linux/arch/powerpc/platforms/pseries/ras.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2001 Dave Engebretsen IBM Corporation
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write to the Free Software
  16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
  17 */
  18
  19#include <linux/sched.h>
  20#include <linux/interrupt.h>
  21#include <linux/irq.h>
  22#include <linux/of.h>
  23#include <linux/fs.h>
  24#include <linux/reboot.h>
  25
  26#include <asm/machdep.h>
  27#include <asm/rtas.h>
  28#include <asm/firmware.h>
  29
  30#include "pseries.h"
  31
  32static unsigned char ras_log_buf[RTAS_ERROR_LOG_MAX];
  33static DEFINE_SPINLOCK(ras_log_buf_lock);
  34
  35static char global_mce_data_buf[RTAS_ERROR_LOG_MAX];
  36static DEFINE_PER_CPU(__u64, mce_data_buf);
  37
  38static int ras_check_exception_token;
  39
  40#define EPOW_SENSOR_TOKEN       9
  41#define EPOW_SENSOR_INDEX       0
  42
  43static irqreturn_t ras_epow_interrupt(int irq, void *dev_id);
  44static irqreturn_t ras_error_interrupt(int irq, void *dev_id);
  45
  46
  47/*
  48 * Initialize handlers for the set of interrupts caused by hardware errors
  49 * and power system events.
  50 */
  51static int __init init_ras_IRQ(void)
  52{
  53        struct device_node *np;
  54
  55        ras_check_exception_token = rtas_token("check-exception");
  56
  57        /* Internal Errors */
  58        np = of_find_node_by_path("/event-sources/internal-errors");
  59        if (np != NULL) {
  60                request_event_sources_irqs(np, ras_error_interrupt,
  61                                           "RAS_ERROR");
  62                of_node_put(np);
  63        }
  64
  65        /* EPOW Events */
  66        np = of_find_node_by_path("/event-sources/epow-events");
  67        if (np != NULL) {
  68                request_event_sources_irqs(np, ras_epow_interrupt, "RAS_EPOW");
  69                of_node_put(np);
  70        }
  71
  72        return 0;
  73}
  74machine_subsys_initcall(pseries, init_ras_IRQ);
  75
  76#define EPOW_SHUTDOWN_NORMAL                            1
  77#define EPOW_SHUTDOWN_ON_UPS                            2
  78#define EPOW_SHUTDOWN_LOSS_OF_CRITICAL_FUNCTIONS        3
  79#define EPOW_SHUTDOWN_AMBIENT_TEMPERATURE_TOO_HIGH      4
  80
  81static void handle_system_shutdown(char event_modifier)
  82{
  83        switch (event_modifier) {
  84        case EPOW_SHUTDOWN_NORMAL:
  85                pr_emerg("Firmware initiated power off");
  86                orderly_poweroff(true);
  87                break;
  88
  89        case EPOW_SHUTDOWN_ON_UPS:
  90                pr_emerg("Loss of power reported by firmware, system is "
  91                        "running on UPS/battery");
  92                break;
  93
  94        case EPOW_SHUTDOWN_LOSS_OF_CRITICAL_FUNCTIONS:
  95                pr_emerg("Loss of system critical functions reported by "
  96                        "firmware");
  97                pr_emerg("Check RTAS error log for details");
  98                orderly_poweroff(true);
  99                break;
 100
 101        case EPOW_SHUTDOWN_AMBIENT_TEMPERATURE_TOO_HIGH:
 102                pr_emerg("Ambient temperature too high reported by firmware");
 103                pr_emerg("Check RTAS error log for details");
 104                orderly_poweroff(true);
 105                break;
 106
 107        default:
 108                pr_err("Unknown power/cooling shutdown event (modifier %d)",
 109                        event_modifier);
 110        }
 111}
 112
 113struct epow_errorlog {
 114        unsigned char sensor_value;
 115        unsigned char event_modifier;
 116        unsigned char extended_modifier;
 117        unsigned char reserved;
 118        unsigned char platform_reason;
 119};
 120
