linux/arch/x86/kvm/x86.c
<<
>>
Prefs
   1/*
   2 * Kernel-based Virtual Machine driver for Linux
   3 *
   4 * derived from drivers/kvm/kvm_main.c
   5 *
   6 * Copyright (C) 2006 Qumranet, Inc.
   7 * Copyright (C) 2008 Qumranet, Inc.
   8 * Copyright IBM Corporation, 2008
   9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  10 *
  11 * Authors:
  12 *   Avi Kivity   <avi@qumranet.com>
  13 *   Yaniv Kamay  <yaniv@qumranet.com>
  14 *   Amit Shah    <amit.shah@qumranet.com>
  15 *   Ben-Ami Yassour <benami@il.ibm.com>
  16 *
  17 * This work is licensed under the terms of the GNU GPL, version 2.  See
  18 * the COPYING file in the top-level directory.
  19 *
  20 */
  21
  22#include <linux/kvm_host.h>
  23#include "irq.h"
  24#include "mmu.h"
  25#include "i8254.h"
  26#include "tss.h"
  27#include "kvm_cache_regs.h"
  28#include "x86.h"
  29#include "cpuid.h"
  30
  31#include <linux/clocksource.h>
  32#include <linux/interrupt.h>
  33#include <linux/kvm.h>
  34#include <linux/fs.h>
  35#include <linux/vmalloc.h>
  36#include <linux/module.h>
  37#include <linux/mman.h>
  38#include <linux/highmem.h>
  39#include <linux/iommu.h>
  40#include <linux/intel-iommu.h>
  41#include <linux/cpufreq.h>
  42#include <linux/user-return-notifier.h>
  43#include <linux/srcu.h>
  44#include <linux/slab.h>
  45#include <linux/perf_event.h>
  46#include <linux/uaccess.h>
  47#include <linux/hash.h>
  48#include <linux/pci.h>
  49#include <linux/timekeeper_internal.h>
  50#include <linux/pvclock_gtod.h>
  51#include <trace/events/kvm.h>
  52
  53#define CREATE_TRACE_POINTS
  54#include "trace.h"
  55
  56#include <asm/debugreg.h>
  57#include <asm/msr.h>
  58#include <asm/desc.h>
  59#include <asm/mtrr.h>
  60#include <asm/mce.h>
  61#include <asm/i387.h>
  62#include <asm/fpu-internal.h> /* Ugh! */
  63#include <asm/xcr.h>
  64#include <asm/pvclock.h>
  65#include <asm/div64.h>
  66
  67#define MAX_IO_MSRS 256
  68#define KVM_MAX_MCE_BANKS 32
  69#define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
  70
  71#define emul_to_vcpu(ctxt) \
  72        container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
  73
  74/* EFER defaults:
  75 * - enable syscall per default because its emulated by KVM
  76 * - enable LME and LMA per default on 64 bit KVM
  77 */
  78#ifdef CONFIG_X86_64
  79static
  80u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
  81#else
  82static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
  83#endif
  84
  85#define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
  86#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
  87
  88static void update_cr8_intercept(struct kvm_vcpu *vcpu);
  89static void process_nmi(struct kvm_vcpu *vcpu);
  90static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
  91
  92struct kvm_x86_ops *kvm_x86_ops;
  93EXPORT_SYMBOL_GPL(kvm_x86_ops);
  94
  95static bool ignore_msrs = 0;
  96module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
  97
  98unsigned int min_timer_period_us = 500;
  99module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
 100
 101bool kvm_has_tsc_control;
 102EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
 103u32  kvm_max_guest_tsc_khz;
 104EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
 105
 106/* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
 107static u32 tsc_tolerance_ppm = 250;
 108module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
 109
 110static bool backwards_tsc_observed = false;
 111
 112#define KVM_NR_SHARED_MSRS 16
 113
 114struct kvm_shared_msrs_global {
 115        int nr;
 116        u32 msrs[KVM_NR_SHARED_MSRS];
 117};
 118
 119struct kvm_shared_msrs {
 120        struct user_return_notifier urn;
 121        bool registered;
 122        struct kvm_shared_msr_values {
 123                u64 host;
 124                u64 curr;
 125        } values[KVM_NR_SHARED_MSRS];
 126};
 127
 128static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
 129static struct kvm_shared_msrs __percpu *shared_msrs;
 130
 131struct kvm_stats_debugfs_item debugfs_entries[] = {
 132        { "pf_fixed", VCPU_STAT(pf_fixed) },
 133        { "pf_guest", VCPU_STAT(pf_guest) },
 134        { "tlb_flush", VCPU_STAT(tlb_flush) },
 135        { "invlpg", VCPU_STAT(invlpg) },
 136        { "exits", VCPU_STAT(exits) },
 137        { "io_exits", VCPU_STAT(io_exits) },
 138        { "mmio_exits", VCPU_STAT(mmio_exits) },
 139        { "signal_exits", VCPU_STAT(signal_exits) },
 140        { "irq_window", VCPU_STAT(irq_window_exits) },
 141        { "nmi_window", VCPU_STAT(nmi_window_exits) },
 142        { "halt_exits", VCPU_STAT(halt_exits) },
 143        { "halt_wakeup", VCPU_STAT(halt_wakeup) },
 144        { "hypercalls", VCPU_STAT(hypercalls) },
 145        { "request_irq", VCPU_STAT(request_irq_exits) },
 146        { "irq_exits", VCPU_STAT(irq_exits) },
 147        { "host_state_reload", VCPU_STAT(host_state_reload) },
 148        { "efer_reload", VCPU_STAT(efer_reload) },
 149        { "fpu_reload", VCPU_STAT(fpu_reload) },
 150        { "insn_emulation", VCPU_STAT(insn_emulation) },
 151        { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
 152        { "irq_injections", VCPU_STAT(irq_injections) },
 153        { "nmi_injections", VCPU_STAT(nmi_injections) },
 154        { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
 155        { "mmu_pte_write", VM_STAT(mmu_pte_write) },
 156        { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
 157        { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
 158        { "mmu_flooded", VM_STAT(mmu_flooded) },
 159        { "mmu_recycled", VM_STAT(mmu_recycled) },
 160        { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
 161        { "mmu_unsync", VM_STAT(mmu_unsync) },
 162        { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
 163        { "largepages", VM_STAT(lpages) },
 164        { NULL }
 165};
 166
 167u64 __read_mostly host_xcr0;
 168
 169static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
 170
 171static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
 172{
 173        int i;
 174        for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
 175                vcpu->arch.apf.gfns[i] = ~0;
 176}
 177
 178static void kvm_on_user_return(struct user_return_notifier *urn)
 179{
 180        unsigned slot;
 181        struct kvm_shared_msrs *locals
 182                = container_of(urn, struct kvm_shared_msrs, urn);
 183        struct kvm_shared_msr_values *values;
 184
 185        for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
 186                values = &locals->values[slot];
 187                if (values->host != values->curr) {
 188                        wrmsrl(shared_msrs_global.msrs[slot], values->host);
 189                        values->curr = values->host;
 190                }
 191        }
 192        locals->registered = false;
 193        user_return_notifier_unregister(urn);
 194}
 195
 196static void shared_msr_update(unsigned slot, u32 msr)
 197{
 198        u64 value;
 199        unsigned int cpu = smp_processor_id();
 200        struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
 201
 202        /* only read, and nobody should modify it at this time,
 203         * so don't need lock */
 204        if (slot >= shared_msrs_global.nr) {
 205                printk(KERN_ERR "kvm: invalid MSR slot!");
 206                return;
 207        }
 208        rdmsrl_safe(msr, &value);
 209        smsr->values[slot].host = value;
 210        smsr->values[slot].curr = value;
 211}
 212
 213void kvm_define_shared_msr(unsigned slot, u32 msr)
 214{
 215        BUG_ON(slot >= KVM_NR_SHARED_MSRS);
 216        if (slot >= shared_msrs_global.nr)
 217                shared_msrs_global.nr = slot + 1;
 218        shared_msrs_global.msrs[slot] = msr;
 219        /* we need ensured the shared_msr_global have been updated */
 220        smp_wmb();
 221}
 222EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
 223
 224static void kvm_shared_msr_cpu_online(void)
 225{
 226        unsigned i;
 227
 228        for (i = 0; i < shared_msrs_global.nr; ++i)
 229                shared_msr_update(i, shared_msrs_global.msrs[i]);
 230}
 231
 232int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
 233{
 234        unsigned int cpu = smp_processor_id();
 235        struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
 236        int err;
 237
 238        if (((value ^ smsr->values[slot].curr) & mask) == 0)
 239                return 0;
 240        smsr->values[slot].curr = value;
 241        err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
 242        if (err)
 243                return 1;
 244
 245        if (!smsr->registered) {
 246                smsr->urn.on_user_return = kvm_on_user_return;
 247                user_return_notifier_register(&smsr->urn);
 248                smsr->registered = true;
 249        }
 250        return 0;
 251}
 252EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
 253
 254static void drop_user_return_notifiers(void)
 255{
 256        unsigned int cpu = smp_processor_id();
 257        struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
 258
 259        if (smsr->registered)
 260                kvm_on_user_return(&smsr->urn);
 261}
 262
 263u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
 264{
 265        return vcpu->arch.apic_base;
 266}
 267EXPORT_SYMBOL_GPL(kvm_get_apic_base);
 268
 269int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
 270{
 271        u64 old_state = vcpu->arch.apic_base &
 272                (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
 273        u64 new_state = msr_info->data &
 274                (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
 275        u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
 276                0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
 277
 278        if (!msr_info->host_initiated &&
 279            ((msr_info->data & reserved_bits) != 0 ||
 280             new_state == X2APIC_ENABLE ||
 281             (new_state == MSR_IA32_APICBASE_ENABLE &&
 282              old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
 283             (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
 284              old_state == 0)))
 285                return 1;
 286
 287        kvm_lapic_set_base(vcpu, msr_info->data);
 288        return 0;
 289}
 290EXPORT_SYMBOL_GPL(kvm_set_apic_base);
 291
 292asmlinkage __visible void kvm_spurious_fault(void)
 293{
 294        /* Fault while not rebooting.  We want the trace. */
 295        BUG();
 296}
 297EXPORT_SYMBOL_GPL(kvm_spurious_fault);
 298
 299#define EXCPT_BENIGN            0
 300#define EXCPT_CONTRIBUTORY      1
 301#define EXCPT_PF                2
 302
 303static int exception_class(int vector)
 304{
 305        switch (vector) {
 306        case PF_VECTOR:
 307                return EXCPT_PF;
 308        case DE_VECTOR:
 309        case TS_VECTOR:
 310        case NP_VECTOR:
 311        case SS_VECTOR:
 312        case GP_VECTOR:
 313                return EXCPT_CONTRIBUTORY;
 314        default:
 315                break;
 316        }
 317        return EXCPT_BENIGN;
 318}
 319
 320#define EXCPT_FAULT             0
 321#define EXCPT_TRAP              1
 322#define EXCPT_ABORT             2
 323#define EXCPT_INTERRUPT         3
 324
 325static int exception_type(int vector)
 326{
 327        unsigned int mask;
 328
 329        if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
 330                return EXCPT_INTERRUPT;
 331
 332        mask = 1 << vector;
 333
 334        /* #DB is trap, as instruction watchpoints are handled elsewhere */
 335        if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
 336                return EXCPT_TRAP;
 337
 338        if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
 339                return EXCPT_ABORT;
 340
 341        /* Reserved exceptions will result in fault */
 342        return EXCPT_FAULT;
 343}
 344
 345static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
 346                unsigned nr, bool has_error, u32 error_code,
 347                bool reinject)
 348{
 349        u32 prev_nr;
 350        int class1, class2;
 351
 352        kvm_make_request(KVM_REQ_EVENT, vcpu);
 353
 354        if (!vcpu->arch.exception.pending) {
 355        queue:
 356                vcpu->arch.exception.pending = true;
 357                vcpu->arch.exception.has_error_code = has_error;
 358                vcpu->arch.exception.nr = nr;
 359                vcpu->arch.exception.error_code = error_code;
 360                vcpu->arch.exception.reinject = reinject;
 361                return;
 362        }
 363
 364        /* to check exception */
 365        prev_nr = vcpu->arch.exception.nr;
 366        if (prev_nr == DF_VECTOR) {
 367                /* triple fault -> shutdown */
 368                kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
 369                return;
 370        }
 371        class1 = exception_class(prev_nr);
 372        class2 = exception_class(nr);
 373        if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
 374                || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
 375                /* generate double fault per SDM Table 5-5 */
 376                vcpu->arch.exception.pending = true;
 377                vcpu->arch.exception.has_error_code = true;
 378                vcpu->arch.exception.nr = DF_VECTOR;
 379                vcpu->arch.exception.error_code = 0;
 380        } else
 381                /* replace previous exception with a new one in a hope
 382                   that instruction re-execution will regenerate lost
 383                   exception */
 384                goto queue;
 385}
 386
 387void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
 388{
 389        kvm_multiple_exception(vcpu, nr, false, 0, false);
 390}
 391EXPORT_SYMBOL_GPL(kvm_queue_exception);
 392
 393void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
 394{
 395        kvm_multiple_exception(vcpu, nr, false, 0, true);
 396}
 397EXPORT_SYMBOL_GPL(kvm_requeue_exception);
 398
 399void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
 400{
 401        if (err)
 402                kvm_inject_gp(vcpu, 0);
 403        else
 404                kvm_x86_ops->skip_emulated_instruction(vcpu);
 405}
 406EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
 407
 408void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
 409{
 410        ++vcpu->stat.pf_guest;
 411        vcpu->arch.cr2 = fault->address;
 412        kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
 413}
 414EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
 415
 416static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
 417{
 418        if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
 419                vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
 420        else
 421                vcpu->arch.mmu.inject_page_fault(vcpu, fault);
 422
 423        return fault->nested_page_fault;
 424}
 425
 426void kvm_inject_nmi(struct kvm_vcpu *vcpu)
 427{
 428        atomic_inc(&vcpu->arch.nmi_queued);
 429        kvm_make_request(KVM_REQ_NMI, vcpu);
 430}
 431EXPORT_SYMBOL_GPL(kvm_inject_nmi);
 432
 433void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
 434{
 435        kvm_multiple_exception(vcpu, nr, true, error_code, false);
 436}
 437EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
 438
 439void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
 440{
 441        kvm_multiple_exception(vcpu, nr, true, error_code, true);
 442}
 443EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
 444
 445/*
 446 * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
 447 * a #GP and return false.
 448 */
 449bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
 450{
 451        if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
 452                return true;
 453        kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
 454        return false;
 455}
 456EXPORT_SYMBOL_GPL(kvm_require_cpl);
 457
 458/*
 459 * This function will be used to read from the physical memory of the currently
 460 * running guest. The difference to kvm_read_guest_page is that this function
 461 * can read from guest physical or from the guest's guest physical memory.
 462 */
 463int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
 464                            gfn_t ngfn, void *data, int offset, int len,
 465                            u32 access)
 466{
 467        struct x86_exception exception;
 468        gfn_t real_gfn;
 469        gpa_t ngpa;
 470
 471        ngpa     = gfn_to_gpa(ngfn);
 472        real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
 473        if (real_gfn == UNMAPPED_GVA)
 474                return -EFAULT;
 475
 476        real_gfn = gpa_to_gfn(real_gfn);
 477
 478        return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
 479}
 480EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
 481
 482int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
 483                               void *data, int offset, int len, u32 access)
 484{
 485        return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
 486                                       data, offset, len, access);
 487}
 488
 489/*
 490 * Load the pae pdptrs.  Return true is they are all valid.
 491 */
 492int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
 493{
 494        gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
 495        unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
 496        int i;
 497        int ret;
 498        u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
 499
 500        ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
 501                                      offset * sizeof(u64), sizeof(pdpte),
 502                                      PFERR_USER_MASK|PFERR_WRITE_MASK);
 503        if (ret < 0) {
 504                ret = 0;
 505                goto out;
 506        }
 507        for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
 508                if (is_present_gpte(pdpte[i]) &&
 509                    (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
 510                        ret = 0;
 511                        goto out;
 512                }
 513        }
 514        ret = 1;
 515
 516        memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
 517        __set_bit(VCPU_EXREG_PDPTR,
 518                  (unsigned long *)&vcpu->arch.regs_avail);
 519        __set_bit(VCPU_EXREG_PDPTR,
 520                  (unsigned long *)&vcpu->arch.regs_dirty);
 521out:
 522
 523        return ret;
 524}
 525EXPORT_SYMBOL_GPL(load_pdptrs);
 526
 527static bool pdptrs_changed(struct kvm_vcpu *vcpu)
 528{
 529        u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
 530        bool changed = true;
 531        int offset;
 532        gfn_t gfn;
 533        int r;
 534
 535        if (is_long_mode(vcpu) || !is_pae(vcpu))
 536                return false;
 537
 538        if (!test_bit(VCPU_EXREG_PDPTR,
 539                      (unsigned long *)&vcpu->arch.regs_avail))
 540                return true;
 541
 542        gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
 543        offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
 544        r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
 545                                       PFERR_USER_MASK | PFERR_WRITE_MASK);
 546        if (r < 0)
 547                goto out;
 548        changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
 549out:
 550
 551        return changed;
 552}
 553
 554int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
 555{
 556        unsigned long old_cr0 = kvm_read_cr0(vcpu);
 557        unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
 558                                    X86_CR0_CD | X86_CR0_NW;
 559
 560        cr0 |= X86_CR0_ET;
 561
 562#ifdef CONFIG_X86_64
 563        if (cr0 & 0xffffffff00000000UL)
 564                return 1;
 565#endif
 566
 567        cr0 &= ~CR0_RESERVED_BITS;
 568
 569        if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
 570                return 1;
 571
 572        if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
 573                return 1;
 574
 575        if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
 576#ifdef CONFIG_X86_64
 577                if ((vcpu->arch.efer & EFER_LME)) {
 578                        int cs_db, cs_l;
 579
 580                        if (!is_pae(vcpu))
 581                                return 1;
 582                        kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
 583                        if (cs_l)
 584                                return 1;
 585                } else
 586#endif
 587                if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
 588                                                 kvm_read_cr3(vcpu)))
 589                        return 1;
 590        }
 591
 592        if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
 593                return 1;
 594
 595        kvm_x86_ops->set_cr0(vcpu, cr0);
 596
 597        if ((cr0 ^ old_cr0) & X86_CR0_PG) {
 598                kvm_clear_async_pf_completion_queue(vcpu);
 599                kvm_async_pf_hash_reset(vcpu);
 600        }
 601
 602        if ((cr0 ^ old_cr0) & update_bits)
 603                kvm_mmu_reset_context(vcpu);
 604        return 0;
 605}
 606EXPORT_SYMBOL_GPL(kvm_set_cr0);
 607
 608void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
 609{
 610        (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
 611}
 612EXPORT_SYMBOL_GPL(kvm_lmsw);
 613
 614static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
 615{
 616        if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
 617                        !vcpu->guest_xcr0_loaded) {
 618                /* kvm_set_xcr() also depends on this */
 619                xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
 620                vcpu->guest_xcr0_loaded = 1;
 621        }
 622}
 623
 624static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
 625{
 626        if (vcpu->guest_xcr0_loaded) {
 627                if (vcpu->arch.xcr0 != host_xcr0)
 628                        xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
 629                vcpu->guest_xcr0_loaded = 0;
 630        }
 631}
 632
 633int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
 634{
 635        u64 xcr0 = xcr;
 636        u64 old_xcr0 = vcpu->arch.xcr0;
 637        u64 valid_bits;
 638
 639        /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
 640        if (index != XCR_XFEATURE_ENABLED_MASK)
 641                return 1;
 642        if (!(xcr0 & XSTATE_FP))
 643                return 1;
 644        if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
 645                return 1;
 646
 647        /*
 648         * Do not allow the guest to set bits that we do not support
 649         * saving.  However, xcr0 bit 0 is always set, even if the
 650         * emulated CPU does not support XSAVE (see fx_init).
 651         */
 652        valid_bits = vcpu->arch.guest_supported_xcr0 | XSTATE_FP;
 653        if (xcr0 & ~valid_bits)
 654                return 1;
 655
 656        if ((!(xcr0 & XSTATE_BNDREGS)) != (!(xcr0 & XSTATE_BNDCSR)))
 657                return 1;
 658
 659        kvm_put_guest_xcr0(vcpu);
 660        vcpu->arch.xcr0 = xcr0;
 661
 662        if ((xcr0 ^ old_xcr0) & XSTATE_EXTEND_MASK)
 663                kvm_update_cpuid(vcpu);
 664        return 0;
 665}
 666
 667int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
 668{
 669        if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
 670            __kvm_set_xcr(vcpu, index, xcr)) {
 671                kvm_inject_gp(vcpu, 0);
 672                return 1;
 673        }
 674        return 0;
 675}
 676EXPORT_SYMBOL_GPL(kvm_set_xcr);
 677
 678int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
 679{
 680        unsigned long old_cr4 = kvm_read_cr4(vcpu);
 681        unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
 682                                   X86_CR4_PAE | X86_CR4_SMEP;
 683        if (cr4 & CR4_RESERVED_BITS)
 684                return 1;
 685
 686        if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
 687                return 1;
 688
 689        if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
 690                return 1;
 691
 692        if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
 693                return 1;
 694
 695        if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
 696                return 1;
 697
 698        if (is_long_mode(vcpu)) {
 699                if (!(cr4 & X86_CR4_PAE))
 700                        return 1;
 701        } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
 702                   && ((cr4 ^ old_cr4) & pdptr_bits)
 703                   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
 704                                   kvm_read_cr3(vcpu)))
 705                return 1;
 706
 707        if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
 708                if (!guest_cpuid_has_pcid(vcpu))
 709                        return 1;
 710
 711                /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
 712                if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
 713                        return 1;
 714        }
 715
 716        if (kvm_x86_ops->set_cr4(vcpu, cr4))
 717                return 1;
 718
 719        if (((cr4 ^ old_cr4) & pdptr_bits) ||
 720            (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
 721                kvm_mmu_reset_context(vcpu);
 722
 723        if ((cr4 ^ old_cr4) & X86_CR4_SMAP)
 724                update_permission_bitmask(vcpu, vcpu->arch.walk_mmu, false);
 725
 726        if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
 727                kvm_update_cpuid(vcpu);
 728
 729        return 0;
 730}
 731EXPORT_SYMBOL_GPL(kvm_set_cr4);
 732
 733int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
 734{
 735        if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
 736                kvm_mmu_sync_roots(vcpu);
 737                kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
 738                return 0;
 739        }
 740
 741        if (is_long_mode(vcpu)) {
 742                if (cr3 & CR3_L_MODE_RESERVED_BITS)
 743                        return 1;
 744        } else if (is_pae(vcpu) && is_paging(vcpu) &&
 745                   !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
 746                return 1;
 747
 748        vcpu->arch.cr3 = cr3;
 749        __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
 750        kvm_mmu_new_cr3(vcpu);
 751        return 0;
 752}
 753EXPORT_SYMBOL_GPL(kvm_set_cr3);
 754
 755int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
 756{
 757        if (cr8 & CR8_RESERVED_BITS)
 758                return 1;
 759        if (irqchip_in_kernel(vcpu->kvm))
 760                kvm_lapic_set_tpr(vcpu, cr8);
 761        else
 762                vcpu->arch.cr8 = cr8;
 763        return 0;
 764}
 765EXPORT_SYMBOL_GPL(kvm_set_cr8);
 766
 767unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
 768{
 769        if (irqchip_in_kernel(vcpu->kvm))
 770                return kvm_lapic_get_cr8(vcpu);
 771        else
 772                return vcpu->arch.cr8;
 773}
 774EXPORT_SYMBOL_GPL(kvm_get_cr8);
 775
 776static void kvm_update_dr6(struct kvm_vcpu *vcpu)
 777{
 778        if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
 779                kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
 780}
 781
 782static void kvm_update_dr7(struct kvm_vcpu *vcpu)
 783{
 784        unsigned long dr7;
 785
 786        if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
 787                dr7 = vcpu->arch.guest_debug_dr7;
 788        else
 789                dr7 = vcpu->arch.dr7;
 790        kvm_x86_ops->set_dr7(vcpu, dr7);
 791        vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
 792        if (dr7 & DR7_BP_EN_MASK)
 793                vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
 794}
 795
 796static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
 797{
 798        u64 fixed = DR6_FIXED_1;
 799
 800        if (!guest_cpuid_has_rtm(vcpu))
 801                fixed |= DR6_RTM;
 802        return fixed;
 803}
 804
 805static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
 806{
 807        switch (dr) {
 808        case 0 ... 3:
 809                vcpu->arch.db[dr] = val;
 810                if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
 811                        vcpu->arch.eff_db[dr] = val;
 812                break;
 813        case 4:
 814                if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
 815                        return 1; /* #UD */
 816                /* fall through */
 817        case 6:
 818                if (val & 0xffffffff00000000ULL)
 819                        return -1; /* #GP */
 820                vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
 821                kvm_update_dr6(vcpu);
 822                break;
 823        case 5:
 824                if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
 825                        return 1; /* #UD */
 826                /* fall through */
 827        default: /* 7 */
 828                if (val & 0xffffffff00000000ULL)
 829                        return -1; /* #GP */
 830                vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
 831                kvm_update_dr7(vcpu);
 832                break;
 833        }
 834
 835        return 0;
 836}
 837
 838int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
 839{
 840        int res;
 841
 842        res = __kvm_set_dr(vcpu, dr, val);
 843        if (res > 0)
 844                kvm_queue_exception(vcpu, UD_VECTOR);
 845        else if (res < 0)
 846                kvm_inject_gp(vcpu, 0);
 847
 848        return res;
 849}
 850EXPORT_SYMBOL_GPL(kvm_set_dr);
 851
 852static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
 853{
 854        switch (dr) {
 855        case 0 ... 3:
 856                *val = vcpu->arch.db[dr];
 857                break;
 858        case 4:
 859                if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
 860                        return 1;
 861                /* fall through */
 862        case 6:
 863                if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
 864                        *val = vcpu->arch.dr6;
 865                else
 866                        *val = kvm_x86_ops->get_dr6(vcpu);
 867                break;
 868        case 5:
 869                if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
 870                        return 1;
 871                /* fall through */
 872        default: /* 7 */
 873                *val = vcpu->arch.dr7;
 874                break;
 875        }
 876
 877        return 0;
 878}
 879
 880int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
 881{
 882        if (_kvm_get_dr(vcpu, dr, val)) {
 883                kvm_queue_exception(vcpu, UD_VECTOR);
 884                return 1;
 885        }
 886        return 0;
 887}
 888EXPORT_SYMBOL_GPL(kvm_get_dr);
 889
 890bool kvm_rdpmc(struct kvm_vcpu *vcpu)
 891{
 892        u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
 893        u64 data;
 894        int err;
 895
 896        err = kvm_pmu_read_pmc(vcpu, ecx, &data);
 897        if (err)
 898                return err;
 899        kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
 900        kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
 901        return err;
 902}
 903EXPORT_SYMBOL_GPL(kvm_rdpmc);
 904
 905/*
 906 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
 907 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
 908 *
 909 * This list is modified at module load time to reflect the
 910 * capabilities of the host cpu. This capabilities test skips MSRs that are
 911 * kvm-specific. Those are put in the beginning of the list.
 912 */
 913
 914#define KVM_SAVE_MSRS_BEGIN     12
 915static u32 msrs_to_save[] = {
 916        MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
 917        MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
 918        HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
 919        HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
 920        HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
 921        MSR_KVM_PV_EOI_EN,
 922        MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
 923        MSR_STAR,
 924#ifdef CONFIG_X86_64
 925        MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
 926#endif
 927        MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
 928        MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS
 929};
 930
 931static unsigned num_msrs_to_save;
 932
 933static const u32 emulated_msrs[] = {
 934        MSR_IA32_TSC_ADJUST,
 935        MSR_IA32_TSCDEADLINE,
 936        MSR_IA32_MISC_ENABLE,
 937        MSR_IA32_MCG_STATUS,
 938        MSR_IA32_MCG_CTL,
 939};
 940
 941bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
 942{
 943        if (efer & efer_reserved_bits)
 944                return false;
 945
 946        if (efer & EFER_FFXSR) {
 947                struct kvm_cpuid_entry2 *feat;
 948
 949                feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
 950                if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
 951                        return false;
 952        }
 953
 954        if (efer & EFER_SVME) {
 955                struct kvm_cpuid_entry2 *feat;
 956
 957                feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
 958                if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
 959                        return false;
 960        }
 961
 962        return true;
 963}
 964EXPORT_SYMBOL_GPL(kvm_valid_efer);
 965
 966static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
 967{
 968        u64 old_efer = vcpu->arch.efer;
 969
 970        if (!kvm_valid_efer(vcpu, efer))
 971                return 1;
 972
 973        if (is_paging(vcpu)
 974            && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
 975                return 1;
 976
 977        efer &= ~EFER_LMA;
 978        efer |= vcpu->arch.efer & EFER_LMA;
 979
 980        kvm_x86_ops->set_efer(vcpu, efer);
 981
 982        /* Update reserved bits */
 983        if ((efer ^ old_efer) & EFER_NX)
 984                kvm_mmu_reset_context(vcpu);
 985
 986        return 0;
 987}
 988
 989void kvm_enable_efer_bits(u64 mask)
 990{
 991       efer_reserved_bits &= ~mask;
 992}
 993EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
 994
 995/*
 996 * Writes msr value into into the appropriate "register".
