linux/arch/powerpc/kernel/time.c
<<
>>
Prefs
   1/*
   2 * Common time routines among all ppc machines.
   3 *
   4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
   5 * Paul Mackerras' version and mine for PReP and Pmac.
   6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
   7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
   8 *
   9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
  10 * to make clock more stable (2.4.0-test5). The only thing
  11 * that this code assumes is that the timebases have been synchronized
  12 * by firmware on SMP and are never stopped (never do sleep
  13 * on SMP then, nap and doze are OK).
  14 * 
  15 * Speeded up do_gettimeofday by getting rid of references to
  16 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
  17 *
  18 * TODO (not necessarily in this file):
  19 * - improve precision and reproducibility of timebase frequency
  20 * measurement at boot time.
  21 * - for astronomical applications: add a new function to get
  22 * non ambiguous timestamps even around leap seconds. This needs
  23 * a new timestamp format and a good name.
  24 *
  25 * 1997-09-10  Updated NTP code according to technical memorandum Jan '96
  26 *             "A Kernel Model for Precision Timekeeping" by Dave Mills
  27 *
  28 *      This program is free software; you can redistribute it and/or
  29 *      modify it under the terms of the GNU General Public License
  30 *      as published by the Free Software Foundation; either version
  31 *      2 of the License, or (at your option) any later version.
  32 */
  33
  34#include <linux/errno.h>
  35#include <linux/export.h>
  36#include <linux/sched.h>
  37#include <linux/kernel.h>
  38#include <linux/param.h>
  39#include <linux/string.h>
  40#include <linux/mm.h>
  41#include <linux/interrupt.h>
  42#include <linux/timex.h>
  43#include <linux/kernel_stat.h>
  44#include <linux/time.h>
  45#include <linux/clockchips.h>
  46#include <linux/init.h>
  47#include <linux/profile.h>
  48#include <linux/cpu.h>
  49#include <linux/security.h>
  50#include <linux/percpu.h>
  51#include <linux/rtc.h>
  52#include <linux/jiffies.h>
  53#include <linux/posix-timers.h>
  54#include <linux/irq.h>
  55#include <linux/delay.h>
  56#include <linux/irq_work.h>
  57#include <asm/trace.h>
  58
  59#include <asm/io.h>
  60#include <asm/processor.h>
  61#include <asm/nvram.h>
  62#include <asm/cache.h>
  63#include <asm/machdep.h>
  64#include <asm/uaccess.h>
  65#include <asm/time.h>
  66#include <asm/prom.h>
  67#include <asm/irq.h>
  68#include <asm/div64.h>
  69#include <asm/smp.h>
  70#include <asm/vdso_datapage.h>
  71#include <asm/firmware.h>
  72#include <asm/cputime.h>
  73
  74/* powerpc clocksource/clockevent code */
  75
  76#include <linux/clockchips.h>
  77#include <linux/timekeeper_internal.h>
  78
  79static cycle_t rtc_read(struct clocksource *);
  80static struct clocksource clocksource_rtc = {
  81        .name         = "rtc",
  82        .rating       = 400,
  83        .flags        = CLOCK_SOURCE_IS_CONTINUOUS,
  84        .mask         = CLOCKSOURCE_MASK(64),
  85        .read         = rtc_read,
  86};
  87
  88static cycle_t timebase_read(struct clocksource *);
  89static struct clocksource clocksource_timebase = {
  90        .name         = "timebase",
  91        .rating       = 400,
  92        .flags        = CLOCK_SOURCE_IS_CONTINUOUS,
  93        .mask         = CLOCKSOURCE_MASK(64),
  94        .read         = timebase_read,
  95};
  96
  97#define DECREMENTER_MAX 0x7fffffff
  98
  99static int decrementer_set_next_event(unsigned long evt,
 100                                      struct clock_event_device *dev);
 101static void decrementer_set_mode(enum clock_event_mode mode,
 102                                 struct clock_event_device *dev);
 103
 104struct clock_event_device decrementer_clockevent = {
 105        .name           = "decrementer",
 106        .rating         = 200,
 107        .irq            = 0,
 108        .set_next_event = decrementer_set_next_event,
 109        .set_mode       = decrementer_set_mode,
 110        .features       = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_C3STOP,
 111};
 112EXPORT_SYMBOL(decrementer_clockevent);
 113
 114DEFINE_PER_CPU(u64, decrementers_next_tb);
 115static DEFINE_PER_CPU(struct clock_event_device, decrementers);
 116
 117#define XSEC_PER_SEC (1024*1024)
 118
 119#ifdef CONFIG_PPC64
 120#define SCALE_XSEC(xsec, max)   (((xsec) * max) / XSEC_PER_SEC)
 121#else
 122/* compute ((xsec << 12) * max) >> 32 */
 123#define SCALE_XSEC(xsec, max)   mulhwu((xsec) << 12, max)
 124#endif
 125
 126unsigned long tb_ticks_per_jiffy;
 127unsigned long tb_ticks_per_usec = 100; /* sane default */
 128EXPORT_SYMBOL(tb_ticks_per_usec);
 129unsigned long tb_ticks_per_sec;
 130EXPORT_SYMBOL(tb_ticks_per_sec);        /* for cputime_t conversions */
 131
 132DEFINE_SPINLOCK(rtc_lock);
 133EXPORT_SYMBOL_GPL(rtc_lock);
 134
 135static u64 tb_to_ns_scale __read_mostly;
 136static unsigned tb_to_ns_shift __read_mostly;
 137static u64 boot_tb __read_mostly;
 138
 139extern struct timezone sys_tz;
 140static long timezone_offset;
 141
 142unsigned long ppc_proc_freq;
 143EXPORT_SYMBOL_GPL(ppc_proc_freq);
 144unsigned long ppc_tb_freq;
 145EXPORT_SYMBOL_GPL(ppc_tb_freq);
 146
 147#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
 148/*
 149 * Factors for converting from cputime_t (timebase ticks) to
 150 * jiffies, microseconds, seconds, and clock_t (1/USER_HZ seconds).
