linux/drivers/dma/nbpfaxi.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2013-2014 Renesas Electronics Europe Ltd.
   3 * Author: Guennadi Liakhovetski <g.liakhovetski@gmx.de>
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of version 2 of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 */
   9
  10#include <linux/bitmap.h>
  11#include <linux/bitops.h>
  12#include <linux/clk.h>
  13#include <linux/dma-mapping.h>
  14#include <linux/dmaengine.h>
  15#include <linux/err.h>
  16#include <linux/interrupt.h>
  17#include <linux/io.h>
  18#include <linux/log2.h>
  19#include <linux/module.h>
  20#include <linux/of.h>
  21#include <linux/of_device.h>
  22#include <linux/of_dma.h>
  23#include <linux/platform_device.h>
  24#include <linux/slab.h>
  25
  26#include <dt-bindings/dma/nbpfaxi.h>
  27
  28#include "dmaengine.h"
  29
  30#define NBPF_REG_CHAN_OFFSET    0
  31#define NBPF_REG_CHAN_SIZE      0x40
  32
  33/* Channel Current Transaction Byte register */
  34#define NBPF_CHAN_CUR_TR_BYTE   0x20
  35
  36/* Channel Status register */
  37#define NBPF_CHAN_STAT  0x24
  38#define NBPF_CHAN_STAT_EN       1
  39#define NBPF_CHAN_STAT_TACT     4
  40#define NBPF_CHAN_STAT_ERR      0x10
  41#define NBPF_CHAN_STAT_END      0x20
  42#define NBPF_CHAN_STAT_TC       0x40
  43#define NBPF_CHAN_STAT_DER      0x400
  44
  45/* Channel Control register */
  46#define NBPF_CHAN_CTRL  0x28
  47#define NBPF_CHAN_CTRL_SETEN    1
  48#define NBPF_CHAN_CTRL_CLREN    2
  49#define NBPF_CHAN_CTRL_STG      4
  50#define NBPF_CHAN_CTRL_SWRST    8
  51#define NBPF_CHAN_CTRL_CLRRQ    0x10
  52#define NBPF_CHAN_CTRL_CLREND   0x20
  53#define NBPF_CHAN_CTRL_CLRTC    0x40
  54#define NBPF_CHAN_CTRL_SETSUS   0x100
  55#define NBPF_CHAN_CTRL_CLRSUS   0x200
  56
  57/* Channel Configuration register */
  58#define NBPF_CHAN_CFG   0x2c
  59#define NBPF_CHAN_CFG_SEL       7               /* terminal SELect: 0..7 */
  60#define NBPF_CHAN_CFG_REQD      8               /* REQuest Direction: DMAREQ is 0: input, 1: output */
  61#define NBPF_CHAN_CFG_LOEN      0x10            /* LOw ENable: low DMA request line is: 0: inactive, 1: active */
  62#define NBPF_CHAN_CFG_HIEN      0x20            /* HIgh ENable: high DMA request line is: 0: inactive, 1: active */
  63#define NBPF_CHAN_CFG_LVL       0x40            /* LeVeL: DMA request line is sensed as 0: edge, 1: level */
  64#define NBPF_CHAN_CFG_AM        0x700           /* ACK Mode: 0: Pulse mode, 1: Level mode, b'1x: Bus Cycle */
  65#define NBPF_CHAN_CFG_SDS       0xf000          /* Source Data Size: 0: 8 bits,... , 7: 1024 bits */
  66#define NBPF_CHAN_CFG_DDS       0xf0000         /* Destination Data Size: as above */
  67#define NBPF_CHAN_CFG_SAD       0x100000        /* Source ADdress counting: 0: increment, 1: fixed */
  68#define NBPF_CHAN_CFG_DAD       0x200000        /* Destination ADdress counting: 0: increment, 1: fixed */
  69#define NBPF_CHAN_CFG_TM        0x400000        /* Transfer Mode: 0: single, 1: block TM */
  70#define NBPF_CHAN_CFG_DEM       0x1000000       /* DMAEND interrupt Mask */
  71#define NBPF_CHAN_CFG_TCM       0x2000000       /* DMATCO interrupt Mask */
  72#define NBPF_CHAN_CFG_SBE       0x8000000       /* Sweep Buffer Enable */
  73#define NBPF_CHAN_CFG_RSEL      0x10000000      /* RM: Register Set sELect */
  74#define NBPF_CHAN_CFG_RSW       0x20000000      /* RM: Register Select sWitch */
  75#define NBPF_CHAN_CFG_REN       0x40000000      /* RM: Register Set Enable */
  76#define NBPF_CHAN_CFG_DMS       0x80000000      /* 0: register mode (RM), 1: link mode (LM) */
  77
  78#define NBPF_CHAN_NXLA  0x38
  79#define NBPF_CHAN_CRLA  0x3c
  80
  81/* Link Header field */
  82#define NBPF_HEADER_LV  1
  83#define NBPF_HEADER_LE  2
  84#define NBPF_HEADER_WBD 4
  85#define NBPF_HEADER_DIM 8
  86
  87#define NBPF_CTRL       0x300
  88#define NBPF_CTRL_PR    1               /* 0: fixed priority, 1: round robin */
  89#define NBPF_CTRL_LVINT 2               /* DMAEND and DMAERR signalling: 0: pulse, 1: level */
  90
  91#define NBPF_DSTAT_ER   0x314
  92#define NBPF_DSTAT_END  0x318
  93
  94#define NBPF_DMA_BUSWIDTHS \
  95        (BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \
  96         BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
  97         BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
  98         BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \
  99         BIT(DMA_SLAVE_BUSWIDTH_8_BYTES))
 100
 101struct nbpf_config {
 102        int num_channels;
 103        int buffer_size;
 104};
 105
 106/*
 107 * We've got 3 types of objects, used to describe DMA transfers:
 108 * 1. high-level descriptor, containing a struct dma_async_tx_descriptor object
 109 *      in it, used to communicate with the user
 110 * 2. hardware DMA link descriptors, that we pass to DMAC for DMA transfer
 111 *      queuing, these must be DMAable, using either the streaming DMA API or
 112 *      allocated from coherent memory - one per SG segment
 113 * 3. one per SG segment descriptors, used to manage HW link descriptors from
 114 *      (2). They do not have to be DMAable. They can either be (a) allocated
 115 *      together with link descriptors as mixed (DMA / CPU) objects, or (b)
 116 *      separately. Even if allocated separately it would be best to link them
 117 *      to link descriptors once during channel resource allocation and always
 118 *      use them as a single object.
 119 * Therefore for both cases (a) and (b) at run-time objects (2) and (3) shall be
 120 * treated as a single SG segment descriptor.