 997 * Returns 0 on success, non-0 otherwise.
 998 * Assumes vcpu_load() was already called.
 999 */
1000int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1001{
1002        switch (msr->index) {
1003        case MSR_FS_BASE:
1004        case MSR_GS_BASE:
1005        case MSR_KERNEL_GS_BASE:
1006        case MSR_CSTAR:
1007        case MSR_LSTAR:
1008                if (is_noncanonical_address(msr->data))
1009                        return 1;
1010                break;
1011        case MSR_IA32_SYSENTER_EIP:
1012        case MSR_IA32_SYSENTER_ESP:
1013                /*
1014                 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1015                 * non-canonical address is written on Intel but not on
1016                 * AMD (which ignores the top 32-bits, because it does
1017                 * not implement 64-bit SYSENTER).
1018                 *
1019                 * 64-bit code should hence be able to write a non-canonical
1020                 * value on AMD.  Making the address canonical ensures that
1021                 * vmentry does not fail on Intel after writing a non-canonical
1022                 * value, and that something deterministic happens if the guest
1023                 * invokes 64-bit SYSENTER.
1024                 */
1025                msr->data = get_canonical(msr->data);
1026        }
1027        return kvm_x86_ops->set_msr(vcpu, msr);
1028}
1029EXPORT_SYMBOL_GPL(kvm_set_msr);
1030
1031/*
1032 * Adapt set_msr() to msr_io()'s calling convention
1033 */
1034static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1035{
1036        struct msr_data msr;
1037
1038        msr.data = *data;
1039        msr.index = index;
1040        msr.host_initiated = true;
1041        return kvm_set_msr(vcpu, &msr);
1042}
1043
1044#ifdef CONFIG_X86_64
1045struct pvclock_gtod_data {
1046        seqcount_t      seq;
1047
1048        struct { /* extract of a clocksource struct */
1049                int vclock_mode;
1050                cycle_t cycle_last;
1051                cycle_t mask;
1052                u32     mult;
1053                u32     shift;
1054        } clock;
1055
1056        u64             boot_ns;
1057        u64             nsec_base;
1058};
1059
1060static struct pvclock_gtod_data pvclock_gtod_data;
1061
1062static void update_pvclock_gtod(struct timekeeper *tk)
1063{
1064        struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1065        u64 boot_ns;
1066
1067        boot_ns = ktime_to_ns(ktime_add(tk->tkr.base_mono, tk->offs_boot));
1068
1069        write_seqcount_begin(&vdata->seq);
1070
1071        /* copy pvclock gtod data */
1072        vdata->clock.vclock_mode        = tk->tkr.clock->archdata.vclock_mode;
1073        vdata->clock.cycle_last         = tk->tkr.cycle_last;
1074        vdata->clock.mask               = tk->tkr.mask;
1075        vdata->clock.mult               = tk->tkr.mult;
1076        vdata->clock.shift              = tk->tkr.shift;
1077
1078        vdata->boot_ns                  = boot_ns;
1079        vdata->nsec_base                = tk->tkr.xtime_nsec;
1080
1081        write_seqcount_end(&vdata->seq);
1082}
1083#endif
1084
1085
1086static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1087{
1088        int version;
1089        int r;
1090        struct pvclock_wall_clock wc;
1091        struct timespec boot;
1092
1093        if (!wall_clock)
1094                return;
1095
1096        r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1097        if (r)
1098                return;
1099
1100        if (version & 1)
1101                ++version;  /* first time write, random junk */
1102
1103        ++version;
1104
1105        kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1106
1107        /*
1108         * The guest calculates current wall clock time by adding
1109         * system time (updated by kvm_guest_time_update below) to the
1110         * wall clock specified here.  guest system time equals host
1111         * system time for us, thus we must fill in host boot time here.
1112         */
1113        getboottime(&boot);
1114
1115        if (kvm->arch.kvmclock_offset) {
1116                struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1117                boot = timespec_sub(boot, ts);
1118        }
1119        wc.sec = boot.tv_sec;
1120        wc.nsec = boot.tv_nsec;
1121        wc.version = version;
1122
1123        kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1124
1125        version++;
1126        kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1127}
1128
1129static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1130{
1131        uint32_t quotient, remainder;
1132
1133        /* Don't try to replace with do_div(), this one calculates
1134         * "(dividend << 32) / divisor" */
1135        __asm__ ( "divl %4"
1136                  : "=a" (quotient), "=d" (remainder)
1137                  : "0" (0), "1" (dividend), "r" (divisor) );
1138        return quotient;
1139}
1140
1141static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
1142                               s8 *pshift, u32 *pmultiplier)
1143{
1144        uint64_t scaled64;
1145        int32_t  shift = 0;
1146        uint64_t tps64;
1147        uint32_t tps32;
1148
1149        tps64 = base_khz * 1000LL;
1150        scaled64 = scaled_khz * 1000LL;
1151        while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1152                tps64 >>= 1;
1153                shift--;
1154        }
1155
1156        tps32 = (uint32_t)tps64;
1157        while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1158                if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1159                        scaled64 >>= 1;
1160                else
1161                        tps32 <<= 1;
1162                shift++;
1163        }
1164
1165        *pshift = shift;
1166        *pmultiplier = div_frac(scaled64, tps32);
1167
1168        pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1169                 __func__, base_khz, scaled_khz, shift, *pmultiplier);
1170}
1171
1172static inline u64 get_kernel_ns(void)
1173{
1174        return ktime_get_boot_ns();
1175}
1176
1177#ifdef CONFIG_X86_64
1178static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1179#endif
1180
1181static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1182unsigned long max_tsc_khz;
1183
1184static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1185{
1186        return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1187                                   vcpu->arch.virtual_tsc_shift);
1188}
1189
1190static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1191{
1192        u64 v = (u64)khz * (1000000 + ppm);
1193        do_div(v, 1000000);
1194        return v;
1195}
1196
1197static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1198{
1199        u32 thresh_lo, thresh_hi;
1200        int use_scaling = 0;
1201
1202        /* tsc_khz can be zero if TSC calibration fails */
1203        if (this_tsc_khz == 0)
1204                return;
1205
1206        /* Compute a scale to convert nanoseconds in TSC cycles */
1207        kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1208                           &vcpu->arch.virtual_tsc_shift,
1209                           &vcpu->arch.virtual_tsc_mult);
1210        vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1211
1212        /*
1213         * Compute the variation in TSC rate which is acceptable
1214         * within the range of tolerance and decide if the
1215         * rate being applied is within that bounds of the hardware
1216         * rate.  If so, no scaling or compensation need be done.
1217         */
1218        thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1219        thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1220        if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1221                pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1222                use_scaling = 1;
1223        }
1224        kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1225}
1226
1227static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1228{
1229        u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1230                                      vcpu->arch.virtual_tsc_mult,
1231                                      vcpu->arch.virtual_tsc_shift);
1232        tsc += vcpu->arch.this_tsc_write;
1233        return tsc;
1234}
1235
1236void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1237{
1238#ifdef CONFIG_X86_64
1239        bool vcpus_matched;
1240        bool do_request = false;
1241        struct kvm_arch *ka = &vcpu->kvm->arch;
1242        struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1243
1244        vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1245                         atomic_read(&vcpu->kvm->online_vcpus));
1246
1247        if (vcpus_matched && gtod->clock.vclock_mode == VCLOCK_TSC)
1248                if (!ka->use_master_clock)
1249                        do_request = 1;
1250
1251        if (!vcpus_matched && ka->use_master_clock)
1252                        do_request = 1;
1253
1254        if (do_request)
1255                kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1256
1257        trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1258                            atomic_read(&vcpu->kvm->online_vcpus),
1259                            ka->use_master_clock, gtod->clock.vclock_mode);
1260#endif
1261}
1262
1263static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1264{
1265        u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1266        vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1267}
1268
1269void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1270{
1271        struct kvm *kvm = vcpu->kvm;
1272        u64 offset, ns, elapsed;
1273        unsigned long flags;
1274        s64 usdiff;
1275        bool matched;
1276        bool already_matched;
1277        u64 data = msr->data;
1278
1279        raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1280        offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1281        ns = get_kernel_ns();
1282        elapsed = ns - kvm->arch.last_tsc_nsec;
1283
1284        if (vcpu->arch.virtual_tsc_khz) {
1285                int faulted = 0;
1286
1287                /* n.b - signed multiplication and division required */
1288                usdiff = data - kvm->arch.last_tsc_write;
1289#ifdef CONFIG_X86_64
1290                usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1291#else
1292                /* do_div() only does unsigned */
1293                asm("1: idivl %[divisor]\n"
1294                    "2: xor %%edx, %%edx\n"
1295                    "   movl $0, %[faulted]\n"
1296                    "3:\n"
1297                    ".section .fixup,\"ax\"\n"
1298                    "4: movl $1, %[faulted]\n"
1299                    "   jmp  3b\n"
1300                    ".previous\n"
1301
1302                _ASM_EXTABLE(1b, 4b)
1303
1304                : "=A"(usdiff), [faulted] "=r" (faulted)
1305                : "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1306
1307#endif
1308                do_div(elapsed, 1000);
1309                usdiff -= elapsed;
1310                if (usdiff < 0)
1311                        usdiff = -usdiff;
1312
1313                /* idivl overflow => difference is larger than USEC_PER_SEC */
1314                if (faulted)
1315                        usdiff = USEC_PER_SEC;
1316        } else
1317                usdiff = USEC_PER_SEC; /* disable TSC match window below */
1318
1319        /*
1320         * Special case: TSC write with a small delta (1 second) of virtual
1321         * cycle time against real time is interpreted as an attempt to
1322         * synchronize the CPU.
1323         *
1324         * For a reliable TSC, we can match TSC offsets, and for an unstable
1325         * TSC, we add elapsed time in this computation.  We could let the
1326         * compensation code attempt to catch up if we fall behind, but
1327         * it's better to try to match offsets from the beginning.
1328         */
1329        if (usdiff < USEC_PER_SEC &&
1330            vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1331                if (!check_tsc_unstable()) {
1332                        offset = kvm->arch.cur_tsc_offset;
1333                        pr_debug("kvm: matched tsc offset for %llu\n", data);
1334                } else {
1335                        u64 delta = nsec_to_cycles(vcpu, elapsed);
1336                        data += delta;
1337                        offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1338                        pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1339                }
1340                matched = true;
1341                already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1342        } else {
1343                /*
1344                 * We split periods of matched TSC writes into generations.
1345                 * For each generation, we track the original measured
1346                 * nanosecond time, offset, and write, so if TSCs are in
1347                 * sync, we can match exact offset, and if not, we can match
1348                 * exact software computation in compute_guest_tsc()
1349                 *
1350                 * These values are tracked in kvm->arch.cur_xxx variables.
1351                 */
1352                kvm->arch.cur_tsc_generation++;
1353                kvm->arch.cur_tsc_nsec = ns;
1354                kvm->arch.cur_tsc_write = data;
1355                kvm->arch.cur_tsc_offset = offset;
1356                matched = false;
1357                pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1358                         kvm->arch.cur_tsc_generation, data);
1359        }
1360
1361        /*
1362         * We also track th most recent recorded KHZ, write and time to
1363         * allow the matching interval to be extended at each write.
1364         */
1365        kvm->arch.last_tsc_nsec = ns;
1366        kvm->arch.last_tsc_write = data;
1367        kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1368
1369        vcpu->arch.last_guest_tsc = data;
1370
1371        /* Keep track of which generation this VCPU has synchronized to */
1372        vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1373        vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1374        vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1375
1376        if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1377                update_ia32_tsc_adjust_msr(vcpu, offset);
1378        kvm_x86_ops->write_tsc_offset(vcpu, offset);
1379        raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1380
1381        spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1382        if (!matched) {
1383                kvm->arch.nr_vcpus_matched_tsc = 0;
1384        } else if (!already_matched) {
1385                kvm->arch.nr_vcpus_matched_tsc++;
1386        }
1387
1388        kvm_track_tsc_matching(vcpu);
1389        spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1390}
1391
1392EXPORT_SYMBOL_GPL(kvm_write_tsc);
1393
1394#ifdef CONFIG_X86_64
1395
1396static cycle_t read_tsc(void)
1397{
1398        cycle_t ret;
1399        u64 last;
1400
1401        /*
1402         * Empirically, a fence (of type that depends on the CPU)
1403         * before rdtsc is enough to ensure that rdtsc is ordered
1404         * with respect to loads.  The various CPU manuals are unclear
1405         * as to whether rdtsc can be reordered with later loads,
1406         * but no one has ever seen it happen.
1407         */
1408        rdtsc_barrier();
1409        ret = (cycle_t)vget_cycles();
1410
1411        last = pvclock_gtod_data.clock.cycle_last;
1412
1413        if (likely(ret >= last))
1414                return ret;
1415
1416        /*
1417         * GCC likes to generate cmov here, but this branch is extremely
1418         * predictable (it's just a funciton of time and the likely is
1419         * very likely) and there's a data dependence, so force GCC
1420         * to generate a branch instead.  I don't barrier() because
1421         * we don't actually need a barrier, and if this function
1422         * ever gets inlined it will generate worse code.
1423         */
1424        asm volatile ("");
1425        return last;
1426}
1427
1428static inline u64 vgettsc(cycle_t *cycle_now)
1429{
1430        long v;
1431        struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1432
1433        *cycle_now = read_tsc();
1434
1435        v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1436        return v * gtod->clock.mult;
1437}
1438
1439static int do_monotonic_boot(s64 *t, cycle_t *cycle_now)
1440{
1441        struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1442        unsigned long seq;
1443        int mode;
1444        u64 ns;
1445
1446        do {
1447                seq = read_seqcount_begin(&gtod->seq);
1448                mode = gtod->clock.vclock_mode;
1449                ns = gtod->nsec_base;
1450                ns += vgettsc(cycle_now);
1451                ns >>= gtod->clock.shift;
1452                ns += gtod->boot_ns;
1453        } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1454        *t = ns;
1455
1456        return mode;
1457}
1458
1459/* returns true if host is using tsc clocksource */
1460static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1461{
1462        /* checked again under seqlock below */
1463        if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1464                return false;
1465
1466        return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1467}
1468#endif
1469
1470/*
1471 *
1472 * Assuming a stable TSC across physical CPUS, and a stable TSC
1473 * across virtual CPUs, the following condition is possible.
1474 * Each numbered line represents an event visible to both
1475 * CPUs at the next numbered event.
1476 *
1477 * "timespecX" represents host monotonic time. "tscX" represents
1478 * RDTSC value.
1479 *
1480 *              VCPU0 on CPU0           |       VCPU1 on CPU1
1481 *
1482 * 1.  read timespec0,tsc0
1483 * 2.                                   | timespec1 = timespec0 + N
1484 *                                      | tsc1 = tsc0 + M
1485 * 3. transition to guest               | transition to guest
1486 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1487 * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1488 *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1489 *
1490 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1491 *
1492 *      - ret0 < ret1
1493 *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1494 *              ...
1495 *      - 0 < N - M => M < N
1496 *
1497 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1498 * always the case (the difference between two distinct xtime instances
1499 * might be smaller then the difference between corresponding TSC reads,
1500 * when updating guest vcpus pvclock areas).
1501 *
1502 * To avoid that problem, do not allow visibility of distinct
1503 * system_timestamp/tsc_timestamp values simultaneously: use a master
1504 * copy of host monotonic time values. Update that master copy
1505 * in lockstep.
1506 *
1507 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1508 *
1509 */
1510
1511static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1512{
1513#ifdef CONFIG_X86_64
1514        struct kvm_arch *ka = &kvm->arch;
1515        int vclock_mode;
1516        bool host_tsc_clocksource, vcpus_matched;
1517
1518        vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1519                        atomic_read(&kvm->online_vcpus));
1520
1521        /*
1522         * If the host uses TSC clock, then passthrough TSC as stable
1523         * to the guest.
1524         */
1525        host_tsc_clocksource = kvm_get_time_and_clockread(
1526                                        &ka->master_kernel_ns,
1527                                        &ka->master_cycle_now);
1528
1529        ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1530                                && !backwards_tsc_observed;
1531
1532        if (ka->use_master_clock)
1533                atomic_set(&kvm_guest_has_master_clock, 1);
1534
1535        vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1536        trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1537                                        vcpus_matched);
1538#endif
1539}
1540
1541static void kvm_gen_update_masterclock(struct kvm *kvm)
1542{
1543#ifdef CONFIG_X86_64
1544        int i;
1545        struct kvm_vcpu *vcpu;
1546        struct kvm_arch *ka = &kvm->arch;
1547
1548        spin_lock(&ka->pvclock_gtod_sync_lock);
1549        kvm_make_mclock_inprogress_request(kvm);
1550        /* no guest entries from this point */
1551        pvclock_update_vm_gtod_copy(kvm);
1552
1553        kvm_for_each_vcpu(i, vcpu, kvm)
1554                kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1555
1556        /* guest entries allowed */
1557        kvm_for_each_vcpu(i, vcpu, kvm)
1558                clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1559
1560        spin_unlock(&ka->pvclock_gtod_sync_lock);
1561#endif
1562}
1563
1564static int kvm_guest_time_update(struct kvm_vcpu *v)
1565{
1566        unsigned long flags, this_tsc_khz;
1567        struct kvm_vcpu_arch *vcpu = &v->arch;
1568        struct kvm_arch *ka = &v->kvm->arch;
1569        s64 kernel_ns;
1570        u64 tsc_timestamp, host_tsc;
1571        struct pvclock_vcpu_time_info guest_hv_clock;
1572        u8 pvclock_flags;
1573        bool use_master_clock;
1574
1575        kernel_ns = 0;
1576        host_tsc = 0;
1577
1578        /*
1579         * If the host uses TSC clock, then passthrough TSC as stable
1580         * to the guest.
1581         */
1582        spin_lock(&ka->pvclock_gtod_sync_lock);
1583        use_master_clock = ka->use_master_clock;
1584        if (use_master_clock) {
1585                host_tsc = ka->master_cycle_now;
1586                kernel_ns = ka->master_kernel_ns;
1587        }
1588        spin_unlock(&ka->pvclock_gtod_sync_lock);
1589
1590        /* Keep irq disabled to prevent changes to the clock */
1591        local_irq_save(flags);
1592        this_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1593        if (unlikely(this_tsc_khz == 0)) {
1594                local_irq_restore(flags);
1595                kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1596                return 1;
1597        }
1598        if (!use_master_clock) {
1599                host_tsc = native_read_tsc();
1600                kernel_ns = get_kernel_ns();
1601        }
1602
1603        tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc);
1604
1605        /*
1606         * We may have to catch up the TSC to match elapsed wall clock
1607         * time for two reasons, even if kvmclock is used.
1608         *   1) CPU could have been running below the maximum TSC rate
1609         *   2) Broken TSC compensation resets the base at each VCPU
1610         *      entry to avoid unknown leaps of TSC even when running
1611         *      again on the same CPU.  This may cause apparent elapsed
1612         *      time to disappear, and the guest to stand still or run
1613         *      very slowly.
1614         */
1615        if (vcpu->tsc_catchup) {
1616                u64 tsc = compute_guest_tsc(v, kernel_ns);
1617                if (tsc > tsc_timestamp) {
1618                        adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1619                        tsc_timestamp = tsc;
1620                }
1621        }
1622
1623        local_irq_restore(flags);
1624
1625        if (!vcpu->pv_time_enabled)
1626                return 0;
1627
1628        if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1629                kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1630                                   &vcpu->hv_clock.tsc_shift,
1631                                   &vcpu->hv_clock.tsc_to_system_mul);
1632                vcpu->hw_tsc_khz = this_tsc_khz;
1633        }
1634
1635        /* With all the info we got, fill in the values */
1636        vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1637        vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1638        vcpu->last_guest_tsc = tsc_timestamp;
1639
1640        /*
1641         * The interface expects us to write an even number signaling that the
1642         * update is finished. Since the guest won't see the intermediate
1643         * state, we just increase by 2 at the end.
1644         */
1645        vcpu->hv_clock.version += 2;
1646
1647        if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1648                &guest_hv_clock, sizeof(guest_hv_clock))))
1649                return 0;
1650
1651        /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1652        pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1653
1654        if (vcpu->pvclock_set_guest_stopped_request) {
1655                pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1656                vcpu->pvclock_set_guest_stopped_request = false;
1657        }
1658
1659        /* If the host uses TSC clocksource, then it is stable */
1660        if (use_master_clock)
1661                pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1662
1663        vcpu->hv_clock.flags = pvclock_flags;
1664
1665        kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1666                                &vcpu->hv_clock,
1667                                sizeof(vcpu->hv_clock));
1668        return 0;
1669}
1670
1671/*
1672 * kvmclock updates which are isolated to a given vcpu, such as
1673 * vcpu->cpu migration, should not allow system_timestamp from
1674 * the rest of the vcpus to remain static. Otherwise ntp frequency
1675 * correction applies to one vcpu's system_timestamp but not
1676 * the others.
1677 *
1678 * So in those cases, request a kvmclock update for all vcpus.
1679 * We need to rate-limit these requests though, as they can
1680 * considerably slow guests that have a large number of vcpus.
1681 * The time for a remote vcpu to update its kvmclock is bound
1682 * by the delay we use to rate-limit the updates.
