 856 * @run:        pointer to the kvm_run structure
 857 * @mmio:       pointer to the data describing the access
 858 *
 859 * returns true if the MMIO access has been performed in kernel space,
 860 * and false if it needs to be emulated in user space.
 861 */
 862bool vgic_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run,
 863                      struct kvm_exit_mmio *mmio)
 864{
 865        const struct mmio_range *range;
 866        struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
 867        unsigned long base = dist->vgic_dist_base;
 868        bool updated_state;
 869        unsigned long offset;
 870
 871        if (!irqchip_in_kernel(vcpu->kvm) ||
 872            mmio->phys_addr < base ||
 873            (mmio->phys_addr + mmio->len) > (base + KVM_VGIC_V2_DIST_SIZE))
 874                return false;
 875
 876        /* We don't support ldrd / strd or ldm / stm to the emulated vgic */
 877        if (mmio->len > 4) {
 878                kvm_inject_dabt(vcpu, mmio->phys_addr);
 879                return true;
 880        }
 881
 882        offset = mmio->phys_addr - base;
 883        range = find_matching_range(vgic_dist_ranges, mmio, offset);
 884        if (unlikely(!range || !range->handle_mmio)) {
 885                pr_warn("Unhandled access %d %08llx %d\n",
 886                        mmio->is_write, mmio->phys_addr, mmio->len);
 887                return false;
 888        }
 889
 890        spin_lock(&vcpu->kvm->arch.vgic.lock);
 891        offset = mmio->phys_addr - range->base - base;
 892        updated_state = range->handle_mmio(vcpu, mmio, offset);
 893        spin_unlock(&vcpu->kvm->arch.vgic.lock);
 894        kvm_prepare_mmio(run, mmio);
 895        kvm_handle_mmio_return(vcpu, run);
 896
 897        if (updated_state)
 898                vgic_kick_vcpus(vcpu->kvm);
 899
 900        return true;
 901}
 902
 903static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg)
 904{
 905        struct kvm *kvm = vcpu->kvm;
 906        struct vgic_dist *dist = &kvm->arch.vgic;
 907        int nrcpus = atomic_read(&kvm->online_vcpus);
 908        u8 target_cpus;
 909        int sgi, mode, c, vcpu_id;
 910
 911        vcpu_id = vcpu->vcpu_id;
 912
 913        sgi = reg & 0xf;
 914        target_cpus = (reg >> 16) & 0xff;
 915        mode = (reg >> 24) & 3;
 916
 917        switch (mode) {
 918        case 0:
 919                if (!target_cpus)
 920                        return;
 921                break;
 922
 923        case 1:
 924                target_cpus = ((1 << nrcpus) - 1) & ~(1 << vcpu_id) & 0xff;
 925                break;
 926
 927        case 2:
 928                target_cpus = 1 << vcpu_id;
 929                break;
 930        }
 931
 932        kvm_for_each_vcpu(c, vcpu, kvm) {
 933                if (target_cpus & 1) {
 934                        /* Flag the SGI as pending */
 935                        vgic_dist_irq_set(vcpu, sgi);
 936                        dist->irq_sgi_sources[c][sgi] |= 1 << vcpu_id;
 937                        kvm_debug("SGI%d from CPU%d to CPU%d\n", sgi, vcpu_id, c);
 938                }
 939
 940                target_cpus >>= 1;
 941        }
 942}
 943
 944static int compute_pending_for_cpu(struct kvm_vcpu *vcpu)
 945{
 946        struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
 947        unsigned long *pending, *enabled, *pend_percpu, *pend_shared;
 948        unsigned long pending_private, pending_shared;
 949        int vcpu_id;
 950
 951        vcpu_id = vcpu->vcpu_id;
 952        pend_percpu = vcpu->arch.vgic_cpu.pending_percpu;
 953        pend_shared = vcpu->arch.vgic_cpu.pending_shared;
 954
 955        pending = vgic_bitmap_get_cpu_map(&dist->irq_state, vcpu_id);
 956        enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id);
 957        bitmap_and(pend_percpu, pending, enabled, VGIC_NR_PRIVATE_IRQS);
 958
 959        pending = vgic_bitmap_get_shared_map(&dist->irq_state);
 960        enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled);
 961        bitmap_and(pend_shared, pending, enabled, VGIC_NR_SHARED_IRQS);
 962        bitmap_and(pend_shared, pend_shared,
 963                   vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]),
 964                   VGIC_NR_SHARED_IRQS);
 965
 966        pending_private = find_first_bit(pend_percpu, VGIC_NR_PRIVATE_IRQS);
 967        pending_shared = find_first_bit(pend_shared, VGIC_NR_SHARED_IRQS);
 968        return (pending_private < VGIC_NR_PRIVATE_IRQS ||
 969                pending_shared < VGIC_NR_SHARED_IRQS);
 970}
 971
 972/*
 973 * Update the interrupt state and determine which CPUs have pending
 974 * interrupts. Must be called with distributor lock held.
