linux/drivers/ata/sata_mv.c
<<
>>
Prefs
   1/*
   2 * sata_mv.c - Marvell SATA support
   3 *
   4 * Copyright 2008-2009: Marvell Corporation, all rights reserved.
   5 * Copyright 2005: EMC Corporation, all rights reserved.
   6 * Copyright 2005 Red Hat, Inc.  All rights reserved.
   7 *
   8 * Originally written by Brett Russ.
   9 * Extensive overhaul and enhancement by Mark Lord <mlord@pobox.com>.
  10 *
  11 * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
  12 *
  13 * This program is free software; you can redistribute it and/or modify
  14 * it under the terms of the GNU General Public License as published by
  15 * the Free Software Foundation; version 2 of the License.
  16 *
  17 * This program is distributed in the hope that it will be useful,
  18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  20 * GNU General Public License for more details.
  21 *
  22 * You should have received a copy of the GNU General Public License
  23 * along with this program; if not, write to the Free Software
  24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  25 *
  26 */
  27
  28/*
  29 * sata_mv TODO list:
  30 *
  31 * --> Develop a low-power-consumption strategy, and implement it.
  32 *
  33 * --> Add sysfs attributes for per-chip / per-HC IRQ coalescing thresholds.
  34 *
  35 * --> [Experiment, Marvell value added] Is it possible to use target
  36 *       mode to cross-connect two Linux boxes with Marvell cards?  If so,
  37 *       creating LibATA target mode support would be very interesting.
  38 *
  39 *       Target mode, for those without docs, is the ability to directly
  40 *       connect two SATA ports.
  41 */
  42
  43/*
  44 * 80x1-B2 errata PCI#11:
  45 *
  46 * Users of the 6041/6081 Rev.B2 chips (current is C0)
  47 * should be careful to insert those cards only onto PCI-X bus #0,
  48 * and only in device slots 0..7, not higher.  The chips may not
  49 * work correctly otherwise  (note: this is a pretty rare condition).
  50 */
  51
  52#include <linux/kernel.h>
  53#include <linux/module.h>
  54#include <linux/pci.h>
  55#include <linux/init.h>
  56#include <linux/blkdev.h>
  57#include <linux/delay.h>
  58#include <linux/interrupt.h>
  59#include <linux/dmapool.h>
  60#include <linux/dma-mapping.h>
  61#include <linux/device.h>
  62#include <linux/clk.h>
  63#include <linux/phy/phy.h>
  64#include <linux/platform_device.h>
  65#include <linux/ata_platform.h>
  66#include <linux/mbus.h>
  67#include <linux/bitops.h>
  68#include <linux/gfp.h>
  69#include <linux/of.h>
  70#include <linux/of_irq.h>
  71#include <scsi/scsi_host.h>
  72#include <scsi/scsi_cmnd.h>
  73#include <scsi/scsi_device.h>
  74#include <linux/libata.h>
  75
  76#define DRV_NAME        "sata_mv"
  77#define DRV_VERSION     "1.28"
  78
  79/*
  80 * module options
  81 */
  82
  83#ifdef CONFIG_PCI
  84static int msi;
  85module_param(msi, int, S_IRUGO);
  86MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)");
  87#endif
  88
  89static int irq_coalescing_io_count;
  90module_param(irq_coalescing_io_count, int, S_IRUGO);
  91MODULE_PARM_DESC(irq_coalescing_io_count,
  92                 "IRQ coalescing I/O count threshold (0..255)");
  93
  94static int irq_coalescing_usecs;
  95module_param(irq_coalescing_usecs, int, S_IRUGO);
  96MODULE_PARM_DESC(irq_coalescing_usecs,
  97                 "IRQ coalescing time threshold in usecs");
  98
  99enum {
 100        /* BAR's are enumerated in terms of pci_resource_start() terms */
 101        MV_PRIMARY_BAR          = 0,    /* offset 0x10: memory space */
 102        MV_IO_BAR               = 2,    /* offset 0x18: IO space */
 103        MV_MISC_BAR             = 3,    /* offset 0x1c: FLASH, NVRAM, SRAM */
 104
 105        MV_MAJOR_REG_AREA_SZ    = 0x10000,      /* 64KB */
 106        MV_MINOR_REG_AREA_SZ    = 0x2000,       /* 8KB */
 107
 108        /* For use with both IRQ coalescing methods ("all ports" or "per-HC" */
 109        COAL_CLOCKS_PER_USEC    = 150,          /* for calculating COAL_TIMEs */
 110        MAX_COAL_TIME_THRESHOLD = ((1 << 24) - 1), /* internal clocks count */
 111        MAX_COAL_IO_COUNT       = 255,          /* completed I/O count */
 112
 113        MV_PCI_REG_BASE         = 0,
 114
 115        /*
 116         * Per-chip ("all ports") interrupt coalescing feature.
 117         * This is only for GEN_II / GEN_IIE hardware.
 118         *
 119         * Coalescing defers the interrupt until either the IO_THRESHOLD
 120         * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
 121         */
 122        COAL_REG_BASE           = 0x18000,
 123        IRQ_COAL_CAUSE          = (COAL_REG_BASE + 0x08),
 124        ALL_PORTS_COAL_IRQ      = (1 << 4),     /* all ports irq event */
 125
 126        IRQ_COAL_IO_THRESHOLD   = (COAL_REG_BASE + 0xcc),
 127        IRQ_COAL_TIME_THRESHOLD = (COAL_REG_BASE + 0xd0),
 128
 129        /*
 130         * Registers for the (unused here) transaction coalescing feature:
 131         */
 132        TRAN_COAL_CAUSE_LO      = (COAL_REG_BASE + 0x88),
 133        TRAN_COAL_CAUSE_HI      = (COAL_REG_BASE + 0x8c),
 134
 135        SATAHC0_REG_BASE        = 0x20000,
 136        FLASH_CTL               = 0x1046c,
 137        GPIO_PORT_CTL           = 0x104f0,
 138        RESET_CFG               = 0x180d8,
 139
 140        MV_PCI_REG_SZ           = MV_MAJOR_REG_AREA_SZ,
 141        MV_SATAHC_REG_SZ        = MV_MAJOR_REG_AREA_SZ,
 142        MV_SATAHC_ARBTR_REG_SZ  = MV_MINOR_REG_AREA_SZ,         /* arbiter */
 143        MV_PORT_REG_SZ          = MV_MINOR_REG_AREA_SZ,
 144
 145        MV_MAX_Q_DEPTH          = 32,
 146        MV_MAX_Q_DEPTH_MASK     = MV_MAX_Q_DEPTH - 1,
 147
 148        /* CRQB needs alignment on a 1KB boundary. Size == 1KB
 149         * CRPB needs alignment on a 256B boundary. Size == 256B
 150         * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
 151         */
 152        MV_CRQB_Q_SZ            = (32 * MV_MAX_Q_DEPTH),
 153        MV_CRPB_Q_SZ            = (8 * MV_MAX_Q_DEPTH),
 154        MV_MAX_SG_CT            = 256,
 155        MV_SG_TBL_SZ            = (16 * MV_MAX_SG_CT),
 156
 157        /* Determine hc from 0-7 port: hc = port >> MV_PORT_HC_SHIFT */
 158        MV_PORT_HC_SHIFT        = 2,
 159        MV_PORTS_PER_HC         = (1 << MV_PORT_HC_SHIFT), /* 4 */
 160        /* Determine hc port from 0-7 port: hardport = port & MV_PORT_MASK */
 161        MV_PORT_MASK            = (MV_PORTS_PER_HC - 1),   /* 3 */
 162
 163        /* Host Flags */
 164        MV_FLAG_DUAL_HC         = (1 << 30),  /* two SATA Host Controllers */
 165
 166        MV_COMMON_FLAGS         = ATA_FLAG_SATA | ATA_FLAG_PIO_POLLING,
 167
 168        MV_GEN_I_FLAGS          = MV_COMMON_FLAGS | ATA_FLAG_NO_ATAPI,
 169
 170        MV_GEN_II_FLAGS         = MV_COMMON_FLAGS | ATA_FLAG_NCQ |
 171                                  ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA,
 172
 173        MV_GEN_IIE_FLAGS        = MV_GEN_II_FLAGS | ATA_FLAG_AN,
 174
 175        CRQB_FLAG_READ          = (1 << 0),
 176        CRQB_TAG_SHIFT          = 1,
 177        CRQB_IOID_SHIFT         = 6,    /* CRQB Gen-II/IIE IO Id shift */
 178        CRQB_PMP_SHIFT          = 12,   /* CRQB Gen-II/IIE PMP shift */
 179        CRQB_HOSTQ_SHIFT        = 17,   /* CRQB Gen-II/IIE HostQueTag shift */
 180        CRQB_CMD_ADDR_SHIFT     = 8,
 181        CRQB_CMD_CS             = (0x2 << 11),
 182        CRQB_CMD_LAST           = (1 << 15),
 183
 184        CRPB_FLAG_STATUS_SHIFT  = 8,
 185        CRPB_IOID_SHIFT_6       = 5,    /* CRPB Gen-II IO Id shift */
 186        CRPB_IOID_SHIFT_7       = 7,    /* CRPB Gen-IIE IO Id shift */
 187
 188        EPRD_FLAG_END_OF_TBL    = (1 << 31),
 189
 190        /* PCI interface registers */
 191
 192        MV_PCI_COMMAND          = 0xc00,
 193        MV_PCI_COMMAND_MWRCOM   = (1 << 4),     /* PCI Master Write Combining */
 194        MV_PCI_COMMAND_MRDTRIG  = (1 << 7),     /* PCI Master Read Trigger */
 195
 196        PCI_MAIN_CMD_STS        = 0xd30,
 197        STOP_PCI_MASTER         = (1 << 2),
 198        PCI_MASTER_EMPTY        = (1 << 3),
 199        GLOB_SFT_RST            = (1 << 4),
 200
 201        MV_PCI_MODE             = 0xd00,
 202        MV_PCI_MODE_MASK        = 0x30,
 203
 204        MV_PCI_EXP_ROM_BAR_CTL  = 0xd2c,
 205        MV_PCI_DISC_TIMER       = 0xd04,
 206        MV_PCI_MSI_TRIGGER      = 0xc38,
 207        MV_PCI_SERR_MASK        = 0xc28,
 208        MV_PCI_XBAR_TMOUT       = 0x1d04,
 209        MV_PCI_ERR_LOW_ADDRESS  = 0x1d40,
 210        MV_PCI_ERR_HIGH_ADDRESS = 0x1d44,
 211        MV_PCI_ERR_ATTRIBUTE    = 0x1d48,
 212        MV_PCI_ERR_COMMAND      = 0x1d50,
 213
 214        PCI_IRQ_CAUSE           = 0x1d58,
 215        PCI_IRQ_MASK            = 0x1d5c,
 216        PCI_UNMASK_ALL_IRQS     = 0x7fffff,     /* bits 22-0 */
 217
 218        PCIE_IRQ_CAUSE          = 0x1900,
 219        PCIE_IRQ_MASK           = 0x1910,
 220        PCIE_UNMASK_ALL_IRQS    = 0x40a,        /* assorted bits */
 221
 222        /* Host Controller Main Interrupt Cause/Mask registers (1 per-chip) */
 223        PCI_HC_MAIN_IRQ_CAUSE   = 0x1d60,
 224        PCI_HC_MAIN_IRQ_MASK    = 0x1d64,
 225        SOC_HC_MAIN_IRQ_CAUSE   = 0x20020,
 226        SOC_HC_MAIN_IRQ_MASK    = 0x20024,
 227        ERR_IRQ                 = (1 << 0),     /* shift by (2 * port #) */
 228        DONE_IRQ                = (1 << 1),     /* shift by (2 * port #) */
 229        HC0_IRQ_PEND            = 0x1ff,        /* bits 0-8 = HC0's ports */
 230        HC_SHIFT                = 9,            /* bits 9-17 = HC1's ports */
 231        DONE_IRQ_0_3            = 0x000000aa,   /* DONE_IRQ ports 0,1,2,3 */
 232        DONE_IRQ_4_7            = (DONE_IRQ_0_3 << HC_SHIFT),  /* 4,5,6,7 */
 233        PCI_ERR                 = (1 << 18),
 234        TRAN_COAL_LO_DONE       = (1 << 19),    /* transaction coalescing */
 235        TRAN_COAL_HI_DONE       = (1 << 20),    /* transaction coalescing */
 236        PORTS_0_3_COAL_DONE     = (1 << 8),     /* HC0 IRQ coalescing */
 237        PORTS_4_7_COAL_DONE     = (1 << 17),    /* HC1 IRQ coalescing */
 238        ALL_PORTS_COAL_DONE     = (1 << 21),    /* GEN_II(E) IRQ coalescing */
 239        GPIO_INT                = (1 << 22),
 240        SELF_INT                = (1 << 23),
 241        TWSI_INT                = (1 << 24),
 242        HC_MAIN_RSVD            = (0x7f << 25), /* bits 31-25 */
 243        HC_MAIN_RSVD_5          = (0x1fff << 19), /* bits 31-19 */
 244        HC_MAIN_RSVD_SOC        = (0x3fffffb << 6),     /* bits 31-9, 7-6 */
 245
 246        /* SATAHC registers */
 247        HC_CFG                  = 0x00,
 248
 249        HC_IRQ_CAUSE            = 0x14,
 250        DMA_IRQ                 = (1 << 0),     /* shift by port # */
 251        HC_COAL_IRQ             = (1 << 4),     /* IRQ coalescing */
 252        DEV_IRQ                 = (1 << 8),     /* shift by port # */
 253
 254        /*
 255         * Per-HC (Host-Controller) interrupt coalescing feature.
 256         * This is present on all chip generations.
 257         *
 258         * Coalescing defers the interrupt until either the IO_THRESHOLD
 259         * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
 260         */
 261        HC_IRQ_COAL_IO_THRESHOLD        = 0x000c,
 262        HC_IRQ_COAL_TIME_THRESHOLD      = 0x0010,
 263
 264        SOC_LED_CTRL            = 0x2c,
 265        SOC_LED_CTRL_BLINK      = (1 << 0),     /* Active LED blink */
 266        SOC_LED_CTRL_ACT_PRESENCE = (1 << 2),   /* Multiplex dev presence */
 267                                                /*  with dev activity LED */
 268
 269        /* Shadow block registers */
 270        SHD_BLK                 = 0x100,
 271        SHD_CTL_AST             = 0x20,         /* ofs from SHD_BLK */
 272
 273        /* SATA registers */
 274        SATA_STATUS             = 0x300,  /* ctrl, err regs follow status */
 275        SATA_ACTIVE             = 0x350,
 276        FIS_IRQ_CAUSE           = 0x364,
 277        FIS_IRQ_CAUSE_AN        = (1 << 9),     /* async notification */
 278
 279        LTMODE                  = 0x30c,        /* requires read-after-write */
 280        LTMODE_BIT8             = (1 << 8),     /* unknown, but necessary */
 281
 282        PHY_MODE2               = 0x330,
 283        PHY_MODE3               = 0x310,
 284
 285        PHY_MODE4               = 0x314,        /* requires read-after-write */
 286        PHY_MODE4_CFG_MASK      = 0x00000003,   /* phy internal config field */
 287        PHY_MODE4_CFG_VALUE     = 0x00000001,   /* phy internal config field */
 288        PHY_MODE4_RSVD_ZEROS    = 0x5de3fffa,   /* Gen2e always write zeros */
 289        PHY_MODE4_RSVD_ONES     = 0x00000005,   /* Gen2e always write ones */
 290
 291        SATA_IFCTL              = 0x344,
 292        SATA_TESTCTL            = 0x348,
 293        SATA_IFSTAT             = 0x34c,
 294        VENDOR_UNIQUE_FIS       = 0x35c,
 295
 296        FISCFG                  = 0x360,
 297        FISCFG_WAIT_DEV_ERR     = (1 << 8),     /* wait for host on DevErr */
 298        FISCFG_SINGLE_SYNC      = (1 << 16),    /* SYNC on DMA activation */
 299
 300        PHY_MODE9_GEN2          = 0x398,
 301        PHY_MODE9_GEN1          = 0x39c,
 302        PHYCFG_OFS              = 0x3a0,        /* only in 65n devices */
 303
 304        MV5_PHY_MODE            = 0x74,
 305        MV5_LTMODE              = 0x30,
 306        MV5_PHY_CTL             = 0x0C,
 307        SATA_IFCFG              = 0x050,
 308        LP_PHY_CTL              = 0x058,
 309
 310        MV_M2_PREAMP_MASK       = 0x7e0,
 311
 312        /* Port registers */
 313        EDMA_CFG                = 0,
 314        EDMA_CFG_Q_DEPTH        = 0x1f,         /* max device queue depth */
 315        EDMA_CFG_NCQ            = (1 << 5),     /* for R/W FPDMA queued */
 316        EDMA_CFG_NCQ_GO_ON_ERR  = (1 << 14),    /* continue on error */
 317        EDMA_CFG_RD_BRST_EXT    = (1 << 11),    /* read burst 512B */
 318        EDMA_CFG_WR_BUFF_LEN    = (1 << 13),    /* write buffer 512B */
 319        EDMA_CFG_EDMA_FBS       = (1 << 16),    /* EDMA FIS-Based Switching */
 320        EDMA_CFG_FBS            = (1 << 26),    /* FIS-Based Switching */
 321
 322        EDMA_ERR_IRQ_CAUSE      = 0x8,
 323        EDMA_ERR_IRQ_MASK       = 0xc,
 324        EDMA_ERR_D_PAR          = (1 << 0),     /* UDMA data parity err */
 325        EDMA_ERR_PRD_PAR        = (1 << 1),     /* UDMA PRD parity err */
 326        EDMA_ERR_DEV            = (1 << 2),     /* device error */
 327        EDMA_ERR_DEV_DCON       = (1 << 3),     /* device disconnect */
 328        EDMA_ERR_DEV_CON        = (1 << 4),     /* device connected */
 329        EDMA_ERR_SERR           = (1 << 5),     /* SError bits [WBDST] raised */
 330        EDMA_ERR_SELF_DIS       = (1 << 7),     /* Gen II/IIE self-disable */
 331        EDMA_ERR_SELF_DIS_5     = (1 << 8),     /* Gen I self-disable */
 332        EDMA_ERR_BIST_ASYNC     = (1 << 8),     /* BIST FIS or Async Notify */
 333        EDMA_ERR_TRANS_IRQ_7    = (1 << 8),     /* Gen IIE transprt layer irq */
 334        EDMA_ERR_CRQB_PAR       = (1 << 9),     /* CRQB parity error */
 335        EDMA_ERR_CRPB_PAR       = (1 << 10),    /* CRPB parity error */
 336        EDMA_ERR_INTRL_PAR      = (1 << 11),    /* internal parity error */
 337        EDMA_ERR_IORDY          = (1 << 12),    /* IORdy timeout */
 338
 339        EDMA_ERR_LNK_CTRL_RX    = (0xf << 13),  /* link ctrl rx error */
 340        EDMA_ERR_LNK_CTRL_RX_0  = (1 << 13),    /* transient: CRC err */
 341        EDMA_ERR_LNK_CTRL_RX_1  = (1 << 14),    /* transient: FIFO err */
 342        EDMA_ERR_LNK_CTRL_RX_2  = (1 << 15),    /* fatal: caught SYNC */
 343        EDMA_ERR_LNK_CTRL_RX_3  = (1 << 16),    /* transient: FIS rx err */
 344
 345        EDMA_ERR_LNK_DATA_RX    = (0xf << 17),  /* link data rx error */
 346
 347        EDMA_ERR_LNK_CTRL_TX    = (0x1f << 21), /* link ctrl tx error */
 348        EDMA_ERR_LNK_CTRL_TX_0  = (1 << 21),    /* transient: CRC err */
 349        EDMA_ERR_LNK_CTRL_TX_1  = (1 << 22),    /* transient: FIFO err */
 350        EDMA_ERR_LNK_CTRL_TX_2  = (1 << 23),    /* transient: caught SYNC */
 351        EDMA_ERR_LNK_CTRL_TX_3  = (1 << 24),    /* transient: caught DMAT */
 352        EDMA_ERR_LNK_CTRL_TX_4  = (1 << 25),    /* transient: FIS collision */
 353
 354        EDMA_ERR_LNK_DATA_TX    = (0x1f << 26), /* link data tx error */
 355
 356        EDMA_ERR_TRANS_PROTO    = (1 << 31),    /* transport protocol error */
 357        EDMA_ERR_OVERRUN_5      = (1 << 5),
 358        EDMA_ERR_UNDERRUN_5     = (1 << 6),
 359
 360        EDMA_ERR_IRQ_TRANSIENT  = EDMA_ERR_LNK_CTRL_RX_0 |
 361                                  EDMA_ERR_LNK_CTRL_RX_1 |
 362                                  EDMA_ERR_LNK_CTRL_RX_3 |
 363                                  EDMA_ERR_LNK_CTRL_TX,
 364
 365        EDMA_EH_FREEZE          = EDMA_ERR_D_PAR |
 366                                  EDMA_ERR_PRD_PAR |
 367                                  EDMA_ERR_DEV_DCON |
 368                                  EDMA_ERR_DEV_CON |
 369                                  EDMA_ERR_SERR |
 370                                  EDMA_ERR_SELF_DIS |
 371                                  EDMA_ERR_CRQB_PAR |
 372                                  EDMA_ERR_CRPB_PAR |
 373                                  EDMA_ERR_INTRL_PAR |
 374                                  EDMA_ERR_IORDY |
 375                                  EDMA_ERR_LNK_CTRL_RX_2 |
 376                                  EDMA_ERR_LNK_DATA_RX |
 377                                  EDMA_ERR_LNK_DATA_TX |
 378                                  EDMA_ERR_TRANS_PROTO,
 379
 380        EDMA_EH_FREEZE_5        = EDMA_ERR_D_PAR |
 381                                  EDMA_ERR_PRD_PAR |
 382                                  EDMA_ERR_DEV_DCON |
 383                                  EDMA_ERR_DEV_CON |
 384                                  EDMA_ERR_OVERRUN_5 |
 385                                  EDMA_ERR_UNDERRUN_5 |
 386                                  EDMA_ERR_SELF_DIS_5 |
 387                                  EDMA_ERR_CRQB_PAR |
 388                                  EDMA_ERR_CRPB_PAR |
 389                                  EDMA_ERR_INTRL_PAR |
 390                                  EDMA_ERR_IORDY,
 391
 392        EDMA_REQ_Q_BASE_HI      = 0x10,
 393        EDMA_REQ_Q_IN_PTR       = 0x14,         /* also contains BASE_LO */
 394
 395        EDMA_REQ_Q_OUT_PTR      = 0x18,
 396        EDMA_REQ_Q_PTR_SHIFT    = 5,
 397
 398        EDMA_RSP_Q_BASE_HI      = 0x1c,
 399        EDMA_RSP_Q_IN_PTR       = 0x20,
 400        EDMA_RSP_Q_OUT_PTR      = 0x24,         /* also contains BASE_LO */
 401        EDMA_RSP_Q_PTR_SHIFT    = 3,
 402
 403        EDMA_CMD                = 0x28,         /* EDMA command register */
 404        EDMA_EN                 = (1 << 0),     /* enable EDMA */
 405        EDMA_DS                 = (1 << 1),     /* disable EDMA; self-negated */
 406        EDMA_RESET              = (1 << 2),     /* reset eng/trans/link/phy */
 407
 408        EDMA_STATUS             = 0x30,         /* EDMA engine status */
 409        EDMA_STATUS_CACHE_EMPTY = (1 << 6),     /* GenIIe command cache empty */
 410        EDMA_STATUS_IDLE        = (1 << 7),     /* GenIIe EDMA enabled/idle */
 411
 412        EDMA_IORDY_TMOUT        = 0x34,
 413        EDMA_ARB_CFG            = 0x38,
 414
 415        EDMA_HALTCOND           = 0x60,         /* GenIIe halt conditions */
 416        EDMA_UNKNOWN_RSVD       = 0x6C,         /* GenIIe unknown/reserved */
 417
 418        BMDMA_CMD               = 0x224,        /* bmdma command register */
 419        BMDMA_STATUS            = 0x228,        /* bmdma status register */
 420        BMDMA_PRD_LOW           = 0x22c,        /* bmdma PRD addr 31:0 */
 421        BMDMA_PRD_HIGH          = 0x230,        /* bmdma PRD addr 63:32 */
 422
 423        /* Host private flags (hp_flags) */
 424        MV_HP_FLAG_MSI          = (1 << 0),
 425        MV_HP_ERRATA_50XXB0     = (1 << 1),
 426        MV_HP_ERRATA_50XXB2     = (1 << 2),
 427        MV_HP_ERRATA_60X1B2     = (1 << 3),
 428        MV_HP_ERRATA_60X1C0     = (1 << 4),
 429        MV_HP_GEN_I             = (1 << 6),     /* Generation I: 50xx */
 430        MV_HP_GEN_II            = (1 << 7),     /* Generation II: 60xx */
 431        MV_HP_GEN_IIE           = (1 << 8),     /* Generation IIE: 6042/7042 */
 432        MV_HP_PCIE              = (1 << 9),     /* PCIe bus/regs: 7042 */
 433        MV_HP_CUT_THROUGH       = (1 << 10),    /* can use EDMA cut-through */
 434        MV_HP_FLAG_SOC          = (1 << 11),    /* SystemOnChip, no PCI */
 435        MV_HP_QUIRK_LED_BLINK_EN = (1 << 12),   /* is led blinking enabled? */
 436        MV_HP_FIX_LP_PHY_CTL    = (1 << 13),    /* fix speed in LP_PHY_CTL ? */
 437
 438        /* Port private flags (pp_flags) */
 439        MV_PP_FLAG_EDMA_EN      = (1 << 0),     /* is EDMA engine enabled? */
 440        MV_PP_FLAG_NCQ_EN       = (1 << 1),     /* is EDMA set up for NCQ? */
 441        MV_PP_FLAG_FBS_EN       = (1 << 2),     /* is EDMA set up for FBS? */
 442        MV_PP_FLAG_DELAYED_EH   = (1 << 3),     /* delayed dev err handling */
 443        MV_PP_FLAG_FAKE_ATA_BUSY = (1 << 4),    /* ignore initial ATA_DRDY */
 444};
 445
 446#define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I)
 447#define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II)
 448#define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
 449#define IS_PCIE(hpriv) ((hpriv)->hp_flags & MV_HP_PCIE)
 450#define IS_SOC(hpriv) ((hpriv)->hp_flags & MV_HP_FLAG_SOC)
 451
 452#define WINDOW_CTRL(i)          (0x20030 + ((i) << 4))
 453#define WINDOW_BASE(i)          (0x20034 + ((i) << 4))
 454
 455enum {
 456        /* DMA boundary 0xffff is required by the s/g splitting
 457         * we need on /length/ in mv_fill-sg().