1683 */
1684
1685#define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1686
1687static void kvmclock_update_fn(struct work_struct *work)
1688{
1689        int i;
1690        struct delayed_work *dwork = to_delayed_work(work);
1691        struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1692                                           kvmclock_update_work);
1693        struct kvm *kvm = container_of(ka, struct kvm, arch);
1694        struct kvm_vcpu *vcpu;
1695
1696        kvm_for_each_vcpu(i, vcpu, kvm) {
1697                kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1698                kvm_vcpu_kick(vcpu);
1699        }
1700}
1701
1702static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1703{
1704        struct kvm *kvm = v->kvm;
1705
1706        kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1707        schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1708                                        KVMCLOCK_UPDATE_DELAY);
1709}
1710
1711#define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1712
1713static void kvmclock_sync_fn(struct work_struct *work)
1714{
1715        struct delayed_work *dwork = to_delayed_work(work);
1716        struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1717                                           kvmclock_sync_work);
1718        struct kvm *kvm = container_of(ka, struct kvm, arch);
1719
1720        schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1721        schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1722                                        KVMCLOCK_SYNC_PERIOD);
1723}
1724
1725static bool msr_mtrr_valid(unsigned msr)
1726{
1727        switch (msr) {
1728        case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1729        case MSR_MTRRfix64K_00000:
1730        case MSR_MTRRfix16K_80000:
1731        case MSR_MTRRfix16K_A0000:
1732        case MSR_MTRRfix4K_C0000:
1733        case MSR_MTRRfix4K_C8000:
1734        case MSR_MTRRfix4K_D0000:
1735        case MSR_MTRRfix4K_D8000:
1736        case MSR_MTRRfix4K_E0000:
1737        case MSR_MTRRfix4K_E8000:
1738        case MSR_MTRRfix4K_F0000:
1739        case MSR_MTRRfix4K_F8000:
1740        case MSR_MTRRdefType:
1741        case MSR_IA32_CR_PAT:
1742                return true;
1743        case 0x2f8:
1744                return true;
1745        }
1746        return false;
1747}
1748
1749static bool valid_pat_type(unsigned t)
1750{
1751        return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1752}
1753
1754static bool valid_mtrr_type(unsigned t)
1755{
1756        return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1757}
1758
1759bool kvm_mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1760{
1761        int i;
1762        u64 mask;
1763
1764        if (!msr_mtrr_valid(msr))
1765                return false;
1766
1767        if (msr == MSR_IA32_CR_PAT) {
1768                for (i = 0; i < 8; i++)
1769                        if (!valid_pat_type((data >> (i * 8)) & 0xff))
1770                                return false;
1771                return true;
1772        } else if (msr == MSR_MTRRdefType) {
1773                if (data & ~0xcff)
1774                        return false;
1775                return valid_mtrr_type(data & 0xff);
1776        } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1777                for (i = 0; i < 8 ; i++)
1778                        if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1779                                return false;
1780                return true;
1781        }
1782
1783        /* variable MTRRs */
1784        WARN_ON(!(msr >= 0x200 && msr < 0x200 + 2 * KVM_NR_VAR_MTRR));
1785
1786        mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
1787        if ((msr & 1) == 0) {
1788                /* MTRR base */
1789                if (!valid_mtrr_type(data & 0xff))
1790                        return false;
1791                mask |= 0xf00;
1792        } else
1793                /* MTRR mask */
1794                mask |= 0x7ff;
1795        if (data & mask) {
1796                kvm_inject_gp(vcpu, 0);
1797                return false;
1798        }
1799
1800        return true;
1801}
1802EXPORT_SYMBOL_GPL(kvm_mtrr_valid);
1803
1804static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1805{
1806        u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1807
1808        if (!kvm_mtrr_valid(vcpu, msr, data))
1809                return 1;
1810
1811        if (msr == MSR_MTRRdefType) {
1812                vcpu->arch.mtrr_state.def_type = data;
1813                vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1814        } else if (msr == MSR_MTRRfix64K_00000)
1815                p[0] = data;
1816        else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1817                p[1 + msr - MSR_MTRRfix16K_80000] = data;
1818        else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1819                p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1820        else if (msr == MSR_IA32_CR_PAT)
1821                vcpu->arch.pat = data;
1822        else {  /* Variable MTRRs */
1823                int idx, is_mtrr_mask;
1824                u64 *pt;
1825
1826                idx = (msr - 0x200) / 2;
1827                is_mtrr_mask = msr - 0x200 - 2 * idx;
1828                if (!is_mtrr_mask)
1829                        pt =
1830                          (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1831                else
1832                        pt =
1833                          (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1834                *pt = data;
1835        }
1836
1837        kvm_mmu_reset_context(vcpu);
1838        return 0;
1839}
1840
1841static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1842{
1843        u64 mcg_cap = vcpu->arch.mcg_cap;
1844        unsigned bank_num = mcg_cap & 0xff;
1845
1846        switch (msr) {
1847        case MSR_IA32_MCG_STATUS:
1848                vcpu->arch.mcg_status = data;
1849                break;
1850        case MSR_IA32_MCG_CTL:
1851                if (!(mcg_cap & MCG_CTL_P))
1852                        return 1;
1853                if (data != 0 && data != ~(u64)0)
1854                        return -1;
1855                vcpu->arch.mcg_ctl = data;
1856                break;
1857        default:
1858                if (msr >= MSR_IA32_MC0_CTL &&
1859                    msr < MSR_IA32_MCx_CTL(bank_num)) {
1860                        u32 offset = msr - MSR_IA32_MC0_CTL;
1861                        /* only 0 or all 1s can be written to IA32_MCi_CTL
1862                         * some Linux kernels though clear bit 10 in bank 4 to
1863                         * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1864                         * this to avoid an uncatched #GP in the guest
1865                         */
1866                        if ((offset & 0x3) == 0 &&
1867                            data != 0 && (data | (1 << 10)) != ~(u64)0)
1868                                return -1;
1869                        vcpu->arch.mce_banks[offset] = data;
1870                        break;
1871                }
1872                return 1;
1873        }
1874        return 0;
1875}
1876
1877static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1878{
1879        struct kvm *kvm = vcpu->kvm;
1880        int lm = is_long_mode(vcpu);
1881        u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1882                : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1883        u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1884                : kvm->arch.xen_hvm_config.blob_size_32;
1885        u32 page_num = data & ~PAGE_MASK;
1886        u64 page_addr = data & PAGE_MASK;
1887        u8 *page;
1888        int r;
1889
1890        r = -E2BIG;
1891        if (page_num >= blob_size)
1892                goto out;
1893        r = -ENOMEM;
1894        page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1895        if (IS_ERR(page)) {
1896                r = PTR_ERR(page);
1897                goto out;
1898        }
1899        if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1900                goto out_free;
1901        r = 0;
1902out_free:
1903        kfree(page);
1904out:
1905        return r;
1906}
1907
1908static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1909{
1910        return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1911}
1912
1913static bool kvm_hv_msr_partition_wide(u32 msr)
1914{
1915        bool r = false;
1916        switch (msr) {
1917        case HV_X64_MSR_GUEST_OS_ID:
1918        case HV_X64_MSR_HYPERCALL:
1919        case HV_X64_MSR_REFERENCE_TSC:
1920        case HV_X64_MSR_TIME_REF_COUNT:
1921                r = true;
1922                break;
1923        }
1924
1925        return r;
1926}
1927
1928static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1929{
1930        struct kvm *kvm = vcpu->kvm;
1931
1932        switch (msr) {
1933        case HV_X64_MSR_GUEST_OS_ID:
1934                kvm->arch.hv_guest_os_id = data;
1935                /* setting guest os id to zero disables hypercall page */
1936                if (!kvm->arch.hv_guest_os_id)
1937                        kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1938                break;
1939        case HV_X64_MSR_HYPERCALL: {
1940                u64 gfn;
1941                unsigned long addr;
1942                u8 instructions[4];
1943
1944                /* if guest os id is not set hypercall should remain disabled */
1945                if (!kvm->arch.hv_guest_os_id)
1946                        break;
1947                if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1948                        kvm->arch.hv_hypercall = data;
1949                        break;
1950                }
1951                gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1952                addr = gfn_to_hva(kvm, gfn);
1953                if (kvm_is_error_hva(addr))
1954                        return 1;
1955                kvm_x86_ops->patch_hypercall(vcpu, instructions);
1956                ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1957                if (__copy_to_user((void __user *)addr, instructions, 4))
1958                        return 1;
1959                kvm->arch.hv_hypercall = data;
1960                mark_page_dirty(kvm, gfn);
1961                break;
1962        }
1963        case HV_X64_MSR_REFERENCE_TSC: {
1964                u64 gfn;
1965                HV_REFERENCE_TSC_PAGE tsc_ref;
1966                memset(&tsc_ref, 0, sizeof(tsc_ref));
1967                kvm->arch.hv_tsc_page = data;
1968                if (!(data & HV_X64_MSR_TSC_REFERENCE_ENABLE))
1969                        break;
1970                gfn = data >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT;
1971                if (kvm_write_guest(kvm, gfn << HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT,
1972                        &tsc_ref, sizeof(tsc_ref)))
1973                        return 1;
1974                mark_page_dirty(kvm, gfn);
1975                break;
1976        }
1977        default:
1978                vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1979                            "data 0x%llx\n", msr, data);
1980                return 1;
1981        }
1982        return 0;
1983}
1984
1985static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1986{
1987        switch (msr) {
1988        case HV_X64_MSR_APIC_ASSIST_PAGE: {
1989                u64 gfn;
1990                unsigned long addr;
1991
1992                if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1993                        vcpu->arch.hv_vapic = data;
1994                        if (kvm_lapic_enable_pv_eoi(vcpu, 0))
1995                                return 1;
1996                        break;
1997                }
1998                gfn = data >> HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT;
1999                addr = gfn_to_hva(vcpu->kvm, gfn);
2000                if (kvm_is_error_hva(addr))
2001                        return 1;
2002                if (__clear_user((void __user *)addr, PAGE_SIZE))
2003                        return 1;
2004                vcpu->arch.hv_vapic = data;
2005                mark_page_dirty(vcpu->kvm, gfn);
2006                if (kvm_lapic_enable_pv_eoi(vcpu, gfn_to_gpa(gfn) | KVM_MSR_ENABLED))
2007                        return 1;
2008                break;
2009        }
2010        case HV_X64_MSR_EOI:
2011                return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
2012        case HV_X64_MSR_ICR:
2013                return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
2014        case HV_X64_MSR_TPR:
2015                return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
2016        default:
2017                vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
2018                            "data 0x%llx\n", msr, data);
2019                return 1;
2020        }
2021
2022        return 0;
2023}
2024
2025static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2026{
2027        gpa_t gpa = data & ~0x3f;
2028
2029        /* Bits 2:5 are reserved, Should be zero */
2030        if (data & 0x3c)
2031                return 1;
2032
2033        vcpu->arch.apf.msr_val = data;
2034
2035        if (!(data & KVM_ASYNC_PF_ENABLED)) {
2036                kvm_clear_async_pf_completion_queue(vcpu);
2037                kvm_async_pf_hash_reset(vcpu);
2038                return 0;
2039        }
2040
2041        if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2042                                        sizeof(u32)))
2043                return 1;
2044
2045        vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2046        kvm_async_pf_wakeup_all(vcpu);
2047        return 0;
2048}
2049
2050static void kvmclock_reset(struct kvm_vcpu *vcpu)
2051{
2052        vcpu->arch.pv_time_enabled = false;
2053}
2054
2055static void accumulate_steal_time(struct kvm_vcpu *vcpu)
2056{
2057        u64 delta;
2058
2059        if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2060                return;
2061
2062        delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
2063        vcpu->arch.st.last_steal = current->sched_info.run_delay;
2064        vcpu->arch.st.accum_steal = delta;
2065}
2066
2067static void record_steal_time(struct kvm_vcpu *vcpu)
2068{
2069        if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2070                return;
2071
2072        if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2073                &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2074                return;
2075
2076        vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
2077        vcpu->arch.st.steal.version += 2;
2078        vcpu->arch.st.accum_steal = 0;
2079
2080        kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2081                &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2082}
2083
2084int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2085{
2086        bool pr = false;
2087        u32 msr = msr_info->index;
2088        u64 data = msr_info->data;
2089
2090        switch (msr) {
2091        case MSR_AMD64_NB_CFG:
2092        case MSR_IA32_UCODE_REV:
2093        case MSR_IA32_UCODE_WRITE:
2094        case MSR_VM_HSAVE_PA:
2095        case MSR_AMD64_PATCH_LOADER:
2096        case MSR_AMD64_BU_CFG2:
2097                break;
2098
2099        case MSR_EFER:
2100                return set_efer(vcpu, data);
2101        case MSR_K7_HWCR:
2102                data &= ~(u64)0x40;     /* ignore flush filter disable */
2103                data &= ~(u64)0x100;    /* ignore ignne emulation enable */
2104                data &= ~(u64)0x8;      /* ignore TLB cache disable */
2105                data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2106                if (data != 0) {
2107                        vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2108                                    data);
2109                        return 1;
2110                }
2111                break;
2112        case MSR_FAM10H_MMIO_CONF_BASE:
2113                if (data != 0) {
2114                        vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2115                                    "0x%llx\n", data);
2116                        return 1;
2117                }
2118                break;
2119        case MSR_IA32_DEBUGCTLMSR:
2120                if (!data) {
2121                        /* We support the non-activated case already */
2122                        break;
2123                } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2124                        /* Values other than LBR and BTF are vendor-specific,
2125                           thus reserved and should throw a #GP */
2126                        return 1;
2127                }
2128                vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2129                            __func__, data);
2130                break;
2131        case 0x200 ... 0x2ff:
2132                return set_msr_mtrr(vcpu, msr, data);
2133        case MSR_IA32_APICBASE:
2134                return kvm_set_apic_base(vcpu, msr_info);
2135        case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2136                return kvm_x2apic_msr_write(vcpu, msr, data);
2137        case MSR_IA32_TSCDEADLINE:
2138                kvm_set_lapic_tscdeadline_msr(vcpu, data);
2139                break;
2140        case MSR_IA32_TSC_ADJUST:
2141                if (guest_cpuid_has_tsc_adjust(vcpu)) {
2142                        if (!msr_info->host_initiated) {
2143                                u64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2144                                kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true);
2145                        }
2146                        vcpu->arch.ia32_tsc_adjust_msr = data;
2147                }
2148                break;
2149        case MSR_IA32_MISC_ENABLE:
2150                vcpu->arch.ia32_misc_enable_msr = data;
2151                break;
2152        case MSR_KVM_WALL_CLOCK_NEW:
2153        case MSR_KVM_WALL_CLOCK:
2154                vcpu->kvm->arch.wall_clock = data;
2155                kvm_write_wall_clock(vcpu->kvm, data);
2156                break;
2157        case MSR_KVM_SYSTEM_TIME_NEW:
2158        case MSR_KVM_SYSTEM_TIME: {
2159                u64 gpa_offset;
2160                kvmclock_reset(vcpu);
2161
2162                vcpu->arch.time = data;
2163                kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2164
2165                /* we verify if the enable bit is set... */
2166                if (!(data & 1))
2167                        break;
2168
2169                gpa_offset = data & ~(PAGE_MASK | 1);
2170
2171                if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2172                     &vcpu->arch.pv_time, data & ~1ULL,
2173                     sizeof(struct pvclock_vcpu_time_info)))
2174                        vcpu->arch.pv_time_enabled = false;
2175                else
2176                        vcpu->arch.pv_time_enabled = true;
2177
2178                break;
2179        }
2180        case MSR_KVM_ASYNC_PF_EN:
2181                if (kvm_pv_enable_async_pf(vcpu, data))
2182                        return 1;
2183                break;
2184        case MSR_KVM_STEAL_TIME:
2185
2186                if (unlikely(!sched_info_on()))
2187                        return 1;
2188
2189                if (data & KVM_STEAL_RESERVED_MASK)
2190                        return 1;
2191
2192                if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2193                                                data & KVM_STEAL_VALID_BITS,
2194                                                sizeof(struct kvm_steal_time)))
2195                        return 1;
2196
2197                vcpu->arch.st.msr_val = data;
2198
2199                if (!(data & KVM_MSR_ENABLED))
2200                        break;
2201
2202                vcpu->arch.st.last_steal = current->sched_info.run_delay;
2203
2204                preempt_disable();
2205                accumulate_steal_time(vcpu);
2206                preempt_enable();
2207
2208                kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2209
2210                break;
2211        case MSR_KVM_PV_EOI_EN:
2212                if (kvm_lapic_enable_pv_eoi(vcpu, data))
2213                        return 1;
2214                break;
2215
2216        case MSR_IA32_MCG_CTL:
2217        case MSR_IA32_MCG_STATUS:
2218        case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2219                return set_msr_mce(vcpu, msr, data);
2220
2221        /* Performance counters are not protected by a CPUID bit,
2222         * so we should check all of them in the generic path for the sake of
2223         * cross vendor migration.
2224         * Writing a zero into the event select MSRs disables them,
2225         * which we perfectly emulate ;-). Any other value should be at least
2226         * reported, some guests depend on them.
2227         */
2228        case MSR_K7_EVNTSEL0:
2229        case MSR_K7_EVNTSEL1:
2230        case MSR_K7_EVNTSEL2:
2231        case MSR_K7_EVNTSEL3:
2232                if (data != 0)
2233                        vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2234                                    "0x%x data 0x%llx\n", msr, data);
2235                break;
2236        /* at least RHEL 4 unconditionally writes to the perfctr registers,
2237         * so we ignore writes to make it happy.
2238         */
2239        case MSR_K7_PERFCTR0:
2240        case MSR_K7_PERFCTR1:
2241        case MSR_K7_PERFCTR2:
2242        case MSR_K7_PERFCTR3:
2243                vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2244                            "0x%x data 0x%llx\n", msr, data);
2245                break;
2246        case MSR_P6_PERFCTR0:
2247        case MSR_P6_PERFCTR1:
2248                pr = true;
2249        case MSR_P6_EVNTSEL0:
2250        case MSR_P6_EVNTSEL1:
2251                if (kvm_pmu_msr(vcpu, msr))
2252                        return kvm_pmu_set_msr(vcpu, msr_info);
2253
2254                if (pr || data != 0)
2255                        vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2256                                    "0x%x data 0x%llx\n", msr, data);
2257                break;
2258        case MSR_K7_CLK_CTL:
2259                /*
2260                 * Ignore all writes to this no longer documented MSR.
2261                 * Writes are only relevant for old K7 processors,
2262                 * all pre-dating SVM, but a recommended workaround from
2263                 * AMD for these chips. It is possible to specify the
2264                 * affected processor models on the command line, hence
2265                 * the need to ignore the workaround.
2266                 */
2267                break;
2268        case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2269                if (kvm_hv_msr_partition_wide(msr)) {
2270                        int r;
2271                        mutex_lock(&vcpu->kvm->lock);
2272                        r = set_msr_hyperv_pw(vcpu, msr, data);
2273                        mutex_unlock(&vcpu->kvm->lock);
2274                        return r;
2275                } else
2276                        return set_msr_hyperv(vcpu, msr, data);
2277                break;
2278        case MSR_IA32_BBL_CR_CTL3:
2279                /* Drop writes to this legacy MSR -- see rdmsr
2280                 * counterpart for further detail.
2281                 */
2282                vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2283                break;
2284        case MSR_AMD64_OSVW_ID_LENGTH:
2285                if (!guest_cpuid_has_osvw(vcpu))
2286                        return 1;
2287                vcpu->arch.osvw.length = data;
2288                break;
2289        case MSR_AMD64_OSVW_STATUS:
2290                if (!guest_cpuid_has_osvw(vcpu))
2291                        return 1;
2292                vcpu->arch.osvw.status = data;
2293                break;
2294        default:
2295                if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2296                        return xen_hvm_config(vcpu, data);
2297                if (kvm_pmu_msr(vcpu, msr))
2298                        return kvm_pmu_set_msr(vcpu, msr_info);
2299                if (!ignore_msrs) {
2300                        vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2301                                    msr, data);
2302                        return 1;
2303                } else {
2304                        vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2305                                    msr, data);
2306                        break;
2307                }
2308        }
2309        return 0;
2310}
2311EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2312
2313
2314/*
2315 * Reads an msr value (of 'msr_index') into 'pdata'.
2316 * Returns 0 on success, non-0 otherwise.
2317 * Assumes vcpu_load() was already called.
2318 */
2319int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2320{
2321        return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
2322}
2323
2324static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2325{
2326        u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
2327
2328        if (!msr_mtrr_valid(msr))
2329                return 1;
2330
2331        if (msr == MSR_MTRRdefType)
2332                *pdata = vcpu->arch.mtrr_state.def_type +
2333                         (vcpu->arch.mtrr_state.enabled << 10);
2334        else if (msr == MSR_MTRRfix64K_00000)
2335                *pdata = p[0];
2336        else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
2337                *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
2338        else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
2339                *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
2340        else if (msr == MSR_IA32_CR_PAT)
2341                *pdata = vcpu->arch.pat;
2342        else {  /* Variable MTRRs */
2343                int idx, is_mtrr_mask;
2344                u64 *pt;
2345
2346                idx = (msr - 0x200) / 2;
2347                is_mtrr_mask = msr - 0x200 - 2 * idx;
2348                if (!is_mtrr_mask)
2349                        pt =
2350                          (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
2351                else
2352                        pt =
2353                          (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
2354                *pdata = *pt;
2355        }
2356
2357        return 0;
2358}
2359
2360static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2361{
2362        u64 data;
2363        u64 mcg_cap = vcpu->arch.mcg_cap;
2364        unsigned bank_num = mcg_cap & 0xff;
2365
2366        switch (msr) {
2367        case MSR_IA32_P5_MC_ADDR:
2368        case MSR_IA32_P5_MC_TYPE:
2369                data = 0;
2370                break;
2371        case MSR_IA32_MCG_CAP:
2372                data = vcpu->arch.mcg_cap;
2373                break;
2374        case MSR_IA32_MCG_CTL:
2375                if (!(mcg_cap & MCG_CTL_P))
2376                        return 1;
2377                data = vcpu->arch.mcg_ctl;
2378                break;
2379        case MSR_IA32_MCG_STATUS:
2380                data = vcpu->arch.mcg_status;
2381                break;
2382        default:
2383                if (msr >= MSR_IA32_MC0_CTL &&
2384                    msr < MSR_IA32_MCx_CTL(bank_num)) {
2385                        u32 offset = msr - MSR_IA32_MC0_CTL;
2386                        data = vcpu->arch.mce_banks[offset];
2387                        break;
2388                }
2389                return 1;
2390        }
2391        *pdata = data;
2392        return 0;
2393}
2394
2395static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2396{
2397        u64 data = 0;
2398        struct kvm *kvm = vcpu->kvm;
2399
2400        switch (msr) {
2401        case HV_X64_MSR_GUEST_OS_ID:
2402                data = kvm->arch.hv_guest_os_id;
2403                break;
2404        case HV_X64_MSR_HYPERCALL:
2405                data = kvm->arch.hv_hypercall;
2406                break;
2407        case HV_X64_MSR_TIME_REF_COUNT: {
2408                data =
2409                     div_u64(get_kernel_ns() + kvm->arch.kvmclock_offset, 100);
2410                break;
2411        }
2412        case HV_X64_MSR_REFERENCE_TSC:
2413                data = kvm->arch.hv_tsc_page;
2414                break;
2415        default:
2416                vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2417                return 1;
2418        }
2419
2420        *pdata = data;
2421        return 0;
2422}
2423
2424static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2425{
2426        u64 data = 0;
2427
2428        switch (msr) {
2429        case HV_X64_MSR_VP_INDEX: {
2430                int r;
2431                struct kvm_vcpu *v;
2432                kvm_for_each_vcpu(r, v, vcpu->kvm) {
2433                        if (v == vcpu) {
2434                                data = r;
2435                                break;
2436                        }
2437                }
2438                break;
2439        }
2440        case HV_X64_MSR_EOI:
2441                return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
2442        case HV_X64_MSR_ICR:
2443                return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
2444        case HV_X64_MSR_TPR:
2445                return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
2446        case HV_X64_MSR_APIC_ASSIST_PAGE:
2447                data = vcpu->arch.hv_vapic;
2448                break;
2449        default:
2450                vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2451                return 1;
2452        }
2453        *pdata = data;
2454        return 0;
2455}
2456
2457int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2458{
2459        u64 data;
2460
2461        switch (msr) {
2462        case MSR_IA32_PLATFORM_ID:
2463        case MSR_IA32_EBL_CR_POWERON:
2464        case MSR_IA32_DEBUGCTLMSR:
2465        case MSR_IA32_LASTBRANCHFROMIP:
2466        case MSR_IA32_LASTBRANCHTOIP:
2467        case MSR_IA32_LASTINTFROMIP:
2468        case MSR_IA32_LASTINTTOIP:
2469        case MSR_K8_SYSCFG:
2470        case MSR_K7_HWCR:
2471        case MSR_VM_HSAVE_PA:
2472        case MSR_K7_EVNTSEL0:
2473        case MSR_K7_EVNTSEL1:
2474        case MSR_K7_EVNTSEL2:
2475        case MSR_K7_EVNTSEL3:
2476        case MSR_K7_PERFCTR0:
2477        case MSR_K7_PERFCTR1:
2478        case MSR_K7_PERFCTR2:
2479        case MSR_K7_PERFCTR3:
2480        case MSR_K8_INT_PENDING_MSG:
2481        case MSR_AMD64_NB_CFG:
2482        case MSR_FAM10H_MMIO_CONF_BASE:
2483        case MSR_AMD64_BU_CFG2:
2484                data = 0;
2485                break;
2486        case MSR_P6_PERFCTR0:
2487        case MSR_P6_PERFCTR1:
2488        case MSR_P6_EVNTSEL0:
2489        case MSR_P6_EVNTSEL1:
2490                if (kvm_pmu_msr(vcpu, msr))
2491                        return kvm_pmu_get_msr(vcpu, msr, pdata);
2492                data = 0;
2493                break;
2494        case MSR_IA32_UCODE_REV:
2495                data = 0x100000000ULL;
2496                break;
2497        case MSR_MTRRcap:
2498                data = 0x500 | KVM_NR_VAR_MTRR;
2499                break;
2500        case 0x200 ... 0x2ff:
2501                return get_msr_mtrr(vcpu, msr, pdata);
2502        case 0xcd: /* fsb frequency */
2503                data = 3;
2504                break;
2505                /*
2506                 * MSR_EBC_FREQUENCY_ID
2507                 * Conservative value valid for even the basic CPU models.
2508                 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2509                 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2510                 * and 266MHz for model 3, or 4. Set Core Clock
2511                 * Frequency to System Bus Frequency Ratio to 1 (bits
2512                 * 31:24) even though these are only valid for CPU
2513                 * models > 2, however guests may end up dividing or
2514                 * multiplying by zero otherwise.
2515                 */
2516        case MSR_EBC_FREQUENCY_ID:
2517                data = 1 << 24;
2518                break;
2519        case MSR_IA32_APICBASE:
2520                data = kvm_get_apic_base(vcpu);
2521                break;
2522        case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2523                return kvm_x2apic_msr_read(vcpu, msr, pdata);
2524                break;
2525        case MSR_IA32_TSCDEADLINE:
2526                data = kvm_get_lapic_tscdeadline_msr(vcpu);
2527                break;
2528        case MSR_IA32_TSC_ADJUST:
2529                data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2530                break;
2531        case MSR_IA32_MISC_ENABLE:
2532                data = vcpu->arch.ia32_misc_enable_msr;
2533                break;
2534        case MSR_IA32_PERF_STATUS:
2535                /* TSC increment by tick */
2536                data = 1000ULL;
2537                /* CPU multiplier */
2538                data |= (((uint64_t)4ULL) << 40);
2539                break;
2540        case MSR_EFER:
2541                data = vcpu->arch.efer;
2542                break;
2543        case MSR_KVM_WALL_CLOCK:
2544        case MSR_KVM_WALL_CLOCK_NEW:
2545                data = vcpu->kvm->arch.wall_clock;
2546                break;
2547        case MSR_KVM_SYSTEM_TIME:
2548        case MSR_KVM_SYSTEM_TIME_NEW:
2549                data = vcpu->arch.time;
2550                break;
2551        case MSR_KVM_ASYNC_PF_EN:
2552                data = vcpu->arch.apf.msr_val;
2553                break;
2554        case MSR_KVM_STEAL_TIME:
2555                data = vcpu->arch.st.msr_val;
2556                break;
2557        case MSR_KVM_PV_EOI_EN:
2558                data = vcpu->arch.pv_eoi.msr_val;
2559                break;
2560        case MSR_IA32_P5_MC_ADDR:
2561        case MSR_IA32_P5_MC_TYPE:
2562        case MSR_IA32_MCG_CAP:
2563        case MSR_IA32_MCG_CTL:
2564        case MSR_IA32_MCG_STATUS:
2565        case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2566                return get_msr_mce(vcpu, msr, pdata);
2567        case MSR_K7_CLK_CTL:
2568                /*
2569                 * Provide expected ramp-up count for K7. All other
2570                 * are set to zero, indicating minimum divisors for
2571                 * every field.
2572                 *
2573                 * This prevents guest kernels on AMD host with CPU
2574                 * type 6, model 8 and higher from exploding due to
2575                 * the rdmsr failing.
2576                 */
2577                data = 0x20000000;
2578                break;
2579        case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2580                if (kvm_hv_msr_partition_wide(msr)) {
2581                        int r;
2582                        mutex_lock(&vcpu->kvm->lock);
2583                        r = get_msr_hyperv_pw(vcpu, msr, pdata);
2584                        mutex_unlock(&vcpu->kvm->lock);
2585                        return r;
2586                } else
2587                        return get_msr_hyperv(vcpu, msr, pdata);
2588                break;
2589        case MSR_IA32_BBL_CR_CTL3:
2590                /* This legacy MSR exists but isn't fully documented in current
2591                 * silicon.  It is however accessed by winxp in very narrow
2592                 * scenarios where it sets bit #19, itself documented as
2593                 * a "reserved" bit.  Best effort attempt to source coherent
2594                 * read data here should the balance of the register be
2595                 * interpreted by the guest:
2596                 *
2597                 * L2 cache control register 3: 64GB range, 256KB size,
2598                 * enabled, latency 0x1, configured
2599                 */
2600                data = 0xbe702111;
2601                break;
2602        case MSR_AMD64_OSVW_ID_LENGTH:
2603                if (!guest_cpuid_has_osvw(vcpu))
2604                        return 1;
2605                data = vcpu->arch.osvw.length;
2606                break;
2607        case MSR_AMD64_OSVW_STATUS:
2608                if (!guest_cpuid_has_osvw(vcpu))
2609                        return 1;
2610                data = vcpu->arch.osvw.status;
2611                break;
2612        default:
2613                if (kvm_pmu_msr(vcpu, msr))
2614                        return kvm_pmu_get_msr(vcpu, msr, pdata);
2615                if (!ignore_msrs) {
2616                        vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
2617                        return 1;
2618                } else {
2619                        vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
2620                        data = 0;
2621                }
2622                break;
2623        }
2624        *pdata = data;
2625        return 0;
2626}
2627EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2628
2629/*
2630 * Read or write a bunch of msrs. All parameters are kernel addresses.
2631 *
2632 * @return number of msrs set successfully.
2633 */
2634static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2635                    struct kvm_msr_entry *entries,
2636                    int (*do_msr)(struct kvm_vcpu *vcpu,
2637                                  unsigned index, u64 *data))
2638{
2639        int i, idx;
2640
2641        idx = srcu_read_lock(&vcpu->kvm->srcu);
2642        for (i = 0; i < msrs->nmsrs; ++i)
2643                if (do_msr(vcpu, entries[i].index, &entries[i].data))
2644                        break;
2645        srcu_read_unlock(&vcpu->kvm->srcu, idx);
2646
2647        return i;
2648}
2649
2650/*
2651 * Read or write a bunch of msrs. Parameters are user addresses.
2652 *
2653 * @return number of msrs set successfully.