 975 */
 976static void vgic_update_state(struct kvm *kvm)
 977{
 978        struct vgic_dist *dist = &kvm->arch.vgic;
 979        struct kvm_vcpu *vcpu;
 980        int c;
 981
 982        if (!dist->enabled) {
 983                set_bit(0, &dist->irq_pending_on_cpu);
 984                return;
 985        }
 986
 987        kvm_for_each_vcpu(c, vcpu, kvm) {
 988                if (compute_pending_for_cpu(vcpu)) {
 989                        pr_debug("CPU%d has pending interrupts\n", c);
 990                        set_bit(c, &dist->irq_pending_on_cpu);
 991                }
 992        }
 993}
 994
 995static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr)
 996{
 997        return vgic_ops->get_lr(vcpu, lr);
 998}
 999
1000static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr,
1001                               struct vgic_lr vlr)
1002{
1003        vgic_ops->set_lr(vcpu, lr, vlr);
1004}
1005
1006static void vgic_sync_lr_elrsr(struct kvm_vcpu *vcpu, int lr,
1007                               struct vgic_lr vlr)
1008{
1009        vgic_ops->sync_lr_elrsr(vcpu, lr, vlr);
1010}
1011
1012static inline u64 vgic_get_elrsr(struct kvm_vcpu *vcpu)
1013{
1014        return vgic_ops->get_elrsr(vcpu);
1015}
1016
1017static inline u64 vgic_get_eisr(struct kvm_vcpu *vcpu)
1018{
1019        return vgic_ops->get_eisr(vcpu);
1020}
1021
1022static inline u32 vgic_get_interrupt_status(struct kvm_vcpu *vcpu)
1023{
1024        return vgic_ops->get_interrupt_status(vcpu);
1025}
1026
1027static inline void vgic_enable_underflow(struct kvm_vcpu *vcpu)
1028{
1029        vgic_ops->enable_underflow(vcpu);
1030}
1031
1032static inline void vgic_disable_underflow(struct kvm_vcpu *vcpu)
1033{
1034        vgic_ops->disable_underflow(vcpu);
1035}
1036
1037static inline void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
1038{
1039        vgic_ops->get_vmcr(vcpu, vmcr);
1040}
1041
1042static void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
1043{
1044        vgic_ops->set_vmcr(vcpu, vmcr);
1045}
1046
1047static inline void vgic_enable(struct kvm_vcpu *vcpu)
1048{
1049        vgic_ops->enable(vcpu);
1050}
1051
1052static void vgic_retire_lr(int lr_nr, int irq, struct kvm_vcpu *vcpu)
1053{
1054        struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1055        struct vgic_lr vlr = vgic_get_lr(vcpu, lr_nr);
1056
1057        vlr.state = 0;
1058        vgic_set_lr(vcpu, lr_nr, vlr);
1059        clear_bit(lr_nr, vgic_cpu->lr_used);
1060        vgic_cpu->vgic_irq_lr_map[irq] = LR_EMPTY;
1061}
1062
1063/*
1064 * An interrupt may have been disabled after being made pending on the
1065 * CPU interface (the classic case is a timer running while we're
1066 * rebooting the guest - the interrupt would kick as soon as the CPU
1067 * interface gets enabled, with deadly consequences).
1068 *
1069 * The solution is to examine already active LRs, and check the
1070 * interrupt is still enabled. If not, just retire it.
1071 */
1072static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu)
1073{
1074        struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1075        int lr;
1076
1077        for_each_set_bit(lr, vgic_cpu->lr_used, vgic->nr_lr) {
1078                struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
1079
1080                if (!vgic_irq_is_enabled(vcpu, vlr.irq)) {
1081                        vgic_retire_lr(lr, vlr.irq, vcpu);
1082                        if (vgic_irq_is_active(vcpu, vlr.irq))
1083                                vgic_irq_clear_active(vcpu, vlr.irq);
1084                }
1085        }
1086}
1087
1088/*
1089 * Queue an interrupt to a CPU virtual interface. Return true on success,
1090 * or false if it wasn't possible to queue it.
1091 */
1092static bool vgic_queue_irq(struct kvm_vcpu *vcpu, u8 sgi_source_id, int irq)
1093{
1094        struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1095        struct vgic_lr vlr;
1096        int lr;
1097
1098        /* Sanitize the input... */
1099        BUG_ON(sgi_source_id & ~7);
1100        BUG_ON(sgi_source_id && irq >= VGIC_NR_SGIS);
1101        BUG_ON(irq >= VGIC_NR_IRQS);
1102
1103        kvm_debug("Queue IRQ%d\n", irq);
1104
1105        lr = vgic_cpu->vgic_irq_lr_map[irq];
1106
1107        /* Do we have an active interrupt for the same CPUID? */
1108        if (lr != LR_EMPTY) {
1109                vlr = vgic_get_lr(vcpu, lr);
1110                if (vlr.source == sgi_source_id) {
1111                        kvm_debug("LR%d piggyback for IRQ%d\n", lr, vlr.irq);
1112                        BUG_ON(!test_bit(lr, vgic_cpu->lr_used));
1113                        vlr.state |= LR_STATE_PENDING;
1114                        vgic_set_lr(vcpu, lr, vlr);
1115                        return true;
1116                }
1117        }
1118
1119        /* Try to use another LR for this interrupt */
1120        lr = find_first_zero_bit((unsigned long *)vgic_cpu->lr_used,
1121                               vgic->nr_lr);
1122        if (lr >= vgic->nr_lr)
1123                return false;
1124
1125        kvm_debug("LR%d allocated for IRQ%d %x\n", lr, irq, sgi_source_id);
1126        vgic_cpu->vgic_irq_lr_map[irq] = lr;
1127        set_bit(lr, vgic_cpu->lr_used);
1128
1129        vlr.irq = irq;
1130        vlr.source = sgi_source_id;
1131        vlr.state = LR_STATE_PENDING;
1132        if (!vgic_irq_is_edge(vcpu, irq))
1133                vlr.state |= LR_EOI_INT;
1134
1135        vgic_set_lr(vcpu, lr, vlr);
1136
1137        return true;
1138}
1139
1140static bool vgic_queue_sgi(struct kvm_vcpu *vcpu, int irq)
1141{
1142        struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1143        unsigned long sources;
1144        int vcpu_id = vcpu->vcpu_id;
1145        int c;
1146
1147        sources = dist->irq_sgi_sources[vcpu_id][irq];
1148
1149        for_each_set_bit(c, &sources, VGIC_MAX_CPUS) {
1150                if (vgic_queue_irq(vcpu, c, irq))
1151                        clear_bit(c, &sources);
1152        }
1153
1154        dist->irq_sgi_sources[vcpu_id][irq] = sources;
1155
1156        /*
1157         * If the sources bitmap has been cleared it means that we
1158         * could queue all the SGIs onto link registers (see the
1159         * clear_bit above), and therefore we are done with them in
1160         * our emulated gic and can get rid of them.