 458         */
 459        MV_DMA_BOUNDARY         = 0xffffU,
 460
 461        /* mask of register bits containing lower 32 bits
 462         * of EDMA request queue DMA address
 463         */
 464        EDMA_REQ_Q_BASE_LO_MASK = 0xfffffc00U,
 465
 466        /* ditto, for response queue */
 467        EDMA_RSP_Q_BASE_LO_MASK = 0xffffff00U,
 468};
 469
 470enum chip_type {
 471        chip_504x,
 472        chip_508x,
 473        chip_5080,
 474        chip_604x,
 475        chip_608x,
 476        chip_6042,
 477        chip_7042,
 478        chip_soc,
 479};
 480
 481/* Command ReQuest Block: 32B */
 482struct mv_crqb {
 483        __le32                  sg_addr;
 484        __le32                  sg_addr_hi;
 485        __le16                  ctrl_flags;
 486        __le16                  ata_cmd[11];
 487};
 488
 489struct mv_crqb_iie {
 490        __le32                  addr;
 491        __le32                  addr_hi;
 492        __le32                  flags;
 493        __le32                  len;
 494        __le32                  ata_cmd[4];
 495};
 496
 497/* Command ResPonse Block: 8B */
 498struct mv_crpb {
 499        __le16                  id;
 500        __le16                  flags;
 501        __le32                  tmstmp;
 502};
 503
 504/* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
 505struct mv_sg {
 506        __le32                  addr;
 507        __le32                  flags_size;
 508        __le32                  addr_hi;
 509        __le32                  reserved;
 510};
 511
 512/*
 513 * We keep a local cache of a few frequently accessed port
 514 * registers here, to avoid having to read them (very slow)
 515 * when switching between EDMA and non-EDMA modes.
 516 */
 517struct mv_cached_regs {
 518        u32                     fiscfg;
 519        u32                     ltmode;
 520        u32                     haltcond;
 521        u32                     unknown_rsvd;
 522};
 523
 524struct mv_port_priv {
 525        struct mv_crqb          *crqb;
 526        dma_addr_t              crqb_dma;
 527        struct mv_crpb          *crpb;
 528        dma_addr_t              crpb_dma;
 529        struct mv_sg            *sg_tbl[MV_MAX_Q_DEPTH];
 530        dma_addr_t              sg_tbl_dma[MV_MAX_Q_DEPTH];
 531
 532        unsigned int            req_idx;
 533        unsigned int            resp_idx;
 534
 535        u32                     pp_flags;
 536        struct mv_cached_regs   cached;
 537        unsigned int            delayed_eh_pmp_map;
 538};
 539
 540struct mv_port_signal {
 541        u32                     amps;
 542        u32                     pre;
 543};
 544
 545struct mv_host_priv {
 546        u32                     hp_flags;
 547        unsigned int            board_idx;
 548        u32                     main_irq_mask;
 549        struct mv_port_signal   signal[8];
 550        const struct mv_hw_ops  *ops;
 551        int                     n_ports;
 552        void __iomem            *base;
 553        void __iomem            *main_irq_cause_addr;
 554        void __iomem            *main_irq_mask_addr;
 555        u32                     irq_cause_offset;
 556        u32                     irq_mask_offset;
 557        u32                     unmask_all_irqs;
 558
 559        /*
 560         * Needed on some devices that require their clocks to be enabled.
 561         * These are optional: if the platform device does not have any
 562         * clocks, they won't be used.  Also, if the underlying hardware
 563         * does not support the common clock framework (CONFIG_HAVE_CLK=n),
 564         * all the clock operations become no-ops (see clk.h).
 565         */
 566        struct clk              *clk;
 567        struct clk              **port_clks;
 568        /*
 569         * Some devices have a SATA PHY which can be enabled/disabled
 570         * in order to save power. These are optional: if the platform
 571         * devices does not have any phy, they won't be used.
 572         */
 573        struct phy              **port_phys;
 574        /*
 575         * These consistent DMA memory pools give us guaranteed
 576         * alignment for hardware-accessed data structures,
 577         * and less memory waste in accomplishing the alignment.
 578         */
 579        struct dma_pool         *crqb_pool;
 580        struct dma_pool         *crpb_pool;
 581        struct dma_pool         *sg_tbl_pool;
 582};
 583
 584struct mv_hw_ops {
 585        void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio,
 586                           unsigned int port);
 587        void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio);
 588        void (*read_preamp)(struct mv_host_priv *hpriv, int idx,
 589                           void __iomem *mmio);
 590        int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio,
 591                        unsigned int n_hc);
 592        void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio);
 593        void (*reset_bus)(struct ata_host *host, void __iomem *mmio);
 594};
 595
 596static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
 597static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
 598static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
 599static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
 600static int mv_port_start(struct ata_port *ap);
 601static void mv_port_stop(struct ata_port *ap);
 602static int mv_qc_defer(struct ata_queued_cmd *qc);
 603static void mv_qc_prep(struct ata_queued_cmd *qc);
 604static void mv_qc_prep_iie(struct ata_queued_cmd *qc);
 605static unsigned int mv_qc_issue(struct ata_queued_cmd *qc);
 606static int mv_hardreset(struct ata_link *link, unsigned int *class,
 607                        unsigned long deadline);
 608static void mv_eh_freeze(struct ata_port *ap);
 609static void mv_eh_thaw(struct ata_port *ap);
 610static void mv6_dev_config(struct ata_device *dev);
 611
 612static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
 613                           unsigned int port);
 614static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
 615static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
 616                           void __iomem *mmio);
 617static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
 618                        unsigned int n_hc);
 619static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
 620static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio);
 621
 622static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
 623                           unsigned int port);
 624static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
 625static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
 626                           void __iomem *mmio);
 627static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
 628                        unsigned int n_hc);
 629static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
 630static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
 631                                      void __iomem *mmio);
 632static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
 633                                      void __iomem *mmio);
 634static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
 635                                  void __iomem *mmio, unsigned int n_hc);
 636static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
 637                                      void __iomem *mmio);
 638static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio);
 639static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv,
 640                                  void __iomem *mmio, unsigned int port);
 641static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio);
 642static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
 643                             unsigned int port_no);
 644static int mv_stop_edma(struct ata_port *ap);
 645static int mv_stop_edma_engine(void __iomem *port_mmio);
 646static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma);
 647
 648static void mv_pmp_select(struct ata_port *ap, int pmp);
 649static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
 650                                unsigned long deadline);
 651static int  mv_softreset(struct ata_link *link, unsigned int *class,
 652                                unsigned long deadline);
 653static void mv_pmp_error_handler(struct ata_port *ap);
 654static void mv_process_crpb_entries(struct ata_port *ap,
 655                                        struct mv_port_priv *pp);
 656
 657static void mv_sff_irq_clear(struct ata_port *ap);
 658static int mv_check_atapi_dma(struct ata_queued_cmd *qc);
 659static void mv_bmdma_setup(struct ata_queued_cmd *qc);
 660static void mv_bmdma_start(struct ata_queued_cmd *qc);
 661static void mv_bmdma_stop(struct ata_queued_cmd *qc);
 662static u8   mv_bmdma_status(struct ata_port *ap);
 663static u8 mv_sff_check_status(struct ata_port *ap);
 664
 665/* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below
 666 * because we have to allow room for worst case splitting of
 667 * PRDs for 64K boundaries in mv_fill_sg().
 668 */
 669#ifdef CONFIG_PCI
 670static struct scsi_host_template mv5_sht = {
 671        ATA_BASE_SHT(DRV_NAME),
 672        .sg_tablesize           = MV_MAX_SG_CT / 2,
 673        .dma_boundary           = MV_DMA_BOUNDARY,
 674};
 675#endif
 676static struct scsi_host_template mv6_sht = {
 677        ATA_NCQ_SHT(DRV_NAME),
 678        .can_queue              = MV_MAX_Q_DEPTH - 1,
 679        .sg_tablesize           = MV_MAX_SG_CT / 2,
 680        .dma_boundary           = MV_DMA_BOUNDARY,
 681};
 682
 683static struct ata_port_operations mv5_ops = {
 684        .inherits               = &ata_sff_port_ops,
 685
 686        .lost_interrupt         = ATA_OP_NULL,
 687
 688        .qc_defer               = mv_qc_defer,
 689        .qc_prep                = mv_qc_prep,
 690        .qc_issue               = mv_qc_issue,
 691
 692        .freeze                 = mv_eh_freeze,
 693        .thaw                   = mv_eh_thaw,
 694        .hardreset              = mv_hardreset,
 695
 696        .scr_read               = mv5_scr_read,
 697        .scr_write              = mv5_scr_write,
 698
 699        .port_start             = mv_port_start,
 700        .port_stop              = mv_port_stop,
 701};
 702
 703static struct ata_port_operations mv6_ops = {
 704        .inherits               = &ata_bmdma_port_ops,
 705
 706        .lost_interrupt         = ATA_OP_NULL,
 707
 708        .qc_defer               = mv_qc_defer,
 709        .qc_prep                = mv_qc_prep,
 710        .qc_issue               = mv_qc_issue,
 711
 712        .dev_config             = mv6_dev_config,
 713
 714        .freeze                 = mv_eh_freeze,
 715        .thaw                   = mv_eh_thaw,
 716        .hardreset              = mv_hardreset,
 717        .softreset              = mv_softreset,
 718        .pmp_hardreset          = mv_pmp_hardreset,
 719        .pmp_softreset          = mv_softreset,
 720        .error_handler          = mv_pmp_error_handler,
 721
 722        .scr_read               = mv_scr_read,
 723        .scr_write              = mv_scr_write,
 724
 725        .sff_check_status       = mv_sff_check_status,
 726        .sff_irq_clear          = mv_sff_irq_clear,
 727        .check_atapi_dma        = mv_check_atapi_dma,
 728        .bmdma_setup            = mv_bmdma_setup,
 729        .bmdma_start            = mv_bmdma_start,
 730        .bmdma_stop             = mv_bmdma_stop,
 731        .bmdma_status           = mv_bmdma_status,
 732
 733        .port_start             = mv_port_start,
 734        .port_stop              = mv_port_stop,
 735};
 736
 737static struct ata_port_operations mv_iie_ops = {
 738        .inherits               = &mv6_ops,
 739        .dev_config             = ATA_OP_NULL,
 740        .qc_prep                = mv_qc_prep_iie,
 741};
 742
 743static const struct ata_port_info mv_port_info[] = {
 744        {  /* chip_504x */
 745                .flags          = MV_GEN_I_FLAGS,
 746                .pio_mask       = ATA_PIO4,
 747                .udma_mask      = ATA_UDMA6,
 748                .port_ops       = &mv5_ops,
 749        },
 750        {  /* chip_508x */
 751                .flags          = MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
 752                .pio_mask       = ATA_PIO4,
 753                .udma_mask      = ATA_UDMA6,
 754                .port_ops       = &mv5_ops,
 755        },
 756        {  /* chip_5080 */
 757                .flags          = MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
 758                .pio_mask       = ATA_PIO4,
 759                .udma_mask      = ATA_UDMA6,
 760                .port_ops       = &mv5_ops,
 761        },
 762        {  /* chip_604x */
 763                .flags          = MV_GEN_II_FLAGS,
 764                .pio_mask       = ATA_PIO4,
 765                .udma_mask      = ATA_UDMA6,
 766                .port_ops       = &mv6_ops,
 767        },
 768        {  /* chip_608x */
 769                .flags          = MV_GEN_II_FLAGS | MV_FLAG_DUAL_HC,
 770                .pio_mask       = ATA_PIO4,
 771                .udma_mask      = ATA_UDMA6,
 772                .port_ops       = &mv6_ops,
 773        },
 774        {  /* chip_6042 */
 775                .flags          = MV_GEN_IIE_FLAGS,
 776                .pio_mask       = ATA_PIO4,
 777                .udma_mask      = ATA_UDMA6,
 778                .port_ops       = &mv_iie_ops,
 779        },
 780        {  /* chip_7042 */
 781                .flags          = MV_GEN_IIE_FLAGS,
 782                .pio_mask       = ATA_PIO4,
 783                .udma_mask      = ATA_UDMA6,
 784                .port_ops       = &mv_iie_ops,
 785        },
 786        {  /* chip_soc */
 787                .flags          = MV_GEN_IIE_FLAGS,
 788                .pio_mask       = ATA_PIO4,
 789                .udma_mask      = ATA_UDMA6,
 790                .port_ops       = &mv_iie_ops,
 791        },
 792};
 793
 794static const struct pci_device_id mv_pci_tbl[] = {
 795        { PCI_VDEVICE(MARVELL, 0x5040), chip_504x },
 796        { PCI_VDEVICE(MARVELL, 0x5041), chip_504x },
 797        { PCI_VDEVICE(MARVELL, 0x5080), chip_5080 },
 798        { PCI_VDEVICE(MARVELL, 0x5081), chip_508x },
 799        /* RocketRAID 1720/174x have different identifiers */
 800        { PCI_VDEVICE(TTI, 0x1720), chip_6042 },
 801        { PCI_VDEVICE(TTI, 0x1740), chip_6042 },
 802        { PCI_VDEVICE(TTI, 0x1742), chip_6042 },
 803
 804        { PCI_VDEVICE(MARVELL, 0x6040), chip_604x },
 805        { PCI_VDEVICE(MARVELL, 0x6041), chip_604x },
 806        { PCI_VDEVICE(MARVELL, 0x6042), chip_6042 },
 807        { PCI_VDEVICE(MARVELL, 0x6080), chip_608x },
 808        { PCI_VDEVICE(MARVELL, 0x6081), chip_608x },
 809
 810        { PCI_VDEVICE(ADAPTEC2, 0x0241), chip_604x },
 811
 812        /* Adaptec 1430SA */
 813        { PCI_VDEVICE(ADAPTEC2, 0x0243), chip_7042 },
 814
 815        /* Marvell 7042 support */
 816        { PCI_VDEVICE(MARVELL, 0x7042), chip_7042 },
 817
 818        /* Highpoint RocketRAID PCIe series */
 819        { PCI_VDEVICE(TTI, 0x2300), chip_7042 },
 820        { PCI_VDEVICE(TTI, 0x2310), chip_7042 },
 821
 822        { }                     /* terminate list */
 823};
 824
 825static const struct mv_hw_ops mv5xxx_ops = {
 826        .phy_errata             = mv5_phy_errata,
 827        .enable_leds            = mv5_enable_leds,
 828        .read_preamp            = mv5_read_preamp,
 829        .reset_hc               = mv5_reset_hc,
 830        .reset_flash            = mv5_reset_flash,
 831        .reset_bus              = mv5_reset_bus,
 832};
 833
 834static const struct mv_hw_ops mv6xxx_ops = {
 835        .phy_errata             = mv6_phy_errata,
 836        .enable_leds            = mv6_enable_leds,
 837        .read_preamp            = mv6_read_preamp,
 838        .reset_hc               = mv6_reset_hc,
 839        .reset_flash            = mv6_reset_flash,
 840        .reset_bus              = mv_reset_pci_bus,
 841};
 842
 843static const struct mv_hw_ops mv_soc_ops = {
 844        .phy_errata             = mv6_phy_errata,
 845        .enable_leds            = mv_soc_enable_leds,
 846        .read_preamp            = mv_soc_read_preamp,
 847        .reset_hc               = mv_soc_reset_hc,
 848        .reset_flash            = mv_soc_reset_flash,
 849        .reset_bus              = mv_soc_reset_bus,
 850};
 851
 852static const struct mv_hw_ops mv_soc_65n_ops = {
 853        .phy_errata             = mv_soc_65n_phy_errata,
 854        .enable_leds            = mv_soc_enable_leds,
 855        .reset_hc               = mv_soc_reset_hc,
 856        .reset_flash            = mv_soc_reset_flash,
 857        .reset_bus              = mv_soc_reset_bus,
 858};
 859
 860/*
 861 * Functions
 862 */
 863
 864static inline void writelfl(unsigned long data, void __iomem *addr)
 865{
 866        writel(data, addr);
 867        (void) readl(addr);     /* flush to avoid PCI posted write */
 868}
 869
 870static inline unsigned int mv_hc_from_port(unsigned int port)
 871{
 872        return port >> MV_PORT_HC_SHIFT;
 873}
 874
 875static inline unsigned int mv_hardport_from_port(unsigned int port)
 876{
 877        return port & MV_PORT_MASK;
 878}
 879
 880/*
 881 * Consolidate some rather tricky bit shift calculations.
 882 * This is hot-path stuff, so not a function.
 883 * Simple code, with two return values, so macro rather than inline.
 884 *
 885 * port is the sole input, in range 0..7.
 886 * shift is one output, for use with main_irq_cause / main_irq_mask registers.
 887 * hardport is the other output, in range 0..3.
 888 *
 889 * Note that port and hardport may be the same variable in some cases.
 890 */
 891#define MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport)    \
 892{                                                               \
 893        shift    = mv_hc_from_port(port) * HC_SHIFT;            \
 894        hardport = mv_hardport_from_port(port);                 \
 895        shift   += hardport * 2;                                \
 896}
 897
 898static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc)
 899{
 900        return (base + SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ));
 901}
 902
 903static inline void __iomem *mv_hc_base_from_port(void __iomem *base,
 904                                                 unsigned int port)
 905{
 906        return mv_hc_base(base, mv_hc_from_port(port));
 907}
 908
 909static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port)
 910{
 911        return  mv_hc_base_from_port(base, port) +
 912                MV_SATAHC_ARBTR_REG_SZ +
 913                (mv_hardport_from_port(port) * MV_PORT_REG_SZ);
 914}
 915
 916static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port)
 917{
 918        void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port);
 919        unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL;
 920
 921        return hc_mmio + ofs;
 922}
 923
 924static inline void __iomem *mv_host_base(struct ata_host *host)
 925{
 926        struct mv_host_priv *hpriv = host->private_data;
 927        return hpriv->base;
 928}
 929
 930static inline void __iomem *mv_ap_base(struct ata_port *ap)
 931{
 932        return mv_port_base(mv_host_base(ap->host), ap->port_no);
 933}
 934
 935static inline int mv_get_hc_count(unsigned long port_flags)
 936{
 937        return ((port_flags & MV_FLAG_DUAL_HC) ? 2 : 1);
 938}
 939
 940/**
 941 *      mv_save_cached_regs - (re-)initialize cached port registers
 942 *      @ap: the port whose registers we are caching
 943 *
 944 *      Initialize the local cache of port registers,
 945 *      so that reading them over and over again can
 946 *      be avoided on the hotter paths of this driver.
 947 *      This saves a few microseconds each time we switch
 948 *      to/from EDMA mode to perform (eg.) a drive cache flush.