2654 */
2655static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2656                  int (*do_msr)(struct kvm_vcpu *vcpu,
2657                                unsigned index, u64 *data),
2658                  int writeback)
2659{
2660        struct kvm_msrs msrs;
2661        struct kvm_msr_entry *entries;
2662        int r, n;
2663        unsigned size;
2664
2665        r = -EFAULT;
2666        if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2667                goto out;
2668
2669        r = -E2BIG;
2670        if (msrs.nmsrs >= MAX_IO_MSRS)
2671                goto out;
2672
2673        size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2674        entries = memdup_user(user_msrs->entries, size);
2675        if (IS_ERR(entries)) {
2676                r = PTR_ERR(entries);
2677                goto out;
2678        }
2679
2680        r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2681        if (r < 0)
2682                goto out_free;
2683
2684        r = -EFAULT;
2685        if (writeback && copy_to_user(user_msrs->entries, entries, size))
2686                goto out_free;
2687
2688        r = n;
2689
2690out_free:
2691        kfree(entries);
2692out:
2693        return r;
2694}
2695
2696int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2697{
2698        int r;
2699
2700        switch (ext) {
2701        case KVM_CAP_IRQCHIP:
2702        case KVM_CAP_HLT:
2703        case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2704        case KVM_CAP_SET_TSS_ADDR:
2705        case KVM_CAP_EXT_CPUID:
2706        case KVM_CAP_EXT_EMUL_CPUID:
2707        case KVM_CAP_CLOCKSOURCE:
2708        case KVM_CAP_PIT:
2709        case KVM_CAP_NOP_IO_DELAY:
2710        case KVM_CAP_MP_STATE:
2711        case KVM_CAP_SYNC_MMU:
2712        case KVM_CAP_USER_NMI:
2713        case KVM_CAP_REINJECT_CONTROL:
2714        case KVM_CAP_IRQ_INJECT_STATUS:
2715        case KVM_CAP_IRQFD:
2716        case KVM_CAP_IOEVENTFD:
2717        case KVM_CAP_IOEVENTFD_NO_LENGTH:
2718        case KVM_CAP_PIT2:
2719        case KVM_CAP_PIT_STATE2:
2720        case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2721        case KVM_CAP_XEN_HVM:
2722        case KVM_CAP_ADJUST_CLOCK:
2723        case KVM_CAP_VCPU_EVENTS:
2724        case KVM_CAP_HYPERV:
2725        case KVM_CAP_HYPERV_VAPIC:
2726        case KVM_CAP_HYPERV_SPIN:
2727        case KVM_CAP_PCI_SEGMENT:
2728        case KVM_CAP_DEBUGREGS:
2729        case KVM_CAP_X86_ROBUST_SINGLESTEP:
2730        case KVM_CAP_XSAVE:
2731        case KVM_CAP_ASYNC_PF:
2732        case KVM_CAP_GET_TSC_KHZ:
2733        case KVM_CAP_KVMCLOCK_CTRL:
2734        case KVM_CAP_READONLY_MEM:
2735        case KVM_CAP_HYPERV_TIME:
2736        case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2737#ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2738        case KVM_CAP_ASSIGN_DEV_IRQ:
2739        case KVM_CAP_PCI_2_3:
2740#endif
2741                r = 1;
2742                break;
2743        case KVM_CAP_COALESCED_MMIO:
2744                r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2745                break;
2746        case KVM_CAP_VAPIC:
2747                r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2748                break;
2749        case KVM_CAP_NR_VCPUS:
2750                r = KVM_SOFT_MAX_VCPUS;
2751                break;
2752        case KVM_CAP_MAX_VCPUS:
2753                r = KVM_MAX_VCPUS;
2754                break;
2755        case KVM_CAP_NR_MEMSLOTS:
2756                r = KVM_USER_MEM_SLOTS;
2757                break;
2758        case KVM_CAP_PV_MMU:    /* obsolete */
2759                r = 0;
2760                break;
2761#ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2762        case KVM_CAP_IOMMU:
2763                r = iommu_present(&pci_bus_type);
2764                break;
2765#endif
2766        case KVM_CAP_MCE:
2767                r = KVM_MAX_MCE_BANKS;
2768                break;
2769        case KVM_CAP_XCRS:
2770                r = cpu_has_xsave;
2771                break;
2772        case KVM_CAP_TSC_CONTROL:
2773                r = kvm_has_tsc_control;
2774                break;
2775        case KVM_CAP_TSC_DEADLINE_TIMER:
2776                r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER);
2777                break;
2778        default:
2779                r = 0;
2780                break;
2781        }
2782        return r;
2783
2784}
2785
2786long kvm_arch_dev_ioctl(struct file *filp,
2787                        unsigned int ioctl, unsigned long arg)
2788{
2789        void __user *argp = (void __user *)arg;
2790        long r;
2791
2792        switch (ioctl) {
2793        case KVM_GET_MSR_INDEX_LIST: {
2794                struct kvm_msr_list __user *user_msr_list = argp;
2795                struct kvm_msr_list msr_list;
2796                unsigned n;
2797
2798                r = -EFAULT;
2799                if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2800                        goto out;
2801                n = msr_list.nmsrs;
2802                msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2803                if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2804                        goto out;
2805                r = -E2BIG;
2806                if (n < msr_list.nmsrs)
2807                        goto out;
2808                r = -EFAULT;
2809                if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2810                                 num_msrs_to_save * sizeof(u32)))
2811                        goto out;
2812                if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2813                                 &emulated_msrs,
2814                                 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2815                        goto out;
2816                r = 0;
2817                break;
2818        }
2819        case KVM_GET_SUPPORTED_CPUID:
2820        case KVM_GET_EMULATED_CPUID: {
2821                struct kvm_cpuid2 __user *cpuid_arg = argp;
2822                struct kvm_cpuid2 cpuid;
2823
2824                r = -EFAULT;
2825                if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2826                        goto out;
2827
2828                r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2829                                            ioctl);
2830                if (r)
2831                        goto out;
2832
2833                r = -EFAULT;
2834                if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2835                        goto out;
2836                r = 0;
2837                break;
2838        }
2839        case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2840                u64 mce_cap;
2841
2842                mce_cap = KVM_MCE_CAP_SUPPORTED;
2843                r = -EFAULT;
2844                if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2845                        goto out;
2846                r = 0;
2847                break;
2848        }
2849        default:
2850                r = -EINVAL;
2851        }
2852out:
2853        return r;
2854}
2855
2856static void wbinvd_ipi(void *garbage)
2857{
2858        wbinvd();
2859}
2860
2861static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2862{
2863        return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2864}
2865
2866void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2867{
2868        /* Address WBINVD may be executed by guest */
2869        if (need_emulate_wbinvd(vcpu)) {
2870                if (kvm_x86_ops->has_wbinvd_exit())
2871                        cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2872                else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2873                        smp_call_function_single(vcpu->cpu,
2874                                        wbinvd_ipi, NULL, 1);
2875        }
2876
2877        kvm_x86_ops->vcpu_load(vcpu, cpu);
2878
2879        /* Apply any externally detected TSC adjustments (due to suspend) */
2880        if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2881                adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2882                vcpu->arch.tsc_offset_adjustment = 0;
2883                kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2884        }
2885
2886        if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2887                s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2888                                native_read_tsc() - vcpu->arch.last_host_tsc;
2889                if (tsc_delta < 0)
2890                        mark_tsc_unstable("KVM discovered backwards TSC");
2891                if (check_tsc_unstable()) {
2892                        u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2893                                                vcpu->arch.last_guest_tsc);
2894                        kvm_x86_ops->write_tsc_offset(vcpu, offset);
2895                        vcpu->arch.tsc_catchup = 1;
2896                }
2897                /*
2898                 * On a host with synchronized TSC, there is no need to update
2899                 * kvmclock on vcpu->cpu migration
2900                 */
2901                if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2902                        kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2903                if (vcpu->cpu != cpu)
2904                        kvm_migrate_timers(vcpu);
2905                vcpu->cpu = cpu;
2906        }
2907
2908        accumulate_steal_time(vcpu);
2909        kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2910}
2911
2912void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2913{
2914        kvm_x86_ops->vcpu_put(vcpu);
2915        kvm_put_guest_fpu(vcpu);
2916        vcpu->arch.last_host_tsc = native_read_tsc();
2917}
2918
2919static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2920                                    struct kvm_lapic_state *s)
2921{
2922        kvm_x86_ops->sync_pir_to_irr(vcpu);
2923        memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2924
2925        return 0;
2926}
2927
2928static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2929                                    struct kvm_lapic_state *s)
2930{
2931        kvm_apic_post_state_restore(vcpu, s);
2932        update_cr8_intercept(vcpu);
2933
2934        return 0;
2935}
2936
2937static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2938                                    struct kvm_interrupt *irq)
2939{
2940        if (irq->irq >= KVM_NR_INTERRUPTS)
2941                return -EINVAL;
2942        if (irqchip_in_kernel(vcpu->kvm))
2943                return -ENXIO;
2944
2945        kvm_queue_interrupt(vcpu, irq->irq, false);
2946        kvm_make_request(KVM_REQ_EVENT, vcpu);
2947
2948        return 0;
2949}
2950
2951static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2952{
2953        kvm_inject_nmi(vcpu);
2954
2955        return 0;
2956}
2957
2958static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2959                                           struct kvm_tpr_access_ctl *tac)
2960{
2961        if (tac->flags)
2962                return -EINVAL;
2963        vcpu->arch.tpr_access_reporting = !!tac->enabled;
2964        return 0;
2965}
2966
2967static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2968                                        u64 mcg_cap)
2969{
2970        int r;
2971        unsigned bank_num = mcg_cap & 0xff, bank;
2972
2973        r = -EINVAL;
2974        if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2975                goto out;
2976        if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2977                goto out;
2978        r = 0;
2979        vcpu->arch.mcg_cap = mcg_cap;
2980        /* Init IA32_MCG_CTL to all 1s */
2981        if (mcg_cap & MCG_CTL_P)
2982                vcpu->arch.mcg_ctl = ~(u64)0;
2983        /* Init IA32_MCi_CTL to all 1s */
2984        for (bank = 0; bank < bank_num; bank++)
2985                vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2986out:
2987        return r;
2988}
2989
2990static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2991                                      struct kvm_x86_mce *mce)
2992{
2993        u64 mcg_cap = vcpu->arch.mcg_cap;
2994        unsigned bank_num = mcg_cap & 0xff;
2995        u64 *banks = vcpu->arch.mce_banks;
2996
2997        if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2998                return -EINVAL;
2999        /*
3000         * if IA32_MCG_CTL is not all 1s, the uncorrected error
3001         * reporting is disabled
3002         */
3003        if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3004            vcpu->arch.mcg_ctl != ~(u64)0)
3005                return 0;
3006        banks += 4 * mce->bank;
3007        /*
3008         * if IA32_MCi_CTL is not all 1s, the uncorrected error
3009         * reporting is disabled for the bank
3010         */
3011        if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3012                return 0;
3013        if (mce->status & MCI_STATUS_UC) {
3014                if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3015                    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3016                        kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3017                        return 0;
3018                }
3019                if (banks[1] & MCI_STATUS_VAL)
3020                        mce->status |= MCI_STATUS_OVER;
3021                banks[2] = mce->addr;
3022                banks[3] = mce->misc;
3023                vcpu->arch.mcg_status = mce->mcg_status;
3024                banks[1] = mce->status;
3025                kvm_queue_exception(vcpu, MC_VECTOR);
3026        } else if (!(banks[1] & MCI_STATUS_VAL)
3027                   || !(banks[1] & MCI_STATUS_UC)) {
3028                if (banks[1] & MCI_STATUS_VAL)
3029                        mce->status |= MCI_STATUS_OVER;
3030                banks[2] = mce->addr;
3031                banks[3] = mce->misc;
3032                banks[1] = mce->status;
3033        } else
3034                banks[1] |= MCI_STATUS_OVER;
3035        return 0;
3036}
3037
3038static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3039                                               struct kvm_vcpu_events *events)
3040{
3041        process_nmi(vcpu);
3042        events->exception.injected =
3043                vcpu->arch.exception.pending &&
3044                !kvm_exception_is_soft(vcpu->arch.exception.nr);
3045        events->exception.nr = vcpu->arch.exception.nr;
3046        events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3047        events->exception.pad = 0;
3048        events->exception.error_code = vcpu->arch.exception.error_code;
3049
3050        events->interrupt.injected =
3051                vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
3052        events->interrupt.nr = vcpu->arch.interrupt.nr;
3053        events->interrupt.soft = 0;
3054        events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3055
3056        events->nmi.injected = vcpu->arch.nmi_injected;
3057        events->nmi.pending = vcpu->arch.nmi_pending != 0;
3058        events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3059        events->nmi.pad = 0;
3060
3061        events->sipi_vector = 0; /* never valid when reporting to user space */
3062
3063        events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3064                         | KVM_VCPUEVENT_VALID_SHADOW);
3065        memset(&events->reserved, 0, sizeof(events->reserved));
3066}
3067
3068static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3069                                              struct kvm_vcpu_events *events)
3070{
3071        if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3072                              | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3073                              | KVM_VCPUEVENT_VALID_SHADOW))
3074                return -EINVAL;
3075
3076        process_nmi(vcpu);
3077        vcpu->arch.exception.pending = events->exception.injected;
3078        vcpu->arch.exception.nr = events->exception.nr;
3079        vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3080        vcpu->arch.exception.error_code = events->exception.error_code;
3081
3082        vcpu->arch.interrupt.pending = events->interrupt.injected;
3083        vcpu->arch.interrupt.nr = events->interrupt.nr;
3084        vcpu->arch.interrupt.soft = events->interrupt.soft;
3085        if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3086                kvm_x86_ops->set_interrupt_shadow(vcpu,
3087                                                  events->interrupt.shadow);
3088
3089        vcpu->arch.nmi_injected = events->nmi.injected;
3090        if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3091                vcpu->arch.nmi_pending = events->nmi.pending;
3092        kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3093
3094        if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3095            kvm_vcpu_has_lapic(vcpu))
3096                vcpu->arch.apic->sipi_vector = events->sipi_vector;
3097
3098        kvm_make_request(KVM_REQ_EVENT, vcpu);
3099
3100        return 0;
3101}
3102
3103static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3104                                             struct kvm_debugregs *dbgregs)
3105{
3106        unsigned long val;
3107
3108        memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3109        _kvm_get_dr(vcpu, 6, &val);
3110        dbgregs->dr6 = val;
3111        dbgregs->dr7 = vcpu->arch.dr7;
3112        dbgregs->flags = 0;
3113        memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3114}
3115
3116static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3117                                            struct kvm_debugregs *dbgregs)
3118{
3119        if (dbgregs->flags)
3120                return -EINVAL;
3121
3122        memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3123        vcpu->arch.dr6 = dbgregs->dr6;
3124        kvm_update_dr6(vcpu);
3125        vcpu->arch.dr7 = dbgregs->dr7;
3126        kvm_update_dr7(vcpu);
3127
3128        return 0;
3129}
3130
3131static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3132                                         struct kvm_xsave *guest_xsave)
3133{
3134        if (cpu_has_xsave) {
3135                memcpy(guest_xsave->region,
3136                        &vcpu->arch.guest_fpu.state->xsave,
3137                        vcpu->arch.guest_xstate_size);
3138                *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] &=
3139                        vcpu->arch.guest_supported_xcr0 | XSTATE_FPSSE;
3140        } else {
3141                memcpy(guest_xsave->region,
3142                        &vcpu->arch.guest_fpu.state->fxsave,
3143                        sizeof(struct i387_fxsave_struct));
3144                *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3145                        XSTATE_FPSSE;
3146        }
3147}
3148
3149static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3150                                        struct kvm_xsave *guest_xsave)
3151{
3152        u64 xstate_bv =
3153                *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3154
3155        if (cpu_has_xsave) {
3156                /*
3157                 * Here we allow setting states that are not present in
3158                 * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3159                 * with old userspace.
3160                 */
3161                if (xstate_bv & ~kvm_supported_xcr0())
3162                        return -EINVAL;
3163                memcpy(&vcpu->arch.guest_fpu.state->xsave,
3164                        guest_xsave->region, vcpu->arch.guest_xstate_size);
3165        } else {
3166                if (xstate_bv & ~XSTATE_FPSSE)
3167                        return -EINVAL;
3168                memcpy(&vcpu->arch.guest_fpu.state->fxsave,
3169                        guest_xsave->region, sizeof(struct i387_fxsave_struct));
3170        }
3171        return 0;
3172}
3173
3174static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3175                                        struct kvm_xcrs *guest_xcrs)
3176{
3177        if (!cpu_has_xsave) {
3178                guest_xcrs->nr_xcrs = 0;
3179                return;
3180        }
3181
3182        guest_xcrs->nr_xcrs = 1;
3183        guest_xcrs->flags = 0;
3184        guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3185        guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3186}
3187
3188static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3189                                       struct kvm_xcrs *guest_xcrs)
3190{
3191        int i, r = 0;
3192
3193        if (!cpu_has_xsave)
3194                return -EINVAL;
3195
3196        if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3197                return -EINVAL;
3198
3199        for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3200                /* Only support XCR0 currently */
3201                if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3202                        r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3203                                guest_xcrs->xcrs[i].value);
3204                        break;
3205                }
3206        if (r)
3207                r = -EINVAL;
3208        return r;
3209}
3210
3211/*
3212 * kvm_set_guest_paused() indicates to the guest kernel that it has been
3213 * stopped by the hypervisor.  This function will be called from the host only.
3214 * EINVAL is returned when the host attempts to set the flag for a guest that
3215 * does not support pv clocks.
3216 */
3217static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3218{
3219        if (!vcpu->arch.pv_time_enabled)
3220                return -EINVAL;
3221        vcpu->arch.pvclock_set_guest_stopped_request = true;
3222        kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3223        return 0;
3224}
3225
3226long kvm_arch_vcpu_ioctl(struct file *filp,
3227                         unsigned int ioctl, unsigned long arg)
3228{
3229        struct kvm_vcpu *vcpu = filp->private_data;
3230        void __user *argp = (void __user *)arg;
3231        int r;
3232        union {
3233                struct kvm_lapic_state *lapic;
3234                struct kvm_xsave *xsave;
3235                struct kvm_xcrs *xcrs;
3236                void *buffer;
3237        } u;
3238
3239        u.buffer = NULL;
3240        switch (ioctl) {
3241        case KVM_GET_LAPIC: {
3242                r = -EINVAL;
3243                if (!vcpu->arch.apic)
3244                        goto out;
3245                u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3246
3247                r = -ENOMEM;
3248                if (!u.lapic)
3249                        goto out;
3250                r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3251                if (r)
3252                        goto out;
3253                r = -EFAULT;
3254                if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3255                        goto out;
3256                r = 0;
3257                break;
3258        }
3259        case KVM_SET_LAPIC: {
3260                r = -EINVAL;
3261                if (!vcpu->arch.apic)
3262                        goto out;
3263                u.lapic = memdup_user(argp, sizeof(*u.lapic));
3264                if (IS_ERR(u.lapic))
3265                        return PTR_ERR(u.lapic);
3266
3267                r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3268                break;
3269        }
3270        case KVM_INTERRUPT: {
3271                struct kvm_interrupt irq;
3272
3273                r = -EFAULT;
3274                if (copy_from_user(&irq, argp, sizeof irq))
3275                        goto out;
3276                r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3277                break;
3278        }
3279        case KVM_NMI: {
3280                r = kvm_vcpu_ioctl_nmi(vcpu);
3281                break;
3282        }
3283        case KVM_SET_CPUID: {
3284                struct kvm_cpuid __user *cpuid_arg = argp;
3285                struct kvm_cpuid cpuid;
3286
3287                r = -EFAULT;
3288                if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3289                        goto out;
3290                r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3291                break;
3292        }
3293        case KVM_SET_CPUID2: {
3294                struct kvm_cpuid2 __user *cpuid_arg = argp;
3295                struct kvm_cpuid2 cpuid;
3296
3297                r = -EFAULT;
3298                if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3299                        goto out;
3300                r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3301                                              cpuid_arg->entries);
3302                break;
3303        }
3304        case KVM_GET_CPUID2: {
3305                struct kvm_cpuid2 __user *cpuid_arg = argp;
3306                struct kvm_cpuid2 cpuid;
3307
3308                r = -EFAULT;
3309                if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3310                        goto out;
3311                r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3312                                              cpuid_arg->entries);
3313                if (r)
3314                        goto out;
3315                r = -EFAULT;
3316                if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3317                        goto out;
3318                r = 0;
3319                break;
3320        }
3321        case KVM_GET_MSRS:
3322                r = msr_io(vcpu, argp, kvm_get_msr, 1);
3323                break;
3324        case KVM_SET_MSRS:
3325                r = msr_io(vcpu, argp, do_set_msr, 0);
3326                break;
3327        case KVM_TPR_ACCESS_REPORTING: {
3328                struct kvm_tpr_access_ctl tac;
3329
3330                r = -EFAULT;
3331                if (copy_from_user(&tac, argp, sizeof tac))
3332                        goto out;
3333                r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3334                if (r)
3335                        goto out;
3336                r = -EFAULT;
3337                if (copy_to_user(argp, &tac, sizeof tac))
3338                        goto out;
3339                r = 0;
3340                break;
3341        };
3342        case KVM_SET_VAPIC_ADDR: {
3343                struct kvm_vapic_addr va;
3344
3345                r = -EINVAL;
3346                if (!irqchip_in_kernel(vcpu->kvm))
3347                        goto out;
3348                r = -EFAULT;
3349                if (copy_from_user(&va, argp, sizeof va))
3350                        goto out;
3351                r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3352                break;
3353        }
3354        case KVM_X86_SETUP_MCE: {
3355                u64 mcg_cap;
3356
3357                r = -EFAULT;
3358                if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3359                        goto out;
3360                r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3361                break;
3362        }
3363        case KVM_X86_SET_MCE: {
3364                struct kvm_x86_mce mce;
3365
3366                r = -EFAULT;
3367                if (copy_from_user(&mce, argp, sizeof mce))
3368                        goto out;
3369                r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3370                break;
3371        }
3372        case KVM_GET_VCPU_EVENTS: {
3373                struct kvm_vcpu_events events;
3374
3375                kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3376
3377                r = -EFAULT;
3378                if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3379                        break;
3380                r = 0;
3381                break;
3382        }
3383        case KVM_SET_VCPU_EVENTS: {
3384                struct kvm_vcpu_events events;
3385
3386                r = -EFAULT;
3387                if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3388                        break;
3389
3390                r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3391                break;
3392        }
3393        case KVM_GET_DEBUGREGS: {
3394                struct kvm_debugregs dbgregs;
3395
3396                kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3397
3398                r = -EFAULT;
3399                if (copy_to_user(argp, &dbgregs,
3400                                 sizeof(struct kvm_debugregs)))
3401                        break;
3402                r = 0;
3403                break;
3404        }
3405        case KVM_SET_DEBUGREGS: {
3406                struct kvm_debugregs dbgregs;
3407
3408                r = -EFAULT;
3409                if (copy_from_user(&dbgregs, argp,
3410                                   sizeof(struct kvm_debugregs)))
3411                        break;
3412
3413                r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3414                break;
3415        }
3416        case KVM_GET_XSAVE: {
3417                u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3418                r = -ENOMEM;
3419                if (!u.xsave)
3420                        break;
3421
3422                kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3423
3424                r = -EFAULT;
3425                if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3426                        break;
3427                r = 0;
3428                break;
3429        }
3430        case KVM_SET_XSAVE: {
3431                u.xsave = memdup_user(argp, sizeof(*u.xsave));
3432                if (IS_ERR(u.xsave))
3433                        return PTR_ERR(u.xsave);
3434
3435                r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3436                break;
3437        }
3438        case KVM_GET_XCRS: {
3439                u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3440                r = -ENOMEM;
3441                if (!u.xcrs)
3442                        break;
3443
3444                kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3445
3446                r = -EFAULT;
3447                if (copy_to_user(argp, u.xcrs,
3448                                 sizeof(struct kvm_xcrs)))
3449                        break;
3450                r = 0;
3451                break;
3452        }
3453        case KVM_SET_XCRS: {
3454                u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3455                if (IS_ERR(u.xcrs))
3456                        return PTR_ERR(u.xcrs);
3457
3458                r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3459                break;
3460        }
3461        case KVM_SET_TSC_KHZ: {
3462                u32 user_tsc_khz;
3463
3464                r = -EINVAL;
3465                user_tsc_khz = (u32)arg;
3466
3467                if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3468                        goto out;
3469
3470                if (user_tsc_khz == 0)
3471                        user_tsc_khz = tsc_khz;
3472
3473                kvm_set_tsc_khz(vcpu, user_tsc_khz);
3474
3475                r = 0;
3476                goto out;
3477        }
3478        case KVM_GET_TSC_KHZ: {
3479                r = vcpu->arch.virtual_tsc_khz;
3480                goto out;
3481        }
3482        case KVM_KVMCLOCK_CTRL: {
3483                r = kvm_set_guest_paused(vcpu);
3484                goto out;
3485        }
3486        default:
3487                r = -EINVAL;
3488        }
3489out:
3490        kfree(u.buffer);
3491        return r;
3492}
3493
3494int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3495{
3496        return VM_FAULT_SIGBUS;
3497}
3498
3499static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3500{
3501        int ret;
3502
3503        if (addr > (unsigned int)(-3 * PAGE_SIZE))
3504                return -EINVAL;
3505        ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3506        return ret;
3507}
3508
3509static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3510                                              u64 ident_addr)
3511{
3512        kvm->arch.ept_identity_map_addr = ident_addr;
3513        return 0;
3514}
3515
3516static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3517                                          u32 kvm_nr_mmu_pages)
3518{
3519        if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3520                return -EINVAL;
3521
3522        mutex_lock(&kvm->slots_lock);
3523
3524        kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3525        kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3526
3527        mutex_unlock(&kvm->slots_lock);
3528        return 0;
3529}
3530
3531static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3532{
3533        return kvm->arch.n_max_mmu_pages;
3534}
3535
3536static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3537{
3538        int r;
3539
3540        r = 0;
3541        switch (chip->chip_id) {
3542        case KVM_IRQCHIP_PIC_MASTER:
3543                memcpy(&chip->chip.pic,
3544                        &pic_irqchip(kvm)->pics[0],
3545                        sizeof(struct kvm_pic_state));
3546                break;
3547        case KVM_IRQCHIP_PIC_SLAVE:
3548                memcpy(&chip->chip.pic,
3549                        &pic_irqchip(kvm)->pics[1],
3550                        sizeof(struct kvm_pic_state));
3551                break;
3552        case KVM_IRQCHIP_IOAPIC:
3553                r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3554                break;
3555        default:
3556                r = -EINVAL;
3557                break;
3558        }
3559        return r;
3560}
3561
3562static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3563{
3564        int r;
3565
3566        r = 0;
3567        switch (chip->chip_id) {
3568        case KVM_IRQCHIP_PIC_MASTER:
3569                spin_lock(&pic_irqchip(kvm)->lock);
3570                memcpy(&pic_irqchip(kvm)->pics[0],
3571                        &chip->chip.pic,
3572                        sizeof(struct kvm_pic_state));
3573                spin_unlock(&pic_irqchip(kvm)->lock);
3574                break;
3575        case KVM_IRQCHIP_PIC_SLAVE:
3576                spin_lock(&pic_irqchip(kvm)->lock);
3577                memcpy(&pic_irqchip(kvm)->pics[1],
3578                        &chip->chip.pic,
3579                        sizeof(struct kvm_pic_state));
3580                spin_unlock(&pic_irqchip(kvm)->lock);
3581                break;
3582        case KVM_IRQCHIP_IOAPIC:
3583                r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3584                break;
3585        default:
3586                r = -EINVAL;
3587                break;
3588        }
3589        kvm_pic_update_irq(pic_irqchip(kvm));
3590        return r;
3591}
3592
3593static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3594{
3595        int r = 0;
3596
3597        mutex_lock(&kvm->arch.vpit->pit_state.lock);
3598        memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3599        mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3600        return r;
3601}
3602
3603static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3604{
3605        int r = 0;
3606
3607        mutex_lock(&kvm->arch.vpit->pit_state.lock);
3608        memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3609        kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3610        mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3611        return r;
3612}
3613
3614static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3615{
3616        int r = 0;
3617
3618        mutex_lock(&kvm->arch.vpit->pit_state.lock);
3619        memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3620                sizeof(ps->channels));
3621        ps->flags = kvm->arch.vpit->pit_state.flags;
3622        mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3623        memset(&ps->reserved, 0, sizeof(ps->reserved));
3624        return r;
3625}
3626
3627static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3628{
3629        int r = 0, start = 0;
3630        u32 prev_legacy, cur_legacy;
3631        mutex_lock(&kvm->arch.vpit->pit_state.lock);
3632        prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3633        cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3634        if (!prev_legacy && cur_legacy)
3635                start = 1;
3636        memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3637               sizeof(kvm->arch.vpit->pit_state.channels));
3638        kvm->arch.vpit->pit_state.flags = ps->flags;
3639        kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3640        mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3641        return r;
3642}
3643
3644static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3645                                 struct kvm_reinject_control *control)
3646{
3647        if (!kvm->arch.vpit)
3648                return -ENXIO;
3649        mutex_lock(&kvm->arch.vpit->pit_state.lock);
3650        kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3651        mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3652        return 0;
3653}
3654
3655/**
3656 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3657 * @kvm: kvm instance
3658 * @log: slot id and address to which we copy the log
3659 *
3660 * We need to keep it in mind that VCPU threads can write to the bitmap
3661 * concurrently.  So, to avoid losing data, we keep the following order for
3662 * each bit:
3663 *
3664 *   1. Take a snapshot of the bit and clear it if needed.
3665 *   2. Write protect the corresponding page.
3666 *   3. Flush TLB's if needed.
3667 *   4. Copy the snapshot to the userspace.
3668 *
3669 * Between 2 and 3, the guest may write to the page using the remaining TLB
3670 * entry.  This is not a problem because the page will be reported dirty at
3671 * step 4 using the snapshot taken before and step 3 ensures that successive
3672 * writes will be logged for the next call.
3673 */
3674int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3675{
3676        int r;
3677        struct kvm_memory_slot *memslot;
3678        unsigned long n, i;
3679        unsigned long *dirty_bitmap;
3680        unsigned long *dirty_bitmap_buffer;
3681        bool is_dirty = false;
3682
3683        mutex_lock(&kvm->slots_lock);
3684
3685        r = -EINVAL;
3686        if (log->slot >= KVM_USER_MEM_SLOTS)
3687                goto out;
3688
3689        memslot = id_to_memslot(kvm->memslots, log->slot);
3690
3691        dirty_bitmap = memslot->dirty_bitmap;
3692        r = -ENOENT;
3693        if (!dirty_bitmap)
3694                goto out;
3695
3696        n = kvm_dirty_bitmap_bytes(memslot);
3697
3698        dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
3699        memset(dirty_bitmap_buffer, 0, n);
3700
3701        spin_lock(&kvm->mmu_lock);
3702
3703        for (i = 0; i < n / sizeof(long); i++) {
3704                unsigned long mask;
3705                gfn_t offset;
3706
3707                if (!dirty_bitmap[i])
3708                        continue;
3709
3710                is_dirty = true;
3711
3712                mask = xchg(&dirty_bitmap[i], 0);
3713                dirty_bitmap_buffer[i] = mask;
3714
3715                offset = i * BITS_PER_LONG;
3716                kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask);
3717        }
3718
3719        spin_unlock(&kvm->mmu_lock);
3720
3721        /* See the comments in kvm_mmu_slot_remove_write_access(). */
3722        lockdep_assert_held(&kvm->slots_lock);
3723
3724        /*
3725         * All the TLBs can be flushed out of mmu lock, see the comments in
3726         * kvm_mmu_slot_remove_write_access().
