linux/arch/powerpc/perf/core-book3s.c
<<
>>
Prefs
   1/*
   2 * Performance event support - powerpc architecture code
   3 *
   4 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * as published by the Free Software Foundation; either version
   9 * 2 of the License, or (at your option) any later version.
  10 */
  11#include <linux/kernel.h>
  12#include <linux/sched.h>
  13#include <linux/perf_event.h>
  14#include <linux/percpu.h>
  15#include <linux/hardirq.h>
  16#include <linux/uaccess.h>
  17#include <asm/reg.h>
  18#include <asm/pmc.h>
  19#include <asm/machdep.h>
  20#include <asm/firmware.h>
  21#include <asm/ptrace.h>
  22#include <asm/code-patching.h>
  23
  24#define BHRB_MAX_ENTRIES        32
  25#define BHRB_TARGET             0x0000000000000002
  26#define BHRB_PREDICTION         0x0000000000000001
  27#define BHRB_EA                 0xFFFFFFFFFFFFFFFCUL
  28
  29struct cpu_hw_events {
  30        int n_events;
  31        int n_percpu;
  32        int disabled;
  33        int n_added;
  34        int n_limited;
  35        u8  pmcs_enabled;
  36        struct perf_event *event[MAX_HWEVENTS];
  37        u64 events[MAX_HWEVENTS];
  38        unsigned int flags[MAX_HWEVENTS];
  39        /*
  40         * The order of the MMCR array is:
  41         *  - 64-bit, MMCR0, MMCR1, MMCRA, MMCR2
  42         *  - 32-bit, MMCR0, MMCR1, MMCR2
  43         */
  44        unsigned long mmcr[4];
  45        struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS];
  46        u8  limited_hwidx[MAX_LIMITED_HWCOUNTERS];
  47        u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
  48        unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
  49        unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
  50
  51        unsigned int group_flag;
  52        int n_txn_start;
  53
  54        /* BHRB bits */
  55        u64                             bhrb_filter;    /* BHRB HW branch filter */
  56        int                             bhrb_users;
  57        void                            *bhrb_context;
  58        struct  perf_branch_stack       bhrb_stack;
  59        struct  perf_branch_entry       bhrb_entries[BHRB_MAX_ENTRIES];
  60};
  61
  62static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
  63
  64static struct power_pmu *ppmu;
  65
  66/*
  67 * Normally, to ignore kernel events we set the FCS (freeze counters
  68 * in supervisor mode) bit in MMCR0, but if the kernel runs with the
  69 * hypervisor bit set in the MSR, or if we are running on a processor
  70 * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
  71 * then we need to use the FCHV bit to ignore kernel events.
  72 */
  73static unsigned int freeze_events_kernel = MMCR0_FCS;
  74
  75/*
  76 * 32-bit doesn't have MMCRA but does have an MMCR2,
  77 * and a few other names are different.
  78 */
  79#ifdef CONFIG_PPC32
  80
  81#define MMCR0_FCHV              0
  82#define MMCR0_PMCjCE            MMCR0_PMCnCE
  83#define MMCR0_FC56              0
  84#define MMCR0_PMAO              0
  85#define MMCR0_EBE               0
  86#define MMCR0_BHRBA             0
  87#define MMCR0_PMCC              0
  88#define MMCR0_PMCC_U6           0
  89
  90#define SPRN_MMCRA              SPRN_MMCR2
  91#define MMCRA_SAMPLE_ENABLE     0
  92
  93static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
  94{
  95        return 0;
  96}
  97static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) { }
  98static inline u32 perf_get_misc_flags(struct pt_regs *regs)
  99{
 100        return 0;
 101}
 102static inline void perf_read_regs(struct pt_regs *regs)
 103{
 104        regs->result = 0;
 105}
 106static inline int perf_intr_is_nmi(struct pt_regs *regs)
 107{
 108        return 0;
 109}
 110
 111static inline int siar_valid(struct pt_regs *regs)
 112{
 113        return 1;
 114}
 115
 116static bool is_ebb_event(struct perf_event *event) { return false; }
 117static int ebb_event_check(struct perf_event *event) { return 0; }
 118static void ebb_event_add(struct perf_event *event) { }
 119static void ebb_switch_out(unsigned long mmcr0) { }
 120static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
 121{
 122        return cpuhw->mmcr[0];
 123}
 124
 125static inline void power_pmu_bhrb_enable(struct perf_event *event) {}
 126static inline void power_pmu_bhrb_disable(struct perf_event *event) {}
 127static void power_pmu_flush_branch_stack(void) {}
 128static inline void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw) {}
 129static void pmao_restore_workaround(bool ebb) { }
 130#endif /* CONFIG_PPC32 */
 131
 132static bool regs_use_siar(struct pt_regs *regs)
 133{
 134        return !!regs->result;
 135}
 136
 137/*
 138 * Things that are specific to 64-bit implementations.
 139 */
 140#ifdef CONFIG_PPC64
 141
 142static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
 143{
 144        unsigned long mmcra = regs->dsisr;
 145
 146        if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) {
 147                unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
 148                if (slot > 1)
 149                        return 4 * (slot - 1);
 150        }
 151
 152        return 0;
 153}
 154
 155/*
 156 * The user wants a data address recorded.
 157 * If we're not doing instruction sampling, give them the SDAR
 158 * (sampled data address).  If we are doing instruction sampling, then
 159 * only give them the SDAR if it corresponds to the instruction
 160 * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the
 161 * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER.
 162 */
 163static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp)
 164{
 165        unsigned long mmcra = regs->dsisr;
 166        bool sdar_valid;
 167
 168        if (ppmu->flags & PPMU_HAS_SIER)
 169                sdar_valid = regs->dar & SIER_SDAR_VALID;
 170        else {
 171                unsigned long sdsync;
 172
 173                if (ppmu->flags & PPMU_SIAR_VALID)
 174                        sdsync = POWER7P_MMCRA_SDAR_VALID;
 175                else if (ppmu->flags & PPMU_ALT_SIPR)
 176                        sdsync = POWER6_MMCRA_SDSYNC;
 177                else
 178                        sdsync = MMCRA_SDSYNC;
 179
 180                sdar_valid = mmcra & sdsync;
 181        }
 182
 183        if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid)
 184                *addrp = mfspr(SPRN_SDAR);
 185}
 186
 187static bool regs_sihv(struct pt_regs *regs)
 188{
 189        unsigned long sihv = MMCRA_SIHV;
 190
 191        if (ppmu->flags & PPMU_HAS_SIER)
 192                return !!(regs->dar & SIER_SIHV);
 193
 194        if (ppmu->flags & PPMU_ALT_SIPR)
 195                sihv = POWER6_MMCRA_SIHV;
 196
 197        return !!(regs->dsisr & sihv);
 198}
 199
 200static bool regs_sipr(struct pt_regs *regs)
 201{
 202        unsigned long sipr = MMCRA_SIPR;
 203
 204        if (ppmu->flags & PPMU_HAS_SIER)
 205                return !!(regs->dar & SIER_SIPR);
 206
 207        if (ppmu->flags & PPMU_ALT_SIPR)
 208                sipr = POWER6_MMCRA_SIPR;
 209
 210        return !!(regs->dsisr & sipr);
 211}
 212
 213static inline u32 perf_flags_from_msr(struct pt_regs *regs)
 214{
 215        if (regs->msr & MSR_PR)
 216                return PERF_RECORD_MISC_USER;
 217        if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV)
 218                return PERF_RECORD_MISC_HYPERVISOR;
 219        return PERF_RECORD_MISC_KERNEL;
 220}
 221
 222static inline u32 perf_get_misc_flags(struct pt_regs *regs)
 223{
 224        bool use_siar = regs_use_siar(regs);
 225
 226        if (!use_siar)
 227                return perf_flags_from_msr(regs);
 228
 229        /*
 230         * If we don't have flags in MMCRA, rather than using
 231         * the MSR, we intuit the flags from the address in
 232         * SIAR which should give slightly more reliable
 233         * results
 234         */
 235        if (ppmu->flags & PPMU_NO_SIPR) {
 236                unsigned long siar = mfspr(SPRN_SIAR);
 237                if (siar >= PAGE_OFFSET)
 238                        return PERF_RECORD_MISC_KERNEL;
 239                return PERF_RECORD_MISC_USER;
 240        }
 241
 242        /* PR has priority over HV, so order below is important */
 243        if (regs_sipr(regs))
 244                return PERF_RECORD_MISC_USER;
 245
 246        if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV))
 247                return PERF_RECORD_MISC_HYPERVISOR;
 248
 249        return PERF_RECORD_MISC_KERNEL;
 250}
 251
 252/*
 253 * Overload regs->dsisr to store MMCRA so we only need to read it once
 254 * on each interrupt.
 255 * Overload regs->dar to store SIER if we have it.
 256 * Overload regs->result to specify whether we should use the MSR (result
 257 * is zero) or the SIAR (result is non zero).
 258 */
 259static inline void perf_read_regs(struct pt_regs *regs)
 260{
 261        unsigned long mmcra = mfspr(SPRN_MMCRA);
 262        int marked = mmcra & MMCRA_SAMPLE_ENABLE;
 263        int use_siar;
 264
 265        regs->dsisr = mmcra;
 266
 267        if (ppmu->flags & PPMU_HAS_SIER)
 268                regs->dar = mfspr(SPRN_SIER);
 269
 270        /*
 271         * If this isn't a PMU exception (eg a software event) the SIAR is
 272         * not valid. Use pt_regs.