 121#define EPOW_RESET                      0
 122#define EPOW_WARN_COOLING               1
 123#define EPOW_WARN_POWER                 2
 124#define EPOW_SYSTEM_SHUTDOWN            3
 125#define EPOW_SYSTEM_HALT                4
 126#define EPOW_MAIN_ENCLOSURE             5
 127#define EPOW_POWER_OFF                  7
 128
 129static void rtas_parse_epow_errlog(struct rtas_error_log *log)
 130{
 131        struct pseries_errorlog *pseries_log;
 132        struct epow_errorlog *epow_log;
 133        char action_code;
 134        char modifier;
 135
 136        pseries_log = get_pseries_errorlog(log, PSERIES_ELOG_SECT_ID_EPOW);
 137        if (pseries_log == NULL)
 138                return;
 139
 140        epow_log = (struct epow_errorlog *)pseries_log->data;
 141        action_code = epow_log->sensor_value & 0xF;     /* bottom 4 bits */
 142        modifier = epow_log->event_modifier & 0xF;      /* bottom 4 bits */
 143
 144        switch (action_code) {
 145        case EPOW_RESET:
 146                pr_err("Non critical power or cooling issue cleared");
 147                break;
 148
 149        case EPOW_WARN_COOLING:
 150                pr_err("Non critical cooling issue reported by firmware");
 151                pr_err("Check RTAS error log for details");
 152                break;
 153
 154        case EPOW_WARN_POWER:
 155                pr_err("Non critical power issue reported by firmware");
 156                pr_err("Check RTAS error log for details");
 157                break;
 158
 159        case EPOW_SYSTEM_SHUTDOWN:
 160                handle_system_shutdown(epow_log->event_modifier);
 161                break;
 162
 163        case EPOW_SYSTEM_HALT:
 164                pr_emerg("Firmware initiated power off");
 165                orderly_poweroff(true);
 166                break;
 167
 168        case EPOW_MAIN_ENCLOSURE:
 169        case EPOW_POWER_OFF:
 170                pr_emerg("Critical power/cooling issue reported by firmware");
 171                pr_emerg("Check RTAS error log for details");
 172                pr_emerg("Immediate power off");
 173                emergency_sync();
 174                kernel_power_off();
 175                break;
 176
 177        default:
 178                pr_err("Unknown power/cooling event (action code %d)",
 179                        action_code);
 180        }
 181}
 182
 183/* Handle environmental and power warning (EPOW) interrupts. */
 184static irqreturn_t ras_epow_interrupt(int irq, void *dev_id)
 185{
 186        int status;
 187        int state;
 188        int critical;
 189
 190        status = rtas_get_sensor(EPOW_SENSOR_TOKEN, EPOW_SENSOR_INDEX, &state);
 191
 192        if (state > 3)
 193                critical = 1;           /* Time Critical */
 194        else
 195                critical = 0;
 196
 197        spin_lock(&ras_log_buf_lock);
 198
 199        status = rtas_call(ras_check_exception_token, 6, 1, NULL,
 200                           RTAS_VECTOR_EXTERNAL_INTERRUPT,
 201                           virq_to_hw(irq),
 202                           RTAS_EPOW_WARNING,
 203                           critical, __pa(&ras_log_buf),
 204                                rtas_get_error_log_max());
 205
 206        log_error(ras_log_buf, ERR_TYPE_RTAS_LOG, 0);
 207
 208        rtas_parse_epow_errlog((struct rtas_error_log *)ras_log_buf);
 209
 210        spin_unlock(&ras_log_buf_lock);
 211        return IRQ_HANDLED;
 212}
 213
 214/*
 215 * Handle hardware error interrupts.
 216 *
 217 * RTAS check-exception is called to collect data on the exception.  If
 218 * the error is deemed recoverable, we log a warning and return.
 219 * For nonrecoverable errors, an error is logged and we stop all processing
 220 * as quickly as possible in order to prevent propagation of the failure.