1161         */
1162        if (!sources) {
1163                vgic_dist_irq_clear(vcpu, irq);
1164                vgic_cpu_irq_clear(vcpu, irq);
1165                return true;
1166        }
1167
1168        return false;
1169}
1170
1171static bool vgic_queue_hwirq(struct kvm_vcpu *vcpu, int irq)
1172{
1173        if (vgic_irq_is_active(vcpu, irq))
1174                return true; /* level interrupt, already queued */
1175
1176        if (vgic_queue_irq(vcpu, 0, irq)) {
1177                if (vgic_irq_is_edge(vcpu, irq)) {
1178                        vgic_dist_irq_clear(vcpu, irq);
1179                        vgic_cpu_irq_clear(vcpu, irq);
1180                } else {
1181                        vgic_irq_set_active(vcpu, irq);
1182                }
1183
1184                return true;
1185        }
1186
1187        return false;
1188}
1189
1190/*
1191 * Fill the list registers with pending interrupts before running the
1192 * guest.
1193 */
1194static void __kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
1195{
1196        struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1197        struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1198        int i, vcpu_id;
1199        int overflow = 0;
1200
1201        vcpu_id = vcpu->vcpu_id;
1202
1203        /*
1204         * We may not have any pending interrupt, or the interrupts
1205         * may have been serviced from another vcpu. In all cases,
1206         * move along.
1207         */
1208        if (!kvm_vgic_vcpu_pending_irq(vcpu)) {
1209                pr_debug("CPU%d has no pending interrupt\n", vcpu_id);
1210                goto epilog;
1211        }
1212
1213        /* SGIs */
1214        for_each_set_bit(i, vgic_cpu->pending_percpu, VGIC_NR_SGIS) {
1215                if (!vgic_queue_sgi(vcpu, i))
1216                        overflow = 1;
1217        }
1218
1219        /* PPIs */
1220        for_each_set_bit_from(i, vgic_cpu->pending_percpu, VGIC_NR_PRIVATE_IRQS) {
1221                if (!vgic_queue_hwirq(vcpu, i))
1222                        overflow = 1;
1223        }
1224
1225        /* SPIs */
1226        for_each_set_bit(i, vgic_cpu->pending_shared, VGIC_NR_SHARED_IRQS) {
1227                if (!vgic_queue_hwirq(vcpu, i + VGIC_NR_PRIVATE_IRQS))
1228                        overflow = 1;
1229        }
1230
1231epilog:
1232        if (overflow) {
1233                vgic_enable_underflow(vcpu);
1234        } else {
1235                vgic_disable_underflow(vcpu);
1236                /*
1237                 * We're about to run this VCPU, and we've consumed
1238                 * everything the distributor had in store for
1239                 * us. Claim we don't have anything pending. We'll
1240                 * adjust that if needed while exiting.
1241                 */
1242                clear_bit(vcpu_id, &dist->irq_pending_on_cpu);
1243        }
1244}
1245
1246static bool vgic_process_maintenance(struct kvm_vcpu *vcpu)
1247{
1248        u32 status = vgic_get_interrupt_status(vcpu);
1249        bool level_pending = false;
1250
1251        kvm_debug("STATUS = %08x\n", status);
1252
1253        if (status & INT_STATUS_EOI) {
1254                /*
1255                 * Some level interrupts have been EOIed. Clear their
1256                 * active bit.
1257                 */
1258                u64 eisr = vgic_get_eisr(vcpu);
1259                unsigned long *eisr_ptr = (unsigned long *)&eisr;
1260                int lr;
1261
1262                for_each_set_bit(lr, eisr_ptr, vgic->nr_lr) {
1263                        struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
1264
1265                        vgic_irq_clear_active(vcpu, vlr.irq);
1266                        WARN_ON(vlr.state & LR_STATE_MASK);
1267                        vlr.state = 0;
1268                        vgic_set_lr(vcpu, lr, vlr);
1269
1270                        /* Any additional pending interrupt? */
1271                        if (vgic_dist_irq_is_pending(vcpu, vlr.irq)) {
1272                                vgic_cpu_irq_set(vcpu, vlr.irq);
1273                                level_pending = true;
1274                        } else {
1275                                vgic_cpu_irq_clear(vcpu, vlr.irq);
1276                        }
1277
1278                        /*
1279                         * Despite being EOIed, the LR may not have
1280                         * been marked as empty.
1281                         */
1282                        vgic_sync_lr_elrsr(vcpu, lr, vlr);
1283                }
1284        }
1285
1286        if (status & INT_STATUS_UNDERFLOW)
1287                vgic_disable_underflow(vcpu);
1288
1289        return level_pending;
1290}
1291
1292/*
1293 * Sync back the VGIC state after a guest run. The distributor lock is
1294 * needed so we don't get preempted in the middle of the state processing.
