linux/drivers/gpu/drm/i915/intel_display.c
<<
>>
Prefs
   1/*
   2 * Copyright © 2006-2007 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21 * DEALINGS IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *      Eric Anholt <eric@anholt.net>
  25 */
  26
  27#include <linux/dmi.h>
  28#include <linux/module.h>
  29#include <linux/input.h>
  30#include <linux/i2c.h>
  31#include <linux/kernel.h>
  32#include <linux/slab.h>
  33#include <linux/vgaarb.h>
  34#include <drm/drm_edid.h>
  35#include <drm/drmP.h>
  36#include "intel_drv.h"
  37#include <drm/i915_drm.h>
  38#include "i915_drv.h"
  39#include "i915_trace.h"
  40#include <drm/drm_dp_helper.h>
  41#include <drm/drm_crtc_helper.h>
  42#include <drm/drm_plane_helper.h>
  43#include <drm/drm_rect.h>
  44#include <linux/dma_remapping.h>
  45
  46/* Primary plane formats supported by all gen */
  47#define COMMON_PRIMARY_FORMATS \
  48        DRM_FORMAT_C8, \
  49        DRM_FORMAT_RGB565, \
  50        DRM_FORMAT_XRGB8888, \
  51        DRM_FORMAT_ARGB8888
  52
  53/* Primary plane formats for gen <= 3 */
  54static const uint32_t intel_primary_formats_gen2[] = {
  55        COMMON_PRIMARY_FORMATS,
  56        DRM_FORMAT_XRGB1555,
  57        DRM_FORMAT_ARGB1555,
  58};
  59
  60/* Primary plane formats for gen >= 4 */
  61static const uint32_t intel_primary_formats_gen4[] = {
  62        COMMON_PRIMARY_FORMATS, \
  63        DRM_FORMAT_XBGR8888,
  64        DRM_FORMAT_ABGR8888,
  65        DRM_FORMAT_XRGB2101010,
  66        DRM_FORMAT_ARGB2101010,
  67        DRM_FORMAT_XBGR2101010,
  68        DRM_FORMAT_ABGR2101010,
  69};
  70
  71/* Cursor formats */
  72static const uint32_t intel_cursor_formats[] = {
  73        DRM_FORMAT_ARGB8888,
  74};
  75
  76static void intel_increase_pllclock(struct drm_device *dev,
  77                                    enum pipe pipe);
  78static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
  79
  80static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
  81                                struct intel_crtc_config *pipe_config);
  82static void ironlake_pch_clock_get(struct intel_crtc *crtc,
  83                                   struct intel_crtc_config *pipe_config);
  84
  85static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
  86                          int x, int y, struct drm_framebuffer *old_fb);
  87static int intel_framebuffer_init(struct drm_device *dev,
  88                                  struct intel_framebuffer *ifb,
  89                                  struct drm_mode_fb_cmd2 *mode_cmd,
  90                                  struct drm_i915_gem_object *obj);
  91static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
  92static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
  93static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
  94                                         struct intel_link_m_n *m_n,
  95                                         struct intel_link_m_n *m2_n2);
  96static void ironlake_set_pipeconf(struct drm_crtc *crtc);
  97static void haswell_set_pipeconf(struct drm_crtc *crtc);
  98static void intel_set_pipe_csc(struct drm_crtc *crtc);
  99static void vlv_prepare_pll(struct intel_crtc *crtc);
 100static void chv_prepare_pll(struct intel_crtc *crtc);
 101
 102static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
 103{
 104        if (!connector->mst_port)
 105                return connector->encoder;
 106        else
 107                return &connector->mst_port->mst_encoders[pipe]->base;
 108}
 109
 110typedef struct {
 111        int     min, max;
 112} intel_range_t;
 113
 114typedef struct {
 115        int     dot_limit;
 116        int     p2_slow, p2_fast;
 117} intel_p2_t;
 118
 119typedef struct intel_limit intel_limit_t;
 120struct intel_limit {
 121        intel_range_t   dot, vco, n, m, m1, m2, p, p1;
 122        intel_p2_t          p2;
 123};
 124
 125int
 126intel_pch_rawclk(struct drm_device *dev)
 127{
 128        struct drm_i915_private *dev_priv = dev->dev_private;
 129
 130        WARN_ON(!HAS_PCH_SPLIT(dev));
 131
 132        return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
 133}
 134
 135static inline u32 /* units of 100MHz */
 136intel_fdi_link_freq(struct drm_device *dev)
 137{
 138        if (IS_GEN5(dev)) {
 139                struct drm_i915_private *dev_priv = dev->dev_private;
 140                return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
 141        } else
 142                return 27;
 143}
 144
 145static const intel_limit_t intel_limits_i8xx_dac = {
 146        .dot = { .min = 25000, .max = 350000 },
 147        .vco = { .min = 908000, .max = 1512000 },
 148        .n = { .min = 2, .max = 16 },
 149        .m = { .min = 96, .max = 140 },
 150        .m1 = { .min = 18, .max = 26 },
 151        .m2 = { .min = 6, .max = 16 },
 152        .p = { .min = 4, .max = 128 },
 153        .p1 = { .min = 2, .max = 33 },
 154        .p2 = { .dot_limit = 165000,
 155                .p2_slow = 4, .p2_fast = 2 },
 156};
 157
 158static const intel_limit_t intel_limits_i8xx_dvo = {
 159        .dot = { .min = 25000, .max = 350000 },
 160        .vco = { .min = 908000, .max = 1512000 },
 161        .n = { .min = 2, .max = 16 },
 162        .m = { .min = 96, .max = 140 },
 163        .m1 = { .min = 18, .max = 26 },
 164        .m2 = { .min = 6, .max = 16 },
 165        .p = { .min = 4, .max = 128 },
 166        .p1 = { .min = 2, .max = 33 },
 167        .p2 = { .dot_limit = 165000,
 168                .p2_slow = 4, .p2_fast = 4 },
 169};
 170
 171static const intel_limit_t intel_limits_i8xx_lvds = {
 172        .dot = { .min = 25000, .max = 350000 },
 173        .vco = { .min = 908000, .max = 1512000 },
 174        .n = { .min = 2, .max = 16 },
 175        .m = { .min = 96, .max = 140 },
 176        .m1 = { .min = 18, .max = 26 },
 177        .m2 = { .min = 6, .max = 16 },
 178        .p = { .min = 4, .max = 128 },
 179        .p1 = { .min = 1, .max = 6 },
 180        .p2 = { .dot_limit = 165000,
 181                .p2_slow = 14, .p2_fast = 7 },
 182};
 183
 184static const intel_limit_t intel_limits_i9xx_sdvo = {
 185        .dot = { .min = 20000, .max = 400000 },
 186        .vco = { .min = 1400000, .max = 2800000 },
 187        .n = { .min = 1, .max = 6 },
 188        .m = { .min = 70, .max = 120 },
 189        .m1 = { .min = 8, .max = 18 },
 190        .m2 = { .min = 3, .max = 7 },
 191        .p = { .min = 5, .max = 80 },
 192        .p1 = { .min = 1, .max = 8 },
 193        .p2 = { .dot_limit = 200000,
 194                .p2_slow = 10, .p2_fast = 5 },
 195};
 196
 197static const intel_limit_t intel_limits_i9xx_lvds = {
 198        .dot = { .min = 20000, .max = 400000 },
 199        .vco = { .min = 1400000, .max = 2800000 },
 200        .n = { .min = 1, .max = 6 },
 201        .m = { .min = 70, .max = 120 },
 202        .m1 = { .min = 8, .max = 18 },
 203        .m2 = { .min = 3, .max = 7 },
 204        .p = { .min = 7, .max = 98 },
 205        .p1 = { .min = 1, .max = 8 },
 206        .p2 = { .dot_limit = 112000,
 207                .p2_slow = 14, .p2_fast = 7 },
 208};
 209
 210
 211static const intel_limit_t intel_limits_g4x_sdvo = {
 212        .dot = { .min = 25000, .max = 270000 },
 213        .vco = { .min = 1750000, .max = 3500000},
 214        .n = { .min = 1, .max = 4 },
 215        .m = { .min = 104, .max = 138 },
 216        .m1 = { .min = 17, .max = 23 },
 217        .m2 = { .min = 5, .max = 11 },
 218        .p = { .min = 10, .max = 30 },
 219        .p1 = { .min = 1, .max = 3},
 220        .p2 = { .dot_limit = 270000,
 221                .p2_slow = 10,
 222                .p2_fast = 10
 223        },
 224};
 225
 226static const intel_limit_t intel_limits_g4x_hdmi = {
 227        .dot = { .min = 22000, .max = 400000 },
 228        .vco = { .min = 1750000, .max = 3500000},
 229        .n = { .min = 1, .max = 4 },
 230        .m = { .min = 104, .max = 138 },
 231        .m1 = { .min = 16, .max = 23 },
 232        .m2 = { .min = 5, .max = 11 },
 233        .p = { .min = 5, .max = 80 },
 234        .p1 = { .min = 1, .max = 8},
 235        .p2 = { .dot_limit = 165000,
 236                .p2_slow = 10, .p2_fast = 5 },
 237};
 238
 239static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
 240        .dot = { .min = 20000, .max = 115000 },
 241        .vco = { .min = 1750000, .max = 3500000 },
 242        .n = { .min = 1, .max = 3 },
 243        .m = { .min = 104, .max = 138 },
 244        .m1 = { .min = 17, .max = 23 },
 245        .m2 = { .min = 5, .max = 11 },
 246        .p = { .min = 28, .max = 112 },
 247        .p1 = { .min = 2, .max = 8 },
 248        .p2 = { .dot_limit = 0,
 249                .p2_slow = 14, .p2_fast = 14
 250        },
 251};
 252
 253static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
 254        .dot = { .min = 80000, .max = 224000 },
 255        .vco = { .min = 1750000, .max = 3500000 },
 256        .n = { .min = 1, .max = 3 },
 257        .m = { .min = 104, .max = 138 },
 258        .m1 = { .min = 17, .max = 23 },
 259        .m2 = { .min = 5, .max = 11 },
 260        .p = { .min = 14, .max = 42 },
 261        .p1 = { .min = 2, .max = 6 },
 262        .p2 = { .dot_limit = 0,
 263                .p2_slow = 7, .p2_fast = 7
 264        },
 265};
 266
 267static const intel_limit_t intel_limits_pineview_sdvo = {
 268        .dot = { .min = 20000, .max = 400000},
 269        .vco = { .min = 1700000, .max = 3500000 },
 270        /* Pineview's Ncounter is a ring counter */
 271        .n = { .min = 3, .max = 6 },
 272        .m = { .min = 2, .max = 256 },
 273        /* Pineview only has one combined m divider, which we treat as m2. */
 274        .m1 = { .min = 0, .max = 0 },
 275        .m2 = { .min = 0, .max = 254 },
 276        .p = { .min = 5, .max = 80 },
 277        .p1 = { .min = 1, .max = 8 },
 278        .p2 = { .dot_limit = 200000,
 279                .p2_slow = 10, .p2_fast = 5 },
 280};
 281
 282static const intel_limit_t intel_limits_pineview_lvds = {
 283        .dot = { .min = 20000, .max = 400000 },
 284        .vco = { .min = 1700000, .max = 3500000 },
 285        .n = { .min = 3, .max = 6 },
 286        .m = { .min = 2, .max = 256 },
 287        .m1 = { .min = 0, .max = 0 },
 288        .m2 = { .min = 0, .max = 254 },
 289        .p = { .min = 7, .max = 112 },
 290        .p1 = { .min = 1, .max = 8 },
 291        .p2 = { .dot_limit = 112000,
 292                .p2_slow = 14, .p2_fast = 14 },
 293};
 294
 295/* Ironlake / Sandybridge
 296 *
 297 * We calculate clock using (register_value + 2) for N/M1/M2, so here
 298 * the range value for them is (actual_value - 2).
 299 */
 300static const intel_limit_t intel_limits_ironlake_dac = {
 301        .dot = { .min = 25000, .max = 350000 },
 302        .vco = { .min = 1760000, .max = 3510000 },
 303        .n = { .min = 1, .max = 5 },
 304        .m = { .min = 79, .max = 127 },
 305        .m1 = { .min = 12, .max = 22 },
 306        .m2 = { .min = 5, .max = 9 },
 307        .p = { .min = 5, .max = 80 },
 308        .p1 = { .min = 1, .max = 8 },
 309        .p2 = { .dot_limit = 225000,
 310                .p2_slow = 10, .p2_fast = 5 },
 311};
 312
 313static const intel_limit_t intel_limits_ironlake_single_lvds = {
 314        .dot = { .min = 25000, .max = 350000 },
 315        .vco = { .min = 1760000, .max = 3510000 },
 316        .n = { .min = 1, .max = 3 },
 317        .m = { .min = 79, .max = 118 },
 318        .m1 = { .min = 12, .max = 22 },
 319        .m2 = { .min = 5, .max = 9 },
 320        .p = { .min = 28, .max = 112 },
 321        .p1 = { .min = 2, .max = 8 },
 322        .p2 = { .dot_limit = 225000,
 323                .p2_slow = 14, .p2_fast = 14 },
 324};
 325
 326static const intel_limit_t intel_limits_ironlake_dual_lvds = {
 327        .dot = { .min = 25000, .max = 350000 },
 328        .vco = { .min = 1760000, .max = 3510000 },
 329        .n = { .min = 1, .max = 3 },
 330        .m = { .min = 79, .max = 127 },
 331        .m1 = { .min = 12, .max = 22 },
 332        .m2 = { .min = 5, .max = 9 },
 333        .p = { .min = 14, .max = 56 },
 334        .p1 = { .min = 2, .max = 8 },
 335        .p2 = { .dot_limit = 225000,
 336                .p2_slow = 7, .p2_fast = 7 },
 337};
 338
 339/* LVDS 100mhz refclk limits. */
 340static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
 341        .dot = { .min = 25000, .max = 350000 },
 342        .vco = { .min = 1760000, .max = 3510000 },
 343        .n = { .min = 1, .max = 2 },
 344        .m = { .min = 79, .max = 126 },
 345        .m1 = { .min = 12, .max = 22 },
 346        .m2 = { .min = 5, .max = 9 },
 347        .p = { .min = 28, .max = 112 },
 348        .p1 = { .min = 2, .max = 8 },
 349        .p2 = { .dot_limit = 225000,
 350                .p2_slow = 14, .p2_fast = 14 },
 351};
 352
 353static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
 354        .dot = { .min = 25000, .max = 350000 },
 355        .vco = { .min = 1760000, .max = 3510000 },
 356        .n = { .min = 1, .max = 3 },
 357        .m = { .min = 79, .max = 126 },
 358        .m1 = { .min = 12, .max = 22 },
 359        .m2 = { .min = 5, .max = 9 },
 360        .p = { .min = 14, .max = 42 },
 361        .p1 = { .min = 2, .max = 6 },
 362        .p2 = { .dot_limit = 225000,
 363                .p2_slow = 7, .p2_fast = 7 },
 364};
 365
 366static const intel_limit_t intel_limits_vlv = {
 367         /*
 368          * These are the data rate limits (measured in fast clocks)
 369          * since those are the strictest limits we have. The fast
 370          * clock and actual rate limits are more relaxed, so checking
 371          * them would make no difference.
 372          */
 373        .dot = { .min = 25000 * 5, .max = 270000 * 5 },
 374        .vco = { .min = 4000000, .max = 6000000 },
 375        .n = { .min = 1, .max = 7 },
 376        .m1 = { .min = 2, .max = 3 },
 377        .m2 = { .min = 11, .max = 156 },
 378        .p1 = { .min = 2, .max = 3 },
 379        .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
 380};
 381
 382static const intel_limit_t intel_limits_chv = {
 383        /*
 384         * These are the data rate limits (measured in fast clocks)
 385         * since those are the strictest limits we have.  The fast
 386         * clock and actual rate limits are more relaxed, so checking
 387         * them would make no difference.
 388         */
 389        .dot = { .min = 25000 * 5, .max = 540000 * 5},
 390        .vco = { .min = 4860000, .max = 6700000 },
 391        .n = { .min = 1, .max = 1 },
 392        .m1 = { .min = 2, .max = 2 },
 393        .m2 = { .min = 24 << 22, .max = 175 << 22 },
 394        .p1 = { .min = 2, .max = 4 },
 395        .p2 = { .p2_slow = 1, .p2_fast = 14 },
 396};
 397
 398static void vlv_clock(int refclk, intel_clock_t *clock)
 399{
 400        clock->m = clock->m1 * clock->m2;
 401        clock->p = clock->p1 * clock->p2;
 402        if (WARN_ON(clock->n == 0 || clock->p == 0))
 403                return;
 404        clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
 405        clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
 406}
 407
 408/**
 409 * Returns whether any output on the specified pipe is of the specified type
 410 */
 411static bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
 412{
 413        struct drm_device *dev = crtc->dev;
 414        struct intel_encoder *encoder;
 415
 416        for_each_encoder_on_crtc(dev, crtc, encoder)
 417                if (encoder->type == type)
 418                        return true;
 419
 420        return false;
 421}
 422
 423static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
 424                                                int refclk)
 425{
 426        struct drm_device *dev = crtc->dev;
 427        const intel_limit_t *limit;
 428
 429        if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
 430                if (intel_is_dual_link_lvds(dev)) {
 431                        if (refclk == 100000)
 432                                limit = &intel_limits_ironlake_dual_lvds_100m;
 433                        else
 434                                limit = &intel_limits_ironlake_dual_lvds;
 435                } else {
 436                        if (refclk == 100000)
 437                                limit = &intel_limits_ironlake_single_lvds_100m;
 438                        else
 439                                limit = &intel_limits_ironlake_single_lvds;
 440                }
 441        } else
 442                limit = &intel_limits_ironlake_dac;
 443
 444        return limit;
 445}
 446
 447static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
 448{
 449        struct drm_device *dev = crtc->dev;
 450        const intel_limit_t *limit;
 451
 452        if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
 453                if (intel_is_dual_link_lvds(dev))
 454                        limit = &intel_limits_g4x_dual_channel_lvds;
 455                else
 456                        limit = &intel_limits_g4x_single_channel_lvds;
 457        } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
 458                   intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
 459                limit = &intel_limits_g4x_hdmi;
 460        } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
 461                limit = &intel_limits_g4x_sdvo;
 462        } else /* The option is for other outputs */
 463                limit = &intel_limits_i9xx_sdvo;
 464
 465        return limit;
 466}
 467
 468static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
 469{
 470        struct drm_device *dev = crtc->dev;
 471        const intel_limit_t *limit;
 472
 473        if (HAS_PCH_SPLIT(dev))
 474                limit = intel_ironlake_limit(crtc, refclk);
 475        else if (IS_G4X(dev)) {
 476                limit = intel_g4x_limit(crtc);
 477        } else if (IS_PINEVIEW(dev)) {
 478                if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
 479                        limit = &intel_limits_pineview_lvds;
 480                else
 481                        limit = &intel_limits_pineview_sdvo;
 482        } else if (IS_CHERRYVIEW(dev)) {
 483                limit = &intel_limits_chv;
 484        } else if (IS_VALLEYVIEW(dev)) {
 485                limit = &intel_limits_vlv;
 486        } else if (!IS_GEN2(dev)) {
 487                if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
 488                        limit = &intel_limits_i9xx_lvds;
 489                else
 490                        limit = &intel_limits_i9xx_sdvo;
 491        } else {
 492                if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
 493                        limit = &intel_limits_i8xx_lvds;
 494                else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
 495                        limit = &intel_limits_i8xx_dvo;
 496                else
 497                        limit = &intel_limits_i8xx_dac;
 498        }
 499        return limit;
 500}
 501
 502/* m1 is reserved as 0 in Pineview, n is a ring counter */
 503static void pineview_clock(int refclk, intel_clock_t *clock)
 504{
 505        clock->m = clock->m2 + 2;
 506        clock->p = clock->p1 * clock->p2;
 507        if (WARN_ON(clock->n == 0 || clock->p == 0))
 508                return;
 509        clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
 510        clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
 511}
 512
 513static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
 514{
 515        return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
 516}
 517
 518static void i9xx_clock(int refclk, intel_clock_t *clock)
 519{
 520        clock->m = i9xx_dpll_compute_m(clock);
 521        clock->p = clock->p1 * clock->p2;
 522        if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
 523                return;
 524        clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
 525        clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
 526}
 527
 528static void chv_clock(int refclk, intel_clock_t *clock)
 529{
 530        clock->m = clock->m1 * clock->m2;
 531        clock->p = clock->p1 * clock->p2;
 532        if (WARN_ON(clock->n == 0 || clock->p == 0))
 533                return;
 534        clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
 535                        clock->n << 22);
 536        clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
 537}
 538
 539#define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
 540/**
 541 * Returns whether the given set of divisors are valid for a given refclk with
 542 * the given connectors.