 151 * These are all stored as 0.64 fixed-point binary fractions.
 152 */
 153u64 __cputime_jiffies_factor;
 154EXPORT_SYMBOL(__cputime_jiffies_factor);
 155u64 __cputime_usec_factor;
 156EXPORT_SYMBOL(__cputime_usec_factor);
 157u64 __cputime_sec_factor;
 158EXPORT_SYMBOL(__cputime_sec_factor);
 159u64 __cputime_clockt_factor;
 160EXPORT_SYMBOL(__cputime_clockt_factor);
 161DEFINE_PER_CPU(unsigned long, cputime_last_delta);
 162DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta);
 163
 164cputime_t cputime_one_jiffy;
 165
 166void (*dtl_consumer)(struct dtl_entry *, u64);
 167
 168static void calc_cputime_factors(void)
 169{
 170        struct div_result res;
 171
 172        div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
 173        __cputime_jiffies_factor = res.result_low;
 174        div128_by_32(1000000, 0, tb_ticks_per_sec, &res);
 175        __cputime_usec_factor = res.result_low;
 176        div128_by_32(1, 0, tb_ticks_per_sec, &res);
 177        __cputime_sec_factor = res.result_low;
 178        div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
 179        __cputime_clockt_factor = res.result_low;
 180}
 181
 182/*
 183 * Read the SPURR on systems that have it, otherwise the PURR,
 184 * or if that doesn't exist return the timebase value passed in.
 185 */
 186static u64 read_spurr(u64 tb)
 187{
 188        if (cpu_has_feature(CPU_FTR_SPURR))
 189                return mfspr(SPRN_SPURR);
 190        if (cpu_has_feature(CPU_FTR_PURR))
 191                return mfspr(SPRN_PURR);
 192        return tb;
 193}
 194
 195#ifdef CONFIG_PPC_SPLPAR
 196
 197/*
 198 * Scan the dispatch trace log and count up the stolen time.
 199 * Should be called with interrupts disabled.
 200 */
 201static u64 scan_dispatch_log(u64 stop_tb)
 202{
 203        u64 i = local_paca->dtl_ridx;
 204        struct dtl_entry *dtl = local_paca->dtl_curr;
 205        struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
 206        struct lppaca *vpa = local_paca->lppaca_ptr;
 207        u64 tb_delta;
 208        u64 stolen = 0;
 209        u64 dtb;
 210
 211        if (!dtl)
 212                return 0;
 213
 214        if (i == be64_to_cpu(vpa->dtl_idx))
 215                return 0;
 216        while (i < be64_to_cpu(vpa->dtl_idx)) {
 217                dtb = be64_to_cpu(dtl->timebase);
 218                tb_delta = be32_to_cpu(dtl->enqueue_to_dispatch_time) +
 219                        be32_to_cpu(dtl->ready_to_enqueue_time);
 220                barrier();
 221                if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) {
 222                        /* buffer has overflowed */
 223                        i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG;
 224                        dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
 225                        continue;
 226                }
 227                if (dtb > stop_tb)
 228                        break;
 229                if (dtl_consumer)
 230                        dtl_consumer(dtl, i);
 231                stolen += tb_delta;
 232                ++i;
 233                ++dtl;
 234                if (dtl == dtl_end)
 235                        dtl = local_paca->dispatch_log;
 236        }
 237        local_paca->dtl_ridx = i;
 238        local_paca->dtl_curr = dtl;
 239        return stolen;
 240}
 241
 242/*
 243 * Accumulate stolen time by scanning the dispatch trace log.