1295 */
1296static void __kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1297{
1298        struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1299        struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1300        u64 elrsr;
1301        unsigned long *elrsr_ptr;
1302        int lr, pending;
1303        bool level_pending;
1304
1305        level_pending = vgic_process_maintenance(vcpu);
1306        elrsr = vgic_get_elrsr(vcpu);
1307        elrsr_ptr = (unsigned long *)&elrsr;
1308
1309        /* Clear mappings for empty LRs */
1310        for_each_set_bit(lr, elrsr_ptr, vgic->nr_lr) {
1311                struct vgic_lr vlr;
1312
1313                if (!test_and_clear_bit(lr, vgic_cpu->lr_used))
1314                        continue;
1315
1316                vlr = vgic_get_lr(vcpu, lr);
1317
1318                BUG_ON(vlr.irq >= VGIC_NR_IRQS);
1319                vgic_cpu->vgic_irq_lr_map[vlr.irq] = LR_EMPTY;
1320        }
1321
1322        /* Check if we still have something up our sleeve... */
1323        pending = find_first_zero_bit(elrsr_ptr, vgic->nr_lr);
1324        if (level_pending || pending < vgic->nr_lr)
1325                set_bit(vcpu->vcpu_id, &dist->irq_pending_on_cpu);
1326}
1327
1328void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
1329{
1330        struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1331
1332        if (!irqchip_in_kernel(vcpu->kvm))
1333                return;
1334
1335        spin_lock(&dist->lock);
1336        __kvm_vgic_flush_hwstate(vcpu);
1337        spin_unlock(&dist->lock);
1338}
1339
1340void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1341{
1342        struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1343
1344        if (!irqchip_in_kernel(vcpu->kvm))
1345                return;
1346
1347        spin_lock(&dist->lock);
1348        __kvm_vgic_sync_hwstate(vcpu);
1349        spin_unlock(&dist->lock);
1350}
1351
1352int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
1353{
1354        struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1355
1356        if (!irqchip_in_kernel(vcpu->kvm))
1357                return 0;
1358
1359        return test_bit(vcpu->vcpu_id, &dist->irq_pending_on_cpu);
1360}
1361
1362static void vgic_kick_vcpus(struct kvm *kvm)
1363{
1364        struct kvm_vcpu *vcpu;
1365        int c;
1366
1367        /*
1368         * We've injected an interrupt, time to find out who deserves
1369         * a good kick...
1370         */
1371        kvm_for_each_vcpu(c, vcpu, kvm) {
1372                if (kvm_vgic_vcpu_pending_irq(vcpu))
1373                        kvm_vcpu_kick(vcpu);
1374        }
1375}
1376
1377static int vgic_validate_injection(struct kvm_vcpu *vcpu, int irq, int level)
1378{
1379        int is_edge = vgic_irq_is_edge(vcpu, irq);
1380        int state = vgic_dist_irq_is_pending(vcpu, irq);
1381
1382        /*
1383         * Only inject an interrupt if:
1384         * - edge triggered and we have a rising edge
1385         * - level triggered and we change level
1386         */
1387        if (is_edge)
1388                return level > state;
1389        else
1390                return level != state;
1391}
1392
1393static bool vgic_update_irq_state(struct kvm *kvm, int cpuid,
1394                                  unsigned int irq_num, bool level)
1395{
1396        struct vgic_dist *dist = &kvm->arch.vgic;
1397        struct kvm_vcpu *vcpu;
1398        int is_edge, is_level;
1399        int enabled;
1400        bool ret = true;
1401
1402        spin_lock(&dist->lock);
1403
1404        vcpu = kvm_get_vcpu(kvm, cpuid);
1405        is_edge = vgic_irq_is_edge(vcpu, irq_num);
1406        is_level = !is_edge;
1407
1408        if (!vgic_validate_injection(vcpu, irq_num, level)) {
1409                ret = false;
1410                goto out;
1411        }
1412
1413        if (irq_num >= VGIC_NR_PRIVATE_IRQS) {
1414                cpuid = dist->irq_spi_cpu[irq_num - VGIC_NR_PRIVATE_IRQS];
1415                vcpu = kvm_get_vcpu(kvm, cpuid);
1416        }
1417
1418        kvm_debug("Inject IRQ%d level %d CPU%d\n", irq_num, level, cpuid);
1419
1420        if (level)
1421                vgic_dist_irq_set(vcpu, irq_num);
1422        else
1423                vgic_dist_irq_clear(vcpu, irq_num);
1424
1425        enabled = vgic_irq_is_enabled(vcpu, irq_num);
1426
1427        if (!enabled) {
1428                ret = false;
1429                goto out;
1430        }
1431
1432        if (is_level && vgic_irq_is_active(vcpu, irq_num)) {
1433                /*
1434                 * Level interrupt in progress, will be picked up
1435                 * when EOId.
1436                 */
1437                ret = false;
1438                goto out;
1439        }
1440
1441        if (level) {
1442                vgic_cpu_irq_set(vcpu, irq_num);
1443                set_bit(cpuid, &dist->irq_pending_on_cpu);
1444        }
1445
1446out:
1447        spin_unlock(&dist->lock);
1448
1449        return ret;
1450}
1451
1452/**
1453 * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic
1454 * @kvm:     The VM structure pointer
1455 * @cpuid:   The CPU for PPIs
1456 * @irq_num: The IRQ number that is assigned to the device
1457 * @level:   Edge-triggered:  true:  to trigger the interrupt
1458 *                            false: to ignore the call
1459 *           Level-sensitive  true:  activates an interrupt
1460 *                            false: deactivates an interrupt
1461 *
1462 * The GIC is not concerned with devices being active-LOW or active-HIGH for
1463 * level-sensitive interrupts.  You can think of the level parameter as 1
1464 * being HIGH and 0 being LOW and all devices being active-HIGH.