 543 */
 544
 545static bool intel_PLL_is_valid(struct drm_device *dev,
 546                               const intel_limit_t *limit,
 547                               const intel_clock_t *clock)
 548{
 549        if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
 550                INTELPllInvalid("n out of range\n");
 551        if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
 552                INTELPllInvalid("p1 out of range\n");
 553        if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
 554                INTELPllInvalid("m2 out of range\n");
 555        if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
 556                INTELPllInvalid("m1 out of range\n");
 557
 558        if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
 559                if (clock->m1 <= clock->m2)
 560                        INTELPllInvalid("m1 <= m2\n");
 561
 562        if (!IS_VALLEYVIEW(dev)) {
 563                if (clock->p < limit->p.min || limit->p.max < clock->p)
 564                        INTELPllInvalid("p out of range\n");
 565                if (clock->m < limit->m.min || limit->m.max < clock->m)
 566                        INTELPllInvalid("m out of range\n");
 567        }
 568
 569        if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
 570                INTELPllInvalid("vco out of range\n");
 571        /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
 572         * connector, etc., rather than just a single range.
 573         */
 574        if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
 575                INTELPllInvalid("dot out of range\n");
 576
 577        return true;
 578}
 579
 580static bool
 581i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
 582                    int target, int refclk, intel_clock_t *match_clock,
 583                    intel_clock_t *best_clock)
 584{
 585        struct drm_device *dev = crtc->dev;
 586        intel_clock_t clock;
 587        int err = target;
 588
 589        if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
 590                /*
 591                 * For LVDS just rely on its current settings for dual-channel.
 592                 * We haven't figured out how to reliably set up different
 593                 * single/dual channel state, if we even can.
 594                 */
 595                if (intel_is_dual_link_lvds(dev))
 596                        clock.p2 = limit->p2.p2_fast;
 597                else
 598                        clock.p2 = limit->p2.p2_slow;
 599        } else {
 600                if (target < limit->p2.dot_limit)
 601                        clock.p2 = limit->p2.p2_slow;
 602                else
 603                        clock.p2 = limit->p2.p2_fast;
 604        }
 605
 606        memset(best_clock, 0, sizeof(*best_clock));
 607
 608        for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
 609             clock.m1++) {
 610                for (clock.m2 = limit->m2.min;
 611                     clock.m2 <= limit->m2.max; clock.m2++) {
 612                        if (clock.m2 >= clock.m1)
 613                                break;
 614                        for (clock.n = limit->n.min;
 615                             clock.n <= limit->n.max; clock.n++) {
 616                                for (clock.p1 = limit->p1.min;
 617                                        clock.p1 <= limit->p1.max; clock.p1++) {
 618                                        int this_err;
 619
 620                                        i9xx_clock(refclk, &clock);
 621                                        if (!intel_PLL_is_valid(dev, limit,
 622                                                                &clock))
 623                                                continue;
 624                                        if (match_clock &&
 625                                            clock.p != match_clock->p)
 626                                                continue;
 627
 628                                        this_err = abs(clock.dot - target);
 629                                        if (this_err < err) {
 630                                                *best_clock = clock;
 631                                                err = this_err;
 632                                        }
 633                                }
 634                        }
 635                }
 636        }
 637
 638        return (err != target);
 639}
 640
 641static bool
 642pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
 643                   int target, int refclk, intel_clock_t *match_clock,
 644                   intel_clock_t *best_clock)
 645{
 646        struct drm_device *dev = crtc->dev;
 647        intel_clock_t clock;
 648        int err = target;
 649
 650        if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
 651                /*
 652                 * For LVDS just rely on its current settings for dual-channel.
 653                 * We haven't figured out how to reliably set up different
 654                 * single/dual channel state, if we even can.
 655                 */
 656                if (intel_is_dual_link_lvds(dev))
 657                        clock.p2 = limit->p2.p2_fast;
 658                else
 659                        clock.p2 = limit->p2.p2_slow;
 660        } else {
 661                if (target < limit->p2.dot_limit)
 662                        clock.p2 = limit->p2.p2_slow;
 663                else
 664                        clock.p2 = limit->p2.p2_fast;
 665        }
 666
 667        memset(best_clock, 0, sizeof(*best_clock));
 668
 669        for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
 670             clock.m1++) {
 671                for (clock.m2 = limit->m2.min;
 672                     clock.m2 <= limit->m2.max; clock.m2++) {
 673                        for (clock.n = limit->n.min;
 674                             clock.n <= limit->n.max; clock.n++) {
 675                                for (clock.p1 = limit->p1.min;
 676                                        clock.p1 <= limit->p1.max; clock.p1++) {
 677                                        int this_err;
 678
 679                                        pineview_clock(refclk, &clock);
 680                                        if (!intel_PLL_is_valid(dev, limit,
 681                                                                &clock))
 682                                                continue;
 683                                        if (match_clock &&
 684                                            clock.p != match_clock->p)
 685                                                continue;
 686
 687                                        this_err = abs(clock.dot - target);
 688                                        if (this_err < err) {
 689                                                *best_clock = clock;
 690                                                err = this_err;
 691                                        }
 692                                }
 693                        }
 694                }
 695        }
 696
 697        return (err != target);
 698}
 699
 700static bool
 701g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
 702                   int target, int refclk, intel_clock_t *match_clock,
 703                   intel_clock_t *best_clock)
 704{
 705        struct drm_device *dev = crtc->dev;
 706        intel_clock_t clock;
 707        int max_n;
 708        bool found;
 709        /* approximately equals target * 0.00585 */
 710        int err_most = (target >> 8) + (target >> 9);
 711        found = false;
 712
 713        if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
 714                if (intel_is_dual_link_lvds(dev))
 715                        clock.p2 = limit->p2.p2_fast;
 716                else
 717                        clock.p2 = limit->p2.p2_slow;
 718        } else {
 719                if (target < limit->p2.dot_limit)
 720                        clock.p2 = limit->p2.p2_slow;
 721                else
 722                        clock.p2 = limit->p2.p2_fast;
 723        }
 724
 725        memset(best_clock, 0, sizeof(*best_clock));
 726        max_n = limit->n.max;
 727        /* based on hardware requirement, prefer smaller n to precision */
 728        for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
 729                /* based on hardware requirement, prefere larger m1,m2 */
 730                for (clock.m1 = limit->m1.max;
 731                     clock.m1 >= limit->m1.min; clock.m1--) {
 732                        for (clock.m2 = limit->m2.max;
 733                             clock.m2 >= limit->m2.min; clock.m2--) {
 734                                for (clock.p1 = limit->p1.max;
 735                                     clock.p1 >= limit->p1.min; clock.p1--) {
 736                                        int this_err;
 737
 738                                        i9xx_clock(refclk, &clock);
 739                                        if (!intel_PLL_is_valid(dev, limit,
 740                                                                &clock))
 741                                                continue;
 742
 743                                        this_err = abs(clock.dot - target);
 744                                        if (this_err < err_most) {
 745                                                *best_clock = clock;
 746                                                err_most = this_err;
 747                                                max_n = clock.n;
 748                                                found = true;
 749                                        }
 750                                }
 751                        }
 752                }
 753        }
 754        return found;
 755}
 756
 757static bool
 758vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
 759                   int target, int refclk, intel_clock_t *match_clock,
 760                   intel_clock_t *best_clock)
 761{
 762        struct drm_device *dev = crtc->dev;
 763        intel_clock_t clock;
 764        unsigned int bestppm = 1000000;
 765        /* min update 19.2 MHz */
 766        int max_n = min(limit->n.max, refclk / 19200);
 767        bool found = false;
 768
 769        target *= 5; /* fast clock */
 770
 771        memset(best_clock, 0, sizeof(*best_clock));
 772
 773        /* based on hardware requirement, prefer smaller n to precision */
 774        for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
 775                for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
 776                        for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
 777                             clock.p2 -= clock.p2 > 10 ? 2 : 1) {
 778                                clock.p = clock.p1 * clock.p2;
 779                                /* based on hardware requirement, prefer bigger m1,m2 values */
 780                                for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
 781                                        unsigned int ppm, diff;
 782
 783                                        clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
 784                                                                     refclk * clock.m1);
 785
 786                                        vlv_clock(refclk, &clock);
 787
 788                                        if (!intel_PLL_is_valid(dev, limit,
 789                                                                &clock))
 790                                                continue;
 791
 792                                        diff = abs(clock.dot - target);
 793                                        ppm = div_u64(1000000ULL * diff, target);
 794
 795                                        if (ppm < 100 && clock.p > best_clock->p) {
 796                                                bestppm = 0;
 797                                                *best_clock = clock;
 798                                                found = true;
 799                                        }
 800
 801                                        if (bestppm >= 10 && ppm < bestppm - 10) {
 802                                                bestppm = ppm;
 803                                                *best_clock = clock;
 804                                                found = true;
 805                                        }
 806                                }
 807                        }
 808                }
 809        }
 810
 811        return found;
 812}
 813
 814static bool
 815chv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
 816                   int target, int refclk, intel_clock_t *match_clock,
 817                   intel_clock_t *best_clock)
 818{
 819        struct drm_device *dev = crtc->dev;
 820        intel_clock_t clock;
 821        uint64_t m2;
 822        int found = false;
 823
 824        memset(best_clock, 0, sizeof(*best_clock));
 825
 826        /*
 827         * Based on hardware doc, the n always set to 1, and m1 always
 828         * set to 2.  If requires to support 200Mhz refclk, we need to
 829         * revisit this because n may not 1 anymore.
 830         */
 831        clock.n = 1, clock.m1 = 2;
 832        target *= 5;    /* fast clock */
 833
 834        for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
 835                for (clock.p2 = limit->p2.p2_fast;
 836                                clock.p2 >= limit->p2.p2_slow;
 837                                clock.p2 -= clock.p2 > 10 ? 2 : 1) {
 838
 839                        clock.p = clock.p1 * clock.p2;
 840
 841                        m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
 842                                        clock.n) << 22, refclk * clock.m1);
 843
 844                        if (m2 > INT_MAX/clock.m1)
 845                                continue;
 846
 847                        clock.m2 = m2;
 848
 849                        chv_clock(refclk, &clock);
 850
 851                        if (!intel_PLL_is_valid(dev, limit, &clock))
 852                                continue;
 853
 854                        /* based on hardware requirement, prefer bigger p
 855                         */
 856                        if (clock.p > best_clock->p) {
 857                                *best_clock = clock;
 858                                found = true;
 859                        }
 860                }
 861        }
 862
 863        return found;
 864}
 865
 866bool intel_crtc_active(struct drm_crtc *crtc)
 867{
 868        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
 869
 870        /* Be paranoid as we can arrive here with only partial
 871         * state retrieved from the hardware during setup.
 872         *
 873         * We can ditch the adjusted_mode.crtc_clock check as soon
 874         * as Haswell has gained clock readout/fastboot support.
 875         *
 876         * We can ditch the crtc->primary->fb check as soon as we can
 877         * properly reconstruct framebuffers.
 878         */
 879        return intel_crtc->active && crtc->primary->fb &&
 880                intel_crtc->config.adjusted_mode.crtc_clock;
 881}
 882
 883enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
 884                                             enum pipe pipe)
 885{
 886        struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
 887        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
 888
 889        return intel_crtc->config.cpu_transcoder;
 890}
 891
 892static void g4x_wait_for_vblank(struct drm_device *dev, int pipe)
 893{
 894        struct drm_i915_private *dev_priv = dev->dev_private;
 895        u32 frame, frame_reg = PIPE_FRMCOUNT_GM45(pipe);
 896
 897        frame = I915_READ(frame_reg);
 898
 899        if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
 900                WARN(1, "vblank wait on pipe %c timed out\n",
 901                     pipe_name(pipe));
 902}
 903
 904/**
 905 * intel_wait_for_vblank - wait for vblank on a given pipe
 906 * @dev: drm device
 907 * @pipe: pipe to wait for
 908 *
 909 * Wait for vblank to occur on a given pipe.  Needed for various bits of
 910 * mode setting code.
 911 */
 912void intel_wait_for_vblank(struct drm_device *dev, int pipe)
 913{
 914        struct drm_i915_private *dev_priv = dev->dev_private;
 915        int pipestat_reg = PIPESTAT(pipe);
 916
 917        if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
 918                g4x_wait_for_vblank(dev, pipe);
 919                return;
 920        }
 921
 922        /* Clear existing vblank status. Note this will clear any other
 923         * sticky status fields as well.
 924         *
 925         * This races with i915_driver_irq_handler() with the result
 926         * that either function could miss a vblank event.  Here it is not
 927         * fatal, as we will either wait upon the next vblank interrupt or
 928         * timeout.  Generally speaking intel_wait_for_vblank() is only
 929         * called during modeset at which time the GPU should be idle and
 930         * should *not* be performing page flips and thus not waiting on
 931         * vblanks...
 932         * Currently, the result of us stealing a vblank from the irq
 933         * handler is that a single frame will be skipped during swapbuffers.
 934         */
 935        I915_WRITE(pipestat_reg,
 936                   I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
 937
 938        /* Wait for vblank interrupt bit to set */
 939        if (wait_for(I915_READ(pipestat_reg) &
 940                     PIPE_VBLANK_INTERRUPT_STATUS,
 941                     50))
 942                DRM_DEBUG_KMS("vblank wait on pipe %c timed out\n",
 943                              pipe_name(pipe));
 944}
 945
 946static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
 947{
 948        struct drm_i915_private *dev_priv = dev->dev_private;
 949        u32 reg = PIPEDSL(pipe);
 950        u32 line1, line2;
 951        u32 line_mask;
 952
 953        if (IS_GEN2(dev))
 954                line_mask = DSL_LINEMASK_GEN2;
 955        else
 956                line_mask = DSL_LINEMASK_GEN3;
 957
 958        line1 = I915_READ(reg) & line_mask;
 959        mdelay(5);
 960        line2 = I915_READ(reg) & line_mask;
 961
 962        return line1 == line2;
 963}
 964
 965/*
 966 * intel_wait_for_pipe_off - wait for pipe to turn off
 967 * @crtc: crtc whose pipe to wait for
 968 *
 969 * After disabling a pipe, we can't wait for vblank in the usual way,
 970 * spinning on the vblank interrupt status bit, since we won't actually
 971 * see an interrupt when the pipe is disabled.
 972 *
 973 * On Gen4 and above:
 974 *   wait for the pipe register state bit to turn off
 975 *
 976 * Otherwise:
 977 *   wait for the display line value to settle (it usually
 978 *   ends up stopping at the start of the next frame).
 979 *
 980 */
 981static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
 982{
 983        struct drm_device *dev = crtc->base.dev;
 984        struct drm_i915_private *dev_priv = dev->dev_private;
 985        enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
 986        enum pipe pipe = crtc->pipe;
 987
 988        if (INTEL_INFO(dev)->gen >= 4) {
 989                int reg = PIPECONF(cpu_transcoder);
 990
 991                /* Wait for the Pipe State to go off */
 992                if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
 993                             100))
 994                        WARN(1, "pipe_off wait timed out\n");
 995        } else {
 996                /* Wait for the display line to settle */
 997                if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
 998                        WARN(1, "pipe_off wait timed out\n");
 999        }
1000}
1001
1002/*
1003 * ibx_digital_port_connected - is the specified port connected?
1004 * @dev_priv: i915 private structure
1005 * @port: the port to test
1006 *
1007 * Returns true if @port is connected, false otherwise.