3727         */
3728        if (is_dirty)
3729                kvm_flush_remote_tlbs(kvm);
3730
3731        r = -EFAULT;
3732        if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
3733                goto out;
3734
3735        r = 0;
3736out:
3737        mutex_unlock(&kvm->slots_lock);
3738        return r;
3739}
3740
3741int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3742                        bool line_status)
3743{
3744        if (!irqchip_in_kernel(kvm))
3745                return -ENXIO;
3746
3747        irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3748                                        irq_event->irq, irq_event->level,
3749                                        line_status);
3750        return 0;
3751}
3752
3753long kvm_arch_vm_ioctl(struct file *filp,
3754                       unsigned int ioctl, unsigned long arg)
3755{
3756        struct kvm *kvm = filp->private_data;
3757        void __user *argp = (void __user *)arg;
3758        int r = -ENOTTY;
3759        /*
3760         * This union makes it completely explicit to gcc-3.x
3761         * that these two variables' stack usage should be
3762         * combined, not added together.
3763         */
3764        union {
3765                struct kvm_pit_state ps;
3766                struct kvm_pit_state2 ps2;
3767                struct kvm_pit_config pit_config;
3768        } u;
3769
3770        switch (ioctl) {
3771        case KVM_SET_TSS_ADDR:
3772                r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3773                break;
3774        case KVM_SET_IDENTITY_MAP_ADDR: {
3775                u64 ident_addr;
3776
3777                r = -EFAULT;
3778                if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3779                        goto out;
3780                r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3781                break;
3782        }
3783        case KVM_SET_NR_MMU_PAGES:
3784                r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3785                break;
3786        case KVM_GET_NR_MMU_PAGES:
3787                r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3788                break;
3789        case KVM_CREATE_IRQCHIP: {
3790                struct kvm_pic *vpic;
3791
3792                mutex_lock(&kvm->lock);
3793                r = -EEXIST;
3794                if (kvm->arch.vpic)
3795                        goto create_irqchip_unlock;
3796                r = -EINVAL;
3797                if (atomic_read(&kvm->online_vcpus))
3798                        goto create_irqchip_unlock;
3799                r = -ENOMEM;
3800                vpic = kvm_create_pic(kvm);
3801                if (vpic) {
3802                        r = kvm_ioapic_init(kvm);
3803                        if (r) {
3804                                mutex_lock(&kvm->slots_lock);
3805                                kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3806                                                          &vpic->dev_master);
3807                                kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3808                                                          &vpic->dev_slave);
3809                                kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3810                                                          &vpic->dev_eclr);
3811                                mutex_unlock(&kvm->slots_lock);
3812                                kfree(vpic);
3813                                goto create_irqchip_unlock;
3814                        }
3815                } else
3816                        goto create_irqchip_unlock;
3817                smp_wmb();
3818                kvm->arch.vpic = vpic;
3819                smp_wmb();
3820                r = kvm_setup_default_irq_routing(kvm);
3821                if (r) {
3822                        mutex_lock(&kvm->slots_lock);
3823                        mutex_lock(&kvm->irq_lock);
3824                        kvm_ioapic_destroy(kvm);
3825                        kvm_destroy_pic(kvm);
3826                        mutex_unlock(&kvm->irq_lock);
3827                        mutex_unlock(&kvm->slots_lock);
3828                }
3829        create_irqchip_unlock:
3830                mutex_unlock(&kvm->lock);
3831                break;
3832        }
3833        case KVM_CREATE_PIT:
3834                u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3835                goto create_pit;
3836        case KVM_CREATE_PIT2:
3837                r = -EFAULT;
3838                if (copy_from_user(&u.pit_config, argp,
3839                                   sizeof(struct kvm_pit_config)))
3840                        goto out;
3841        create_pit:
3842                mutex_lock(&kvm->slots_lock);
3843                r = -EEXIST;
3844                if (kvm->arch.vpit)
3845                        goto create_pit_unlock;
3846                r = -ENOMEM;
3847                kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3848                if (kvm->arch.vpit)
3849                        r = 0;
3850        create_pit_unlock:
3851                mutex_unlock(&kvm->slots_lock);
3852                break;
3853        case KVM_GET_IRQCHIP: {
3854                /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3855                struct kvm_irqchip *chip;
3856
3857                chip = memdup_user(argp, sizeof(*chip));
3858                if (IS_ERR(chip)) {
3859                        r = PTR_ERR(chip);
3860                        goto out;
3861                }
3862
3863                r = -ENXIO;
3864                if (!irqchip_in_kernel(kvm))
3865                        goto get_irqchip_out;
3866                r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3867                if (r)
3868                        goto get_irqchip_out;
3869                r = -EFAULT;
3870                if (copy_to_user(argp, chip, sizeof *chip))
3871                        goto get_irqchip_out;
3872                r = 0;
3873        get_irqchip_out:
3874                kfree(chip);
3875                break;
3876        }
3877        case KVM_SET_IRQCHIP: {
3878                /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3879                struct kvm_irqchip *chip;
3880
3881                chip = memdup_user(argp, sizeof(*chip));
3882                if (IS_ERR(chip)) {
3883                        r = PTR_ERR(chip);
3884                        goto out;
3885                }
3886
3887                r = -ENXIO;
3888                if (!irqchip_in_kernel(kvm))
3889                        goto set_irqchip_out;
3890                r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3891                if (r)
3892                        goto set_irqchip_out;
3893                r = 0;
3894        set_irqchip_out:
3895                kfree(chip);
3896                break;
3897        }
3898        case KVM_GET_PIT: {
3899                r = -EFAULT;
3900                if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3901                        goto out;
3902                r = -ENXIO;
3903                if (!kvm->arch.vpit)
3904                        goto out;
3905                r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3906                if (r)
3907                        goto out;
3908                r = -EFAULT;
3909                if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3910                        goto out;
3911                r = 0;
3912                break;
3913        }
3914        case KVM_SET_PIT: {
3915                r = -EFAULT;
3916                if (copy_from_user(&u.ps, argp, sizeof u.ps))
3917                        goto out;
3918                r = -ENXIO;
3919                if (!kvm->arch.vpit)
3920                        goto out;
3921                r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3922                break;
3923        }
3924        case KVM_GET_PIT2: {
3925                r = -ENXIO;
3926                if (!kvm->arch.vpit)
3927                        goto out;
3928                r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3929                if (r)
3930                        goto out;
3931                r = -EFAULT;
3932                if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3933                        goto out;
3934                r = 0;
3935                break;
3936        }
3937        case KVM_SET_PIT2: {
3938                r = -EFAULT;
3939                if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3940                        goto out;
3941                r = -ENXIO;
3942                if (!kvm->arch.vpit)
3943                        goto out;
3944                r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3945                break;
3946        }
3947        case KVM_REINJECT_CONTROL: {
3948                struct kvm_reinject_control control;
3949                r =  -EFAULT;
3950                if (copy_from_user(&control, argp, sizeof(control)))
3951                        goto out;
3952                r = kvm_vm_ioctl_reinject(kvm, &control);
3953                break;
3954        }
3955        case KVM_XEN_HVM_CONFIG: {
3956                r = -EFAULT;
3957                if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3958                                   sizeof(struct kvm_xen_hvm_config)))
3959                        goto out;
3960                r = -EINVAL;
3961                if (kvm->arch.xen_hvm_config.flags)
3962                        goto out;
3963                r = 0;
3964                break;
3965        }
3966        case KVM_SET_CLOCK: {
3967                struct kvm_clock_data user_ns;
3968                u64 now_ns;
3969                s64 delta;
3970
3971                r = -EFAULT;
3972                if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3973                        goto out;
3974
3975                r = -EINVAL;
3976                if (user_ns.flags)
3977                        goto out;
3978
3979                r = 0;
3980                local_irq_disable();
3981                now_ns = get_kernel_ns();
3982                delta = user_ns.clock - now_ns;
3983                local_irq_enable();
3984                kvm->arch.kvmclock_offset = delta;
3985                kvm_gen_update_masterclock(kvm);
3986                break;
3987        }
3988        case KVM_GET_CLOCK: {
3989                struct kvm_clock_data user_ns;
3990                u64 now_ns;
3991
3992                local_irq_disable();
3993                now_ns = get_kernel_ns();
3994                user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3995                local_irq_enable();
3996                user_ns.flags = 0;
3997                memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3998
3999                r = -EFAULT;
4000                if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4001                        goto out;
4002                r = 0;
4003                break;
4004        }
4005
4006        default:
4007                ;
4008        }
4009out:
4010        return r;
4011}
4012
4013static void kvm_init_msr_list(void)
4014{
4015        u32 dummy[2];
4016        unsigned i, j;
4017
4018        /* skip the first msrs in the list. KVM-specific */
4019        for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
4020                if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4021                        continue;
4022
4023                /*
4024                 * Even MSRs that are valid in the host may not be exposed
4025                 * to the guests in some cases.  We could work around this
4026                 * in VMX with the generic MSR save/load machinery, but it
4027                 * is not really worthwhile since it will really only
4028                 * happen with nested virtualization.
4029                 */
4030                switch (msrs_to_save[i]) {
4031                case MSR_IA32_BNDCFGS:
4032                        if (!kvm_x86_ops->mpx_supported())
4033                                continue;
4034                        break;
4035                default:
4036                        break;
4037                }
4038
4039                if (j < i)
4040                        msrs_to_save[j] = msrs_to_save[i];
4041                j++;
4042        }
4043        num_msrs_to_save = j;
4044}
4045
4046static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4047                           const void *v)
4048{
4049        int handled = 0;
4050        int n;
4051
4052        do {
4053                n = min(len, 8);
4054                if (!(vcpu->arch.apic &&
4055                      !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
4056                    && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
4057                        break;
4058                handled += n;
4059                addr += n;
4060                len -= n;
4061                v += n;
4062        } while (len);
4063
4064        return handled;
4065}
4066
4067static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4068{
4069        int handled = 0;
4070        int n;
4071
4072        do {
4073                n = min(len, 8);
4074                if (!(vcpu->arch.apic &&
4075                      !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
4076                    && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
4077                        break;
4078                trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4079                handled += n;
4080                addr += n;
4081                len -= n;
4082                v += n;
4083        } while (len);
4084
4085        return handled;
4086}
4087
4088static void kvm_set_segment(struct kvm_vcpu *vcpu,
4089                        struct kvm_segment *var, int seg)
4090{
4091        kvm_x86_ops->set_segment(vcpu, var, seg);
4092}
4093
4094void kvm_get_segment(struct kvm_vcpu *vcpu,
4095                     struct kvm_segment *var, int seg)
4096{
4097        kvm_x86_ops->get_segment(vcpu, var, seg);
4098}
4099
4100gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4101                           struct x86_exception *exception)
4102{
4103        gpa_t t_gpa;
4104
4105        BUG_ON(!mmu_is_nested(vcpu));
4106
4107        /* NPT walks are always user-walks */
4108        access |= PFERR_USER_MASK;
4109        t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4110
4111        return t_gpa;
4112}
4113
4114gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4115                              struct x86_exception *exception)
4116{
4117        u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4118        return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4119}
4120
4121 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4122                                struct x86_exception *exception)
4123{
4124        u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4125        access |= PFERR_FETCH_MASK;
4126        return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4127}
4128
4129gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4130                               struct x86_exception *exception)
4131{
4132        u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4133        access |= PFERR_WRITE_MASK;
4134        return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4135}
4136
4137/* uses this to access any guest's mapped memory without checking CPL */
4138gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4139                                struct x86_exception *exception)
4140{
4141        return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4142}
4143
4144static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4145                                      struct kvm_vcpu *vcpu, u32 access,
4146                                      struct x86_exception *exception)
4147{
4148        void *data = val;
4149        int r = X86EMUL_CONTINUE;
4150
4151        while (bytes) {
4152                gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4153                                                            exception);
4154                unsigned offset = addr & (PAGE_SIZE-1);
4155                unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4156                int ret;
4157
4158                if (gpa == UNMAPPED_GVA)
4159                        return X86EMUL_PROPAGATE_FAULT;
4160                ret = kvm_read_guest_page(vcpu->kvm, gpa >> PAGE_SHIFT, data,
4161                                          offset, toread);
4162                if (ret < 0) {
4163                        r = X86EMUL_IO_NEEDED;
4164                        goto out;
4165                }
4166
4167                bytes -= toread;
4168                data += toread;
4169                addr += toread;
4170        }
4171out:
4172        return r;
4173}
4174
4175/* used for instruction fetching */
4176static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4177                                gva_t addr, void *val, unsigned int bytes,
4178                                struct x86_exception *exception)
4179{
4180        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4181        u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4182        unsigned offset;
4183        int ret;
4184
4185        /* Inline kvm_read_guest_virt_helper for speed.  */
4186        gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4187                                                    exception);
4188        if (unlikely(gpa == UNMAPPED_GVA))
4189                return X86EMUL_PROPAGATE_FAULT;
4190
4191        offset = addr & (PAGE_SIZE-1);
4192        if (WARN_ON(offset + bytes > PAGE_SIZE))
4193                bytes = (unsigned)PAGE_SIZE - offset;
4194        ret = kvm_read_guest_page(vcpu->kvm, gpa >> PAGE_SHIFT, val,
4195                                  offset, bytes);
4196        if (unlikely(ret < 0))
4197                return X86EMUL_IO_NEEDED;
4198
4199        return X86EMUL_CONTINUE;
4200}
4201
4202int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4203                               gva_t addr, void *val, unsigned int bytes,
4204                               struct x86_exception *exception)
4205{
4206        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4207        u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4208
4209        return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4210                                          exception);
4211}
4212EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4213
4214static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4215                                      gva_t addr, void *val, unsigned int bytes,
4216                                      struct x86_exception *exception)
4217{
4218        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4219        return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4220}
4221
4222int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4223                                       gva_t addr, void *val,
4224                                       unsigned int bytes,
4225                                       struct x86_exception *exception)
4226{
4227        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4228        void *data = val;
4229        int r = X86EMUL_CONTINUE;
4230
4231        while (bytes) {
4232                gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4233                                                             PFERR_WRITE_MASK,
4234                                                             exception);
4235                unsigned offset = addr & (PAGE_SIZE-1);
4236                unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4237                int ret;
4238
4239                if (gpa == UNMAPPED_GVA)
4240                        return X86EMUL_PROPAGATE_FAULT;
4241                ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
4242                if (ret < 0) {
4243                        r = X86EMUL_IO_NEEDED;
4244                        goto out;
4245                }
4246
4247                bytes -= towrite;
4248                data += towrite;
4249                addr += towrite;
4250        }
4251out:
4252        return r;
4253}
4254EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4255
4256static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4257                                gpa_t *gpa, struct x86_exception *exception,
4258                                bool write)
4259{
4260        u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4261                | (write ? PFERR_WRITE_MASK : 0);
4262
4263        if (vcpu_match_mmio_gva(vcpu, gva)
4264            && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4265                                 vcpu->arch.access, access)) {
4266                *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4267                                        (gva & (PAGE_SIZE - 1));
4268                trace_vcpu_match_mmio(gva, *gpa, write, false);
4269                return 1;
4270        }
4271
4272        *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4273
4274        if (*gpa == UNMAPPED_GVA)
4275                return -1;
4276
4277        /* For APIC access vmexit */
4278        if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4279                return 1;
4280
4281        if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4282                trace_vcpu_match_mmio(gva, *gpa, write, true);
4283                return 1;
4284        }
4285
4286        return 0;
4287}
4288
4289int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4290                        const void *val, int bytes)
4291{
4292        int ret;
4293
4294        ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
4295        if (ret < 0)
4296                return 0;
4297        kvm_mmu_pte_write(vcpu, gpa, val, bytes);
4298        return 1;
4299}
4300
4301struct read_write_emulator_ops {
4302        int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4303                                  int bytes);
4304        int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4305                                  void *val, int bytes);
4306        int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4307                               int bytes, void *val);
4308        int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4309                                    void *val, int bytes);
4310        bool write;
4311};
4312
4313static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4314{
4315        if (vcpu->mmio_read_completed) {
4316                trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4317                               vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4318                vcpu->mmio_read_completed = 0;
4319                return 1;
4320        }
4321
4322        return 0;
4323}
4324
4325static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4326                        void *val, int bytes)
4327{
4328        return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
4329}
4330
4331static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4332                         void *val, int bytes)
4333{
4334        return emulator_write_phys(vcpu, gpa, val, bytes);
4335}
4336
4337static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4338{
4339        trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4340        return vcpu_mmio_write(vcpu, gpa, bytes, val);
4341}
4342
4343static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4344                          void *val, int bytes)
4345{
4346        trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4347        return X86EMUL_IO_NEEDED;
4348}
4349
4350static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4351                           void *val, int bytes)
4352{
4353        struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4354
4355        memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4356        return X86EMUL_CONTINUE;
4357}
4358
4359static const struct read_write_emulator_ops read_emultor = {
4360        .read_write_prepare = read_prepare,
4361        .read_write_emulate = read_emulate,
4362        .read_write_mmio = vcpu_mmio_read,
4363        .read_write_exit_mmio = read_exit_mmio,
4364};
4365
4366static const struct read_write_emulator_ops write_emultor = {
4367        .read_write_emulate = write_emulate,
4368        .read_write_mmio = write_mmio,
4369        .read_write_exit_mmio = write_exit_mmio,
4370        .write = true,
4371};
4372
4373static int emulator_read_write_onepage(unsigned long addr, void *val,
4374                                       unsigned int bytes,
4375                                       struct x86_exception *exception,
4376                                       struct kvm_vcpu *vcpu,
4377                                       const struct read_write_emulator_ops *ops)
4378{
4379        gpa_t gpa;
4380        int handled, ret;
4381        bool write = ops->write;
4382        struct kvm_mmio_fragment *frag;
4383
4384        ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4385
4386        if (ret < 0)
4387                return X86EMUL_PROPAGATE_FAULT;
4388
4389        /* For APIC access vmexit */
4390        if (ret)
4391                goto mmio;
4392
4393        if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4394                return X86EMUL_CONTINUE;
4395
4396mmio:
4397        /*
4398         * Is this MMIO handled locally?
4399         */
4400        handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4401        if (handled == bytes)
4402                return X86EMUL_CONTINUE;
4403
4404        gpa += handled;
4405        bytes -= handled;
4406        val += handled;
4407
4408        WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4409        frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4410        frag->gpa = gpa;
4411        frag->data = val;
4412        frag->len = bytes;
4413        return X86EMUL_CONTINUE;
4414}
4415
4416int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr,
4417                        void *val, unsigned int bytes,
4418                        struct x86_exception *exception,
4419                        const struct read_write_emulator_ops *ops)
4420{
4421        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4422        gpa_t gpa;
4423        int rc;
4424
4425        if (ops->read_write_prepare &&
4426                  ops->read_write_prepare(vcpu, val, bytes))
4427                return X86EMUL_CONTINUE;
4428
4429        vcpu->mmio_nr_fragments = 0;
4430
4431        /* Crossing a page boundary? */
4432        if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4433                int now;
4434
4435                now = -addr & ~PAGE_MASK;
4436                rc = emulator_read_write_onepage(addr, val, now, exception,
4437                                                 vcpu, ops);
4438
4439                if (rc != X86EMUL_CONTINUE)
4440                        return rc;
4441                addr += now;
4442                val += now;
4443                bytes -= now;
4444        }
4445
4446        rc = emulator_read_write_onepage(addr, val, bytes, exception,
4447                                         vcpu, ops);
4448        if (rc != X86EMUL_CONTINUE)
4449                return rc;
4450
4451        if (!vcpu->mmio_nr_fragments)
4452                return rc;
4453
4454        gpa = vcpu->mmio_fragments[0].gpa;
4455
4456        vcpu->mmio_needed = 1;
4457        vcpu->mmio_cur_fragment = 0;
4458
4459        vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4460        vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4461        vcpu->run->exit_reason = KVM_EXIT_MMIO;
4462        vcpu->run->mmio.phys_addr = gpa;
4463
4464        return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4465}
4466
4467static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4468                                  unsigned long addr,
4469                                  void *val,
4470                                  unsigned int bytes,
4471                                  struct x86_exception *exception)
4472{
4473        return emulator_read_write(ctxt, addr, val, bytes,
4474                                   exception, &read_emultor);
4475}
4476
4477int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4478                            unsigned long addr,
4479                            const void *val,
4480                            unsigned int bytes,
4481                            struct x86_exception *exception)
4482{
4483        return emulator_read_write(ctxt, addr, (void *)val, bytes,
4484                                   exception, &write_emultor);
4485}
4486
4487#define CMPXCHG_TYPE(t, ptr, old, new) \
4488        (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4489
4490#ifdef CONFIG_X86_64
4491#  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4492#else
4493#  define CMPXCHG64(ptr, old, new) \
4494        (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4495#endif
4496
4497static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4498                                     unsigned long addr,
4499                                     const void *old,
4500                                     const void *new,
4501                                     unsigned int bytes,
4502                                     struct x86_exception *exception)
4503{
4504        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4505        gpa_t gpa;
4506        struct page *page;
4507        char *kaddr;
4508        bool exchanged;
4509
4510        /* guests cmpxchg8b have to be emulated atomically */
4511        if (bytes > 8 || (bytes & (bytes - 1)))
4512                goto emul_write;
4513
4514        gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4515
4516        if (gpa == UNMAPPED_GVA ||
4517            (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4518                goto emul_write;
4519
4520        if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4521                goto emul_write;
4522
4523        page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4524        if (is_error_page(page))
4525                goto emul_write;
4526
4527        kaddr = kmap_atomic(page);
4528        kaddr += offset_in_page(gpa);
4529        switch (bytes) {
4530        case 1:
4531                exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4532                break;
4533        case 2:
4534                exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4535                break;
4536        case 4:
4537                exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4538                break;
4539        case 8:
4540                exchanged = CMPXCHG64(kaddr, old, new);
4541                break;
4542        default:
4543                BUG();
4544        }
4545        kunmap_atomic(kaddr);
4546        kvm_release_page_dirty(page);
4547
4548        if (!exchanged)
4549                return X86EMUL_CMPXCHG_FAILED;
4550
4551        mark_page_dirty(vcpu->kvm, gpa >> PAGE_SHIFT);
4552        kvm_mmu_pte_write(vcpu, gpa, new, bytes);
4553
4554        return X86EMUL_CONTINUE;
4555
4556emul_write:
4557        printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4558
4559        return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4560}
4561
4562static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4563{
4564        /* TODO: String I/O for in kernel device */
4565        int r;
4566
4567        if (vcpu->arch.pio.in)
4568                r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
4569                                    vcpu->arch.pio.size, pd);
4570        else
4571                r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
4572                                     vcpu->arch.pio.port, vcpu->arch.pio.size,
4573                                     pd);
4574        return r;
4575}
4576
4577static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4578                               unsigned short port, void *val,
4579                               unsigned int count, bool in)
4580{
4581        vcpu->arch.pio.port = port;
4582        vcpu->arch.pio.in = in;
4583        vcpu->arch.pio.count  = count;
4584        vcpu->arch.pio.size = size;
4585
4586        if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4587                vcpu->arch.pio.count = 0;
4588                return 1;
4589        }
4590
4591        vcpu->run->exit_reason = KVM_EXIT_IO;
4592        vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4593        vcpu->run->io.size = size;
4594        vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4595        vcpu->run->io.count = count;
4596        vcpu->run->io.port = port;
4597
4598        return 0;
4599}
4600
4601static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4602                                    int size, unsigned short port, void *val,
4603                                    unsigned int count)
4604{
4605        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4606        int ret;
4607
4608        if (vcpu->arch.pio.count)
4609                goto data_avail;
4610
4611        ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4612        if (ret) {
4613data_avail:
4614                memcpy(val, vcpu->arch.pio_data, size * count);
4615                trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4616                vcpu->arch.pio.count = 0;
4617                return 1;
4618        }
4619
4620        return 0;
4621}
4622
4623static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4624                                     int size, unsigned short port,
4625                                     const void *val, unsigned int count)
4626{
4627        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4628
4629        memcpy(vcpu->arch.pio_data, val, size * count);
4630        trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4631        return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4632}
4633
4634static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4635{
4636        return kvm_x86_ops->get_segment_base(vcpu, seg);
4637}
4638
4639static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4640{
4641        kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4642}
4643
4644int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4645{
4646        if (!need_emulate_wbinvd(vcpu))
4647                return X86EMUL_CONTINUE;
4648
4649        if (kvm_x86_ops->has_wbinvd_exit()) {
4650                int cpu = get_cpu();
4651
4652                cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4653                smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4654                                wbinvd_ipi, NULL, 1);
4655                put_cpu();
4656                cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4657        } else
4658                wbinvd();
4659        return X86EMUL_CONTINUE;
4660}
4661EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4662
4663static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4664{
4665        kvm_emulate_wbinvd(emul_to_vcpu(ctxt));
4666}
4667
4668int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
4669{
4670        return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4671}
4672
4673int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
4674{
4675
4676        return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4677}
4678
4679static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4680{
4681        return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4682}
4683
4684static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4685{
4686        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4687        unsigned long value;
4688
4689        switch (cr) {
4690        case 0:
4691                value = kvm_read_cr0(vcpu);
4692                break;
4693        case 2:
4694                value = vcpu->arch.cr2;
4695                break;
4696        case 3:
4697                value = kvm_read_cr3(vcpu);
4698                break;
4699        case 4:
4700                value = kvm_read_cr4(vcpu);
4701                break;
4702        case 8:
4703                value = kvm_get_cr8(vcpu);
4704                break;
4705        default:
4706                kvm_err("%s: unexpected cr %u\n", __func__, cr);
4707                return 0;
4708        }
4709
4710        return value;
4711}
4712
4713static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4714{
4715        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4716        int res = 0;
4717
4718        switch (cr) {
4719        case 0:
4720                res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4721                break;
4722        case 2:
4723                vcpu->arch.cr2 = val;
4724                break;
4725        case 3:
4726                res = kvm_set_cr3(vcpu, val);
4727                break;
4728        case 4:
4729                res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4730                break;
4731        case 8:
4732                res = kvm_set_cr8(vcpu, val);
4733                break;
4734        default:
4735                kvm_err("%s: unexpected cr %u\n", __func__, cr);
4736                res = -1;
4737        }
4738
4739        return res;
4740}
4741
4742static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4743{
4744        return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4745}
4746
4747static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4748{
4749        kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4750}
4751
4752static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4753{
4754        kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4755}
4756
4757static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4758{
4759        kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4760}
4761
4762static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4763{
4764        kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4765}
4766
4767static unsigned long emulator_get_cached_segment_base(
4768        struct x86_emulate_ctxt *ctxt, int seg)
4769{
4770        return get_segment_base(emul_to_vcpu(ctxt), seg);
4771}
4772
4773static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4774                                 struct desc_struct *desc, u32 *base3,
4775                                 int seg)
4776{
4777        struct kvm_segment var;
4778
4779        kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4780        *selector = var.selector;
4781
4782        if (var.unusable) {
4783                memset(desc, 0, sizeof(*desc));
4784                return false;
4785        }
4786
4787        if (var.g)
4788                var.limit >>= 12;
4789        set_desc_limit(desc, var.limit);
4790        set_desc_base(desc, (unsigned long)var.base);
4791#ifdef CONFIG_X86_64
4792        if (base3)
4793                *base3 = var.base >> 32;
4794#endif
4795        desc->type = var.type;
4796        desc->s = var.s;
4797        desc->dpl = var.dpl;
4798        desc->p = var.present;
4799        desc->avl = var.avl;
4800        desc->l = var.l;
4801        desc->d = var.db;
4802        desc->g = var.g;
4803
4804        return true;
4805}
4806
4807static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4808                                 struct desc_struct *desc, u32 base3,
4809                                 int seg)
4810{
4811        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4812        struct kvm_segment var;
4813
4814        var.selector = selector;
4815        var.base = get_desc_base(desc);
4816#ifdef CONFIG_X86_64
4817        var.base |= ((u64)base3) << 32;
4818#endif
4819        var.limit = get_desc_limit(desc);
4820        if (desc->g)
4821                var.limit = (var.limit << 12) | 0xfff;
4822        var.type = desc->type;
4823        var.dpl = desc->dpl;
4824        var.db = desc->d;
4825        var.s = desc->s;
4826        var.l = desc->l;
4827        var.g = desc->g;
4828        var.avl = desc->avl;
4829        var.present = desc->p;
4830        var.unusable = !var.present;
4831        var.padding = 0;
4832
4833        kvm_set_segment(vcpu, &var, seg);
4834        return;
4835}
4836
4837static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4838                            u32 msr_index, u64 *pdata)
4839{
4840        return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4841}
4842
4843static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4844                            u32 msr_index, u64 data)
4845{
4846        struct msr_data msr;
4847
4848        msr.data = data;
4849        msr.index = msr_index;
4850        msr.host_initiated = false;
4851        return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4852}
4853
4854static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
4855                              u32 pmc)
4856{
4857        return kvm_pmu_check_pmc(emul_to_vcpu(ctxt), pmc);
4858}
4859
4860static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4861                             u32 pmc, u64 *pdata)
4862{
4863        return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
4864}
4865
4866static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4867{
4868        emul_to_vcpu(ctxt)->arch.halt_request = 1;
4869}
4870
4871static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4872{
4873        preempt_disable();
4874        kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4875        /*
4876         * CR0.TS may reference the host fpu state, not the guest fpu state,
4877         * so it may be clear at this point.