1465 */
1466int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int irq_num,
1467                        bool level)
1468{
1469        if (vgic_update_irq_state(kvm, cpuid, irq_num, level))
1470                vgic_kick_vcpus(kvm);
1471
1472        return 0;
1473}
1474
1475static irqreturn_t vgic_maintenance_handler(int irq, void *data)
1476{
1477        /*
1478         * We cannot rely on the vgic maintenance interrupt to be
1479         * delivered synchronously. This means we can only use it to
1480         * exit the VM, and we perform the handling of EOIed
1481         * interrupts on the exit path (see vgic_process_maintenance).
1482         */
1483        return IRQ_HANDLED;
1484}
1485
1486/**
1487 * kvm_vgic_vcpu_init - Initialize per-vcpu VGIC state
1488 * @vcpu: pointer to the vcpu struct
1489 *
1490 * Initialize the vgic_cpu struct and vgic_dist struct fields pertaining to
1491 * this vcpu and enable the VGIC for this VCPU
1492 */
1493int kvm_vgic_vcpu_init(struct kvm_vcpu *vcpu)
1494{
1495        struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1496        struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1497        int i;
1498
1499        if (vcpu->vcpu_id >= VGIC_MAX_CPUS)
1500                return -EBUSY;
1501
1502        for (i = 0; i < VGIC_NR_IRQS; i++) {
1503                if (i < VGIC_NR_PPIS)
1504                        vgic_bitmap_set_irq_val(&dist->irq_enabled,
1505                                                vcpu->vcpu_id, i, 1);
1506                if (i < VGIC_NR_PRIVATE_IRQS)
1507                        vgic_bitmap_set_irq_val(&dist->irq_cfg,
1508                                                vcpu->vcpu_id, i, VGIC_CFG_EDGE);
1509
1510                vgic_cpu->vgic_irq_lr_map[i] = LR_EMPTY;
1511        }
1512
1513        /*
1514         * Store the number of LRs per vcpu, so we don't have to go
1515         * all the way to the distributor structure to find out. Only
1516         * assembly code should use this one.
1517         */
1518        vgic_cpu->nr_lr = vgic->nr_lr;
1519
1520        vgic_enable(vcpu);
1521
1522        return 0;
1523}
1524
1525static void vgic_init_maintenance_interrupt(void *info)
1526{
1527        enable_percpu_irq(vgic->maint_irq, 0);
1528}
1529
1530static int vgic_cpu_notify(struct notifier_block *self,
1531                           unsigned long action, void *cpu)
1532{
1533        switch (action) {
1534        case CPU_STARTING:
1535        case CPU_STARTING_FROZEN:
1536                vgic_init_maintenance_interrupt(NULL);
1537                break;
1538        case CPU_DYING:
1539        case CPU_DYING_FROZEN:
1540                disable_percpu_irq(vgic->maint_irq);
1541                break;
1542        }
1543
1544        return NOTIFY_OK;
1545}
1546
1547static struct notifier_block vgic_cpu_nb = {
1548        .notifier_call = vgic_cpu_notify,
1549};
1550
1551static const struct of_device_id vgic_ids[] = {
1552        { .compatible = "arm,cortex-a15-gic", .data = vgic_v2_probe, },
1553        { .compatible = "arm,gic-v3", .data = vgic_v3_probe, },
1554        {},
1555};
1556
1557int kvm_vgic_hyp_init(void)
1558{
1559        const struct of_device_id *matched_id;
1560        int (*vgic_probe)(struct device_node *,const struct vgic_ops **,
1561                          const struct vgic_params **);
1562        struct device_node *vgic_node;
1563        int ret;
1564
1565        vgic_node = of_find_matching_node_and_match(NULL,
1566                                                    vgic_ids, &matched_id);
1567        if (!vgic_node) {
1568                kvm_err("error: no compatible GIC node found\n");
1569                return -ENODEV;
1570        }
1571
1572        vgic_probe = matched_id->data;
1573        ret = vgic_probe(vgic_node, &vgic_ops, &vgic);
1574        if (ret)
1575                return ret;
1576
1577        ret = request_percpu_irq(vgic->maint_irq, vgic_maintenance_handler,
1578                                 "vgic", kvm_get_running_vcpus());
1579        if (ret) {
1580                kvm_err("Cannot register interrupt %d\n", vgic->maint_irq);
1581                return ret;
1582        }
1583
1584        ret = __register_cpu_notifier(&vgic_cpu_nb);
1585        if (ret) {
1586                kvm_err("Cannot register vgic CPU notifier\n");
1587                goto out_free_irq;
1588        }
1589
1590        /* Callback into for arch code for setup */
1591        vgic_arch_setup(vgic);
1592
1593        on_each_cpu(vgic_init_maintenance_interrupt, NULL, 1);
1594
1595        return 0;
1596
1597out_free_irq:
1598        free_percpu_irq(vgic->maint_irq, kvm_get_running_vcpus());
1599        return ret;
1600}
1601
1602/**
1603 * kvm_vgic_init - Initialize global VGIC state before running any VCPUs
1604 * @kvm: pointer to the kvm struct
1605 *
1606 * Map the virtual CPU interface into the VM before running any VCPUs.  We
1607 * can't do this at creation time, because user space must first set the
1608 * virtual CPU interface address in the guest physical address space.  Also
1609 * initialize the ITARGETSRn regs to 0 on the emulated distributor.