1008 */
1009bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
1010                                struct intel_digital_port *port)
1011{
1012        u32 bit;
1013
1014        if (HAS_PCH_IBX(dev_priv->dev)) {
1015                switch (port->port) {
1016                case PORT_B:
1017                        bit = SDE_PORTB_HOTPLUG;
1018                        break;
1019                case PORT_C:
1020                        bit = SDE_PORTC_HOTPLUG;
1021                        break;
1022                case PORT_D:
1023                        bit = SDE_PORTD_HOTPLUG;
1024                        break;
1025                default:
1026                        return true;
1027                }
1028        } else {
1029                switch (port->port) {
1030                case PORT_B:
1031                        bit = SDE_PORTB_HOTPLUG_CPT;
1032                        break;
1033                case PORT_C:
1034                        bit = SDE_PORTC_HOTPLUG_CPT;
1035                        break;
1036                case PORT_D:
1037                        bit = SDE_PORTD_HOTPLUG_CPT;
1038                        break;
1039                default:
1040                        return true;
1041                }
1042        }
1043
1044        return I915_READ(SDEISR) & bit;
1045}
1046
1047static const char *state_string(bool enabled)
1048{
1049        return enabled ? "on" : "off";
1050}
1051
1052/* Only for pre-ILK configs */
1053void assert_pll(struct drm_i915_private *dev_priv,
1054                enum pipe pipe, bool state)
1055{
1056        int reg;
1057        u32 val;
1058        bool cur_state;
1059
1060        reg = DPLL(pipe);
1061        val = I915_READ(reg);
1062        cur_state = !!(val & DPLL_VCO_ENABLE);
1063        WARN(cur_state != state,
1064             "PLL state assertion failure (expected %s, current %s)\n",
1065             state_string(state), state_string(cur_state));
1066}
1067
1068/* XXX: the dsi pll is shared between MIPI DSI ports */
1069static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1070{
1071        u32 val;
1072        bool cur_state;
1073
1074        mutex_lock(&dev_priv->dpio_lock);
1075        val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1076        mutex_unlock(&dev_priv->dpio_lock);
1077
1078        cur_state = val & DSI_PLL_VCO_EN;
1079        WARN(cur_state != state,
1080             "DSI PLL state assertion failure (expected %s, current %s)\n",
1081             state_string(state), state_string(cur_state));
1082}
1083#define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1084#define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1085
1086struct intel_shared_dpll *
1087intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1088{
1089        struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1090
1091        if (crtc->config.shared_dpll < 0)
1092                return NULL;
1093
1094        return &dev_priv->shared_dplls[crtc->config.shared_dpll];
1095}
1096
1097/* For ILK+ */
1098void assert_shared_dpll(struct drm_i915_private *dev_priv,
1099                        struct intel_shared_dpll *pll,
1100                        bool state)
1101{
1102        bool cur_state;
1103        struct intel_dpll_hw_state hw_state;
1104
1105        if (WARN (!pll,
1106                  "asserting DPLL %s with no DPLL\n", state_string(state)))
1107                return;
1108
1109        cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1110        WARN(cur_state != state,
1111             "%s assertion failure (expected %s, current %s)\n",
1112             pll->name, state_string(state), state_string(cur_state));
1113}
1114
1115static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1116                          enum pipe pipe, bool state)
1117{
1118        int reg;
1119        u32 val;
1120        bool cur_state;
1121        enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1122                                                                      pipe);
1123
1124        if (HAS_DDI(dev_priv->dev)) {
1125                /* DDI does not have a specific FDI_TX register */
1126                reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1127                val = I915_READ(reg);
1128                cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1129        } else {
1130                reg = FDI_TX_CTL(pipe);
1131                val = I915_READ(reg);
1132                cur_state = !!(val & FDI_TX_ENABLE);
1133        }
1134        WARN(cur_state != state,
1135             "FDI TX state assertion failure (expected %s, current %s)\n",
1136             state_string(state), state_string(cur_state));
1137}
1138#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1139#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1140
1141static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1142                          enum pipe pipe, bool state)
1143{
1144        int reg;
1145        u32 val;
1146        bool cur_state;
1147
1148        reg = FDI_RX_CTL(pipe);
1149        val = I915_READ(reg);
1150        cur_state = !!(val & FDI_RX_ENABLE);
1151        WARN(cur_state != state,
1152             "FDI RX state assertion failure (expected %s, current %s)\n",
1153             state_string(state), state_string(cur_state));
1154}
1155#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1156#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1157
1158static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1159                                      enum pipe pipe)
1160{
1161        int reg;
1162        u32 val;
1163
1164        /* ILK FDI PLL is always enabled */
1165        if (INTEL_INFO(dev_priv->dev)->gen == 5)
1166                return;
1167
1168        /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1169        if (HAS_DDI(dev_priv->dev))
1170                return;
1171
1172        reg = FDI_TX_CTL(pipe);
1173        val = I915_READ(reg);
1174        WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1175}
1176
1177void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1178                       enum pipe pipe, bool state)
1179{
1180        int reg;
1181        u32 val;
1182        bool cur_state;
1183
1184        reg = FDI_RX_CTL(pipe);
1185        val = I915_READ(reg);
1186        cur_state = !!(val & FDI_RX_PLL_ENABLE);
1187        WARN(cur_state != state,
1188             "FDI RX PLL assertion failure (expected %s, current %s)\n",
1189             state_string(state), state_string(cur_state));
1190}
1191
1192static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1193                                  enum pipe pipe)
1194{
1195        struct drm_device *dev = dev_priv->dev;
1196        int pp_reg;
1197        u32 val;
1198        enum pipe panel_pipe = PIPE_A;
1199        bool locked = true;
1200
1201        if (WARN_ON(HAS_DDI(dev)))
1202                return;
1203
1204        if (HAS_PCH_SPLIT(dev)) {
1205                u32 port_sel;
1206
1207                pp_reg = PCH_PP_CONTROL;
1208                port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1209
1210                if (port_sel == PANEL_PORT_SELECT_LVDS &&
1211                    I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1212                        panel_pipe = PIPE_B;
1213                /* XXX: else fix for eDP */
1214        } else if (IS_VALLEYVIEW(dev)) {
1215                /* presumably write lock depends on pipe, not port select */
1216                pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1217                panel_pipe = pipe;
1218        } else {
1219                pp_reg = PP_CONTROL;
1220                if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1221                        panel_pipe = PIPE_B;
1222        }
1223
1224        val = I915_READ(pp_reg);
1225        if (!(val & PANEL_POWER_ON) ||
1226            ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1227                locked = false;
1228
1229        WARN(panel_pipe == pipe && locked,
1230             "panel assertion failure, pipe %c regs locked\n",
1231             pipe_name(pipe));
1232}
1233
1234static void assert_cursor(struct drm_i915_private *dev_priv,
1235                          enum pipe pipe, bool state)
1236{
1237        struct drm_device *dev = dev_priv->dev;
1238        bool cur_state;
1239
1240        if (IS_845G(dev) || IS_I865G(dev))
1241                cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1242        else
1243                cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1244
1245        WARN(cur_state != state,
1246             "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1247             pipe_name(pipe), state_string(state), state_string(cur_state));
1248}
1249#define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1250#define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1251
1252void assert_pipe(struct drm_i915_private *dev_priv,
1253                 enum pipe pipe, bool state)
1254{
1255        int reg;
1256        u32 val;
1257        bool cur_state;
1258        enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1259                                                                      pipe);
1260
1261        /* if we need the pipe quirk it must be always on */
1262        if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1263            (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1264                state = true;
1265
1266        if (!intel_display_power_enabled(dev_priv,
1267                                POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1268                cur_state = false;
1269        } else {
1270                reg = PIPECONF(cpu_transcoder);
1271                val = I915_READ(reg);
1272                cur_state = !!(val & PIPECONF_ENABLE);
1273        }
1274
1275        WARN(cur_state != state,
1276             "pipe %c assertion failure (expected %s, current %s)\n",
1277             pipe_name(pipe), state_string(state), state_string(cur_state));
1278}
1279
1280static void assert_plane(struct drm_i915_private *dev_priv,
1281                         enum plane plane, bool state)
1282{
1283        int reg;
1284        u32 val;
1285        bool cur_state;
1286
1287        reg = DSPCNTR(plane);
1288        val = I915_READ(reg);
1289        cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1290        WARN(cur_state != state,
1291             "plane %c assertion failure (expected %s, current %s)\n",
1292             plane_name(plane), state_string(state), state_string(cur_state));
1293}
1294
1295#define assert_plane_enabled(d, p) assert_plane(d, p, true)
1296#define assert_plane_disabled(d, p) assert_plane(d, p, false)
1297
1298static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1299                                   enum pipe pipe)
1300{
1301        struct drm_device *dev = dev_priv->dev;
1302        int reg, i;
1303        u32 val;
1304        int cur_pipe;
1305
1306        /* Primary planes are fixed to pipes on gen4+ */
1307        if (INTEL_INFO(dev)->gen >= 4) {
1308                reg = DSPCNTR(pipe);
1309                val = I915_READ(reg);
1310                WARN(val & DISPLAY_PLANE_ENABLE,
1311                     "plane %c assertion failure, should be disabled but not\n",
1312                     plane_name(pipe));
1313                return;
1314        }
1315
1316        /* Need to check both planes against the pipe */
1317        for_each_pipe(dev_priv, i) {
1318                reg = DSPCNTR(i);
1319                val = I915_READ(reg);
1320                cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1321                        DISPPLANE_SEL_PIPE_SHIFT;
1322                WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1323                     "plane %c assertion failure, should be off on pipe %c but is still active\n",
1324                     plane_name(i), pipe_name(pipe));
1325        }
1326}
1327
1328static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1329                                    enum pipe pipe)
1330{
1331        struct drm_device *dev = dev_priv->dev;
1332        int reg, sprite;
1333        u32 val;
1334
1335        if (IS_VALLEYVIEW(dev)) {
1336                for_each_sprite(pipe, sprite) {
1337                        reg = SPCNTR(pipe, sprite);
1338                        val = I915_READ(reg);
1339                        WARN(val & SP_ENABLE,
1340                             "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1341                             sprite_name(pipe, sprite), pipe_name(pipe));
1342                }
1343        } else if (INTEL_INFO(dev)->gen >= 7) {
1344                reg = SPRCTL(pipe);
1345                val = I915_READ(reg);
1346                WARN(val & SPRITE_ENABLE,
1347                     "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1348                     plane_name(pipe), pipe_name(pipe));
1349        } else if (INTEL_INFO(dev)->gen >= 5) {
1350                reg = DVSCNTR(pipe);
1351                val = I915_READ(reg);
1352                WARN(val & DVS_ENABLE,
1353                     "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1354                     plane_name(pipe), pipe_name(pipe));
1355        }
1356}
1357
1358static void assert_vblank_disabled(struct drm_crtc *crtc)
1359{
1360        if (WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1361                drm_crtc_vblank_put(crtc);
1362}
1363
1364static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1365{
1366        u32 val;
1367        bool enabled;
1368
1369        WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1370
1371        val = I915_READ(PCH_DREF_CONTROL);
1372        enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1373                            DREF_SUPERSPREAD_SOURCE_MASK));
1374        WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1375}
1376
1377static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1378                                           enum pipe pipe)
1379{
1380        int reg;
1381        u32 val;
1382        bool enabled;
1383
1384        reg = PCH_TRANSCONF(pipe);
1385        val = I915_READ(reg);
1386        enabled = !!(val & TRANS_ENABLE);
1387        WARN(enabled,
1388             "transcoder assertion failed, should be off on pipe %c but is still active\n",
1389             pipe_name(pipe));
1390}
1391
1392static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1393                            enum pipe pipe, u32 port_sel, u32 val)
1394{
1395        if ((val & DP_PORT_EN) == 0)
1396                return false;
1397
1398        if (HAS_PCH_CPT(dev_priv->dev)) {
1399                u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1400                u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1401                if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1402                        return false;
1403        } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1404                if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1405                        return false;
1406        } else {
1407                if ((val & DP_PIPE_MASK) != (pipe << 30))
1408                        return false;
1409        }
1410        return true;
1411}
1412
1413static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1414                              enum pipe pipe, u32 val)
1415{
1416        if ((val & SDVO_ENABLE) == 0)
1417                return false;
1418
1419        if (HAS_PCH_CPT(dev_priv->dev)) {
1420                if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1421                        return false;
1422        } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1423                if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1424                        return false;
1425        } else {
1426                if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1427                        return false;
1428        }
1429        return true;
1430}
1431
1432static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1433                              enum pipe pipe, u32 val)
1434{
1435        if ((val & LVDS_PORT_EN) == 0)
1436                return false;
1437
1438        if (HAS_PCH_CPT(dev_priv->dev)) {
1439                if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1440                        return false;
1441        } else {
1442                if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1443                        return false;
1444        }
1445        return true;
1446}
1447
1448static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1449                              enum pipe pipe, u32 val)
1450{
1451        if ((val & ADPA_DAC_ENABLE) == 0)
1452                return false;
1453        if (HAS_PCH_CPT(dev_priv->dev)) {
1454                if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1455                        return false;
1456        } else {
1457                if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1458                        return false;
1459        }
1460        return true;
1461}
1462
1463static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1464                                   enum pipe pipe, int reg, u32 port_sel)
1465{
1466        u32 val = I915_READ(reg);
1467        WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1468             "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1469             reg, pipe_name(pipe));
1470
1471        WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1472             && (val & DP_PIPEB_SELECT),
1473             "IBX PCH dp port still using transcoder B\n");
1474}
1475
1476static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1477                                     enum pipe pipe, int reg)
1478{
1479        u32 val = I915_READ(reg);
1480        WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1481             "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1482             reg, pipe_name(pipe));
1483
1484        WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1485             && (val & SDVO_PIPE_B_SELECT),
1486             "IBX PCH hdmi port still using transcoder B\n");
1487}
1488
1489static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1490                                      enum pipe pipe)
1491{
1492        int reg;
1493        u32 val;
1494
1495        assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1496        assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1497        assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1498
1499        reg = PCH_ADPA;
1500        val = I915_READ(reg);
1501        WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1502             "PCH VGA enabled on transcoder %c, should be disabled\n",
1503             pipe_name(pipe));
1504
1505        reg = PCH_LVDS;
1506        val = I915_READ(reg);
1507        WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1508             "PCH LVDS enabled on transcoder %c, should be disabled\n",
1509             pipe_name(pipe));
1510
1511        assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1512        assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1513        assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1514}
1515
1516static void intel_init_dpio(struct drm_device *dev)
1517{
1518        struct drm_i915_private *dev_priv = dev->dev_private;
1519
1520        if (!IS_VALLEYVIEW(dev))
1521                return;
1522
1523        /*
1524         * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1525         * CHV x1 PHY (DP/HDMI D)
1526         * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1527         */
1528        if (IS_CHERRYVIEW(dev)) {
1529                DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1530                DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1531        } else {
1532                DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1533        }
1534}
1535
1536static void vlv_enable_pll(struct intel_crtc *crtc)
1537{
1538        struct drm_device *dev = crtc->base.dev;
1539        struct drm_i915_private *dev_priv = dev->dev_private;
1540        int reg = DPLL(crtc->pipe);
1541        u32 dpll = crtc->config.dpll_hw_state.dpll;
1542
1543        assert_pipe_disabled(dev_priv, crtc->pipe);
1544
1545        /* No really, not for ILK+ */
1546        BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1547
1548        /* PLL is protected by panel, make sure we can write it */
1549        if (IS_MOBILE(dev_priv->dev))
1550                assert_panel_unlocked(dev_priv, crtc->pipe);
1551
1552        I915_WRITE(reg, dpll);
1553        POSTING_READ(reg);
1554        udelay(150);
1555
1556        if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1557                DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1558
1559        I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
1560        POSTING_READ(DPLL_MD(crtc->pipe));
1561
1562        /* We do this three times for luck */
1563        I915_WRITE(reg, dpll);
1564        POSTING_READ(reg);
1565        udelay(150); /* wait for warmup */
1566        I915_WRITE(reg, dpll);
1567        POSTING_READ(reg);
1568        udelay(150); /* wait for warmup */
1569        I915_WRITE(reg, dpll);
1570        POSTING_READ(reg);
1571        udelay(150); /* wait for warmup */
1572}
1573
1574static void chv_enable_pll(struct intel_crtc *crtc)
1575{
1576        struct drm_device *dev = crtc->base.dev;
1577        struct drm_i915_private *dev_priv = dev->dev_private;
1578        int pipe = crtc->pipe;
1579        enum dpio_channel port = vlv_pipe_to_channel(pipe);
1580        u32 tmp;
1581
1582        assert_pipe_disabled(dev_priv, crtc->pipe);
1583
1584        BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1585
1586        mutex_lock(&dev_priv->dpio_lock);
1587
1588        /* Enable back the 10bit clock to display controller */
1589        tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1590        tmp |= DPIO_DCLKP_EN;
1591        vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1592
1593        /*
1594         * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1595         */
1596        udelay(1);
1597
1598        /* Enable PLL */
1599        I915_WRITE(DPLL(pipe), crtc->config.dpll_hw_state.dpll);
1600
1601        /* Check PLL is locked */
1602        if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1603                DRM_ERROR("PLL %d failed to lock\n", pipe);
1604
1605        /* not sure when this should be written */
1606        I915_WRITE(DPLL_MD(pipe), crtc->config.dpll_hw_state.dpll_md);
1607        POSTING_READ(DPLL_MD(pipe));
1608
1609        mutex_unlock(&dev_priv->dpio_lock);
1610}
1611
1612static int intel_num_dvo_pipes(struct drm_device *dev)
1613{
1614        struct intel_crtc *crtc;
1615        int count = 0;
1616
1617        for_each_intel_crtc(dev, crtc)
1618                count += crtc->active &&
1619                        intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO);
1620
1621        return count;
1622}
1623
1624static void i9xx_enable_pll(struct intel_crtc *crtc)
1625{
1626        struct drm_device *dev = crtc->base.dev;
1627        struct drm_i915_private *dev_priv = dev->dev_private;
1628        int reg = DPLL(crtc->pipe);
1629        u32 dpll = crtc->config.dpll_hw_state.dpll;
1630
1631        assert_pipe_disabled(dev_priv, crtc->pipe);
1632
1633        /* No really, not for ILK+ */
1634        BUG_ON(INTEL_INFO(dev)->gen >= 5);
1635
1636        /* PLL is protected by panel, make sure we can write it */
1637        if (IS_MOBILE(dev) && !IS_I830(dev))
1638                assert_panel_unlocked(dev_priv, crtc->pipe);
1639
1640        /* Enable DVO 2x clock on both PLLs if necessary */
1641        if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1642                /*
1643                 * It appears to be important that we don't enable this
1644                 * for the current pipe before otherwise configuring the
1645                 * PLL. No idea how this should be handled if multiple
1646                 * DVO outputs are enabled simultaneosly.
1647                 */
1648                dpll |= DPLL_DVO_2X_MODE;
1649                I915_WRITE(DPLL(!crtc->pipe),
1650                           I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1651        }
1652
1653        /* Wait for the clocks to stabilize. */
1654        POSTING_READ(reg);
1655        udelay(150);
1656
1657        if (INTEL_INFO(dev)->gen >= 4) {
1658                I915_WRITE(DPLL_MD(crtc->pipe),
1659                           crtc->config.dpll_hw_state.dpll_md);
1660        } else {
1661                /* The pixel multiplier can only be updated once the
1662                 * DPLL is enabled and the clocks are stable.
1663                 *
1664                 * So write it again.
1665                 */
1666                I915_WRITE(reg, dpll);
1667        }
1668
1669        /* We do this three times for luck */
1670        I915_WRITE(reg, dpll);
1671        POSTING_READ(reg);
1672        udelay(150); /* wait for warmup */
1673        I915_WRITE(reg, dpll);
1674        POSTING_READ(reg);
1675        udelay(150); /* wait for warmup */
1676        I915_WRITE(reg, dpll);
1677        POSTING_READ(reg);
1678        udelay(150); /* wait for warmup */
1679}
1680
1681/**
1682 * i9xx_disable_pll - disable a PLL
1683 * @dev_priv: i915 private structure
1684 * @pipe: pipe PLL to disable
1685 *
1686 * Disable the PLL for @pipe, making sure the pipe is off first.
1687 *
1688 * Note!  This is for pre-ILK only.
1689 */
1690static void i9xx_disable_pll(struct intel_crtc *crtc)
1691{
1692        struct drm_device *dev = crtc->base.dev;
1693        struct drm_i915_private *dev_priv = dev->dev_private;
1694        enum pipe pipe = crtc->pipe;
1695
1696        /* Disable DVO 2x clock on both PLLs if necessary */
1697        if (IS_I830(dev) &&
1698            intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO) &&
1699            intel_num_dvo_pipes(dev) == 1) {
1700                I915_WRITE(DPLL(PIPE_B),
1701                           I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1702                I915_WRITE(DPLL(PIPE_A),
1703                           I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1704        }
1705
1706        /* Don't disable pipe or pipe PLLs if needed */
1707        if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1708            (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1709                return;
1710
1711        /* Make sure the pipe isn't still relying on us */
1712        assert_pipe_disabled(dev_priv, pipe);
1713
1714        I915_WRITE(DPLL(pipe), 0);
1715        POSTING_READ(DPLL(pipe));
1716}
1717
1718static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1719{
1720        u32 val = 0;
1721
1722        /* Make sure the pipe isn't still relying on us */
1723        assert_pipe_disabled(dev_priv, pipe);
1724
1725        /*
1726         * Leave integrated clock source and reference clock enabled for pipe B.
1727         * The latter is needed for VGA hotplug / manual detection.
1728         */
1729        if (pipe == PIPE_B)
1730                val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
1731        I915_WRITE(DPLL(pipe), val);
1732        POSTING_READ(DPLL(pipe));
1733
1734}
1735
1736static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1737{
1738        enum dpio_channel port = vlv_pipe_to_channel(pipe);
1739        u32 val;
1740
1741        /* Make sure the pipe isn't still relying on us */
1742        assert_pipe_disabled(dev_priv, pipe);
1743
1744        /* Set PLL en = 0 */
1745        val = DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV;
1746        if (pipe != PIPE_A)
1747                val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1748        I915_WRITE(DPLL(pipe), val);
1749        POSTING_READ(DPLL(pipe));
1750
1751        mutex_lock(&dev_priv->dpio_lock);
1752
1753        /* Disable 10bit clock to display controller */
1754        val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1755        val &= ~DPIO_DCLKP_EN;
1756        vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1757
1758        /* disable left/right clock distribution */
1759        if (pipe != PIPE_B) {
1760                val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1761                val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1762                vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1763        } else {
1764                val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1765                val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1766                vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1767        }
1768
1769        mutex_unlock(&dev_priv->dpio_lock);
1770}
1771
1772void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1773                struct intel_digital_port *dport)
1774{
1775        u32 port_mask;
1776        int dpll_reg;
1777
1778        switch (dport->port) {
1779        case PORT_B:
1780                port_mask = DPLL_PORTB_READY_MASK;
1781                dpll_reg = DPLL(0);
1782                break;
1783        case PORT_C:
1784                port_mask = DPLL_PORTC_READY_MASK;
1785                dpll_reg = DPLL(0);
1786                break;
1787        case PORT_D:
1788                port_mask = DPLL_PORTD_READY_MASK;
1789                dpll_reg = DPIO_PHY_STATUS;
1790                break;
1791        default:
1792                BUG();
1793        }
1794
1795        if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
1796                WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1797                     port_name(dport->port), I915_READ(dpll_reg));
1798}
1799
1800static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1801{
1802        struct drm_device *dev = crtc->base.dev;
1803        struct drm_i915_private *dev_priv = dev->dev_private;
1804        struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1805
1806        if (WARN_ON(pll == NULL))
1807                return;
1808
1809        WARN_ON(!pll->refcount);
1810        if (pll->active == 0) {
1811                DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1812                WARN_ON(pll->on);
1813                assert_shared_dpll_disabled(dev_priv, pll);
1814
1815                pll->mode_set(dev_priv, pll);
1816        }
1817}
1818
1819/**
1820 * intel_enable_shared_dpll - enable PCH PLL
1821 * @dev_priv: i915 private structure
1822 * @pipe: pipe PLL to enable
1823 *
1824 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1825 * drives the transcoder clock.