 244 * Called on entry from user mode.
 245 */
 246void accumulate_stolen_time(void)
 247{
 248        u64 sst, ust;
 249
 250        u8 save_soft_enabled = local_paca->soft_enabled;
 251
 252        /* We are called early in the exception entry, before
 253         * soft/hard_enabled are sync'ed to the expected state
 254         * for the exception. We are hard disabled but the PACA
 255         * needs to reflect that so various debug stuff doesn't
 256         * complain
 257         */
 258        local_paca->soft_enabled = 0;
 259
 260        sst = scan_dispatch_log(local_paca->starttime_user);
 261        ust = scan_dispatch_log(local_paca->starttime);
 262        local_paca->system_time -= sst;
 263        local_paca->user_time -= ust;
 264        local_paca->stolen_time += ust + sst;
 265
 266        local_paca->soft_enabled = save_soft_enabled;
 267}
 268
 269static inline u64 calculate_stolen_time(u64 stop_tb)
 270{
 271        u64 stolen = 0;
 272
 273        if (get_paca()->dtl_ridx != be64_to_cpu(get_lppaca()->dtl_idx)) {
 274                stolen = scan_dispatch_log(stop_tb);
 275                get_paca()->system_time -= stolen;
 276        }
 277
 278        stolen += get_paca()->stolen_time;
 279        get_paca()->stolen_time = 0;
 280        return stolen;
 281}
 282
 283#else /* CONFIG_PPC_SPLPAR */
 284static inline u64 calculate_stolen_time(u64 stop_tb)
 285{
 286        return 0;
 287}
 288
 289#endif /* CONFIG_PPC_SPLPAR */
 290
 291/*
 292 * Account time for a transition between system, hard irq
 293 * or soft irq state.
 294 */
 295static u64 vtime_delta(struct task_struct *tsk,
 296                        u64 *sys_scaled, u64 *stolen)
 297{
 298        u64 now, nowscaled, deltascaled;
 299        u64 udelta, delta, user_scaled;
 300
 301        WARN_ON_ONCE(!irqs_disabled());
 302
 303        now = mftb();
 304        nowscaled = read_spurr(now);
 305        get_paca()->system_time += now - get_paca()->starttime;
 306        get_paca()->starttime = now;
 307        deltascaled = nowscaled - get_paca()->startspurr;
 308        get_paca()->startspurr = nowscaled;
 309
 310        *stolen = calculate_stolen_time(now);
 311
 312        delta = get_paca()->system_time;
 313        get_paca()->system_time = 0;
 314        udelta = get_paca()->user_time - get_paca()->utime_sspurr;
 315        get_paca()->utime_sspurr = get_paca()->user_time;
 316
 317        /*
 318         * Because we don't read the SPURR on every kernel entry/exit,
 319         * deltascaled includes both user and system SPURR ticks.
 320         * Apportion these ticks to system SPURR ticks and user
 321         * SPURR ticks in the same ratio as the system time (delta)
 322         * and user time (udelta) values obtained from the timebase
 323         * over the same interval.  The system ticks get accounted here;
 324         * the user ticks get saved up in paca->user_time_scaled to be
 325         * used by account_process_tick.
 326         */
 327        *sys_scaled = delta;
 328        user_scaled = udelta;
 329        if (deltascaled != delta + udelta) {
 330                if (udelta) {
 331                        *sys_scaled = deltascaled * delta / (delta + udelta);
 332                        user_scaled = deltascaled - *sys_scaled;
 333                } else {
 334                        *sys_scaled = deltascaled;
 335                }
 336        }
 337        get_paca()->user_time_scaled += user_scaled;
 338
 339        return delta;
 340}
 341
 342void vtime_account_system(struct task_struct *tsk)
 343{
 344        u64 delta, sys_scaled, stolen;
 345
 346        delta = vtime_delta(tsk, &sys_scaled, &stolen);
 347        account_system_time(tsk, 0, delta, sys_scaled);
 348        if (stolen)
 349                account_steal_time(stolen);
 350}
 351EXPORT_SYMBOL_GPL(vtime_account_system);
 352
 353void vtime_account_idle(struct task_struct *tsk)
 354{
 355        u64 delta, sys_scaled, stolen;
 356
 357        delta = vtime_delta(tsk, &sys_scaled, &stolen);
 358        account_idle_time(delta + stolen);
 359}
 360
 361/*
 362 * Transfer the user time accumulated in the paca
 363 * by the exception entry and exit code to the generic
 364 * process user time records.
 365 * Must be called with interrupts disabled.
 366 * Assumes that vtime_account_system/idle() has been called
 367 * recently (i.e. since the last entry from usermode) so that
 368 * get_paca()->user_time_scaled is up to date.