 273         *
 274         * If it is a marked event use the SIAR.
 275         *
 276         * If the PMU doesn't update the SIAR for non marked events use
 277         * pt_regs.
 278         *
 279         * If the PMU has HV/PR flags then check to see if they
 280         * place the exception in userspace. If so, use pt_regs. In
 281         * continuous sampling mode the SIAR and the PMU exception are
 282         * not synchronised, so they may be many instructions apart.
 283         * This can result in confusing backtraces. We still want
 284         * hypervisor samples as well as samples in the kernel with
 285         * interrupts off hence the userspace check.
 286         */
 287        if (TRAP(regs) != 0xf00)
 288                use_siar = 0;
 289        else if (marked)
 290                use_siar = 1;
 291        else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING))
 292                use_siar = 0;
 293        else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs))
 294                use_siar = 0;
 295        else
 296                use_siar = 1;
 297
 298        regs->result = use_siar;
 299}
 300
 301/*
 302 * If interrupts were soft-disabled when a PMU interrupt occurs, treat
 303 * it as an NMI.
 304 */
 305static inline int perf_intr_is_nmi(struct pt_regs *regs)
 306{
 307        return !regs->softe;
 308}
 309
 310/*
 311 * On processors like P7+ that have the SIAR-Valid bit, marked instructions
 312 * must be sampled only if the SIAR-valid bit is set.
 313 *
 314 * For unmarked instructions and for processors that don't have the SIAR-Valid
 315 * bit, assume that SIAR is valid.
 316 */
 317static inline int siar_valid(struct pt_regs *regs)
 318{
 319        unsigned long mmcra = regs->dsisr;
 320        int marked = mmcra & MMCRA_SAMPLE_ENABLE;
 321
 322        if (marked) {
 323                if (ppmu->flags & PPMU_HAS_SIER)
 324                        return regs->dar & SIER_SIAR_VALID;
 325
 326                if (ppmu->flags & PPMU_SIAR_VALID)
 327                        return mmcra & POWER7P_MMCRA_SIAR_VALID;
 328        }
 329
 330        return 1;
 331}
 332
 333
 334/* Reset all possible BHRB entries */
 335static void power_pmu_bhrb_reset(void)
 336{
 337        asm volatile(PPC_CLRBHRB);
 338}
 339
 340static void power_pmu_bhrb_enable(struct perf_event *event)
 341{
 342        struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
 343
 344        if (!ppmu->bhrb_nr)
 345                return;
 346
 347        /* Clear BHRB if we changed task context to avoid data leaks */
 348        if (event->ctx->task && cpuhw->bhrb_context != event->ctx) {
 349                power_pmu_bhrb_reset();
 350                cpuhw->bhrb_context = event->ctx;
 351        }
 352        cpuhw->bhrb_users++;
 353}
 354
 355static void power_pmu_bhrb_disable(struct perf_event *event)
 356{
 357        struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
 358
 359        if (!ppmu->bhrb_nr)
 360                return;
 361
 362        cpuhw->bhrb_users--;
 363        WARN_ON_ONCE(cpuhw->bhrb_users < 0);
 364
 365        if (!cpuhw->disabled && !cpuhw->bhrb_users) {
 366                /* BHRB cannot be turned off when other
 367                 * events are active on the PMU.
 368                 */
 369
 370                /* avoid stale pointer */
 371                cpuhw->bhrb_context = NULL;
 372        }
 373}
 374
 375/* Called from ctxsw to prevent one process's branch entries to
 376 * mingle with the other process's entries during context switch.
 377 */
 378static void power_pmu_flush_branch_stack(void)
 379{
 380        if (ppmu->bhrb_nr)
 381                power_pmu_bhrb_reset();
 382}
 383/* Calculate the to address for a branch */
 384static __u64 power_pmu_bhrb_to(u64 addr)
 385{
 386        unsigned int instr;
 387        int ret;
 388        __u64 target;
 389
 390        if (is_kernel_addr(addr))
 391                return branch_target((unsigned int *)addr);
 392
 393        /* Userspace: need copy instruction here then translate it */
 394        pagefault_disable();
 395        ret = __get_user_inatomic(instr, (unsigned int __user *)addr);
 396        if (ret) {
 397                pagefault_enable();
 398                return 0;
 399        }
 400        pagefault_enable();
 401
 402        target = branch_target(&instr);
 403        if ((!target) || (instr & BRANCH_ABSOLUTE))
 404                return target;
 405
 406        /* Translate relative branch target from kernel to user address */
 407        return target - (unsigned long)&instr + addr;
 408}
 409
 410/* Processing BHRB entries */
 411static void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw)
 412{
 413        u64 val;
 414        u64 addr;
 415        int r_index, u_index, pred;
 416
 417        r_index = 0;
 418        u_index = 0;
 419        while (r_index < ppmu->bhrb_nr) {
 420                /* Assembly read function */
 421                val = read_bhrb(r_index++);
 422                if (!val)
 423                        /* Terminal marker: End of valid BHRB entries */
 424                        break;
 425                else {
 426                        addr = val & BHRB_EA;
 427                        pred = val & BHRB_PREDICTION;
 428
 429                        if (!addr)
 430                                /* invalid entry */
 431                                continue;
 432
 433                        /* Branches are read most recent first (ie. mfbhrb 0 is
 434                         * the most recent branch).
 435                         * There are two types of valid entries:
 436                         * 1) a target entry which is the to address of a
 437                         *    computed goto like a blr,bctr,btar.  The next
 438                         *    entry read from the bhrb will be branch
 439                         *    corresponding to this target (ie. the actual
 440                         *    blr/bctr/btar instruction).
 441                         * 2) a from address which is an actual branch.  If a
 442                         *    target entry proceeds this, then this is the
 443                         *    matching branch for that target.  If this is not
 444                         *    following a target entry, then this is a branch
 445                         *    where the target is given as an immediate field
 446                         *    in the instruction (ie. an i or b form branch).
 447                         *    In this case we need to read the instruction from
 448                         *    memory to determine the target/to address.
 449                         */
 450
 451                        if (val & BHRB_TARGET) {
 452                                /* Target branches use two entries
 453                                 * (ie. computed gotos/XL form)
 454                                 */
 455                                cpuhw->bhrb_entries[u_index].to = addr;
 456                                cpuhw->bhrb_entries[u_index].mispred = pred;
 457                                cpuhw->bhrb_entries[u_index].predicted = ~pred;
 458
 459                                /* Get from address in next entry */
 460                                val = read_bhrb(r_index++);
 461                                addr = val & BHRB_EA;
 462                                if (val & BHRB_TARGET) {
 463                                        /* Shouldn't have two targets in a
 464                                           row.. Reset index and try again */
 465                                        r_index--;
 466                                        addr = 0;
 467                                }
 468                                cpuhw->bhrb_entries[u_index].from = addr;
 469                        } else {
 470                                /* Branches to immediate field 
 471                                   (ie I or B form) */
 472                                cpuhw->bhrb_entries[u_index].from = addr;
 473                                cpuhw->bhrb_entries[u_index].to =
 474                                        power_pmu_bhrb_to(addr);
 475                                cpuhw->bhrb_entries[u_index].mispred = pred;
 476                                cpuhw->bhrb_entries[u_index].predicted = ~pred;
 477                        }
 478                        u_index++;
 479
 480                }
 481        }
 482        cpuhw->bhrb_stack.nr = u_index;
 483        return;
 484}
 485
 486static bool is_ebb_event(struct perf_event *event)
 487{
 488        /*
 489         * This could be a per-PMU callback, but we'd rather avoid the cost. We
 490         * check that the PMU supports EBB, meaning those that don't can still
 491         * use bit 63 of the event code for something else if they wish.
 492         */
 493        return (ppmu->flags & PPMU_ARCH_207S) &&
 494               ((event->attr.config >> PERF_EVENT_CONFIG_EBB_SHIFT) & 1);
 495}
 496
 497static int ebb_event_check(struct perf_event *event)
 498{
 499        struct perf_event *leader = event->group_leader;
 500
 501        /* Event and group leader must agree on EBB */
 502        if (is_ebb_event(leader) != is_ebb_event(event))
 503                return -EINVAL;
 504
 505        if (is_ebb_event(event)) {
 506                if (!(event->attach_state & PERF_ATTACH_TASK))
 507                        return -EINVAL;
 508
 509                if (!leader->attr.pinned || !leader->attr.exclusive)
 510                        return -EINVAL;
 511
 512                if (event->attr.freq ||
 513                    event->attr.inherit ||
 514                    event->attr.sample_type ||
 515                    event->attr.sample_period ||
 516                    event->attr.enable_on_exec)
 517                        return -EINVAL;
 518        }
 519
 520        return 0;
 521}
 522
 523static void ebb_event_add(struct perf_event *event)
 524{
 525        if (!is_ebb_event(event) || current->thread.used_ebb)
 526                return;
 527
 528        /*
 529         * IFF this is the first time we've added an EBB event, set
 530         * PMXE in the user MMCR0 so we can detect when it's cleared by
 531         * userspace. We need this so that we can context switch while
 532         * userspace is in the EBB handler (where PMXE is 0).