 949 */
 950static void mv_save_cached_regs(struct ata_port *ap)
 951{
 952        void __iomem *port_mmio = mv_ap_base(ap);
 953        struct mv_port_priv *pp = ap->private_data;
 954
 955        pp->cached.fiscfg = readl(port_mmio + FISCFG);
 956        pp->cached.ltmode = readl(port_mmio + LTMODE);
 957        pp->cached.haltcond = readl(port_mmio + EDMA_HALTCOND);
 958        pp->cached.unknown_rsvd = readl(port_mmio + EDMA_UNKNOWN_RSVD);
 959}
 960
 961/**
 962 *      mv_write_cached_reg - write to a cached port register
 963 *      @addr: hardware address of the register
 964 *      @old: pointer to cached value of the register
 965 *      @new: new value for the register
 966 *
 967 *      Write a new value to a cached register,
 968 *      but only if the value is different from before.
 969 */
 970static inline void mv_write_cached_reg(void __iomem *addr, u32 *old, u32 new)
 971{
 972        if (new != *old) {
 973                unsigned long laddr;
 974                *old = new;
 975                /*
 976                 * Workaround for 88SX60x1-B2 FEr SATA#13:
 977                 * Read-after-write is needed to prevent generating 64-bit
 978                 * write cycles on the PCI bus for SATA interface registers
 979                 * at offsets ending in 0x4 or 0xc.
 980                 *
 981                 * Looks like a lot of fuss, but it avoids an unnecessary
 982                 * +1 usec read-after-write delay for unaffected registers.
 983                 */
 984                laddr = (long)addr & 0xffff;
 985                if (laddr >= 0x300 && laddr <= 0x33c) {
 986                        laddr &= 0x000f;
 987                        if (laddr == 0x4 || laddr == 0xc) {
 988                                writelfl(new, addr); /* read after write */
 989                                return;
 990                        }
 991                }
 992                writel(new, addr); /* unaffected by the errata */
 993        }
 994}
 995
 996static void mv_set_edma_ptrs(void __iomem *port_mmio,
 997                             struct mv_host_priv *hpriv,
 998                             struct mv_port_priv *pp)
 999{
1000        u32 index;
1001
1002        /*
1003         * initialize request queue
1004         */
1005        pp->req_idx &= MV_MAX_Q_DEPTH_MASK;     /* paranoia */
1006        index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
1007
1008        WARN_ON(pp->crqb_dma & 0x3ff);
1009        writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI);
1010        writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | index,
1011                 port_mmio + EDMA_REQ_Q_IN_PTR);
1012        writelfl(index, port_mmio + EDMA_REQ_Q_OUT_PTR);
1013
1014        /*
1015         * initialize response queue
1016         */
1017        pp->resp_idx &= MV_MAX_Q_DEPTH_MASK;    /* paranoia */
1018        index = pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT;
1019
1020        WARN_ON(pp->crpb_dma & 0xff);
1021        writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI);
1022        writelfl(index, port_mmio + EDMA_RSP_Q_IN_PTR);
1023        writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | index,
1024                 port_mmio + EDMA_RSP_Q_OUT_PTR);
1025}
1026
1027static void mv_write_main_irq_mask(u32 mask, struct mv_host_priv *hpriv)
1028{
1029        /*
1030         * When writing to the main_irq_mask in hardware,
1031         * we must ensure exclusivity between the interrupt coalescing bits
1032         * and the corresponding individual port DONE_IRQ bits.
1033         *
1034         * Note that this register is really an "IRQ enable" register,
1035         * not an "IRQ mask" register as Marvell's naming might suggest.
1036         */
1037        if (mask & (ALL_PORTS_COAL_DONE | PORTS_0_3_COAL_DONE))
1038                mask &= ~DONE_IRQ_0_3;
1039        if (mask & (ALL_PORTS_COAL_DONE | PORTS_4_7_COAL_DONE))
1040                mask &= ~DONE_IRQ_4_7;
1041        writelfl(mask, hpriv->main_irq_mask_addr);
1042}
1043
1044static void mv_set_main_irq_mask(struct ata_host *host,
1045                                 u32 disable_bits, u32 enable_bits)
1046{
1047        struct mv_host_priv *hpriv = host->private_data;
1048        u32 old_mask, new_mask;
1049
1050        old_mask = hpriv->main_irq_mask;
1051        new_mask = (old_mask & ~disable_bits) | enable_bits;
1052        if (new_mask != old_mask) {
1053                hpriv->main_irq_mask = new_mask;
1054                mv_write_main_irq_mask(new_mask, hpriv);
1055        }
1056}
1057
1058static void mv_enable_port_irqs(struct ata_port *ap,
1059                                     unsigned int port_bits)
1060{
1061        unsigned int shift, hardport, port = ap->port_no;
1062        u32 disable_bits, enable_bits;
1063
1064        MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
1065
1066        disable_bits = (DONE_IRQ | ERR_IRQ) << shift;
1067        enable_bits  = port_bits << shift;
1068        mv_set_main_irq_mask(ap->host, disable_bits, enable_bits);
1069}
1070
1071static void mv_clear_and_enable_port_irqs(struct ata_port *ap,
1072                                          void __iomem *port_mmio,
1073                                          unsigned int port_irqs)
1074{
1075        struct mv_host_priv *hpriv = ap->host->private_data;
1076        int hardport = mv_hardport_from_port(ap->port_no);
1077        void __iomem *hc_mmio = mv_hc_base_from_port(
1078                                mv_host_base(ap->host), ap->port_no);
1079        u32 hc_irq_cause;
1080
1081        /* clear EDMA event indicators, if any */
1082        writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
1083
1084        /* clear pending irq events */
1085        hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
1086        writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
1087
1088        /* clear FIS IRQ Cause */
1089        if (IS_GEN_IIE(hpriv))
1090                writelfl(0, port_mmio + FIS_IRQ_CAUSE);
1091
1092        mv_enable_port_irqs(ap, port_irqs);
1093}
1094
1095static void mv_set_irq_coalescing(struct ata_host *host,
1096                                  unsigned int count, unsigned int usecs)
1097{
1098        struct mv_host_priv *hpriv = host->private_data;
1099        void __iomem *mmio = hpriv->base, *hc_mmio;
1100        u32 coal_enable = 0;
1101        unsigned long flags;
1102        unsigned int clks, is_dual_hc = hpriv->n_ports > MV_PORTS_PER_HC;
1103        const u32 coal_disable = PORTS_0_3_COAL_DONE | PORTS_4_7_COAL_DONE |
1104                                                        ALL_PORTS_COAL_DONE;
1105
1106        /* Disable IRQ coalescing if either threshold is zero */
1107        if (!usecs || !count) {
1108                clks = count = 0;
1109        } else {
1110                /* Respect maximum limits of the hardware */
1111                clks = usecs * COAL_CLOCKS_PER_USEC;
1112                if (clks > MAX_COAL_TIME_THRESHOLD)
1113                        clks = MAX_COAL_TIME_THRESHOLD;
1114                if (count > MAX_COAL_IO_COUNT)
1115                        count = MAX_COAL_IO_COUNT;
1116        }
1117
1118        spin_lock_irqsave(&host->lock, flags);
1119        mv_set_main_irq_mask(host, coal_disable, 0);
1120
1121        if (is_dual_hc && !IS_GEN_I(hpriv)) {
1122                /*
1123                 * GEN_II/GEN_IIE with dual host controllers:
1124                 * one set of global thresholds for the entire chip.
1125                 */
1126                writel(clks,  mmio + IRQ_COAL_TIME_THRESHOLD);
1127                writel(count, mmio + IRQ_COAL_IO_THRESHOLD);
1128                /* clear leftover coal IRQ bit */
1129                writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE);
1130                if (count)
1131                        coal_enable = ALL_PORTS_COAL_DONE;
1132                clks = count = 0; /* force clearing of regular regs below */
1133        }
1134
1135        /*
1136         * All chips: independent thresholds for each HC on the chip.
1137         */
1138        hc_mmio = mv_hc_base_from_port(mmio, 0);
1139        writel(clks,  hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
1140        writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
1141        writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
1142        if (count)
1143                coal_enable |= PORTS_0_3_COAL_DONE;
1144        if (is_dual_hc) {
1145                hc_mmio = mv_hc_base_from_port(mmio, MV_PORTS_PER_HC);
1146                writel(clks,  hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
1147                writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
1148                writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
1149                if (count)
1150                        coal_enable |= PORTS_4_7_COAL_DONE;
1151        }
1152
1153        mv_set_main_irq_mask(host, 0, coal_enable);
1154        spin_unlock_irqrestore(&host->lock, flags);
1155}
1156
1157/**
1158 *      mv_start_edma - Enable eDMA engine
1159 *      @base: port base address
1160 *      @pp: port private data
1161 *
1162 *      Verify the local cache of the eDMA state is accurate with a
1163 *      WARN_ON.
1164 *
1165 *      LOCKING:
1166 *      Inherited from caller.
1167 */
1168static void mv_start_edma(struct ata_port *ap, void __iomem *port_mmio,
1169                         struct mv_port_priv *pp, u8 protocol)
1170{
1171        int want_ncq = (protocol == ATA_PROT_NCQ);
1172
1173        if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
1174                int using_ncq = ((pp->pp_flags & MV_PP_FLAG_NCQ_EN) != 0);
1175                if (want_ncq != using_ncq)
1176                        mv_stop_edma(ap);
1177        }
1178        if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) {
1179                struct mv_host_priv *hpriv = ap->host->private_data;
1180
1181                mv_edma_cfg(ap, want_ncq, 1);
1182
1183                mv_set_edma_ptrs(port_mmio, hpriv, pp);
1184                mv_clear_and_enable_port_irqs(ap, port_mmio, DONE_IRQ|ERR_IRQ);
1185
1186                writelfl(EDMA_EN, port_mmio + EDMA_CMD);
1187                pp->pp_flags |= MV_PP_FLAG_EDMA_EN;
1188        }
1189}
1190
1191static void mv_wait_for_edma_empty_idle(struct ata_port *ap)
1192{
1193        void __iomem *port_mmio = mv_ap_base(ap);
1194        const u32 empty_idle = (EDMA_STATUS_CACHE_EMPTY | EDMA_STATUS_IDLE);
1195        const int per_loop = 5, timeout = (15 * 1000 / per_loop);
1196        int i;
1197
1198        /*
1199         * Wait for the EDMA engine to finish transactions in progress.
1200         * No idea what a good "timeout" value might be, but measurements
1201         * indicate that it often requires hundreds of microseconds
1202         * with two drives in-use.  So we use the 15msec value above
1203         * as a rough guess at what even more drives might require.
1204         */
1205        for (i = 0; i < timeout; ++i) {
1206                u32 edma_stat = readl(port_mmio + EDMA_STATUS);
1207                if ((edma_stat & empty_idle) == empty_idle)
1208                        break;
1209                udelay(per_loop);
1210        }
1211        /* ata_port_info(ap, "%s: %u+ usecs\n", __func__, i); */
1212}
1213
1214/**
1215 *      mv_stop_edma_engine - Disable eDMA engine
1216 *      @port_mmio: io base address
1217 *
1218 *      LOCKING:
1219 *      Inherited from caller.
1220 */
1221static int mv_stop_edma_engine(void __iomem *port_mmio)
1222{
1223        int i;
1224
1225        /* Disable eDMA.  The disable bit auto clears. */
1226        writelfl(EDMA_DS, port_mmio + EDMA_CMD);
1227
1228        /* Wait for the chip to confirm eDMA is off. */
1229        for (i = 10000; i > 0; i--) {
1230                u32 reg = readl(port_mmio + EDMA_CMD);
1231                if (!(reg & EDMA_EN))
1232                        return 0;
1233                udelay(10);
1234        }
1235        return -EIO;
1236}
1237
1238static int mv_stop_edma(struct ata_port *ap)
1239{
1240        void __iomem *port_mmio = mv_ap_base(ap);
1241        struct mv_port_priv *pp = ap->private_data;
1242        int err = 0;
1243
1244        if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
1245                return 0;
1246        pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
1247        mv_wait_for_edma_empty_idle(ap);
1248        if (mv_stop_edma_engine(port_mmio)) {
1249                ata_port_err(ap, "Unable to stop eDMA\n");
1250                err = -EIO;
1251        }
1252        mv_edma_cfg(ap, 0, 0);
1253        return err;
1254}
1255
1256#ifdef ATA_DEBUG
1257static void mv_dump_mem(void __iomem *start, unsigned bytes)
1258{
1259        int b, w;
1260        for (b = 0; b < bytes; ) {
1261                DPRINTK("%p: ", start + b);
1262                for (w = 0; b < bytes && w < 4; w++) {
1263                        printk("%08x ", readl(start + b));
1264                        b += sizeof(u32);
1265                }
1266                printk("\n");
1267        }
1268}
1269#endif
1270#if defined(ATA_DEBUG) || defined(CONFIG_PCI)
1271static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes)
1272{
1273#ifdef ATA_DEBUG
1274        int b, w;
1275        u32 dw;
1276        for (b = 0; b < bytes; ) {
1277                DPRINTK("%02x: ", b);
1278                for (w = 0; b < bytes && w < 4; w++) {
1279                        (void) pci_read_config_dword(pdev, b, &dw);
1280                        printk("%08x ", dw);
1281                        b += sizeof(u32);
1282                }
1283                printk("\n");
1284        }
1285#endif
1286}
1287#endif
1288static void mv_dump_all_regs(void __iomem *mmio_base, int port,
1289                             struct pci_dev *pdev)
1290{
1291#ifdef ATA_DEBUG
1292        void __iomem *hc_base = mv_hc_base(mmio_base,
1293                                           port >> MV_PORT_HC_SHIFT);
1294        void __iomem *port_base;
1295        int start_port, num_ports, p, start_hc, num_hcs, hc;
1296
1297        if (0 > port) {
1298                start_hc = start_port = 0;
1299                num_ports = 8;          /* shld be benign for 4 port devs */
1300                num_hcs = 2;
1301        } else {
1302                start_hc = port >> MV_PORT_HC_SHIFT;
1303                start_port = port;
1304                num_ports = num_hcs = 1;
1305        }
1306        DPRINTK("All registers for port(s) %u-%u:\n", start_port,
1307                num_ports > 1 ? num_ports - 1 : start_port);
1308
1309        if (NULL != pdev) {
1310                DPRINTK("PCI config space regs:\n");
1311                mv_dump_pci_cfg(pdev, 0x68);
1312        }
1313        DPRINTK("PCI regs:\n");
1314        mv_dump_mem(mmio_base+0xc00, 0x3c);
1315        mv_dump_mem(mmio_base+0xd00, 0x34);
1316        mv_dump_mem(mmio_base+0xf00, 0x4);
1317        mv_dump_mem(mmio_base+0x1d00, 0x6c);
1318        for (hc = start_hc; hc < start_hc + num_hcs; hc++) {
1319                hc_base = mv_hc_base(mmio_base, hc);
1320                DPRINTK("HC regs (HC %i):\n", hc);
1321                mv_dump_mem(hc_base, 0x1c);
1322        }
1323        for (p = start_port; p < start_port + num_ports; p++) {
1324                port_base = mv_port_base(mmio_base, p);
1325                DPRINTK("EDMA regs (port %i):\n", p);
1326                mv_dump_mem(port_base, 0x54);
1327                DPRINTK("SATA regs (port %i):\n", p);
1328                mv_dump_mem(port_base+0x300, 0x60);
1329        }
1330#endif
1331}
1332
1333static unsigned int mv_scr_offset(unsigned int sc_reg_in)
1334{
1335        unsigned int ofs;
1336
1337        switch (sc_reg_in) {
1338        case SCR_STATUS:
1339        case SCR_CONTROL:
1340        case SCR_ERROR:
1341                ofs = SATA_STATUS + (sc_reg_in * sizeof(u32));
1342                break;
1343        case SCR_ACTIVE:
1344                ofs = SATA_ACTIVE;   /* active is not with the others */
1345                break;
1346        default:
1347                ofs = 0xffffffffU;
1348                break;
1349        }
1350        return ofs;
1351}
1352
1353static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
1354{
1355        unsigned int ofs = mv_scr_offset(sc_reg_in);
1356
1357        if (ofs != 0xffffffffU) {
1358                *val = readl(mv_ap_base(link->ap) + ofs);
1359                return 0;
1360        } else
1361                return -EINVAL;
1362}
1363
1364static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
1365{
1366        unsigned int ofs = mv_scr_offset(sc_reg_in);
1367
1368        if (ofs != 0xffffffffU) {
1369                void __iomem *addr = mv_ap_base(link->ap) + ofs;
1370                struct mv_host_priv *hpriv = link->ap->host->private_data;
1371                if (sc_reg_in == SCR_CONTROL) {
1372                        /*
1373                         * Workaround for 88SX60x1 FEr SATA#26:
1374                         *
1375                         * COMRESETs have to take care not to accidentally
1376                         * put the drive to sleep when writing SCR_CONTROL.
1377                         * Setting bits 12..15 prevents this problem.
1378                         *
1379                         * So if we see an outbound COMMRESET, set those bits.
1380                         * Ditto for the followup write that clears the reset.
1381                         *
1382                         * The proprietary driver does this for
1383                         * all chip versions, and so do we.
1384                         */
1385                        if ((val & 0xf) == 1 || (readl(addr) & 0xf) == 1)
1386                                val |= 0xf000;
1387
1388                        if (hpriv->hp_flags & MV_HP_FIX_LP_PHY_CTL) {
1389                                void __iomem *lp_phy_addr =
1390                                        mv_ap_base(link->ap) + LP_PHY_CTL;
1391                                /*
1392                                 * Set PHY speed according to SControl speed.
1393                                 */
1394                                if ((val & 0xf0) == 0x10)
1395                                        writelfl(0x7, lp_phy_addr);
1396                                else
1397                                        writelfl(0x227, lp_phy_addr);
1398                        }
1399                }
1400                writelfl(val, addr);
1401                return 0;
1402        } else
1403                return -EINVAL;
1404}
1405
1406static void mv6_dev_config(struct ata_device *adev)
1407{
1408        /*
1409         * Deal with Gen-II ("mv6") hardware quirks/restrictions:
1410         *
1411         * Gen-II does not support NCQ over a port multiplier
1412         *  (no FIS-based switching).
1413         */
1414        if (adev->flags & ATA_DFLAG_NCQ) {
1415                if (sata_pmp_attached(adev->link->ap)) {
1416                        adev->flags &= ~ATA_DFLAG_NCQ;
1417                        ata_dev_info(adev,
1418                                "NCQ disabled for command-based switching\n");
1419                }
1420        }
1421}
1422
1423static int mv_qc_defer(struct ata_queued_cmd *qc)
1424{
1425        struct ata_link *link = qc->dev->link;
1426        struct ata_port *ap = link->ap;
1427        struct mv_port_priv *pp = ap->private_data;
1428
1429        /*
1430         * Don't allow new commands if we're in a delayed EH state
1431         * for NCQ and/or FIS-based switching.
1432         */
1433        if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
1434                return ATA_DEFER_PORT;
1435
1436        /* PIO commands need exclusive link: no other commands [DMA or PIO]
1437         * can run concurrently.
1438         * set excl_link when we want to send a PIO command in DMA mode
1439         * or a non-NCQ command in NCQ mode.
1440         * When we receive a command from that link, and there are no
1441         * outstanding commands, mark a flag to clear excl_link and let
1442         * the command go through.
1443         */
1444        if (unlikely(ap->excl_link)) {
1445                if (link == ap->excl_link) {
1446                        if (ap->nr_active_links)
1447                                return ATA_DEFER_PORT;
1448                        qc->flags |= ATA_QCFLAG_CLEAR_EXCL;
1449                        return 0;
1450                } else
1451                        return ATA_DEFER_PORT;
1452        }
1453
1454        /*
1455         * If the port is completely idle, then allow the new qc.
1456         */
1457        if (ap->nr_active_links == 0)
1458                return 0;
1459
1460        /*
1461         * The port is operating in host queuing mode (EDMA) with NCQ
1462         * enabled, allow multiple NCQ commands.  EDMA also allows
1463         * queueing multiple DMA commands but libata core currently
1464         * doesn't allow it.
1465         */
1466        if ((pp->pp_flags & MV_PP_FLAG_EDMA_EN) &&
1467            (pp->pp_flags & MV_PP_FLAG_NCQ_EN)) {
1468                if (ata_is_ncq(qc->tf.protocol))
1469                        return 0;
1470                else {
1471                        ap->excl_link = link;
1472                        return ATA_DEFER_PORT;
1473                }
1474        }
1475
1476        return ATA_DEFER_PORT;
1477}
1478
1479static void mv_config_fbs(struct ata_port *ap, int want_ncq, int want_fbs)
1480{
1481        struct mv_port_priv *pp = ap->private_data;
1482        void __iomem *port_mmio;
1483
1484        u32 fiscfg,   *old_fiscfg   = &pp->cached.fiscfg;
1485        u32 ltmode,   *old_ltmode   = &pp->cached.ltmode;
1486        u32 haltcond, *old_haltcond = &pp->cached.haltcond;
1487
1488        ltmode   = *old_ltmode & ~LTMODE_BIT8;
1489        haltcond = *old_haltcond | EDMA_ERR_DEV;
1490
1491        if (want_fbs) {
1492                fiscfg = *old_fiscfg | FISCFG_SINGLE_SYNC;
1493                ltmode = *old_ltmode | LTMODE_BIT8;
1494                if (want_ncq)
1495                        haltcond &= ~EDMA_ERR_DEV;
1496                else
1497                        fiscfg |=  FISCFG_WAIT_DEV_ERR;
1498        } else {
1499                fiscfg = *old_fiscfg & ~(FISCFG_SINGLE_SYNC | FISCFG_WAIT_DEV_ERR);
1500        }
1501
1502        port_mmio = mv_ap_base(ap);
1503        mv_write_cached_reg(port_mmio + FISCFG, old_fiscfg, fiscfg);
1504        mv_write_cached_reg(port_mmio + LTMODE, old_ltmode, ltmode);
1505        mv_write_cached_reg(port_mmio + EDMA_HALTCOND, old_haltcond, haltcond);
1506}
1507
1508static void mv_60x1_errata_sata25(struct ata_port *ap, int want_ncq)
1509{
1510        struct mv_host_priv *hpriv = ap->host->private_data;
1511        u32 old, new;
1512
1513        /* workaround for 88SX60x1 FEr SATA#25 (part 1) */
1514        old = readl(hpriv->base + GPIO_PORT_CTL);
1515        if (want_ncq)
1516                new = old | (1 << 22);
1517        else
1518                new = old & ~(1 << 22);
1519        if (new != old)
1520                writel(new, hpriv->base + GPIO_PORT_CTL);
1521}
1522
1523/**
1524 *      mv_bmdma_enable - set a magic bit on GEN_IIE to allow bmdma
1525 *      @ap: Port being initialized
1526 *
1527 *      There are two DMA modes on these chips:  basic DMA, and EDMA.