1610 */
1611int kvm_vgic_init(struct kvm *kvm)
1612{
1613        int ret = 0, i;
1614
1615        if (!irqchip_in_kernel(kvm))
1616                return 0;
1617
1618        mutex_lock(&kvm->lock);
1619
1620        if (vgic_initialized(kvm))
1621                goto out;
1622
1623        if (IS_VGIC_ADDR_UNDEF(kvm->arch.vgic.vgic_dist_base) ||
1624            IS_VGIC_ADDR_UNDEF(kvm->arch.vgic.vgic_cpu_base)) {
1625                kvm_err("Need to set vgic cpu and dist addresses first\n");
1626                ret = -ENXIO;
1627                goto out;
1628        }
1629
1630        ret = kvm_phys_addr_ioremap(kvm, kvm->arch.vgic.vgic_cpu_base,
1631                                    vgic->vcpu_base, KVM_VGIC_V2_CPU_SIZE);
1632        if (ret) {
1633                kvm_err("Unable to remap VGIC CPU to VCPU\n");
1634                goto out;
1635        }
1636
1637        for (i = VGIC_NR_PRIVATE_IRQS; i < VGIC_NR_IRQS; i += 4)
1638                vgic_set_target_reg(kvm, 0, i);
1639
1640        kvm->arch.vgic.ready = true;
1641out:
1642        mutex_unlock(&kvm->lock);
1643        return ret;
1644}
1645
1646int kvm_vgic_create(struct kvm *kvm)
1647{
1648        int i, vcpu_lock_idx = -1, ret = 0;
1649        struct kvm_vcpu *vcpu;
1650
1651        mutex_lock(&kvm->lock);
1652
1653        if (kvm->arch.vgic.vctrl_base) {
1654                ret = -EEXIST;
1655                goto out;
1656        }
1657
1658        /*
1659         * Any time a vcpu is run, vcpu_load is called which tries to grab the
1660         * vcpu->mutex.  By grabbing the vcpu->mutex of all VCPUs we ensure
1661         * that no other VCPUs are run while we create the vgic.
1662         */
1663        kvm_for_each_vcpu(i, vcpu, kvm) {
1664                if (!mutex_trylock(&vcpu->mutex))
1665                        goto out_unlock;
1666                vcpu_lock_idx = i;
1667        }
1668
1669        kvm_for_each_vcpu(i, vcpu, kvm) {
1670                if (vcpu->arch.has_run_once) {
1671                        ret = -EBUSY;
1672                        goto out_unlock;
1673                }
1674        }
1675
1676        spin_lock_init(&kvm->arch.vgic.lock);
1677        kvm->arch.vgic.in_kernel = true;
1678        kvm->arch.vgic.vctrl_base = vgic->vctrl_base;
1679        kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF;
1680        kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF;
1681
1682out_unlock:
1683        for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) {
1684                vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx);
1685                mutex_unlock(&vcpu->mutex);
1686        }
1687
1688out:
1689        mutex_unlock(&kvm->lock);
1690        return ret;
1691}
1692
1693static bool vgic_ioaddr_overlap(struct kvm *kvm)
1694{
1695        phys_addr_t dist = kvm->arch.vgic.vgic_dist_base;
1696        phys_addr_t cpu = kvm->arch.vgic.vgic_cpu_base;
1697
1698        if (IS_VGIC_ADDR_UNDEF(dist) || IS_VGIC_ADDR_UNDEF(cpu))
1699                return 0;
1700        if ((dist <= cpu && dist + KVM_VGIC_V2_DIST_SIZE > cpu) ||
1701            (cpu <= dist && cpu + KVM_VGIC_V2_CPU_SIZE > dist))
1702                return -EBUSY;
1703        return 0;
1704}
1705
1706static int vgic_ioaddr_assign(struct kvm *kvm, phys_addr_t *ioaddr,
1707                              phys_addr_t addr, phys_addr_t size)
1708{
1709        int ret;
1710
1711        if (addr & ~KVM_PHYS_MASK)
1712                return -E2BIG;
1713
1714        if (addr & (SZ_4K - 1))
1715                return -EINVAL;
1716
1717        if (!IS_VGIC_ADDR_UNDEF(*ioaddr))
1718                return -EEXIST;
1719        if (addr + size < addr)
1720                return -EINVAL;
1721
1722        *ioaddr = addr;
1723        ret = vgic_ioaddr_overlap(kvm);
1724        if (ret)
1725                *ioaddr = VGIC_ADDR_UNDEF;
1726
1727        return ret;
1728}
1729
1730/**
1731 * kvm_vgic_addr - set or get vgic VM base addresses
1732 * @kvm:   pointer to the vm struct
1733 * @type:  the VGIC addr type, one of KVM_VGIC_V2_ADDR_TYPE_XXX
1734 * @addr:  pointer to address value
1735 * @write: if true set the address in the VM address space, if false read the
1736 *          address
1737 *
1738 * Set or get the vgic base addresses for the distributor and the virtual CPU
1739 * interface in the VM physical address space.  These addresses are properties
1740 * of the emulated core/SoC and therefore user space initially knows this
1741 * information.