 533         */
 534        current->thread.used_ebb = 1;
 535        current->thread.mmcr0 |= MMCR0_PMXE;
 536}
 537
 538static void ebb_switch_out(unsigned long mmcr0)
 539{
 540        if (!(mmcr0 & MMCR0_EBE))
 541                return;
 542
 543        current->thread.siar  = mfspr(SPRN_SIAR);
 544        current->thread.sier  = mfspr(SPRN_SIER);
 545        current->thread.sdar  = mfspr(SPRN_SDAR);
 546        current->thread.mmcr0 = mmcr0 & MMCR0_USER_MASK;
 547        current->thread.mmcr2 = mfspr(SPRN_MMCR2) & MMCR2_USER_MASK;
 548}
 549
 550static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
 551{
 552        unsigned long mmcr0 = cpuhw->mmcr[0];
 553
 554        if (!ebb)
 555                goto out;
 556
 557        /* Enable EBB and read/write to all 6 PMCs and BHRB for userspace */
 558        mmcr0 |= MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC_U6;
 559
 560        /*
 561         * Add any bits from the user MMCR0, FC or PMAO. This is compatible
 562         * with pmao_restore_workaround() because we may add PMAO but we never
 563         * clear it here.
 564         */
 565        mmcr0 |= current->thread.mmcr0;
 566
 567        /*
 568         * Be careful not to set PMXE if userspace had it cleared. This is also
 569         * compatible with pmao_restore_workaround() because it has already
 570         * cleared PMXE and we leave PMAO alone.
 571         */
 572        if (!(current->thread.mmcr0 & MMCR0_PMXE))
 573                mmcr0 &= ~MMCR0_PMXE;
 574
 575        mtspr(SPRN_SIAR, current->thread.siar);
 576        mtspr(SPRN_SIER, current->thread.sier);
 577        mtspr(SPRN_SDAR, current->thread.sdar);
 578
 579        /*
 580         * Merge the kernel & user values of MMCR2. The semantics we implement
 581         * are that the user MMCR2 can set bits, ie. cause counters to freeze,
 582         * but not clear bits. If a task wants to be able to clear bits, ie.
 583         * unfreeze counters, it should not set exclude_xxx in its events and
 584         * instead manage the MMCR2 entirely by itself.
 585         */
 586        mtspr(SPRN_MMCR2, cpuhw->mmcr[3] | current->thread.mmcr2);
 587out:
 588        return mmcr0;
 589}
 590
 591static void pmao_restore_workaround(bool ebb)
 592{
 593        unsigned pmcs[6];
 594
 595        if (!cpu_has_feature(CPU_FTR_PMAO_BUG))
 596                return;
 597
 598        /*
 599         * On POWER8E there is a hardware defect which affects the PMU context
 600         * switch logic, ie. power_pmu_disable/enable().
 601         *
 602         * When a counter overflows PMXE is cleared and FC/PMAO is set in MMCR0
 603         * by the hardware. Sometime later the actual PMU exception is
 604         * delivered.
 605         *
 606         * If we context switch, or simply disable/enable, the PMU prior to the
 607         * exception arriving, the exception will be lost when we clear PMAO.
 608         *
 609         * When we reenable the PMU, we will write the saved MMCR0 with PMAO
 610         * set, and this _should_ generate an exception. However because of the
 611         * defect no exception is generated when we write PMAO, and we get
 612         * stuck with no counters counting but no exception delivered.
 613         *
 614         * The workaround is to detect this case and tweak the hardware to
 615         * create another pending PMU exception.
 616         *
 617         * We do that by setting up PMC6 (cycles) for an imminent overflow and
 618         * enabling the PMU. That causes a new exception to be generated in the
 619         * chip, but we don't take it yet because we have interrupts hard
 620         * disabled. We then write back the PMU state as we want it to be seen
 621         * by the exception handler. When we reenable interrupts the exception
 622         * handler will be called and see the correct state.
 623         *
 624         * The logic is the same for EBB, except that the exception is gated by
 625         * us having interrupts hard disabled as well as the fact that we are
 626         * not in userspace. The exception is finally delivered when we return
 627         * to userspace.
 628         */
 629
 630        /* Only if PMAO is set and PMAO_SYNC is clear */
 631        if ((current->thread.mmcr0 & (MMCR0_PMAO | MMCR0_PMAO_SYNC)) != MMCR0_PMAO)
 632                return;
 633
 634        /* If we're doing EBB, only if BESCR[GE] is set */
 635        if (ebb && !(current->thread.bescr & BESCR_GE))
 636                return;
 637
 638        /*
 639         * We are already soft-disabled in power_pmu_enable(). We need to hard
 640         * enable to actually prevent the PMU exception from firing.
 641         */
 642        hard_irq_disable();
 643
 644        /*
 645         * This is a bit gross, but we know we're on POWER8E and have 6 PMCs.
 646         * Using read/write_pmc() in a for loop adds 12 function calls and
 647         * almost doubles our code size.
 648         */
 649        pmcs[0] = mfspr(SPRN_PMC1);
 650        pmcs[1] = mfspr(SPRN_PMC2);
 651        pmcs[2] = mfspr(SPRN_PMC3);
 652        pmcs[3] = mfspr(SPRN_PMC4);
 653        pmcs[4] = mfspr(SPRN_PMC5);
 654        pmcs[5] = mfspr(SPRN_PMC6);
 655
 656        /* Ensure all freeze bits are unset */
 657        mtspr(SPRN_MMCR2, 0);
 658
 659        /* Set up PMC6 to overflow in one cycle */
 660        mtspr(SPRN_PMC6, 0x7FFFFFFE);
 661
 662        /* Enable exceptions and unfreeze PMC6 */
 663        mtspr(SPRN_MMCR0, MMCR0_PMXE | MMCR0_PMCjCE | MMCR0_PMAO);
 664
 665        /* Now we need to refreeze and restore the PMCs */
 666        mtspr(SPRN_MMCR0, MMCR0_FC | MMCR0_PMAO);
 667
 668        mtspr(SPRN_PMC1, pmcs[0]);
 669        mtspr(SPRN_PMC2, pmcs[1]);
 670        mtspr(SPRN_PMC3, pmcs[2]);
 671        mtspr(SPRN_PMC4, pmcs[3]);
 672        mtspr(SPRN_PMC5, pmcs[4]);
 673        mtspr(SPRN_PMC6, pmcs[5]);
 674}
 675#endif /* CONFIG_PPC64 */
 676
 677static void perf_event_interrupt(struct pt_regs *regs);
 678
 679/*
 680 * Read one performance monitor counter (PMC).
 681 */
 682static unsigned long read_pmc(int idx)
 683{
 684        unsigned long val;
 685
 686        switch (idx) {
 687        case 1:
 688                val = mfspr(SPRN_PMC1);
 689                break;
 690        case 2:
 691                val = mfspr(SPRN_PMC2);
 692                break;
 693        case 3:
 694                val = mfspr(SPRN_PMC3);
 695                break;
 696        case 4:
 697                val = mfspr(SPRN_PMC4);
 698                break;
 699        case 5:
 700                val = mfspr(SPRN_PMC5);
 701                break;
 702        case 6:
 703                val = mfspr(SPRN_PMC6);
 704                break;
 705#ifdef CONFIG_PPC64
 706        case 7:
 707                val = mfspr(SPRN_PMC7);
 708                break;
 709        case 8:
 710                val = mfspr(SPRN_PMC8);
 711                break;
 712#endif /* CONFIG_PPC64 */
 713        default:
 714                printk(KERN_ERR "oops trying to read PMC%d\n", idx);
 715                val = 0;
 716        }
 717        return val;
 718}
 719
 720/*
 721 * Write one PMC.
 722 */
 723static void write_pmc(int idx, unsigned long val)
 724{
 725        switch (idx) {
 726        case 1:
 727                mtspr(SPRN_PMC1, val);
 728                break;
 729        case 2:
 730                mtspr(SPRN_PMC2, val);
 731                break;
 732        case 3:
 733                mtspr(SPRN_PMC3, val);
 734                break;
 735        case 4:
 736                mtspr(SPRN_PMC4, val);
 737                break;
 738        case 5:
 739                mtspr(SPRN_PMC5, val);
 740                break;
 741        case 6:
 742                mtspr(SPRN_PMC6, val);
 743                break;
 744#ifdef CONFIG_PPC64
 745        case 7:
 746                mtspr(SPRN_PMC7, val);
 747                break;
 748        case 8:
 749                mtspr(SPRN_PMC8, val);
 750                break;
 751#endif /* CONFIG_PPC64 */
 752        default:
 753                printk(KERN_ERR "oops trying to write PMC%d\n", idx);
 754        }
 755}
 756
 757/* Called from sysrq_handle_showregs() */
 758void perf_event_print_debug(void)
 759{
 760        unsigned long sdar, sier, flags;
 761        u32 pmcs[MAX_HWEVENTS];
 762        int i;
 763
 764        if (!ppmu->n_counter)
 765                return;
 766
 767        local_irq_save(flags);
 768
 769        pr_info("CPU: %d PMU registers, ppmu = %s n_counters = %d",
 770                 smp_processor_id(), ppmu->name, ppmu->n_counter);
 771
 772        for (i = 0; i < ppmu->n_counter; i++)
 773                pmcs[i] = read_pmc(i + 1);
 774
 775        for (; i < MAX_HWEVENTS; i++)
 776                pmcs[i] = 0xdeadbeef;
 777
 778        pr_info("PMC1:  %08x PMC2: %08x PMC3: %08x PMC4: %08x\n",
 779                 pmcs[0], pmcs[1], pmcs[2], pmcs[3]);
 780
 781        if (ppmu->n_counter > 4)
 782                pr_info("PMC5:  %08x PMC6: %08x PMC7: %08x PMC8: %08x\n",
 783                         pmcs[4], pmcs[5], pmcs[6], pmcs[7]);
 784
 785        pr_info("MMCR0: %016lx MMCR1: %016lx MMCRA: %016lx\n",
 786                mfspr(SPRN_MMCR0), mfspr(SPRN_MMCR1), mfspr(SPRN_MMCRA));
 787
 788        sdar = sier = 0;
 789#ifdef CONFIG_PPC64
 790        sdar = mfspr(SPRN_SDAR);
 791
 792        if (ppmu->flags & PPMU_HAS_SIER)
 793                sier = mfspr(SPRN_SIER);
 794
 795        if (ppmu->flags & PPMU_ARCH_207S) {
 796                pr_info("MMCR2: %016lx EBBHR: %016lx\n",
 797                        mfspr(SPRN_MMCR2), mfspr(SPRN_EBBHR));
 798                pr_info("EBBRR: %016lx BESCR: %016lx\n",
 799                        mfspr(SPRN_EBBRR), mfspr(SPRN_BESCR));
 800        }
 801#endif
 802        pr_info("SIAR:  %016lx SDAR:  %016lx SIER:  %016lx\n",
 803                mfspr(SPRN_SIAR), sdar, sier);
 804
 805        local_irq_restore(flags);
 806}
 807
 808/*
 809 * Check if a set of events can all go on the PMU at once.