4878         */
4879        clts();
4880}
4881
4882static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4883{
4884        preempt_enable();
4885}
4886
4887static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4888                              struct x86_instruction_info *info,
4889                              enum x86_intercept_stage stage)
4890{
4891        return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4892}
4893
4894static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4895                               u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4896{
4897        kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
4898}
4899
4900static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
4901{
4902        return kvm_register_read(emul_to_vcpu(ctxt), reg);
4903}
4904
4905static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
4906{
4907        kvm_register_write(emul_to_vcpu(ctxt), reg, val);
4908}
4909
4910static const struct x86_emulate_ops emulate_ops = {
4911        .read_gpr            = emulator_read_gpr,
4912        .write_gpr           = emulator_write_gpr,
4913        .read_std            = kvm_read_guest_virt_system,
4914        .write_std           = kvm_write_guest_virt_system,
4915        .fetch               = kvm_fetch_guest_virt,
4916        .read_emulated       = emulator_read_emulated,
4917        .write_emulated      = emulator_write_emulated,
4918        .cmpxchg_emulated    = emulator_cmpxchg_emulated,
4919        .invlpg              = emulator_invlpg,
4920        .pio_in_emulated     = emulator_pio_in_emulated,
4921        .pio_out_emulated    = emulator_pio_out_emulated,
4922        .get_segment         = emulator_get_segment,
4923        .set_segment         = emulator_set_segment,
4924        .get_cached_segment_base = emulator_get_cached_segment_base,
4925        .get_gdt             = emulator_get_gdt,
4926        .get_idt             = emulator_get_idt,
4927        .set_gdt             = emulator_set_gdt,
4928        .set_idt             = emulator_set_idt,
4929        .get_cr              = emulator_get_cr,
4930        .set_cr              = emulator_set_cr,
4931        .cpl                 = emulator_get_cpl,
4932        .get_dr              = emulator_get_dr,
4933        .set_dr              = emulator_set_dr,
4934        .set_msr             = emulator_set_msr,
4935        .get_msr             = emulator_get_msr,
4936        .check_pmc           = emulator_check_pmc,
4937        .read_pmc            = emulator_read_pmc,
4938        .halt                = emulator_halt,
4939        .wbinvd              = emulator_wbinvd,
4940        .fix_hypercall       = emulator_fix_hypercall,
4941        .get_fpu             = emulator_get_fpu,
4942        .put_fpu             = emulator_put_fpu,
4943        .intercept           = emulator_intercept,
4944        .get_cpuid           = emulator_get_cpuid,
4945};
4946
4947static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4948{
4949        u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
4950        /*
4951         * an sti; sti; sequence only disable interrupts for the first
4952         * instruction. So, if the last instruction, be it emulated or
4953         * not, left the system with the INT_STI flag enabled, it
4954         * means that the last instruction is an sti. We should not
4955         * leave the flag on in this case. The same goes for mov ss
4956         */
4957        if (int_shadow & mask)
4958                mask = 0;
4959        if (unlikely(int_shadow || mask)) {
4960                kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4961                if (!mask)
4962                        kvm_make_request(KVM_REQ_EVENT, vcpu);
4963        }
4964}
4965
4966static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
4967{
4968        struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4969        if (ctxt->exception.vector == PF_VECTOR)
4970                return kvm_propagate_fault(vcpu, &ctxt->exception);
4971
4972        if (ctxt->exception.error_code_valid)
4973                kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4974                                      ctxt->exception.error_code);
4975        else
4976                kvm_queue_exception(vcpu, ctxt->exception.vector);
4977        return false;
4978}
4979
4980static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4981{
4982        struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4983        int cs_db, cs_l;
4984
4985        kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4986
4987        ctxt->eflags = kvm_get_rflags(vcpu);
4988        ctxt->eip = kvm_rip_read(vcpu);
4989        ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
4990                     (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
4991                     (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
4992                     cs_db                              ? X86EMUL_MODE_PROT32 :
4993                                                          X86EMUL_MODE_PROT16;
4994        ctxt->guest_mode = is_guest_mode(vcpu);
4995
4996        init_decode_cache(ctxt);
4997        vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4998}
4999
5000int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5001{
5002        struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5003        int ret;
5004
5005        init_emulate_ctxt(vcpu);
5006
5007        ctxt->op_bytes = 2;
5008        ctxt->ad_bytes = 2;
5009        ctxt->_eip = ctxt->eip + inc_eip;
5010        ret = emulate_int_real(ctxt, irq);
5011
5012        if (ret != X86EMUL_CONTINUE)
5013                return EMULATE_FAIL;
5014
5015        ctxt->eip = ctxt->_eip;
5016        kvm_rip_write(vcpu, ctxt->eip);
5017        kvm_set_rflags(vcpu, ctxt->eflags);
5018
5019        if (irq == NMI_VECTOR)
5020                vcpu->arch.nmi_pending = 0;
5021        else
5022                vcpu->arch.interrupt.pending = false;
5023
5024        return EMULATE_DONE;
5025}
5026EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5027
5028static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5029{
5030        int r = EMULATE_DONE;
5031
5032        ++vcpu->stat.insn_emulation_fail;
5033        trace_kvm_emulate_insn_failed(vcpu);
5034        if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5035                vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5036                vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5037                vcpu->run->internal.ndata = 0;
5038                r = EMULATE_FAIL;
5039        }
5040        kvm_queue_exception(vcpu, UD_VECTOR);
5041
5042        return r;
5043}
5044
5045static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5046                                  bool write_fault_to_shadow_pgtable,
5047                                  int emulation_type)
5048{
5049        gpa_t gpa = cr2;
5050        pfn_t pfn;
5051
5052        if (emulation_type & EMULTYPE_NO_REEXECUTE)
5053                return false;
5054
5055        if (!vcpu->arch.mmu.direct_map) {
5056                /*
5057                 * Write permission should be allowed since only
5058                 * write access need to be emulated.
5059                 */
5060                gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5061
5062                /*
5063                 * If the mapping is invalid in guest, let cpu retry
5064                 * it to generate fault.
5065                 */
5066                if (gpa == UNMAPPED_GVA)
5067                        return true;
5068        }
5069
5070        /*
5071         * Do not retry the unhandleable instruction if it faults on the
5072         * readonly host memory, otherwise it will goto a infinite loop:
5073         * retry instruction -> write #PF -> emulation fail -> retry
5074         * instruction -> ...
5075         */
5076        pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5077
5078        /*
5079         * If the instruction failed on the error pfn, it can not be fixed,
5080         * report the error to userspace.
5081         */
5082        if (is_error_noslot_pfn(pfn))
5083                return false;
5084
5085        kvm_release_pfn_clean(pfn);
5086
5087        /* The instructions are well-emulated on direct mmu. */
5088        if (vcpu->arch.mmu.direct_map) {
5089                unsigned int indirect_shadow_pages;
5090
5091                spin_lock(&vcpu->kvm->mmu_lock);
5092                indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5093                spin_unlock(&vcpu->kvm->mmu_lock);
5094
5095                if (indirect_shadow_pages)
5096                        kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5097
5098                return true;
5099        }
5100
5101        /*
5102         * if emulation was due to access to shadowed page table
5103         * and it failed try to unshadow page and re-enter the
5104         * guest to let CPU execute the instruction.
5105         */
5106        kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5107
5108        /*
5109         * If the access faults on its page table, it can not
5110         * be fixed by unprotecting shadow page and it should
5111         * be reported to userspace.
5112         */
5113        return !write_fault_to_shadow_pgtable;
5114}
5115
5116static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5117                              unsigned long cr2,  int emulation_type)
5118{
5119        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5120        unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5121
5122        last_retry_eip = vcpu->arch.last_retry_eip;
5123        last_retry_addr = vcpu->arch.last_retry_addr;
5124
5125        /*
5126         * If the emulation is caused by #PF and it is non-page_table
5127         * writing instruction, it means the VM-EXIT is caused by shadow
5128         * page protected, we can zap the shadow page and retry this
5129         * instruction directly.
5130         *
5131         * Note: if the guest uses a non-page-table modifying instruction
5132         * on the PDE that points to the instruction, then we will unmap
5133         * the instruction and go to an infinite loop. So, we cache the
5134         * last retried eip and the last fault address, if we meet the eip
5135         * and the address again, we can break out of the potential infinite
5136         * loop.
5137         */
5138        vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5139
5140        if (!(emulation_type & EMULTYPE_RETRY))
5141                return false;
5142
5143        if (x86_page_table_writing_insn(ctxt))
5144                return false;
5145
5146        if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5147                return false;
5148
5149        vcpu->arch.last_retry_eip = ctxt->eip;
5150        vcpu->arch.last_retry_addr = cr2;
5151
5152        if (!vcpu->arch.mmu.direct_map)
5153                gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5154
5155        kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5156
5157        return true;
5158}
5159
5160static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5161static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5162
5163static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5164                                unsigned long *db)
5165{
5166        u32 dr6 = 0;
5167        int i;
5168        u32 enable, rwlen;
5169
5170        enable = dr7;
5171        rwlen = dr7 >> 16;
5172        for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5173                if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5174                        dr6 |= (1 << i);
5175        return dr6;
5176}
5177
5178static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r)
5179{
5180        struct kvm_run *kvm_run = vcpu->run;
5181
5182        /*
5183         * rflags is the old, "raw" value of the flags.  The new value has
5184         * not been saved yet.
5185         *
5186         * This is correct even for TF set by the guest, because "the
5187         * processor will not generate this exception after the instruction
5188         * that sets the TF flag".
5189         */
5190        if (unlikely(rflags & X86_EFLAGS_TF)) {
5191                if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5192                        kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 |
5193                                                  DR6_RTM;
5194                        kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5195                        kvm_run->debug.arch.exception = DB_VECTOR;
5196                        kvm_run->exit_reason = KVM_EXIT_DEBUG;
5197                        *r = EMULATE_USER_EXIT;
5198                } else {
5199                        vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
5200                        /*
5201                         * "Certain debug exceptions may clear bit 0-3.  The
5202                         * remaining contents of the DR6 register are never
5203                         * cleared by the processor".
5204                         */
5205                        vcpu->arch.dr6 &= ~15;
5206                        vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5207                        kvm_queue_exception(vcpu, DB_VECTOR);
5208                }
5209        }
5210}
5211
5212static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5213{
5214        struct kvm_run *kvm_run = vcpu->run;
5215        unsigned long eip = vcpu->arch.emulate_ctxt.eip;
5216        u32 dr6 = 0;
5217
5218        if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5219            (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5220                dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5221                                           vcpu->arch.guest_debug_dr7,
5222                                           vcpu->arch.eff_db);
5223
5224                if (dr6 != 0) {
5225                        kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5226                        kvm_run->debug.arch.pc = kvm_rip_read(vcpu) +
5227                                get_segment_base(vcpu, VCPU_SREG_CS);
5228
5229                        kvm_run->debug.arch.exception = DB_VECTOR;
5230                        kvm_run->exit_reason = KVM_EXIT_DEBUG;
5231                        *r = EMULATE_USER_EXIT;
5232                        return true;
5233                }
5234        }
5235
5236        if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5237            !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5238                dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5239                                           vcpu->arch.dr7,
5240                                           vcpu->arch.db);
5241
5242                if (dr6 != 0) {
5243                        vcpu->arch.dr6 &= ~15;
5244                        vcpu->arch.dr6 |= dr6 | DR6_RTM;
5245                        kvm_queue_exception(vcpu, DB_VECTOR);
5246                        *r = EMULATE_DONE;
5247                        return true;
5248                }
5249        }
5250
5251        return false;
5252}
5253
5254int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5255                            unsigned long cr2,
5256                            int emulation_type,
5257                            void *insn,
5258                            int insn_len)
5259{
5260        int r;
5261        struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5262        bool writeback = true;
5263        bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5264
5265        /*
5266         * Clear write_fault_to_shadow_pgtable here to ensure it is
5267         * never reused.
5268         */
5269        vcpu->arch.write_fault_to_shadow_pgtable = false;
5270        kvm_clear_exception_queue(vcpu);
5271
5272        if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5273                init_emulate_ctxt(vcpu);
5274
5275                /*
5276                 * We will reenter on the same instruction since
5277                 * we do not set complete_userspace_io.  This does not
5278                 * handle watchpoints yet, those would be handled in
5279                 * the emulate_ops.
5280                 */
5281                if (kvm_vcpu_check_breakpoint(vcpu, &r))
5282                        return r;
5283
5284                ctxt->interruptibility = 0;
5285                ctxt->have_exception = false;
5286                ctxt->exception.vector = -1;
5287                ctxt->perm_ok = false;
5288
5289                ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5290
5291                r = x86_decode_insn(ctxt, insn, insn_len);
5292
5293                trace_kvm_emulate_insn_start(vcpu);
5294                ++vcpu->stat.insn_emulation;
5295                if (r != EMULATION_OK)  {
5296                        if (emulation_type & EMULTYPE_TRAP_UD)
5297                                return EMULATE_FAIL;
5298                        if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5299                                                emulation_type))
5300                                return EMULATE_DONE;
5301                        if (emulation_type & EMULTYPE_SKIP)
5302                                return EMULATE_FAIL;
5303                        return handle_emulation_failure(vcpu);
5304                }
5305        }
5306
5307        if (emulation_type & EMULTYPE_SKIP) {
5308                kvm_rip_write(vcpu, ctxt->_eip);
5309                if (ctxt->eflags & X86_EFLAGS_RF)
5310                        kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5311                return EMULATE_DONE;
5312        }
5313
5314        if (retry_instruction(ctxt, cr2, emulation_type))
5315                return EMULATE_DONE;
5316
5317        /* this is needed for vmware backdoor interface to work since it
5318           changes registers values  during IO operation */
5319        if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5320                vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5321                emulator_invalidate_register_cache(ctxt);
5322        }
5323
5324restart:
5325        r = x86_emulate_insn(ctxt);
5326
5327        if (r == EMULATION_INTERCEPTED)
5328                return EMULATE_DONE;
5329
5330        if (r == EMULATION_FAILED) {
5331                if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5332                                        emulation_type))
5333                        return EMULATE_DONE;
5334
5335                return handle_emulation_failure(vcpu);
5336        }
5337
5338        if (ctxt->have_exception) {
5339                r = EMULATE_DONE;
5340                if (inject_emulated_exception(vcpu))
5341                        return r;
5342        } else if (vcpu->arch.pio.count) {
5343                if (!vcpu->arch.pio.in) {
5344                        /* FIXME: return into emulator if single-stepping.  */
5345                        vcpu->arch.pio.count = 0;
5346                } else {
5347                        writeback = false;
5348                        vcpu->arch.complete_userspace_io = complete_emulated_pio;
5349                }
5350                r = EMULATE_USER_EXIT;
5351        } else if (vcpu->mmio_needed) {
5352                if (!vcpu->mmio_is_write)
5353                        writeback = false;
5354                r = EMULATE_USER_EXIT;
5355                vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5356        } else if (r == EMULATION_RESTART)
5357                goto restart;
5358        else
5359                r = EMULATE_DONE;
5360
5361        if (writeback) {
5362                unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5363                toggle_interruptibility(vcpu, ctxt->interruptibility);
5364                vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5365                kvm_rip_write(vcpu, ctxt->eip);
5366                if (r == EMULATE_DONE)
5367                        kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5368                __kvm_set_rflags(vcpu, ctxt->eflags);
5369
5370                /*
5371                 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5372                 * do nothing, and it will be requested again as soon as
5373                 * the shadow expires.  But we still need to check here,
5374                 * because POPF has no interrupt shadow.
5375                 */
5376                if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5377                        kvm_make_request(KVM_REQ_EVENT, vcpu);
5378        } else
5379                vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5380
5381        return r;
5382}
5383EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5384
5385int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5386{
5387        unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5388        int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5389                                            size, port, &val, 1);
5390        /* do not return to emulator after return from userspace */
5391        vcpu->arch.pio.count = 0;
5392        return ret;
5393}
5394EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5395
5396static void tsc_bad(void *info)
5397{
5398        __this_cpu_write(cpu_tsc_khz, 0);
5399}
5400
5401static void tsc_khz_changed(void *data)
5402{
5403        struct cpufreq_freqs *freq = data;
5404        unsigned long khz = 0;
5405
5406        if (data)
5407                khz = freq->new;
5408        else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5409                khz = cpufreq_quick_get(raw_smp_processor_id());
5410        if (!khz)
5411                khz = tsc_khz;
5412        __this_cpu_write(cpu_tsc_khz, khz);
5413}
5414
5415static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5416                                     void *data)
5417{
5418        struct cpufreq_freqs *freq = data;
5419        struct kvm *kvm;
5420        struct kvm_vcpu *vcpu;
5421        int i, send_ipi = 0;
5422
5423        /*
5424         * We allow guests to temporarily run on slowing clocks,
5425         * provided we notify them after, or to run on accelerating
5426         * clocks, provided we notify them before.  Thus time never
5427         * goes backwards.
5428         *
5429         * However, we have a problem.  We can't atomically update
5430         * the frequency of a given CPU from this function; it is
5431         * merely a notifier, which can be called from any CPU.
5432         * Changing the TSC frequency at arbitrary points in time
5433         * requires a recomputation of local variables related to
5434         * the TSC for each VCPU.  We must flag these local variables
5435         * to be updated and be sure the update takes place with the
5436         * new frequency before any guests proceed.
5437         *
5438         * Unfortunately, the combination of hotplug CPU and frequency
5439         * change creates an intractable locking scenario; the order
5440         * of when these callouts happen is undefined with respect to
5441         * CPU hotplug, and they can race with each other.  As such,
5442         * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5443         * undefined; you can actually have a CPU frequency change take
5444         * place in between the computation of X and the setting of the
5445         * variable.  To protect against this problem, all updates of
5446         * the per_cpu tsc_khz variable are done in an interrupt
5447         * protected IPI, and all callers wishing to update the value
5448         * must wait for a synchronous IPI to complete (which is trivial
5449         * if the caller is on the CPU already).  This establishes the
5450         * necessary total order on variable updates.
5451         *
5452         * Note that because a guest time update may take place
5453         * anytime after the setting of the VCPU's request bit, the
5454         * correct TSC value must be set before the request.  However,
5455         * to ensure the update actually makes it to any guest which
5456         * starts running in hardware virtualization between the set
5457         * and the acquisition of the spinlock, we must also ping the
5458         * CPU after setting the request bit.
5459         *
5460         */
5461
5462        if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5463                return 0;
5464        if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5465                return 0;
5466
5467        smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5468
5469        spin_lock(&kvm_lock);
5470        list_for_each_entry(kvm, &vm_list, vm_list) {
5471                kvm_for_each_vcpu(i, vcpu, kvm) {
5472                        if (vcpu->cpu != freq->cpu)
5473                                continue;
5474                        kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5475                        if (vcpu->cpu != smp_processor_id())
5476                                send_ipi = 1;
5477                }
5478        }
5479        spin_unlock(&kvm_lock);
5480
5481        if (freq->old < freq->new && send_ipi) {
5482                /*
5483                 * We upscale the frequency.  Must make the guest
5484                 * doesn't see old kvmclock values while running with
5485                 * the new frequency, otherwise we risk the guest sees
5486                 * time go backwards.
5487                 *
5488                 * In case we update the frequency for another cpu
5489                 * (which might be in guest context) send an interrupt
5490                 * to kick the cpu out of guest context.  Next time
5491                 * guest context is entered kvmclock will be updated,
5492                 * so the guest will not see stale values.
5493                 */
5494                smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5495        }
5496        return 0;
5497}
5498
5499static struct notifier_block kvmclock_cpufreq_notifier_block = {
5500        .notifier_call  = kvmclock_cpufreq_notifier
5501};
5502
5503static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5504                                        unsigned long action, void *hcpu)
5505{
5506        unsigned int cpu = (unsigned long)hcpu;
5507
5508        switch (action) {
5509                case CPU_ONLINE:
5510                case CPU_DOWN_FAILED:
5511                        smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5512                        break;
5513                case CPU_DOWN_PREPARE:
5514                        smp_call_function_single(cpu, tsc_bad, NULL, 1);
5515                        break;
5516        }
5517        return NOTIFY_OK;
5518}
5519
5520static struct notifier_block kvmclock_cpu_notifier_block = {
5521        .notifier_call  = kvmclock_cpu_notifier,
5522        .priority = -INT_MAX
5523};
5524
5525static void kvm_timer_init(void)
5526{
5527        int cpu;
5528
5529        max_tsc_khz = tsc_khz;
5530
5531        cpu_notifier_register_begin();
5532        if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5533#ifdef CONFIG_CPU_FREQ
5534                struct cpufreq_policy policy;
5535                memset(&policy, 0, sizeof(policy));
5536                cpu = get_cpu();
5537                cpufreq_get_policy(&policy, cpu);
5538                if (policy.cpuinfo.max_freq)
5539                        max_tsc_khz = policy.cpuinfo.max_freq;
5540                put_cpu();
5541#endif
5542                cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5543                                          CPUFREQ_TRANSITION_NOTIFIER);
5544        }
5545        pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5546        for_each_online_cpu(cpu)
5547                smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5548
5549        __register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5550        cpu_notifier_register_done();
5551
5552}
5553
5554static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5555
5556int kvm_is_in_guest(void)
5557{
5558        return __this_cpu_read(current_vcpu) != NULL;
5559}
5560
5561static int kvm_is_user_mode(void)
5562{
5563        int user_mode = 3;
5564
5565        if (__this_cpu_read(current_vcpu))
5566                user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5567
5568        return user_mode != 0;
5569}
5570
5571static unsigned long kvm_get_guest_ip(void)
5572{
5573        unsigned long ip = 0;
5574
5575        if (__this_cpu_read(current_vcpu))
5576                ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5577
5578        return ip;
5579}
5580
5581static struct perf_guest_info_callbacks kvm_guest_cbs = {
5582        .is_in_guest            = kvm_is_in_guest,
5583        .is_user_mode           = kvm_is_user_mode,
5584        .get_guest_ip           = kvm_get_guest_ip,
5585};
5586
5587void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5588{
5589        __this_cpu_write(current_vcpu, vcpu);
5590}
5591EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5592
5593void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5594{
5595        __this_cpu_write(current_vcpu, NULL);
5596}
5597EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5598
5599static void kvm_set_mmio_spte_mask(void)
5600{
5601        u64 mask;
5602        int maxphyaddr = boot_cpu_data.x86_phys_bits;
5603
5604        /*
5605         * Set the reserved bits and the present bit of an paging-structure
5606         * entry to generate page fault with PFER.RSV = 1.
5607         */
5608         /* Mask the reserved physical address bits. */
5609        mask = rsvd_bits(maxphyaddr, 51);
5610
5611        /* Bit 62 is always reserved for 32bit host. */
5612        mask |= 0x3ull << 62;
5613
5614        /* Set the present bit. */
5615        mask |= 1ull;
5616
5617#ifdef CONFIG_X86_64
5618        /*
5619         * If reserved bit is not supported, clear the present bit to disable
5620         * mmio page fault.
5621         */
5622        if (maxphyaddr == 52)
5623                mask &= ~1ull;
5624#endif
5625
5626        kvm_mmu_set_mmio_spte_mask(mask);
5627}
5628
5629#ifdef CONFIG_X86_64
5630static void pvclock_gtod_update_fn(struct work_struct *work)
5631{
5632        struct kvm *kvm;
5633
5634        struct kvm_vcpu *vcpu;
5635        int i;
5636
5637        spin_lock(&kvm_lock);
5638        list_for_each_entry(kvm, &vm_list, vm_list)
5639                kvm_for_each_vcpu(i, vcpu, kvm)
5640                        kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
5641        atomic_set(&kvm_guest_has_master_clock, 0);
5642        spin_unlock(&kvm_lock);
5643}
5644
5645static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5646
5647/*
5648 * Notification about pvclock gtod data update.
5649 */
5650static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5651                               void *priv)
5652{
5653        struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5654        struct timekeeper *tk = priv;
5655
5656        update_pvclock_gtod(tk);
5657
5658        /* disable master clock if host does not trust, or does not
5659         * use, TSC clocksource
5660         */
5661        if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5662            atomic_read(&kvm_guest_has_master_clock) != 0)
5663                queue_work(system_long_wq, &pvclock_gtod_work);
5664
5665        return 0;
5666}
5667
5668static struct notifier_block pvclock_gtod_notifier = {
5669        .notifier_call = pvclock_gtod_notify,
5670};
5671#endif
5672
5673int kvm_arch_init(void *opaque)
5674{
5675        int r;
5676        struct kvm_x86_ops *ops = opaque;
5677
5678        if (kvm_x86_ops) {
5679                printk(KERN_ERR "kvm: already loaded the other module\n");
5680                r = -EEXIST;
5681                goto out;
5682        }
5683
5684        if (!ops->cpu_has_kvm_support()) {
5685                printk(KERN_ERR "kvm: no hardware support\n");
5686                r = -EOPNOTSUPP;
5687                goto out;
5688        }
5689        if (ops->disabled_by_bios()) {
5690                printk(KERN_ERR "kvm: disabled by bios\n");
5691                r = -EOPNOTSUPP;
5692                goto out;
5693        }
5694
5695        r = -ENOMEM;
5696        shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5697        if (!shared_msrs) {
5698                printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5699                goto out;
5700        }
5701
5702        r = kvm_mmu_module_init();
5703        if (r)
5704                goto out_free_percpu;
5705
5706        kvm_set_mmio_spte_mask();
5707
5708        kvm_x86_ops = ops;
5709        kvm_init_msr_list();
5710
5711        kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5712                        PT_DIRTY_MASK, PT64_NX_MASK, 0);
5713
5714        kvm_timer_init();
5715
5716        perf_register_guest_info_callbacks(&kvm_guest_cbs);
5717
5718        if (cpu_has_xsave)
5719                host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5720
5721        kvm_lapic_init();
5722#ifdef CONFIG_X86_64
5723        pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5724#endif
5725
5726        return 0;
5727
5728out_free_percpu:
5729        free_percpu(shared_msrs);
5730out:
5731        return r;
5732}
5733
5734void kvm_arch_exit(void)
5735{
5736        perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5737
5738        if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5739                cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5740                                            CPUFREQ_TRANSITION_NOTIFIER);
5741        unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5742#ifdef CONFIG_X86_64
5743        pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5744#endif
5745        kvm_x86_ops = NULL;
5746        kvm_mmu_module_exit();
5747        free_percpu(shared_msrs);
5748}
5749
5750int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5751{
5752        ++vcpu->stat.halt_exits;
5753        if (irqchip_in_kernel(vcpu->kvm)) {
5754                vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5755                return 1;
5756        } else {
5757                vcpu->run->exit_reason = KVM_EXIT_HLT;
5758                return 0;
5759        }
5760}
5761EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5762
5763int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
5764{
5765        u64 param, ingpa, outgpa, ret;
5766        uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
5767        bool fast, longmode;
5768
5769        /*
5770         * hypercall generates UD from non zero cpl and real mode
5771         * per HYPER-V spec
5772         */
5773        if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
5774                kvm_queue_exception(vcpu, UD_VECTOR);
5775                return 0;
5776        }
5777
5778        longmode = is_64_bit_mode(vcpu);
5779
5780        if (!longmode) {
5781                param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
5782                        (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
5783                ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
5784                        (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
5785                outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
5786                        (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
5787        }
5788#ifdef CONFIG_X86_64
5789        else {
5790                param = kvm_register_read(vcpu, VCPU_REGS_RCX);
5791                ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
5792                outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
5793        }
5794#endif
5795
5796        code = param & 0xffff;
5797        fast = (param >> 16) & 0x1;
5798        rep_cnt = (param >> 32) & 0xfff;
5799        rep_idx = (param >> 48) & 0xfff;
5800
5801        trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
5802
5803        switch (code) {
5804        case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
5805                kvm_vcpu_on_spin(vcpu);
5806                break;
5807        default:
5808                res = HV_STATUS_INVALID_HYPERCALL_CODE;
5809                break;
5810        }
5811
5812        ret = res | (((u64)rep_done & 0xfff) << 32);
5813        if (longmode) {
5814                kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5815        } else {
5816                kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
5817                kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
5818        }
5819
5820        return 1;
5821}
5822
5823/*
5824 * kvm_pv_kick_cpu_op:  Kick a vcpu.