1528 *
1529 *      Bit-0 of the "EDMA RESERVED" register enables/disables use
1530 *      of basic DMA on the GEN_IIE versions of the chips.
1531 *
1532 *      This bit survives EDMA resets, and must be set for basic DMA
1533 *      to function, and should be cleared when EDMA is active.
1534 */
1535static void mv_bmdma_enable_iie(struct ata_port *ap, int enable_bmdma)
1536{
1537        struct mv_port_priv *pp = ap->private_data;
1538        u32 new, *old = &pp->cached.unknown_rsvd;
1539
1540        if (enable_bmdma)
1541                new = *old | 1;
1542        else
1543                new = *old & ~1;
1544        mv_write_cached_reg(mv_ap_base(ap) + EDMA_UNKNOWN_RSVD, old, new);
1545}
1546
1547/*
1548 * SOC chips have an issue whereby the HDD LEDs don't always blink
1549 * during I/O when NCQ is enabled. Enabling a special "LED blink" mode
1550 * of the SOC takes care of it, generating a steady blink rate when
1551 * any drive on the chip is active.
1552 *
1553 * Unfortunately, the blink mode is a global hardware setting for the SOC,
1554 * so we must use it whenever at least one port on the SOC has NCQ enabled.
1555 *
1556 * We turn "LED blink" off when NCQ is not in use anywhere, because the normal
1557 * LED operation works then, and provides better (more accurate) feedback.
1558 *
1559 * Note that this code assumes that an SOC never has more than one HC onboard.
1560 */
1561static void mv_soc_led_blink_enable(struct ata_port *ap)
1562{
1563        struct ata_host *host = ap->host;
1564        struct mv_host_priv *hpriv = host->private_data;
1565        void __iomem *hc_mmio;
1566        u32 led_ctrl;
1567
1568        if (hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN)
1569                return;
1570        hpriv->hp_flags |= MV_HP_QUIRK_LED_BLINK_EN;
1571        hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
1572        led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
1573        writel(led_ctrl | SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
1574}
1575
1576static void mv_soc_led_blink_disable(struct ata_port *ap)
1577{
1578        struct ata_host *host = ap->host;
1579        struct mv_host_priv *hpriv = host->private_data;
1580        void __iomem *hc_mmio;
1581        u32 led_ctrl;
1582        unsigned int port;
1583
1584        if (!(hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN))
1585                return;
1586
1587        /* disable led-blink only if no ports are using NCQ */
1588        for (port = 0; port < hpriv->n_ports; port++) {
1589                struct ata_port *this_ap = host->ports[port];
1590                struct mv_port_priv *pp = this_ap->private_data;
1591
1592                if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
1593                        return;
1594        }
1595
1596        hpriv->hp_flags &= ~MV_HP_QUIRK_LED_BLINK_EN;
1597        hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
1598        led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
1599        writel(led_ctrl & ~SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
1600}
1601
1602static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma)
1603{
1604        u32 cfg;
1605        struct mv_port_priv *pp    = ap->private_data;
1606        struct mv_host_priv *hpriv = ap->host->private_data;
1607        void __iomem *port_mmio    = mv_ap_base(ap);
1608
1609        /* set up non-NCQ EDMA configuration */
1610        cfg = EDMA_CFG_Q_DEPTH;         /* always 0x1f for *all* chips */
1611        pp->pp_flags &=
1612          ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
1613
1614        if (IS_GEN_I(hpriv))
1615                cfg |= (1 << 8);        /* enab config burst size mask */
1616
1617        else if (IS_GEN_II(hpriv)) {
1618                cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN;
1619                mv_60x1_errata_sata25(ap, want_ncq);
1620
1621        } else if (IS_GEN_IIE(hpriv)) {
1622                int want_fbs = sata_pmp_attached(ap);
1623                /*
1624                 * Possible future enhancement:
1625                 *
1626                 * The chip can use FBS with non-NCQ, if we allow it,
1627                 * But first we need to have the error handling in place
1628                 * for this mode (datasheet section 7.3.15.4.2.3).
1629                 * So disallow non-NCQ FBS for now.
1630                 */
1631                want_fbs &= want_ncq;
1632
1633                mv_config_fbs(ap, want_ncq, want_fbs);
1634
1635                if (want_fbs) {
1636                        pp->pp_flags |= MV_PP_FLAG_FBS_EN;
1637                        cfg |= EDMA_CFG_EDMA_FBS; /* FIS-based switching */
1638                }
1639
1640                cfg |= (1 << 23);       /* do not mask PM field in rx'd FIS */
1641                if (want_edma) {
1642                        cfg |= (1 << 22); /* enab 4-entry host queue cache */
1643                        if (!IS_SOC(hpriv))
1644                                cfg |= (1 << 18); /* enab early completion */
1645                }
1646                if (hpriv->hp_flags & MV_HP_CUT_THROUGH)
1647                        cfg |= (1 << 17); /* enab cut-thru (dis stor&forwrd) */
1648                mv_bmdma_enable_iie(ap, !want_edma);
1649
1650                if (IS_SOC(hpriv)) {
1651                        if (want_ncq)
1652                                mv_soc_led_blink_enable(ap);
1653                        else
1654                                mv_soc_led_blink_disable(ap);
1655                }
1656        }
1657
1658        if (want_ncq) {
1659                cfg |= EDMA_CFG_NCQ;
1660                pp->pp_flags |=  MV_PP_FLAG_NCQ_EN;
1661        }
1662
1663        writelfl(cfg, port_mmio + EDMA_CFG);
1664}
1665
1666static void mv_port_free_dma_mem(struct ata_port *ap)
1667{
1668        struct mv_host_priv *hpriv = ap->host->private_data;
1669        struct mv_port_priv *pp = ap->private_data;
1670        int tag;
1671
1672        if (pp->crqb) {
1673                dma_pool_free(hpriv->crqb_pool, pp->crqb, pp->crqb_dma);
1674                pp->crqb = NULL;
1675        }
1676        if (pp->crpb) {
1677                dma_pool_free(hpriv->crpb_pool, pp->crpb, pp->crpb_dma);
1678                pp->crpb = NULL;
1679        }
1680        /*
1681         * For GEN_I, there's no NCQ, so we have only a single sg_tbl.
1682         * For later hardware, we have one unique sg_tbl per NCQ tag.
1683         */
1684        for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1685                if (pp->sg_tbl[tag]) {
1686                        if (tag == 0 || !IS_GEN_I(hpriv))
1687                                dma_pool_free(hpriv->sg_tbl_pool,
1688                                              pp->sg_tbl[tag],
1689                                              pp->sg_tbl_dma[tag]);
1690                        pp->sg_tbl[tag] = NULL;
1691                }
1692        }
1693}
1694
1695/**
1696 *      mv_port_start - Port specific init/start routine.
1697 *      @ap: ATA channel to manipulate
1698 *
1699 *      Allocate and point to DMA memory, init port private memory,
1700 *      zero indices.
1701 *
1702 *      LOCKING:
1703 *      Inherited from caller.
1704 */
1705static int mv_port_start(struct ata_port *ap)
1706{
1707        struct device *dev = ap->host->dev;
1708        struct mv_host_priv *hpriv = ap->host->private_data;
1709        struct mv_port_priv *pp;
1710        unsigned long flags;
1711        int tag;
1712
1713        pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
1714        if (!pp)
1715                return -ENOMEM;
1716        ap->private_data = pp;
1717
1718        pp->crqb = dma_pool_alloc(hpriv->crqb_pool, GFP_KERNEL, &pp->crqb_dma);
1719        if (!pp->crqb)
1720                return -ENOMEM;
1721        memset(pp->crqb, 0, MV_CRQB_Q_SZ);
1722
1723        pp->crpb = dma_pool_alloc(hpriv->crpb_pool, GFP_KERNEL, &pp->crpb_dma);
1724        if (!pp->crpb)
1725                goto out_port_free_dma_mem;
1726        memset(pp->crpb, 0, MV_CRPB_Q_SZ);
1727
1728        /* 6041/6081 Rev. "C0" (and newer) are okay with async notify */
1729        if (hpriv->hp_flags & MV_HP_ERRATA_60X1C0)
1730                ap->flags |= ATA_FLAG_AN;
1731        /*
1732         * For GEN_I, there's no NCQ, so we only allocate a single sg_tbl.
1733         * For later hardware, we need one unique sg_tbl per NCQ tag.
1734         */
1735        for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1736                if (tag == 0 || !IS_GEN_I(hpriv)) {
1737                        pp->sg_tbl[tag] = dma_pool_alloc(hpriv->sg_tbl_pool,
1738                                              GFP_KERNEL, &pp->sg_tbl_dma[tag]);
1739                        if (!pp->sg_tbl[tag])
1740                                goto out_port_free_dma_mem;
1741                } else {
1742                        pp->sg_tbl[tag]     = pp->sg_tbl[0];
1743                        pp->sg_tbl_dma[tag] = pp->sg_tbl_dma[0];
1744                }
1745        }
1746
1747        spin_lock_irqsave(ap->lock, flags);
1748        mv_save_cached_regs(ap);
1749        mv_edma_cfg(ap, 0, 0);
1750        spin_unlock_irqrestore(ap->lock, flags);
1751
1752        return 0;
1753
1754out_port_free_dma_mem:
1755        mv_port_free_dma_mem(ap);
1756        return -ENOMEM;
1757}
1758
1759/**
1760 *      mv_port_stop - Port specific cleanup/stop routine.
1761 *      @ap: ATA channel to manipulate
1762 *
1763 *      Stop DMA, cleanup port memory.
1764 *
1765 *      LOCKING:
1766 *      This routine uses the host lock to protect the DMA stop.
1767 */
1768static void mv_port_stop(struct ata_port *ap)
1769{
1770        unsigned long flags;
1771
1772        spin_lock_irqsave(ap->lock, flags);
1773        mv_stop_edma(ap);
1774        mv_enable_port_irqs(ap, 0);
1775        spin_unlock_irqrestore(ap->lock, flags);
1776        mv_port_free_dma_mem(ap);
1777}
1778
1779/**
1780 *      mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
1781 *      @qc: queued command whose SG list to source from
1782 *
1783 *      Populate the SG list and mark the last entry.
1784 *
1785 *      LOCKING:
1786 *      Inherited from caller.
1787 */
1788static void mv_fill_sg(struct ata_queued_cmd *qc)
1789{
1790        struct mv_port_priv *pp = qc->ap->private_data;
1791        struct scatterlist *sg;
1792        struct mv_sg *mv_sg, *last_sg = NULL;
1793        unsigned int si;
1794
1795        mv_sg = pp->sg_tbl[qc->tag];
1796        for_each_sg(qc->sg, sg, qc->n_elem, si) {
1797                dma_addr_t addr = sg_dma_address(sg);
1798                u32 sg_len = sg_dma_len(sg);
1799
1800                while (sg_len) {
1801                        u32 offset = addr & 0xffff;
1802                        u32 len = sg_len;
1803
1804                        if (offset + len > 0x10000)
1805                                len = 0x10000 - offset;
1806
1807                        mv_sg->addr = cpu_to_le32(addr & 0xffffffff);
1808                        mv_sg->addr_hi = cpu_to_le32((addr >> 16) >> 16);
1809                        mv_sg->flags_size = cpu_to_le32(len & 0xffff);
1810                        mv_sg->reserved = 0;
1811
1812                        sg_len -= len;
1813                        addr += len;
1814
1815                        last_sg = mv_sg;
1816                        mv_sg++;
1817                }
1818        }
1819
1820        if (likely(last_sg))
1821                last_sg->flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL);
1822        mb(); /* ensure data structure is visible to the chipset */
1823}
1824
1825static void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last)
1826{
1827        u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
1828                (last ? CRQB_CMD_LAST : 0);
1829        *cmdw = cpu_to_le16(tmp);
1830}
1831
1832/**
1833 *      mv_sff_irq_clear - Clear hardware interrupt after DMA.
1834 *      @ap: Port associated with this ATA transaction.
1835 *
1836 *      We need this only for ATAPI bmdma transactions,
1837 *      as otherwise we experience spurious interrupts
1838 *      after libata-sff handles the bmdma interrupts.
1839 */
1840static void mv_sff_irq_clear(struct ata_port *ap)
1841{
1842        mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), ERR_IRQ);
1843}
1844
1845/**
1846 *      mv_check_atapi_dma - Filter ATAPI cmds which are unsuitable for DMA.
1847 *      @qc: queued command to check for chipset/DMA compatibility.
1848 *
1849 *      The bmdma engines cannot handle speculative data sizes
1850 *      (bytecount under/over flow).  So only allow DMA for
1851 *      data transfer commands with known data sizes.
1852 *
1853 *      LOCKING:
1854 *      Inherited from caller.
1855 */
1856static int mv_check_atapi_dma(struct ata_queued_cmd *qc)
1857{
1858        struct scsi_cmnd *scmd = qc->scsicmd;
1859
1860        if (scmd) {
1861                switch (scmd->cmnd[0]) {
1862                case READ_6:
1863                case READ_10:
1864                case READ_12:
1865                case WRITE_6:
1866                case WRITE_10:
1867                case WRITE_12:
1868                case GPCMD_READ_CD:
1869                case GPCMD_SEND_DVD_STRUCTURE:
1870                case GPCMD_SEND_CUE_SHEET:
1871                        return 0; /* DMA is safe */
1872                }
1873        }
1874        return -EOPNOTSUPP; /* use PIO instead */
1875}
1876
1877/**
1878 *      mv_bmdma_setup - Set up BMDMA transaction
1879 *      @qc: queued command to prepare DMA for.
1880 *
1881 *      LOCKING:
1882 *      Inherited from caller.
1883 */
1884static void mv_bmdma_setup(struct ata_queued_cmd *qc)
1885{
1886        struct ata_port *ap = qc->ap;
1887        void __iomem *port_mmio = mv_ap_base(ap);
1888        struct mv_port_priv *pp = ap->private_data;
1889
1890        mv_fill_sg(qc);
1891
1892        /* clear all DMA cmd bits */
1893        writel(0, port_mmio + BMDMA_CMD);
1894
1895        /* load PRD table addr. */
1896        writel((pp->sg_tbl_dma[qc->tag] >> 16) >> 16,
1897                port_mmio + BMDMA_PRD_HIGH);
1898        writelfl(pp->sg_tbl_dma[qc->tag],
1899                port_mmio + BMDMA_PRD_LOW);
1900
1901        /* issue r/w command */
1902        ap->ops->sff_exec_command(ap, &qc->tf);
1903}
1904
1905/**
1906 *      mv_bmdma_start - Start a BMDMA transaction
1907 *      @qc: queued command to start DMA on.
1908 *
1909 *      LOCKING:
1910 *      Inherited from caller.
1911 */
1912static void mv_bmdma_start(struct ata_queued_cmd *qc)
1913{
1914        struct ata_port *ap = qc->ap;
1915        void __iomem *port_mmio = mv_ap_base(ap);
1916        unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
1917        u32 cmd = (rw ? 0 : ATA_DMA_WR) | ATA_DMA_START;
1918
1919        /* start host DMA transaction */
1920        writelfl(cmd, port_mmio + BMDMA_CMD);
1921}
1922
1923/**
1924 *      mv_bmdma_stop - Stop BMDMA transfer
1925 *      @qc: queued command to stop DMA on.
1926 *
1927 *      Clears the ATA_DMA_START flag in the bmdma control register
1928 *
1929 *      LOCKING:
1930 *      Inherited from caller.
1931 */
1932static void mv_bmdma_stop_ap(struct ata_port *ap)
1933{
1934        void __iomem *port_mmio = mv_ap_base(ap);
1935        u32 cmd;
1936
1937        /* clear start/stop bit */
1938        cmd = readl(port_mmio + BMDMA_CMD);
1939        if (cmd & ATA_DMA_START) {
1940                cmd &= ~ATA_DMA_START;
1941                writelfl(cmd, port_mmio + BMDMA_CMD);
1942
1943                /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
1944                ata_sff_dma_pause(ap);
1945        }
1946}
1947
1948static void mv_bmdma_stop(struct ata_queued_cmd *qc)
1949{
1950        mv_bmdma_stop_ap(qc->ap);
1951}
1952
1953/**
1954 *      mv_bmdma_status - Read BMDMA status
1955 *      @ap: port for which to retrieve DMA status.
1956 *
1957 *      Read and return equivalent of the sff BMDMA status register.
1958 *
1959 *      LOCKING:
1960 *      Inherited from caller.
1961 */
1962static u8 mv_bmdma_status(struct ata_port *ap)
1963{
1964        void __iomem *port_mmio = mv_ap_base(ap);
1965        u32 reg, status;
1966
1967        /*
1968         * Other bits are valid only if ATA_DMA_ACTIVE==0,
1969         * and the ATA_DMA_INTR bit doesn't exist.
1970         */
1971        reg = readl(port_mmio + BMDMA_STATUS);
1972        if (reg & ATA_DMA_ACTIVE)
1973                status = ATA_DMA_ACTIVE;
1974        else if (reg & ATA_DMA_ERR)
1975                status = (reg & ATA_DMA_ERR) | ATA_DMA_INTR;
1976        else {
1977                /*
1978                 * Just because DMA_ACTIVE is 0 (DMA completed),
1979                 * this does _not_ mean the device is "done".
1980                 * So we should not yet be signalling ATA_DMA_INTR
1981                 * in some cases.  Eg. DSM/TRIM, and perhaps others.
1982                 */
1983                mv_bmdma_stop_ap(ap);
1984                if (ioread8(ap->ioaddr.altstatus_addr) & ATA_BUSY)
1985                        status = 0;
1986                else
1987                        status = ATA_DMA_INTR;
1988        }
1989        return status;
1990}
1991
1992static void mv_rw_multi_errata_sata24(struct ata_queued_cmd *qc)
1993{
1994        struct ata_taskfile *tf = &qc->tf;
1995        /*
1996         * Workaround for 88SX60x1 FEr SATA#24.
1997         *
1998         * Chip may corrupt WRITEs if multi_count >= 4kB.
1999         * Note that READs are unaffected.
2000         *
2001         * It's not clear if this errata really means "4K bytes",
2002         * or if it always happens for multi_count > 7
2003         * regardless of device sector_size.
2004         *
2005         * So, for safety, any write with multi_count > 7
2006         * gets converted here into a regular PIO write instead:
2007         */
2008        if ((tf->flags & ATA_TFLAG_WRITE) && is_multi_taskfile(tf)) {
2009                if (qc->dev->multi_count > 7) {
2010                        switch (tf->command) {
2011                        case ATA_CMD_WRITE_MULTI:
2012                                tf->command = ATA_CMD_PIO_WRITE;
2013                                break;
2014                        case ATA_CMD_WRITE_MULTI_FUA_EXT:
2015                                tf->flags &= ~ATA_TFLAG_FUA; /* ugh */
2016                                /* fall through */
2017                        case ATA_CMD_WRITE_MULTI_EXT:
2018                                tf->command = ATA_CMD_PIO_WRITE_EXT;
2019                                break;
2020                        }
2021                }
2022        }
2023}
2024
2025/**
2026 *      mv_qc_prep - Host specific command preparation.
2027 *      @qc: queued command to prepare
2028 *
2029 *      This routine simply redirects to the general purpose routine
2030 *      if command is not DMA.  Else, it handles prep of the CRQB
2031 *      (command request block), does some sanity checking, and calls
2032 *      the SG load routine.
2033 *
2034 *      LOCKING:
2035 *      Inherited from caller.
2036 */
2037static void mv_qc_prep(struct ata_queued_cmd *qc)
2038{
2039        struct ata_port *ap = qc->ap;
2040        struct mv_port_priv *pp = ap->private_data;
2041        __le16 *cw;
2042        struct ata_taskfile *tf = &qc->tf;
2043        u16 flags = 0;
2044        unsigned in_index;
2045
2046        switch (tf->protocol) {
2047        case ATA_PROT_DMA:
2048                if (tf->command == ATA_CMD_DSM)
2049                        return;
2050                /* fall-thru */
2051        case ATA_PROT_NCQ:
2052                break;  /* continue below */
2053        case ATA_PROT_PIO:
2054                mv_rw_multi_errata_sata24(qc);
2055                return;
2056        default:
2057                return;
2058        }
2059
2060        /* Fill in command request block
2061         */
2062        if (!(tf->flags & ATA_TFLAG_WRITE))
2063                flags |= CRQB_FLAG_READ;
2064        WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
2065        flags |= qc->tag << CRQB_TAG_SHIFT;
2066        flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
2067
2068        /* get current queue index from software */
2069        in_index = pp->req_idx;
2070
2071        pp->crqb[in_index].sg_addr =
2072                cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
2073        pp->crqb[in_index].sg_addr_hi =
2074                cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
2075        pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags);
2076
2077        cw = &pp->crqb[in_index].ata_cmd[0];
2078
2079        /* Sadly, the CRQB cannot accommodate all registers--there are
2080         * only 11 bytes...so we must pick and choose required
2081         * registers based on the command.  So, we drop feature and
2082         * hob_feature for [RW] DMA commands, but they are needed for
2083         * NCQ.  NCQ will drop hob_nsect, which is not needed there
2084         * (nsect is used only for the tag; feat/hob_feat hold true nsect).
2085         */
2086        switch (tf->command) {
2087        case ATA_CMD_READ:
2088        case ATA_CMD_READ_EXT:
2089        case ATA_CMD_WRITE:
2090        case ATA_CMD_WRITE_EXT:
2091        case ATA_CMD_WRITE_FUA_EXT:
2092                mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0);
2093                break;
2094        case ATA_CMD_FPDMA_READ:
2095        case ATA_CMD_FPDMA_WRITE:
2096                mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0);
2097                mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0);
2098                break;
2099        default:
2100                /* The only other commands EDMA supports in non-queued and
2101                 * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
2102                 * of which are defined/used by Linux.  If we get here, this
2103                 * driver needs work.
2104                 *
2105                 * FIXME: modify libata to give qc_prep a return value and
2106                 * return error here.
2107                 */
2108                BUG_ON(tf->command);
2109                break;
2110        }
2111        mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0);
2112        mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0);
2113        mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0);
2114        mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0);
2115        mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0);
2116        mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0);
2117        mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0);
2118        mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0);
2119        mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1);    /* last */
2120
2121        if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2122                return;
2123        mv_fill_sg(qc);
2124}
2125
2126/**
2127 *      mv_qc_prep_iie - Host specific command preparation.
2128 *      @qc: queued command to prepare
2129 *
2130 *      This routine simply redirects to the general purpose routine
2131 *      if command is not DMA.  Else, it handles prep of the CRQB
2132 *      (command request block), does some sanity checking, and calls
2133 *      the SG load routine.