 221 */
 222static irqreturn_t ras_error_interrupt(int irq, void *dev_id)
 223{
 224        struct rtas_error_log *rtas_elog;
 225        int status;
 226        int fatal;
 227
 228        spin_lock(&ras_log_buf_lock);
 229
 230        status = rtas_call(ras_check_exception_token, 6, 1, NULL,
 231                           RTAS_VECTOR_EXTERNAL_INTERRUPT,
 232                           virq_to_hw(irq),
 233                           RTAS_INTERNAL_ERROR, 1 /* Time Critical */,
 234                           __pa(&ras_log_buf),
 235                                rtas_get_error_log_max());
 236
 237        rtas_elog = (struct rtas_error_log *)ras_log_buf;
 238
 239        if (status == 0 &&
 240            rtas_error_severity(rtas_elog) >= RTAS_SEVERITY_ERROR_SYNC)
 241                fatal = 1;
 242        else
 243                fatal = 0;
 244
 245        /* format and print the extended information */
 246        log_error(ras_log_buf, ERR_TYPE_RTAS_LOG, fatal);
 247
 248        if (fatal) {
 249                pr_emerg("Fatal hardware error reported by firmware");
 250                pr_emerg("Check RTAS error log for details");
 251                pr_emerg("Immediate power off");
 252                emergency_sync();
 253                kernel_power_off();
 254        } else {
 255                pr_err("Recoverable hardware error reported by firmware");
 256        }
 257
 258        spin_unlock(&ras_log_buf_lock);
 259        return IRQ_HANDLED;
 260}
 261
 262/*
 263 * Some versions of FWNMI place the buffer inside the 4kB page starting at
 264 * 0x7000. Other versions place it inside the rtas buffer. We check both.
 265 */
 266#define VALID_FWNMI_BUFFER(A) \
 267        ((((A) >= 0x7000) && ((A) < 0x7ff0)) || \
 268        (((A) >= rtas.base) && ((A) < (rtas.base + rtas.size - 16))))
 269
 270/*
 271 * Get the error information for errors coming through the
 272 * FWNMI vectors.  The pt_regs' r3 will be updated to reflect
 273 * the actual r3 if possible, and a ptr to the error log entry
 274 * will be returned if found.
 275 *
 276 * If the RTAS error is not of the extended type, then we put it in a per
 277 * cpu 64bit buffer. If it is the extended type we use global_mce_data_buf.
 278 *
 279 * The global_mce_data_buf does not have any locks or protection around it,
 280 * if a second machine check comes in, or a system reset is done
 281 * before we have logged the error, then we will get corruption in the
 282 * error log.  This is preferable over holding off on calling
 283 * ibm,nmi-interlock which would result in us checkstopping if a
 284 * second machine check did come in.
 285 */
 286static struct rtas_error_log *fwnmi_get_errinfo(struct pt_regs *regs)
 287{
 288        unsigned long *savep;
 289        struct rtas_error_log *h, *errhdr = NULL;
 290
 291        /* Mask top two bits */
 292        regs->gpr[3] &= ~(0x3UL << 62);
 293
 294        if (!VALID_FWNMI_BUFFER(regs->gpr[3])) {
 295                printk(KERN_ERR "FWNMI: corrupt r3 0x%016lx\n", regs->gpr[3]);
 296                return NULL;
 297        }
 298
 299        savep = __va(regs->gpr[3]);
 300        regs->gpr[3] = savep[0];        /* restore original r3 */
 301
 302        /* If it isn't an extended log we can use the per cpu 64bit buffer */
 303        h = (struct rtas_error_log *)&savep[1];
 304        if (!rtas_error_extended(h)) {
 305                memcpy(&__get_cpu_var(mce_data_buf), h, sizeof(__u64));
 306                errhdr = (struct rtas_error_log *)&__get_cpu_var(mce_data_buf);
 307        } else {
 308                int len, error_log_length;
 309
 310                error_log_length = 8 + rtas_error_extended_log_length(h);
 311                len = max_t(int, error_log_length, RTAS_ERROR_LOG_MAX);
 312                memset(global_mce_data_buf, 0, RTAS_ERROR_LOG_MAX);
 313                memcpy(global_mce_data_buf, h, len);
 314                errhdr = (struct rtas_error_log *)global_mce_data_buf;
 315        }
 316
 317        return errhdr;
 318}
 319
 320/* Call this when done with the data returned by FWNMI_get_errinfo.