 810 * If they can't, this will look at alternative codes for the events
 811 * and see if any combination of alternative codes is feasible.
 812 * The feasible set is returned in event_id[].
 813 */
 814static int power_check_constraints(struct cpu_hw_events *cpuhw,
 815                                   u64 event_id[], unsigned int cflags[],
 816                                   int n_ev)
 817{
 818        unsigned long mask, value, nv;
 819        unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS];
 820        int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS];
 821        int i, j;
 822        unsigned long addf = ppmu->add_fields;
 823        unsigned long tadd = ppmu->test_adder;
 824
 825        if (n_ev > ppmu->n_counter)
 826                return -1;
 827
 828        /* First see if the events will go on as-is */
 829        for (i = 0; i < n_ev; ++i) {
 830                if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
 831                    && !ppmu->limited_pmc_event(event_id[i])) {
 832                        ppmu->get_alternatives(event_id[i], cflags[i],
 833                                               cpuhw->alternatives[i]);
 834                        event_id[i] = cpuhw->alternatives[i][0];
 835                }
 836                if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0],
 837                                         &cpuhw->avalues[i][0]))
 838                        return -1;
 839        }
 840        value = mask = 0;
 841        for (i = 0; i < n_ev; ++i) {
 842                nv = (value | cpuhw->avalues[i][0]) +
 843                        (value & cpuhw->avalues[i][0] & addf);
 844                if ((((nv + tadd) ^ value) & mask) != 0 ||
 845                    (((nv + tadd) ^ cpuhw->avalues[i][0]) &
 846                     cpuhw->amasks[i][0]) != 0)
 847                        break;
 848                value = nv;
 849                mask |= cpuhw->amasks[i][0];
 850        }
 851        if (i == n_ev)
 852                return 0;       /* all OK */
 853
 854        /* doesn't work, gather alternatives... */
 855        if (!ppmu->get_alternatives)
 856                return -1;
 857        for (i = 0; i < n_ev; ++i) {
 858                choice[i] = 0;
 859                n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i],
 860                                                  cpuhw->alternatives[i]);
 861                for (j = 1; j < n_alt[i]; ++j)
 862                        ppmu->get_constraint(cpuhw->alternatives[i][j],
 863                                             &cpuhw->amasks[i][j],
 864                                             &cpuhw->avalues[i][j]);
 865        }
 866
 867        /* enumerate all possibilities and see if any will work */
 868        i = 0;
 869        j = -1;
 870        value = mask = nv = 0;
 871        while (i < n_ev) {
 872                if (j >= 0) {
 873                        /* we're backtracking, restore context */
 874                        value = svalues[i];
 875                        mask = smasks[i];
 876                        j = choice[i];
 877                }
 878                /*
 879                 * See if any alternative k for event_id i,
 880                 * where k > j, will satisfy the constraints.
 881                 */
 882                while (++j < n_alt[i]) {
 883                        nv = (value | cpuhw->avalues[i][j]) +
 884                                (value & cpuhw->avalues[i][j] & addf);
 885                        if ((((nv + tadd) ^ value) & mask) == 0 &&
 886                            (((nv + tadd) ^ cpuhw->avalues[i][j])
 887                             & cpuhw->amasks[i][j]) == 0)
 888                                break;
 889                }
 890                if (j >= n_alt[i]) {
 891                        /*
 892                         * No feasible alternative, backtrack
 893                         * to event_id i-1 and continue enumerating its
 894                         * alternatives from where we got up to.
 895                         */
 896                        if (--i < 0)
 897                                return -1;
 898                } else {
 899                        /*
 900                         * Found a feasible alternative for event_id i,
 901                         * remember where we got up to with this event_id,
 902                         * go on to the next event_id, and start with
 903                         * the first alternative for it.
 904                         */
 905                        choice[i] = j;
 906                        svalues[i] = value;
 907                        smasks[i] = mask;
 908                        value = nv;
 909                        mask |= cpuhw->amasks[i][j];
 910                        ++i;
 911                        j = -1;
 912                }
 913        }
 914
 915        /* OK, we have a feasible combination, tell the caller the solution */
 916        for (i = 0; i < n_ev; ++i)
 917                event_id[i] = cpuhw->alternatives[i][choice[i]];
 918        return 0;
 919}
 920
 921/*
 922 * Check if newly-added events have consistent settings for
 923 * exclude_{user,kernel,hv} with each other and any previously
 924 * added events.
 925 */
 926static int check_excludes(struct perf_event **ctrs, unsigned int cflags[],
 927                          int n_prev, int n_new)
 928{
 929        int eu = 0, ek = 0, eh = 0;
 930        int i, n, first;
 931        struct perf_event *event;
 932
 933        /*
 934         * If the PMU we're on supports per event exclude settings then we
 935         * don't need to do any of this logic. NB. This assumes no PMU has both
 936         * per event exclude and limited PMCs.
 937         */
 938        if (ppmu->flags & PPMU_ARCH_207S)
 939                return 0;
 940
 941        n = n_prev + n_new;
 942        if (n <= 1)
 943                return 0;
 944
 945        first = 1;
 946        for (i = 0; i < n; ++i) {
 947                if (cflags[i] & PPMU_LIMITED_PMC_OK) {
 948                        cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
 949                        continue;
 950                }
 951                event = ctrs[i];
 952                if (first) {
 953                        eu = event->attr.exclude_user;
 954                        ek = event->attr.exclude_kernel;
 955                        eh = event->attr.exclude_hv;
 956                        first = 0;
 957                } else if (event->attr.exclude_user != eu ||
 958                           event->attr.exclude_kernel != ek ||
 959                           event->attr.exclude_hv != eh) {
 960                        return -EAGAIN;
 961                }
 962        }
 963
 964        if (eu || ek || eh)
 965                for (i = 0; i < n; ++i)
 966                        if (cflags[i] & PPMU_LIMITED_PMC_OK)
 967                                cflags[i] |= PPMU_LIMITED_PMC_REQD;
 968
 969        return 0;
 970}
 971
 972static u64 check_and_compute_delta(u64 prev, u64 val)
 973{
 974        u64 delta = (val - prev) & 0xfffffffful;
 975
 976        /*
 977         * POWER7 can roll back counter values, if the new value is smaller
 978         * than the previous value it will cause the delta and the counter to
 979         * have bogus values unless we rolled a counter over.  If a coutner is
 980         * rolled back, it will be smaller, but within 256, which is the maximum
 981         * number of events to rollback at once.  If we dectect a rollback
 982         * return 0.  This can lead to a small lack of precision in the
 983         * counters.
 984         */
 985        if (prev > val && (prev - val) < 256)
 986                delta = 0;
 987
 988        return delta;
 989}
 990
 991static void power_pmu_read(struct perf_event *event)
 992{
 993        s64 val, delta, prev;
 994
 995        if (event->hw.state & PERF_HES_STOPPED)
 996                return;
 997
 998        if (!event->hw.idx)
 999                return;
1000
1001        if (is_ebb_event(event)) {
1002                val = read_pmc(event->hw.idx);
1003                local64_set(&event->hw.prev_count, val);
1004                return;
1005        }
1006
1007        /*
1008         * Performance monitor interrupts come even when interrupts
1009         * are soft-disabled, as long as interrupts are hard-enabled.
1010         * Therefore we treat them like NMIs.
1011         */
1012        do {
1013                prev = local64_read(&event->hw.prev_count);
1014                barrier();
1015                val = read_pmc(event->hw.idx);
1016                delta = check_and_compute_delta(prev, val);
1017                if (!delta)
1018                        return;
1019        } while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
1020
1021        local64_add(delta, &event->count);
1022
1023        /*
1024         * A number of places program the PMC with (0x80000000 - period_left).
1025         * We never want period_left to be less than 1 because we will program
1026         * the PMC with a value >= 0x800000000 and an edge detected PMC will
1027         * roll around to 0 before taking an exception. We have seen this
1028         * on POWER8.
1029         *
1030         * To fix this, clamp the minimum value of period_left to 1.