1826 */
1827static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1828{
1829        struct drm_device *dev = crtc->base.dev;
1830        struct drm_i915_private *dev_priv = dev->dev_private;
1831        struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1832
1833        if (WARN_ON(pll == NULL))
1834                return;
1835
1836        if (WARN_ON(pll->refcount == 0))
1837                return;
1838
1839        DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
1840                      pll->name, pll->active, pll->on,
1841                      crtc->base.base.id);
1842
1843        if (pll->active++) {
1844                WARN_ON(!pll->on);
1845                assert_shared_dpll_enabled(dev_priv, pll);
1846                return;
1847        }
1848        WARN_ON(pll->on);
1849
1850        intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1851
1852        DRM_DEBUG_KMS("enabling %s\n", pll->name);
1853        pll->enable(dev_priv, pll);
1854        pll->on = true;
1855}
1856
1857static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1858{
1859        struct drm_device *dev = crtc->base.dev;
1860        struct drm_i915_private *dev_priv = dev->dev_private;
1861        struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1862
1863        /* PCH only available on ILK+ */
1864        BUG_ON(INTEL_INFO(dev)->gen < 5);
1865        if (WARN_ON(pll == NULL))
1866               return;
1867
1868        if (WARN_ON(pll->refcount == 0))
1869                return;
1870
1871        DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1872                      pll->name, pll->active, pll->on,
1873                      crtc->base.base.id);
1874
1875        if (WARN_ON(pll->active == 0)) {
1876                assert_shared_dpll_disabled(dev_priv, pll);
1877                return;
1878        }
1879
1880        assert_shared_dpll_enabled(dev_priv, pll);
1881        WARN_ON(!pll->on);
1882        if (--pll->active)
1883                return;
1884
1885        DRM_DEBUG_KMS("disabling %s\n", pll->name);
1886        pll->disable(dev_priv, pll);
1887        pll->on = false;
1888
1889        intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
1890}
1891
1892static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1893                                           enum pipe pipe)
1894{
1895        struct drm_device *dev = dev_priv->dev;
1896        struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1897        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1898        uint32_t reg, val, pipeconf_val;
1899
1900        /* PCH only available on ILK+ */
1901        BUG_ON(!HAS_PCH_SPLIT(dev));
1902
1903        /* Make sure PCH DPLL is enabled */
1904        assert_shared_dpll_enabled(dev_priv,
1905                                   intel_crtc_to_shared_dpll(intel_crtc));
1906
1907        /* FDI must be feeding us bits for PCH ports */
1908        assert_fdi_tx_enabled(dev_priv, pipe);
1909        assert_fdi_rx_enabled(dev_priv, pipe);
1910
1911        if (HAS_PCH_CPT(dev)) {
1912                /* Workaround: Set the timing override bit before enabling the
1913                 * pch transcoder. */
1914                reg = TRANS_CHICKEN2(pipe);
1915                val = I915_READ(reg);
1916                val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1917                I915_WRITE(reg, val);
1918        }
1919
1920        reg = PCH_TRANSCONF(pipe);
1921        val = I915_READ(reg);
1922        pipeconf_val = I915_READ(PIPECONF(pipe));
1923
1924        if (HAS_PCH_IBX(dev_priv->dev)) {
1925                /*
1926                 * make the BPC in transcoder be consistent with
1927                 * that in pipeconf reg.
1928                 */
1929                val &= ~PIPECONF_BPC_MASK;
1930                val |= pipeconf_val & PIPECONF_BPC_MASK;
1931        }
1932
1933        val &= ~TRANS_INTERLACE_MASK;
1934        if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1935                if (HAS_PCH_IBX(dev_priv->dev) &&
1936                    intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1937                        val |= TRANS_LEGACY_INTERLACED_ILK;
1938                else
1939                        val |= TRANS_INTERLACED;
1940        else
1941                val |= TRANS_PROGRESSIVE;
1942
1943        I915_WRITE(reg, val | TRANS_ENABLE);
1944        if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1945                DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1946}
1947
1948static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1949                                      enum transcoder cpu_transcoder)
1950{
1951        u32 val, pipeconf_val;
1952
1953        /* PCH only available on ILK+ */
1954        BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
1955
1956        /* FDI must be feeding us bits for PCH ports */
1957        assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1958        assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1959
1960        /* Workaround: set timing override bit. */
1961        val = I915_READ(_TRANSA_CHICKEN2);
1962        val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1963        I915_WRITE(_TRANSA_CHICKEN2, val);
1964
1965        val = TRANS_ENABLE;
1966        pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1967
1968        if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1969            PIPECONF_INTERLACED_ILK)
1970                val |= TRANS_INTERLACED;
1971        else
1972                val |= TRANS_PROGRESSIVE;
1973
1974        I915_WRITE(LPT_TRANSCONF, val);
1975        if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1976                DRM_ERROR("Failed to enable PCH transcoder\n");
1977}
1978
1979static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1980                                            enum pipe pipe)
1981{
1982        struct drm_device *dev = dev_priv->dev;
1983        uint32_t reg, val;
1984
1985        /* FDI relies on the transcoder */
1986        assert_fdi_tx_disabled(dev_priv, pipe);
1987        assert_fdi_rx_disabled(dev_priv, pipe);
1988
1989        /* Ports must be off as well */
1990        assert_pch_ports_disabled(dev_priv, pipe);
1991
1992        reg = PCH_TRANSCONF(pipe);
1993        val = I915_READ(reg);
1994        val &= ~TRANS_ENABLE;
1995        I915_WRITE(reg, val);
1996        /* wait for PCH transcoder off, transcoder state */
1997        if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1998                DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1999
2000        if (!HAS_PCH_IBX(dev)) {
2001                /* Workaround: Clear the timing override chicken bit again. */
2002                reg = TRANS_CHICKEN2(pipe);
2003                val = I915_READ(reg);
2004                val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2005                I915_WRITE(reg, val);
2006        }
2007}
2008
2009static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
2010{
2011        u32 val;
2012
2013        val = I915_READ(LPT_TRANSCONF);
2014        val &= ~TRANS_ENABLE;
2015        I915_WRITE(LPT_TRANSCONF, val);
2016        /* wait for PCH transcoder off, transcoder state */
2017        if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
2018                DRM_ERROR("Failed to disable PCH transcoder\n");
2019
2020        /* Workaround: clear timing override bit. */
2021        val = I915_READ(_TRANSA_CHICKEN2);
2022        val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2023        I915_WRITE(_TRANSA_CHICKEN2, val);
2024}
2025
2026/**
2027 * intel_enable_pipe - enable a pipe, asserting requirements
2028 * @crtc: crtc responsible for the pipe
2029 *
2030 * Enable @crtc's pipe, making sure that various hardware specific requirements
2031 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
2032 */
2033static void intel_enable_pipe(struct intel_crtc *crtc)
2034{
2035        struct drm_device *dev = crtc->base.dev;
2036        struct drm_i915_private *dev_priv = dev->dev_private;
2037        enum pipe pipe = crtc->pipe;
2038        enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2039                                                                      pipe);
2040        enum pipe pch_transcoder;
2041        int reg;
2042        u32 val;
2043
2044        assert_planes_disabled(dev_priv, pipe);
2045        assert_cursor_disabled(dev_priv, pipe);
2046        assert_sprites_disabled(dev_priv, pipe);
2047
2048        if (HAS_PCH_LPT(dev_priv->dev))
2049                pch_transcoder = TRANSCODER_A;
2050        else
2051                pch_transcoder = pipe;
2052
2053        /*
2054         * A pipe without a PLL won't actually be able to drive bits from
2055         * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
2056         * need the check.
2057         */
2058        if (!HAS_PCH_SPLIT(dev_priv->dev))
2059                if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DSI))
2060                        assert_dsi_pll_enabled(dev_priv);
2061                else
2062                        assert_pll_enabled(dev_priv, pipe);
2063        else {
2064                if (crtc->config.has_pch_encoder) {
2065                        /* if driving the PCH, we need FDI enabled */
2066                        assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2067                        assert_fdi_tx_pll_enabled(dev_priv,
2068                                                  (enum pipe) cpu_transcoder);
2069                }
2070                /* FIXME: assert CPU port conditions for SNB+ */
2071        }
2072
2073        reg = PIPECONF(cpu_transcoder);
2074        val = I915_READ(reg);
2075        if (val & PIPECONF_ENABLE) {
2076                WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2077                          (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2078                return;
2079        }
2080
2081        I915_WRITE(reg, val | PIPECONF_ENABLE);
2082        POSTING_READ(reg);
2083}
2084
2085/**
2086 * intel_disable_pipe - disable a pipe, asserting requirements
2087 * @crtc: crtc whose pipes is to be disabled
2088 *
2089 * Disable the pipe of @crtc, making sure that various hardware
2090 * specific requirements are met, if applicable, e.g. plane
2091 * disabled, panel fitter off, etc.
2092 *
2093 * Will wait until the pipe has shut down before returning.
2094 */
2095static void intel_disable_pipe(struct intel_crtc *crtc)
2096{
2097        struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2098        enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
2099        enum pipe pipe = crtc->pipe;
2100        int reg;
2101        u32 val;
2102
2103        /*
2104         * Make sure planes won't keep trying to pump pixels to us,
2105         * or we might hang the display.
2106         */
2107        assert_planes_disabled(dev_priv, pipe);
2108        assert_cursor_disabled(dev_priv, pipe);
2109        assert_sprites_disabled(dev_priv, pipe);
2110
2111        reg = PIPECONF(cpu_transcoder);
2112        val = I915_READ(reg);
2113        if ((val & PIPECONF_ENABLE) == 0)
2114                return;
2115
2116        /*
2117         * Double wide has implications for planes
2118         * so best keep it disabled when not needed.
2119         */
2120        if (crtc->config.double_wide)
2121                val &= ~PIPECONF_DOUBLE_WIDE;
2122
2123        /* Don't disable pipe or pipe PLLs if needed */
2124        if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2125            !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2126                val &= ~PIPECONF_ENABLE;
2127
2128        I915_WRITE(reg, val);
2129        if ((val & PIPECONF_ENABLE) == 0)
2130                intel_wait_for_pipe_off(crtc);
2131}
2132
2133/*
2134 * Plane regs are double buffered, going from enabled->disabled needs a
2135 * trigger in order to latch.  The display address reg provides this.
2136 */
2137void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2138                               enum plane plane)
2139{
2140        struct drm_device *dev = dev_priv->dev;
2141        u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
2142
2143        I915_WRITE(reg, I915_READ(reg));
2144        POSTING_READ(reg);
2145}
2146
2147/**
2148 * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
2149 * @plane:  plane to be enabled
2150 * @crtc: crtc for the plane
2151 *
2152 * Enable @plane on @crtc, making sure that the pipe is running first.
2153 */
2154static void intel_enable_primary_hw_plane(struct drm_plane *plane,
2155                                          struct drm_crtc *crtc)
2156{
2157        struct drm_device *dev = plane->dev;
2158        struct drm_i915_private *dev_priv = dev->dev_private;
2159        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2160
2161        /* If the pipe isn't enabled, we can't pump pixels and may hang */
2162        assert_pipe_enabled(dev_priv, intel_crtc->pipe);
2163
2164        if (intel_crtc->primary_enabled)
2165                return;
2166
2167        intel_crtc->primary_enabled = true;
2168
2169        dev_priv->display.update_primary_plane(crtc, plane->fb,
2170                                               crtc->x, crtc->y);
2171
2172        /*
2173         * BDW signals flip done immediately if the plane
2174         * is disabled, even if the plane enable is already
2175         * armed to occur at the next vblank :(
2176         */
2177        if (IS_BROADWELL(dev))
2178                intel_wait_for_vblank(dev, intel_crtc->pipe);
2179}
2180
2181/**
2182 * intel_disable_primary_hw_plane - disable the primary hardware plane
2183 * @plane: plane to be disabled
2184 * @crtc: crtc for the plane
2185 *
2186 * Disable @plane on @crtc, making sure that the pipe is running first.
2187 */
2188static void intel_disable_primary_hw_plane(struct drm_plane *plane,
2189                                           struct drm_crtc *crtc)
2190{
2191        struct drm_device *dev = plane->dev;
2192        struct drm_i915_private *dev_priv = dev->dev_private;
2193        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2194
2195        assert_pipe_enabled(dev_priv, intel_crtc->pipe);
2196
2197        if (!intel_crtc->primary_enabled)
2198                return;
2199
2200        intel_crtc->primary_enabled = false;
2201
2202        dev_priv->display.update_primary_plane(crtc, plane->fb,
2203                                               crtc->x, crtc->y);
2204}
2205
2206static bool need_vtd_wa(struct drm_device *dev)
2207{
2208#ifdef CONFIG_INTEL_IOMMU
2209        if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2210                return true;
2211#endif
2212        return false;
2213}
2214
2215static int intel_align_height(struct drm_device *dev, int height, bool tiled)
2216{
2217        int tile_height;
2218
2219        tile_height = tiled ? (IS_GEN2(dev) ? 16 : 8) : 1;
2220        return ALIGN(height, tile_height);
2221}
2222
2223int
2224intel_pin_and_fence_fb_obj(struct drm_device *dev,
2225                           struct drm_i915_gem_object *obj,
2226                           struct intel_engine_cs *pipelined)
2227{
2228        struct drm_i915_private *dev_priv = dev->dev_private;
2229        u32 alignment;
2230        int ret;
2231
2232        WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2233
2234        switch (obj->tiling_mode) {
2235        case I915_TILING_NONE:
2236                if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2237                        alignment = 128 * 1024;
2238                else if (INTEL_INFO(dev)->gen >= 4)
2239                        alignment = 4 * 1024;
2240                else
2241                        alignment = 64 * 1024;
2242                break;
2243        case I915_TILING_X:
2244                /* pin() will align the object as required by fence */
2245                alignment = 0;
2246                break;
2247        case I915_TILING_Y:
2248                WARN(1, "Y tiled bo slipped through, driver bug!\n");
2249                return -EINVAL;
2250        default:
2251                BUG();
2252        }
2253
2254        /* Note that the w/a also requires 64 PTE of padding following the
2255         * bo. We currently fill all unused PTE with the shadow page and so
2256         * we should always have valid PTE following the scanout preventing
2257         * the VT-d warning.
2258         */
2259        if (need_vtd_wa(dev) && alignment < 256 * 1024)
2260                alignment = 256 * 1024;
2261
2262        /*
2263         * Global gtt pte registers are special registers which actually forward
2264         * writes to a chunk of system memory. Which means that there is no risk
2265         * that the register values disappear as soon as we call
2266         * intel_runtime_pm_put(), so it is correct to wrap only the
2267         * pin/unpin/fence and not more.
2268         */
2269        intel_runtime_pm_get(dev_priv);
2270
2271        dev_priv->mm.interruptible = false;
2272        ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
2273        if (ret)
2274                goto err_interruptible;
2275
2276        /* Install a fence for tiled scan-out. Pre-i965 always needs a
2277         * fence, whereas 965+ only requires a fence if using
2278         * framebuffer compression.  For simplicity, we always install
2279         * a fence as the cost is not that onerous.
2280         */
2281        ret = i915_gem_object_get_fence(obj);
2282        if (ret)
2283                goto err_unpin;
2284
2285        i915_gem_object_pin_fence(obj);
2286
2287        dev_priv->mm.interruptible = true;
2288        intel_runtime_pm_put(dev_priv);
2289        return 0;
2290
2291err_unpin:
2292        i915_gem_object_unpin_from_display_plane(obj);
2293err_interruptible:
2294        dev_priv->mm.interruptible = true;
2295        intel_runtime_pm_put(dev_priv);
2296        return ret;
2297}
2298
2299void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2300{
2301        WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2302
2303        i915_gem_object_unpin_fence(obj);
2304        i915_gem_object_unpin_from_display_plane(obj);
2305}
2306
2307/* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2308 * is assumed to be a power-of-two. */
2309unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2310                                             unsigned int tiling_mode,
2311                                             unsigned int cpp,
2312                                             unsigned int pitch)
2313{
2314        if (tiling_mode != I915_TILING_NONE) {
2315                unsigned int tile_rows, tiles;
2316
2317                tile_rows = *y / 8;
2318                *y %= 8;
2319
2320                tiles = *x / (512/cpp);
2321                *x %= 512/cpp;
2322
2323                return tile_rows * pitch * 8 + tiles * 4096;
2324        } else {
2325                unsigned int offset;
2326
2327                offset = *y * pitch + *x * cpp;
2328                *y = 0;
2329                *x = (offset & 4095) / cpp;
2330                return offset & -4096;
2331        }
2332}
2333
2334int intel_format_to_fourcc(int format)
2335{
2336        switch (format) {
2337        case DISPPLANE_8BPP:
2338                return DRM_FORMAT_C8;
2339        case DISPPLANE_BGRX555:
2340                return DRM_FORMAT_XRGB1555;
2341        case DISPPLANE_BGRX565:
2342                return DRM_FORMAT_RGB565;
2343        default:
2344        case DISPPLANE_BGRX888:
2345                return DRM_FORMAT_XRGB8888;
2346        case DISPPLANE_RGBX888:
2347                return DRM_FORMAT_XBGR8888;
2348        case DISPPLANE_BGRX101010:
2349                return DRM_FORMAT_XRGB2101010;
2350        case DISPPLANE_RGBX101010:
2351                return DRM_FORMAT_XBGR2101010;
2352        }
2353}
2354
2355static bool intel_alloc_plane_obj(struct intel_crtc *crtc,
2356                                  struct intel_plane_config *plane_config)
2357{
2358        struct drm_device *dev = crtc->base.dev;
2359        struct drm_i915_gem_object *obj = NULL;
2360        struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2361        u32 base = plane_config->base;
2362
2363        if (plane_config->size == 0)
2364                return false;
2365
2366        obj = i915_gem_object_create_stolen_for_preallocated(dev, base, base,
2367                                                             plane_config->size);
2368        if (!obj)
2369                return false;
2370
2371        if (plane_config->tiled) {
2372                obj->tiling_mode = I915_TILING_X;
2373                obj->stride = crtc->base.primary->fb->pitches[0];
2374        }
2375
2376        mode_cmd.pixel_format = crtc->base.primary->fb->pixel_format;
2377        mode_cmd.width = crtc->base.primary->fb->width;
2378        mode_cmd.height = crtc->base.primary->fb->height;
2379        mode_cmd.pitches[0] = crtc->base.primary->fb->pitches[0];
2380
2381        mutex_lock(&dev->struct_mutex);
2382
2383        if (intel_framebuffer_init(dev, to_intel_framebuffer(crtc->base.primary->fb),
2384                                   &mode_cmd, obj)) {
2385                DRM_DEBUG_KMS("intel fb init failed\n");
2386                goto out_unref_obj;
2387        }
2388
2389        obj->frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(crtc->pipe);
2390        mutex_unlock(&dev->struct_mutex);
2391
2392        DRM_DEBUG_KMS("plane fb obj %p\n", obj);
2393        return true;
2394
2395out_unref_obj:
2396        drm_gem_object_unreference(&obj->base);
2397        mutex_unlock(&dev->struct_mutex);
2398        return false;
2399}
2400
2401static void intel_find_plane_obj(struct intel_crtc *intel_crtc,
2402                                 struct intel_plane_config *plane_config)
2403{
2404        struct drm_device *dev = intel_crtc->base.dev;
2405        struct drm_crtc *c;
2406        struct intel_crtc *i;
2407        struct drm_i915_gem_object *obj;
2408
2409        if (!intel_crtc->base.primary->fb)
2410                return;
2411
2412        if (intel_alloc_plane_obj(intel_crtc, plane_config))
2413                return;
2414
2415        kfree(intel_crtc->base.primary->fb);
2416        intel_crtc->base.primary->fb = NULL;
2417
2418        /*
2419         * Failed to alloc the obj, check to see if we should share
2420         * an fb with another CRTC instead
2421         */
2422        for_each_crtc(dev, c) {
2423                i = to_intel_crtc(c);
2424
2425                if (c == &intel_crtc->base)
2426                        continue;
2427
2428                if (!i->active)
2429                        continue;
2430
2431                obj = intel_fb_obj(c->primary->fb);
2432                if (obj == NULL)
2433                        continue;
2434
2435                if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2436                        drm_framebuffer_reference(c->primary->fb);
2437                        intel_crtc->base.primary->fb = c->primary->fb;
2438                        obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
2439                        break;
2440                }
2441        }
2442}
2443
2444static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2445                                      struct drm_framebuffer *fb,
2446                                      int x, int y)
2447{
2448        struct drm_device *dev = crtc->dev;
2449        struct drm_i915_private *dev_priv = dev->dev_private;
2450        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2451        struct drm_i915_gem_object *obj;
2452        int plane = intel_crtc->plane;
2453        unsigned long linear_offset;
2454        u32 dspcntr;
2455        u32 reg = DSPCNTR(plane);
2456        int pixel_size;
2457
2458        if (!intel_crtc->primary_enabled) {
2459                I915_WRITE(reg, 0);
2460                if (INTEL_INFO(dev)->gen >= 4)
2461                        I915_WRITE(DSPSURF(plane), 0);
2462                else
2463                        I915_WRITE(DSPADDR(plane), 0);
2464                POSTING_READ(reg);
2465                return;
2466        }
2467
2468        obj = intel_fb_obj(fb);
2469        if (WARN_ON(obj == NULL))
2470                return;
2471
2472        pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2473
2474        dspcntr = DISPPLANE_GAMMA_ENABLE;
2475
2476        dspcntr |= DISPLAY_PLANE_ENABLE;
2477
2478        if (INTEL_INFO(dev)->gen < 4) {
2479                if (intel_crtc->pipe == PIPE_B)
2480                        dspcntr |= DISPPLANE_SEL_PIPE_B;
2481
2482                /* pipesrc and dspsize control the size that is scaled from,
2483                 * which should always be the user's requested size.