2134 *
2135 *      LOCKING:
2136 *      Inherited from caller.
2137 */
2138static void mv_qc_prep_iie(struct ata_queued_cmd *qc)
2139{
2140        struct ata_port *ap = qc->ap;
2141        struct mv_port_priv *pp = ap->private_data;
2142        struct mv_crqb_iie *crqb;
2143        struct ata_taskfile *tf = &qc->tf;
2144        unsigned in_index;
2145        u32 flags = 0;
2146
2147        if ((tf->protocol != ATA_PROT_DMA) &&
2148            (tf->protocol != ATA_PROT_NCQ))
2149                return;
2150        if (tf->command == ATA_CMD_DSM)
2151                return;  /* use bmdma for this */
2152
2153        /* Fill in Gen IIE command request block */
2154        if (!(tf->flags & ATA_TFLAG_WRITE))
2155                flags |= CRQB_FLAG_READ;
2156
2157        WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
2158        flags |= qc->tag << CRQB_TAG_SHIFT;
2159        flags |= qc->tag << CRQB_HOSTQ_SHIFT;
2160        flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
2161
2162        /* get current queue index from software */
2163        in_index = pp->req_idx;
2164
2165        crqb = (struct mv_crqb_iie *) &pp->crqb[in_index];
2166        crqb->addr = cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
2167        crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
2168        crqb->flags = cpu_to_le32(flags);
2169
2170        crqb->ata_cmd[0] = cpu_to_le32(
2171                        (tf->command << 16) |
2172                        (tf->feature << 24)
2173                );
2174        crqb->ata_cmd[1] = cpu_to_le32(
2175                        (tf->lbal << 0) |
2176                        (tf->lbam << 8) |
2177                        (tf->lbah << 16) |
2178                        (tf->device << 24)
2179                );
2180        crqb->ata_cmd[2] = cpu_to_le32(
2181                        (tf->hob_lbal << 0) |
2182                        (tf->hob_lbam << 8) |
2183                        (tf->hob_lbah << 16) |
2184                        (tf->hob_feature << 24)
2185                );
2186        crqb->ata_cmd[3] = cpu_to_le32(
2187                        (tf->nsect << 0) |
2188                        (tf->hob_nsect << 8)
2189                );
2190
2191        if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2192                return;
2193        mv_fill_sg(qc);
2194}
2195
2196/**
2197 *      mv_sff_check_status - fetch device status, if valid
2198 *      @ap: ATA port to fetch status from
2199 *
2200 *      When using command issue via mv_qc_issue_fis(),
2201 *      the initial ATA_BUSY state does not show up in the
2202 *      ATA status (shadow) register.  This can confuse libata!
2203 *
2204 *      So we have a hook here to fake ATA_BUSY for that situation,
2205 *      until the first time a BUSY, DRQ, or ERR bit is seen.
2206 *
2207 *      The rest of the time, it simply returns the ATA status register.
2208 */
2209static u8 mv_sff_check_status(struct ata_port *ap)
2210{
2211        u8 stat = ioread8(ap->ioaddr.status_addr);
2212        struct mv_port_priv *pp = ap->private_data;
2213
2214        if (pp->pp_flags & MV_PP_FLAG_FAKE_ATA_BUSY) {
2215                if (stat & (ATA_BUSY | ATA_DRQ | ATA_ERR))
2216                        pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY;
2217                else
2218                        stat = ATA_BUSY;
2219        }
2220        return stat;
2221}
2222
2223/**
2224 *      mv_send_fis - Send a FIS, using the "Vendor-Unique FIS" register
2225 *      @fis: fis to be sent
2226 *      @nwords: number of 32-bit words in the fis
2227 */
2228static unsigned int mv_send_fis(struct ata_port *ap, u32 *fis, int nwords)
2229{
2230        void __iomem *port_mmio = mv_ap_base(ap);
2231        u32 ifctl, old_ifctl, ifstat;
2232        int i, timeout = 200, final_word = nwords - 1;
2233
2234        /* Initiate FIS transmission mode */
2235        old_ifctl = readl(port_mmio + SATA_IFCTL);
2236        ifctl = 0x100 | (old_ifctl & 0xf);
2237        writelfl(ifctl, port_mmio + SATA_IFCTL);
2238
2239        /* Send all words of the FIS except for the final word */
2240        for (i = 0; i < final_word; ++i)
2241                writel(fis[i], port_mmio + VENDOR_UNIQUE_FIS);
2242
2243        /* Flag end-of-transmission, and then send the final word */
2244        writelfl(ifctl | 0x200, port_mmio + SATA_IFCTL);
2245        writelfl(fis[final_word], port_mmio + VENDOR_UNIQUE_FIS);
2246
2247        /*
2248         * Wait for FIS transmission to complete.
2249         * This typically takes just a single iteration.
2250         */
2251        do {
2252                ifstat = readl(port_mmio + SATA_IFSTAT);
2253        } while (!(ifstat & 0x1000) && --timeout);
2254
2255        /* Restore original port configuration */
2256        writelfl(old_ifctl, port_mmio + SATA_IFCTL);
2257
2258        /* See if it worked */
2259        if ((ifstat & 0x3000) != 0x1000) {
2260                ata_port_warn(ap, "%s transmission error, ifstat=%08x\n",
2261                              __func__, ifstat);
2262                return AC_ERR_OTHER;
2263        }
2264        return 0;
2265}
2266
2267/**
2268 *      mv_qc_issue_fis - Issue a command directly as a FIS
2269 *      @qc: queued command to start
2270 *
2271 *      Note that the ATA shadow registers are not updated
2272 *      after command issue, so the device will appear "READY"
2273 *      if polled, even while it is BUSY processing the command.
2274 *
2275 *      So we use a status hook to fake ATA_BUSY until the drive changes state.
2276 *
2277 *      Note: we don't get updated shadow regs on *completion*
2278 *      of non-data commands. So avoid sending them via this function,
2279 *      as they will appear to have completed immediately.
2280 *
2281 *      GEN_IIE has special registers that we could get the result tf from,
2282 *      but earlier chipsets do not.  For now, we ignore those registers.
2283 */
2284static unsigned int mv_qc_issue_fis(struct ata_queued_cmd *qc)
2285{
2286        struct ata_port *ap = qc->ap;
2287        struct mv_port_priv *pp = ap->private_data;
2288        struct ata_link *link = qc->dev->link;
2289        u32 fis[5];
2290        int err = 0;
2291
2292        ata_tf_to_fis(&qc->tf, link->pmp, 1, (void *)fis);
2293        err = mv_send_fis(ap, fis, ARRAY_SIZE(fis));
2294        if (err)
2295                return err;
2296
2297        switch (qc->tf.protocol) {
2298        case ATAPI_PROT_PIO:
2299                pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
2300                /* fall through */
2301        case ATAPI_PROT_NODATA:
2302                ap->hsm_task_state = HSM_ST_FIRST;
2303                break;
2304        case ATA_PROT_PIO:
2305                pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
2306                if (qc->tf.flags & ATA_TFLAG_WRITE)
2307                        ap->hsm_task_state = HSM_ST_FIRST;
2308                else
2309                        ap->hsm_task_state = HSM_ST;
2310                break;
2311        default:
2312                ap->hsm_task_state = HSM_ST_LAST;
2313                break;
2314        }
2315
2316        if (qc->tf.flags & ATA_TFLAG_POLLING)
2317                ata_sff_queue_pio_task(link, 0);
2318        return 0;
2319}
2320
2321/**
2322 *      mv_qc_issue - Initiate a command to the host
2323 *      @qc: queued command to start
2324 *
2325 *      This routine simply redirects to the general purpose routine
2326 *      if command is not DMA.  Else, it sanity checks our local
2327 *      caches of the request producer/consumer indices then enables
2328 *      DMA and bumps the request producer index.
2329 *
2330 *      LOCKING:
2331 *      Inherited from caller.
2332 */
2333static unsigned int mv_qc_issue(struct ata_queued_cmd *qc)
2334{
2335        static int limit_warnings = 10;
2336        struct ata_port *ap = qc->ap;
2337        void __iomem *port_mmio = mv_ap_base(ap);
2338        struct mv_port_priv *pp = ap->private_data;
2339        u32 in_index;
2340        unsigned int port_irqs;
2341
2342        pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY; /* paranoia */
2343
2344        switch (qc->tf.protocol) {
2345        case ATA_PROT_DMA:
2346                if (qc->tf.command == ATA_CMD_DSM) {
2347                        if (!ap->ops->bmdma_setup)  /* no bmdma on GEN_I */
2348                                return AC_ERR_OTHER;
2349                        break;  /* use bmdma for this */
2350                }
2351                /* fall thru */
2352        case ATA_PROT_NCQ:
2353                mv_start_edma(ap, port_mmio, pp, qc->tf.protocol);
2354                pp->req_idx = (pp->req_idx + 1) & MV_MAX_Q_DEPTH_MASK;
2355                in_index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
2356
2357                /* Write the request in pointer to kick the EDMA to life */
2358                writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | in_index,
2359                                        port_mmio + EDMA_REQ_Q_IN_PTR);
2360                return 0;
2361
2362        case ATA_PROT_PIO:
2363                /*
2364                 * Errata SATA#16, SATA#24: warn if multiple DRQs expected.
2365                 *
2366                 * Someday, we might implement special polling workarounds
2367                 * for these, but it all seems rather unnecessary since we
2368                 * normally use only DMA for commands which transfer more
2369                 * than a single block of data.
2370                 *
2371                 * Much of the time, this could just work regardless.
2372                 * So for now, just log the incident, and allow the attempt.
2373                 */
2374                if (limit_warnings > 0 && (qc->nbytes / qc->sect_size) > 1) {
2375                        --limit_warnings;
2376                        ata_link_warn(qc->dev->link, DRV_NAME
2377                                      ": attempting PIO w/multiple DRQ: "
2378                                      "this may fail due to h/w errata\n");
2379                }
2380                /* drop through */
2381        case ATA_PROT_NODATA:
2382        case ATAPI_PROT_PIO:
2383        case ATAPI_PROT_NODATA:
2384                if (ap->flags & ATA_FLAG_PIO_POLLING)
2385                        qc->tf.flags |= ATA_TFLAG_POLLING;
2386                break;
2387        }
2388
2389        if (qc->tf.flags & ATA_TFLAG_POLLING)
2390                port_irqs = ERR_IRQ;    /* mask device interrupt when polling */
2391        else
2392                port_irqs = ERR_IRQ | DONE_IRQ; /* unmask all interrupts */
2393
2394        /*
2395         * We're about to send a non-EDMA capable command to the
2396         * port.  Turn off EDMA so there won't be problems accessing
2397         * shadow block, etc registers.
2398         */
2399        mv_stop_edma(ap);
2400        mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), port_irqs);
2401        mv_pmp_select(ap, qc->dev->link->pmp);
2402
2403        if (qc->tf.command == ATA_CMD_READ_LOG_EXT) {
2404                struct mv_host_priv *hpriv = ap->host->private_data;
2405                /*
2406                 * Workaround for 88SX60x1 FEr SATA#25 (part 2).
2407                 *
2408                 * After any NCQ error, the READ_LOG_EXT command
2409                 * from libata-eh *must* use mv_qc_issue_fis().
2410                 * Otherwise it might fail, due to chip errata.
2411                 *
2412                 * Rather than special-case it, we'll just *always*
2413                 * use this method here for READ_LOG_EXT, making for
2414                 * easier testing.
2415                 */
2416                if (IS_GEN_II(hpriv))
2417                        return mv_qc_issue_fis(qc);
2418        }
2419        return ata_bmdma_qc_issue(qc);
2420}
2421
2422static struct ata_queued_cmd *mv_get_active_qc(struct ata_port *ap)
2423{
2424        struct mv_port_priv *pp = ap->private_data;
2425        struct ata_queued_cmd *qc;
2426
2427        if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
2428                return NULL;
2429        qc = ata_qc_from_tag(ap, ap->link.active_tag);
2430        if (qc && !(qc->tf.flags & ATA_TFLAG_POLLING))
2431                return qc;
2432        return NULL;
2433}
2434
2435static void mv_pmp_error_handler(struct ata_port *ap)
2436{
2437        unsigned int pmp, pmp_map;
2438        struct mv_port_priv *pp = ap->private_data;
2439
2440        if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) {
2441                /*
2442                 * Perform NCQ error analysis on failed PMPs
2443                 * before we freeze the port entirely.
2444                 *
2445                 * The failed PMPs are marked earlier by mv_pmp_eh_prep().
2446                 */
2447                pmp_map = pp->delayed_eh_pmp_map;
2448                pp->pp_flags &= ~MV_PP_FLAG_DELAYED_EH;
2449                for (pmp = 0; pmp_map != 0; pmp++) {
2450                        unsigned int this_pmp = (1 << pmp);
2451                        if (pmp_map & this_pmp) {
2452                                struct ata_link *link = &ap->pmp_link[pmp];
2453                                pmp_map &= ~this_pmp;
2454                                ata_eh_analyze_ncq_error(link);
2455                        }
2456                }
2457                ata_port_freeze(ap);
2458        }
2459        sata_pmp_error_handler(ap);
2460}
2461
2462static unsigned int mv_get_err_pmp_map(struct ata_port *ap)
2463{
2464        void __iomem *port_mmio = mv_ap_base(ap);
2465
2466        return readl(port_mmio + SATA_TESTCTL) >> 16;
2467}
2468
2469static void mv_pmp_eh_prep(struct ata_port *ap, unsigned int pmp_map)
2470{
2471        struct ata_eh_info *ehi;
2472        unsigned int pmp;
2473
2474        /*
2475         * Initialize EH info for PMPs which saw device errors
2476         */
2477        ehi = &ap->link.eh_info;
2478        for (pmp = 0; pmp_map != 0; pmp++) {
2479                unsigned int this_pmp = (1 << pmp);
2480                if (pmp_map & this_pmp) {
2481                        struct ata_link *link = &ap->pmp_link[pmp];
2482
2483                        pmp_map &= ~this_pmp;
2484                        ehi = &link->eh_info;
2485                        ata_ehi_clear_desc(ehi);
2486                        ata_ehi_push_desc(ehi, "dev err");
2487                        ehi->err_mask |= AC_ERR_DEV;
2488                        ehi->action |= ATA_EH_RESET;
2489                        ata_link_abort(link);
2490                }
2491        }
2492}
2493
2494static int mv_req_q_empty(struct ata_port *ap)
2495{
2496        void __iomem *port_mmio = mv_ap_base(ap);
2497        u32 in_ptr, out_ptr;
2498
2499        in_ptr  = (readl(port_mmio + EDMA_REQ_Q_IN_PTR)
2500                        >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2501        out_ptr = (readl(port_mmio + EDMA_REQ_Q_OUT_PTR)
2502                        >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2503        return (in_ptr == out_ptr);     /* 1 == queue_is_empty */
2504}
2505
2506static int mv_handle_fbs_ncq_dev_err(struct ata_port *ap)
2507{
2508        struct mv_port_priv *pp = ap->private_data;
2509        int failed_links;
2510        unsigned int old_map, new_map;
2511
2512        /*
2513         * Device error during FBS+NCQ operation:
2514         *
2515         * Set a port flag to prevent further I/O being enqueued.
2516         * Leave the EDMA running to drain outstanding commands from this port.
2517         * Perform the post-mortem/EH only when all responses are complete.
2518         * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.2).
2519         */
2520        if (!(pp->pp_flags & MV_PP_FLAG_DELAYED_EH)) {
2521                pp->pp_flags |= MV_PP_FLAG_DELAYED_EH;
2522                pp->delayed_eh_pmp_map = 0;
2523        }
2524        old_map = pp->delayed_eh_pmp_map;
2525        new_map = old_map | mv_get_err_pmp_map(ap);
2526
2527        if (old_map != new_map) {
2528                pp->delayed_eh_pmp_map = new_map;
2529                mv_pmp_eh_prep(ap, new_map & ~old_map);
2530        }
2531        failed_links = hweight16(new_map);
2532
2533        ata_port_info(ap,
2534                      "%s: pmp_map=%04x qc_map=%04x failed_links=%d nr_active_links=%d\n",
2535                      __func__, pp->delayed_eh_pmp_map,
2536                      ap->qc_active, failed_links,
2537                      ap->nr_active_links);
2538
2539        if (ap->nr_active_links <= failed_links && mv_req_q_empty(ap)) {
2540                mv_process_crpb_entries(ap, pp);
2541                mv_stop_edma(ap);
2542                mv_eh_freeze(ap);
2543                ata_port_info(ap, "%s: done\n", __func__);
2544                return 1;       /* handled */
2545        }
2546        ata_port_info(ap, "%s: waiting\n", __func__);
2547        return 1;       /* handled */
2548}
2549
2550static int mv_handle_fbs_non_ncq_dev_err(struct ata_port *ap)
2551{
2552        /*
2553         * Possible future enhancement:
2554         *
2555         * FBS+non-NCQ operation is not yet implemented.
2556         * See related notes in mv_edma_cfg().
2557         *
2558         * Device error during FBS+non-NCQ operation:
2559         *
2560         * We need to snapshot the shadow registers for each failed command.
2561         * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.3).
2562         */
2563        return 0;       /* not handled */
2564}
2565
2566static int mv_handle_dev_err(struct ata_port *ap, u32 edma_err_cause)
2567{
2568        struct mv_port_priv *pp = ap->private_data;
2569
2570        if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
2571                return 0;       /* EDMA was not active: not handled */
2572        if (!(pp->pp_flags & MV_PP_FLAG_FBS_EN))
2573                return 0;       /* FBS was not active: not handled */
2574
2575        if (!(edma_err_cause & EDMA_ERR_DEV))
2576                return 0;       /* non DEV error: not handled */
2577        edma_err_cause &= ~EDMA_ERR_IRQ_TRANSIENT;
2578        if (edma_err_cause & ~(EDMA_ERR_DEV | EDMA_ERR_SELF_DIS))
2579                return 0;       /* other problems: not handled */
2580
2581        if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) {
2582                /*
2583                 * EDMA should NOT have self-disabled for this case.
2584                 * If it did, then something is wrong elsewhere,
2585                 * and we cannot handle it here.
2586                 */
2587                if (edma_err_cause & EDMA_ERR_SELF_DIS) {
2588                        ata_port_warn(ap, "%s: err_cause=0x%x pp_flags=0x%x\n",
2589                                      __func__, edma_err_cause, pp->pp_flags);
2590                        return 0; /* not handled */
2591                }
2592                return mv_handle_fbs_ncq_dev_err(ap);
2593        } else {
2594                /*
2595                 * EDMA should have self-disabled for this case.
2596                 * If it did not, then something is wrong elsewhere,
2597                 * and we cannot handle it here.
2598                 */
2599                if (!(edma_err_cause & EDMA_ERR_SELF_DIS)) {
2600                        ata_port_warn(ap, "%s: err_cause=0x%x pp_flags=0x%x\n",
2601                                      __func__, edma_err_cause, pp->pp_flags);
2602                        return 0; /* not handled */
2603                }
2604                return mv_handle_fbs_non_ncq_dev_err(ap);
2605        }
2606        return 0;       /* not handled */
2607}
2608
2609static void mv_unexpected_intr(struct ata_port *ap, int edma_was_enabled)
2610{
2611        struct ata_eh_info *ehi = &ap->link.eh_info;
2612        char *when = "idle";
2613
2614        ata_ehi_clear_desc(ehi);
2615        if (edma_was_enabled) {
2616                when = "EDMA enabled";
2617        } else {
2618                struct ata_queued_cmd *qc = ata_qc_from_tag(ap, ap->link.active_tag);
2619                if (qc && (qc->tf.flags & ATA_TFLAG_POLLING))
2620                        when = "polling";
2621        }
2622        ata_ehi_push_desc(ehi, "unexpected device interrupt while %s", when);
2623        ehi->err_mask |= AC_ERR_OTHER;
2624        ehi->action   |= ATA_EH_RESET;
2625        ata_port_freeze(ap);
2626}
2627
2628/**
2629 *      mv_err_intr - Handle error interrupts on the port
2630 *      @ap: ATA channel to manipulate
2631 *
2632 *      Most cases require a full reset of the chip's state machine,
2633 *      which also performs a COMRESET.
2634 *      Also, if the port disabled DMA, update our cached copy to match.
2635 *
2636 *      LOCKING:
2637 *      Inherited from caller.
2638 */
2639static void mv_err_intr(struct ata_port *ap)
2640{
2641        void __iomem *port_mmio = mv_ap_base(ap);
2642        u32 edma_err_cause, eh_freeze_mask, serr = 0;
2643        u32 fis_cause = 0;
2644        struct mv_port_priv *pp = ap->private_data;
2645        struct mv_host_priv *hpriv = ap->host->private_data;
2646        unsigned int action = 0, err_mask = 0;
2647        struct ata_eh_info *ehi = &ap->link.eh_info;
2648        struct ata_queued_cmd *qc;
2649        int abort = 0;
2650
2651        /*
2652         * Read and clear the SError and err_cause bits.
2653         * For GenIIe, if EDMA_ERR_TRANS_IRQ_7 is set, we also must read/clear
2654         * the FIS_IRQ_CAUSE register before clearing edma_err_cause.
2655         */
2656        sata_scr_read(&ap->link, SCR_ERROR, &serr);
2657        sata_scr_write_flush(&ap->link, SCR_ERROR, serr);
2658
2659        edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE);
2660        if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
2661                fis_cause = readl(port_mmio + FIS_IRQ_CAUSE);
2662                writelfl(~fis_cause, port_mmio + FIS_IRQ_CAUSE);
2663        }
2664        writelfl(~edma_err_cause, port_mmio + EDMA_ERR_IRQ_CAUSE);
2665
2666        if (edma_err_cause & EDMA_ERR_DEV) {
2667                /*
2668                 * Device errors during FIS-based switching operation
2669                 * require special handling.