 121 */
 122
 123struct nbpf_link_reg {
 124        u32     header;
 125        u32     src_addr;
 126        u32     dst_addr;
 127        u32     transaction_size;
 128        u32     config;
 129        u32     interval;
 130        u32     extension;
 131        u32     next;
 132} __packed;
 133
 134struct nbpf_device;
 135struct nbpf_channel;
 136struct nbpf_desc;
 137
 138struct nbpf_link_desc {
 139        struct nbpf_link_reg *hwdesc;
 140        dma_addr_t hwdesc_dma_addr;
 141        struct nbpf_desc *desc;
 142        struct list_head node;
 143};
 144
 145/**
 146 * struct nbpf_desc - DMA transfer descriptor
 147 * @async_tx:   dmaengine object
 148 * @user_wait:  waiting for a user ack
 149 * @length:     total transfer length
 150 * @sg:         list of hardware descriptors, represented by struct nbpf_link_desc
 151 * @node:       member in channel descriptor lists
 152 */
 153struct nbpf_desc {
 154        struct dma_async_tx_descriptor async_tx;
 155        bool user_wait;
 156        size_t length;
 157        struct nbpf_channel *chan;
 158        struct list_head sg;
 159        struct list_head node;
 160};
 161
 162/* Take a wild guess: allocate 4 segments per descriptor */
 163#define NBPF_SEGMENTS_PER_DESC 4
 164#define NBPF_DESCS_PER_PAGE ((PAGE_SIZE - sizeof(struct list_head)) /   \
 165        (sizeof(struct nbpf_desc) +                                     \
 166         NBPF_SEGMENTS_PER_DESC *                                       \
 167         (sizeof(struct nbpf_link_desc) + sizeof(struct nbpf_link_reg))))
 168#define NBPF_SEGMENTS_PER_PAGE (NBPF_SEGMENTS_PER_DESC * NBPF_DESCS_PER_PAGE)
 169
 170struct nbpf_desc_page {
 171        struct list_head node;
 172        struct nbpf_desc desc[NBPF_DESCS_PER_PAGE];
 173        struct nbpf_link_desc ldesc[NBPF_SEGMENTS_PER_PAGE];
 174        struct nbpf_link_reg hwdesc[NBPF_SEGMENTS_PER_PAGE];
 175};
 176
 177/**
 178 * struct nbpf_channel - one DMAC channel
 179 * @dma_chan:   standard dmaengine channel object
 180 * @base:       register address base
 181 * @nbpf:       DMAC
 182 * @name:       IRQ name
 183 * @irq:        IRQ number
 184 * @slave_addr: address for slave DMA
 185 * @slave_width:slave data size in bytes
 186 * @slave_burst:maximum slave burst size in bytes
 187 * @terminal:   DMA terminal, assigned to this channel
 188 * @dmarq_cfg:  DMA request line configuration - high / low, edge / level for NBPF_CHAN_CFG
 189 * @flags:      configuration flags from DT
 190 * @lock:       protect descriptor lists
 191 * @free_links: list of free link descriptors
 192 * @free:       list of free descriptors
 193 * @queued:     list of queued descriptors
 194 * @active:     list of descriptors, scheduled for processing
 195 * @done:       list of completed descriptors, waiting post-processing
 196 * @desc_page:  list of additionally allocated descriptor pages - if any
 197 */
 198struct nbpf_channel {
 199        struct dma_chan dma_chan;
 200        struct tasklet_struct tasklet;
 201        void __iomem *base;
 202        struct nbpf_device *nbpf;
 203        char name[16];
 204        int irq;
 205        dma_addr_t slave_src_addr;
 206        size_t slave_src_width;
 207        size_t slave_src_burst;
 208        dma_addr_t slave_dst_addr;
 209        size_t slave_dst_width;
 210        size_t slave_dst_burst;
 211        unsigned int terminal;
 212        u32 dmarq_cfg;
 213        unsigned long flags;
 214        spinlock_t lock;
 215        struct list_head free_links;
 216        struct list_head free;
 217        struct list_head queued;
 218        struct list_head active;
 219        struct list_head done;
 220        struct list_head desc_page;
 221        struct nbpf_desc *running;
 222        bool paused;
 223};
 224
 225struct nbpf_device {
 226        struct dma_device dma_dev;
 227        void __iomem *base;
 228        struct clk *clk;
 229        const struct nbpf_config *config;
 230        struct nbpf_channel chan[];
 231};
 232
 233enum nbpf_model {
 234        NBPF1B4,
 235        NBPF1B8,
 236        NBPF1B16,
 237        NBPF4B4,
 238        NBPF4B8,
 239        NBPF4B16,
 240        NBPF8B4,
 241        NBPF8B8,
 242        NBPF8B16,
 243};
 244
 245static struct nbpf_config nbpf_cfg[] = {
 246        [NBPF1B4] = {
 247                .num_channels = 1,
 248                .buffer_size = 4,
 249        },
 250        [NBPF1B8] = {
 251                .num_channels = 1,
 252                .buffer_size = 8,
 253        },
 254        [NBPF1B16] = {
 255                .num_channels = 1,
 256                .buffer_size = 16,
 257        },
 258        [NBPF4B4] = {
 259                .num_channels = 4,
 260                .buffer_size = 4,
 261        },
 262        [NBPF4B8] = {
 263                .num_channels = 4,
 264                .buffer_size = 8,
 265        },
 266        [NBPF4B16] = {
 267                .num_channels = 4,
 268                .buffer_size = 16,
 269        },
 270        [NBPF8B4] = {
 271                .num_channels = 8,
 272                .buffer_size = 4,
 273        },
 274        [NBPF8B8] = {
 275                .num_channels = 8,
 276                .buffer_size = 8,
 277        },
 278        [NBPF8B16] = {
 279                .num_channels = 8,
 280                .buffer_size = 16,
 281        },
 282};
 283
 284#define nbpf_to_chan(d) container_of(d, struct nbpf_channel, dma_chan)
 285
 286/*
 287 * dmaengine drivers seem to have a lot in common and instead of sharing more
 288 * code, they reimplement those common algorithms independently. In this driver
 289 * we try to separate the hardware-specific part from the (largely) generic
 290 * part. This improves code readability and makes it possible in the future to
 291 * reuse the generic code in form of a helper library. That generic code should
 292 * be suitable for various DMA controllers, using transfer descriptors in RAM
 293 * and pushing one SG list at a time to the DMA controller.
 294 */
 295
 296/*              Hardware-specific part          */
 297
 298static inline u32 nbpf_chan_read(struct nbpf_channel *chan,
 299                                 unsigned int offset)
 300{
 301        u32 data = ioread32(chan->base + offset);
 302        dev_dbg(chan->dma_chan.device->dev, "%s(0x%p + 0x%x) = 0x%x\n",
 303                __func__, chan->base, offset, data);
 304        return data;
 305}
 306
 307static inline void nbpf_chan_write(struct nbpf_channel *chan,
 308                                   unsigned int offset, u32 data)
 309{
 310        iowrite32(data, chan->base + offset);
 311        dev_dbg(chan->dma_chan.device->dev, "%s(0x%p + 0x%x) = 0x%x\n",
 312                __func__, chan->base, offset, data);
 313}
 314
 315static inline u32 nbpf_read(struct nbpf_device *nbpf,
 316                            unsigned int offset)
 317{
 318        u32 data = ioread32(nbpf->base + offset);
 319        dev_dbg(nbpf->dma_dev.dev, "%s(0x%p + 0x%x) = 0x%x\n",
 320                __func__, nbpf->base, offset, data);
 321        return data;
 322}
 323
 324static inline void nbpf_write(struct nbpf_device *nbpf,
 325                              unsigned int offset, u32 data)
 326{
 327        iowrite32(data, nbpf->base + offset);
 328        dev_dbg(nbpf->dma_dev.dev, "%s(0x%p + 0x%x) = 0x%x\n",
 329                __func__, nbpf->base, offset, data);
 330}
 331
 332static void nbpf_chan_halt(struct nbpf_channel *chan)
 333{
 334        nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_CLREN);
 335}
 336
 337static bool nbpf_status_get(struct nbpf_channel *chan)
 338{
 339        u32 status = nbpf_read(chan->nbpf, NBPF_DSTAT_END);
 340
 341        return status & BIT(chan - chan->nbpf->chan);
 342}
 343
 344static void nbpf_status_ack(struct nbpf_channel *chan)
 345{
 346        nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_CLREND);
 347}
 348
 349static u32 nbpf_error_get(struct nbpf_device *nbpf)
 350{
 351        return nbpf_read(nbpf, NBPF_DSTAT_ER);
 352}
 353
 354static struct nbpf_channel *nbpf_error_get_channel(struct nbpf_device *nbpf, u32 error)
 355{
 356        return nbpf->chan + __ffs(error);
 357}
 358
 359static void nbpf_error_clear(struct nbpf_channel *chan)
 360{
 361        u32 status;
 362        int i;
 363
 364        /* Stop the channel, make sure DMA has been aborted */
 365        nbpf_chan_halt(chan);
 366
 367        for (i = 1000; i; i--) {
 368                status = nbpf_chan_read(chan, NBPF_CHAN_STAT);
 369                if (!(status & NBPF_CHAN_STAT_TACT))
 370                        break;
 371                cpu_relax();
 372        }
 373
 374        if (!i)
 375                dev_err(chan->dma_chan.device->dev,
 376                        "%s(): abort timeout, channel status 0x%x\n", __func__, status);
 377
 378        nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_SWRST);
 379}
 380
 381static int nbpf_start(struct nbpf_desc *desc)
 382{
 383        struct nbpf_channel *chan = desc->chan;
 384        struct nbpf_link_desc *ldesc = list_first_entry(&desc->sg, struct nbpf_link_desc, node);
 385
 386        nbpf_chan_write(chan, NBPF_CHAN_NXLA, (u32)ldesc->hwdesc_dma_addr);
 387        nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_SETEN | NBPF_CHAN_CTRL_CLRSUS);
 388        chan->paused = false;
 389
 390        /* Software trigger MEMCPY - only MEMCPY uses the block mode */
 391        if (ldesc->hwdesc->config & NBPF_CHAN_CFG_TM)
 392                nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_STG);
 393
 394        dev_dbg(chan->nbpf->dma_dev.dev, "%s(): next 0x%x, cur 0x%x\n", __func__,
 395                nbpf_chan_read(chan, NBPF_CHAN_NXLA), nbpf_chan_read(chan, NBPF_CHAN_CRLA));
 396
 397        return 0;
 398}
 399
 400static void nbpf_chan_prepare(struct nbpf_channel *chan)
 401{
 402        chan->dmarq_cfg = (chan->flags & NBPF_SLAVE_RQ_HIGH ? NBPF_CHAN_CFG_HIEN : 0) |
 403                (chan->flags & NBPF_SLAVE_RQ_LOW ? NBPF_CHAN_CFG_LOEN : 0) |
 404                (chan->flags & NBPF_SLAVE_RQ_LEVEL ?