1031         */
1032        do {
1033                prev = local64_read(&event->hw.period_left);
1034                val = prev - delta;
1035                if (val < 1)
1036                        val = 1;
1037        } while (local64_cmpxchg(&event->hw.period_left, prev, val) != prev);
1038}
1039
1040/*
1041 * On some machines, PMC5 and PMC6 can't be written, don't respect
1042 * the freeze conditions, and don't generate interrupts.  This tells
1043 * us if `event' is using such a PMC.
1044 */
1045static int is_limited_pmc(int pmcnum)
1046{
1047        return (ppmu->flags & PPMU_LIMITED_PMC5_6)
1048                && (pmcnum == 5 || pmcnum == 6);
1049}
1050
1051static void freeze_limited_counters(struct cpu_hw_events *cpuhw,
1052                                    unsigned long pmc5, unsigned long pmc6)
1053{
1054        struct perf_event *event;
1055        u64 val, prev, delta;
1056        int i;
1057
1058        for (i = 0; i < cpuhw->n_limited; ++i) {
1059                event = cpuhw->limited_counter[i];
1060                if (!event->hw.idx)
1061                        continue;
1062                val = (event->hw.idx == 5) ? pmc5 : pmc6;
1063                prev = local64_read(&event->hw.prev_count);
1064                event->hw.idx = 0;
1065                delta = check_and_compute_delta(prev, val);
1066                if (delta)
1067                        local64_add(delta, &event->count);
1068        }
1069}
1070
1071static void thaw_limited_counters(struct cpu_hw_events *cpuhw,
1072                                  unsigned long pmc5, unsigned long pmc6)
1073{
1074        struct perf_event *event;
1075        u64 val, prev;
1076        int i;
1077
1078        for (i = 0; i < cpuhw->n_limited; ++i) {
1079                event = cpuhw->limited_counter[i];
1080                event->hw.idx = cpuhw->limited_hwidx[i];
1081                val = (event->hw.idx == 5) ? pmc5 : pmc6;
1082                prev = local64_read(&event->hw.prev_count);
1083                if (check_and_compute_delta(prev, val))
1084                        local64_set(&event->hw.prev_count, val);
1085                perf_event_update_userpage(event);
1086        }
1087}
1088
1089/*
1090 * Since limited events don't respect the freeze conditions, we
1091 * have to read them immediately after freezing or unfreezing the
1092 * other events.  We try to keep the values from the limited
1093 * events as consistent as possible by keeping the delay (in
1094 * cycles and instructions) between freezing/unfreezing and reading
1095 * the limited events as small and consistent as possible.
1096 * Therefore, if any limited events are in use, we read them
1097 * both, and always in the same order, to minimize variability,
1098 * and do it inside the same asm that writes MMCR0.
1099 */
1100static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0)
1101{
1102        unsigned long pmc5, pmc6;
1103
1104        if (!cpuhw->n_limited) {
1105                mtspr(SPRN_MMCR0, mmcr0);
1106                return;
1107        }
1108
1109        /*
1110         * Write MMCR0, then read PMC5 and PMC6 immediately.
1111         * To ensure we don't get a performance monitor interrupt
1112         * between writing MMCR0 and freezing/thawing the limited
1113         * events, we first write MMCR0 with the event overflow
1114         * interrupt enable bits turned off.
1115         */
1116        asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
1117                     : "=&r" (pmc5), "=&r" (pmc6)
1118                     : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
1119                       "i" (SPRN_MMCR0),
1120                       "i" (SPRN_PMC5), "i" (SPRN_PMC6));
1121
1122        if (mmcr0 & MMCR0_FC)
1123                freeze_limited_counters(cpuhw, pmc5, pmc6);
1124        else
1125                thaw_limited_counters(cpuhw, pmc5, pmc6);
1126
1127        /*
1128         * Write the full MMCR0 including the event overflow interrupt
1129         * enable bits, if necessary.
1130         */
1131        if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
1132                mtspr(SPRN_MMCR0, mmcr0);
1133}
1134
1135/*
1136 * Disable all events to prevent PMU interrupts and to allow
1137 * events to be added or removed.
1138 */
1139static void power_pmu_disable(struct pmu *pmu)
1140{
1141        struct cpu_hw_events *cpuhw;
1142        unsigned long flags, mmcr0, val;
1143
1144        if (!ppmu)
1145                return;
1146        local_irq_save(flags);
1147        cpuhw = &__get_cpu_var(cpu_hw_events);
1148
1149        if (!cpuhw->disabled) {
1150                /*
1151                 * Check if we ever enabled the PMU on this cpu.
1152                 */
1153                if (!cpuhw->pmcs_enabled) {
1154                        ppc_enable_pmcs();
1155                        cpuhw->pmcs_enabled = 1;
1156                }
1157
1158                /*
1159                 * Set the 'freeze counters' bit, clear EBE/BHRBA/PMCC/PMAO/FC56
1160                 */
1161                val  = mmcr0 = mfspr(SPRN_MMCR0);
1162                val |= MMCR0_FC;
1163                val &= ~(MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC | MMCR0_PMAO |
1164                         MMCR0_FC56);
1165
1166                /*
1167                 * The barrier is to make sure the mtspr has been
1168                 * executed and the PMU has frozen the events etc.
1169                 * before we return.
1170                 */
1171                write_mmcr0(cpuhw, val);
1172                mb();
1173
1174                /*
1175                 * Disable instruction sampling if it was enabled
1176                 */
1177                if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
1178                        mtspr(SPRN_MMCRA,
1179                              cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1180                        mb();
1181                }
1182
1183                cpuhw->disabled = 1;
1184                cpuhw->n_added = 0;
1185
1186                ebb_switch_out(mmcr0);
1187        }
1188
1189        local_irq_restore(flags);
1190}
1191
1192/*
1193 * Re-enable all events if disable == 0.
1194 * If we were previously disabled and events were added, then
1195 * put the new config on the PMU.
1196 */
1197static void power_pmu_enable(struct pmu *pmu)
1198{
1199        struct perf_event *event;
1200        struct cpu_hw_events *cpuhw;
1201        unsigned long flags;
1202        long i;
1203        unsigned long val, mmcr0;
1204        s64 left;
1205        unsigned int hwc_index[MAX_HWEVENTS];
1206        int n_lim;
1207        int idx;
1208        bool ebb;
1209
1210        if (!ppmu)
1211                return;
1212        local_irq_save(flags);
1213
1214        cpuhw = &__get_cpu_var(cpu_hw_events);
1215        if (!cpuhw->disabled)
1216                goto out;
1217
1218        if (cpuhw->n_events == 0) {
1219                ppc_set_pmu_inuse(0);
1220                goto out;
1221        }
1222
1223        cpuhw->disabled = 0;
1224
1225        /*
1226         * EBB requires an exclusive group and all events must have the EBB
1227         * flag set, or not set, so we can just check a single event. Also we
1228         * know we have at least one event.
1229         */
1230        ebb = is_ebb_event(cpuhw->event[0]);
1231
1232        /*
1233         * If we didn't change anything, or only removed events,
1234         * no need to recalculate MMCR* settings and reset the PMCs.
1235         * Just reenable the PMU with the current MMCR* settings
1236         * (possibly updated for removal of events).
1237         */
1238        if (!cpuhw->n_added) {
1239                mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1240                mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
1241                goto out_enable;
1242        }
1243
1244        /*
1245         * Clear all MMCR settings and recompute them for the new set of events.
1246         */
1247        memset(cpuhw->mmcr, 0, sizeof(cpuhw->mmcr));
1248
1249        if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index,
1250                               cpuhw->mmcr, cpuhw->event)) {
1251                /* shouldn't ever get here */
1252                printk(KERN_ERR "oops compute_mmcr failed\n");
1253                goto out;
1254        }
1255
1256        if (!(ppmu->flags & PPMU_ARCH_207S)) {
1257                /*
1258                 * Add in MMCR0 freeze bits corresponding to the attr.exclude_*
1259                 * bits for the first event. We have already checked that all
1260                 * events have the same value for these bits as the first event.
1261                 */
1262                event = cpuhw->event[0];
1263                if (event->attr.exclude_user)
1264                        cpuhw->mmcr[0] |= MMCR0_FCP;
1265                if (event->attr.exclude_kernel)
1266                        cpuhw->mmcr[0] |= freeze_events_kernel;
1267                if (event->attr.exclude_hv)
1268                        cpuhw->mmcr[0] |= MMCR0_FCHV;
1269        }
1270
1271        /*
1272         * Write the new configuration to MMCR* with the freeze
1273         * bit set and set the hardware events to their initial values.
1274         * Then unfreeze the events.
1275         */
1276        ppc_set_pmu_inuse(1);
1277        mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1278        mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
1279        mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
1280                                | MMCR0_FC);
1281        if (ppmu->flags & PPMU_ARCH_207S)
1282                mtspr(SPRN_MMCR2, cpuhw->mmcr[3]);
1283
1284        /*
1285         * Read off any pre-existing events that need to move
1286         * to another PMC.
1287         */
1288        for (i = 0; i < cpuhw->n_events; ++i) {
1289                event = cpuhw->event[i];
1290                if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) {
1291                        power_pmu_read(event);
1292                        write_pmc(event->hw.idx, 0);
1293                        event->hw.idx = 0;
1294                }
1295        }
1296
1297        /*
1298         * Initialize the PMCs for all the new and moved events.