2484                 */
2485                I915_WRITE(DSPSIZE(plane),
2486                           ((intel_crtc->config.pipe_src_h - 1) << 16) |
2487                           (intel_crtc->config.pipe_src_w - 1));
2488                I915_WRITE(DSPPOS(plane), 0);
2489        }
2490
2491        switch (fb->pixel_format) {
2492        case DRM_FORMAT_C8:
2493                dspcntr |= DISPPLANE_8BPP;
2494                break;
2495        case DRM_FORMAT_XRGB1555:
2496        case DRM_FORMAT_ARGB1555:
2497                dspcntr |= DISPPLANE_BGRX555;
2498                break;
2499        case DRM_FORMAT_RGB565:
2500                dspcntr |= DISPPLANE_BGRX565;
2501                break;
2502        case DRM_FORMAT_XRGB8888:
2503        case DRM_FORMAT_ARGB8888:
2504                dspcntr |= DISPPLANE_BGRX888;
2505                break;
2506        case DRM_FORMAT_XBGR8888:
2507        case DRM_FORMAT_ABGR8888:
2508                dspcntr |= DISPPLANE_RGBX888;
2509                break;
2510        case DRM_FORMAT_XRGB2101010:
2511        case DRM_FORMAT_ARGB2101010:
2512                dspcntr |= DISPPLANE_BGRX101010;
2513                break;
2514        case DRM_FORMAT_XBGR2101010:
2515        case DRM_FORMAT_ABGR2101010:
2516                dspcntr |= DISPPLANE_RGBX101010;
2517                break;
2518        default:
2519                BUG();
2520        }
2521
2522        if (INTEL_INFO(dev)->gen >= 4 &&
2523            obj->tiling_mode != I915_TILING_NONE)
2524                dspcntr |= DISPPLANE_TILED;
2525
2526        if (IS_G4X(dev))
2527                dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2528
2529        linear_offset = y * fb->pitches[0] + x * pixel_size;
2530
2531        if (INTEL_INFO(dev)->gen >= 4) {
2532                intel_crtc->dspaddr_offset =
2533                        intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2534                                                       pixel_size,
2535                                                       fb->pitches[0]);
2536                linear_offset -= intel_crtc->dspaddr_offset;
2537        } else {
2538                intel_crtc->dspaddr_offset = linear_offset;
2539        }
2540
2541        if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180)) {
2542                dspcntr |= DISPPLANE_ROTATE_180;
2543
2544                x += (intel_crtc->config.pipe_src_w - 1);
2545                y += (intel_crtc->config.pipe_src_h - 1);
2546
2547                /* Finding the last pixel of the last line of the display
2548                data and adding to linear_offset*/
2549                linear_offset +=
2550                        (intel_crtc->config.pipe_src_h - 1) * fb->pitches[0] +
2551                        (intel_crtc->config.pipe_src_w - 1) * pixel_size;
2552        }
2553
2554        I915_WRITE(reg, dspcntr);
2555
2556        DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2557                      i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2558                      fb->pitches[0]);
2559        I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2560        if (INTEL_INFO(dev)->gen >= 4) {
2561                I915_WRITE(DSPSURF(plane),
2562                           i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2563                I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2564                I915_WRITE(DSPLINOFF(plane), linear_offset);
2565        } else
2566                I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2567        POSTING_READ(reg);
2568}
2569
2570static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2571                                          struct drm_framebuffer *fb,
2572                                          int x, int y)
2573{
2574        struct drm_device *dev = crtc->dev;
2575        struct drm_i915_private *dev_priv = dev->dev_private;
2576        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2577        struct drm_i915_gem_object *obj;
2578        int plane = intel_crtc->plane;
2579        unsigned long linear_offset;
2580        u32 dspcntr;
2581        u32 reg = DSPCNTR(plane);
2582        int pixel_size;
2583
2584        if (!intel_crtc->primary_enabled) {
2585                I915_WRITE(reg, 0);
2586                I915_WRITE(DSPSURF(plane), 0);
2587                POSTING_READ(reg);
2588                return;
2589        }
2590
2591        obj = intel_fb_obj(fb);
2592        if (WARN_ON(obj == NULL))
2593                return;
2594
2595        pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2596
2597        dspcntr = DISPPLANE_GAMMA_ENABLE;
2598
2599        dspcntr |= DISPLAY_PLANE_ENABLE;
2600
2601        if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2602                dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2603
2604        switch (fb->pixel_format) {
2605        case DRM_FORMAT_C8:
2606                dspcntr |= DISPPLANE_8BPP;
2607                break;
2608        case DRM_FORMAT_RGB565:
2609                dspcntr |= DISPPLANE_BGRX565;
2610                break;
2611        case DRM_FORMAT_XRGB8888:
2612        case DRM_FORMAT_ARGB8888:
2613                dspcntr |= DISPPLANE_BGRX888;
2614                break;
2615        case DRM_FORMAT_XBGR8888:
2616        case DRM_FORMAT_ABGR8888:
2617                dspcntr |= DISPPLANE_RGBX888;
2618                break;
2619        case DRM_FORMAT_XRGB2101010:
2620        case DRM_FORMAT_ARGB2101010:
2621                dspcntr |= DISPPLANE_BGRX101010;
2622                break;
2623        case DRM_FORMAT_XBGR2101010:
2624        case DRM_FORMAT_ABGR2101010:
2625                dspcntr |= DISPPLANE_RGBX101010;
2626                break;
2627        default:
2628                BUG();
2629        }
2630
2631        if (obj->tiling_mode != I915_TILING_NONE)
2632                dspcntr |= DISPPLANE_TILED;
2633
2634        if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2635                dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2636
2637        linear_offset = y * fb->pitches[0] + x * pixel_size;
2638        intel_crtc->dspaddr_offset =
2639                intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2640                                               pixel_size,
2641                                               fb->pitches[0]);
2642        linear_offset -= intel_crtc->dspaddr_offset;
2643        if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180)) {
2644                dspcntr |= DISPPLANE_ROTATE_180;
2645
2646                if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2647                        x += (intel_crtc->config.pipe_src_w - 1);
2648                        y += (intel_crtc->config.pipe_src_h - 1);
2649
2650                        /* Finding the last pixel of the last line of the display
2651                        data and adding to linear_offset*/
2652                        linear_offset +=
2653                                (intel_crtc->config.pipe_src_h - 1) * fb->pitches[0] +
2654                                (intel_crtc->config.pipe_src_w - 1) * pixel_size;
2655                }
2656        }
2657
2658        I915_WRITE(reg, dspcntr);
2659
2660        DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2661                      i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2662                      fb->pitches[0]);
2663        I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2664        I915_WRITE(DSPSURF(plane),
2665                   i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2666        if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2667                I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2668        } else {
2669                I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2670                I915_WRITE(DSPLINOFF(plane), linear_offset);
2671        }
2672        POSTING_READ(reg);
2673}
2674
2675/* Assume fb object is pinned & idle & fenced and just update base pointers */
2676static int
2677intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2678                           int x, int y, enum mode_set_atomic state)
2679{
2680        struct drm_device *dev = crtc->dev;
2681        struct drm_i915_private *dev_priv = dev->dev_private;
2682
2683        if (dev_priv->display.disable_fbc)
2684                dev_priv->display.disable_fbc(dev);
2685        intel_increase_pllclock(dev, to_intel_crtc(crtc)->pipe);
2686
2687        dev_priv->display.update_primary_plane(crtc, fb, x, y);
2688
2689        return 0;
2690}
2691
2692void intel_display_handle_reset(struct drm_device *dev)
2693{
2694        struct drm_i915_private *dev_priv = dev->dev_private;
2695        struct drm_crtc *crtc;
2696
2697        /*
2698         * Flips in the rings have been nuked by the reset,
2699         * so complete all pending flips so that user space
2700         * will get its events and not get stuck.
2701         *
2702         * Also update the base address of all primary
2703         * planes to the the last fb to make sure we're
2704         * showing the correct fb after a reset.
2705         *
2706         * Need to make two loops over the crtcs so that we
2707         * don't try to grab a crtc mutex before the
2708         * pending_flip_queue really got woken up.
2709         */
2710
2711        for_each_crtc(dev, crtc) {
2712                struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2713                enum plane plane = intel_crtc->plane;
2714
2715                intel_prepare_page_flip(dev, plane);
2716                intel_finish_page_flip_plane(dev, plane);
2717        }
2718
2719        for_each_crtc(dev, crtc) {
2720                struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2721
2722                drm_modeset_lock(&crtc->mutex, NULL);
2723                /*
2724                 * FIXME: Once we have proper support for primary planes (and
2725                 * disabling them without disabling the entire crtc) allow again
2726                 * a NULL crtc->primary->fb.
2727                 */
2728                if (intel_crtc->active && crtc->primary->fb)
2729                        dev_priv->display.update_primary_plane(crtc,
2730                                                               crtc->primary->fb,
2731                                                               crtc->x,
2732                                                               crtc->y);
2733                drm_modeset_unlock(&crtc->mutex);
2734        }
2735}
2736
2737static int
2738intel_finish_fb(struct drm_framebuffer *old_fb)
2739{
2740        struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
2741        struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2742        bool was_interruptible = dev_priv->mm.interruptible;
2743        int ret;
2744
2745        /* Big Hammer, we also need to ensure that any pending
2746         * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2747         * current scanout is retired before unpinning the old
2748         * framebuffer.
2749         *
2750         * This should only fail upon a hung GPU, in which case we
2751         * can safely continue.
2752         */
2753        dev_priv->mm.interruptible = false;
2754        ret = i915_gem_object_finish_gpu(obj);
2755        dev_priv->mm.interruptible = was_interruptible;
2756
2757        return ret;
2758}
2759
2760static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2761{
2762        struct drm_device *dev = crtc->dev;
2763        struct drm_i915_private *dev_priv = dev->dev_private;
2764        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2765        unsigned long flags;
2766        bool pending;
2767
2768        if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2769            intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2770                return false;
2771
2772        spin_lock_irqsave(&dev->event_lock, flags);
2773        pending = to_intel_crtc(crtc)->unpin_work != NULL;
2774        spin_unlock_irqrestore(&dev->event_lock, flags);
2775
2776        return pending;
2777}
2778
2779static int
2780intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2781                    struct drm_framebuffer *fb)
2782{
2783        struct drm_device *dev = crtc->dev;
2784        struct drm_i915_private *dev_priv = dev->dev_private;
2785        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2786        enum pipe pipe = intel_crtc->pipe;
2787        struct drm_framebuffer *old_fb = crtc->primary->fb;
2788        struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2789        struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
2790        int ret;
2791
2792        if (intel_crtc_has_pending_flip(crtc)) {
2793                DRM_ERROR("pipe is still busy with an old pageflip\n");
2794                return -EBUSY;
2795        }
2796
2797        /* no fb bound */
2798        if (!fb) {
2799                DRM_ERROR("No FB bound\n");
2800                return 0;
2801        }
2802
2803        if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2804                DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2805                          plane_name(intel_crtc->plane),
2806                          INTEL_INFO(dev)->num_pipes);
2807                return -EINVAL;
2808        }
2809
2810        mutex_lock(&dev->struct_mutex);
2811        ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
2812        if (ret == 0)
2813                i915_gem_track_fb(old_obj, obj,
2814                                  INTEL_FRONTBUFFER_PRIMARY(pipe));
2815        mutex_unlock(&dev->struct_mutex);
2816        if (ret != 0) {
2817                DRM_ERROR("pin & fence failed\n");
2818                return ret;
2819        }
2820
2821        /*
2822         * Update pipe size and adjust fitter if needed: the reason for this is
2823         * that in compute_mode_changes we check the native mode (not the pfit
2824         * mode) to see if we can flip rather than do a full mode set. In the
2825         * fastboot case, we'll flip, but if we don't update the pipesrc and
2826         * pfit state, we'll end up with a big fb scanned out into the wrong
2827         * sized surface.
2828         *
2829         * To fix this properly, we need to hoist the checks up into
2830         * compute_mode_changes (or above), check the actual pfit state and
2831         * whether the platform allows pfit disable with pipe active, and only
2832         * then update the pipesrc and pfit state, even on the flip path.
2833         */
2834        if (i915.fastboot) {
2835                const struct drm_display_mode *adjusted_mode =
2836                        &intel_crtc->config.adjusted_mode;
2837
2838                I915_WRITE(PIPESRC(intel_crtc->pipe),
2839                           ((adjusted_mode->crtc_hdisplay - 1) << 16) |
2840                           (adjusted_mode->crtc_vdisplay - 1));
2841                if (!intel_crtc->config.pch_pfit.enabled &&
2842                    (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2843                     intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2844                        I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
2845                        I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
2846                        I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
2847                }
2848                intel_crtc->config.pipe_src_w = adjusted_mode->crtc_hdisplay;
2849                intel_crtc->config.pipe_src_h = adjusted_mode->crtc_vdisplay;
2850        }
2851
2852        dev_priv->display.update_primary_plane(crtc, fb, x, y);
2853
2854        if (intel_crtc->active)
2855                intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
2856
2857        crtc->primary->fb = fb;
2858        crtc->x = x;
2859        crtc->y = y;
2860
2861        if (old_fb) {
2862                if (intel_crtc->active && old_fb != fb)
2863                        intel_wait_for_vblank(dev, intel_crtc->pipe);
2864                mutex_lock(&dev->struct_mutex);
2865                intel_unpin_fb_obj(old_obj);
2866                mutex_unlock(&dev->struct_mutex);
2867        }
2868
2869        mutex_lock(&dev->struct_mutex);
2870        intel_update_fbc(dev);
2871        mutex_unlock(&dev->struct_mutex);
2872
2873        return 0;
2874}
2875
2876static void intel_fdi_normal_train(struct drm_crtc *crtc)
2877{
2878        struct drm_device *dev = crtc->dev;
2879        struct drm_i915_private *dev_priv = dev->dev_private;
2880        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2881        int pipe = intel_crtc->pipe;
2882        u32 reg, temp;
2883
2884        /* enable normal train */
2885        reg = FDI_TX_CTL(pipe);
2886        temp = I915_READ(reg);
2887        if (IS_IVYBRIDGE(dev)) {
2888                temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2889                temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2890        } else {
2891                temp &= ~FDI_LINK_TRAIN_NONE;
2892                temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2893        }
2894        I915_WRITE(reg, temp);
2895
2896        reg = FDI_RX_CTL(pipe);
2897        temp = I915_READ(reg);
2898        if (HAS_PCH_CPT(dev)) {
2899                temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2900                temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2901        } else {
2902                temp &= ~FDI_LINK_TRAIN_NONE;
2903                temp |= FDI_LINK_TRAIN_NONE;
2904        }
2905        I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2906
2907        /* wait one idle pattern time */
2908        POSTING_READ(reg);
2909        udelay(1000);
2910
2911        /* IVB wants error correction enabled */
2912        if (IS_IVYBRIDGE(dev))
2913                I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2914                           FDI_FE_ERRC_ENABLE);
2915}
2916
2917static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
2918{
2919        return crtc->base.enabled && crtc->active &&
2920                crtc->config.has_pch_encoder;
2921}
2922
2923static void ivb_modeset_global_resources(struct drm_device *dev)
2924{
2925        struct drm_i915_private *dev_priv = dev->dev_private;
2926        struct intel_crtc *pipe_B_crtc =
2927                to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2928        struct intel_crtc *pipe_C_crtc =
2929                to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2930        uint32_t temp;
2931
2932        /*
2933         * When everything is off disable fdi C so that we could enable fdi B
2934         * with all lanes. Note that we don't care about enabled pipes without
2935         * an enabled pch encoder.