5825 *
5826 * @apicid - apicid of vcpu to be kicked.
5827 */
5828static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
5829{
5830        struct kvm_lapic_irq lapic_irq;
5831
5832        lapic_irq.shorthand = 0;
5833        lapic_irq.dest_mode = 0;
5834        lapic_irq.dest_id = apicid;
5835
5836        lapic_irq.delivery_mode = APIC_DM_REMRD;
5837        kvm_irq_delivery_to_apic(kvm, 0, &lapic_irq, NULL);
5838}
5839
5840int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5841{
5842        unsigned long nr, a0, a1, a2, a3, ret;
5843        int op_64_bit, r = 1;
5844
5845        if (kvm_hv_hypercall_enabled(vcpu->kvm))
5846                return kvm_hv_hypercall(vcpu);
5847
5848        nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5849        a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5850        a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5851        a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5852        a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5853
5854        trace_kvm_hypercall(nr, a0, a1, a2, a3);
5855
5856        op_64_bit = is_64_bit_mode(vcpu);
5857        if (!op_64_bit) {
5858                nr &= 0xFFFFFFFF;
5859                a0 &= 0xFFFFFFFF;
5860                a1 &= 0xFFFFFFFF;
5861                a2 &= 0xFFFFFFFF;
5862                a3 &= 0xFFFFFFFF;
5863        }
5864
5865        if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5866                ret = -KVM_EPERM;
5867                goto out;
5868        }
5869
5870        switch (nr) {
5871        case KVM_HC_VAPIC_POLL_IRQ:
5872                ret = 0;
5873                break;
5874        case KVM_HC_KICK_CPU:
5875                kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
5876                ret = 0;
5877                break;
5878        default:
5879                ret = -KVM_ENOSYS;
5880                break;
5881        }
5882out:
5883        if (!op_64_bit)
5884                ret = (u32)ret;
5885        kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5886        ++vcpu->stat.hypercalls;
5887        return r;
5888}
5889EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5890
5891static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5892{
5893        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5894        char instruction[3];
5895        unsigned long rip = kvm_rip_read(vcpu);
5896
5897        kvm_x86_ops->patch_hypercall(vcpu, instruction);
5898
5899        return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5900}
5901
5902/*
5903 * Check if userspace requested an interrupt window, and that the
5904 * interrupt window is open.
5905 *
5906 * No need to exit to userspace if we already have an interrupt queued.
5907 */
5908static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5909{
5910        return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5911                vcpu->run->request_interrupt_window &&
5912                kvm_arch_interrupt_allowed(vcpu));
5913}
5914
5915static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5916{
5917        struct kvm_run *kvm_run = vcpu->run;
5918
5919        kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5920        kvm_run->cr8 = kvm_get_cr8(vcpu);
5921        kvm_run->apic_base = kvm_get_apic_base(vcpu);
5922        if (irqchip_in_kernel(vcpu->kvm))
5923                kvm_run->ready_for_interrupt_injection = 1;
5924        else
5925                kvm_run->ready_for_interrupt_injection =
5926                        kvm_arch_interrupt_allowed(vcpu) &&
5927                        !kvm_cpu_has_interrupt(vcpu) &&
5928                        !kvm_event_needs_reinjection(vcpu);
5929}
5930
5931static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5932{
5933        int max_irr, tpr;
5934
5935        if (!kvm_x86_ops->update_cr8_intercept)
5936                return;
5937
5938        if (!vcpu->arch.apic)
5939                return;
5940
5941        if (!vcpu->arch.apic->vapic_addr)
5942                max_irr = kvm_lapic_find_highest_irr(vcpu);
5943        else
5944                max_irr = -1;
5945
5946        if (max_irr != -1)
5947                max_irr >>= 4;
5948
5949        tpr = kvm_lapic_get_cr8(vcpu);
5950
5951        kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5952}
5953
5954static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
5955{
5956        int r;
5957
5958        /* try to reinject previous events if any */
5959        if (vcpu->arch.exception.pending) {
5960                trace_kvm_inj_exception(vcpu->arch.exception.nr,
5961                                        vcpu->arch.exception.has_error_code,
5962                                        vcpu->arch.exception.error_code);
5963
5964                if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
5965                        __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
5966                                             X86_EFLAGS_RF);
5967
5968                kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5969                                          vcpu->arch.exception.has_error_code,
5970                                          vcpu->arch.exception.error_code,
5971                                          vcpu->arch.exception.reinject);
5972                return 0;
5973        }
5974
5975        if (vcpu->arch.nmi_injected) {
5976                kvm_x86_ops->set_nmi(vcpu);
5977                return 0;
5978        }
5979
5980        if (vcpu->arch.interrupt.pending) {
5981                kvm_x86_ops->set_irq(vcpu);
5982                return 0;
5983        }
5984
5985        if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
5986                r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
5987                if (r != 0)
5988                        return r;
5989        }
5990
5991        /* try to inject new event if pending */
5992        if (vcpu->arch.nmi_pending) {
5993                if (kvm_x86_ops->nmi_allowed(vcpu)) {
5994                        --vcpu->arch.nmi_pending;
5995                        vcpu->arch.nmi_injected = true;
5996                        kvm_x86_ops->set_nmi(vcpu);
5997                }
5998        } else if (kvm_cpu_has_injectable_intr(vcpu)) {
5999                /*
6000                 * Because interrupts can be injected asynchronously, we are
6001                 * calling check_nested_events again here to avoid a race condition.
6002                 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6003                 * proposal and current concerns.  Perhaps we should be setting
6004                 * KVM_REQ_EVENT only on certain events and not unconditionally?
6005                 */
6006                if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6007                        r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6008                        if (r != 0)
6009                                return r;
6010                }
6011                if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6012                        kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6013                                            false);
6014                        kvm_x86_ops->set_irq(vcpu);
6015                }
6016        }
6017        return 0;
6018}
6019
6020static void process_nmi(struct kvm_vcpu *vcpu)
6021{
6022        unsigned limit = 2;
6023
6024        /*
6025         * x86 is limited to one NMI running, and one NMI pending after it.
6026         * If an NMI is already in progress, limit further NMIs to just one.
6027         * Otherwise, allow two (and we'll inject the first one immediately).
6028         */
6029        if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6030                limit = 1;
6031
6032        vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6033        vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6034        kvm_make_request(KVM_REQ_EVENT, vcpu);
6035}
6036
6037static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6038{
6039        u64 eoi_exit_bitmap[4];
6040        u32 tmr[8];
6041
6042        if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6043                return;
6044
6045        memset(eoi_exit_bitmap, 0, 32);
6046        memset(tmr, 0, 32);
6047
6048        kvm_ioapic_scan_entry(vcpu, eoi_exit_bitmap, tmr);
6049        kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6050        kvm_apic_update_tmr(vcpu, tmr);
6051}
6052
6053static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6054{
6055        ++vcpu->stat.tlb_flush;
6056        kvm_x86_ops->tlb_flush(vcpu);
6057}
6058
6059void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6060{
6061        struct page *page = NULL;
6062
6063        if (!irqchip_in_kernel(vcpu->kvm))
6064                return;
6065
6066        if (!kvm_x86_ops->set_apic_access_page_addr)
6067                return;
6068
6069        page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6070        kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6071
6072        /*
6073         * Do not pin apic access page in memory, the MMU notifier
6074         * will call us again if it is migrated or swapped out.
6075         */
6076        put_page(page);
6077}
6078EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6079
6080void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6081                                           unsigned long address)
6082{
6083        /*
6084         * The physical address of apic access page is stored in the VMCS.
6085         * Update it when it becomes invalid.
6086         */
6087        if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6088                kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6089}
6090
6091/*
6092 * Returns 1 to let __vcpu_run() continue the guest execution loop without
6093 * exiting to the userspace.  Otherwise, the value will be returned to the
6094 * userspace.
6095 */
6096static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6097{
6098        int r;
6099        bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
6100                vcpu->run->request_interrupt_window;
6101        bool req_immediate_exit = false;
6102
6103        if (vcpu->requests) {
6104                if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6105                        kvm_mmu_unload(vcpu);
6106                if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6107                        __kvm_migrate_timers(vcpu);
6108                if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6109                        kvm_gen_update_masterclock(vcpu->kvm);
6110                if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6111                        kvm_gen_kvmclock_update(vcpu);
6112                if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6113                        r = kvm_guest_time_update(vcpu);
6114                        if (unlikely(r))
6115                                goto out;
6116                }
6117                if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6118                        kvm_mmu_sync_roots(vcpu);
6119                if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6120                        kvm_vcpu_flush_tlb(vcpu);
6121                if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6122                        vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6123                        r = 0;
6124                        goto out;
6125                }
6126                if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6127                        vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6128                        r = 0;
6129                        goto out;
6130                }
6131                if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
6132                        vcpu->fpu_active = 0;
6133                        kvm_x86_ops->fpu_deactivate(vcpu);
6134                }
6135                if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6136                        /* Page is swapped out. Do synthetic halt */
6137                        vcpu->arch.apf.halted = true;
6138                        r = 1;
6139                        goto out;
6140                }
6141                if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6142                        record_steal_time(vcpu);
6143                if (kvm_check_request(KVM_REQ_NMI, vcpu))
6144                        process_nmi(vcpu);
6145                if (kvm_check_request(KVM_REQ_PMU, vcpu))
6146                        kvm_handle_pmu_event(vcpu);
6147                if (kvm_check_request(KVM_REQ_PMI, vcpu))
6148                        kvm_deliver_pmi(vcpu);
6149                if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6150                        vcpu_scan_ioapic(vcpu);
6151                if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6152                        kvm_vcpu_reload_apic_access_page(vcpu);
6153        }
6154
6155        if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6156                kvm_apic_accept_events(vcpu);
6157                if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6158                        r = 1;
6159                        goto out;
6160                }
6161
6162                if (inject_pending_event(vcpu, req_int_win) != 0)
6163                        req_immediate_exit = true;
6164                /* enable NMI/IRQ window open exits if needed */
6165                else if (vcpu->arch.nmi_pending)
6166                        kvm_x86_ops->enable_nmi_window(vcpu);
6167                else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6168                        kvm_x86_ops->enable_irq_window(vcpu);
6169
6170                if (kvm_lapic_enabled(vcpu)) {
6171                        /*
6172                         * Update architecture specific hints for APIC
6173                         * virtual interrupt delivery.
6174                         */
6175                        if (kvm_x86_ops->hwapic_irr_update)
6176                                kvm_x86_ops->hwapic_irr_update(vcpu,
6177                                        kvm_lapic_find_highest_irr(vcpu));
6178                        update_cr8_intercept(vcpu);
6179                        kvm_lapic_sync_to_vapic(vcpu);
6180                }
6181        }
6182
6183        r = kvm_mmu_reload(vcpu);
6184        if (unlikely(r)) {
6185                goto cancel_injection;
6186        }
6187
6188        preempt_disable();
6189
6190        kvm_x86_ops->prepare_guest_switch(vcpu);
6191        if (vcpu->fpu_active)
6192                kvm_load_guest_fpu(vcpu);
6193        kvm_load_guest_xcr0(vcpu);
6194
6195        vcpu->mode = IN_GUEST_MODE;
6196
6197        srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6198
6199        /* We should set ->mode before check ->requests,
6200         * see the comment in make_all_cpus_request.
6201         */
6202        smp_mb__after_srcu_read_unlock();
6203
6204        local_irq_disable();
6205
6206        if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6207            || need_resched() || signal_pending(current)) {
6208                vcpu->mode = OUTSIDE_GUEST_MODE;
6209                smp_wmb();
6210                local_irq_enable();
6211                preempt_enable();
6212                vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6213                r = 1;
6214                goto cancel_injection;
6215        }
6216
6217        if (req_immediate_exit)
6218                smp_send_reschedule(vcpu->cpu);
6219
6220        kvm_guest_enter();
6221
6222        if (unlikely(vcpu->arch.switch_db_regs)) {
6223                set_debugreg(0, 7);
6224                set_debugreg(vcpu->arch.eff_db[0], 0);
6225                set_debugreg(vcpu->arch.eff_db[1], 1);
6226                set_debugreg(vcpu->arch.eff_db[2], 2);
6227                set_debugreg(vcpu->arch.eff_db[3], 3);
6228                set_debugreg(vcpu->arch.dr6, 6);
6229        }
6230
6231        trace_kvm_entry(vcpu->vcpu_id);
6232        kvm_x86_ops->run(vcpu);
6233
6234        /*
6235         * Do this here before restoring debug registers on the host.  And
6236         * since we do this before handling the vmexit, a DR access vmexit
6237         * can (a) read the correct value of the debug registers, (b) set
6238         * KVM_DEBUGREG_WONT_EXIT again.
6239         */
6240        if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6241                int i;
6242
6243                WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6244                kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6245                for (i = 0; i < KVM_NR_DB_REGS; i++)
6246                        vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6247        }
6248
6249        /*
6250         * If the guest has used debug registers, at least dr7
6251         * will be disabled while returning to the host.
6252         * If we don't have active breakpoints in the host, we don't
6253         * care about the messed up debug address registers. But if
6254         * we have some of them active, restore the old state.
6255         */
6256        if (hw_breakpoint_active())
6257                hw_breakpoint_restore();
6258
6259        vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu,
6260                                                           native_read_tsc());
6261
6262        vcpu->mode = OUTSIDE_GUEST_MODE;
6263        smp_wmb();
6264
6265        /* Interrupt is enabled by handle_external_intr() */
6266        kvm_x86_ops->handle_external_intr(vcpu);
6267
6268        ++vcpu->stat.exits;
6269
6270        /*
6271         * We must have an instruction between local_irq_enable() and
6272         * kvm_guest_exit(), so the timer interrupt isn't delayed by
6273         * the interrupt shadow.  The stat.exits increment will do nicely.
6274         * But we need to prevent reordering, hence this barrier():
6275         */
6276        barrier();
6277
6278        kvm_guest_exit();
6279
6280        preempt_enable();
6281
6282        vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6283
6284        /*
6285         * Profile KVM exit RIPs:
6286         */
6287        if (unlikely(prof_on == KVM_PROFILING)) {
6288                unsigned long rip = kvm_rip_read(vcpu);
6289                profile_hit(KVM_PROFILING, (void *)rip);
6290        }
6291
6292        if (unlikely(vcpu->arch.tsc_always_catchup))
6293                kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6294
6295        if (vcpu->arch.apic_attention)
6296                kvm_lapic_sync_from_vapic(vcpu);
6297
6298        r = kvm_x86_ops->handle_exit(vcpu);
6299        return r;
6300
6301cancel_injection:
6302        kvm_x86_ops->cancel_injection(vcpu);
6303        if (unlikely(vcpu->arch.apic_attention))
6304                kvm_lapic_sync_from_vapic(vcpu);
6305out:
6306        return r;
6307}
6308
6309
6310static int __vcpu_run(struct kvm_vcpu *vcpu)
6311{
6312        int r;
6313        struct kvm *kvm = vcpu->kvm;
6314
6315        vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6316
6317        r = 1;
6318        while (r > 0) {
6319                if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6320                    !vcpu->arch.apf.halted)
6321                        r = vcpu_enter_guest(vcpu);
6322                else {
6323                        srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6324                        kvm_vcpu_block(vcpu);
6325                        vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6326                        if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
6327                                kvm_apic_accept_events(vcpu);
6328                                switch(vcpu->arch.mp_state) {
6329                                case KVM_MP_STATE_HALTED:
6330                                        vcpu->arch.pv.pv_unhalted = false;
6331                                        vcpu->arch.mp_state =
6332                                                KVM_MP_STATE_RUNNABLE;
6333                                case KVM_MP_STATE_RUNNABLE:
6334                                        vcpu->arch.apf.halted = false;
6335                                        break;
6336                                case KVM_MP_STATE_INIT_RECEIVED:
6337                                        break;
6338                                default:
6339                                        r = -EINTR;
6340                                        break;
6341                                }
6342                        }
6343                }
6344
6345                if (r <= 0)
6346                        break;
6347
6348                clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6349                if (kvm_cpu_has_pending_timer(vcpu))
6350                        kvm_inject_pending_timer_irqs(vcpu);
6351
6352                if (dm_request_for_irq_injection(vcpu)) {
6353                        r = -EINTR;
6354                        vcpu->run->exit_reason = KVM_EXIT_INTR;
6355                        ++vcpu->stat.request_irq_exits;
6356                }
6357
6358                kvm_check_async_pf_completion(vcpu);
6359
6360                if (signal_pending(current)) {
6361                        r = -EINTR;
6362                        vcpu->run->exit_reason = KVM_EXIT_INTR;
6363                        ++vcpu->stat.signal_exits;
6364                }
6365                if (need_resched()) {
6366                        srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6367                        cond_resched();
6368                        vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6369                }
6370        }
6371
6372        srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6373
6374        return r;
6375}
6376
6377static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6378{
6379        int r;
6380        vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6381        r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6382        srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6383        if (r != EMULATE_DONE)
6384                return 0;
6385        return 1;
6386}
6387
6388static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6389{
6390        BUG_ON(!vcpu->arch.pio.count);
6391
6392        return complete_emulated_io(vcpu);
6393}
6394
6395/*
6396 * Implements the following, as a state machine:
6397 *
6398 * read:
6399 *   for each fragment
6400 *     for each mmio piece in the fragment
6401 *       write gpa, len
6402 *       exit
6403 *       copy data
6404 *   execute insn
6405 *
6406 * write:
6407 *   for each fragment
6408 *     for each mmio piece in the fragment
6409 *       write gpa, len
6410 *       copy data
6411 *       exit
6412 */
6413static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6414{
6415        struct kvm_run *run = vcpu->run;
6416        struct kvm_mmio_fragment *frag;
6417        unsigned len;
6418
6419        BUG_ON(!vcpu->mmio_needed);
6420
6421        /* Complete previous fragment */
6422        frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6423        len = min(8u, frag->len);
6424        if (!vcpu->mmio_is_write)
6425                memcpy(frag->data, run->mmio.data, len);
6426
6427        if (frag->len <= 8) {
6428                /* Switch to the next fragment. */
6429                frag++;
6430                vcpu->mmio_cur_fragment++;
6431        } else {
6432                /* Go forward to the next mmio piece. */
6433                frag->data += len;
6434                frag->gpa += len;
6435                frag->len -= len;
6436        }
6437
6438        if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
6439                vcpu->mmio_needed = 0;
6440
6441                /* FIXME: return into emulator if single-stepping.  */
6442                if (vcpu->mmio_is_write)
6443                        return 1;
6444                vcpu->mmio_read_completed = 1;
6445                return complete_emulated_io(vcpu);
6446        }
6447
6448        run->exit_reason = KVM_EXIT_MMIO;
6449        run->mmio.phys_addr = frag->gpa;
6450        if (vcpu->mmio_is_write)
6451                memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6452        run->mmio.len = min(8u, frag->len);
6453        run->mmio.is_write = vcpu->mmio_is_write;
6454        vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6455        return 0;
6456}
6457
6458
6459int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6460{
6461        int r;
6462        sigset_t sigsaved;
6463
6464        if (!tsk_used_math(current) && init_fpu(current))
6465                return -ENOMEM;
6466
6467        if (vcpu->sigset_active)
6468                sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6469
6470        if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6471                kvm_vcpu_block(vcpu);
6472                kvm_apic_accept_events(vcpu);
6473                clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6474                r = -EAGAIN;
6475                goto out;
6476        }
6477
6478        /* re-sync apic's tpr */
6479        if (!irqchip_in_kernel(vcpu->kvm)) {
6480                if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6481                        r = -EINVAL;
6482                        goto out;
6483                }
6484        }
6485
6486        if (unlikely(vcpu->arch.complete_userspace_io)) {
6487                int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6488                vcpu->arch.complete_userspace_io = NULL;
6489                r = cui(vcpu);
6490                if (r <= 0)
6491                        goto out;
6492        } else
6493                WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6494
6495        r = __vcpu_run(vcpu);
6496
6497out:
6498        post_kvm_run_save(vcpu);
6499        if (vcpu->sigset_active)
6500                sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6501
6502        return r;
6503}
6504
6505int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6506{
6507        if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6508                /*
6509                 * We are here if userspace calls get_regs() in the middle of
6510                 * instruction emulation. Registers state needs to be copied
6511                 * back from emulation context to vcpu. Userspace shouldn't do
6512                 * that usually, but some bad designed PV devices (vmware
6513                 * backdoor interface) need this to work
6514                 */
6515                emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6516                vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6517        }
6518        regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6519        regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6520        regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6521        regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6522        regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6523        regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6524        regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6525        regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6526#ifdef CONFIG_X86_64
6527        regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6528        regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6529        regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6530        regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6531        regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6532        regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6533        regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6534        regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6535#endif
6536
6537        regs->rip = kvm_rip_read(vcpu);
6538        regs->rflags = kvm_get_rflags(vcpu);
6539
6540        return 0;
6541}
6542
6543int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6544{
6545        vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6546        vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6547
6548        kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6549        kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6550        kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6551        kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6552        kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6553        kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6554        kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6555        kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6556#ifdef CONFIG_X86_64
6557        kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6558        kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6559        kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6560        kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6561        kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6562        kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6563        kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6564        kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6565#endif
6566
6567        kvm_rip_write(vcpu, regs->rip);
6568        kvm_set_rflags(vcpu, regs->rflags);
6569
6570        vcpu->arch.exception.pending = false;
6571
6572        kvm_make_request(KVM_REQ_EVENT, vcpu);
6573
6574        return 0;
6575}
6576
6577void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6578{
6579        struct kvm_segment cs;
6580
6581        kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6582        *db = cs.db;
6583        *l = cs.l;
6584}
6585EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
6586
6587int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
6588                                  struct kvm_sregs *sregs)
6589{
6590        struct desc_ptr dt;
6591
6592        kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6593        kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6594        kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6595        kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6596        kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6597        kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6598
6599        kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6600        kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6601
6602        kvm_x86_ops->get_idt(vcpu, &dt);
6603        sregs->idt.limit = dt.size;
6604        sregs->idt.base = dt.address;
6605        kvm_x86_ops->get_gdt(vcpu, &dt);
6606        sregs->gdt.limit = dt.size;
6607        sregs->gdt.base = dt.address;
6608
6609        sregs->cr0 = kvm_read_cr0(vcpu);
6610        sregs->cr2 = vcpu->arch.cr2;
6611        sregs->cr3 = kvm_read_cr3(vcpu);
6612        sregs->cr4 = kvm_read_cr4(vcpu);
6613        sregs->cr8 = kvm_get_cr8(vcpu);
6614        sregs->efer = vcpu->arch.efer;
6615        sregs->apic_base = kvm_get_apic_base(vcpu);
6616
6617        memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
6618
6619        if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
6620                set_bit(vcpu->arch.interrupt.nr,
6621                        (unsigned long *)sregs->interrupt_bitmap);
6622
6623        return 0;
6624}
6625
6626int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
6627                                    struct kvm_mp_state *mp_state)
6628{
6629        kvm_apic_accept_events(vcpu);
6630        if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
6631                                        vcpu->arch.pv.pv_unhalted)
6632                mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
6633        else
6634                mp_state->mp_state = vcpu->arch.mp_state;
6635
6636        return 0;
6637}
6638
6639int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
6640                                    struct kvm_mp_state *mp_state)
6641{
6642        if (!kvm_vcpu_has_lapic(vcpu) &&
6643            mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
6644                return -EINVAL;
6645
6646        if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
6647                vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
6648                set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
6649        } else
6650                vcpu->arch.mp_state = mp_state->mp_state;
6651        kvm_make_request(KVM_REQ_EVENT, vcpu);
6652        return 0;
6653}
6654
6655int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
6656                    int reason, bool has_error_code, u32 error_code)
6657{
6658        struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6659        int ret;
6660
6661        init_emulate_ctxt(vcpu);
6662
6663        ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
6664                                   has_error_code, error_code);
6665
6666        if (ret)
6667                return EMULATE_FAIL;
6668
6669        kvm_rip_write(vcpu, ctxt->eip);
6670        kvm_set_rflags(vcpu, ctxt->eflags);
6671        kvm_make_request(KVM_REQ_EVENT, vcpu);
6672        return EMULATE_DONE;
6673}
6674EXPORT_SYMBOL_GPL(kvm_task_switch);
6675
6676int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
6677                                  struct kvm_sregs *sregs)
6678{
6679        struct msr_data apic_base_msr;
6680        int mmu_reset_needed = 0;
6681        int pending_vec, max_bits, idx;
6682        struct desc_ptr dt;
6683
6684        if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
6685                return -EINVAL;
6686
6687        dt.size = sregs->idt.limit;
6688        dt.address = sregs->idt.base;
6689        kvm_x86_ops->set_idt(vcpu, &dt);
6690        dt.size = sregs->gdt.limit;
6691        dt.address = sregs->gdt.base;
6692        kvm_x86_ops->set_gdt(vcpu, &dt);
6693
6694        vcpu->arch.cr2 = sregs->cr2;
6695        mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
6696        vcpu->arch.cr3 = sregs->cr3;
6697        __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
6698
6699        kvm_set_cr8(vcpu, sregs->cr8);
6700
6701        mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
6702        kvm_x86_ops->set_efer(vcpu, sregs->efer);
6703        apic_base_msr.data = sregs->apic_base;
6704        apic_base_msr.host_initiated = true;
6705        kvm_set_apic_base(vcpu, &apic_base_msr);
6706
6707        mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
6708        kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
6709        vcpu->arch.cr0 = sregs->cr0;
6710
6711        mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
6712        kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
6713        if (sregs->cr4 & X86_CR4_OSXSAVE)
6714                kvm_update_cpuid(vcpu);
6715
6716        idx = srcu_read_lock(&vcpu->kvm->srcu);
6717        if (!is_long_mode(vcpu) && is_pae(vcpu)) {
6718                load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
6719                mmu_reset_needed = 1;
6720        }
6721        srcu_read_unlock(&vcpu->kvm->srcu, idx);
6722
6723        if (mmu_reset_needed)
6724                kvm_mmu_reset_context(vcpu);
6725
6726        max_bits = KVM_NR_INTERRUPTS;
6727        pending_vec = find_first_bit(
6728                (const unsigned long *)sregs->interrupt_bitmap, max_bits);
6729        if (pending_vec < max_bits) {
6730                kvm_queue_interrupt(vcpu, pending_vec, false);
6731                pr_debug("Set back pending irq %d\n", pending_vec);
6732        }
6733
6734        kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6735        kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6736        kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6737        kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6738        kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6739        kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6740
6741        kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6742        kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6743
6744        update_cr8_intercept(vcpu);
6745
6746        /* Older userspace won't unhalt the vcpu on reset. */
6747        if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
6748            sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
6749            !is_protmode(vcpu))
6750                vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6751
6752        kvm_make_request(KVM_REQ_EVENT, vcpu);
6753
6754        return 0;
6755}
6756
6757int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
6758                                        struct kvm_guest_debug *dbg)
6759{
6760        unsigned long rflags;
6761        int i, r;
6762
6763        if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
6764                r = -EBUSY;
6765                if (vcpu->arch.exception.pending)
6766                        goto out;
6767                if (dbg->control & KVM_GUESTDBG_INJECT_DB)
6768                        kvm_queue_exception(vcpu, DB_VECTOR);
6769                else
6770                        kvm_queue_exception(vcpu, BP_VECTOR);
6771        }
6772
6773        /*
6774         * Read rflags as long as potentially injected trace flags are still
6775         * filtered out.
6776         */
6777        rflags = kvm_get_rflags(vcpu);
6778
6779        vcpu->guest_debug = dbg->control;
6780        if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
6781                vcpu->guest_debug = 0;
6782
6783        if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
6784                for (i = 0; i < KVM_NR_DB_REGS; ++i)
6785                        vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
6786                vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
6787        } else {
6788                for (i = 0; i < KVM_NR_DB_REGS; i++)
6789                        vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6790        }
6791        kvm_update_dr7(vcpu);
6792
6793        if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6794                vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
6795                        get_segment_base(vcpu, VCPU_SREG_CS);
6796
6797        /*
6798         * Trigger an rflags update that will inject or remove the trace
6799         * flags.