1299         */
1300        cpuhw->n_limited = n_lim = 0;
1301        for (i = 0; i < cpuhw->n_events; ++i) {
1302                event = cpuhw->event[i];
1303                if (event->hw.idx)
1304                        continue;
1305                idx = hwc_index[i] + 1;
1306                if (is_limited_pmc(idx)) {
1307                        cpuhw->limited_counter[n_lim] = event;
1308                        cpuhw->limited_hwidx[n_lim] = idx;
1309                        ++n_lim;
1310                        continue;
1311                }
1312
1313                if (ebb)
1314                        val = local64_read(&event->hw.prev_count);
1315                else {
1316                        val = 0;
1317                        if (event->hw.sample_period) {
1318                                left = local64_read(&event->hw.period_left);
1319                                if (left < 0x80000000L)
1320                                        val = 0x80000000L - left;
1321                        }
1322                        local64_set(&event->hw.prev_count, val);
1323                }
1324
1325                event->hw.idx = idx;
1326                if (event->hw.state & PERF_HES_STOPPED)
1327                        val = 0;
1328                write_pmc(idx, val);
1329
1330                perf_event_update_userpage(event);
1331        }
1332        cpuhw->n_limited = n_lim;
1333        cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
1334
1335 out_enable:
1336        pmao_restore_workaround(ebb);
1337
1338        mmcr0 = ebb_switch_in(ebb, cpuhw);
1339
1340        mb();
1341        if (cpuhw->bhrb_users)
1342                ppmu->config_bhrb(cpuhw->bhrb_filter);
1343
1344        write_mmcr0(cpuhw, mmcr0);
1345
1346        /*
1347         * Enable instruction sampling if necessary
1348         */
1349        if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
1350                mb();
1351                mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
1352        }
1353
1354 out:
1355
1356        local_irq_restore(flags);
1357}
1358
1359static int collect_events(struct perf_event *group, int max_count,
1360                          struct perf_event *ctrs[], u64 *events,
1361                          unsigned int *flags)
1362{
1363        int n = 0;
1364        struct perf_event *event;
1365
1366        if (!is_software_event(group)) {
1367                if (n >= max_count)
1368                        return -1;
1369                ctrs[n] = group;
1370                flags[n] = group->hw.event_base;
1371                events[n++] = group->hw.config;
1372        }
1373        list_for_each_entry(event, &group->sibling_list, group_entry) {
1374                if (!is_software_event(event) &&
1375                    event->state != PERF_EVENT_STATE_OFF) {
1376                        if (n >= max_count)
1377                                return -1;
1378                        ctrs[n] = event;
1379                        flags[n] = event->hw.event_base;
1380                        events[n++] = event->hw.config;
1381                }
1382        }
1383        return n;
1384}
1385
1386/*
1387 * Add a event to the PMU.
1388 * If all events are not already frozen, then we disable and
1389 * re-enable the PMU in order to get hw_perf_enable to do the
1390 * actual work of reconfiguring the PMU.
1391 */
1392static int power_pmu_add(struct perf_event *event, int ef_flags)
1393{
1394        struct cpu_hw_events *cpuhw;
1395        unsigned long flags;
1396        int n0;
1397        int ret = -EAGAIN;
1398
1399        local_irq_save(flags);
1400        perf_pmu_disable(event->pmu);
1401
1402        /*
1403         * Add the event to the list (if there is room)
1404         * and check whether the total set is still feasible.
1405         */
1406        cpuhw = &__get_cpu_var(cpu_hw_events);
1407        n0 = cpuhw->n_events;
1408        if (n0 >= ppmu->n_counter)
1409                goto out;
1410        cpuhw->event[n0] = event;
1411        cpuhw->events[n0] = event->hw.config;
1412        cpuhw->flags[n0] = event->hw.event_base;
1413
1414        /*
1415         * This event may have been disabled/stopped in record_and_restart()
1416         * because we exceeded the ->event_limit. If re-starting the event,
1417         * clear the ->hw.state (STOPPED and UPTODATE flags), so the user
1418         * notification is re-enabled.
1419         */
1420        if (!(ef_flags & PERF_EF_START))
1421                event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
1422        else
1423                event->hw.state = 0;
1424
1425        /*
1426         * If group events scheduling transaction was started,
1427         * skip the schedulability test here, it will be performed
1428         * at commit time(->commit_txn) as a whole
1429         */
1430        if (cpuhw->group_flag & PERF_EVENT_TXN)
1431                goto nocheck;
1432
1433        if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1))
1434                goto out;
1435        if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1))
1436                goto out;
1437        event->hw.config = cpuhw->events[n0];
1438
1439nocheck:
1440        ebb_event_add(event);
1441
1442        ++cpuhw->n_events;
1443        ++cpuhw->n_added;
1444
1445        ret = 0;
1446 out:
1447        if (has_branch_stack(event)) {
1448                power_pmu_bhrb_enable(event);
1449                cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
1450                                        event->attr.branch_sample_type);
1451        }
1452
1453        perf_pmu_enable(event->pmu);
1454        local_irq_restore(flags);
1455        return ret;
1456}
1457
1458/*
1459 * Remove a event from the PMU.
1460 */
1461static void power_pmu_del(struct perf_event *event, int ef_flags)
1462{
1463        struct cpu_hw_events *cpuhw;
1464        long i;
1465        unsigned long flags;
1466
1467        local_irq_save(flags);
1468        perf_pmu_disable(event->pmu);
1469
1470        power_pmu_read(event);
1471
1472        cpuhw = &__get_cpu_var(cpu_hw_events);
1473        for (i = 0; i < cpuhw->n_events; ++i) {
1474                if (event == cpuhw->event[i]) {
1475                        while (++i < cpuhw->n_events) {
1476                                cpuhw->event[i-1] = cpuhw->event[i];
1477                                cpuhw->events[i-1] = cpuhw->events[i];
1478                                cpuhw->flags[i-1] = cpuhw->flags[i];
1479                        }
1480                        --cpuhw->n_events;
1481                        ppmu->disable_pmc(event->hw.idx - 1, cpuhw->mmcr);
1482                        if (event->hw.idx) {
1483                                write_pmc(event->hw.idx, 0);
1484                                event->hw.idx = 0;
1485                        }
1486                        perf_event_update_userpage(event);
1487                        break;
1488                }
1489        }
1490        for (i = 0; i < cpuhw->n_limited; ++i)
1491                if (event == cpuhw->limited_counter[i])
1492                        break;
1493        if (i < cpuhw->n_limited) {
1494                while (++i < cpuhw->n_limited) {
1495                        cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
1496                        cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
1497                }
1498                --cpuhw->n_limited;
1499        }
1500        if (cpuhw->n_events == 0) {
1501                /* disable exceptions if no events are running */
1502                cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
1503        }
1504
1505        if (has_branch_stack(event))
1506                power_pmu_bhrb_disable(event);
1507
1508        perf_pmu_enable(event->pmu);
1509        local_irq_restore(flags);
1510}
1511
1512/*
1513 * POWER-PMU does not support disabling individual counters, hence
1514 * program their cycle counter to their max value and ignore the interrupts.
1515 */
1516
1517static void power_pmu_start(struct perf_event *event, int ef_flags)
1518{
1519        unsigned long flags;
1520        s64 left;
1521        unsigned long val;
1522
1523        if (!event->hw.idx || !event->hw.sample_period)
1524                return;
1525
1526        if (!(event->hw.state & PERF_HES_STOPPED))
1527                return;
1528
1529        if (ef_flags & PERF_EF_RELOAD)
1530                WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1531
1532        local_irq_save(flags);
1533        perf_pmu_disable(event->pmu);
1534
1535        event->hw.state = 0;
1536        left = local64_read(&event->hw.period_left);
1537
1538        val = 0;
1539        if (left < 0x80000000L)
1540                val = 0x80000000L - left;
1541
1542        write_pmc(event->hw.idx, val);
1543
1544        perf_event_update_userpage(event);
1545        perf_pmu_enable(event->pmu);
1546        local_irq_restore(flags);
1547}
1548
1549static void power_pmu_stop(struct perf_event *event, int ef_flags)
1550{
1551        unsigned long flags;
1552
1553        if (!event->hw.idx || !event->hw.sample_period)
1554                return;
1555
1556        if (event->hw.state & PERF_HES_STOPPED)
1557                return;
1558
1559        local_irq_save(flags);
1560        perf_pmu_disable(event->pmu);
1561
1562        power_pmu_read(event);
1563        event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
1564        write_pmc(event->hw.idx, 0);
1565
1566        perf_event_update_userpage(event);
1567        perf_pmu_enable(event->pmu);
1568        local_irq_restore(flags);
1569}
1570
1571/*
1572 * Start group events scheduling transaction
1573 * Set the flag to make pmu::enable() not perform the
1574 * schedulability test, it will be performed at commit time
1575 */
1576static void power_pmu_start_txn(struct pmu *pmu)
1577{
1578        struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1579
1580        perf_pmu_disable(pmu);
1581        cpuhw->group_flag |= PERF_EVENT_TXN;
1582        cpuhw->n_txn_start = cpuhw->n_events;
1583}
1584
1585/*
1586 * Stop group events scheduling transaction
1587 * Clear the flag and pmu::enable() will perform the
1588 * schedulability test.