2670                 */
2671                if (mv_handle_dev_err(ap, edma_err_cause))
2672                        return;
2673        }
2674
2675        qc = mv_get_active_qc(ap);
2676        ata_ehi_clear_desc(ehi);
2677        ata_ehi_push_desc(ehi, "edma_err_cause=%08x pp_flags=%08x",
2678                          edma_err_cause, pp->pp_flags);
2679
2680        if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
2681                ata_ehi_push_desc(ehi, "fis_cause=%08x", fis_cause);
2682                if (fis_cause & FIS_IRQ_CAUSE_AN) {
2683                        u32 ec = edma_err_cause &
2684                               ~(EDMA_ERR_TRANS_IRQ_7 | EDMA_ERR_IRQ_TRANSIENT);
2685                        sata_async_notification(ap);
2686                        if (!ec)
2687                                return; /* Just an AN; no need for the nukes */
2688                        ata_ehi_push_desc(ehi, "SDB notify");
2689                }
2690        }
2691        /*
2692         * All generations share these EDMA error cause bits:
2693         */
2694        if (edma_err_cause & EDMA_ERR_DEV) {
2695                err_mask |= AC_ERR_DEV;
2696                action |= ATA_EH_RESET;
2697                ata_ehi_push_desc(ehi, "dev error");
2698        }
2699        if (edma_err_cause & (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR |
2700                        EDMA_ERR_CRQB_PAR | EDMA_ERR_CRPB_PAR |
2701                        EDMA_ERR_INTRL_PAR)) {
2702                err_mask |= AC_ERR_ATA_BUS;
2703                action |= ATA_EH_RESET;
2704                ata_ehi_push_desc(ehi, "parity error");
2705        }
2706        if (edma_err_cause & (EDMA_ERR_DEV_DCON | EDMA_ERR_DEV_CON)) {
2707                ata_ehi_hotplugged(ehi);
2708                ata_ehi_push_desc(ehi, edma_err_cause & EDMA_ERR_DEV_DCON ?
2709                        "dev disconnect" : "dev connect");
2710                action |= ATA_EH_RESET;
2711        }
2712
2713        /*
2714         * Gen-I has a different SELF_DIS bit,
2715         * different FREEZE bits, and no SERR bit:
2716         */
2717        if (IS_GEN_I(hpriv)) {
2718                eh_freeze_mask = EDMA_EH_FREEZE_5;
2719                if (edma_err_cause & EDMA_ERR_SELF_DIS_5) {
2720                        pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
2721                        ata_ehi_push_desc(ehi, "EDMA self-disable");
2722                }
2723        } else {
2724                eh_freeze_mask = EDMA_EH_FREEZE;
2725                if (edma_err_cause & EDMA_ERR_SELF_DIS) {
2726                        pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
2727                        ata_ehi_push_desc(ehi, "EDMA self-disable");
2728                }
2729                if (edma_err_cause & EDMA_ERR_SERR) {
2730                        ata_ehi_push_desc(ehi, "SError=%08x", serr);
2731                        err_mask |= AC_ERR_ATA_BUS;
2732                        action |= ATA_EH_RESET;
2733                }
2734        }
2735
2736        if (!err_mask) {
2737                err_mask = AC_ERR_OTHER;
2738                action |= ATA_EH_RESET;
2739        }
2740
2741        ehi->serror |= serr;
2742        ehi->action |= action;
2743
2744        if (qc)
2745                qc->err_mask |= err_mask;
2746        else
2747                ehi->err_mask |= err_mask;
2748
2749        if (err_mask == AC_ERR_DEV) {
2750                /*
2751                 * Cannot do ata_port_freeze() here,
2752                 * because it would kill PIO access,
2753                 * which is needed for further diagnosis.
2754                 */
2755                mv_eh_freeze(ap);
2756                abort = 1;
2757        } else if (edma_err_cause & eh_freeze_mask) {
2758                /*
2759                 * Note to self: ata_port_freeze() calls ata_port_abort()
2760                 */
2761                ata_port_freeze(ap);
2762        } else {
2763                abort = 1;
2764        }
2765
2766        if (abort) {
2767                if (qc)
2768                        ata_link_abort(qc->dev->link);
2769                else
2770                        ata_port_abort(ap);
2771        }
2772}
2773
2774static bool mv_process_crpb_response(struct ata_port *ap,
2775                struct mv_crpb *response, unsigned int tag, int ncq_enabled)
2776{
2777        u8 ata_status;
2778        u16 edma_status = le16_to_cpu(response->flags);
2779
2780        /*
2781         * edma_status from a response queue entry:
2782         *   LSB is from EDMA_ERR_IRQ_CAUSE (non-NCQ only).
2783         *   MSB is saved ATA status from command completion.
2784         */
2785        if (!ncq_enabled) {
2786                u8 err_cause = edma_status & 0xff & ~EDMA_ERR_DEV;
2787                if (err_cause) {
2788                        /*
2789                         * Error will be seen/handled by
2790                         * mv_err_intr().  So do nothing at all here.
2791                         */
2792                        return false;
2793                }
2794        }
2795        ata_status = edma_status >> CRPB_FLAG_STATUS_SHIFT;
2796        if (!ac_err_mask(ata_status))
2797                return true;
2798        /* else: leave it for mv_err_intr() */
2799        return false;
2800}
2801
2802static void mv_process_crpb_entries(struct ata_port *ap, struct mv_port_priv *pp)
2803{
2804        void __iomem *port_mmio = mv_ap_base(ap);
2805        struct mv_host_priv *hpriv = ap->host->private_data;
2806        u32 in_index;
2807        bool work_done = false;
2808        u32 done_mask = 0;
2809        int ncq_enabled = (pp->pp_flags & MV_PP_FLAG_NCQ_EN);
2810
2811        /* Get the hardware queue position index */
2812        in_index = (readl(port_mmio + EDMA_RSP_Q_IN_PTR)
2813                        >> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2814
2815        /* Process new responses from since the last time we looked */
2816        while (in_index != pp->resp_idx) {
2817                unsigned int tag;
2818                struct mv_crpb *response = &pp->crpb[pp->resp_idx];
2819
2820                pp->resp_idx = (pp->resp_idx + 1) & MV_MAX_Q_DEPTH_MASK;
2821
2822                if (IS_GEN_I(hpriv)) {
2823                        /* 50xx: no NCQ, only one command active at a time */
2824                        tag = ap->link.active_tag;
2825                } else {
2826                        /* Gen II/IIE: get command tag from CRPB entry */
2827                        tag = le16_to_cpu(response->id) & 0x1f;
2828                }
2829                if (mv_process_crpb_response(ap, response, tag, ncq_enabled))
2830                        done_mask |= 1 << tag;
2831                work_done = true;
2832        }
2833
2834        if (work_done) {
2835                ata_qc_complete_multiple(ap, ap->qc_active ^ done_mask);
2836
2837                /* Update the software queue position index in hardware */
2838                writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) |
2839                         (pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT),
2840                         port_mmio + EDMA_RSP_Q_OUT_PTR);
2841        }
2842}
2843
2844static void mv_port_intr(struct ata_port *ap, u32 port_cause)
2845{
2846        struct mv_port_priv *pp;
2847        int edma_was_enabled;
2848
2849        /*
2850         * Grab a snapshot of the EDMA_EN flag setting,
2851         * so that we have a consistent view for this port,
2852         * even if something we call of our routines changes it.
2853         */
2854        pp = ap->private_data;
2855        edma_was_enabled = (pp->pp_flags & MV_PP_FLAG_EDMA_EN);
2856        /*
2857         * Process completed CRPB response(s) before other events.
2858         */
2859        if (edma_was_enabled && (port_cause & DONE_IRQ)) {
2860                mv_process_crpb_entries(ap, pp);
2861                if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
2862                        mv_handle_fbs_ncq_dev_err(ap);
2863        }
2864        /*
2865         * Handle chip-reported errors, or continue on to handle PIO.
2866         */
2867        if (unlikely(port_cause & ERR_IRQ)) {
2868                mv_err_intr(ap);
2869        } else if (!edma_was_enabled) {
2870                struct ata_queued_cmd *qc = mv_get_active_qc(ap);
2871                if (qc)
2872                        ata_bmdma_port_intr(ap, qc);
2873                else
2874                        mv_unexpected_intr(ap, edma_was_enabled);
2875        }
2876}
2877
2878/**
2879 *      mv_host_intr - Handle all interrupts on the given host controller
2880 *      @host: host specific structure
2881 *      @main_irq_cause: Main interrupt cause register for the chip.
2882 *
2883 *      LOCKING:
2884 *      Inherited from caller.
2885 */
2886static int mv_host_intr(struct ata_host *host, u32 main_irq_cause)
2887{
2888        struct mv_host_priv *hpriv = host->private_data;
2889        void __iomem *mmio = hpriv->base, *hc_mmio;
2890        unsigned int handled = 0, port;
2891
2892        /* If asserted, clear the "all ports" IRQ coalescing bit */
2893        if (main_irq_cause & ALL_PORTS_COAL_DONE)
2894                writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE);
2895
2896        for (port = 0; port < hpriv->n_ports; port++) {
2897                struct ata_port *ap = host->ports[port];
2898                unsigned int p, shift, hardport, port_cause;
2899
2900                MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
2901                /*
2902                 * Each hc within the host has its own hc_irq_cause register,
2903                 * where the interrupting ports bits get ack'd.
2904                 */
2905                if (hardport == 0) {    /* first port on this hc ? */
2906                        u32 hc_cause = (main_irq_cause >> shift) & HC0_IRQ_PEND;
2907                        u32 port_mask, ack_irqs;
2908                        /*
2909                         * Skip this entire hc if nothing pending for any ports
2910                         */
2911                        if (!hc_cause) {
2912                                port += MV_PORTS_PER_HC - 1;
2913                                continue;
2914                        }
2915                        /*
2916                         * We don't need/want to read the hc_irq_cause register,
2917                         * because doing so hurts performance, and
2918                         * main_irq_cause already gives us everything we need.
2919                         *
2920                         * But we do have to *write* to the hc_irq_cause to ack
2921                         * the ports that we are handling this time through.
2922                         *
2923                         * This requires that we create a bitmap for those
2924                         * ports which interrupted us, and use that bitmap
2925                         * to ack (only) those ports via hc_irq_cause.
2926                         */
2927                        ack_irqs = 0;
2928                        if (hc_cause & PORTS_0_3_COAL_DONE)
2929                                ack_irqs = HC_COAL_IRQ;
2930                        for (p = 0; p < MV_PORTS_PER_HC; ++p) {
2931                                if ((port + p) >= hpriv->n_ports)
2932                                        break;
2933                                port_mask = (DONE_IRQ | ERR_IRQ) << (p * 2);
2934                                if (hc_cause & port_mask)
2935                                        ack_irqs |= (DMA_IRQ | DEV_IRQ) << p;
2936                        }
2937                        hc_mmio = mv_hc_base_from_port(mmio, port);
2938                        writelfl(~ack_irqs, hc_mmio + HC_IRQ_CAUSE);
2939                        handled = 1;
2940                }
2941                /*
2942                 * Handle interrupts signalled for this port:
2943                 */
2944                port_cause = (main_irq_cause >> shift) & (DONE_IRQ | ERR_IRQ);
2945                if (port_cause)
2946                        mv_port_intr(ap, port_cause);
2947        }
2948        return handled;
2949}
2950
2951static int mv_pci_error(struct ata_host *host, void __iomem *mmio)
2952{
2953        struct mv_host_priv *hpriv = host->private_data;
2954        struct ata_port *ap;
2955        struct ata_queued_cmd *qc;
2956        struct ata_eh_info *ehi;
2957        unsigned int i, err_mask, printed = 0;
2958        u32 err_cause;
2959
2960        err_cause = readl(mmio + hpriv->irq_cause_offset);
2961
2962        dev_err(host->dev, "PCI ERROR; PCI IRQ cause=0x%08x\n", err_cause);
2963
2964        DPRINTK("All regs @ PCI error\n");
2965        mv_dump_all_regs(mmio, -1, to_pci_dev(host->dev));
2966
2967        writelfl(0, mmio + hpriv->irq_cause_offset);
2968
2969        for (i = 0; i < host->n_ports; i++) {
2970                ap = host->ports[i];
2971                if (!ata_link_offline(&ap->link)) {
2972                        ehi = &ap->link.eh_info;
2973                        ata_ehi_clear_desc(ehi);
2974                        if (!printed++)
2975                                ata_ehi_push_desc(ehi,
2976                                        "PCI err cause 0x%08x", err_cause);
2977                        err_mask = AC_ERR_HOST_BUS;
2978                        ehi->action = ATA_EH_RESET;
2979                        qc = ata_qc_from_tag(ap, ap->link.active_tag);
2980                        if (qc)
2981                                qc->err_mask |= err_mask;
2982                        else
2983                                ehi->err_mask |= err_mask;
2984
2985                        ata_port_freeze(ap);
2986                }
2987        }
2988        return 1;       /* handled */
2989}
2990
2991/**
2992 *      mv_interrupt - Main interrupt event handler
2993 *      @irq: unused
2994 *      @dev_instance: private data; in this case the host structure
2995 *
2996 *      Read the read only register to determine if any host
2997 *      controllers have pending interrupts.  If so, call lower level
2998 *      routine to handle.  Also check for PCI errors which are only
2999 *      reported here.
3000 *
3001 *      LOCKING:
3002 *      This routine holds the host lock while processing pending
3003 *      interrupts.
3004 */
3005static irqreturn_t mv_interrupt(int irq, void *dev_instance)
3006{
3007        struct ata_host *host = dev_instance;
3008        struct mv_host_priv *hpriv = host->private_data;
3009        unsigned int handled = 0;
3010        int using_msi = hpriv->hp_flags & MV_HP_FLAG_MSI;
3011        u32 main_irq_cause, pending_irqs;
3012
3013        spin_lock(&host->lock);
3014
3015        /* for MSI:  block new interrupts while in here */
3016        if (using_msi)
3017                mv_write_main_irq_mask(0, hpriv);
3018
3019        main_irq_cause = readl(hpriv->main_irq_cause_addr);
3020        pending_irqs   = main_irq_cause & hpriv->main_irq_mask;
3021        /*
3022         * Deal with cases where we either have nothing pending, or have read
3023         * a bogus register value which can indicate HW removal or PCI fault.
3024         */
3025        if (pending_irqs && main_irq_cause != 0xffffffffU) {
3026                if (unlikely((pending_irqs & PCI_ERR) && !IS_SOC(hpriv)))
3027                        handled = mv_pci_error(host, hpriv->base);
3028                else
3029                        handled = mv_host_intr(host, pending_irqs);
3030        }
3031
3032        /* for MSI: unmask; interrupt cause bits will retrigger now */
3033        if (using_msi)
3034                mv_write_main_irq_mask(hpriv->main_irq_mask, hpriv);
3035
3036        spin_unlock(&host->lock);
3037
3038        return IRQ_RETVAL(handled);
3039}
3040
3041static unsigned int mv5_scr_offset(unsigned int sc_reg_in)
3042{
3043        unsigned int ofs;
3044
3045        switch (sc_reg_in) {
3046        case SCR_STATUS:
3047        case SCR_ERROR:
3048        case SCR_CONTROL:
3049                ofs = sc_reg_in * sizeof(u32);
3050                break;
3051        default:
3052                ofs = 0xffffffffU;
3053                break;
3054        }
3055        return ofs;
3056}
3057
3058static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
3059{
3060        struct mv_host_priv *hpriv = link->ap->host->private_data;
3061        void __iomem *mmio = hpriv->base;
3062        void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
3063        unsigned int ofs = mv5_scr_offset(sc_reg_in);
3064
3065        if (ofs != 0xffffffffU) {
3066                *val = readl(addr + ofs);
3067                return 0;
3068        } else
3069                return -EINVAL;
3070}
3071
3072static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
3073{
3074        struct mv_host_priv *hpriv = link->ap->host->private_data;
3075        void __iomem *mmio = hpriv->base;
3076        void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
3077        unsigned int ofs = mv5_scr_offset(sc_reg_in);
3078
3079        if (ofs != 0xffffffffU) {
3080                writelfl(val, addr + ofs);
3081                return 0;
3082        } else
3083                return -EINVAL;
3084}
3085
3086static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio)
3087{
3088        struct pci_dev *pdev = to_pci_dev(host->dev);
3089        int early_5080;
3090
3091        early_5080 = (pdev->device == 0x5080) && (pdev->revision == 0);
3092
3093        if (!early_5080) {
3094                u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
3095                tmp |= (1 << 0);
3096                writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
3097        }
3098
3099        mv_reset_pci_bus(host, mmio);
3100}
3101
3102static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
3103{
3104        writel(0x0fcfffff, mmio + FLASH_CTL);
3105}
3106
3107static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
3108                           void __iomem *mmio)
3109{
3110        void __iomem *phy_mmio = mv5_phy_base(mmio, idx);
3111        u32 tmp;
3112
3113        tmp = readl(phy_mmio + MV5_PHY_MODE);
3114
3115        hpriv->signal[idx].pre = tmp & 0x1800;  /* bits 12:11 */
3116        hpriv->signal[idx].amps = tmp & 0xe0;   /* bits 7:5 */
3117}
3118
3119static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
3120{
3121        u32 tmp;
3122
3123        writel(0, mmio + GPIO_PORT_CTL);
3124
3125        /* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
3126
3127        tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
3128        tmp |= ~(1 << 0);
3129        writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
3130}
3131
3132static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
3133                           unsigned int port)
3134{
3135        void __iomem *phy_mmio = mv5_phy_base(mmio, port);
3136        const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
3137        u32 tmp;
3138        int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0);
3139
3140        if (fix_apm_sq) {
3141                tmp = readl(phy_mmio + MV5_LTMODE);
3142                tmp |= (1 << 19);
3143                writel(tmp, phy_mmio + MV5_LTMODE);
3144
3145                tmp = readl(phy_mmio + MV5_PHY_CTL);
3146                tmp &= ~0x3;
3147                tmp |= 0x1;
3148                writel(tmp, phy_mmio + MV5_PHY_CTL);
3149        }
3150
3151        tmp = readl(phy_mmio + MV5_PHY_MODE);
3152        tmp &= ~mask;
3153        tmp |= hpriv->signal[port].pre;
3154        tmp |= hpriv->signal[port].amps;
3155        writel(tmp, phy_mmio + MV5_PHY_MODE);
3156}
3157
3158
3159#undef ZERO
3160#define ZERO(reg) writel(0, port_mmio + (reg))
3161static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio,
3162                             unsigned int port)
3163{
3164        void __iomem *port_mmio = mv_port_base(mmio, port);
3165
3166        mv_reset_channel(hpriv, mmio, port);
3167
3168        ZERO(0x028);    /* command */
3169        writel(0x11f, port_mmio + EDMA_CFG);
3170        ZERO(0x004);    /* timer */
3171        ZERO(0x008);    /* irq err cause */
3172        ZERO(0x00c);    /* irq err mask */
3173        ZERO(0x010);    /* rq bah */
3174        ZERO(0x014);    /* rq inp */
3175        ZERO(0x018);    /* rq outp */
3176        ZERO(0x01c);    /* respq bah */
3177        ZERO(0x024);    /* respq outp */
3178        ZERO(0x020);    /* respq inp */
3179        ZERO(0x02c);    /* test control */
3180        writel(0xbc, port_mmio + EDMA_IORDY_TMOUT);
3181}
3182#undef ZERO
3183
3184#define ZERO(reg) writel(0, hc_mmio + (reg))
3185static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3186                        unsigned int hc)
3187{
3188        void __iomem *hc_mmio = mv_hc_base(mmio, hc);
3189        u32 tmp;
3190
3191        ZERO(0x00c);
3192        ZERO(0x010);
3193        ZERO(0x014);
3194        ZERO(0x018);
3195
3196        tmp = readl(hc_mmio + 0x20);
3197        tmp &= 0x1c1c1c1c;
3198        tmp |= 0x03030303;
3199        writel(tmp, hc_mmio + 0x20);
3200}
3201#undef ZERO
3202
3203static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3204                        unsigned int n_hc)
3205{
3206        unsigned int hc, port;
3207
3208        for (hc = 0; hc < n_hc; hc++) {
3209                for (port = 0; port < MV_PORTS_PER_HC; port++)
3210                        mv5_reset_hc_port(hpriv, mmio,
3211                                          (hc * MV_PORTS_PER_HC) + port);
3212
3213                mv5_reset_one_hc(hpriv, mmio, hc);
3214        }
3215
3216        return 0;
3217}
3218
3219#undef ZERO
3220#define ZERO(reg) writel(0, mmio + (reg))
3221static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio)
3222{
3223        struct mv_host_priv *hpriv = host->private_data;
3224        u32 tmp;
3225
3226        tmp = readl(mmio + MV_PCI_MODE);
3227        tmp &= 0xff00ffff;
3228        writel(tmp, mmio + MV_PCI_MODE);
3229
3230        ZERO(MV_PCI_DISC_TIMER);
3231        ZERO(MV_PCI_MSI_TRIGGER);
3232        writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT);
3233        ZERO(MV_PCI_SERR_MASK);
3234        ZERO(hpriv->irq_cause_offset);
3235        ZERO(hpriv->irq_mask_offset);
3236        ZERO(MV_PCI_ERR_LOW_ADDRESS);
3237        ZERO(MV_PCI_ERR_HIGH_ADDRESS);
3238        ZERO(MV_PCI_ERR_ATTRIBUTE);
3239        ZERO(MV_PCI_ERR_COMMAND);
3240}
3241#undef ZERO
3242
3243static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
3244{
3245        u32 tmp;
3246
3247        mv5_reset_flash(hpriv, mmio);
3248
3249        tmp = readl(mmio + GPIO_PORT_CTL);
3250        tmp &= 0x3;
3251        tmp |= (1 << 5) | (1 << 6);
3252        writel(tmp, mmio + GPIO_PORT_CTL);
3253}
3254
3255/**
3256 *      mv6_reset_hc - Perform the 6xxx global soft reset
3257 *      @mmio: base address of the HBA
3258 *
3259 *      This routine only applies to 6xxx parts.
3260 *
3261 *      LOCKING:
3262 *      Inherited from caller.
3263 */
3264static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3265                        unsigned int n_hc)
3266{
3267        void __iomem *reg = mmio + PCI_MAIN_CMD_STS;
3268        int i, rc = 0;
3269        u32 t;
3270
3271        /* Following procedure defined in PCI "main command and status
3272         * register" table.