6800         */
6801        kvm_set_rflags(vcpu, rflags);
6802
6803        kvm_x86_ops->update_db_bp_intercept(vcpu);
6804
6805        r = 0;
6806
6807out:
6808
6809        return r;
6810}
6811
6812/*
6813 * Translate a guest virtual address to a guest physical address.
6814 */
6815int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
6816                                    struct kvm_translation *tr)
6817{
6818        unsigned long vaddr = tr->linear_address;
6819        gpa_t gpa;
6820        int idx;
6821
6822        idx = srcu_read_lock(&vcpu->kvm->srcu);
6823        gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
6824        srcu_read_unlock(&vcpu->kvm->srcu, idx);
6825        tr->physical_address = gpa;
6826        tr->valid = gpa != UNMAPPED_GVA;
6827        tr->writeable = 1;
6828        tr->usermode = 0;
6829
6830        return 0;
6831}
6832
6833int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6834{
6835        struct i387_fxsave_struct *fxsave =
6836                        &vcpu->arch.guest_fpu.state->fxsave;
6837
6838        memcpy(fpu->fpr, fxsave->st_space, 128);
6839        fpu->fcw = fxsave->cwd;
6840        fpu->fsw = fxsave->swd;
6841        fpu->ftwx = fxsave->twd;
6842        fpu->last_opcode = fxsave->fop;
6843        fpu->last_ip = fxsave->rip;
6844        fpu->last_dp = fxsave->rdp;
6845        memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
6846
6847        return 0;
6848}
6849
6850int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6851{
6852        struct i387_fxsave_struct *fxsave =
6853                        &vcpu->arch.guest_fpu.state->fxsave;
6854
6855        memcpy(fxsave->st_space, fpu->fpr, 128);
6856        fxsave->cwd = fpu->fcw;
6857        fxsave->swd = fpu->fsw;
6858        fxsave->twd = fpu->ftwx;
6859        fxsave->fop = fpu->last_opcode;
6860        fxsave->rip = fpu->last_ip;
6861        fxsave->rdp = fpu->last_dp;
6862        memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
6863
6864        return 0;
6865}
6866
6867int fx_init(struct kvm_vcpu *vcpu)
6868{
6869        int err;
6870
6871        err = fpu_alloc(&vcpu->arch.guest_fpu);
6872        if (err)
6873                return err;
6874
6875        fpu_finit(&vcpu->arch.guest_fpu);
6876
6877        /*
6878         * Ensure guest xcr0 is valid for loading
6879         */
6880        vcpu->arch.xcr0 = XSTATE_FP;
6881
6882        vcpu->arch.cr0 |= X86_CR0_ET;
6883
6884        return 0;
6885}
6886EXPORT_SYMBOL_GPL(fx_init);
6887
6888static void fx_free(struct kvm_vcpu *vcpu)
6889{
6890        fpu_free(&vcpu->arch.guest_fpu);
6891}
6892
6893void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
6894{
6895        if (vcpu->guest_fpu_loaded)
6896                return;
6897
6898        /*
6899         * Restore all possible states in the guest,
6900         * and assume host would use all available bits.
6901         * Guest xcr0 would be loaded later.
6902         */
6903        kvm_put_guest_xcr0(vcpu);
6904        vcpu->guest_fpu_loaded = 1;
6905        __kernel_fpu_begin();
6906        fpu_restore_checking(&vcpu->arch.guest_fpu);
6907        trace_kvm_fpu(1);
6908}
6909
6910void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
6911{
6912        kvm_put_guest_xcr0(vcpu);
6913
6914        if (!vcpu->guest_fpu_loaded)
6915                return;
6916
6917        vcpu->guest_fpu_loaded = 0;
6918        fpu_save_init(&vcpu->arch.guest_fpu);
6919        __kernel_fpu_end();
6920        ++vcpu->stat.fpu_reload;
6921        kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
6922        trace_kvm_fpu(0);
6923}
6924
6925void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
6926{
6927        kvmclock_reset(vcpu);
6928
6929        free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
6930        fx_free(vcpu);
6931        kvm_x86_ops->vcpu_free(vcpu);
6932}
6933
6934struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
6935                                                unsigned int id)
6936{
6937        if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
6938                printk_once(KERN_WARNING
6939                "kvm: SMP vm created on host with unstable TSC; "
6940                "guest TSC will not be reliable\n");
6941        return kvm_x86_ops->vcpu_create(kvm, id);
6942}
6943
6944int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
6945{
6946        int r;
6947
6948        vcpu->arch.mtrr_state.have_fixed = 1;
6949        r = vcpu_load(vcpu);
6950        if (r)
6951                return r;
6952        kvm_vcpu_reset(vcpu);
6953        kvm_mmu_setup(vcpu);
6954        vcpu_put(vcpu);
6955
6956        return r;
6957}
6958
6959int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
6960{
6961        int r;
6962        struct msr_data msr;
6963        struct kvm *kvm = vcpu->kvm;
6964
6965        r = vcpu_load(vcpu);
6966        if (r)
6967                return r;
6968        msr.data = 0x0;
6969        msr.index = MSR_IA32_TSC;
6970        msr.host_initiated = true;
6971        kvm_write_tsc(vcpu, &msr);
6972        vcpu_put(vcpu);
6973
6974        schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
6975                                        KVMCLOCK_SYNC_PERIOD);
6976
6977        return r;
6978}
6979
6980void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
6981{
6982        int r;
6983        vcpu->arch.apf.msr_val = 0;
6984
6985        r = vcpu_load(vcpu);
6986        BUG_ON(r);
6987        kvm_mmu_unload(vcpu);
6988        vcpu_put(vcpu);
6989
6990        fx_free(vcpu);
6991        kvm_x86_ops->vcpu_free(vcpu);
6992}
6993
6994void kvm_vcpu_reset(struct kvm_vcpu *vcpu)
6995{
6996        atomic_set(&vcpu->arch.nmi_queued, 0);
6997        vcpu->arch.nmi_pending = 0;
6998        vcpu->arch.nmi_injected = false;
6999        kvm_clear_interrupt_queue(vcpu);
7000        kvm_clear_exception_queue(vcpu);
7001
7002        memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7003        vcpu->arch.dr6 = DR6_INIT;
7004        kvm_update_dr6(vcpu);
7005        vcpu->arch.dr7 = DR7_FIXED_1;
7006        kvm_update_dr7(vcpu);
7007
7008        kvm_make_request(KVM_REQ_EVENT, vcpu);
7009        vcpu->arch.apf.msr_val = 0;
7010        vcpu->arch.st.msr_val = 0;
7011
7012        kvmclock_reset(vcpu);
7013
7014        kvm_clear_async_pf_completion_queue(vcpu);
7015        kvm_async_pf_hash_reset(vcpu);
7016        vcpu->arch.apf.halted = false;
7017
7018        kvm_pmu_reset(vcpu);
7019
7020        memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7021        vcpu->arch.regs_avail = ~0;
7022        vcpu->arch.regs_dirty = ~0;
7023
7024        kvm_x86_ops->vcpu_reset(vcpu);
7025}
7026
7027void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, unsigned int vector)
7028{
7029        struct kvm_segment cs;
7030
7031        kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7032        cs.selector = vector << 8;
7033        cs.base = vector << 12;
7034        kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7035        kvm_rip_write(vcpu, 0);
7036}
7037
7038int kvm_arch_hardware_enable(void)
7039{
7040        struct kvm *kvm;
7041        struct kvm_vcpu *vcpu;
7042        int i;
7043        int ret;
7044        u64 local_tsc;
7045        u64 max_tsc = 0;
7046        bool stable, backwards_tsc = false;
7047
7048        kvm_shared_msr_cpu_online();
7049        ret = kvm_x86_ops->hardware_enable();
7050        if (ret != 0)
7051                return ret;
7052
7053        local_tsc = native_read_tsc();
7054        stable = !check_tsc_unstable();
7055        list_for_each_entry(kvm, &vm_list, vm_list) {
7056                kvm_for_each_vcpu(i, vcpu, kvm) {
7057                        if (!stable && vcpu->cpu == smp_processor_id())
7058                                kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7059                        if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7060                                backwards_tsc = true;
7061                                if (vcpu->arch.last_host_tsc > max_tsc)
7062                                        max_tsc = vcpu->arch.last_host_tsc;
7063                        }
7064                }
7065        }
7066
7067        /*
7068         * Sometimes, even reliable TSCs go backwards.  This happens on
7069         * platforms that reset TSC during suspend or hibernate actions, but
7070         * maintain synchronization.  We must compensate.  Fortunately, we can
7071         * detect that condition here, which happens early in CPU bringup,
7072         * before any KVM threads can be running.  Unfortunately, we can't
7073         * bring the TSCs fully up to date with real time, as we aren't yet far
7074         * enough into CPU bringup that we know how much real time has actually
7075         * elapsed; our helper function, get_kernel_ns() will be using boot
7076         * variables that haven't been updated yet.
7077         *
7078         * So we simply find the maximum observed TSC above, then record the
7079         * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
7080         * the adjustment will be applied.  Note that we accumulate
7081         * adjustments, in case multiple suspend cycles happen before some VCPU
7082         * gets a chance to run again.  In the event that no KVM threads get a
7083         * chance to run, we will miss the entire elapsed period, as we'll have
7084         * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7085         * loose cycle time.  This isn't too big a deal, since the loss will be
7086         * uniform across all VCPUs (not to mention the scenario is extremely
7087         * unlikely). It is possible that a second hibernate recovery happens
7088         * much faster than a first, causing the observed TSC here to be
7089         * smaller; this would require additional padding adjustment, which is
7090         * why we set last_host_tsc to the local tsc observed here.
7091         *
7092         * N.B. - this code below runs only on platforms with reliable TSC,
7093         * as that is the only way backwards_tsc is set above.  Also note
7094         * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7095         * have the same delta_cyc adjustment applied if backwards_tsc
7096         * is detected.  Note further, this adjustment is only done once,
7097         * as we reset last_host_tsc on all VCPUs to stop this from being
7098         * called multiple times (one for each physical CPU bringup).
7099         *
7100         * Platforms with unreliable TSCs don't have to deal with this, they
7101         * will be compensated by the logic in vcpu_load, which sets the TSC to
7102         * catchup mode.  This will catchup all VCPUs to real time, but cannot
7103         * guarantee that they stay in perfect synchronization.
7104         */
7105        if (backwards_tsc) {
7106                u64 delta_cyc = max_tsc - local_tsc;
7107                backwards_tsc_observed = true;
7108                list_for_each_entry(kvm, &vm_list, vm_list) {
7109                        kvm_for_each_vcpu(i, vcpu, kvm) {
7110                                vcpu->arch.tsc_offset_adjustment += delta_cyc;
7111                                vcpu->arch.last_host_tsc = local_tsc;
7112                                kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7113                        }
7114
7115                        /*
7116                         * We have to disable TSC offset matching.. if you were
7117                         * booting a VM while issuing an S4 host suspend....
7118                         * you may have some problem.  Solving this issue is
7119                         * left as an exercise to the reader.
7120                         */
7121                        kvm->arch.last_tsc_nsec = 0;
7122                        kvm->arch.last_tsc_write = 0;
7123                }
7124
7125        }
7126        return 0;
7127}
7128
7129void kvm_arch_hardware_disable(void)
7130{
7131        kvm_x86_ops->hardware_disable();
7132        drop_user_return_notifiers();
7133}
7134
7135int kvm_arch_hardware_setup(void)
7136{
7137        return kvm_x86_ops->hardware_setup();
7138}
7139
7140void kvm_arch_hardware_unsetup(void)
7141{
7142        kvm_x86_ops->hardware_unsetup();
7143}
7144
7145void kvm_arch_check_processor_compat(void *rtn)
7146{
7147        kvm_x86_ops->check_processor_compatibility(rtn);
7148}
7149
7150bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
7151{
7152        return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
7153}
7154
7155struct static_key kvm_no_apic_vcpu __read_mostly;
7156
7157int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7158{
7159        struct page *page;
7160        struct kvm *kvm;
7161        int r;
7162
7163        BUG_ON(vcpu->kvm == NULL);
7164        kvm = vcpu->kvm;
7165
7166        vcpu->arch.pv.pv_unhalted = false;
7167        vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7168        if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
7169                vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7170        else
7171                vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7172
7173        page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7174        if (!page) {
7175                r = -ENOMEM;
7176                goto fail;
7177        }
7178        vcpu->arch.pio_data = page_address(page);
7179
7180        kvm_set_tsc_khz(vcpu, max_tsc_khz);
7181
7182        r = kvm_mmu_create(vcpu);
7183        if (r < 0)
7184                goto fail_free_pio_data;
7185
7186        if (irqchip_in_kernel(kvm)) {
7187                r = kvm_create_lapic(vcpu);
7188                if (r < 0)
7189                        goto fail_mmu_destroy;
7190        } else
7191                static_key_slow_inc(&kvm_no_apic_vcpu);
7192
7193        vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7194                                       GFP_KERNEL);
7195        if (!vcpu->arch.mce_banks) {
7196                r = -ENOMEM;
7197                goto fail_free_lapic;
7198        }
7199        vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7200
7201        if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7202                r = -ENOMEM;
7203                goto fail_free_mce_banks;
7204        }
7205
7206        r = fx_init(vcpu);
7207        if (r)
7208                goto fail_free_wbinvd_dirty_mask;
7209
7210        vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7211        vcpu->arch.pv_time_enabled = false;
7212
7213        vcpu->arch.guest_supported_xcr0 = 0;
7214        vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7215
7216        kvm_async_pf_hash_reset(vcpu);
7217        kvm_pmu_init(vcpu);
7218
7219        return 0;
7220fail_free_wbinvd_dirty_mask:
7221        free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7222fail_free_mce_banks:
7223        kfree(vcpu->arch.mce_banks);
7224fail_free_lapic:
7225        kvm_free_lapic(vcpu);
7226fail_mmu_destroy:
7227        kvm_mmu_destroy(vcpu);
7228fail_free_pio_data:
7229        free_page((unsigned long)vcpu->arch.pio_data);
7230fail:
7231        return r;
7232}
7233
7234void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7235{
7236        int idx;
7237
7238        kvm_pmu_destroy(vcpu);
7239        kfree(vcpu->arch.mce_banks);
7240        kvm_free_lapic(vcpu);
7241        idx = srcu_read_lock(&vcpu->kvm->srcu);
7242        kvm_mmu_destroy(vcpu);
7243        srcu_read_unlock(&vcpu->kvm->srcu, idx);
7244        free_page((unsigned long)vcpu->arch.pio_data);
7245        if (!irqchip_in_kernel(vcpu->kvm))
7246                static_key_slow_dec(&kvm_no_apic_vcpu);
7247}
7248
7249void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
7250{
7251        kvm_x86_ops->sched_in(vcpu, cpu);
7252}
7253
7254int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7255{
7256        if (type)
7257                return -EINVAL;
7258
7259        INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7260        INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7261        INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
7262        atomic_set(&kvm->arch.noncoherent_dma_count, 0);
7263
7264        /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7265        set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7266        /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7267        set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
7268                &kvm->arch.irq_sources_bitmap);
7269
7270        raw_spin_lock_init(&kvm->arch.tsc_write_lock);
7271        mutex_init(&kvm->arch.apic_map_lock);
7272        spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
7273
7274        pvclock_update_vm_gtod_copy(kvm);
7275
7276        INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
7277        INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
7278
7279        return 0;
7280}
7281
7282static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7283{
7284        int r;
7285        r = vcpu_load(vcpu);
7286        BUG_ON(r);
7287        kvm_mmu_unload(vcpu);
7288        vcpu_put(vcpu);
7289}
7290
7291static void kvm_free_vcpus(struct kvm *kvm)
7292{
7293        unsigned int i;
7294        struct kvm_vcpu *vcpu;
7295
7296        /*
7297         * Unpin any mmu pages first.
7298         */
7299        kvm_for_each_vcpu(i, vcpu, kvm) {
7300                kvm_clear_async_pf_completion_queue(vcpu);
7301                kvm_unload_vcpu_mmu(vcpu);
7302        }
7303        kvm_for_each_vcpu(i, vcpu, kvm)
7304                kvm_arch_vcpu_free(vcpu);
7305
7306        mutex_lock(&kvm->lock);
7307        for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7308                kvm->vcpus[i] = NULL;
7309
7310        atomic_set(&kvm->online_vcpus, 0);
7311        mutex_unlock(&kvm->lock);
7312}
7313
7314void kvm_arch_sync_events(struct kvm *kvm)
7315{
7316        cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
7317        cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
7318        kvm_free_all_assigned_devices(kvm);
7319        kvm_free_pit(kvm);
7320}
7321
7322void kvm_arch_destroy_vm(struct kvm *kvm)
7323{
7324        if (current->mm == kvm->mm) {
7325                /*
7326                 * Free memory regions allocated on behalf of userspace,
7327                 * unless the the memory map has changed due to process exit
7328                 * or fd copying.
7329                 */
7330                struct kvm_userspace_memory_region mem;
7331                memset(&mem, 0, sizeof(mem));
7332                mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
7333                kvm_set_memory_region(kvm, &mem);
7334
7335                mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
7336                kvm_set_memory_region(kvm, &mem);
7337
7338                mem.slot = TSS_PRIVATE_MEMSLOT;
7339                kvm_set_memory_region(kvm, &mem);
7340        }
7341        kvm_iommu_unmap_guest(kvm);
7342        kfree(kvm->arch.vpic);
7343        kfree(kvm->arch.vioapic);
7344        kvm_free_vcpus(kvm);
7345        kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
7346}
7347
7348void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
7349                           struct kvm_memory_slot *dont)
7350{
7351        int i;
7352
7353        for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7354                if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
7355                        kvm_kvfree(free->arch.rmap[i]);
7356                        free->arch.rmap[i] = NULL;
7357                }
7358                if (i == 0)
7359                        continue;
7360
7361                if (!dont || free->arch.lpage_info[i - 1] !=
7362                             dont->arch.lpage_info[i - 1]) {
7363                        kvm_kvfree(free->arch.lpage_info[i - 1]);
7364                        free->arch.lpage_info[i - 1] = NULL;
7365                }
7366        }
7367}
7368
7369int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
7370                            unsigned long npages)
7371{
7372        int i;
7373
7374        for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7375                unsigned long ugfn;
7376                int lpages;
7377                int level = i + 1;
7378
7379                lpages = gfn_to_index(slot->base_gfn + npages - 1,
7380                                      slot->base_gfn, level) + 1;
7381
7382                slot->arch.rmap[i] =
7383                        kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
7384                if (!slot->arch.rmap[i])
7385                        goto out_free;
7386                if (i == 0)
7387                        continue;
7388
7389                slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
7390                                        sizeof(*slot->arch.lpage_info[i - 1]));
7391                if (!slot->arch.lpage_info[i - 1])
7392                        goto out_free;
7393
7394                if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
7395                        slot->arch.lpage_info[i - 1][0].write_count = 1;
7396                if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
7397                        slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
7398                ugfn = slot->userspace_addr >> PAGE_SHIFT;
7399                /*
7400                 * If the gfn and userspace address are not aligned wrt each
7401                 * other, or if explicitly asked to, disable large page
7402                 * support for this slot
7403                 */
7404                if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
7405                    !kvm_largepages_enabled()) {
7406                        unsigned long j;
7407
7408                        for (j = 0; j < lpages; ++j)
7409                                slot->arch.lpage_info[i - 1][j].write_count = 1;
7410                }
7411        }
7412
7413        return 0;
7414
7415out_free:
7416        for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7417                kvm_kvfree(slot->arch.rmap[i]);
7418                slot->arch.rmap[i] = NULL;
7419                if (i == 0)
7420                        continue;
7421
7422                kvm_kvfree(slot->arch.lpage_info[i - 1]);
7423                slot->arch.lpage_info[i - 1] = NULL;
7424        }
7425        return -ENOMEM;
7426}
7427
7428void kvm_arch_memslots_updated(struct kvm *kvm)
7429{
7430        /*
7431         * memslots->generation has been incremented.
7432         * mmio generation may have reached its maximum value.
7433         */
7434        kvm_mmu_invalidate_mmio_sptes(kvm);
7435}
7436
7437int kvm_arch_prepare_memory_region(struct kvm *kvm,
7438                                struct kvm_memory_slot *memslot,
7439                                struct kvm_userspace_memory_region *mem,
7440                                enum kvm_mr_change change)
7441{
7442        /*
7443         * Only private memory slots need to be mapped here since
7444         * KVM_SET_MEMORY_REGION ioctl is no longer supported.
7445         */
7446        if ((memslot->id >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_CREATE)) {
7447                unsigned long userspace_addr;
7448
7449                /*
7450                 * MAP_SHARED to prevent internal slot pages from being moved
7451                 * by fork()/COW.
7452                 */
7453                userspace_addr = vm_mmap(NULL, 0, memslot->npages * PAGE_SIZE,
7454                                         PROT_READ | PROT_WRITE,
7455                                         MAP_SHARED | MAP_ANONYMOUS, 0);
7456
7457                if (IS_ERR((void *)userspace_addr))
7458                        return PTR_ERR((void *)userspace_addr);
7459
7460                memslot->userspace_addr = userspace_addr;
7461        }
7462
7463        return 0;
7464}
7465
7466void kvm_arch_commit_memory_region(struct kvm *kvm,
7467                                struct kvm_userspace_memory_region *mem,
7468                                const struct kvm_memory_slot *old,
7469                                enum kvm_mr_change change)
7470{
7471
7472        int nr_mmu_pages = 0;
7473
7474        if ((mem->slot >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_DELETE)) {
7475                int ret;
7476
7477                ret = vm_munmap(old->userspace_addr,
7478                                old->npages * PAGE_SIZE);
7479                if (ret < 0)
7480                        printk(KERN_WARNING
7481                               "kvm_vm_ioctl_set_memory_region: "
7482                               "failed to munmap memory\n");
7483        }
7484
7485        if (!kvm->arch.n_requested_mmu_pages)
7486                nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
7487
7488        if (nr_mmu_pages)
7489                kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
7490        /*
7491         * Write protect all pages for dirty logging.
7492         *
7493         * All the sptes including the large sptes which point to this
7494         * slot are set to readonly. We can not create any new large
7495         * spte on this slot until the end of the logging.
7496         *
7497         * See the comments in fast_page_fault().
7498         */
7499        if ((change != KVM_MR_DELETE) && (mem->flags & KVM_MEM_LOG_DIRTY_PAGES))
7500                kvm_mmu_slot_remove_write_access(kvm, mem->slot);
7501}
7502
7503void kvm_arch_flush_shadow_all(struct kvm *kvm)
7504{
7505        kvm_mmu_invalidate_zap_all_pages(kvm);
7506}
7507
7508void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
7509                                   struct kvm_memory_slot *slot)
7510{
7511        kvm_mmu_invalidate_zap_all_pages(kvm);
7512}
7513
7514int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
7515{
7516        if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7517                kvm_x86_ops->check_nested_events(vcpu, false);
7518
7519        return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7520                !vcpu->arch.apf.halted)
7521                || !list_empty_careful(&vcpu->async_pf.done)
7522                || kvm_apic_has_events(vcpu)
7523                || vcpu->arch.pv.pv_unhalted
7524                || atomic_read(&vcpu->arch.nmi_queued) ||
7525                (kvm_arch_interrupt_allowed(vcpu) &&
7526                 kvm_cpu_has_interrupt(vcpu));
7527}
7528
7529int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
7530{
7531        return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
7532}
7533
7534int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
7535{
7536        return kvm_x86_ops->interrupt_allowed(vcpu);
7537}
7538
7539bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
7540{
7541        unsigned long current_rip = kvm_rip_read(vcpu) +
7542                get_segment_base(vcpu, VCPU_SREG_CS);
7543
7544        return current_rip == linear_rip;
7545}
7546EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
7547
7548unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
7549{
7550        unsigned long rflags;
7551
7552        rflags = kvm_x86_ops->get_rflags(vcpu);
7553        if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7554                rflags &= ~X86_EFLAGS_TF;
7555        return rflags;
7556}
7557EXPORT_SYMBOL_GPL(kvm_get_rflags);
7558
7559static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7560{
7561        if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
7562            kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
7563                rflags |= X86_EFLAGS_TF;
7564        kvm_x86_ops->set_rflags(vcpu, rflags);
7565}
7566
7567void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7568{
7569        __kvm_set_rflags(vcpu, rflags);
7570        kvm_make_request(KVM_REQ_EVENT, vcpu);
7571}
7572EXPORT_SYMBOL_GPL(kvm_set_rflags);
7573
7574void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
7575{
7576        int r;
7577
7578        if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
7579              work->wakeup_all)
7580                return;
7581
7582        r = kvm_mmu_reload(vcpu);
7583        if (unlikely(r))
7584                return;
7585
7586        if (!vcpu->arch.mmu.direct_map &&
7587              work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
7588                return;
7589
7590        vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
7591}
7592
7593static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
7594{
7595        return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
7596}
7597
7598static inline u32 kvm_async_pf_next_probe(u32 key)
7599{
7600        return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
7601}
7602
7603static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7604{
7605        u32 key = kvm_async_pf_hash_fn(gfn);
7606
7607        while (vcpu->arch.apf.gfns[key] != ~0)
7608                key = kvm_async_pf_next_probe(key);
7609
7610        vcpu->arch.apf.gfns[key] = gfn;
7611}
7612
7613static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
7614{
7615        int i;
7616        u32 key = kvm_async_pf_hash_fn(gfn);
7617
7618        for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
7619                     (vcpu->arch.apf.gfns[key] != gfn &&
7620                      vcpu->arch.apf.gfns[key] != ~0); i++)
7621                key = kvm_async_pf_next_probe(key);
7622
7623        return key;
7624}
7625
7626bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7627{
7628        return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
7629}
7630
7631static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7632{
7633        u32 i, j, k;
7634
7635        i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
7636        while (true) {
7637                vcpu->arch.apf.gfns[i] = ~0;
7638                do {
7639                        j = kvm_async_pf_next_probe(j);
7640                        if (vcpu->arch.apf.gfns[j] == ~0)
7641                                return;
7642                        k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
7643                        /*
7644                         * k lies cyclically in ]i,j]
7645                         * |    i.k.j |
7646                         * |....j i.k.| or  |.k..j i...|
7647                         */
7648                } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
7649                vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
7650                i = j;
7651        }
7652}
7653
7654static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
7655{
7656
7657        return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
7658                                      sizeof(val));
7659}
7660
7661void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
7662                                     struct kvm_async_pf *work)
7663{
7664        struct x86_exception fault;
7665
7666        trace_kvm_async_pf_not_present(work->arch.token, work->gva);
7667        kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
7668
7669        if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
7670            (vcpu->arch.apf.send_user_only &&
7671             kvm_x86_ops->get_cpl(vcpu) == 0))
7672                kvm_make_request(KVM_REQ_APF_HALT, vcpu);
7673        else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
7674                fault.vector = PF_VECTOR;
7675                fault.error_code_valid = true;
7676                fault.error_code = 0;
7677                fault.nested_page_fault = false;
7678                fault.address = work->arch.token;
7679                kvm_inject_page_fault(vcpu, &fault);
7680        }
7681}
7682
7683void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
7684                                 struct kvm_async_pf *work)
7685{
7686        struct x86_exception fault;
7687
7688        trace_kvm_async_pf_ready(work->arch.token, work->gva);
7689        if (work->wakeup_all)
7690                work->arch.token = ~0; /* broadcast wakeup */
7691        else
7692                kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
7693
7694        if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
7695            !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
7696                fault.vector = PF_VECTOR;
7697                fault.error_code_valid = true;
7698                fault.error_code = 0;
7699                fault.nested_page_fault = false;
7700                fault.address = work->arch.token;
7701                kvm_inject_page_fault(vcpu, &fault);
7702        }
7703        vcpu->arch.apf.halted = false;
7704        vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7705}
7706
7707bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
7708{
7709        if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
7710                return true;
7711        else
7712                return !kvm_event_needs_reinjection(vcpu) &&
7713                        kvm_x86_ops->interrupt_allowed(vcpu);
7714}
7715
7716void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
7717{
7718        atomic_inc(&kvm->arch.noncoherent_dma_count);
7719}
7720EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
7721
7722void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
7723{
7724        atomic_dec(&kvm->arch.noncoherent_dma_count);
7725}
7726EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
7727
7728bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
7729{
7730        return atomic_read(&kvm->arch.noncoherent_dma_count);
7731}
7732EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
7733
7734EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
7735EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
7736EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
7737EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
7738EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
7739EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
7740EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
7741EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
7742EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
7743EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
7744EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
7745EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
7746EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
7747EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
7748