2936         */
2937        if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2938            !pipe_has_enabled_pch(pipe_C_crtc)) {
2939                WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2940                WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2941
2942                temp = I915_READ(SOUTH_CHICKEN1);
2943                temp &= ~FDI_BC_BIFURCATION_SELECT;
2944                DRM_DEBUG_KMS("disabling fdi C rx\n");
2945                I915_WRITE(SOUTH_CHICKEN1, temp);
2946        }
2947}
2948
2949/* The FDI link training functions for ILK/Ibexpeak. */
2950static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2951{
2952        struct drm_device *dev = crtc->dev;
2953        struct drm_i915_private *dev_priv = dev->dev_private;
2954        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2955        int pipe = intel_crtc->pipe;
2956        u32 reg, temp, tries;
2957
2958        /* FDI needs bits from pipe first */
2959        assert_pipe_enabled(dev_priv, pipe);
2960
2961        /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2962           for train result */
2963        reg = FDI_RX_IMR(pipe);
2964        temp = I915_READ(reg);
2965        temp &= ~FDI_RX_SYMBOL_LOCK;
2966        temp &= ~FDI_RX_BIT_LOCK;
2967        I915_WRITE(reg, temp);
2968        I915_READ(reg);
2969        udelay(150);
2970
2971        /* enable CPU FDI TX and PCH FDI RX */
2972        reg = FDI_TX_CTL(pipe);
2973        temp = I915_READ(reg);
2974        temp &= ~FDI_DP_PORT_WIDTH_MASK;
2975        temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2976        temp &= ~FDI_LINK_TRAIN_NONE;
2977        temp |= FDI_LINK_TRAIN_PATTERN_1;
2978        I915_WRITE(reg, temp | FDI_TX_ENABLE);
2979
2980        reg = FDI_RX_CTL(pipe);
2981        temp = I915_READ(reg);
2982        temp &= ~FDI_LINK_TRAIN_NONE;
2983        temp |= FDI_LINK_TRAIN_PATTERN_1;
2984        I915_WRITE(reg, temp | FDI_RX_ENABLE);
2985
2986        POSTING_READ(reg);
2987        udelay(150);
2988
2989        /* Ironlake workaround, enable clock pointer after FDI enable*/
2990        I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2991        I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2992                   FDI_RX_PHASE_SYNC_POINTER_EN);
2993
2994        reg = FDI_RX_IIR(pipe);
2995        for (tries = 0; tries < 5; tries++) {
2996                temp = I915_READ(reg);
2997                DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2998
2999                if ((temp & FDI_RX_BIT_LOCK)) {
3000                        DRM_DEBUG_KMS("FDI train 1 done.\n");
3001                        I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3002                        break;
3003                }
3004        }
3005        if (tries == 5)
3006                DRM_ERROR("FDI train 1 fail!\n");
3007
3008        /* Train 2 */
3009        reg = FDI_TX_CTL(pipe);
3010        temp = I915_READ(reg);
3011        temp &= ~FDI_LINK_TRAIN_NONE;
3012        temp |= FDI_LINK_TRAIN_PATTERN_2;
3013        I915_WRITE(reg, temp);
3014
3015        reg = FDI_RX_CTL(pipe);
3016        temp = I915_READ(reg);
3017        temp &= ~FDI_LINK_TRAIN_NONE;
3018        temp |= FDI_LINK_TRAIN_PATTERN_2;
3019        I915_WRITE(reg, temp);
3020
3021        POSTING_READ(reg);
3022        udelay(150);
3023
3024        reg = FDI_RX_IIR(pipe);
3025        for (tries = 0; tries < 5; tries++) {
3026                temp = I915_READ(reg);
3027                DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3028
3029                if (temp & FDI_RX_SYMBOL_LOCK) {
3030                        I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3031                        DRM_DEBUG_KMS("FDI train 2 done.\n");
3032                        break;
3033                }
3034        }
3035        if (tries == 5)
3036                DRM_ERROR("FDI train 2 fail!\n");
3037
3038        DRM_DEBUG_KMS("FDI train done\n");
3039
3040}
3041
3042static const int snb_b_fdi_train_param[] = {
3043        FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3044        FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3045        FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3046        FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3047};
3048
3049/* The FDI link training functions for SNB/Cougarpoint. */
3050static void gen6_fdi_link_train(struct drm_crtc *crtc)
3051{
3052        struct drm_device *dev = crtc->dev;
3053        struct drm_i915_private *dev_priv = dev->dev_private;
3054        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3055        int pipe = intel_crtc->pipe;
3056        u32 reg, temp, i, retry;
3057
3058        /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3059           for train result */
3060        reg = FDI_RX_IMR(pipe);
3061        temp = I915_READ(reg);
3062        temp &= ~FDI_RX_SYMBOL_LOCK;
3063        temp &= ~FDI_RX_BIT_LOCK;
3064        I915_WRITE(reg, temp);
3065
3066        POSTING_READ(reg);
3067        udelay(150);
3068
3069        /* enable CPU FDI TX and PCH FDI RX */
3070        reg = FDI_TX_CTL(pipe);
3071        temp = I915_READ(reg);
3072        temp &= ~FDI_DP_PORT_WIDTH_MASK;
3073        temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3074        temp &= ~FDI_LINK_TRAIN_NONE;
3075        temp |= FDI_LINK_TRAIN_PATTERN_1;
3076        temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3077        /* SNB-B */
3078        temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3079        I915_WRITE(reg, temp | FDI_TX_ENABLE);
3080
3081        I915_WRITE(FDI_RX_MISC(pipe),
3082                   FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3083
3084        reg = FDI_RX_CTL(pipe);
3085        temp = I915_READ(reg);
3086        if (HAS_PCH_CPT(dev)) {
3087                temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3088                temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3089        } else {
3090                temp &= ~FDI_LINK_TRAIN_NONE;
3091                temp |= FDI_LINK_TRAIN_PATTERN_1;
3092        }
3093        I915_WRITE(reg, temp | FDI_RX_ENABLE);
3094
3095        POSTING_READ(reg);
3096        udelay(150);
3097
3098        for (i = 0; i < 4; i++) {
3099                reg = FDI_TX_CTL(pipe);
3100                temp = I915_READ(reg);
3101                temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3102                temp |= snb_b_fdi_train_param[i];
3103                I915_WRITE(reg, temp);
3104
3105                POSTING_READ(reg);
3106                udelay(500);
3107
3108                for (retry = 0; retry < 5; retry++) {
3109                        reg = FDI_RX_IIR(pipe);
3110                        temp = I915_READ(reg);
3111                        DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3112                        if (temp & FDI_RX_BIT_LOCK) {
3113                                I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3114                                DRM_DEBUG_KMS("FDI train 1 done.\n");
3115                                break;
3116                        }
3117                        udelay(50);
3118                }
3119                if (retry < 5)
3120                        break;
3121        }
3122        if (i == 4)
3123                DRM_ERROR("FDI train 1 fail!\n");
3124
3125        /* Train 2 */
3126        reg = FDI_TX_CTL(pipe);
3127        temp = I915_READ(reg);
3128        temp &= ~FDI_LINK_TRAIN_NONE;
3129        temp |= FDI_LINK_TRAIN_PATTERN_2;
3130        if (IS_GEN6(dev)) {
3131                temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3132                /* SNB-B */
3133                temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3134        }
3135        I915_WRITE(reg, temp);
3136
3137        reg = FDI_RX_CTL(pipe);
3138        temp = I915_READ(reg);
3139        if (HAS_PCH_CPT(dev)) {
3140                temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3141                temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3142        } else {
3143                temp &= ~FDI_LINK_TRAIN_NONE;
3144                temp |= FDI_LINK_TRAIN_PATTERN_2;
3145        }
3146        I915_WRITE(reg, temp);
3147
3148        POSTING_READ(reg);
3149        udelay(150);
3150
3151        for (i = 0; i < 4; i++) {
3152                reg = FDI_TX_CTL(pipe);
3153                temp = I915_READ(reg);
3154                temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3155                temp |= snb_b_fdi_train_param[i];
3156                I915_WRITE(reg, temp);
3157
3158                POSTING_READ(reg);
3159                udelay(500);
3160
3161                for (retry = 0; retry < 5; retry++) {
3162                        reg = FDI_RX_IIR(pipe);
3163                        temp = I915_READ(reg);
3164                        DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3165                        if (temp & FDI_RX_SYMBOL_LOCK) {
3166                                I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3167                                DRM_DEBUG_KMS("FDI train 2 done.\n");
3168                                break;
3169                        }
3170                        udelay(50);
3171                }
3172                if (retry < 5)
3173                        break;
3174        }
3175        if (i == 4)
3176                DRM_ERROR("FDI train 2 fail!\n");
3177
3178        DRM_DEBUG_KMS("FDI train done.\n");
3179}
3180
3181/* Manual link training for Ivy Bridge A0 parts */
3182static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3183{
3184        struct drm_device *dev = crtc->dev;
3185        struct drm_i915_private *dev_priv = dev->dev_private;
3186        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3187        int pipe = intel_crtc->pipe;
3188        u32 reg, temp, i, j;
3189
3190        /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3191           for train result */
3192        reg = FDI_RX_IMR(pipe);
3193        temp = I915_READ(reg);
3194        temp &= ~FDI_RX_SYMBOL_LOCK;
3195        temp &= ~FDI_RX_BIT_LOCK;
3196        I915_WRITE(reg, temp);
3197
3198        POSTING_READ(reg);
3199        udelay(150);
3200
3201        DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3202                      I915_READ(FDI_RX_IIR(pipe)));
3203
3204        /* Try each vswing and preemphasis setting twice before moving on */
3205        for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3206                /* disable first in case we need to retry */
3207                reg = FDI_TX_CTL(pipe);
3208                temp = I915_READ(reg);
3209                temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3210                temp &= ~FDI_TX_ENABLE;
3211                I915_WRITE(reg, temp);
3212
3213                reg = FDI_RX_CTL(pipe);
3214                temp = I915_READ(reg);
3215                temp &= ~FDI_LINK_TRAIN_AUTO;
3216                temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3217                temp &= ~FDI_RX_ENABLE;
3218                I915_WRITE(reg, temp);
3219
3220                /* enable CPU FDI TX and PCH FDI RX */
3221                reg = FDI_TX_CTL(pipe);
3222                temp = I915_READ(reg);
3223                temp &= ~FDI_DP_PORT_WIDTH_MASK;
3224                temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3225                temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3226                temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3227                temp |= snb_b_fdi_train_param[j/2];
3228                temp |= FDI_COMPOSITE_SYNC;
3229                I915_WRITE(reg, temp | FDI_TX_ENABLE);
3230
3231                I915_WRITE(FDI_RX_MISC(pipe),
3232                           FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3233
3234                reg = FDI_RX_CTL(pipe);
3235                temp = I915_READ(reg);
3236                temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3237                temp |= FDI_COMPOSITE_SYNC;
3238                I915_WRITE(reg, temp | FDI_RX_ENABLE);
3239
3240                POSTING_READ(reg);
3241                udelay(1); /* should be 0.5us */
3242
3243                for (i = 0; i < 4; i++) {
3244                        reg = FDI_RX_IIR(pipe);
3245                        temp = I915_READ(reg);
3246                        DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3247
3248                        if (temp & FDI_RX_BIT_LOCK ||
3249                            (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3250                                I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3251                                DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3252                                              i);
3253                                break;
3254                        }
3255                        udelay(1); /* should be 0.5us */
3256                }
3257                if (i == 4) {
3258                        DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3259                        continue;
3260                }
3261
3262                /* Train 2 */
3263                reg = FDI_TX_CTL(pipe);
3264                temp = I915_READ(reg);
3265                temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3266                temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3267                I915_WRITE(reg, temp);
3268
3269                reg = FDI_RX_CTL(pipe);
3270                temp = I915_READ(reg);
3271                temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3272                temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3273                I915_WRITE(reg, temp);
3274
3275                POSTING_READ(reg);
3276                udelay(2); /* should be 1.5us */
3277
3278                for (i = 0; i < 4; i++) {
3279                        reg = FDI_RX_IIR(pipe);
3280                        temp = I915_READ(reg);
3281                        DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3282
3283                        if (temp & FDI_RX_SYMBOL_LOCK ||
3284                            (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3285                                I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3286                                DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3287                                              i);
3288                                goto train_done;
3289                        }
3290                        udelay(2); /* should be 1.5us */
3291                }
3292                if (i == 4)
3293                        DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3294        }
3295
3296train_done:
3297        DRM_DEBUG_KMS("FDI train done.\n");
3298}
3299
3300static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3301{
3302        struct drm_device *dev = intel_crtc->base.dev;
3303        struct drm_i915_private *dev_priv = dev->dev_private;
3304        int pipe = intel_crtc->pipe;
3305        u32 reg, temp;
3306
3307
3308        /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3309        reg = FDI_RX_CTL(pipe);
3310        temp = I915_READ(reg);
3311        temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3312        temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3313        temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3314        I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3315
3316        POSTING_READ(reg);
3317        udelay(200);
3318
3319        /* Switch from Rawclk to PCDclk */
3320        temp = I915_READ(reg);
3321        I915_WRITE(reg, temp | FDI_PCDCLK);
3322
3323        POSTING_READ(reg);
3324        udelay(200);
3325
3326        /* Enable CPU FDI TX PLL, always on for Ironlake */
3327        reg = FDI_TX_CTL(pipe);
3328        temp = I915_READ(reg);
3329        if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3330                I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3331
3332                POSTING_READ(reg);
3333                udelay(100);
3334        }
3335}
3336
3337static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3338{
3339        struct drm_device *dev = intel_crtc->base.dev;
3340        struct drm_i915_private *dev_priv = dev->dev_private;
3341        int pipe = intel_crtc->pipe;
3342        u32 reg, temp;
3343
3344        /* Switch from PCDclk to Rawclk */
3345        reg = FDI_RX_CTL(pipe);
3346        temp = I915_READ(reg);
3347        I915_WRITE(reg, temp & ~FDI_PCDCLK);
3348
3349        /* Disable CPU FDI TX PLL */
3350        reg = FDI_TX_CTL(pipe);
3351        temp = I915_READ(reg);
3352        I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3353
3354        POSTING_READ(reg);
3355        udelay(100);
3356
3357        reg = FDI_RX_CTL(pipe);
3358        temp = I915_READ(reg);
3359        I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3360
3361        /* Wait for the clocks to turn off. */
3362        POSTING_READ(reg);
3363        udelay(100);
3364}
3365
3366static void ironlake_fdi_disable(struct drm_crtc *crtc)
3367{
3368        struct drm_device *dev = crtc->dev;
3369        struct drm_i915_private *dev_priv = dev->dev_private;
3370        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3371        int pipe = intel_crtc->pipe;
3372        u32 reg, temp;
3373
3374        /* disable CPU FDI tx and PCH FDI rx */
3375        reg = FDI_TX_CTL(pipe);
3376        temp = I915_READ(reg);
3377        I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3378        POSTING_READ(reg);
3379
3380        reg = FDI_RX_CTL(pipe);
3381        temp = I915_READ(reg);
3382        temp &= ~(0x7 << 16);
3383        temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3384        I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3385
3386        POSTING_READ(reg);
3387        udelay(100);
3388
3389        /* Ironlake workaround, disable clock pointer after downing FDI */
3390        if (HAS_PCH_IBX(dev))
3391                I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3392
3393        /* still set train pattern 1 */
3394        reg = FDI_TX_CTL(pipe);
3395        temp = I915_READ(reg);
3396        temp &= ~FDI_LINK_TRAIN_NONE;
3397        temp |= FDI_LINK_TRAIN_PATTERN_1;
3398        I915_WRITE(reg, temp);
3399
3400        reg = FDI_RX_CTL(pipe);
3401        temp = I915_READ(reg);
3402        if (HAS_PCH_CPT(dev)) {
3403                temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3404                temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3405        } else {
3406                temp &= ~FDI_LINK_TRAIN_NONE;
3407                temp |= FDI_LINK_TRAIN_PATTERN_1;
3408        }
3409        /* BPC in FDI rx is consistent with that in PIPECONF */
3410        temp &= ~(0x07 << 16);
3411        temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3412        I915_WRITE(reg, temp);
3413
3414        POSTING_READ(reg);
3415        udelay(100);
3416}
3417
3418bool intel_has_pending_fb_unpin(struct drm_device *dev)
3419{
3420        struct intel_crtc *crtc;
3421
3422        /* Note that we don't need to be called with mode_config.lock here
3423         * as our list of CRTC objects is static for the lifetime of the
3424         * device and so cannot disappear as we iterate. Similarly, we can
3425         * happily treat the predicates as racy, atomic checks as userspace
3426         * cannot claim and pin a new fb without at least acquring the
3427         * struct_mutex and so serialising with us.
3428         */
3429        for_each_intel_crtc(dev, crtc) {
3430                if (atomic_read(&crtc->unpin_work_count) == 0)
3431                        continue;
3432
3433                if (crtc->unpin_work)
3434                        intel_wait_for_vblank(dev, crtc->pipe);
3435
3436                return true;
3437        }
3438
3439        return false;
3440}
3441
3442static void page_flip_completed(struct intel_crtc *intel_crtc)
3443{
3444        struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3445        struct intel_unpin_work *work = intel_crtc->unpin_work;
3446
3447        /* ensure that the unpin work is consistent wrt ->pending. */
3448        smp_rmb();
3449        intel_crtc->unpin_work = NULL;
3450
3451        if (work->event)
3452                drm_send_vblank_event(intel_crtc->base.dev,
3453                                      intel_crtc->pipe,
3454                                      work->event);
3455
3456        drm_crtc_vblank_put(&intel_crtc->base);
3457
3458        wake_up_all(&dev_priv->pending_flip_queue);
3459        queue_work(dev_priv->wq, &work->work);
3460
3461        trace_i915_flip_complete(intel_crtc->plane,
3462                                 work->pending_flip_obj);
3463}
3464
3465void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3466{
3467        struct drm_device *dev = crtc->dev;
3468        struct drm_i915_private *dev_priv = dev->dev_private;
3469
3470        WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3471        if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3472                                       !intel_crtc_has_pending_flip(crtc),
3473                                       60*HZ) == 0)) {
3474                struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3475                unsigned long flags;
3476
3477                spin_lock_irqsave(&dev->event_lock, flags);
3478                if (intel_crtc->unpin_work) {
3479                        WARN_ONCE(1, "Removing stuck page flip\n");
3480                        page_flip_completed(intel_crtc);
3481                }
3482                spin_unlock_irqrestore(&dev->event_lock, flags);
3483        }
3484
3485        if (crtc->primary->fb) {
3486                mutex_lock(&dev->struct_mutex);
3487                intel_finish_fb(crtc->primary->fb);
3488                mutex_unlock(&dev->struct_mutex);
3489        }
3490}
3491
3492/* Program iCLKIP clock to the desired frequency */
3493static void lpt_program_iclkip(struct drm_crtc *crtc)
3494{
3495        struct drm_device *dev = crtc->dev;
3496        struct drm_i915_private *dev_priv = dev->dev_private;
3497        int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
3498        u32 divsel, phaseinc, auxdiv, phasedir = 0;
3499        u32 temp;
3500
3501        mutex_lock(&dev_priv->dpio_lock);
3502
3503        /* It is necessary to ungate the pixclk gate prior to programming
3504         * the divisors, and gate it back when it is done.
3505         */
3506        I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3507
3508        /* Disable SSCCTL */
3509        intel_sbi_write(dev_priv, SBI_SSCCTL6,
3510                        intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3511                                SBI_SSCCTL_DISABLE,
3512                        SBI_ICLK);
3513
3514        /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3515        if (clock == 20000) {
3516                auxdiv = 1;
3517                divsel = 0x41;
3518                phaseinc = 0x20;
3519        } else {
3520                /* The iCLK virtual clock root frequency is in MHz,
3521                 * but the adjusted_mode->crtc_clock in in KHz. To get the
3522                 * divisors, it is necessary to divide one by another, so we
3523                 * convert the virtual clock precision to KHz here for higher
3524                 * precision.
3525                 */
3526                u32 iclk_virtual_root_freq = 172800 * 1000;
3527                u32 iclk_pi_range = 64;
3528                u32 desired_divisor, msb_divisor_value, pi_value;
3529
3530                desired_divisor = (iclk_virtual_root_freq / clock);
3531                msb_divisor_value = desired_divisor / iclk_pi_range;
3532                pi_value = desired_divisor % iclk_pi_range;
3533
3534                auxdiv = 0;
3535                divsel = msb_divisor_value - 2;
3536                phaseinc = pi_value;
3537        }
3538
3539        /* This should not happen with any sane values */
3540        WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3541                ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3542        WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3543                ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3544
3545        DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3546                        clock,
3547                        auxdiv,
3548                        divsel,
3549                        phasedir,
3550                        phaseinc);
3551
3552        /* Program SSCDIVINTPHASE6 */
3553        temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3554        temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3555        temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3556        temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3557        temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3558        temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3559        temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3560        intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3561
3562        /* Program SSCAUXDIV */
3563        temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3564        temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3565        temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3566        intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3567
3568        /* Enable modulator and associated divider */
3569        temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3570        temp &= ~SBI_SSCCTL_DISABLE;
3571        intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3572
3573        /* Wait for initialization time */
3574        udelay(24);
3575
3576        I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3577
3578        mutex_unlock(&dev_priv->dpio_lock);
3579}
3580
3581static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3582                                                enum pipe pch_transcoder)
3583{
3584        struct drm_device *dev = crtc->base.dev;
3585        struct drm_i915_private *dev_priv = dev->dev_private;
3586        enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
3587
3588        I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3589                   I915_READ(HTOTAL(cpu_transcoder)));
3590        I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3591                   I915_READ(HBLANK(cpu_transcoder)));
3592        I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3593                   I915_READ(HSYNC(cpu_transcoder)));
3594
3595        I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3596                   I915_READ(VTOTAL(cpu_transcoder)));
3597        I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3598                   I915_READ(VBLANK(cpu_transcoder)));
3599        I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3600                   I915_READ(VSYNC(cpu_transcoder)));
3601        I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3602                   I915_READ(VSYNCSHIFT(cpu_transcoder)));
3603}
3604
3605static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3606{
3607        struct drm_i915_private *dev_priv = dev->dev_private;
3608        uint32_t temp;
3609
3610        temp = I915_READ(SOUTH_CHICKEN1);
3611        if (temp & FDI_BC_BIFURCATION_SELECT)
3612                return;
3613
3614        WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3615        WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3616
3617        temp |= FDI_BC_BIFURCATION_SELECT;
3618        DRM_DEBUG_KMS("enabling fdi C rx\n");
3619        I915_WRITE(SOUTH_CHICKEN1, temp);
3620        POSTING_READ(SOUTH_CHICKEN1);
3621}
3622
3623static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3624{
3625        struct drm_device *dev = intel_crtc->base.dev;
3626        struct drm_i915_private *dev_priv = dev->dev_private;
3627
3628        switch (intel_crtc->pipe) {
3629        case PIPE_A:
3630                break;
3631        case PIPE_B:
3632                if (intel_crtc->config.fdi_lanes > 2)
3633                        WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3634                else
3635                        cpt_enable_fdi_bc_bifurcation(dev);
3636
3637                break;
3638        case PIPE_C:
3639                cpt_enable_fdi_bc_bifurcation(dev);
3640
3641                break;
3642        default:
3643                BUG();
3644        }
3645}
3646
3647/*
3648 * Enable PCH resources required for PCH ports:
3649 *   - PCH PLLs
3650 *   - FDI training & RX/TX
3651 *   - update transcoder timings
3652 *   - DP transcoding bits
3653 *   - transcoder
3654 */
3655static void ironlake_pch_enable(struct drm_crtc *crtc)
3656{
3657        struct drm_device *dev = crtc->dev;
3658        struct drm_i915_private *dev_priv = dev->dev_private;
3659        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3660        int pipe = intel_crtc->pipe;
3661        u32 reg, temp;
3662
3663        assert_pch_transcoder_disabled(dev_priv, pipe);
3664
3665        if (IS_IVYBRIDGE(dev))
3666                ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3667
3668        /* Write the TU size bits before fdi link training, so that error
3669         * detection works. */
3670        I915_WRITE(FDI_RX_TUSIZE1(pipe),
3671                   I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3672
3673        /* For PCH output, training FDI link */
3674        dev_priv->display.fdi_link_train(crtc);
3675
3676        /* We need to program the right clock selection before writing the pixel
3677         * mutliplier into the DPLL. */
3678        if (HAS_PCH_CPT(dev)) {
3679                u32 sel;
3680
3681                temp = I915_READ(PCH_DPLL_SEL);
3682                temp |= TRANS_DPLL_ENABLE(pipe);
3683                sel = TRANS_DPLLB_SEL(pipe);
3684                if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
3685                        temp |= sel;
3686                else
3687                        temp &= ~sel;
3688                I915_WRITE(PCH_DPLL_SEL, temp);
3689        }
3690
3691        /* XXX: pch pll's can be enabled any time before we enable the PCH
3692         * transcoder, and we actually should do this to not upset any PCH
3693         * transcoder that already use the clock when we share it.