 369 */
 370void vtime_account_user(struct task_struct *tsk)
 371{
 372        cputime_t utime, utimescaled;
 373
 374        utime = get_paca()->user_time;
 375        utimescaled = get_paca()->user_time_scaled;
 376        get_paca()->user_time = 0;
 377        get_paca()->user_time_scaled = 0;
 378        get_paca()->utime_sspurr = 0;
 379        account_user_time(tsk, utime, utimescaled);
 380}
 381
 382#else /* ! CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
 383#define calc_cputime_factors()
 384#endif
 385
 386void __delay(unsigned long loops)
 387{
 388        unsigned long start;
 389        int diff;
 390
 391        if (__USE_RTC()) {
 392                start = get_rtcl();
 393                do {
 394                        /* the RTCL register wraps at 1000000000 */
 395                        diff = get_rtcl() - start;
 396                        if (diff < 0)
 397                                diff += 1000000000;
 398                } while (diff < loops);
 399        } else {
 400                start = get_tbl();
 401                while (get_tbl() - start < loops)
 402                        HMT_low();
 403                HMT_medium();
 404        }
 405}
 406EXPORT_SYMBOL(__delay);
 407
 408void udelay(unsigned long usecs)
 409{
 410        __delay(tb_ticks_per_usec * usecs);
 411}
 412EXPORT_SYMBOL(udelay);
 413
 414#ifdef CONFIG_SMP
 415unsigned long profile_pc(struct pt_regs *regs)
 416{
 417        unsigned long pc = instruction_pointer(regs);
 418
 419        if (in_lock_functions(pc))
 420                return regs->link;
 421
 422        return pc;
 423}
 424EXPORT_SYMBOL(profile_pc);
 425#endif
 426
 427#ifdef CONFIG_IRQ_WORK
 428
 429/*
 430 * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
 431 */
 432#ifdef CONFIG_PPC64
 433static inline unsigned long test_irq_work_pending(void)
 434{
 435        unsigned long x;
 436
 437        asm volatile("lbz %0,%1(13)"
 438                : "=r" (x)
 439                : "i" (offsetof(struct paca_struct, irq_work_pending)));
 440        return x;
 441}
 442
 443static inline void set_irq_work_pending_flag(void)
 444{
 445        asm volatile("stb %0,%1(13)" : :
 446                "r" (1),
 447                "i" (offsetof(struct paca_struct, irq_work_pending)));
 448}
 449
 450static inline void clear_irq_work_pending(void)
 451{
 452        asm volatile("stb %0,%1(13)" : :
 453                "r" (0),
 454                "i" (offsetof(struct paca_struct, irq_work_pending)));
 455}
 456
 457#else /* 32-bit */
 458
 459DEFINE_PER_CPU(u8, irq_work_pending);
 460
 461#define set_irq_work_pending_flag()     __get_cpu_var(irq_work_pending) = 1
 462#define test_irq_work_pending()         __get_cpu_var(irq_work_pending)
 463#define clear_irq_work_pending()        __get_cpu_var(irq_work_pending) = 0
 464
 465#endif /* 32 vs 64 bit */
 466
 467void arch_irq_work_raise(void)
 468{
 469        preempt_disable();
 470        set_irq_work_pending_flag();
 471        set_dec(1);
 472        preempt_enable();
 473}
 474
 475#else  /* CONFIG_IRQ_WORK */
 476
 477#define test_irq_work_pending() 0
 478#define clear_irq_work_pending()
 479
 480#endif /* CONFIG_IRQ_WORK */
 481
 482static void __timer_interrupt(void)
 483{
 484        struct pt_regs *regs = get_irq_regs();
 485        u64 *next_tb = &__get_cpu_var(decrementers_next_tb);
 486        struct clock_event_device *evt = &__get_cpu_var(decrementers);
 487        u64 now;
 488
 489        trace_timer_interrupt_entry(regs);
 490
 491        if (test_irq_work_pending()) {
 492                clear_irq_work_pending();
 493                irq_work_run();
 494        }
 495
 496        now = get_tb_or_rtc();
 497        if (now >= *next_tb) {
 498                *next_tb = ~(u64)0;
 499                if (evt->event_handler)
 500                        evt->event_handler(evt);
 501                __get_cpu_var(irq_stat).timer_irqs_event++;
 502        } else {
 503                now = *next_tb - now;
 504                if (now <= DECREMENTER_MAX)
 505                        set_dec((int)now);
 506                /* We may have raced with new irq work */
 507                if (test_irq_work_pending())
 508                        set_dec(1);
 509                __get_cpu_var(irq_stat).timer_irqs_others++;
 510        }
 511
 512#ifdef CONFIG_PPC64
 513        /* collect purr register values often, for accurate calculations */
 514        if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
 515                struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
 516                cu->current_tb = mfspr(SPRN_PURR);
 517        }
 518#endif
 519
 520        trace_timer_interrupt_exit(regs);
 521}
 522
 523/*
 524 * timer_interrupt - gets called when the decrementer overflows,
 525 * with interrupts disabled.