 405                 NBPF_CHAN_CFG_LVL | (NBPF_CHAN_CFG_AM & 0x200) : 0) |
 406                chan->terminal;
 407}
 408
 409static void nbpf_chan_prepare_default(struct nbpf_channel *chan)
 410{
 411        /* Don't output DMAACK */
 412        chan->dmarq_cfg = NBPF_CHAN_CFG_AM & 0x400;
 413        chan->terminal = 0;
 414        chan->flags = 0;
 415}
 416
 417static void nbpf_chan_configure(struct nbpf_channel *chan)
 418{
 419        /*
 420         * We assume, that only the link mode and DMA request line configuration
 421         * have to be set in the configuration register manually. Dynamic
 422         * per-transfer configuration will be loaded from transfer descriptors.
 423         */
 424        nbpf_chan_write(chan, NBPF_CHAN_CFG, NBPF_CHAN_CFG_DMS | chan->dmarq_cfg);
 425}
 426
 427static u32 nbpf_xfer_ds(struct nbpf_device *nbpf, size_t size)
 428{
 429        /* Maximum supported bursts depend on the buffer size */
 430        return min_t(int, __ffs(size), ilog2(nbpf->config->buffer_size * 8));
 431}
 432
 433static size_t nbpf_xfer_size(struct nbpf_device *nbpf,
 434                             enum dma_slave_buswidth width, u32 burst)
 435{
 436        size_t size;
 437
 438        if (!burst)
 439                burst = 1;
 440
 441        switch (width) {
 442        case DMA_SLAVE_BUSWIDTH_8_BYTES:
 443                size = 8 * burst;
 444                break;
 445
 446        case DMA_SLAVE_BUSWIDTH_4_BYTES:
 447                size = 4 * burst;
 448                break;
 449
 450        case DMA_SLAVE_BUSWIDTH_2_BYTES:
 451                size = 2 * burst;
 452                break;
 453
 454        default:
 455                pr_warn("%s(): invalid bus width %u\n", __func__, width);
 456        case DMA_SLAVE_BUSWIDTH_1_BYTE:
 457                size = burst;
 458        }
 459
 460        return nbpf_xfer_ds(nbpf, size);
 461}
 462
 463/*
 464 * We need a way to recognise slaves, whose data is sent "raw" over the bus,
 465 * i.e. it isn't known in advance how many bytes will be received. Therefore
 466 * the slave driver has to provide a "large enough" buffer and either read the
 467 * buffer, when it is full, or detect, that some data has arrived, then wait for
 468 * a timeout, if no more data arrives - receive what's already there. We want to
 469 * handle such slaves in a special way to allow an optimised mode for other
 470 * users, for whom the amount of data is known in advance. So far there's no way
 471 * to recognise such slaves. We use a data-width check to distinguish between
 472 * the SD host and the PL011 UART.
 473 */
 474
 475static int nbpf_prep_one(struct nbpf_link_desc *ldesc,
 476                         enum dma_transfer_direction direction,
 477                         dma_addr_t src, dma_addr_t dst, size_t size, bool last)
 478{
 479        struct nbpf_link_reg *hwdesc = ldesc->hwdesc;
 480        struct nbpf_desc *desc = ldesc->desc;
 481        struct nbpf_channel *chan = desc->chan;
 482        struct device *dev = chan->dma_chan.device->dev;
 483        size_t mem_xfer, slave_xfer;
 484        bool can_burst;
 485
 486        hwdesc->header = NBPF_HEADER_WBD | NBPF_HEADER_LV |
 487                (last ? NBPF_HEADER_LE : 0);
 488
 489        hwdesc->src_addr = src;
 490        hwdesc->dst_addr = dst;
 491        hwdesc->transaction_size = size;
 492
 493        /*
 494         * set config: SAD, DAD, DDS, SDS, etc.
 495         * Note on transfer sizes: the DMAC can perform unaligned DMA transfers,
 496         * but it is important to have transaction size a multiple of both
 497         * receiver and transmitter transfer sizes. It is also possible to use
 498         * different RAM and device transfer sizes, and it does work well with
 499         * some devices, e.g. with V08R07S01E SD host controllers, which can use
 500         * 128 byte transfers. But this doesn't work with other devices,
 501         * especially when the transaction size is unknown. This is the case,
 502         * e.g. with serial drivers like amba-pl011.c. For reception it sets up
 503         * the transaction size of 4K and if fewer bytes are received, it
 504         * pauses DMA and reads out data received via DMA as well as those left
 505         * in the Rx FIFO. For this to work with the RAM side using burst
 506         * transfers we enable the SBE bit and terminate the transfer in our
 507         * DMA_PAUSE handler.
 508         */
 509        mem_xfer = nbpf_xfer_ds(chan->nbpf, size);
 510
 511        switch (direction) {
 512        case DMA_DEV_TO_MEM:
 513                can_burst = chan->slave_src_width >= 3;
 514                slave_xfer = min(mem_xfer, can_burst ?
 515                                 chan->slave_src_burst : chan->slave_src_width);
 516                /*
 517                 * Is the slave narrower than 64 bits, i.e. isn't using the full
 518                 * bus width and cannot use bursts?
 519                 */
 520                if (mem_xfer > chan->slave_src_burst && !can_burst)
 521                        mem_xfer = chan->slave_src_burst;
 522                /* Device-to-RAM DMA is unreliable without REQD set */
 523                hwdesc->config = NBPF_CHAN_CFG_SAD | (NBPF_CHAN_CFG_DDS & (mem_xfer << 16)) |
 524                        (NBPF_CHAN_CFG_SDS & (slave_xfer << 12)) | NBPF_CHAN_CFG_REQD |
 525                        NBPF_CHAN_CFG_SBE;
 526                break;
 527
 528        case DMA_MEM_TO_DEV:
 529                slave_xfer = min(mem_xfer, chan->slave_dst_width >= 3 ?