3273         */
3274        t = readl(reg);
3275        writel(t | STOP_PCI_MASTER, reg);
3276
3277        for (i = 0; i < 1000; i++) {
3278                udelay(1);
3279                t = readl(reg);
3280                if (PCI_MASTER_EMPTY & t)
3281                        break;
3282        }
3283        if (!(PCI_MASTER_EMPTY & t)) {
3284                printk(KERN_ERR DRV_NAME ": PCI master won't flush\n");
3285                rc = 1;
3286                goto done;
3287        }
3288
3289        /* set reset */
3290        i = 5;
3291        do {
3292                writel(t | GLOB_SFT_RST, reg);
3293                t = readl(reg);
3294                udelay(1);
3295        } while (!(GLOB_SFT_RST & t) && (i-- > 0));
3296
3297        if (!(GLOB_SFT_RST & t)) {
3298                printk(KERN_ERR DRV_NAME ": can't set global reset\n");
3299                rc = 1;
3300                goto done;
3301        }
3302
3303        /* clear reset and *reenable the PCI master* (not mentioned in spec) */
3304        i = 5;
3305        do {
3306                writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg);
3307                t = readl(reg);
3308                udelay(1);
3309        } while ((GLOB_SFT_RST & t) && (i-- > 0));
3310
3311        if (GLOB_SFT_RST & t) {
3312                printk(KERN_ERR DRV_NAME ": can't clear global reset\n");
3313                rc = 1;
3314        }
3315done:
3316        return rc;
3317}
3318
3319static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
3320                           void __iomem *mmio)
3321{
3322        void __iomem *port_mmio;
3323        u32 tmp;
3324
3325        tmp = readl(mmio + RESET_CFG);
3326        if ((tmp & (1 << 0)) == 0) {
3327                hpriv->signal[idx].amps = 0x7 << 8;
3328                hpriv->signal[idx].pre = 0x1 << 5;
3329                return;
3330        }
3331
3332        port_mmio = mv_port_base(mmio, idx);
3333        tmp = readl(port_mmio + PHY_MODE2);
3334
3335        hpriv->signal[idx].amps = tmp & 0x700;  /* bits 10:8 */
3336        hpriv->signal[idx].pre = tmp & 0xe0;    /* bits 7:5 */
3337}
3338
3339static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
3340{
3341        writel(0x00000060, mmio + GPIO_PORT_CTL);
3342}
3343
3344static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
3345                           unsigned int port)
3346{
3347        void __iomem *port_mmio = mv_port_base(mmio, port);
3348
3349        u32 hp_flags = hpriv->hp_flags;
3350        int fix_phy_mode2 =
3351                hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
3352        int fix_phy_mode4 =
3353                hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
3354        u32 m2, m3;
3355
3356        if (fix_phy_mode2) {
3357                m2 = readl(port_mmio + PHY_MODE2);
3358                m2 &= ~(1 << 16);
3359                m2 |= (1 << 31);
3360                writel(m2, port_mmio + PHY_MODE2);
3361
3362                udelay(200);
3363
3364                m2 = readl(port_mmio + PHY_MODE2);
3365                m2 &= ~((1 << 16) | (1 << 31));
3366                writel(m2, port_mmio + PHY_MODE2);
3367
3368                udelay(200);
3369        }
3370
3371        /*
3372         * Gen-II/IIe PHY_MODE3 errata RM#2:
3373         * Achieves better receiver noise performance than the h/w default:
3374         */
3375        m3 = readl(port_mmio + PHY_MODE3);
3376        m3 = (m3 & 0x1f) | (0x5555601 << 5);
3377
3378        /* Guideline 88F5182 (GL# SATA-S11) */
3379        if (IS_SOC(hpriv))
3380                m3 &= ~0x1c;
3381
3382        if (fix_phy_mode4) {
3383                u32 m4 = readl(port_mmio + PHY_MODE4);
3384                /*
3385                 * Enforce reserved-bit restrictions on GenIIe devices only.
3386                 * For earlier chipsets, force only the internal config field
3387                 *  (workaround for errata FEr SATA#10 part 1).
3388                 */
3389                if (IS_GEN_IIE(hpriv))
3390                        m4 = (m4 & ~PHY_MODE4_RSVD_ZEROS) | PHY_MODE4_RSVD_ONES;
3391                else
3392                        m4 = (m4 & ~PHY_MODE4_CFG_MASK) | PHY_MODE4_CFG_VALUE;
3393                writel(m4, port_mmio + PHY_MODE4);
3394        }
3395        /*
3396         * Workaround for 60x1-B2 errata SATA#13:
3397         * Any write to PHY_MODE4 (above) may corrupt PHY_MODE3,
3398         * so we must always rewrite PHY_MODE3 after PHY_MODE4.
3399         * Or ensure we use writelfl() when writing PHY_MODE4.
3400         */
3401        writel(m3, port_mmio + PHY_MODE3);
3402
3403        /* Revert values of pre-emphasis and signal amps to the saved ones */
3404        m2 = readl(port_mmio + PHY_MODE2);
3405
3406        m2 &= ~MV_M2_PREAMP_MASK;
3407        m2 |= hpriv->signal[port].amps;
3408        m2 |= hpriv->signal[port].pre;
3409        m2 &= ~(1 << 16);
3410
3411        /* according to mvSata 3.6.1, some IIE values are fixed */
3412        if (IS_GEN_IIE(hpriv)) {
3413                m2 &= ~0xC30FF01F;
3414                m2 |= 0x0000900F;
3415        }
3416
3417        writel(m2, port_mmio + PHY_MODE2);
3418}
3419
3420/* TODO: use the generic LED interface to configure the SATA Presence */
3421/* & Acitivy LEDs on the board */
3422static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
3423                                      void __iomem *mmio)
3424{
3425        return;
3426}
3427
3428static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
3429                           void __iomem *mmio)
3430{
3431        void __iomem *port_mmio;
3432        u32 tmp;
3433
3434        port_mmio = mv_port_base(mmio, idx);
3435        tmp = readl(port_mmio + PHY_MODE2);
3436
3437        hpriv->signal[idx].amps = tmp & 0x700;  /* bits 10:8 */
3438        hpriv->signal[idx].pre = tmp & 0xe0;    /* bits 7:5 */
3439}
3440
3441#undef ZERO
3442#define ZERO(reg) writel(0, port_mmio + (reg))
3443static void mv_soc_reset_hc_port(struct mv_host_priv *hpriv,
3444                                        void __iomem *mmio, unsigned int port)
3445{
3446        void __iomem *port_mmio = mv_port_base(mmio, port);
3447
3448        mv_reset_channel(hpriv, mmio, port);
3449
3450        ZERO(0x028);            /* command */
3451        writel(0x101f, port_mmio + EDMA_CFG);
3452        ZERO(0x004);            /* timer */
3453        ZERO(0x008);            /* irq err cause */
3454        ZERO(0x00c);            /* irq err mask */
3455        ZERO(0x010);            /* rq bah */
3456        ZERO(0x014);            /* rq inp */
3457        ZERO(0x018);            /* rq outp */
3458        ZERO(0x01c);            /* respq bah */
3459        ZERO(0x024);            /* respq outp */
3460        ZERO(0x020);            /* respq inp */
3461        ZERO(0x02c);            /* test control */
3462        writel(0x800, port_mmio + EDMA_IORDY_TMOUT);
3463}
3464
3465#undef ZERO
3466
3467#define ZERO(reg) writel(0, hc_mmio + (reg))
3468static void mv_soc_reset_one_hc(struct mv_host_priv *hpriv,
3469                                       void __iomem *mmio)
3470{
3471        void __iomem *hc_mmio = mv_hc_base(mmio, 0);
3472
3473        ZERO(0x00c);
3474        ZERO(0x010);
3475        ZERO(0x014);
3476
3477}
3478
3479#undef ZERO
3480
3481static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
3482                                  void __iomem *mmio, unsigned int n_hc)
3483{
3484        unsigned int port;
3485
3486        for (port = 0; port < hpriv->n_ports; port++)
3487                mv_soc_reset_hc_port(hpriv, mmio, port);
3488
3489        mv_soc_reset_one_hc(hpriv, mmio);
3490
3491        return 0;
3492}
3493
3494static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
3495                                      void __iomem *mmio)
3496{
3497        return;
3498}
3499
3500static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio)
3501{
3502        return;
3503}
3504
3505static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv,
3506                                  void __iomem *mmio, unsigned int port)
3507{
3508        void __iomem *port_mmio = mv_port_base(mmio, port);
3509        u32     reg;
3510
3511        reg = readl(port_mmio + PHY_MODE3);
3512        reg &= ~(0x3 << 27);    /* SELMUPF (bits 28:27) to 1 */
3513        reg |= (0x1 << 27);
3514        reg &= ~(0x3 << 29);    /* SELMUPI (bits 30:29) to 1 */
3515        reg |= (0x1 << 29);
3516        writel(reg, port_mmio + PHY_MODE3);
3517
3518        reg = readl(port_mmio + PHY_MODE4);
3519        reg &= ~0x1;    /* SATU_OD8 (bit 0) to 0, reserved bit 16 must be set */
3520        reg |= (0x1 << 16);
3521        writel(reg, port_mmio + PHY_MODE4);
3522
3523        reg = readl(port_mmio + PHY_MODE9_GEN2);
3524        reg &= ~0xf;    /* TXAMP[3:0] (bits 3:0) to 8 */
3525        reg |= 0x8;
3526        reg &= ~(0x1 << 14);    /* TXAMP[4] (bit 14) to 0 */
3527        writel(reg, port_mmio + PHY_MODE9_GEN2);
3528
3529        reg = readl(port_mmio + PHY_MODE9_GEN1);
3530        reg &= ~0xf;    /* TXAMP[3:0] (bits 3:0) to 8 */
3531        reg |= 0x8;
3532        reg &= ~(0x1 << 14);    /* TXAMP[4] (bit 14) to 0 */
3533        writel(reg, port_mmio + PHY_MODE9_GEN1);
3534}
3535
3536/**
3537 *      soc_is_65 - check if the soc is 65 nano device
3538 *
3539 *      Detect the type of the SoC, this is done by reading the PHYCFG_OFS
3540 *      register, this register should contain non-zero value and it exists only
3541 *      in the 65 nano devices, when reading it from older devices we get 0.
3542 */
3543static bool soc_is_65n(struct mv_host_priv *hpriv)
3544{
3545        void __iomem *port0_mmio = mv_port_base(hpriv->base, 0);
3546
3547        if (readl(port0_mmio + PHYCFG_OFS))
3548                return true;
3549        return false;
3550}
3551
3552static void mv_setup_ifcfg(void __iomem *port_mmio, int want_gen2i)
3553{
3554        u32 ifcfg = readl(port_mmio + SATA_IFCFG);
3555
3556        ifcfg = (ifcfg & 0xf7f) | 0x9b1000;     /* from chip spec */
3557        if (want_gen2i)
3558                ifcfg |= (1 << 7);              /* enable gen2i speed */
3559        writelfl(ifcfg, port_mmio + SATA_IFCFG);
3560}
3561
3562static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
3563                             unsigned int port_no)
3564{
3565        void __iomem *port_mmio = mv_port_base(mmio, port_no);
3566
3567        /*
3568         * The datasheet warns against setting EDMA_RESET when EDMA is active
3569         * (but doesn't say what the problem might be).  So we first try
3570         * to disable the EDMA engine before doing the EDMA_RESET operation.
3571         */
3572        mv_stop_edma_engine(port_mmio);
3573        writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
3574
3575        if (!IS_GEN_I(hpriv)) {
3576                /* Enable 3.0gb/s link speed: this survives EDMA_RESET */
3577                mv_setup_ifcfg(port_mmio, 1);
3578        }
3579        /*
3580         * Strobing EDMA_RESET here causes a hard reset of the SATA transport,
3581         * link, and physical layers.  It resets all SATA interface registers
3582         * (except for SATA_IFCFG), and issues a COMRESET to the dev.
3583         */
3584        writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
3585        udelay(25);     /* allow reset propagation */
3586        writelfl(0, port_mmio + EDMA_CMD);
3587
3588        hpriv->ops->phy_errata(hpriv, mmio, port_no);
3589
3590        if (IS_GEN_I(hpriv))
3591                mdelay(1);
3592}
3593
3594static void mv_pmp_select(struct ata_port *ap, int pmp)
3595{
3596        if (sata_pmp_supported(ap)) {
3597                void __iomem *port_mmio = mv_ap_base(ap);
3598                u32 reg = readl(port_mmio + SATA_IFCTL);
3599                int old = reg & 0xf;
3600
3601                if (old != pmp) {
3602                        reg = (reg & ~0xf) | pmp;
3603                        writelfl(reg, port_mmio + SATA_IFCTL);
3604                }
3605        }
3606}
3607
3608static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
3609                                unsigned long deadline)
3610{
3611        mv_pmp_select(link->ap, sata_srst_pmp(link));
3612        return sata_std_hardreset(link, class, deadline);
3613}
3614
3615static int mv_softreset(struct ata_link *link, unsigned int *class,
3616                                unsigned long deadline)
3617{
3618        mv_pmp_select(link->ap, sata_srst_pmp(link));
3619        return ata_sff_softreset(link, class, deadline);
3620}
3621
3622static int mv_hardreset(struct ata_link *link, unsigned int *class,
3623                        unsigned long deadline)
3624{
3625        struct ata_port *ap = link->ap;
3626        struct mv_host_priv *hpriv = ap->host->private_data;
3627        struct mv_port_priv *pp = ap->private_data;
3628        void __iomem *mmio = hpriv->base;
3629        int rc, attempts = 0, extra = 0;
3630        u32 sstatus;
3631        bool online;
3632
3633        mv_reset_channel(hpriv, mmio, ap->port_no);
3634        pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
3635        pp->pp_flags &=
3636          ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
3637
3638        /* Workaround for errata FEr SATA#10 (part 2) */
3639        do {
3640                const unsigned long *timing =
3641                                sata_ehc_deb_timing(&link->eh_context);
3642
3643                rc = sata_link_hardreset(link, timing, deadline + extra,
3644                                         &online, NULL);
3645                rc = online ? -EAGAIN : rc;
3646                if (rc)
3647                        return rc;
3648                sata_scr_read(link, SCR_STATUS, &sstatus);
3649                if (!IS_GEN_I(hpriv) && ++attempts >= 5 && sstatus == 0x121) {
3650                        /* Force 1.5gb/s link speed and try again */
3651                        mv_setup_ifcfg(mv_ap_base(ap), 0);
3652                        if (time_after(jiffies + HZ, deadline))
3653                                extra = HZ; /* only extend it once, max */
3654                }
3655        } while (sstatus != 0x0 && sstatus != 0x113 && sstatus != 0x123);
3656        mv_save_cached_regs(ap);
3657        mv_edma_cfg(ap, 0, 0);
3658
3659        return rc;
3660}
3661
3662static void mv_eh_freeze(struct ata_port *ap)
3663{
3664        mv_stop_edma(ap);
3665        mv_enable_port_irqs(ap, 0);
3666}
3667
3668static void mv_eh_thaw(struct ata_port *ap)
3669{
3670        struct mv_host_priv *hpriv = ap->host->private_data;
3671        unsigned int port = ap->port_no;
3672        unsigned int hardport = mv_hardport_from_port(port);
3673        void __iomem *hc_mmio = mv_hc_base_from_port(hpriv->base, port);
3674        void __iomem *port_mmio = mv_ap_base(ap);
3675        u32 hc_irq_cause;
3676
3677        /* clear EDMA errors on this port */
3678        writel(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
3679
3680        /* clear pending irq events */
3681        hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
3682        writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
3683
3684        mv_enable_port_irqs(ap, ERR_IRQ);
3685}
3686
3687/**
3688 *      mv_port_init - Perform some early initialization on a single port.
3689 *      @port: libata data structure storing shadow register addresses
3690 *      @port_mmio: base address of the port
3691 *
3692 *      Initialize shadow register mmio addresses, clear outstanding
3693 *      interrupts on the port, and unmask interrupts for the future
3694 *      start of the port.
3695 *
3696 *      LOCKING:
3697 *      Inherited from caller.
3698 */
3699static void mv_port_init(struct ata_ioports *port,  void __iomem *port_mmio)
3700{
3701        void __iomem *serr, *shd_base = port_mmio + SHD_BLK;
3702
3703        /* PIO related setup
3704         */
3705        port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA);
3706        port->error_addr =
3707                port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR);
3708        port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT);
3709        port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL);
3710        port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM);
3711        port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH);
3712        port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE);
3713        port->status_addr =
3714                port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS);
3715        /* special case: control/altstatus doesn't have ATA_REG_ address */
3716        port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST;
3717
3718        /* Clear any currently outstanding port interrupt conditions */
3719        serr = port_mmio + mv_scr_offset(SCR_ERROR);
3720        writelfl(readl(serr), serr);
3721        writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
3722
3723        /* unmask all non-transient EDMA error interrupts */
3724        writelfl(~EDMA_ERR_IRQ_TRANSIENT, port_mmio + EDMA_ERR_IRQ_MASK);
3725
3726        VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
3727                readl(port_mmio + EDMA_CFG),
3728                readl(port_mmio + EDMA_ERR_IRQ_CAUSE),
3729                readl(port_mmio + EDMA_ERR_IRQ_MASK));
3730}
3731
3732static unsigned int mv_in_pcix_mode(struct ata_host *host)
3733{
3734        struct mv_host_priv *hpriv = host->private_data;
3735        void __iomem *mmio = hpriv->base;
3736        u32 reg;
3737
3738        if (IS_SOC(hpriv) || !IS_PCIE(hpriv))
3739                return 0;       /* not PCI-X capable */
3740        reg = readl(mmio + MV_PCI_MODE);
3741        if ((reg & MV_PCI_MODE_MASK) == 0)
3742                return 0;       /* conventional PCI mode */
3743        return 1;       /* chip is in PCI-X mode */
3744}
3745
3746static int mv_pci_cut_through_okay(struct ata_host *host)
3747{
3748        struct mv_host_priv *hpriv = host->private_data;
3749        void __iomem *mmio = hpriv->base;
3750        u32 reg;
3751
3752        if (!mv_in_pcix_mode(host)) {
3753                reg = readl(mmio + MV_PCI_COMMAND);
3754                if (reg & MV_PCI_COMMAND_MRDTRIG)
3755                        return 0; /* not okay */
3756        }
3757        return 1; /* okay */
3758}
3759
3760static void mv_60x1b2_errata_pci7(struct ata_host *host)
3761{
3762        struct mv_host_priv *hpriv = host->private_data;
3763        void __iomem *mmio = hpriv->base;
3764
3765        /* workaround for 60x1-B2 errata PCI#7 */
3766        if (mv_in_pcix_mode(host)) {
3767                u32 reg = readl(mmio + MV_PCI_COMMAND);
3768                writelfl(reg & ~MV_PCI_COMMAND_MWRCOM, mmio + MV_PCI_COMMAND);
3769        }
3770}
3771
3772static int mv_chip_id(struct ata_host *host, unsigned int board_idx)
3773{
3774        struct pci_dev *pdev = to_pci_dev(host->dev);
3775        struct mv_host_priv *hpriv = host->private_data;
3776        u32 hp_flags = hpriv->hp_flags;
3777
3778        switch (board_idx) {
3779        case chip_5080:
3780                hpriv->ops = &mv5xxx_ops;
3781                hp_flags |= MV_HP_GEN_I;
3782
3783                switch (pdev->revision) {
3784                case 0x1:
3785                        hp_flags |= MV_HP_ERRATA_50XXB0;
3786                        break;
3787                case 0x3:
3788                        hp_flags |= MV_HP_ERRATA_50XXB2;
3789                        break;
3790                default:
3791                        dev_warn(&pdev->dev,
3792                                 "Applying 50XXB2 workarounds to unknown rev\n");
3793                        hp_flags |= MV_HP_ERRATA_50XXB2;
3794                        break;
3795                }
3796                break;
3797
3798        case chip_504x:
3799        case chip_508x:
3800                hpriv->ops = &mv5xxx_ops;
3801                hp_flags |= MV_HP_GEN_I;
3802
3803                switch (pdev->revision) {
3804                case 0x0:
3805                        hp_flags |= MV_HP_ERRATA_50XXB0;
3806                        break;
3807                case 0x3:
3808                        hp_flags |= MV_HP_ERRATA_50XXB2;
3809                        break;
3810                default:
3811                        dev_warn(&pdev->dev,
3812                                 "Applying B2 workarounds to unknown rev\n");
3813                        hp_flags |= MV_HP_ERRATA_50XXB2;
3814                        break;
3815                }
3816                break;
3817
3818        case chip_604x:
3819        case chip_608x:
3820                hpriv->ops = &mv6xxx_ops;
3821                hp_flags |= MV_HP_GEN_II;
3822
3823                switch (pdev->revision) {
3824                case 0x7:
3825                        mv_60x1b2_errata_pci7(host);
3826                        hp_flags |= MV_HP_ERRATA_60X1B2;
3827                        break;
3828                case 0x9:
3829                        hp_flags |= MV_HP_ERRATA_60X1C0;
3830                        break;
3831                default:
3832                        dev_warn(&pdev->dev,
3833                                 "Applying B2 workarounds to unknown rev\n");
3834                        hp_flags |= MV_HP_ERRATA_60X1B2;
3835                        break;
3836                }
3837                break;
3838
3839        case chip_7042:
3840                hp_flags |= MV_HP_PCIE | MV_HP_CUT_THROUGH;
3841                if (pdev->vendor == PCI_VENDOR_ID_TTI &&
3842                    (pdev->device == 0x2300 || pdev->device == 0x2310))
3843                {
3844                        /*
3845                         * Highpoint RocketRAID PCIe 23xx series cards:
3846                         *
3847                         * Unconfigured drives are treated as "Legacy"
3848                         * by the BIOS, and it overwrites sector 8 with
3849                         * a "Lgcy" metadata block prior to Linux boot.
3850                         *
3851                         * Configured drives (RAID or JBOD) leave sector 8
3852                         * alone, but instead overwrite a high numbered
3853                         * sector for the RAID metadata.  This sector can
3854                         * be determined exactly, by truncating the physical
3855                         * drive capacity to a nice even GB value.
3856                         *
3857                         * RAID metadata is at: (dev->n_sectors & ~0xfffff)
3858                         *
3859                         * Warn the user, lest they think we're just buggy.
3860                         */
3861                        printk(KERN_WARNING DRV_NAME ": Highpoint RocketRAID"
3862                                " BIOS CORRUPTS DATA on all attached drives,"
3863                                " regardless of if/how they are configured."
3864                                " BEWARE!\n");
3865                        printk(KERN_WARNING DRV_NAME ": For data safety, do not"
3866                                " use sectors 8-9 on \"Legacy\" drives,"
3867                                " and avoid the final two gigabytes on"
3868                                " all RocketRAID BIOS initialized drives.\n");
3869                }
3870                /* drop through */
3871        case chip_6042:
3872                hpriv->ops = &mv6xxx_ops;
3873                hp_flags |= MV_HP_GEN_IIE;
3874                if (board_idx == chip_6042 && mv_pci_cut_through_okay(host))
3875                        hp_flags |= MV_HP_CUT_THROUGH;
3876
3877                switch (pdev->revision) {
3878                case 0x2: /* Rev.B0: the first/only public release */
3879                        hp_flags |= MV_HP_ERRATA_60X1C0;
3880                        break;
3881                default:
3882                        dev_warn(&pdev->dev,
3883                                 "Applying 60X1C0 workarounds to unknown rev\n");
3884                        hp_flags |= MV_HP_ERRATA_60X1C0;
3885                        break;
3886                }
3887                break;
3888        case chip_soc:
3889                if (soc_is_65n(hpriv))
3890                        hpriv->ops = &mv_soc_65n_ops;
3891                else
3892                        hpriv->ops = &mv_soc_ops;
3893                hp_flags |= MV_HP_FLAG_SOC | MV_HP_GEN_IIE |
3894                        MV_HP_ERRATA_60X1C0;
3895                break;
3896
3897        default:
3898                dev_err(host->dev, "BUG: invalid board index %u\n", board_idx);
3899                return 1;
3900        }
3901
3902        hpriv->hp_flags = hp_flags;
3903        if (hp_flags & MV_HP_PCIE) {
3904                hpriv->irq_cause_offset = PCIE_IRQ_CAUSE;
3905                hpriv->irq_mask_offset  = PCIE_IRQ_MASK;
3906                hpriv->unmask_all_irqs  = PCIE_UNMASK_ALL_IRQS;
3907        } else {
3908                hpriv->irq_cause_offset = PCI_IRQ_CAUSE;
3909                hpriv->irq_mask_offset  = PCI_IRQ_MASK;
3910                hpriv->unmask_all_irqs  = PCI_UNMASK_ALL_IRQS;
3911        }
3912
3913        return 0;
3914}
3915
3916/**
3917 *      mv_init_host - Perform some early initialization of the host.