 526 */
 527void timer_interrupt(struct pt_regs * regs)
 528{
 529        struct pt_regs *old_regs;
 530        u64 *next_tb = &__get_cpu_var(decrementers_next_tb);
 531
 532        /* Ensure a positive value is written to the decrementer, or else
 533         * some CPUs will continue to take decrementer exceptions.
 534         */
 535        set_dec(DECREMENTER_MAX);
 536
 537        /* Some implementations of hotplug will get timer interrupts while
 538         * offline, just ignore these and we also need to set
 539         * decrementers_next_tb as MAX to make sure __check_irq_replay
 540         * don't replay timer interrupt when return, otherwise we'll trap
 541         * here infinitely :(
 542         */
 543        if (!cpu_online(smp_processor_id())) {
 544                *next_tb = ~(u64)0;
 545                return;
 546        }
 547
 548        /* Conditionally hard-enable interrupts now that the DEC has been
 549         * bumped to its maximum value
 550         */
 551        may_hard_irq_enable();
 552
 553
 554#if defined(CONFIG_PPC32) && defined(CONFIG_PPC_PMAC)
 555        if (atomic_read(&ppc_n_lost_interrupts) != 0)
 556                do_IRQ(regs);
 557#endif
 558
 559        old_regs = set_irq_regs(regs);
 560        irq_enter();
 561
 562        __timer_interrupt();
 563        irq_exit();
 564        set_irq_regs(old_regs);
 565}
 566
 567/*
 568 * Hypervisor decrementer interrupts shouldn't occur but are sometimes
 569 * left pending on exit from a KVM guest.  We don't need to do anything
 570 * to clear them, as they are edge-triggered.
 571 */
 572void hdec_interrupt(struct pt_regs *regs)
 573{
 574}
 575
 576#ifdef CONFIG_SUSPEND
 577static void generic_suspend_disable_irqs(void)
 578{
 579        /* Disable the decrementer, so that it doesn't interfere
 580         * with suspending.
 581         */
 582
 583        set_dec(DECREMENTER_MAX);
 584        local_irq_disable();
 585        set_dec(DECREMENTER_MAX);
 586}
 587
 588static void generic_suspend_enable_irqs(void)
 589{
 590        local_irq_enable();
 591}
 592
 593/* Overrides the weak version in kernel/power/main.c */
 594void arch_suspend_disable_irqs(void)
 595{
 596        if (ppc_md.suspend_disable_irqs)
 597                ppc_md.suspend_disable_irqs();
 598        generic_suspend_disable_irqs();
 599}
 600
 601/* Overrides the weak version in kernel/power/main.c */
 602void arch_suspend_enable_irqs(void)
 603{
 604        generic_suspend_enable_irqs();
 605        if (ppc_md.suspend_enable_irqs)
 606                ppc_md.suspend_enable_irqs();
 607}
 608#endif
 609
 610/*
 611 * Scheduler clock - returns current time in nanosec units.
 612 *
 613 * Note: mulhdu(a, b) (multiply high double unsigned) returns
 614 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
 615 * are 64-bit unsigned numbers.
 616 */
 617unsigned long long sched_clock(void)
 618{
 619        if (__USE_RTC())
 620                return get_rtc();
 621        return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
 622}
 623
 624static int __init get_freq(char *name, int cells, unsigned long *val)
 625{
 626        struct device_node *cpu;
 627        const __be32 *fp;
 628        int found = 0;
 629
 630        /* The cpu node should have timebase and clock frequency properties */
 631        cpu = of_find_node_by_type(NULL, "cpu");
 632
 633        if (cpu) {
 634                fp = of_get_property(cpu, name, NULL);
 635                if (fp) {
 636                        found = 1;
 637                        *val = of_read_ulong(fp, cells);
 638                }
 639
 640                of_node_put(cpu);
 641        }
 642
 643        return found;
 644}
 645
 646static void start_cpu_decrementer(void)
 647{
 648#if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
 649        /* Clear any pending timer interrupts */
 650        mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
 651
 652        /* Enable decrementer interrupt */
 653        mtspr(SPRN_TCR, TCR_DIE);
 654#endif /* defined(CONFIG_BOOKE) || defined(CONFIG_40x) */
 655}
 656
 657void __init generic_calibrate_decr(void)
 658{
 659        ppc_tb_freq = DEFAULT_TB_FREQ;          /* hardcoded default */
 660