3694         *
3695         * Note that enable_shared_dpll tries to do the right thing, but
3696         * get_shared_dpll unconditionally resets the pll - we need that to have
3697         * the right LVDS enable sequence. */
3698        intel_enable_shared_dpll(intel_crtc);
3699
3700        /* set transcoder timing, panel must allow it */
3701        assert_panel_unlocked(dev_priv, pipe);
3702        ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
3703
3704        intel_fdi_normal_train(crtc);
3705
3706        /* For PCH DP, enable TRANS_DP_CTL */
3707        if (HAS_PCH_CPT(dev) &&
3708            (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3709             intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3710                u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3711                reg = TRANS_DP_CTL(pipe);
3712                temp = I915_READ(reg);
3713                temp &= ~(TRANS_DP_PORT_SEL_MASK |
3714                          TRANS_DP_SYNC_MASK |
3715                          TRANS_DP_BPC_MASK);
3716                temp |= (TRANS_DP_OUTPUT_ENABLE |
3717                         TRANS_DP_ENH_FRAMING);
3718                temp |= bpc << 9; /* same format but at 11:9 */
3719
3720                if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3721                        temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3722                if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3723                        temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3724
3725                switch (intel_trans_dp_port_sel(crtc)) {
3726                case PCH_DP_B:
3727                        temp |= TRANS_DP_PORT_SEL_B;
3728                        break;
3729                case PCH_DP_C:
3730                        temp |= TRANS_DP_PORT_SEL_C;
3731                        break;
3732                case PCH_DP_D:
3733                        temp |= TRANS_DP_PORT_SEL_D;
3734                        break;
3735                default:
3736                        BUG();
3737                }
3738
3739                I915_WRITE(reg, temp);
3740        }
3741
3742        ironlake_enable_pch_transcoder(dev_priv, pipe);
3743}
3744
3745static void lpt_pch_enable(struct drm_crtc *crtc)
3746{
3747        struct drm_device *dev = crtc->dev;
3748        struct drm_i915_private *dev_priv = dev->dev_private;
3749        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3750        enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3751
3752        assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3753
3754        lpt_program_iclkip(crtc);
3755
3756        /* Set transcoder timing. */
3757        ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3758
3759        lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3760}
3761
3762void intel_put_shared_dpll(struct intel_crtc *crtc)
3763{
3764        struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3765
3766        if (pll == NULL)
3767                return;
3768
3769        if (pll->refcount == 0) {
3770                WARN(1, "bad %s refcount\n", pll->name);
3771                return;
3772        }
3773
3774        if (--pll->refcount == 0) {
3775                WARN_ON(pll->on);
3776                WARN_ON(pll->active);
3777        }
3778
3779        crtc->config.shared_dpll = DPLL_ID_PRIVATE;
3780}
3781
3782struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
3783{
3784        struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3785        struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3786        enum intel_dpll_id i;
3787
3788        if (pll) {
3789                DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3790                              crtc->base.base.id, pll->name);
3791                intel_put_shared_dpll(crtc);
3792        }
3793
3794        if (HAS_PCH_IBX(dev_priv->dev)) {
3795                /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3796                i = (enum intel_dpll_id) crtc->pipe;
3797                pll = &dev_priv->shared_dplls[i];
3798
3799                DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3800                              crtc->base.base.id, pll->name);
3801
3802                WARN_ON(pll->refcount);
3803
3804                goto found;
3805        }
3806
3807        for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3808                pll = &dev_priv->shared_dplls[i];
3809
3810                /* Only want to check enabled timings first */
3811                if (pll->refcount == 0)
3812                        continue;
3813
3814                if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3815                           sizeof(pll->hw_state)) == 0) {
3816                        DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
3817                                      crtc->base.base.id,
3818                                      pll->name, pll->refcount, pll->active);
3819
3820                        goto found;
3821                }
3822        }
3823
3824        /* Ok no matching timings, maybe there's a free one? */
3825        for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3826                pll = &dev_priv->shared_dplls[i];
3827                if (pll->refcount == 0) {
3828                        DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3829                                      crtc->base.base.id, pll->name);
3830                        goto found;
3831                }
3832        }
3833
3834        return NULL;
3835
3836found:
3837        if (pll->refcount == 0)
3838                pll->hw_state = crtc->config.dpll_hw_state;
3839
3840        crtc->config.shared_dpll = i;
3841        DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3842                         pipe_name(crtc->pipe));
3843
3844        pll->refcount++;
3845
3846        return pll;
3847}
3848
3849static void cpt_verify_modeset(struct drm_device *dev, int pipe)
3850{
3851        struct drm_i915_private *dev_priv = dev->dev_private;
3852        int dslreg = PIPEDSL(pipe);
3853        u32 temp;
3854
3855        temp = I915_READ(dslreg);
3856        udelay(500);
3857        if (wait_for(I915_READ(dslreg) != temp, 5)) {
3858                if (wait_for(I915_READ(dslreg) != temp, 5))
3859                        DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
3860        }
3861}
3862
3863static void ironlake_pfit_enable(struct intel_crtc *crtc)
3864{
3865        struct drm_device *dev = crtc->base.dev;
3866        struct drm_i915_private *dev_priv = dev->dev_private;
3867        int pipe = crtc->pipe;
3868
3869        if (crtc->config.pch_pfit.enabled) {
3870                /* Force use of hard-coded filter coefficients
3871                 * as some pre-programmed values are broken,
3872                 * e.g. x201.
3873                 */
3874                if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3875                        I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3876                                                 PF_PIPE_SEL_IVB(pipe));
3877                else
3878                        I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3879                I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3880                I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
3881        }
3882}
3883
3884static void intel_enable_planes(struct drm_crtc *crtc)
3885{
3886        struct drm_device *dev = crtc->dev;
3887        enum pipe pipe = to_intel_crtc(crtc)->pipe;
3888        struct drm_plane *plane;
3889        struct intel_plane *intel_plane;
3890
3891        drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3892                intel_plane = to_intel_plane(plane);
3893                if (intel_plane->pipe == pipe)
3894                        intel_plane_restore(&intel_plane->base);
3895        }
3896}
3897
3898static void intel_disable_planes(struct drm_crtc *crtc)
3899{
3900        struct drm_device *dev = crtc->dev;
3901        enum pipe pipe = to_intel_crtc(crtc)->pipe;
3902        struct drm_plane *plane;
3903        struct intel_plane *intel_plane;
3904
3905        drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3906                intel_plane = to_intel_plane(plane);
3907                if (intel_plane->pipe == pipe)
3908                        intel_plane_disable(&intel_plane->base);
3909        }
3910}
3911
3912void hsw_enable_ips(struct intel_crtc *crtc)
3913{
3914        struct drm_device *dev = crtc->base.dev;
3915        struct drm_i915_private *dev_priv = dev->dev_private;
3916
3917        if (!crtc->config.ips_enabled)
3918                return;
3919
3920        /* We can only enable IPS after we enable a plane and wait for a vblank */
3921        intel_wait_for_vblank(dev, crtc->pipe);
3922
3923        assert_plane_enabled(dev_priv, crtc->plane);
3924        if (IS_BROADWELL(dev)) {
3925                mutex_lock(&dev_priv->rps.hw_lock);
3926                WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
3927                mutex_unlock(&dev_priv->rps.hw_lock);
3928                /* Quoting Art Runyan: "its not safe to expect any particular
3929                 * value in IPS_CTL bit 31 after enabling IPS through the
3930                 * mailbox." Moreover, the mailbox may return a bogus state,
3931                 * so we need to just enable it and continue on.
3932                 */
3933        } else {
3934                I915_WRITE(IPS_CTL, IPS_ENABLE);
3935                /* The bit only becomes 1 in the next vblank, so this wait here
3936                 * is essentially intel_wait_for_vblank. If we don't have this
3937                 * and don't wait for vblanks until the end of crtc_enable, then
3938                 * the HW state readout code will complain that the expected
3939                 * IPS_CTL value is not the one we read. */
3940                if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
3941                        DRM_ERROR("Timed out waiting for IPS enable\n");
3942        }
3943}
3944
3945void hsw_disable_ips(struct intel_crtc *crtc)
3946{
3947        struct drm_device *dev = crtc->base.dev;
3948        struct drm_i915_private *dev_priv = dev->dev_private;
3949
3950        if (!crtc->config.ips_enabled)
3951                return;
3952
3953        assert_plane_enabled(dev_priv, crtc->plane);
3954        if (IS_BROADWELL(dev)) {
3955                mutex_lock(&dev_priv->rps.hw_lock);
3956                WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
3957                mutex_unlock(&dev_priv->rps.hw_lock);
3958                /* wait for pcode to finish disabling IPS, which may take up to 42ms */
3959                if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
3960                        DRM_ERROR("Timed out waiting for IPS disable\n");
3961        } else {
3962                I915_WRITE(IPS_CTL, 0);
3963                POSTING_READ(IPS_CTL);
3964        }
3965
3966        /* We need to wait for a vblank before we can disable the plane. */
3967        intel_wait_for_vblank(dev, crtc->pipe);
3968}
3969
3970/** Loads the palette/gamma unit for the CRTC with the prepared values */
3971static void intel_crtc_load_lut(struct drm_crtc *crtc)
3972{
3973        struct drm_device *dev = crtc->dev;
3974        struct drm_i915_private *dev_priv = dev->dev_private;
3975        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3976        enum pipe pipe = intel_crtc->pipe;
3977        int palreg = PALETTE(pipe);
3978        int i;
3979        bool reenable_ips = false;
3980
3981        /* The clocks have to be on to load the palette. */
3982        if (!crtc->enabled || !intel_crtc->active)
3983                return;
3984
3985        if (!HAS_PCH_SPLIT(dev_priv->dev)) {
3986                if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
3987                        assert_dsi_pll_enabled(dev_priv);
3988                else
3989                        assert_pll_enabled(dev_priv, pipe);
3990        }
3991
3992        /* use legacy palette for Ironlake */
3993        if (!HAS_GMCH_DISPLAY(dev))
3994                palreg = LGC_PALETTE(pipe);
3995
3996        /* Workaround : Do not read or write the pipe palette/gamma data while
3997         * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
3998         */
3999        if (IS_HASWELL(dev) && intel_crtc->config.ips_enabled &&
4000            ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4001             GAMMA_MODE_MODE_SPLIT)) {
4002                hsw_disable_ips(intel_crtc);
4003                reenable_ips = true;
4004        }
4005
4006        for (i = 0; i < 256; i++) {
4007                I915_WRITE(palreg + 4 * i,
4008                           (intel_crtc->lut_r[i] << 16) |
4009                           (intel_crtc->lut_g[i] << 8) |
4010                           intel_crtc->lut_b[i]);
4011        }
4012
4013        if (reenable_ips)
4014                hsw_enable_ips(intel_crtc);
4015}
4016
4017static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
4018{
4019        if (!enable && intel_crtc->overlay) {
4020                struct drm_device *dev = intel_crtc->base.dev;
4021                struct drm_i915_private *dev_priv = dev->dev_private;
4022
4023                mutex_lock(&dev->struct_mutex);
4024                dev_priv->mm.interruptible = false;
4025                (void) intel_overlay_switch_off(intel_crtc->overlay);
4026                dev_priv->mm.interruptible = true;
4027                mutex_unlock(&dev->struct_mutex);
4028        }
4029
4030        /* Let userspace switch the overlay on again. In most cases userspace
4031         * has to recompute where to put it anyway.
4032         */
4033}
4034
4035static void intel_crtc_enable_planes(struct drm_crtc *crtc)
4036{
4037        struct drm_device *dev = crtc->dev;
4038        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4039        int pipe = intel_crtc->pipe;
4040
4041        assert_vblank_disabled(crtc);
4042
4043        drm_vblank_on(dev, pipe);
4044
4045        intel_enable_primary_hw_plane(crtc->primary, crtc);
4046        intel_enable_planes(crtc);
4047        intel_crtc_update_cursor(crtc, true);
4048        intel_crtc_dpms_overlay(intel_crtc, true);
4049
4050        hsw_enable_ips(intel_crtc);
4051
4052        mutex_lock(&dev->struct_mutex);
4053        intel_update_fbc(dev);
4054        mutex_unlock(&dev->struct_mutex);
4055
4056        /*
4057         * FIXME: Once we grow proper nuclear flip support out of this we need
4058         * to compute the mask of flip planes precisely. For the time being
4059         * consider this a flip from a NULL plane.
4060         */
4061        intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4062}
4063
4064static void intel_crtc_disable_planes(struct drm_crtc *crtc)
4065{
4066        struct drm_device *dev = crtc->dev;
4067        struct drm_i915_private *dev_priv = dev->dev_private;
4068        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4069        int pipe = intel_crtc->pipe;
4070        int plane = intel_crtc->plane;
4071
4072        intel_crtc_wait_for_pending_flips(crtc);
4073
4074        if (dev_priv->fbc.plane == plane)
4075                intel_disable_fbc(dev);
4076
4077        hsw_disable_ips(intel_crtc);
4078
4079        intel_crtc_dpms_overlay(intel_crtc, false);
4080        intel_crtc_update_cursor(crtc, false);
4081        intel_disable_planes(crtc);
4082        intel_disable_primary_hw_plane(crtc->primary, crtc);
4083
4084        /*
4085         * FIXME: Once we grow proper nuclear flip support out of this we need
4086         * to compute the mask of flip planes precisely. For the time being
4087         * consider this a flip to a NULL plane.
4088         */
4089        intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4090
4091        drm_vblank_off(dev, pipe);
4092
4093        assert_vblank_disabled(crtc);
4094}
4095
4096static void ironlake_crtc_enable(struct drm_crtc *crtc)
4097{
4098        struct drm_device *dev = crtc->dev;
4099        struct drm_i915_private *dev_priv = dev->dev_private;
4100        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4101        struct intel_encoder *encoder;
4102        int pipe = intel_crtc->pipe;
4103
4104        WARN_ON(!crtc->enabled);
4105
4106        if (intel_crtc->active)
4107                return;
4108
4109        if (intel_crtc->config.has_pch_encoder)
4110                intel_prepare_shared_dpll(intel_crtc);
4111
4112        if (intel_crtc->config.has_dp_encoder)
4113                intel_dp_set_m_n(intel_crtc);
4114
4115        intel_set_pipe_timings(intel_crtc);
4116
4117        if (intel_crtc->config.has_pch_encoder) {
4118                intel_cpu_transcoder_set_m_n(intel_crtc,
4119                                     &intel_crtc->config.fdi_m_n, NULL);
4120        }
4121
4122        ironlake_set_pipeconf(crtc);
4123
4124        intel_crtc->active = true;
4125
4126        intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4127        intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
4128
4129        for_each_encoder_on_crtc(dev, crtc, encoder)
4130                if (encoder->pre_enable)
4131                        encoder->pre_enable(encoder);
4132
4133        if (intel_crtc->config.has_pch_encoder) {
4134                /* Note: FDI PLL enabling _must_ be done before we enable the
4135                 * cpu pipes, hence this is separate from all the other fdi/pch
4136                 * enabling. */
4137                ironlake_fdi_pll_enable(intel_crtc);
4138        } else {
4139                assert_fdi_tx_disabled(dev_priv, pipe);
4140                assert_fdi_rx_disabled(dev_priv, pipe);
4141        }
4142
4143        ironlake_pfit_enable(intel_crtc);
4144
4145        /*
4146         * On ILK+ LUT must be loaded before the pipe is running but with
4147         * clocks enabled
4148         */
4149        intel_crtc_load_lut(crtc);
4150
4151        intel_update_watermarks(crtc);
4152        intel_enable_pipe(intel_crtc);
4153
4154        if (intel_crtc->config.has_pch_encoder)
4155                ironlake_pch_enable(crtc);
4156
4157        for_each_encoder_on_crtc(dev, crtc, encoder)
4158                encoder->enable(encoder);
4159
4160        if (HAS_PCH_CPT(dev))
4161                cpt_verify_modeset(dev, intel_crtc->pipe);
4162
4163        intel_crtc_enable_planes(crtc);
4164}
4165
4166/* IPS only exists on ULT machines and is tied to pipe A. */
4167static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4168{
4169        return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4170}
4171
4172/*
4173 * This implements the workaround described in the "notes" section of the mode
4174 * set sequence documentation. When going from no pipes or single pipe to
4175 * multiple pipes, and planes are enabled after the pipe, we need to wait at
4176 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4177 */
4178static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4179{
4180        struct drm_device *dev = crtc->base.dev;
4181        struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4182
4183        /* We want to get the other_active_crtc only if there's only 1 other
4184         * active crtc. */
4185        for_each_intel_crtc(dev, crtc_it) {
4186                if (!crtc_it->active || crtc_it == crtc)
4187                        continue;
4188
4189                if (other_active_crtc)
4190                        return;
4191
4192                other_active_crtc = crtc_it;
4193        }
4194        if (!other_active_crtc)
4195                return;
4196
4197        intel_wait_for_vblank(dev, other_active_crtc->pipe);
4198        intel_wait_for_vblank(dev, other_active_crtc->pipe);
4199}
4200
4201static void haswell_crtc_enable(struct drm_crtc *crtc)
4202{
4203        struct drm_device *dev = crtc->dev;
4204        struct drm_i915_private *dev_priv = dev->dev_private;
4205        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4206        struct intel_encoder *encoder;
4207        int pipe = intel_crtc->pipe;
4208
4209        WARN_ON(!crtc->enabled);
4210
4211        if (intel_crtc->active)
4212                return;
4213
4214        if (intel_crtc_to_shared_dpll(intel_crtc))
4215                intel_enable_shared_dpll(intel_crtc);
4216
4217        if (intel_crtc->config.has_dp_encoder)
4218                intel_dp_set_m_n(intel_crtc);
4219
4220        intel_set_pipe_timings(intel_crtc);
4221
4222        if (intel_crtc->config.cpu_transcoder != TRANSCODER_EDP) {
4223                I915_WRITE(PIPE_MULT(intel_crtc->config.cpu_transcoder),
4224                           intel_crtc->config.pixel_multiplier - 1);
4225        }
4226
4227        if (intel_crtc->config.has_pch_encoder) {
4228                intel_cpu_transcoder_set_m_n(intel_crtc,
4229                                     &intel_crtc->config.fdi_m_n, NULL);
4230        }
4231
4232        haswell_set_pipeconf(crtc);
4233
4234        intel_set_pipe_csc(crtc);
4235
4236        intel_crtc->active = true;
4237
4238        intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4239        for_each_encoder_on_crtc(dev, crtc, encoder)
4240                if (encoder->pre_enable)
4241                        encoder->pre_enable(encoder);
4242
4243        if (intel_crtc->config.has_pch_encoder) {
4244                intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
4245                dev_priv->display.fdi_link_train(crtc);
4246        }
4247
4248        intel_ddi_enable_pipe_clock(intel_crtc);
4249
4250        ironlake_pfit_enable(intel_crtc);
4251
4252        /*
4253         * On ILK+ LUT must be loaded before the pipe is running but with
4254         * clocks enabled
4255         */
4256        intel_crtc_load_lut(crtc);
4257
4258        intel_ddi_set_pipe_settings(crtc);
4259        intel_ddi_enable_transcoder_func(crtc);
4260
4261        intel_update_watermarks(crtc);
4262        intel_enable_pipe(intel_crtc);
4263
4264        if (intel_crtc->config.has_pch_encoder)
4265                lpt_pch_enable(crtc);
4266
4267        if (intel_crtc->config.dp_encoder_is_mst)
4268                intel_ddi_set_vc_payload_alloc(crtc, true);
4269
4270        for_each_encoder_on_crtc(dev, crtc, encoder) {
4271                encoder->enable(encoder);
4272                intel_opregion_notify_encoder(encoder, true);
4273        }
4274
4275        /* If we change the relative order between pipe/planes enabling, we need
4276         * to change the workaround. */
4277        haswell_mode_set_planes_workaround(intel_crtc);
4278        intel_crtc_enable_planes(crtc);
4279}
4280
4281static void ironlake_pfit_disable(struct intel_crtc *crtc)
4282{
4283        struct drm_device *dev = crtc->base.dev;
4284        struct drm_i915_private *dev_priv = dev->dev_private;
4285        int pipe = crtc->pipe;
4286
4287        /* To avoid upsetting the power well on haswell only disable the pfit if
4288         * it's in use. The hw state code will make sure we get this right. */
4289        if (crtc->config.pch_pfit.enabled) {
4290                I915_WRITE(PF_CTL(pipe), 0);
4291                I915_WRITE(PF_WIN_POS(pipe), 0);
4292                I915_WRITE(PF_WIN_SZ(pipe), 0);
4293        }
4294}
4295
4296static void ironlake_crtc_disable(struct drm_crtc *crtc)
4297{
4298        struct drm_device *dev = crtc->dev;
4299        struct drm_i915_private *dev_priv = dev->dev_private;
4300        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4301        struct intel_encoder *encoder;
4302        int pipe = intel_crtc->pipe;
4303        u32 reg, temp;
4304
4305        if (!intel_crtc->active)
4306                return;
4307
4308        intel_crtc_disable_planes(crtc);
4309
4310        for_each_encoder_on_crtc(dev, crtc, encoder)
4311                encoder->disable(encoder);
4312
4313        if (intel_crtc->config.has_pch_encoder)
4314                intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
4315
4316        intel_disable_pipe(intel_crtc);
4317
4318        ironlake_pfit_disable(intel_crtc);
4319
4320        for_each_encoder_on_crtc(dev, crtc, encoder)
4321                if (encoder->post_disable)
4322                        encoder->post_disable(encoder);
4323
4324        if (intel_crtc->config.has_pch_encoder) {
4325                ironlake_fdi_disable(crtc);
4326
4327                ironlake_disable_pch_transcoder(dev_priv, pipe);
4328
4329                if (HAS_PCH_CPT(dev)) {
4330                        /* disable TRANS_DP_CTL */
4331                        reg = TRANS_DP_CTL(pipe);
4332                        temp = I915_READ(reg);
4333                        temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4334                                  TRANS_DP_PORT_SEL_MASK);
4335                        temp |= TRANS_DP_PORT_SEL_NONE;
4336                        I915_WRITE(reg, temp);
4337
4338                        /* disable DPLL_SEL */
4339                        temp = I915_READ(PCH_DPLL_SEL);
4340                        temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
4341                        I915_WRITE(PCH_DPLL_SEL, temp);
4342                }
4343
4344                /* disable PCH DPLL */
4345                intel_disable_shared_dpll(intel_crtc);
4346
4347                ironlake_fdi_pll_disable(intel_crtc);
4348        }
4349
4350        intel_crtc->active = false;
4351        intel_update_watermarks(crtc);
4352
4353        mutex_lock(&dev->struct_mutex);
4354        intel_update_fbc(dev);
4355        mutex_unlock(&dev->struct_mutex);
4356}
4357
4358static void haswell_crtc_disable(struct drm_crtc *crtc)
4359{
4360        struct drm_device *dev = crtc->dev;
4361        struct drm_i915_private *dev_priv = dev->dev_private;
4362        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4363        struct intel_encoder *encoder;
4364        enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
4365
4366        if (!intel_crtc->active)
4367                return;
4368
4369        intel_crtc_disable_planes(crtc);
4370
4371        for_each_encoder_on_crtc(dev, crtc, encoder) {
4372                intel_opregion_notify_encoder(encoder, false);
4373                encoder->disable(encoder);
4374        }
4375
4376        if (intel_crtc->config.has_pch_encoder)
4377                intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
4378        intel_disable_pipe(intel_crtc);
4379
4380        if (intel_crtc->config.dp_encoder_is_mst)
4381                intel_ddi_set_vc_payload_alloc(crtc, false);
4382
4383        intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4384
4385        ironlake_pfit_disable(intel_crtc);
4386
4387        intel_ddi_disable_pipe_clock(intel_crtc);
4388
4389        if (intel_crtc->config.has_pch_encoder) {
4390                lpt_disable_pch_transcoder(dev_priv);
4391                intel_ddi_fdi_disable(crtc);
4392        }
4393
4394        for_each_encoder_on_crtc(dev, crtc, encoder)
4395                if (encoder->post_disable)
4396                        encoder->post_disable(encoder);
4397
4398        intel_crtc->active = false;
4399        intel_update_watermarks(crtc);
4400
4401        mutex_lock(&dev->struct_mutex);
4402        intel_update_fbc(dev);
4403        mutex_unlock(&dev->struct_mutex);
4404
4405        if (intel_crtc_to_shared_dpll(intel_crtc))
4406                intel_disable_shared_dpll(intel_crtc);
4407}
4408
4409static void ironlake_crtc_off(struct drm_crtc *crtc)
4410{
4411        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4412        intel_put_shared_dpll(intel_crtc);
4413}
4414
4415
4416static void i9xx_pfit_enable(struct intel_crtc *crtc)
4417{
4418        struct drm_device *dev = crtc->base.dev;
4419        struct drm_i915_private *dev_priv = dev->dev_private;
4420        struct intel_crtc_config *pipe_config = &crtc->config;
4421
4422        if (!crtc->config.gmch_pfit.control)
4423                return;
4424
4425        /*
4426         * The panel fitter should only be adjusted whilst the pipe is disabled,
4427         * according to register description and PRM.