3918 *      @host: ATA host to initialize
3919 *
3920 *      If possible, do an early global reset of the host.  Then do
3921 *      our port init and clear/unmask all/relevant host interrupts.
3922 *
3923 *      LOCKING:
3924 *      Inherited from caller.
3925 */
3926static int mv_init_host(struct ata_host *host)
3927{
3928        int rc = 0, n_hc, port, hc;
3929        struct mv_host_priv *hpriv = host->private_data;
3930        void __iomem *mmio = hpriv->base;
3931
3932        rc = mv_chip_id(host, hpriv->board_idx);
3933        if (rc)
3934                goto done;
3935
3936        if (IS_SOC(hpriv)) {
3937                hpriv->main_irq_cause_addr = mmio + SOC_HC_MAIN_IRQ_CAUSE;
3938                hpriv->main_irq_mask_addr  = mmio + SOC_HC_MAIN_IRQ_MASK;
3939        } else {
3940                hpriv->main_irq_cause_addr = mmio + PCI_HC_MAIN_IRQ_CAUSE;
3941                hpriv->main_irq_mask_addr  = mmio + PCI_HC_MAIN_IRQ_MASK;
3942        }
3943
3944        /* initialize shadow irq mask with register's value */
3945        hpriv->main_irq_mask = readl(hpriv->main_irq_mask_addr);
3946
3947        /* global interrupt mask: 0 == mask everything */
3948        mv_set_main_irq_mask(host, ~0, 0);
3949
3950        n_hc = mv_get_hc_count(host->ports[0]->flags);
3951
3952        for (port = 0; port < host->n_ports; port++)
3953                if (hpriv->ops->read_preamp)
3954                        hpriv->ops->read_preamp(hpriv, port, mmio);
3955
3956        rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc);
3957        if (rc)
3958                goto done;
3959
3960        hpriv->ops->reset_flash(hpriv, mmio);
3961        hpriv->ops->reset_bus(host, mmio);
3962        hpriv->ops->enable_leds(hpriv, mmio);
3963
3964        for (port = 0; port < host->n_ports; port++) {
3965                struct ata_port *ap = host->ports[port];
3966                void __iomem *port_mmio = mv_port_base(mmio, port);
3967
3968                mv_port_init(&ap->ioaddr, port_mmio);
3969        }
3970
3971        for (hc = 0; hc < n_hc; hc++) {
3972                void __iomem *hc_mmio = mv_hc_base(mmio, hc);
3973
3974                VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
3975                        "(before clear)=0x%08x\n", hc,
3976                        readl(hc_mmio + HC_CFG),
3977                        readl(hc_mmio + HC_IRQ_CAUSE));
3978
3979                /* Clear any currently outstanding hc interrupt conditions */
3980                writelfl(0, hc_mmio + HC_IRQ_CAUSE);
3981        }
3982
3983        if (!IS_SOC(hpriv)) {
3984                /* Clear any currently outstanding host interrupt conditions */
3985                writelfl(0, mmio + hpriv->irq_cause_offset);
3986
3987                /* and unmask interrupt generation for host regs */
3988                writelfl(hpriv->unmask_all_irqs, mmio + hpriv->irq_mask_offset);
3989        }
3990
3991        /*
3992         * enable only global host interrupts for now.
3993         * The per-port interrupts get done later as ports are set up.
3994         */
3995        mv_set_main_irq_mask(host, 0, PCI_ERR);
3996        mv_set_irq_coalescing(host, irq_coalescing_io_count,
3997                                    irq_coalescing_usecs);
3998done:
3999        return rc;
4000}
4001
4002static int mv_create_dma_pools(struct mv_host_priv *hpriv, struct device *dev)
4003{
4004        hpriv->crqb_pool   = dmam_pool_create("crqb_q", dev, MV_CRQB_Q_SZ,
4005                                                             MV_CRQB_Q_SZ, 0);
4006        if (!hpriv->crqb_pool)
4007                return -ENOMEM;
4008
4009        hpriv->crpb_pool   = dmam_pool_create("crpb_q", dev, MV_CRPB_Q_SZ,
4010                                                             MV_CRPB_Q_SZ, 0);
4011        if (!hpriv->crpb_pool)
4012                return -ENOMEM;
4013
4014        hpriv->sg_tbl_pool = dmam_pool_create("sg_tbl", dev, MV_SG_TBL_SZ,
4015                                                             MV_SG_TBL_SZ, 0);
4016        if (!hpriv->sg_tbl_pool)
4017                return -ENOMEM;
4018
4019        return 0;
4020}
4021
4022static void mv_conf_mbus_windows(struct mv_host_priv *hpriv,
4023                                 const struct mbus_dram_target_info *dram)
4024{
4025        int i;
4026
4027        for (i = 0; i < 4; i++) {
4028                writel(0, hpriv->base + WINDOW_CTRL(i));
4029                writel(0, hpriv->base + WINDOW_BASE(i));
4030        }
4031
4032        for (i = 0; i < dram->num_cs; i++) {
4033                const struct mbus_dram_window *cs = dram->cs + i;
4034
4035                writel(((cs->size - 1) & 0xffff0000) |
4036                        (cs->mbus_attr << 8) |
4037                        (dram->mbus_dram_target_id << 4) | 1,
4038                        hpriv->base + WINDOW_CTRL(i));
4039                writel(cs->base, hpriv->base + WINDOW_BASE(i));
4040        }
4041}
4042
4043/**
4044 *      mv_platform_probe - handle a positive probe of an soc Marvell
4045 *      host
4046 *      @pdev: platform device found
4047 *
4048 *      LOCKING:
4049 *      Inherited from caller.
4050 */
4051static int mv_platform_probe(struct platform_device *pdev)
4052{
4053        const struct mv_sata_platform_data *mv_platform_data;
4054        const struct mbus_dram_target_info *dram;
4055        const struct ata_port_info *ppi[] =
4056            { &mv_port_info[chip_soc], NULL };
4057        struct ata_host *host;
4058        struct mv_host_priv *hpriv;
4059        struct resource *res;
4060        int n_ports = 0, irq = 0;
4061        int rc;
4062        int port;
4063
4064        ata_print_version_once(&pdev->dev, DRV_VERSION);
4065
4066        /*
4067         * Simple resource validation ..
4068         */
4069        if (unlikely(pdev->num_resources != 2)) {
4070                dev_err(&pdev->dev, "invalid number of resources\n");
4071                return -EINVAL;
4072        }
4073
4074        /*
4075         * Get the register base first
4076         */
4077        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4078        if (res == NULL)
4079                return -EINVAL;
4080
4081        /* allocate host */
4082        if (pdev->dev.of_node) {
4083                of_property_read_u32(pdev->dev.of_node, "nr-ports", &n_ports);
4084                irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
4085        } else {
4086                mv_platform_data = dev_get_platdata(&pdev->dev);
4087                n_ports = mv_platform_data->n_ports;
4088                irq = platform_get_irq(pdev, 0);
4089        }
4090
4091        host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
4092        hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
4093
4094        if (!host || !hpriv)
4095                return -ENOMEM;
4096        hpriv->port_clks = devm_kzalloc(&pdev->dev,
4097                                        sizeof(struct clk *) * n_ports,
4098                                        GFP_KERNEL);
4099        if (!hpriv->port_clks)
4100                return -ENOMEM;
4101        hpriv->port_phys = devm_kzalloc(&pdev->dev,
4102                                        sizeof(struct phy *) * n_ports,
4103                                        GFP_KERNEL);
4104        if (!hpriv->port_phys)
4105                return -ENOMEM;
4106        host->private_data = hpriv;
4107        hpriv->board_idx = chip_soc;
4108
4109        host->iomap = NULL;
4110        hpriv->base = devm_ioremap(&pdev->dev, res->start,
4111                                   resource_size(res));
4112        hpriv->base -= SATAHC0_REG_BASE;
4113
4114        hpriv->clk = clk_get(&pdev->dev, NULL);
4115        if (IS_ERR(hpriv->clk))
4116                dev_notice(&pdev->dev, "cannot get optional clkdev\n");
4117        else
4118                clk_prepare_enable(hpriv->clk);
4119
4120        for (port = 0; port < n_ports; port++) {
4121                char port_number[16];
4122                sprintf(port_number, "%d", port);
4123                hpriv->port_clks[port] = clk_get(&pdev->dev, port_number);
4124                if (!IS_ERR(hpriv->port_clks[port]))
4125                        clk_prepare_enable(hpriv->port_clks[port]);
4126
4127                sprintf(port_number, "port%d", port);
4128                hpriv->port_phys[port] = devm_phy_optional_get(&pdev->dev,
4129                                                               port_number);
4130                if (IS_ERR(hpriv->port_phys[port])) {
4131                        rc = PTR_ERR(hpriv->port_phys[port]);
4132                        hpriv->port_phys[port] = NULL;
4133                        if (rc != -EPROBE_DEFER)
4134                                dev_warn(&pdev->dev, "error getting phy %d", rc);
4135
4136                        /* Cleanup only the initialized ports */
4137                        hpriv->n_ports = port;
4138                        goto err;
4139                } else
4140                        phy_power_on(hpriv->port_phys[port]);
4141        }
4142
4143        /* All the ports have been initialized */
4144        hpriv->n_ports = n_ports;
4145
4146        /*
4147         * (Re-)program MBUS remapping windows if we are asked to.
4148         */
4149        dram = mv_mbus_dram_info();
4150        if (dram)
4151                mv_conf_mbus_windows(hpriv, dram);
4152
4153        rc = mv_create_dma_pools(hpriv, &pdev->dev);
4154        if (rc)
4155                goto err;
4156
4157        /*
4158         * To allow disk hotplug on Armada 370/XP SoCs, the PHY speed must be
4159         * updated in the LP_PHY_CTL register.
4160         */
4161        if (pdev->dev.of_node &&
4162                of_device_is_compatible(pdev->dev.of_node,
4163                                        "marvell,armada-370-sata"))
4164                hpriv->hp_flags |= MV_HP_FIX_LP_PHY_CTL;
4165
4166        /* initialize adapter */
4167        rc = mv_init_host(host);
4168        if (rc)
4169                goto err;
4170
4171        dev_info(&pdev->dev, "slots %u ports %d\n",
4172                 (unsigned)MV_MAX_Q_DEPTH, host->n_ports);
4173
4174        rc = ata_host_activate(host, irq, mv_interrupt, IRQF_SHARED, &mv6_sht);
4175        if (!rc)
4176                return 0;
4177
4178err:
4179        if (!IS_ERR(hpriv->clk)) {
4180                clk_disable_unprepare(hpriv->clk);
4181                clk_put(hpriv->clk);
4182        }
4183        for (port = 0; port < hpriv->n_ports; port++) {
4184                if (!IS_ERR(hpriv->port_clks[port])) {
4185                        clk_disable_unprepare(hpriv->port_clks[port]);
4186                        clk_put(hpriv->port_clks[port]);
4187                }
4188                if (hpriv->port_phys[port])
4189                        phy_power_off(hpriv->port_phys[port]);
4190        }
4191
4192        return rc;
4193}
4194
4195/*
4196 *
4197 *      mv_platform_remove    -       unplug a platform interface
4198 *      @pdev: platform device
4199 *
4200 *      A platform bus SATA device has been unplugged. Perform the needed
4201 *      cleanup. Also called on module unload for any active devices.
4202 */
4203static int mv_platform_remove(struct platform_device *pdev)
4204{
4205        struct ata_host *host = platform_get_drvdata(pdev);
4206        struct mv_host_priv *hpriv = host->private_data;
4207        int port;
4208        ata_host_detach(host);
4209
4210        if (!IS_ERR(hpriv->clk)) {
4211                clk_disable_unprepare(hpriv->clk);
4212                clk_put(hpriv->clk);
4213        }
4214        for (port = 0; port < host->n_ports; port++) {
4215                if (!IS_ERR(hpriv->port_clks[port])) {
4216                        clk_disable_unprepare(hpriv->port_clks[port]);
4217                        clk_put(hpriv->port_clks[port]);
4218                }
4219                if (hpriv->port_phys[port])
4220                        phy_power_off(hpriv->port_phys[port]);
4221        }
4222        return 0;
4223}
4224
4225#ifdef CONFIG_PM_SLEEP
4226static int mv_platform_suspend(struct platform_device *pdev, pm_message_t state)
4227{
4228        struct ata_host *host = platform_get_drvdata(pdev);
4229        if (host)
4230                return ata_host_suspend(host, state);
4231        else
4232                return 0;
4233}
4234
4235static int mv_platform_resume(struct platform_device *pdev)
4236{
4237        struct ata_host *host = platform_get_drvdata(pdev);
4238        const struct mbus_dram_target_info *dram;
4239        int ret;
4240
4241        if (host) {
4242                struct mv_host_priv *hpriv = host->private_data;
4243
4244                /*
4245                 * (Re-)program MBUS remapping windows if we are asked to.
4246                 */
4247                dram = mv_mbus_dram_info();
4248                if (dram)
4249                        mv_conf_mbus_windows(hpriv, dram);
4250
4251                /* initialize adapter */
4252                ret = mv_init_host(host);
4253                if (ret) {
4254                        printk(KERN_ERR DRV_NAME ": Error during HW init\n");
4255                        return ret;
4256                }
4257                ata_host_resume(host);
4258        }
4259
4260        return 0;
4261}
4262#else
4263#define mv_platform_suspend NULL
4264#define mv_platform_resume NULL
4265#endif
4266
4267#ifdef CONFIG_OF
4268static struct of_device_id mv_sata_dt_ids[] = {
4269        { .compatible = "marvell,armada-370-sata", },
4270        { .compatible = "marvell,orion-sata", },
4271        {},
4272};
4273MODULE_DEVICE_TABLE(of, mv_sata_dt_ids);
4274#endif
4275
4276static struct platform_driver mv_platform_driver = {
4277        .probe          = mv_platform_probe,
4278        .remove         = mv_platform_remove,
4279        .suspend        = mv_platform_suspend,
4280        .resume         = mv_platform_resume,
4281        .driver         = {
4282                .name = DRV_NAME,
4283                .owner = THIS_MODULE,
4284                .of_match_table = of_match_ptr(mv_sata_dt_ids),
4285        },
4286};
4287
4288
4289#ifdef CONFIG_PCI
4290static int mv_pci_init_one(struct pci_dev *pdev,
4291                           const struct pci_device_id *ent);
4292#ifdef CONFIG_PM_SLEEP
4293static int mv_pci_device_resume(struct pci_dev *pdev);
4294#endif
4295
4296
4297static struct pci_driver mv_pci_driver = {
4298        .name                   = DRV_NAME,
4299        .id_table               = mv_pci_tbl,
4300        .probe                  = mv_pci_init_one,
4301        .remove                 = ata_pci_remove_one,
4302#ifdef CONFIG_PM_SLEEP
4303        .suspend                = ata_pci_device_suspend,
4304        .resume                 = mv_pci_device_resume,
4305#endif
4306
4307};
4308
4309/* move to PCI layer or libata core? */
4310static int pci_go_64(struct pci_dev *pdev)
4311{
4312        int rc;
4313
4314        if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4315                rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4316                if (rc) {
4317                        rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4318                        if (rc) {
4319                                dev_err(&pdev->dev,
4320                                        "64-bit DMA enable failed\n");
4321                                return rc;
4322                        }
4323                }
4324        } else {
4325                rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4326                if (rc) {
4327                        dev_err(&pdev->dev, "32-bit DMA enable failed\n");
4328                        return rc;
4329                }
4330                rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4331                if (rc) {
4332                        dev_err(&pdev->dev,
4333                                "32-bit consistent DMA enable failed\n");
4334                        return rc;
4335                }
4336        }
4337
4338        return rc;
4339}
4340
4341/**
4342 *      mv_print_info - Dump key info to kernel log for perusal.
4343 *      @host: ATA host to print info about
4344 *
4345 *      FIXME: complete this.
4346 *
4347 *      LOCKING:
4348 *      Inherited from caller.
4349 */
4350static void mv_print_info(struct ata_host *host)
4351{
4352        struct pci_dev *pdev = to_pci_dev(host->dev);
4353        struct mv_host_priv *hpriv = host->private_data;
4354        u8 scc;
4355        const char *scc_s, *gen;
4356
4357        /* Use this to determine the HW stepping of the chip so we know
4358         * what errata to workaround
4359         */
4360        pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc);
4361        if (scc == 0)
4362                scc_s = "SCSI";
4363        else if (scc == 0x01)
4364                scc_s = "RAID";
4365        else
4366                scc_s = "?";
4367
4368        if (IS_GEN_I(hpriv))
4369                gen = "I";
4370        else if (IS_GEN_II(hpriv))
4371                gen = "II";
4372        else if (IS_GEN_IIE(hpriv))
4373                gen = "IIE";
4374        else
4375                gen = "?";
4376
4377        dev_info(&pdev->dev, "Gen-%s %u slots %u ports %s mode IRQ via %s\n",
4378                 gen, (unsigned)MV_MAX_Q_DEPTH, host->n_ports,
4379                 scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx");
4380}
4381
4382/**
4383 *      mv_pci_init_one - handle a positive probe of a PCI Marvell host
4384 *      @pdev: PCI device found
4385 *      @ent: PCI device ID entry for the matched host
4386 *
4387 *      LOCKING:
4388 *      Inherited from caller.
4389 */
4390static int mv_pci_init_one(struct pci_dev *pdev,
4391                           const struct pci_device_id *ent)
4392{
4393        unsigned int board_idx = (unsigned int)ent->driver_data;
4394        const struct ata_port_info *ppi[] = { &mv_port_info[board_idx], NULL };
4395        struct ata_host *host;
4396        struct mv_host_priv *hpriv;
4397        int n_ports, port, rc;
4398
4399        ata_print_version_once(&pdev->dev, DRV_VERSION);
4400
4401        /* allocate host */
4402        n_ports = mv_get_hc_count(ppi[0]->flags) * MV_PORTS_PER_HC;
4403
4404        host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
4405        hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
4406        if (!host || !hpriv)
4407                return -ENOMEM;
4408        host->private_data = hpriv;
4409        hpriv->n_ports = n_ports;
4410        hpriv->board_idx = board_idx;
4411
4412        /* acquire resources */
4413        rc = pcim_enable_device(pdev);
4414        if (rc)
4415                return rc;
4416
4417        rc = pcim_iomap_regions(pdev, 1 << MV_PRIMARY_BAR, DRV_NAME);
4418        if (rc == -EBUSY)
4419                pcim_pin_device(pdev);
4420        if (rc)
4421                return rc;
4422        host->iomap = pcim_iomap_table(pdev);
4423        hpriv->base = host->iomap[MV_PRIMARY_BAR];
4424
4425        rc = pci_go_64(pdev);
4426        if (rc)
4427                return rc;
4428
4429        rc = mv_create_dma_pools(hpriv, &pdev->dev);
4430        if (rc)
4431                return rc;
4432
4433        for (port = 0; port < host->n_ports; port++) {
4434                struct ata_port *ap = host->ports[port];
4435                void __iomem *port_mmio = mv_port_base(hpriv->base, port);
4436                unsigned int offset = port_mmio - hpriv->base;
4437
4438                ata_port_pbar_desc(ap, MV_PRIMARY_BAR, -1, "mmio");
4439                ata_port_pbar_desc(ap, MV_PRIMARY_BAR, offset, "port");
4440        }
4441
4442        /* initialize adapter */
4443        rc = mv_init_host(host);
4444        if (rc)
4445                return rc;
4446
4447        /* Enable message-switched interrupts, if requested */
4448        if (msi && pci_enable_msi(pdev) == 0)
4449                hpriv->hp_flags |= MV_HP_FLAG_MSI;
4450
4451        mv_dump_pci_cfg(pdev, 0x68);
4452        mv_print_info(host);
4453
4454        pci_set_master(pdev);
4455        pci_try_set_mwi(pdev);
4456        return ata_host_activate(host, pdev->irq, mv_interrupt, IRQF_SHARED,
4457                                 IS_GEN_I(hpriv) ? &mv5_sht : &mv6_sht);
4458}
4459
4460#ifdef CONFIG_PM_SLEEP
4461static int mv_pci_device_resume(struct pci_dev *pdev)
4462{
4463        struct ata_host *host = pci_get_drvdata(pdev);
4464        int rc;
4465
4466        rc = ata_pci_device_do_resume(pdev);
4467        if (rc)
4468                return rc;
4469
4470        /* initialize adapter */
4471        rc = mv_init_host(host);
4472        if (rc)
4473                return rc;
4474
4475        ata_host_resume(host);
4476
4477        return 0;
4478}
4479#endif
4480#endif
4481
4482static int __init mv_init(void)
4483{
4484        int rc = -ENODEV;
4485#ifdef CONFIG_PCI
4486        rc = pci_register_driver(&mv_pci_driver);
4487        if (rc < 0)
4488                return rc;
4489#endif
4490        rc = platform_driver_register(&mv_platform_driver);
4491
4492#ifdef CONFIG_PCI
4493        if (rc < 0)
4494                pci_unregister_driver(&mv_pci_driver);
4495#endif
4496        return rc;
4497}
4498
4499static void __exit mv_exit(void)
4500{
4501#ifdef CONFIG_PCI
4502        pci_unregister_driver(&mv_pci_driver);
4503#endif
4504        platform_driver_unregister(&mv_platform_driver);
4505}
4506
4507MODULE_AUTHOR("Brett Russ");
4508MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
4509MODULE_LICENSE("GPL");
4510MODULE_DEVICE_TABLE(pci, mv_pci_tbl);
4511MODULE_VERSION(DRV_VERSION);
4512MODULE_ALIAS("platform:" DRV_NAME);
4513
4514module_init(mv_init);
4515module_exit(mv_exit);
4516