 530                                 chan->slave_dst_burst : chan->slave_dst_width);
 531                hwdesc->config = NBPF_CHAN_CFG_DAD | (NBPF_CHAN_CFG_SDS & (mem_xfer << 12)) |
 532                        (NBPF_CHAN_CFG_DDS & (slave_xfer << 16)) | NBPF_CHAN_CFG_REQD;
 533                break;
 534
 535        case DMA_MEM_TO_MEM:
 536                hwdesc->config = NBPF_CHAN_CFG_TCM | NBPF_CHAN_CFG_TM |
 537                        (NBPF_CHAN_CFG_SDS & (mem_xfer << 12)) |
 538                        (NBPF_CHAN_CFG_DDS & (mem_xfer << 16));
 539                break;
 540
 541        default:
 542                return -EINVAL;
 543        }
 544
 545        hwdesc->config |= chan->dmarq_cfg | (last ? 0 : NBPF_CHAN_CFG_DEM) |
 546                NBPF_CHAN_CFG_DMS;
 547
 548        dev_dbg(dev, "%s(): desc @ %pad: hdr 0x%x, cfg 0x%x, %zu @ %pad -> %pad\n",
 549                __func__, &ldesc->hwdesc_dma_addr, hwdesc->header,
 550                hwdesc->config, size, &src, &dst);
 551
 552        dma_sync_single_for_device(dev, ldesc->hwdesc_dma_addr, sizeof(*hwdesc),
 553                                   DMA_TO_DEVICE);
 554
 555        return 0;
 556}
 557
 558static size_t nbpf_bytes_left(struct nbpf_channel *chan)
 559{
 560        return nbpf_chan_read(chan, NBPF_CHAN_CUR_TR_BYTE);
 561}
 562
 563static void nbpf_configure(struct nbpf_device *nbpf)
 564{
 565        nbpf_write(nbpf, NBPF_CTRL, NBPF_CTRL_LVINT);
 566}
 567
 568static void nbpf_pause(struct nbpf_channel *chan)
 569{
 570        nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_SETSUS);
 571        /* See comment in nbpf_prep_one() */
 572        nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_CLREN);
 573}
 574
 575/*              Generic part                    */
 576
 577/* DMA ENGINE functions */
 578static void nbpf_issue_pending(struct dma_chan *dchan)
 579{
 580        struct nbpf_channel *chan = nbpf_to_chan(dchan);
 581        unsigned long flags;
 582
 583        dev_dbg(dchan->device->dev, "Entry %s()\n", __func__);
 584
 585        spin_lock_irqsave(&chan->lock, flags);
 586        if (list_empty(&chan->queued))
 587                goto unlock;
 588
 589        list_splice_tail_init(&chan->queued, &chan->active);
 590
 591        if (!chan->running) {
 592                struct nbpf_desc *desc = list_first_entry(&chan->active,
 593                                                struct nbpf_desc, node);
 594                if (!nbpf_start(desc))
 595                        chan->running = desc;
 596        }
 597
 598unlock:
 599        spin_unlock_irqrestore(&chan->lock, flags);
 600}
 601
 602static enum dma_status nbpf_tx_status(struct dma_chan *dchan,
 603                dma_cookie_t cookie, struct dma_tx_state *state)
 604{
 605        struct nbpf_channel *chan = nbpf_to_chan(dchan);
 606        enum dma_status status = dma_cookie_status(dchan, cookie, state);
 607
 608        if (state) {
 609                dma_cookie_t running;
 610                unsigned long flags;
 611
 612                spin_lock_irqsave(&chan->lock, flags);
 613                running = chan->running ? chan->running->async_tx.cookie : -EINVAL;
 614
 615                if (cookie == running) {
 616                        state->residue = nbpf_bytes_left(chan);
 617                        dev_dbg(dchan->device->dev, "%s(): residue %u\n", __func__,
 618                                state->residue);
 619                } else if (status == DMA_IN_PROGRESS) {
 620                        struct nbpf_desc *desc;
 621                        bool found = false;
 622
 623                        list_for_each_entry(desc, &chan->active, node)
 624                                if (desc->async_tx.cookie == cookie) {
 625                                        found = true;
 626                                        break;
 627                                }
 628
 629                        if (!found)
 630                                list_for_each_entry(desc, &chan->queued, node)
 631                                        if (desc->async_tx.cookie == cookie) {
 632                                                found = true;
 633                                                break;
 634
 635                                        }
 636
 637                        state->residue = found ? desc->length : 0;
 638                }
 639
 640                spin_unlock_irqrestore(&chan->lock, flags);
 641        }
 642
 643        if (chan->paused)
 644                status = DMA_PAUSED;
 645
 646        return status;
 647}
 648
 649static dma_cookie_t nbpf_tx_submit(struct dma_async_tx_descriptor *tx)
 650{
 651        struct nbpf_desc *desc = container_of(tx, struct nbpf_desc, async_tx);
 652        struct nbpf_channel *chan = desc->chan;
 653        unsigned long flags;
 654        dma_cookie_t cookie;
 655
 656        spin_lock_irqsave(&chan->lock, flags);
 657        cookie = dma_cookie_assign(tx);
 658        list_add_tail(&desc->node, &chan->queued);
 659        spin_unlock_irqrestore(&chan->lock, flags);
 660
 661        dev_dbg(chan->dma_chan.device->dev, "Entry %s(%d)\n", __func__, cookie);
 662
 663        return cookie;
 664}
 665
 666static int nbpf_desc_page_alloc(struct nbpf_channel *chan)
 667{
 668        struct dma_chan *dchan = &chan->dma_chan;
 669        struct nbpf_desc_page *dpage = (void *)get_zeroed_page(GFP_KERNEL | GFP_DMA);
 670        struct nbpf_link_desc *ldesc;
 671        struct nbpf_link_reg *hwdesc;
 672        struct nbpf_desc *desc;
 673        LIST_HEAD(head);
 674        LIST_HEAD(lhead);
 675        int i;
 676        struct device *dev = dchan->device->dev;
 677
 678        if (!dpage)
 679                return -ENOMEM;
 680
 681        dev_dbg(dev, "%s(): alloc %lu descriptors, %lu segments, total alloc %zu\n",
 682                __func__, NBPF_DESCS_PER_PAGE, NBPF_SEGMENTS_PER_PAGE, sizeof(*dpage));
 683
 684        for (i = 0, ldesc = dpage->ldesc, hwdesc = dpage->hwdesc;
 685             i < ARRAY_SIZE(dpage->ldesc);
 686             i++, ldesc++, hwdesc++) {
 687                ldesc->hwdesc = hwdesc;
 688                list_add_tail(&ldesc->node, &lhead);
 689                ldesc->hwdesc_dma_addr = dma_map_single(dchan->device->dev,
 690                                        hwdesc, sizeof(*hwdesc), DMA_TO_DEVICE);
 691
 692                dev_dbg(dev, "%s(): mapped 0x%p to %pad\n", __func__,
 693                        hwdesc, &ldesc->hwdesc_dma_addr);
 694        }
 695
 696        for (i = 0, desc = dpage->desc;
 697             i < ARRAY_SIZE(dpage->desc);
 698             i++, desc++) {
 699                dma_async_tx_descriptor_init(&desc->async_tx, dchan);
 700                desc->async_tx.tx_submit = nbpf_tx_submit;
 701                desc->chan = chan;
 702                INIT_LIST_HEAD(&desc->sg);
 703                list_add_tail(&desc->node, &head);
 704        }
 705
 706        /*
 707         * This function cannot be called from interrupt context, so, no need to
 708         * save flags
 709         */
 710        spin_lock_irq(&chan->lock);
 711        list_splice_tail(&lhead, &chan->free_links);
 712        list_splice_tail(&head, &chan->free);
 713        list_add(&dpage->node, &chan->desc_page);
 714        spin_unlock_irq(&chan->lock);
 715
 716        return ARRAY_SIZE(dpage->desc);
 717}
 718
 719static void nbpf_desc_put(struct nbpf_desc *desc)
 720{
 721        struct nbpf_channel *chan = desc->chan;
 722        struct nbpf_link_desc *ldesc, *tmp;
 723        unsigned long flags;
 724
 725        spin_lock_irqsave(&chan->lock, flags);
 726        list_for_each_entry_safe(ldesc, tmp, &desc->sg, node)
 727                list_move(&ldesc->node, &chan->free_links);
 728
 729        list_add(&desc->node, &chan->free);
 730        spin_unlock_irqrestore(&chan->lock, flags);
 731}
 732
 733static void nbpf_scan_acked(struct nbpf_channel *chan)
 734{
 735        struct nbpf_desc *desc, *tmp;
 736        unsigned long flags;
 737        LIST_HEAD(head);
 738
 739        spin_lock_irqsave(&chan->lock, flags);
 740        list_for_each_entry_safe(desc, tmp, &chan->done, node)
 741                if (async_tx_test_ack(&desc->async_tx) && desc->user_wait) {
 742                        list_move(&desc->node, &head);
 743                        desc->user_wait = false;
 744                }
 745        spin_unlock_irqrestore(&chan->lock, flags);
 746
 747        list_for_each_entry_safe(desc, tmp, &head, node) {
 748                list_del(&desc->node);
 749                nbpf_desc_put(desc);
 750        }
 751}
 752
 753/*
 754 * We have to allocate descriptors with the channel lock dropped. This means,
 755 * before we re-acquire the lock buffers can be taken already, so we have to
 756 * re-check after re-acquiring the lock and possibly retry, if buffers are gone
 757 * again.