1589 */
1590static void power_pmu_cancel_txn(struct pmu *pmu)
1591{
1592        struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1593
1594        cpuhw->group_flag &= ~PERF_EVENT_TXN;
1595        perf_pmu_enable(pmu);
1596}
1597
1598/*
1599 * Commit group events scheduling transaction
1600 * Perform the group schedulability test as a whole
1601 * Return 0 if success
1602 */
1603static int power_pmu_commit_txn(struct pmu *pmu)
1604{
1605        struct cpu_hw_events *cpuhw;
1606        long i, n;
1607
1608        if (!ppmu)
1609                return -EAGAIN;
1610        cpuhw = &__get_cpu_var(cpu_hw_events);
1611        n = cpuhw->n_events;
1612        if (check_excludes(cpuhw->event, cpuhw->flags, 0, n))
1613                return -EAGAIN;
1614        i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n);
1615        if (i < 0)
1616                return -EAGAIN;
1617
1618        for (i = cpuhw->n_txn_start; i < n; ++i)
1619                cpuhw->event[i]->hw.config = cpuhw->events[i];
1620
1621        cpuhw->group_flag &= ~PERF_EVENT_TXN;
1622        perf_pmu_enable(pmu);
1623        return 0;
1624}
1625
1626/*
1627 * Return 1 if we might be able to put event on a limited PMC,
1628 * or 0 if not.
1629 * A event can only go on a limited PMC if it counts something
1630 * that a limited PMC can count, doesn't require interrupts, and
1631 * doesn't exclude any processor mode.
1632 */
1633static int can_go_on_limited_pmc(struct perf_event *event, u64 ev,
1634                                 unsigned int flags)
1635{
1636        int n;
1637        u64 alt[MAX_EVENT_ALTERNATIVES];
1638
1639        if (event->attr.exclude_user
1640            || event->attr.exclude_kernel
1641            || event->attr.exclude_hv
1642            || event->attr.sample_period)
1643                return 0;
1644
1645        if (ppmu->limited_pmc_event(ev))
1646                return 1;
1647
1648        /*
1649         * The requested event_id isn't on a limited PMC already;
1650         * see if any alternative code goes on a limited PMC.
1651         */
1652        if (!ppmu->get_alternatives)
1653                return 0;
1654
1655        flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
1656        n = ppmu->get_alternatives(ev, flags, alt);
1657
1658        return n > 0;
1659}
1660
1661/*
1662 * Find an alternative event_id that goes on a normal PMC, if possible,
1663 * and return the event_id code, or 0 if there is no such alternative.
1664 * (Note: event_id code 0 is "don't count" on all machines.)
1665 */
1666static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
1667{
1668        u64 alt[MAX_EVENT_ALTERNATIVES];
1669        int n;
1670
1671        flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
1672        n = ppmu->get_alternatives(ev, flags, alt);
1673        if (!n)
1674                return 0;
1675        return alt[0];
1676}
1677
1678/* Number of perf_events counting hardware events */
1679static atomic_t num_events;
1680/* Used to avoid races in calling reserve/release_pmc_hardware */
1681static DEFINE_MUTEX(pmc_reserve_mutex);
1682
1683/*
1684 * Release the PMU if this is the last perf_event.
1685 */
1686static void hw_perf_event_destroy(struct perf_event *event)
1687{
1688        if (!atomic_add_unless(&num_events, -1, 1)) {
1689                mutex_lock(&pmc_reserve_mutex);
1690                if (atomic_dec_return(&num_events) == 0)
1691                        release_pmc_hardware();
1692                mutex_unlock(&pmc_reserve_mutex);
1693        }
1694}
1695
1696/*
1697 * Translate a generic cache event_id config to a raw event_id code.
1698 */
1699static int hw_perf_cache_event(u64 config, u64 *eventp)
1700{
1701        unsigned long type, op, result;
1702        int ev;
1703
1704        if (!ppmu->cache_events)
1705                return -EINVAL;
1706
1707        /* unpack config */
1708        type = config & 0xff;
1709        op = (config >> 8) & 0xff;
1710        result = (config >> 16) & 0xff;
1711
1712        if (type >= PERF_COUNT_HW_CACHE_MAX ||
1713            op >= PERF_COUNT_HW_CACHE_OP_MAX ||
1714            result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1715                return -EINVAL;
1716
1717        ev = (*ppmu->cache_events)[type][op][result];
1718        if (ev == 0)
1719                return -EOPNOTSUPP;
1720        if (ev == -1)
1721                return -EINVAL;
1722        *eventp = ev;
1723        return 0;
1724}
1725
1726static int power_pmu_event_init(struct perf_event *event)
1727{
1728        u64 ev;
1729        unsigned long flags;
1730        struct perf_event *ctrs[MAX_HWEVENTS];
1731        u64 events[MAX_HWEVENTS];
1732        unsigned int cflags[MAX_HWEVENTS];
1733        int n;
1734        int err;
1735        struct cpu_hw_events *cpuhw;
1736
1737        if (!ppmu)
1738                return -ENOENT;
1739
1740        if (has_branch_stack(event)) {
1741                /* PMU has BHRB enabled */
1742                if (!(ppmu->flags & PPMU_ARCH_207S))
1743                        return -EOPNOTSUPP;
1744        }
1745
1746        switch (event->attr.type) {
1747        case PERF_TYPE_HARDWARE:
1748                ev = event->attr.config;
1749                if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
1750                        return -EOPNOTSUPP;
1751                ev = ppmu->generic_events[ev];
1752                break;
1753        case PERF_TYPE_HW_CACHE:
1754                err = hw_perf_cache_event(event->attr.config, &ev);
1755                if (err)
1756                        return err;
1757                break;
1758        case PERF_TYPE_RAW:
1759                ev = event->attr.config;
1760                break;
1761        default:
1762                return -ENOENT;
1763        }
1764
1765        event->hw.config_base = ev;
1766        event->hw.idx = 0;
1767
1768        /*
1769         * If we are not running on a hypervisor, force the
1770         * exclude_hv bit to 0 so that we don't care what
1771         * the user set it to.
1772         */
1773        if (!firmware_has_feature(FW_FEATURE_LPAR))
1774                event->attr.exclude_hv = 0;
1775
1776        /*
1777         * If this is a per-task event, then we can use
1778         * PM_RUN_* events interchangeably with their non RUN_*
1779         * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
1780         * XXX we should check if the task is an idle task.
1781         */
1782        flags = 0;
1783        if (event->attach_state & PERF_ATTACH_TASK)
1784                flags |= PPMU_ONLY_COUNT_RUN;
1785
1786        /*
1787         * If this machine has limited events, check whether this
1788         * event_id could go on a limited event.
1789         */
1790        if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
1791                if (can_go_on_limited_pmc(event, ev, flags)) {
1792                        flags |= PPMU_LIMITED_PMC_OK;
1793                } else if (ppmu->limited_pmc_event(ev)) {
1794                        /*
1795                         * The requested event_id is on a limited PMC,
1796                         * but we can't use a limited PMC; see if any
1797                         * alternative goes on a normal PMC.
1798                         */
1799                        ev = normal_pmc_alternative(ev, flags);
1800                        if (!ev)
1801                                return -EINVAL;
1802                }
1803        }
1804
1805        /* Extra checks for EBB */
1806        err = ebb_event_check(event);
1807        if (err)
1808                return err;
1809
1810        /*
1811         * If this is in a group, check if it can go on with all the
1812         * other hardware events in the group.  We assume the event
1813         * hasn't been linked into its leader's sibling list at this point.
1814         */
1815        n = 0;
1816        if (event->group_leader != event) {
1817                n = collect_events(event->group_leader, ppmu->n_counter - 1,
1818                                   ctrs, events, cflags);
1819                if (n < 0)
1820                        return -EINVAL;
1821        }
1822        events[n] = ev;
1823        ctrs[n] = event;
1824        cflags[n] = flags;
1825        if (check_excludes(ctrs, cflags, n, 1))
1826                return -EINVAL;
1827
1828        cpuhw = &get_cpu_var(cpu_hw_events);
1829        err = power_check_constraints(cpuhw, events, cflags, n + 1);
1830
1831        if (has_branch_stack(event)) {
1832                cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
1833                                        event->attr.branch_sample_type);
1834
1835                if(cpuhw->bhrb_filter == -1)
1836                        return -EOPNOTSUPP;
1837        }
1838
1839        put_cpu_var(cpu_hw_events);
1840        if (err)
1841                return -EINVAL;
1842
1843        event->hw.config = events[n];
1844        event->hw.event_base = cflags[n];
1845        event->hw.last_period = event->hw.sample_period;
1846        local64_set(&event->hw.period_left, event->hw.last_period);
1847
1848        /*
1849         * For EBB events we just context switch the PMC value, we don't do any
1850         * of the sample_period logic. We use hw.prev_count for this.
1851         */
1852        if (is_ebb_event(event))
1853                local64_set(&event->hw.prev_count, 0);
1854
1855        /*
1856         * See if we need to reserve the PMU.
1857         * If no events are currently in use, then we have to take a
1858         * mutex to ensure that we don't race with another task doing
1859         * reserve_pmc_hardware or release_pmc_hardware.