1742 */
1743int kvm_vgic_addr(struct kvm *kvm, unsigned long type, u64 *addr, bool write)
1744{
1745        int r = 0;
1746        struct vgic_dist *vgic = &kvm->arch.vgic;
1747
1748        mutex_lock(&kvm->lock);
1749        switch (type) {
1750        case KVM_VGIC_V2_ADDR_TYPE_DIST:
1751                if (write) {
1752                        r = vgic_ioaddr_assign(kvm, &vgic->vgic_dist_base,
1753                                               *addr, KVM_VGIC_V2_DIST_SIZE);
1754                } else {
1755                        *addr = vgic->vgic_dist_base;
1756                }
1757                break;
1758        case KVM_VGIC_V2_ADDR_TYPE_CPU:
1759                if (write) {
1760                        r = vgic_ioaddr_assign(kvm, &vgic->vgic_cpu_base,
1761                                               *addr, KVM_VGIC_V2_CPU_SIZE);
1762                } else {
1763                        *addr = vgic->vgic_cpu_base;
1764                }
1765                break;
1766        default:
1767                r = -ENODEV;
1768        }
1769
1770        mutex_unlock(&kvm->lock);
1771        return r;
1772}
1773
1774static bool handle_cpu_mmio_misc(struct kvm_vcpu *vcpu,
1775                                 struct kvm_exit_mmio *mmio, phys_addr_t offset)
1776{
1777        bool updated = false;
1778        struct vgic_vmcr vmcr;
1779        u32 *vmcr_field;
1780        u32 reg;
1781
1782        vgic_get_vmcr(vcpu, &vmcr);
1783
1784        switch (offset & ~0x3) {
1785        case GIC_CPU_CTRL:
1786                vmcr_field = &vmcr.ctlr;
1787                break;
1788        case GIC_CPU_PRIMASK:
1789                vmcr_field = &vmcr.pmr;
1790                break;
1791        case GIC_CPU_BINPOINT:
1792                vmcr_field = &vmcr.bpr;
1793                break;
1794        case GIC_CPU_ALIAS_BINPOINT:
1795                vmcr_field = &vmcr.abpr;
1796                break;
1797        default:
1798                BUG();
1799        }
1800
1801        if (!mmio->is_write) {
1802                reg = *vmcr_field;
1803                mmio_data_write(mmio, ~0, reg);
1804        } else {
1805                reg = mmio_data_read(mmio, ~0);
1806                if (reg != *vmcr_field) {
1807                        *vmcr_field = reg;
1808                        vgic_set_vmcr(vcpu, &vmcr);
1809                        updated = true;
1810                }
1811        }
1812        return updated;
1813}
1814
1815static bool handle_mmio_abpr(struct kvm_vcpu *vcpu,
1816                             struct kvm_exit_mmio *mmio, phys_addr_t offset)
1817{
1818        return handle_cpu_mmio_misc(vcpu, mmio, GIC_CPU_ALIAS_BINPOINT);
1819}
1820
1821static bool handle_cpu_mmio_ident(struct kvm_vcpu *vcpu,
1822                                  struct kvm_exit_mmio *mmio,
1823                                  phys_addr_t offset)
1824{
1825        u32 reg;
1826
1827        if (mmio->is_write)
1828                return false;
1829
1830        /* GICC_IIDR */
1831        reg = (PRODUCT_ID_KVM << 20) |
1832              (GICC_ARCH_VERSION_V2 << 16) |
1833              (IMPLEMENTER_ARM << 0);
1834        mmio_data_write(mmio, ~0, reg);
1835        return false;
1836}
1837
1838/*
1839 * CPU Interface Register accesses - these are not accessed by the VM, but by
1840 * user space for saving and restoring VGIC state.
1841 */
1842static const struct mmio_range vgic_cpu_ranges[] = {
1843        {
1844                .base           = GIC_CPU_CTRL,
1845                .len            = 12,
1846                .handle_mmio    = handle_cpu_mmio_misc,
1847        },
1848        {
1849                .base           = GIC_CPU_ALIAS_BINPOINT,
1850                .len            = 4,
1851                .handle_mmio    = handle_mmio_abpr,
1852        },
1853        {
1854                .base           = GIC_CPU_ACTIVEPRIO,
1855                .len            = 16,
1856                .handle_mmio    = handle_mmio_raz_wi,
1857        },
1858        {
1859                .base           = GIC_CPU_IDENT,
1860                .len            = 4,
1861                .handle_mmio    = handle_cpu_mmio_ident,
1862        },
1863};
1864
1865static int vgic_attr_regs_access(struct kvm_device *dev,
1866                                 struct kvm_device_attr *attr,
1867                                 u32 *reg, bool is_write)
1868{
1869        const struct mmio_range *r = NULL, *ranges;
1870        phys_addr_t offset;
1871        int ret, cpuid, c;
1872        struct kvm_vcpu *vcpu, *tmp_vcpu;
1873        struct vgic_dist *vgic;
1874        struct kvm_exit_mmio mmio;
1875
1876        offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
1877        cpuid = (attr->attr & KVM_DEV_ARM_VGIC_CPUID_MASK) >>
1878                KVM_DEV_ARM_VGIC_CPUID_SHIFT;
1879
1880        mutex_lock(&dev->kvm->lock);
1881
1882        if (cpuid >= atomic_read(&dev->kvm->online_vcpus)) {
1883                ret = -EINVAL;
1884                goto out;
1885        }
1886
1887        vcpu = kvm_get_vcpu(dev->kvm, cpuid);
1888        vgic = &dev->kvm->arch.vgic;
1889
1890        mmio.len = 4;
1891        mmio.is_write = is_write;
1892        if (is_write)
1893                mmio_data_write(&mmio, ~0, *reg);
1894        switch (attr->group) {
1895        case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
1896                mmio.phys_addr = vgic->vgic_dist_base + offset;
1897                ranges = vgic_dist_ranges;
1898                break;
1899        case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
1900                mmio.phys_addr = vgic->vgic_cpu_base + offset;
1901                ranges = vgic_cpu_ranges;
1902                break;
1903        default:
1904                BUG();
1905        }
1906        r = find_matching_range(ranges, &mmio, offset);
1907
1908        if (unlikely(!r || !r->handle_mmio)) {
1909                ret = -ENXIO;
1910                goto out;
1911        }
1912
1913
1914        spin_lock(&vgic->lock);
1915
1916        /*
1917         * Ensure that no other VCPU is running by checking the vcpu->cpu
1918         * field.  If no other VPCUs are running we can safely access the VGIC
1919         * state, because even if another VPU is run after this point, that
1920         * VCPU will not touch the vgic state, because it will block on
1921         * getting the vgic->lock in kvm_vgic_sync_hwstate().