 758 */
 759static struct nbpf_desc *nbpf_desc_get(struct nbpf_channel *chan, size_t len)
 760{
 761        struct nbpf_desc *desc = NULL;
 762        struct nbpf_link_desc *ldesc, *prev = NULL;
 763
 764        nbpf_scan_acked(chan);
 765
 766        spin_lock_irq(&chan->lock);
 767
 768        do {
 769                int i = 0, ret;
 770
 771                if (list_empty(&chan->free)) {
 772                        /* No more free descriptors */
 773                        spin_unlock_irq(&chan->lock);
 774                        ret = nbpf_desc_page_alloc(chan);
 775                        if (ret < 0)
 776                                return NULL;
 777                        spin_lock_irq(&chan->lock);
 778                        continue;
 779                }
 780                desc = list_first_entry(&chan->free, struct nbpf_desc, node);
 781                list_del(&desc->node);
 782
 783                do {
 784                        if (list_empty(&chan->free_links)) {
 785                                /* No more free link descriptors */
 786                                spin_unlock_irq(&chan->lock);
 787                                ret = nbpf_desc_page_alloc(chan);
 788                                if (ret < 0) {
 789                                        nbpf_desc_put(desc);
 790                                        return NULL;
 791                                }
 792                                spin_lock_irq(&chan->lock);
 793                                continue;
 794                        }
 795
 796                        ldesc = list_first_entry(&chan->free_links,
 797                                                 struct nbpf_link_desc, node);
 798                        ldesc->desc = desc;
 799                        if (prev)
 800                                prev->hwdesc->next = (u32)ldesc->hwdesc_dma_addr;
 801
 802                        prev = ldesc;
 803                        list_move_tail(&ldesc->node, &desc->sg);
 804
 805                        i++;
 806                } while (i < len);
 807        } while (!desc);
 808
 809        prev->hwdesc->next = 0;
 810
 811        spin_unlock_irq(&chan->lock);
 812
 813        return desc;
 814}
 815
 816static void nbpf_chan_idle(struct nbpf_channel *chan)
 817{
 818        struct nbpf_desc *desc, *tmp;
 819        unsigned long flags;
 820        LIST_HEAD(head);
 821
 822        spin_lock_irqsave(&chan->lock, flags);
 823
 824        list_splice_init(&chan->done, &head);
 825        list_splice_init(&chan->active, &head);
 826        list_splice_init(&chan->queued, &head);
 827
 828        chan->running = NULL;
 829
 830        spin_unlock_irqrestore(&chan->lock, flags);
 831
 832        list_for_each_entry_safe(desc, tmp, &head, node) {
 833                dev_dbg(chan->nbpf->dma_dev.dev, "%s(): force-free desc %p cookie %d\n",
 834                        __func__, desc, desc->async_tx.cookie);
 835                list_del(&desc->node);
 836                nbpf_desc_put(desc);
 837        }
 838}
 839
 840static int nbpf_control(struct dma_chan *dchan, enum dma_ctrl_cmd cmd,
 841                        unsigned long arg)
 842{
 843        struct nbpf_channel *chan = nbpf_to_chan(dchan);
 844        struct dma_slave_config *config;
 845
 846        dev_dbg(dchan->device->dev, "Entry %s(%d)\n", __func__, cmd);
 847
 848        switch (cmd) {
 849        case DMA_TERMINATE_ALL:
 850                dev_dbg(dchan->device->dev, "Terminating\n");
 851                nbpf_chan_halt(chan);
 852                nbpf_chan_idle(chan);
 853                break;
 854
 855        case DMA_SLAVE_CONFIG:
 856                if (!arg)
 857                        return -EINVAL;
 858                config = (struct dma_slave_config *)arg;
 859
 860                /*
 861                 * We could check config->slave_id to match chan->terminal here,
 862                 * but with DT they would be coming from the same source, so
 863                 * such a check would be superflous
 864                 */
 865
 866                chan->slave_dst_addr = config->dst_addr;
 867                chan->slave_dst_width = nbpf_xfer_size(chan->nbpf,
 868                                                       config->dst_addr_width, 1);
 869                chan->slave_dst_burst = nbpf_xfer_size(chan->nbpf,
 870                                                       config->dst_addr_width,
 871                                                       config->dst_maxburst);
 872                chan->slave_src_addr = config->src_addr;
 873                chan->slave_src_width = nbpf_xfer_size(chan->nbpf,
 874                                                       config->src_addr_width, 1);
 875                chan->slave_src_burst = nbpf_xfer_size(chan->nbpf,
 876                                                       config->src_addr_width,
 877                                                       config->src_maxburst);
 878                break;
 879
 880        case DMA_PAUSE:
 881                chan->paused = true;
 882                nbpf_pause(chan);
 883                break;
 884
 885        default:
 886                return -ENXIO;
 887        }
 888
 889        return 0;
 890}
 891
 892static struct dma_async_tx_descriptor *nbpf_prep_sg(struct nbpf_channel *chan,
 893                struct scatterlist *src_sg, struct scatterlist *dst_sg,
 894                size_t len, enum dma_transfer_direction direction,
 895                unsigned long flags)
 896{
 897        struct nbpf_link_desc *ldesc;
 898        struct scatterlist *mem_sg;
 899        struct nbpf_desc *desc;
 900        bool inc_src, inc_dst;
 901        size_t data_len = 0;
 902        int i = 0;
 903
 904        switch (direction) {
 905        case DMA_DEV_TO_MEM:
 906                mem_sg = dst_sg;
 907                inc_src = false;
 908                inc_dst = true;
 909                break;
 910
 911        case DMA_MEM_TO_DEV:
 912                mem_sg = src_sg;
 913                inc_src = true;
 914                inc_dst = false;
 915                break;
 916
 917        default:
 918        case DMA_MEM_TO_MEM:
 919                mem_sg = src_sg;
 920                inc_src = true;
 921                inc_dst = true;
 922        }
 923
 924        desc = nbpf_desc_get(chan, len);
 925        if (!desc)
 926                return NULL;
 927
 928        desc->async_tx.flags = flags;
 929        desc->async_tx.cookie = -EBUSY;
 930        desc->user_wait = false;
 931
 932        /*
 933         * This is a private descriptor list, and we own the descriptor. No need
 934         * to lock.