1860         */
1861        err = 0;
1862        if (!atomic_inc_not_zero(&num_events)) {
1863                mutex_lock(&pmc_reserve_mutex);
1864                if (atomic_read(&num_events) == 0 &&
1865                    reserve_pmc_hardware(perf_event_interrupt))
1866                        err = -EBUSY;
1867                else
1868                        atomic_inc(&num_events);
1869                mutex_unlock(&pmc_reserve_mutex);
1870        }
1871        event->destroy = hw_perf_event_destroy;
1872
1873        return err;
1874}
1875
1876static int power_pmu_event_idx(struct perf_event *event)
1877{
1878        return event->hw.idx;
1879}
1880
1881ssize_t power_events_sysfs_show(struct device *dev,
1882                                struct device_attribute *attr, char *page)
1883{
1884        struct perf_pmu_events_attr *pmu_attr;
1885
1886        pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);
1887
1888        return sprintf(page, "event=0x%02llx\n", pmu_attr->id);
1889}
1890
1891static struct pmu power_pmu = {
1892        .pmu_enable     = power_pmu_enable,
1893        .pmu_disable    = power_pmu_disable,
1894        .event_init     = power_pmu_event_init,
1895        .add            = power_pmu_add,
1896        .del            = power_pmu_del,
1897        .start          = power_pmu_start,
1898        .stop           = power_pmu_stop,
1899        .read           = power_pmu_read,
1900        .start_txn      = power_pmu_start_txn,
1901        .cancel_txn     = power_pmu_cancel_txn,
1902        .commit_txn     = power_pmu_commit_txn,
1903        .event_idx      = power_pmu_event_idx,
1904        .flush_branch_stack = power_pmu_flush_branch_stack,
1905};
1906
1907/*
1908 * A counter has overflowed; update its count and record
1909 * things if requested.  Note that interrupts are hard-disabled
1910 * here so there is no possibility of being interrupted.
1911 */
1912static void record_and_restart(struct perf_event *event, unsigned long val,
1913                               struct pt_regs *regs)
1914{
1915        u64 period = event->hw.sample_period;
1916        s64 prev, delta, left;
1917        int record = 0;
1918
1919        if (event->hw.state & PERF_HES_STOPPED) {
1920                write_pmc(event->hw.idx, 0);
1921                return;
1922        }
1923
1924        /* we don't have to worry about interrupts here */
1925        prev = local64_read(&event->hw.prev_count);
1926        delta = check_and_compute_delta(prev, val);
1927        local64_add(delta, &event->count);
1928
1929        /*
1930         * See if the total period for this event has expired,
1931         * and update for the next period.
1932         */
1933        val = 0;
1934        left = local64_read(&event->hw.period_left) - delta;
1935        if (delta == 0)
1936                left++;
1937        if (period) {
1938                if (left <= 0) {
1939                        left += period;
1940                        if (left <= 0)
1941                                left = period;
1942                        record = siar_valid(regs);
1943                        event->hw.last_period = event->hw.sample_period;
1944                }
1945                if (left < 0x80000000LL)
1946                        val = 0x80000000LL - left;
1947        }
1948
1949        write_pmc(event->hw.idx, val);
1950        local64_set(&event->hw.prev_count, val);
1951        local64_set(&event->hw.period_left, left);
1952        perf_event_update_userpage(event);
1953
1954        /*
1955         * Finally record data if requested.
1956         */
1957        if (record) {
1958                struct perf_sample_data data;
1959
1960                perf_sample_data_init(&data, ~0ULL, event->hw.last_period);
1961
1962                if (event->attr.sample_type & PERF_SAMPLE_ADDR)
1963                        perf_get_data_addr(regs, &data.addr);
1964
1965                if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) {
1966                        struct cpu_hw_events *cpuhw;
1967                        cpuhw = &__get_cpu_var(cpu_hw_events);
1968                        power_pmu_bhrb_read(cpuhw);
1969                        data.br_stack = &cpuhw->bhrb_stack;
1970                }
1971
1972                if (perf_event_overflow(event, &data, regs))
1973                        power_pmu_stop(event, 0);
1974        }
1975}
1976
1977/*
1978 * Called from generic code to get the misc flags (i.e. processor mode)
1979 * for an event_id.
1980 */
1981unsigned long perf_misc_flags(struct pt_regs *regs)
1982{
1983        u32 flags = perf_get_misc_flags(regs);
1984
1985        if (flags)
1986                return flags;
1987        return user_mode(regs) ? PERF_RECORD_MISC_USER :
1988                PERF_RECORD_MISC_KERNEL;
1989}
1990
1991/*
1992 * Called from generic code to get the instruction pointer
1993 * for an event_id.
1994 */
1995unsigned long perf_instruction_pointer(struct pt_regs *regs)
1996{
1997        bool use_siar = regs_use_siar(regs);
1998
1999        if (use_siar && siar_valid(regs))
2000                return mfspr(SPRN_SIAR) + perf_ip_adjust(regs);
2001        else if (use_siar)
2002                return 0;               // no valid instruction pointer
2003        else
2004                return regs->nip;
2005}
2006
2007static bool pmc_overflow_power7(unsigned long val)
2008{
2009        /*
2010         * Events on POWER7 can roll back if a speculative event doesn't
2011         * eventually complete. Unfortunately in some rare cases they will
2012         * raise a performance monitor exception. We need to catch this to
2013         * ensure we reset the PMC. In all cases the PMC will be 256 or less
2014         * cycles from overflow.
2015         *
2016         * We only do this if the first pass fails to find any overflowing
2017         * PMCs because a user might set a period of less than 256 and we
2018         * don't want to mistakenly reset them.
2019         */
2020        if ((0x80000000 - val) <= 256)
2021                return true;
2022
2023        return false;
2024}
2025
2026static bool pmc_overflow(unsigned long val)
2027{
2028        if ((int)val < 0)
2029                return true;
2030
2031        return false;
2032}
2033
2034/*
2035 * Performance monitor interrupt stuff
2036 */
2037static void perf_event_interrupt(struct pt_regs *regs)
2038{
2039        int i, j;
2040        struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
2041        struct perf_event *event;
2042        unsigned long val[8];
2043        int found, active;
2044        int nmi;
2045
2046        if (cpuhw->n_limited)
2047                freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
2048                                        mfspr(SPRN_PMC6));
2049
2050        perf_read_regs(regs);
2051
2052        nmi = perf_intr_is_nmi(regs);
2053        if (nmi)
2054                nmi_enter();
2055        else
2056                irq_enter();
2057
2058        /* Read all the PMCs since we'll need them a bunch of times */
2059        for (i = 0; i < ppmu->n_counter; ++i)
2060                val[i] = read_pmc(i + 1);
2061
2062        /* Try to find what caused the IRQ */
2063        found = 0;
2064        for (i = 0; i < ppmu->n_counter; ++i) {
2065                if (!pmc_overflow(val[i]))
2066                        continue;
2067                if (is_limited_pmc(i + 1))
2068                        continue; /* these won't generate IRQs */
2069                /*
2070                 * We've found one that's overflowed.  For active
2071                 * counters we need to log this.  For inactive
2072                 * counters, we need to reset it anyway
2073                 */
2074                found = 1;
2075                active = 0;
2076                for (j = 0; j < cpuhw->n_events; ++j) {
2077                        event = cpuhw->event[j];
2078                        if (event->hw.idx == (i + 1)) {
2079                                active = 1;
2080                                record_and_restart(event, val[i], regs);
2081                                break;
2082                        }
2083                }
2084                if (!active)
2085                        /* reset non active counters that have overflowed */
2086                        write_pmc(i + 1, 0);
2087        }
2088        if (!found && pvr_version_is(PVR_POWER7)) {
2089                /* check active counters for special buggy p7 overflow */
2090                for (i = 0; i < cpuhw->n_events; ++i) {
2091                        event = cpuhw->event[i];
2092                        if (!event->hw.idx || is_limited_pmc(event->hw.idx))
2093                                continue;
2094                        if (pmc_overflow_power7(val[event->hw.idx - 1])) {
2095                                /* event has overflowed in a buggy way*/
2096                                found = 1;
2097                                record_and_restart(event,
2098                                                   val[event->hw.idx - 1],
2099                                                   regs);
2100                        }
2101                }
2102        }
2103        if (!found && !nmi && printk_ratelimit())
2104                printk(KERN_WARNING "Can't find PMC that caused IRQ\n");
2105
2106        /*
2107         * Reset MMCR0 to its normal value.  This will set PMXE and
2108         * clear FC (freeze counters) and PMAO (perf mon alert occurred)
2109         * and thus allow interrupts to occur again.
2110         * XXX might want to use MSR.PM to keep the events frozen until
2111         * we get back out of this interrupt.
2112         */
2113        write_mmcr0(cpuhw, cpuhw->mmcr[0]);
2114
2115        if (nmi)
2116                nmi_exit();
2117        else
2118                irq_exit();
2119}
2120
2121static void power_pmu_setup(int cpu)
2122{
2123        struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
2124
2125        if (!ppmu)
2126                return;
2127        memset(cpuhw, 0, sizeof(*cpuhw));
2128        cpuhw->mmcr[0] = MMCR0_FC;
2129}
2130
2131static int
2132power_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
2133{
2134        unsigned int cpu = (long)hcpu;
2135
2136        switch (action & ~CPU_TASKS_FROZEN) {
2137        case CPU_UP_PREPARE:
2138                power_pmu_setup(cpu);
2139                break;
2140
2141        default:
2142                break;
2143        }
2144
2145        return NOTIFY_OK;
2146}
2147
2148int register_power_pmu(struct power_pmu *pmu)
2149{
2150        if (ppmu)
2151                return -EBUSY;          /* something's already registered */
2152
2153        ppmu = pmu;
2154        pr_info("%s performance monitor hardware support registered\n",
2155                pmu->name);
2156
2157        power_pmu.attr_groups = ppmu->attr_groups;
2158
2159#ifdef MSR_HV
2160        /*
2161         * Use FCHV to ignore kernel events if MSR.HV is set.
2162         */
2163        if (mfmsr() & MSR_HV)
2164                freeze_events_kernel = MMCR0_FCHV;
2165#endif /* CONFIG_PPC64 */
2166
2167        perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW);
2168        perf_cpu_notifier(power_pmu_notifier);
2169
2170        return 0;
2171}
2172