1922         */
1923        kvm_for_each_vcpu(c, tmp_vcpu, dev->kvm) {
1924                if (unlikely(tmp_vcpu->cpu != -1)) {
1925                        ret = -EBUSY;
1926                        goto out_vgic_unlock;
1927                }
1928        }
1929
1930        /*
1931         * Move all pending IRQs from the LRs on all VCPUs so the pending
1932         * state can be properly represented in the register state accessible
1933         * through this API.
1934         */
1935        kvm_for_each_vcpu(c, tmp_vcpu, dev->kvm)
1936                vgic_unqueue_irqs(tmp_vcpu);
1937
1938        offset -= r->base;
1939        r->handle_mmio(vcpu, &mmio, offset);
1940
1941        if (!is_write)
1942                *reg = mmio_data_read(&mmio, ~0);
1943
1944        ret = 0;
1945out_vgic_unlock:
1946        spin_unlock(&vgic->lock);
1947out:
1948        mutex_unlock(&dev->kvm->lock);
1949        return ret;
1950}
1951
1952static int vgic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1953{
1954        int r;
1955
1956        switch (attr->group) {
1957        case KVM_DEV_ARM_VGIC_GRP_ADDR: {
1958                u64 __user *uaddr = (u64 __user *)(long)attr->addr;
1959                u64 addr;
1960                unsigned long type = (unsigned long)attr->attr;
1961
1962                if (copy_from_user(&addr, uaddr, sizeof(addr)))
1963                        return -EFAULT;
1964
1965                r = kvm_vgic_addr(dev->kvm, type, &addr, true);
1966                return (r == -ENODEV) ? -ENXIO : r;
1967        }
1968
1969        case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
1970        case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: {
1971                u32 __user *uaddr = (u32 __user *)(long)attr->addr;
1972                u32 reg;
1973
1974                if (get_user(reg, uaddr))
1975                        return -EFAULT;
1976
1977                return vgic_attr_regs_access(dev, attr, &reg, true);
1978        }
1979
1980        }
1981
1982        return -ENXIO;
1983}
1984
1985static int vgic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1986{
1987        int r = -ENXIO;
1988
1989        switch (attr->group) {
1990        case KVM_DEV_ARM_VGIC_GRP_ADDR: {
1991                u64 __user *uaddr = (u64 __user *)(long)attr->addr;
1992                u64 addr;
1993                unsigned long type = (unsigned long)attr->attr;
1994
1995                r = kvm_vgic_addr(dev->kvm, type, &addr, false);
1996                if (r)
1997                        return (r == -ENODEV) ? -ENXIO : r;
1998
1999                if (copy_to_user(uaddr, &addr, sizeof(addr)))
2000                        return -EFAULT;
2001                break;
2002        }
2003
2004        case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
2005        case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: {
2006                u32 __user *uaddr = (u32 __user *)(long)attr->addr;
2007                u32 reg = 0;
2008
2009                r = vgic_attr_regs_access(dev, attr, &reg, false);
2010                if (r)
2011                        return r;
2012                r = put_user(reg, uaddr);
2013                break;
2014        }
2015
2016        }
2017
2018        return r;
2019}
2020
2021static int vgic_has_attr_regs(const struct mmio_range *ranges,
2022                              phys_addr_t offset)
2023{
2024        struct kvm_exit_mmio dev_attr_mmio;
2025
2026        dev_attr_mmio.len = 4;
2027        if (find_matching_range(ranges, &dev_attr_mmio, offset))
2028                return 0;
2029        else
2030                return -ENXIO;
2031}
2032
2033static int vgic_has_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2034{
2035        phys_addr_t offset;
2036
2037        switch (attr->group) {
2038        case KVM_DEV_ARM_VGIC_GRP_ADDR:
2039                switch (attr->attr) {
2040                case KVM_VGIC_V2_ADDR_TYPE_DIST:
2041                case KVM_VGIC_V2_ADDR_TYPE_CPU:
2042                        return 0;
2043                }
2044                break;
2045        case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
2046                offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
2047                return vgic_has_attr_regs(vgic_dist_ranges, offset);
2048        case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
2049                offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
2050                return vgic_has_attr_regs(vgic_cpu_ranges, offset);
2051        }
2052        return -ENXIO;
2053}
2054
2055static void vgic_destroy(struct kvm_device *dev)
2056{
2057        kfree(dev);
2058}
2059
2060static int vgic_create(struct kvm_device *dev, u32 type)
2061{
2062        return kvm_vgic_create(dev->kvm);
2063}
2064
2065struct kvm_device_ops kvm_arm_vgic_v2_ops = {
2066        .name = "kvm-arm-vgic",
2067        .create = vgic_create,
2068        .destroy = vgic_destroy,
2069        .set_attr = vgic_set_attr,
2070        .get_attr = vgic_get_attr,
2071        .has_attr = vgic_has_attr,
2072};
2073