 935         */
 936        list_for_each_entry(ldesc, &desc->sg, node) {
 937                int ret = nbpf_prep_one(ldesc, direction,
 938                                        sg_dma_address(src_sg),
 939                                        sg_dma_address(dst_sg),
 940                                        sg_dma_len(mem_sg),
 941                                        i == len - 1);
 942                if (ret < 0) {
 943                        nbpf_desc_put(desc);
 944                        return NULL;
 945                }
 946                data_len += sg_dma_len(mem_sg);
 947                if (inc_src)
 948                        src_sg = sg_next(src_sg);
 949                if (inc_dst)
 950                        dst_sg = sg_next(dst_sg);
 951                mem_sg = direction == DMA_DEV_TO_MEM ? dst_sg : src_sg;
 952                i++;
 953        }
 954
 955        desc->length = data_len;
 956
 957        /* The user has to return the descriptor to us ASAP via .tx_submit() */
 958        return &desc->async_tx;
 959}
 960
 961static struct dma_async_tx_descriptor *nbpf_prep_memcpy(
 962        struct dma_chan *dchan, dma_addr_t dst, dma_addr_t src,
 963        size_t len, unsigned long flags)
 964{
 965        struct nbpf_channel *chan = nbpf_to_chan(dchan);
 966        struct scatterlist dst_sg;
 967        struct scatterlist src_sg;
 968
 969        sg_init_table(&dst_sg, 1);
 970        sg_init_table(&src_sg, 1);
 971
 972        sg_dma_address(&dst_sg) = dst;
 973        sg_dma_address(&src_sg) = src;
 974
 975        sg_dma_len(&dst_sg) = len;
 976        sg_dma_len(&src_sg) = len;
 977
 978        dev_dbg(dchan->device->dev, "%s(): %zu @ %pad -> %pad\n",
 979                __func__, len, &src, &dst);
 980
 981        return nbpf_prep_sg(chan, &src_sg, &dst_sg, 1,
 982                            DMA_MEM_TO_MEM, flags);
 983}
 984
 985static struct dma_async_tx_descriptor *nbpf_prep_memcpy_sg(
 986        struct dma_chan *dchan,
 987        struct scatterlist *dst_sg, unsigned int dst_nents,
 988        struct scatterlist *src_sg, unsigned int src_nents,
 989        unsigned long flags)
 990{
 991        struct nbpf_channel *chan = nbpf_to_chan(dchan);
 992
 993        if (dst_nents != src_nents)
 994                return NULL;
 995
 996        return nbpf_prep_sg(chan, src_sg, dst_sg, src_nents,
 997                            DMA_MEM_TO_MEM, flags);
 998}
 999
1000static struct dma_async_tx_descriptor *nbpf_prep_slave_sg(
1001        struct dma_chan *dchan, struct scatterlist *sgl, unsigned int sg_len,
1002        enum dma_transfer_direction direction, unsigned long flags, void *context)
1003{
1004        struct nbpf_channel *chan = nbpf_to_chan(dchan);
1005        struct scatterlist slave_sg;
1006
1007        dev_dbg(dchan->device->dev, "Entry %s()\n", __func__);
1008
1009        sg_init_table(&slave_sg, 1);
1010
1011        switch (direction) {
1012        case DMA_MEM_TO_DEV:
1013                sg_dma_address(&slave_sg) = chan->slave_dst_addr;
1014                return nbpf_prep_sg(chan, sgl, &slave_sg, sg_len,
1015                                    direction, flags);
1016
1017        case DMA_DEV_TO_MEM:
1018                sg_dma_address(&slave_sg) = chan->slave_src_addr;
1019                return nbpf_prep_sg(chan, &slave_sg, sgl, sg_len,
1020                                    direction, flags);
1021
1022        default:
1023                return NULL;
1024        }
1025}
1026
1027static int nbpf_alloc_chan_resources(struct dma_chan *dchan)
1028{
1029        struct nbpf_channel *chan = nbpf_to_chan(dchan);
1030        int ret;
1031
1032        INIT_LIST_HEAD(&chan->free);
1033        INIT_LIST_HEAD(&chan->free_links);
1034        INIT_LIST_HEAD(&chan->queued);
1035        INIT_LIST_HEAD(&chan->active);
1036        INIT_LIST_HEAD(&chan->done);
1037
1038        ret = nbpf_desc_page_alloc(chan);
1039        if (ret < 0)
1040                return ret;
1041
1042        dev_dbg(dchan->device->dev, "Entry %s(): terminal %u\n", __func__,
1043                chan->terminal);
1044
1045        nbpf_chan_configure(chan);
1046
1047        return ret;
1048}
1049
1050static void nbpf_free_chan_resources(struct dma_chan *dchan)
1051{
1052        struct nbpf_channel *chan = nbpf_to_chan(dchan);
1053        struct nbpf_desc_page *dpage, *tmp;
1054
1055        dev_dbg(dchan->device->dev, "Entry %s()\n", __func__);
1056
1057        nbpf_chan_halt(chan);
1058        nbpf_chan_idle(chan);
1059        /* Clean up for if a channel is re-used for MEMCPY after slave DMA */
1060        nbpf_chan_prepare_default(chan);
1061
1062        list_for_each_entry_safe(dpage, tmp, &chan->desc_page, node) {
1063                struct nbpf_link_desc *ldesc;
1064                int i;
1065                list_del(&dpage->node);
1066                for (i = 0, ldesc = dpage->ldesc;
1067                     i < ARRAY_SIZE(dpage->ldesc);
1068                     i++, ldesc++)
1069                        dma_unmap_single(dchan->device->dev, ldesc->hwdesc_dma_addr,
1070                                         sizeof(*ldesc->hwdesc), DMA_TO_DEVICE);
1071                free_page((unsigned long)dpage);
1072        }
1073}
1074
1075static int nbpf_slave_caps(struct dma_chan *dchan,
1076                           struct dma_slave_caps *caps)
1077{
1078        caps->src_addr_widths = NBPF_DMA_BUSWIDTHS;
1079        caps->dstn_addr_widths = NBPF_DMA_BUSWIDTHS;
1080        caps->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1081        caps->cmd_pause = false;
1082        caps->cmd_terminate = true;
1083
1084        return 0;
1085}
1086
1087static struct dma_chan *nbpf_of_xlate(struct of_phandle_args *dma_spec,
1088                                      struct of_dma *ofdma)
1089{
1090        struct nbpf_device *nbpf = ofdma->of_dma_data;
1091        struct dma_chan *dchan;
1092        struct nbpf_channel *chan;
1093
1094        if (dma_spec->args_count != 2)
1095                return NULL;
1096
1097        dchan = dma_get_any_slave_channel(&nbpf->dma_dev);
1098        if (!dchan)
1099                return NULL;
1100
1101        dev_dbg(dchan->device->dev, "Entry %s(%s)\n", __func__,
1102                dma_spec->np->name);
1103
1104        chan = nbpf_to_chan(dchan);
1105
1106        chan->terminal = dma_spec->args[0];
1107        chan->flags = dma_spec->args[1];
1108
1109        nbpf_chan_prepare(chan);
1110        nbpf_chan_configure(chan);
1111
1112        return dchan;
1113}
1114
1115static void nbpf_chan_tasklet(unsigned long data)
1116{
1117        struct nbpf_channel *chan = (struct nbpf_channel *)data;
1118        struct nbpf_desc *desc, *tmp;
1119        dma_async_tx_callback callback;
1120        void *param;
1121
1122        while (!list_empty(&chan->done)) {
1123                bool found = false, must_put, recycling = false;
1124
1125                spin_lock_irq(&chan->lock);
1126
1127                list_for_each_entry_safe(desc, tmp, &chan->done, node) {
1128                        if (!desc->user_wait) {
1129                                /* Newly completed descriptor, have to process */
1130                                found = true;
1131                                break;
1132                        } else if (async_tx_test_ack(&desc->async_tx)) {
1133                                /*
1134                                 * This descriptor was waiting for a user ACK,
1135                                 * it can be recycled now.