 661        if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
 662            !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
 663
 664                printk(KERN_ERR "WARNING: Estimating decrementer frequency "
 665                                "(not found)\n");
 666        }
 667
 668        ppc_proc_freq = DEFAULT_PROC_FREQ;      /* hardcoded default */
 669
 670        if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
 671            !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
 672
 673                printk(KERN_ERR "WARNING: Estimating processor frequency "
 674                                "(not found)\n");
 675        }
 676}
 677
 678int update_persistent_clock(struct timespec now)
 679{
 680        struct rtc_time tm;
 681
 682        if (!ppc_md.set_rtc_time)
 683                return -ENODEV;
 684
 685        to_tm(now.tv_sec + 1 + timezone_offset, &tm);
 686        tm.tm_year -= 1900;
 687        tm.tm_mon -= 1;
 688
 689        return ppc_md.set_rtc_time(&tm);
 690}
 691
 692static void __read_persistent_clock(struct timespec *ts)
 693{
 694        struct rtc_time tm;
 695        static int first = 1;
 696
 697        ts->tv_nsec = 0;
 698        /* XXX this is a litle fragile but will work okay in the short term */
 699        if (first) {
 700                first = 0;
 701                if (ppc_md.time_init)
 702                        timezone_offset = ppc_md.time_init();
 703
 704                /* get_boot_time() isn't guaranteed to be safe to call late */
 705                if (ppc_md.get_boot_time) {
 706                        ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
 707                        return;
 708                }
 709        }
 710        if (!ppc_md.get_rtc_time) {
 711                ts->tv_sec = 0;
 712                return;
 713        }
 714        ppc_md.get_rtc_time(&tm);
 715
 716        ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
 717                            tm.tm_hour, tm.tm_min, tm.tm_sec);
 718}
 719
 720void read_persistent_clock(struct timespec *ts)
 721{
 722        __read_persistent_clock(ts);
 723
 724        /* Sanitize it in case real time clock is set below EPOCH */
 725        if (ts->tv_sec < 0) {
 726                ts->tv_sec = 0;
 727                ts->tv_nsec = 0;
 728        }
 729                
 730}
 731
 732/* clocksource code */
 733static cycle_t rtc_read(struct clocksource *cs)
 734{
 735        return (cycle_t)get_rtc();
 736}
 737
 738static cycle_t timebase_read(struct clocksource *cs)
 739{
 740        return (cycle_t)get_tb();
 741}
 742
 743void update_vsyscall_old(struct timespec *wall_time, struct timespec *wtm,
 744                         struct clocksource *clock, u32 mult, cycle_t cycle_last)
 745{
 746        u64 new_tb_to_xs, new_stamp_xsec;
 747        u32 frac_sec;
 748
 749        if (clock != &clocksource_timebase)
 750                return;
 751
 752        /* Make userspace gettimeofday spin until we're done. */
 753        ++vdso_data->tb_update_count;
 754        smp_mb();
 755
 756        /* 19342813113834067 ~= 2^(20+64) / 1e9 */
 757        new_tb_to_xs = (u64) mult * (19342813113834067ULL >> clock->shift);
 758        new_stamp_xsec = (u64) wall_time->tv_nsec * XSEC_PER_SEC;
 759        do_div(new_stamp_xsec, 1000000000);
 760        new_stamp_xsec += (u64) wall_time->tv_sec * XSEC_PER_SEC;
 761
 762        BUG_ON(wall_time->tv_nsec >= NSEC_PER_SEC);
 763        /* this is tv_nsec / 1e9 as a 0.32 fraction */
 764        frac_sec = ((u64) wall_time->tv_nsec * 18446744073ULL) >> 32;
 765
 766        /*
 767         * tb_update_count is used to allow the userspace gettimeofday code
 768         * to assure itself that it sees a consistent view of the tb_to_xs and
 769         * stamp_xsec variables.  It reads the tb_update_count, then reads
 770         * tb_to_xs and stamp_xsec and then reads tb_update_count again.  If
 771         * the two values of tb_update_count match and are even then the
 772         * tb_to_xs and stamp_xsec values are consistent.  If not, then it
 773         * loops back and reads them again until this criteria is met.
 774         * We expect the caller to have done the first increment of
 775         * vdso_data->tb_update_count already.