 321 * It will release the saved data area for other CPUs in the
 322 * partition to receive FWNMI errors.
 323 */
 324static void fwnmi_release_errinfo(void)
 325{
 326        int ret = rtas_call(rtas_token("ibm,nmi-interlock"), 0, 1, NULL);
 327        if (ret != 0)
 328                printk(KERN_ERR "FWNMI: nmi-interlock failed: %d\n", ret);
 329}
 330
 331int pSeries_system_reset_exception(struct pt_regs *regs)
 332{
 333        if (fwnmi_active) {
 334                struct rtas_error_log *errhdr = fwnmi_get_errinfo(regs);
 335                if (errhdr) {
 336                        /* XXX Should look at FWNMI information */
 337                }
 338                fwnmi_release_errinfo();
 339        }
 340        return 0; /* need to perform reset */
 341}
 342
 343/*
 344 * See if we can recover from a machine check exception.
 345 * This is only called on power4 (or above) and only via
 346 * the Firmware Non-Maskable Interrupts (fwnmi) handler
 347 * which provides the error analysis for us.
 348 *
 349 * Return 1 if corrected (or delivered a signal).
 350 * Return 0 if there is nothing we can do.
 351 */
 352static int recover_mce(struct pt_regs *regs, struct rtas_error_log *err)
 353{
 354        int recovered = 0;
 355        int disposition = rtas_error_disposition(err);
 356
 357        if (!(regs->msr & MSR_RI)) {
 358                /* If MSR_RI isn't set, we cannot recover */
 359                recovered = 0;
 360
 361        } else if (disposition == RTAS_DISP_FULLY_RECOVERED) {
 362                /* Platform corrected itself */
 363                recovered = 1;
 364
 365        } else if (disposition == RTAS_DISP_LIMITED_RECOVERY) {
 366                /* Platform corrected itself but could be degraded */
 367                printk(KERN_ERR "MCE: limited recovery, system may "
 368                       "be degraded\n");
 369                recovered = 1;
 370
 371        } else if (user_mode(regs) && !is_global_init(current) &&
 372                   rtas_error_severity(err) == RTAS_SEVERITY_ERROR_SYNC) {
 373
 374                /*
 375                 * If we received a synchronous error when in userspace
 376                 * kill the task. Firmware may report details of the fail
 377                 * asynchronously, so we can't rely on the target and type
 378                 * fields being valid here.
 379                 */
 380                printk(KERN_ERR "MCE: uncorrectable error, killing task "
 381                       "%s:%d\n", current->comm, current->pid);
 382
 383                _exception(SIGBUS, regs, BUS_MCEERR_AR, regs->nip);
 384                recovered = 1;
 385        }
 386
 387        log_error((char *)err, ERR_TYPE_RTAS_LOG, 0);
 388
 389        return recovered;
 390}
 391
 392/*
 393 * Handle a machine check.
 394 *
 395 * Note that on Power 4 and beyond Firmware Non-Maskable Interrupts (fwnmi)
 396 * should be present.  If so the handler which called us tells us if the
 397 * error was recovered (never true if RI=0).
 398 *
 399 * On hardware prior to Power 4 these exceptions were asynchronous which
 400 * means we can't tell exactly where it occurred and so we can't recover.
 401 */
 402int pSeries_machine_check_exception(struct pt_regs *regs)
 403{
 404        struct rtas_error_log *errp;
 405
 406        if (fwnmi_active) {
 407                errp = fwnmi_get_errinfo(regs);
 408                fwnmi_release_errinfo();
 409                if (errp && recover_mce(regs, errp))
 410                        return 1;
 411        }
 412
 413        return 0;
 414}
 415