1136                                 */
1137                                list_del(&desc->node);
1138                                spin_unlock_irq(&chan->lock);
1139                                nbpf_desc_put(desc);
1140                                recycling = true;
1141                                break;
1142                        }
1143                }
1144
1145                if (recycling)
1146                        continue;
1147
1148                if (!found) {
1149                        /* This can happen if TERMINATE_ALL has been called */
1150                        spin_unlock_irq(&chan->lock);
1151                        break;
1152                }
1153
1154                dma_cookie_complete(&desc->async_tx);
1155
1156                /*
1157                 * With released lock we cannot dereference desc, maybe it's
1158                 * still on the "done" list
1159                 */
1160                if (async_tx_test_ack(&desc->async_tx)) {
1161                        list_del(&desc->node);
1162                        must_put = true;
1163                } else {
1164                        desc->user_wait = true;
1165                        must_put = false;
1166                }
1167
1168                callback = desc->async_tx.callback;
1169                param = desc->async_tx.callback_param;
1170
1171                /* ack and callback completed descriptor */
1172                spin_unlock_irq(&chan->lock);
1173
1174                if (callback)
1175                        callback(param);
1176
1177                if (must_put)
1178                        nbpf_desc_put(desc);
1179        }
1180}
1181
1182static irqreturn_t nbpf_chan_irq(int irq, void *dev)
1183{
1184        struct nbpf_channel *chan = dev;
1185        bool done = nbpf_status_get(chan);
1186        struct nbpf_desc *desc;
1187        irqreturn_t ret;
1188        bool bh = false;
1189
1190        if (!done)
1191                return IRQ_NONE;
1192
1193        nbpf_status_ack(chan);
1194
1195        dev_dbg(&chan->dma_chan.dev->device, "%s()\n", __func__);
1196
1197        spin_lock(&chan->lock);
1198        desc = chan->running;
1199        if (WARN_ON(!desc)) {
1200                ret = IRQ_NONE;
1201                goto unlock;
1202        } else {
1203                ret = IRQ_HANDLED;
1204                bh = true;
1205        }
1206
1207        list_move_tail(&desc->node, &chan->done);
1208        chan->running = NULL;
1209
1210        if (!list_empty(&chan->active)) {
1211                desc = list_first_entry(&chan->active,
1212                                        struct nbpf_desc, node);
1213                if (!nbpf_start(desc))
1214                        chan->running = desc;
1215        }
1216
1217unlock:
1218        spin_unlock(&chan->lock);
1219
1220        if (bh)
1221                tasklet_schedule(&chan->tasklet);
1222
1223        return ret;
1224}
1225
1226static irqreturn_t nbpf_err_irq(int irq, void *dev)
1227{
1228        struct nbpf_device *nbpf = dev;
1229        u32 error = nbpf_error_get(nbpf);
1230
1231        dev_warn(nbpf->dma_dev.dev, "DMA error IRQ %u\n", irq);
1232
1233        if (!error)
1234                return IRQ_NONE;
1235
1236        do {
1237                struct nbpf_channel *chan = nbpf_error_get_channel(nbpf, error);
1238                /* On error: abort all queued transfers, no callback */
1239                nbpf_error_clear(chan);
1240                nbpf_chan_idle(chan);
1241                error = nbpf_error_get(nbpf);
1242        } while (error);
1243
1244        return IRQ_HANDLED;
1245}
1246
1247static int nbpf_chan_probe(struct nbpf_device *nbpf, int n)
1248{
1249        struct dma_device *dma_dev = &nbpf->dma_dev;
1250        struct nbpf_channel *chan = nbpf->chan + n;
1251        int ret;
1252
1253        chan->nbpf = nbpf;
1254        chan->base = nbpf->base + NBPF_REG_CHAN_OFFSET + NBPF_REG_CHAN_SIZE * n;
1255        INIT_LIST_HEAD(&chan->desc_page);
1256        spin_lock_init(&chan->lock);
1257        chan->dma_chan.device = dma_dev;
1258        dma_cookie_init(&chan->dma_chan);
1259        nbpf_chan_prepare_default(chan);
1260
1261        dev_dbg(dma_dev->dev, "%s(): channel %d: -> %p\n", __func__, n, chan->base);
1262
1263        snprintf(chan->name, sizeof(chan->name), "nbpf %d", n);
1264
1265        tasklet_init(&chan->tasklet, nbpf_chan_tasklet, (unsigned long)chan);
1266        ret = devm_request_irq(dma_dev->dev, chan->irq,
1267                        nbpf_chan_irq, IRQF_SHARED,
1268                        chan->name, chan);
1269        if (ret < 0)
1270                return ret;
1271
1272        /* Add the channel to DMA device channel list */
1273        list_add_tail(&chan->dma_chan.device_node,
1274                      &dma_dev->channels);
1275
1276        return 0;
1277}
1278
1279static const struct of_device_id nbpf_match[] = {
1280        {.compatible = "renesas,nbpfaxi64dmac1b4",      .data = &nbpf_cfg[NBPF1B4]},
1281        {.compatible = "renesas,nbpfaxi64dmac1b8",      .data = &nbpf_cfg[NBPF1B8]},
1282        {.compatible = "renesas,nbpfaxi64dmac1b16",     .data = &nbpf_cfg[NBPF1B16]},
1283        {.compatible = "renesas,nbpfaxi64dmac4b4",      .data = &nbpf_cfg[NBPF4B4]},
1284        {.compatible = "renesas,nbpfaxi64dmac4b8",      .data = &nbpf_cfg[NBPF4B8]},
1285        {.compatible = "renesas,nbpfaxi64dmac4b16",     .data = &nbpf_cfg[NBPF4B16]},
1286        {.compatible = "renesas,nbpfaxi64dmac8b4",      .data = &nbpf_cfg[NBPF8B4]},
1287        {.compatible = "renesas,nbpfaxi64dmac8b8",      .data = &nbpf_cfg[NBPF8B8]},
1288        {.compatible = "renesas,nbpfaxi64dmac8b16",     .data = &nbpf_cfg[NBPF8B16]},
1289        {}
1290};
1291MODULE_DEVICE_TABLE(of, nbpf_match);
1292
1293static int nbpf_probe(struct platform_device *pdev)
1294{
1295        struct device *dev = &pdev->dev;
1296        const struct of_device_id *of_id = of_match_device(nbpf_match, dev);
1297        struct device_node *np = dev->of_node;
1298        struct nbpf_device *nbpf;
1299        struct dma_device *dma_dev;
1300        struct resource *iomem, *irq_res;
1301        const struct nbpf_config *cfg;
1302        int num_channels;
1303        int ret, irq, eirq, i;
1304        int irqbuf[9] /* maximum 8 channels + error IRQ */;
1305        unsigned int irqs = 0;
1306
1307        BUILD_BUG_ON(sizeof(struct nbpf_desc_page) > PAGE_SIZE);
1308
1309        /* DT only */
1310        if (!np || !of_id || !of_id->data)
1311                return -ENODEV;
1312
1313        cfg = of_id->data;
1314        num_channels = cfg->num_channels;
1315
1316        nbpf = devm_kzalloc(dev, sizeof(*nbpf) + num_channels *
1317                            sizeof(nbpf->chan[0]), GFP_KERNEL);
1318        if (!nbpf) {
1319                dev_err(dev, "Memory allocation failed\n");
1320                return -ENOMEM;
1321        }
1322        dma_dev = &nbpf->dma_dev;
1323        dma_dev->dev = dev;
1324
1325        iomem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1326        nbpf->base = devm_ioremap_resource(dev, iomem);
1327        if (IS_ERR(nbpf->base))