 776         */
 777        vdso_data->tb_orig_stamp = cycle_last;
 778        vdso_data->stamp_xsec = new_stamp_xsec;
 779        vdso_data->tb_to_xs = new_tb_to_xs;
 780        vdso_data->wtom_clock_sec = wtm->tv_sec;
 781        vdso_data->wtom_clock_nsec = wtm->tv_nsec;
 782        vdso_data->stamp_xtime = *wall_time;
 783        vdso_data->stamp_sec_fraction = frac_sec;
 784        smp_wmb();
 785        ++(vdso_data->tb_update_count);
 786}
 787
 788void update_vsyscall_tz(void)
 789{
 790        vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
 791        vdso_data->tz_dsttime = sys_tz.tz_dsttime;
 792}
 793
 794static void __init clocksource_init(void)
 795{
 796        struct clocksource *clock;
 797
 798        if (__USE_RTC())
 799                clock = &clocksource_rtc;
 800        else
 801                clock = &clocksource_timebase;
 802
 803        if (clocksource_register_hz(clock, tb_ticks_per_sec)) {
 804                printk(KERN_ERR "clocksource: %s is already registered\n",
 805                       clock->name);
 806                return;
 807        }
 808
 809        printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
 810               clock->name, clock->mult, clock->shift);
 811}
 812
 813static int decrementer_set_next_event(unsigned long evt,
 814                                      struct clock_event_device *dev)
 815{
 816        __get_cpu_var(decrementers_next_tb) = get_tb_or_rtc() + evt;
 817        set_dec(evt);
 818
 819        /* We may have raced with new irq work */
 820        if (test_irq_work_pending())
 821                set_dec(1);
 822
 823        return 0;
 824}
 825
 826static void decrementer_set_mode(enum clock_event_mode mode,
 827                                 struct clock_event_device *dev)
 828{
 829        if (mode != CLOCK_EVT_MODE_ONESHOT)
 830                decrementer_set_next_event(DECREMENTER_MAX, dev);
 831}
 832
 833/* Interrupt handler for the timer broadcast IPI */
 834void tick_broadcast_ipi_handler(void)
 835{
 836        u64 *next_tb = &__get_cpu_var(decrementers_next_tb);
 837
 838        *next_tb = get_tb_or_rtc();
 839        __timer_interrupt();
 840}
 841
 842static void register_decrementer_clockevent(int cpu)
 843{
 844        struct clock_event_device *dec = &per_cpu(decrementers, cpu);
 845
 846        *dec = decrementer_clockevent;
 847        dec->cpumask = cpumask_of(cpu);
 848
 849        printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
 850                    dec->name, dec->mult, dec->shift, cpu);
 851
 852        clockevents_register_device(dec);
 853}
 854
 855static void __init init_decrementer_clockevent(void)
 856{
 857        int cpu = smp_processor_id();
 858
 859        clockevents_calc_mult_shift(&decrementer_clockevent, ppc_tb_freq, 4);
 860
 861        decrementer_clockevent.max_delta_ns =
 862                clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
 863        decrementer_clockevent.min_delta_ns =
 864                clockevent_delta2ns(2, &decrementer_clockevent);
 865
 866        register_decrementer_clockevent(cpu);
 867}
 868
 869void secondary_cpu_time_init(void)
 870{
 871        /* Start the decrementer on CPUs that have manual control
 872         * such as BookE
 873         */
 874        start_cpu_decrementer();
 875
 876        /* FIME: Should make unrelatred change to move snapshot_timebase
 877         * call here ! */
 878        register_decrementer_clockevent(smp_processor_id());
 879}
 880
 881/* This function is only called on the boot processor */
 882void __init time_init(void)
 883{
 884        struct div_result res;
 885        u64 scale;
 886        unsigned shift;
 887
 888        if (__USE_RTC()) {
 889                /* 601 processor: dec counts down by 128 every 128ns */
 890                ppc_tb_freq = 1000000000;
 891        } else {
 892                /* Normal PowerPC with timebase register */
 893                ppc_md.calibrate_decr();
 894                printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
 895                       ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
 896                printk(KERN_DEBUG "time_init: processor frequency   = %lu.%.6lu MHz\n",
 897                       ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
 898        }
 899
 900        tb_ticks_per_jiffy = ppc_tb_freq / HZ;
 901        tb_ticks_per_sec = ppc_tb_freq;
 902        tb_ticks_per_usec = ppc_tb_freq / 1000000;
 903        calc_cputime_factors();
 904        setup_cputime_one_jiffy();
 905
 906        /*
 907         * Compute scale factor for sched_clock.
 908         * The calibrate_decr() function has set tb_ticks_per_sec,
 909         * which is the timebase frequency.
 910         * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
 911         * the 128-bit result as a 64.64 fixed-point number.
 912         * We then shift that number right until it is less than 1.0,
 913         * giving us the scale factor and shift count to use in
 914         * sched_clock().