1328                return PTR_ERR(nbpf->base);
1329
1330        nbpf->clk = devm_clk_get(dev, NULL);
1331        if (IS_ERR(nbpf->clk))
1332                return PTR_ERR(nbpf->clk);
1333
1334        nbpf->config = cfg;
1335
1336        for (i = 0; irqs < ARRAY_SIZE(irqbuf); i++) {
1337                irq_res = platform_get_resource(pdev, IORESOURCE_IRQ, i);
1338                if (!irq_res)
1339                        break;
1340
1341                for (irq = irq_res->start; irq <= irq_res->end;
1342                     irq++, irqs++)
1343                        irqbuf[irqs] = irq;
1344        }
1345
1346        /*
1347         * 3 IRQ resource schemes are supported:
1348         * 1. 1 shared IRQ for error and all channels
1349         * 2. 2 IRQs: one for error and one shared for all channels
1350         * 3. 1 IRQ for error and an own IRQ for each channel
1351         */
1352        if (irqs != 1 && irqs != 2 && irqs != num_channels + 1)
1353                return -ENXIO;
1354
1355        if (irqs == 1) {
1356                eirq = irqbuf[0];
1357
1358                for (i = 0; i <= num_channels; i++)
1359                        nbpf->chan[i].irq = irqbuf[0];
1360        } else {
1361                eirq = platform_get_irq_byname(pdev, "error");
1362                if (eirq < 0)
1363                        return eirq;
1364
1365                if (irqs == num_channels + 1) {
1366                        struct nbpf_channel *chan;
1367
1368                        for (i = 0, chan = nbpf->chan; i <= num_channels;
1369                             i++, chan++) {
1370                                /* Skip the error IRQ */
1371                                if (irqbuf[i] == eirq)
1372                                        i++;
1373                                chan->irq = irqbuf[i];
1374                        }
1375
1376                        if (chan != nbpf->chan + num_channels)
1377                                return -EINVAL;
1378                } else {
1379                        /* 2 IRQs and more than one channel */
1380                        if (irqbuf[0] == eirq)
1381                                irq = irqbuf[1];
1382                        else
1383                                irq = irqbuf[0];
1384
1385                        for (i = 0; i <= num_channels; i++)
1386                                nbpf->chan[i].irq = irq;
1387                }
1388        }
1389
1390        ret = devm_request_irq(dev, eirq, nbpf_err_irq,
1391                               IRQF_SHARED, "dma error", nbpf);
1392        if (ret < 0)
1393                return ret;
1394
1395        INIT_LIST_HEAD(&dma_dev->channels);
1396
1397        /* Create DMA Channel */
1398        for (i = 0; i < num_channels; i++) {
1399                ret = nbpf_chan_probe(nbpf, i);
1400                if (ret < 0)
1401                        return ret;
1402        }
1403
1404        dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask);
1405        dma_cap_set(DMA_SLAVE, dma_dev->cap_mask);
1406        dma_cap_set(DMA_PRIVATE, dma_dev->cap_mask);
1407        dma_cap_set(DMA_SG, dma_dev->cap_mask);
1408
1409        /* Common and MEMCPY operations */
1410        dma_dev->device_alloc_chan_resources
1411                = nbpf_alloc_chan_resources;
1412        dma_dev->device_free_chan_resources = nbpf_free_chan_resources;
1413        dma_dev->device_prep_dma_sg = nbpf_prep_memcpy_sg;
1414        dma_dev->device_prep_dma_memcpy = nbpf_prep_memcpy;
1415        dma_dev->device_tx_status = nbpf_tx_status;
1416        dma_dev->device_issue_pending = nbpf_issue_pending;
1417        dma_dev->device_slave_caps = nbpf_slave_caps;
1418
1419        /*
1420         * If we drop support for unaligned MEMCPY buffer addresses and / or
1421         * lengths by setting
1422         * dma_dev->copy_align = 4;
1423         * then we can set transfer length to 4 bytes in nbpf_prep_one() for
1424         * DMA_MEM_TO_MEM
1425         */
1426
1427        /* Compulsory for DMA_SLAVE fields */
1428        dma_dev->device_prep_slave_sg = nbpf_prep_slave_sg;
1429        dma_dev->device_control = nbpf_control;
1430
1431        platform_set_drvdata(pdev, nbpf);
1432
1433        ret = clk_prepare_enable(nbpf->clk);
1434        if (ret < 0)
1435                return ret;
1436
1437        nbpf_configure(nbpf);
1438
1439        ret = dma_async_device_register(dma_dev);
1440        if (ret < 0)
1441                goto e_clk_off;
1442
1443        ret = of_dma_controller_register(np, nbpf_of_xlate, nbpf);
1444        if (ret < 0)
1445                goto e_dma_dev_unreg;
1446
1447        return 0;
1448
1449e_dma_dev_unreg:
1450        dma_async_device_unregister(dma_dev);
1451e_clk_off:
1452        clk_disable_unprepare(nbpf->clk);
1453
1454        return ret;
1455}
1456
1457static int nbpf_remove(struct platform_device *pdev)
1458{
1459        struct nbpf_device *nbpf = platform_get_drvdata(pdev);
1460
1461        of_dma_controller_free(pdev->dev.of_node);
1462        dma_async_device_unregister(&nbpf->dma_dev);
1463        clk_disable_unprepare(nbpf->clk);
1464
1465        return 0;
1466}
1467
1468static struct platform_device_id nbpf_ids[] = {
1469        {"nbpfaxi64dmac1b4",    (kernel_ulong_t)&nbpf_cfg[NBPF1B4]},
1470        {"nbpfaxi64dmac1b8",    (kernel_ulong_t)&nbpf_cfg[NBPF1B8]},
1471        {"nbpfaxi64dmac1b16",   (kernel_ulong_t)&nbpf_cfg[NBPF1B16]},
1472        {"nbpfaxi64dmac4b4",    (kernel_ulong_t)&nbpf_cfg[NBPF4B4]},
1473        {"nbpfaxi64dmac4b8",    (kernel_ulong_t)&nbpf_cfg[NBPF4B8]},
1474        {"nbpfaxi64dmac4b16",   (kernel_ulong_t)&nbpf_cfg[NBPF4B16]},
1475        {"nbpfaxi64dmac8b4",    (kernel_ulong_t)&nbpf_cfg[NBPF8B4]},
1476        {"nbpfaxi64dmac8b8",    (kernel_ulong_t)&nbpf_cfg[NBPF8B8]},
1477        {"nbpfaxi64dmac8b16",   (kernel_ulong_t)&nbpf_cfg[NBPF8B16]},
1478        {},
1479};
1480MODULE_DEVICE_TABLE(platform, nbpf_ids);
1481
1482#ifdef CONFIG_PM_RUNTIME
1483static int nbpf_runtime_suspend(struct device *dev)
1484{
1485        struct nbpf_device *nbpf = platform_get_drvdata(to_platform_device(dev));
1486        clk_disable_unprepare(nbpf->clk);
1487        return 0;
1488}
1489
1490static int nbpf_runtime_resume(struct device *dev)
1491{
1492        struct nbpf_device *nbpf = platform_get_drvdata(to_platform_device(dev));
1493        return clk_prepare_enable(nbpf->clk);
1494}
1495#endif
1496
1497static const struct dev_pm_ops nbpf_pm_ops = {
1498        SET_RUNTIME_PM_OPS(nbpf_runtime_suspend, nbpf_runtime_resume, NULL)
1499};
1500
1501static struct platform_driver nbpf_driver = {
1502        .driver = {
1503                .owner = THIS_MODULE,
1504                .name = "dma-nbpf",
1505                .of_match_table = nbpf_match,
1506                .pm = &nbpf_pm_ops,
1507        },
1508        .id_table = nbpf_ids,
1509        .probe = nbpf_probe,
1510        .remove = nbpf_remove,
1511};
1512
1513module_platform_driver(nbpf_driver);
1514
1515MODULE_AUTHOR("Guennadi Liakhovetski <g.liakhovetski@gmx.de>");
1516MODULE_DESCRIPTION("dmaengine driver for NBPFAXI64* DMACs");
1517MODULE_LICENSE("GPL v2");
1518