 915         */
 916        div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
 917        scale = res.result_low;
 918        for (shift = 0; res.result_high != 0; ++shift) {
 919                scale = (scale >> 1) | (res.result_high << 63);
 920                res.result_high >>= 1;
 921        }
 922        tb_to_ns_scale = scale;
 923        tb_to_ns_shift = shift;
 924        /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
 925        boot_tb = get_tb_or_rtc();
 926
 927        /* If platform provided a timezone (pmac), we correct the time */
 928        if (timezone_offset) {
 929                sys_tz.tz_minuteswest = -timezone_offset / 60;
 930                sys_tz.tz_dsttime = 0;
 931        }
 932
 933        vdso_data->tb_update_count = 0;
 934        vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
 935
 936        /* Start the decrementer on CPUs that have manual control
 937         * such as BookE
 938         */
 939        start_cpu_decrementer();
 940
 941        /* Register the clocksource */
 942        clocksource_init();
 943
 944        init_decrementer_clockevent();
 945        tick_setup_hrtimer_broadcast();
 946}
 947
 948
 949#define FEBRUARY        2
 950#define STARTOFTIME     1970
 951#define SECDAY          86400L
 952#define SECYR           (SECDAY * 365)
 953#define leapyear(year)          ((year) % 4 == 0 && \
 954                                 ((year) % 100 != 0 || (year) % 400 == 0))
 955#define days_in_year(a)         (leapyear(a) ? 366 : 365)
 956#define days_in_month(a)        (month_days[(a) - 1])
 957
 958static int month_days[12] = {
 959        31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
 960};
 961
 962/*
 963 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
 964 */
 965void GregorianDay(struct rtc_time * tm)
 966{
 967        int leapsToDate;
 968        int lastYear;
 969        int day;
 970        int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
 971
 972        lastYear = tm->tm_year - 1;
 973
 974        /*
 975         * Number of leap corrections to apply up to end of last year
 976         */
 977        leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
 978
 979        /*
 980         * This year is a leap year if it is divisible by 4 except when it is
 981         * divisible by 100 unless it is divisible by 400
 982         *
 983         * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
 984         */
 985        day = tm->tm_mon > 2 && leapyear(tm->tm_year);
 986
 987        day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
 988                   tm->tm_mday;
 989
 990        tm->tm_wday = day % 7;
 991}
 992
 993void to_tm(int tim, struct rtc_time * tm)
 994{
 995        register int    i;
 996        register long   hms, day;
 997
 998        day = tim / SECDAY;
 999        hms = tim % SECDAY;
1000
1001        /* Hours, minutes, seconds are easy */
1002        tm->tm_hour = hms / 3600;
1003        tm->tm_min = (hms % 3600) / 60;
1004        tm->tm_sec = (hms % 3600) % 60;
1005
1006        /* Number of years in days */
1007        for (i = STARTOFTIME; day >= days_in_year(i); i++)
1008                day -= days_in_year(i);
1009        tm->tm_year = i;
1010
1011        /* Number of months in days left */
1012        if (leapyear(tm->tm_year))
1013                days_in_month(FEBRUARY) = 29;
1014        for (i = 1; day >= days_in_month(i); i++)
1015                day -= days_in_month(i);
1016        days_in_month(FEBRUARY) = 28;
1017        tm->tm_mon = i;
1018
1019        /* Days are what is left over (+1) from all that. */
1020        tm->tm_mday = day + 1;
1021
1022        /*
1023         * Determine the day of week
1024         */
1025        GregorianDay(tm);
1026}
1027EXPORT_SYMBOL(to_tm);
1028
1029/*
1030 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1031 * result.
1032 */
1033void div128_by_32(u64 dividend_high, u64 dividend_low,
1034                  unsigned divisor, struct div_result *dr)
1035{
1036        unsigned long a, b, c, d;
1037        unsigned long w, x, y, z;
1038        u64 ra, rb, rc;
1039
1040        a = dividend_high >> 32;
1041        b = dividend_high & 0xffffffff;
1042        c = dividend_low >> 32;
1043        d = dividend_low & 0xffffffff;
1044
1045        w = a / divisor;
1046        ra = ((u64)(a - (w * divisor)) << 32) + b;
1047
1048        rb = ((u64) do_div(ra, divisor) << 32) + c;
1049        x = ra;
1050
1051        rc = ((u64) do_div(rb, divisor) << 32) + d;
1052        y = rb;
1053
1054        do_div(rc, divisor);
1055        z = rc;
1056
1057        dr->result_high = ((u64)w << 32) + x;
1058        dr->result_low  = ((u64)y << 32) + z;
1059
1060}
1061
1062/* We don't need to calibrate delay, we use the CPU timebase for that */
1063void calibrate_delay(void)
1064{
1065        /* Some generic code (such as spinlock debug) use loops_per_jiffy
1066         * as the number of __delay(1) in a jiffy, so make it so
1067         */
1068        loops_per_jiffy = tb_ticks_per_jiffy;
1069}
1070
1071static int __init rtc_init(void)
1072{
1073        struct platform_device *pdev;
1074
1075        if (!ppc_md.get_rtc_time)
1076                return -ENODEV;
1077
1078        pdev = platform_device_register_simple("rtc-generic", -1, NULL, 0);
1079
1080        return PTR_ERR_OR_ZERO(pdev);
1081}
1082
1083module_init(rtc_init);
1084