4428         */
4429        WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4430        assert_pipe_disabled(dev_priv, crtc->pipe);
4431
4432        I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4433        I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
4434
4435        /* Border color in case we don't scale up to the full screen. Black by
4436         * default, change to something else for debugging. */
4437        I915_WRITE(BCLRPAT(crtc->pipe), 0);
4438}
4439
4440static enum intel_display_power_domain port_to_power_domain(enum port port)
4441{
4442        switch (port) {
4443        case PORT_A:
4444                return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4445        case PORT_B:
4446                return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4447        case PORT_C:
4448                return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4449        case PORT_D:
4450                return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4451        default:
4452                WARN_ON_ONCE(1);
4453                return POWER_DOMAIN_PORT_OTHER;
4454        }
4455}
4456
4457#define for_each_power_domain(domain, mask)                             \
4458        for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++)     \
4459                if ((1 << (domain)) & (mask))
4460
4461enum intel_display_power_domain
4462intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4463{
4464        struct drm_device *dev = intel_encoder->base.dev;
4465        struct intel_digital_port *intel_dig_port;
4466
4467        switch (intel_encoder->type) {
4468        case INTEL_OUTPUT_UNKNOWN:
4469                /* Only DDI platforms should ever use this output type */
4470                WARN_ON_ONCE(!HAS_DDI(dev));
4471        case INTEL_OUTPUT_DISPLAYPORT:
4472        case INTEL_OUTPUT_HDMI:
4473        case INTEL_OUTPUT_EDP:
4474                intel_dig_port = enc_to_dig_port(&intel_encoder->base);
4475                return port_to_power_domain(intel_dig_port->port);
4476        case INTEL_OUTPUT_DP_MST:
4477                intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
4478                return port_to_power_domain(intel_dig_port->port);
4479        case INTEL_OUTPUT_ANALOG:
4480                return POWER_DOMAIN_PORT_CRT;
4481        case INTEL_OUTPUT_DSI:
4482                return POWER_DOMAIN_PORT_DSI;
4483        default:
4484                return POWER_DOMAIN_PORT_OTHER;
4485        }
4486}
4487
4488static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
4489{
4490        struct drm_device *dev = crtc->dev;
4491        struct intel_encoder *intel_encoder;
4492        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4493        enum pipe pipe = intel_crtc->pipe;
4494        unsigned long mask;
4495        enum transcoder transcoder;
4496
4497        transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4498
4499        mask = BIT(POWER_DOMAIN_PIPE(pipe));
4500        mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
4501        if (intel_crtc->config.pch_pfit.enabled ||
4502            intel_crtc->config.pch_pfit.force_thru)
4503                mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4504
4505        for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4506                mask |= BIT(intel_display_port_power_domain(intel_encoder));
4507
4508        return mask;
4509}
4510
4511void intel_display_set_init_power(struct drm_i915_private *dev_priv,
4512                                  bool enable)
4513{
4514        if (dev_priv->power_domains.init_power_on == enable)
4515                return;
4516
4517        if (enable)
4518                intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
4519        else
4520                intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
4521
4522        dev_priv->power_domains.init_power_on = enable;
4523}
4524
4525static void modeset_update_crtc_power_domains(struct drm_device *dev)
4526{
4527        struct drm_i915_private *dev_priv = dev->dev_private;
4528        unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4529        struct intel_crtc *crtc;
4530
4531        /*
4532         * First get all needed power domains, then put all unneeded, to avoid
4533         * any unnecessary toggling of the power wells.
4534         */
4535        for_each_intel_crtc(dev, crtc) {
4536                enum intel_display_power_domain domain;
4537
4538                if (!crtc->base.enabled)
4539                        continue;
4540
4541                pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
4542
4543                for_each_power_domain(domain, pipe_domains[crtc->pipe])
4544                        intel_display_power_get(dev_priv, domain);
4545        }
4546
4547        for_each_intel_crtc(dev, crtc) {
4548                enum intel_display_power_domain domain;
4549
4550                for_each_power_domain(domain, crtc->enabled_power_domains)
4551                        intel_display_power_put(dev_priv, domain);
4552
4553                crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4554        }
4555
4556        intel_display_set_init_power(dev_priv, false);
4557}
4558
4559/* returns HPLL frequency in kHz */
4560static int valleyview_get_vco(struct drm_i915_private *dev_priv)
4561{
4562        int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
4563
4564        /* Obtain SKU information */
4565        mutex_lock(&dev_priv->dpio_lock);
4566        hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
4567                CCK_FUSE_HPLL_FREQ_MASK;
4568        mutex_unlock(&dev_priv->dpio_lock);
4569
4570        return vco_freq[hpll_freq] * 1000;
4571}
4572
4573static void vlv_update_cdclk(struct drm_device *dev)
4574{
4575        struct drm_i915_private *dev_priv = dev->dev_private;
4576
4577        dev_priv->vlv_cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
4578        DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz",
4579                         dev_priv->vlv_cdclk_freq);
4580
4581        /*
4582         * Program the gmbus_freq based on the cdclk frequency.
4583         * BSpec erroneously claims we should aim for 4MHz, but
4584         * in fact 1MHz is the correct frequency.
4585         */
4586        I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->vlv_cdclk_freq, 1000));
4587}
4588
4589/* Adjust CDclk dividers to allow high res or save power if possible */
4590static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
4591{
4592        struct drm_i915_private *dev_priv = dev->dev_private;
4593        u32 val, cmd;
4594
4595        WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
4596
4597        if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
4598                cmd = 2;
4599        else if (cdclk == 266667)
4600                cmd = 1;
4601        else
4602                cmd = 0;
4603
4604        mutex_lock(&dev_priv->rps.hw_lock);
4605        val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4606        val &= ~DSPFREQGUAR_MASK;
4607        val |= (cmd << DSPFREQGUAR_SHIFT);
4608        vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4609        if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4610                      DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
4611                     50)) {
4612                DRM_ERROR("timed out waiting for CDclk change\n");
4613        }
4614        mutex_unlock(&dev_priv->rps.hw_lock);
4615
4616        if (cdclk == 400000) {
4617                u32 divider, vco;
4618
4619                vco = valleyview_get_vco(dev_priv);
4620                divider = DIV_ROUND_CLOSEST(vco << 1, cdclk) - 1;
4621
4622                mutex_lock(&dev_priv->dpio_lock);
4623                /* adjust cdclk divider */
4624                val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
4625                val &= ~DISPLAY_FREQUENCY_VALUES;
4626                val |= divider;
4627                vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
4628
4629                if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
4630                              DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
4631                             50))
4632                        DRM_ERROR("timed out waiting for CDclk change\n");
4633                mutex_unlock(&dev_priv->dpio_lock);
4634        }
4635
4636        mutex_lock(&dev_priv->dpio_lock);
4637        /* adjust self-refresh exit latency value */
4638        val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
4639        val &= ~0x7f;
4640
4641        /*
4642         * For high bandwidth configs, we set a higher latency in the bunit
4643         * so that the core display fetch happens in time to avoid underruns.
4644         */
4645        if (cdclk == 400000)
4646                val |= 4500 / 250; /* 4.5 usec */
4647        else
4648                val |= 3000 / 250; /* 3.0 usec */
4649        vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
4650        mutex_unlock(&dev_priv->dpio_lock);
4651
4652        vlv_update_cdclk(dev);
4653}
4654
4655static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
4656{
4657        struct drm_i915_private *dev_priv = dev->dev_private;
4658        u32 val, cmd;
4659
4660        WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
4661
4662        switch (cdclk) {
4663        case 400000:
4664                cmd = 3;
4665                break;
4666        case 333333:
4667        case 320000:
4668                cmd = 2;
4669                break;
4670        case 266667:
4671                cmd = 1;
4672                break;
4673        case 200000:
4674                cmd = 0;
4675                break;
4676        default:
4677                WARN_ON(1);
4678                return;
4679        }
4680
4681        mutex_lock(&dev_priv->rps.hw_lock);
4682        val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4683        val &= ~DSPFREQGUAR_MASK_CHV;
4684        val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
4685        vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4686        if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4687                      DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
4688                     50)) {
4689                DRM_ERROR("timed out waiting for CDclk change\n");
4690        }
4691        mutex_unlock(&dev_priv->rps.hw_lock);
4692
4693        vlv_update_cdclk(dev);
4694}
4695
4696static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
4697                                 int max_pixclk)
4698{
4699        int vco = valleyview_get_vco(dev_priv);
4700        int freq_320 = (vco <<  1) % 320000 != 0 ? 333333 : 320000;
4701
4702        /* FIXME: Punit isn't quite ready yet */
4703        if (IS_CHERRYVIEW(dev_priv->dev))
4704                return 400000;
4705
4706        /*
4707         * Really only a few cases to deal with, as only 4 CDclks are supported:
4708         *   200MHz
4709         *   267MHz
4710         *   320/333MHz (depends on HPLL freq)
4711         *   400MHz
4712         * So we check to see whether we're above 90% of the lower bin and
4713         * adjust if needed.
4714         *
4715         * We seem to get an unstable or solid color picture at 200MHz.
4716         * Not sure what's wrong. For now use 200MHz only when all pipes
4717         * are off.
4718         */
4719        if (max_pixclk > freq_320*9/10)
4720                return 400000;
4721        else if (max_pixclk > 266667*9/10)
4722                return freq_320;
4723        else if (max_pixclk > 0)
4724                return 266667;
4725        else
4726                return 200000;
4727}
4728
4729/* compute the max pixel clock for new configuration */
4730static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
4731{
4732        struct drm_device *dev = dev_priv->dev;
4733        struct intel_crtc *intel_crtc;
4734        int max_pixclk = 0;
4735
4736        for_each_intel_crtc(dev, intel_crtc) {
4737                if (intel_crtc->new_enabled)
4738                        max_pixclk = max(max_pixclk,
4739                                         intel_crtc->new_config->adjusted_mode.crtc_clock);
4740        }
4741
4742        return max_pixclk;
4743}
4744
4745static void valleyview_modeset_global_pipes(struct drm_device *dev,
4746                                            unsigned *prepare_pipes)
4747{
4748        struct drm_i915_private *dev_priv = dev->dev_private;
4749        struct intel_crtc *intel_crtc;
4750        int max_pixclk = intel_mode_max_pixclk(dev_priv);
4751
4752        if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
4753            dev_priv->vlv_cdclk_freq)
4754                return;
4755
4756        /* disable/enable all currently active pipes while we change cdclk */
4757        for_each_intel_crtc(dev, intel_crtc)
4758                if (intel_crtc->base.enabled)
4759                        *prepare_pipes |= (1 << intel_crtc->pipe);
4760}
4761
4762static void valleyview_modeset_global_resources(struct drm_device *dev)
4763{
4764        struct drm_i915_private *dev_priv = dev->dev_private;
4765        int max_pixclk = intel_mode_max_pixclk(dev_priv);
4766        int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
4767
4768        if (req_cdclk != dev_priv->vlv_cdclk_freq) {
4769                if (IS_CHERRYVIEW(dev))
4770                        cherryview_set_cdclk(dev, req_cdclk);
4771                else
4772                        valleyview_set_cdclk(dev, req_cdclk);
4773        }
4774
4775        modeset_update_crtc_power_domains(dev);
4776}
4777
4778static void valleyview_crtc_enable(struct drm_crtc *crtc)
4779{
4780        struct drm_device *dev = crtc->dev;
4781        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4782        struct intel_encoder *encoder;
4783        int pipe = intel_crtc->pipe;
4784        bool is_dsi;
4785
4786        WARN_ON(!crtc->enabled);
4787
4788        if (intel_crtc->active)
4789                return;
4790
4791        is_dsi = intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI);
4792
4793        if (!is_dsi) {
4794                if (IS_CHERRYVIEW(dev))
4795                        chv_prepare_pll(intel_crtc);
4796                else
4797                        vlv_prepare_pll(intel_crtc);
4798        }
4799
4800        if (intel_crtc->config.has_dp_encoder)
4801                intel_dp_set_m_n(intel_crtc);
4802
4803        intel_set_pipe_timings(intel_crtc);
4804
4805        i9xx_set_pipeconf(intel_crtc);
4806
4807        intel_crtc->active = true;
4808
4809        intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4810
4811        for_each_encoder_on_crtc(dev, crtc, encoder)
4812                if (encoder->pre_pll_enable)
4813                        encoder->pre_pll_enable(encoder);
4814
4815        if (!is_dsi) {
4816                if (IS_CHERRYVIEW(dev))
4817                        chv_enable_pll(intel_crtc);
4818                else
4819                        vlv_enable_pll(intel_crtc);
4820        }
4821
4822        for_each_encoder_on_crtc(dev, crtc, encoder)
4823                if (encoder->pre_enable)
4824                        encoder->pre_enable(encoder);
4825
4826        i9xx_pfit_enable(intel_crtc);
4827
4828        intel_crtc_load_lut(crtc);
4829
4830        intel_update_watermarks(crtc);
4831        intel_enable_pipe(intel_crtc);
4832
4833        for_each_encoder_on_crtc(dev, crtc, encoder)
4834                encoder->enable(encoder);
4835
4836        intel_crtc_enable_planes(crtc);
4837
4838        /* Underruns don't raise interrupts, so check manually. */
4839        i9xx_check_fifo_underruns(dev);
4840}
4841
4842static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
4843{
4844        struct drm_device *dev = crtc->base.dev;
4845        struct drm_i915_private *dev_priv = dev->dev_private;
4846
4847        I915_WRITE(FP0(crtc->pipe), crtc->config.dpll_hw_state.fp0);
4848        I915_WRITE(FP1(crtc->pipe), crtc->config.dpll_hw_state.fp1);
4849}
4850
4851static void i9xx_crtc_enable(struct drm_crtc *crtc)
4852{
4853        struct drm_device *dev = crtc->dev;
4854        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4855        struct intel_encoder *encoder;
4856        int pipe = intel_crtc->pipe;
4857
4858        WARN_ON(!crtc->enabled);
4859
4860        if (intel_crtc->active)
4861                return;
4862
4863        i9xx_set_pll_dividers(intel_crtc);
4864
4865        if (intel_crtc->config.has_dp_encoder)
4866                intel_dp_set_m_n(intel_crtc);
4867
4868        intel_set_pipe_timings(intel_crtc);
4869
4870        i9xx_set_pipeconf(intel_crtc);
4871
4872        intel_crtc->active = true;
4873
4874        if (!IS_GEN2(dev))
4875                intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4876
4877        for_each_encoder_on_crtc(dev, crtc, encoder)
4878                if (encoder->pre_enable)
4879                        encoder->pre_enable(encoder);
4880
4881        i9xx_enable_pll(intel_crtc);
4882
4883        i9xx_pfit_enable(intel_crtc);
4884
4885        intel_crtc_load_lut(crtc);
4886
4887        intel_update_watermarks(crtc);
4888        intel_enable_pipe(intel_crtc);
4889
4890        for_each_encoder_on_crtc(dev, crtc, encoder)
4891                encoder->enable(encoder);
4892
4893        intel_crtc_enable_planes(crtc);
4894
4895        /*
4896         * Gen2 reports pipe underruns whenever all planes are disabled.
4897         * So don't enable underrun reporting before at least some planes
4898         * are enabled.
4899         * FIXME: Need to fix the logic to work when we turn off all planes
4900         * but leave the pipe running.
4901         */
4902        if (IS_GEN2(dev))
4903                intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4904
4905        /* Underruns don't raise interrupts, so check manually. */
4906        i9xx_check_fifo_underruns(dev);
4907}
4908
4909static void i9xx_pfit_disable(struct intel_crtc *crtc)
4910{
4911        struct drm_device *dev = crtc->base.dev;
4912        struct drm_i915_private *dev_priv = dev->dev_private;
4913
4914        if (!crtc->config.gmch_pfit.control)
4915                return;
4916
4917        assert_pipe_disabled(dev_priv, crtc->pipe);
4918
4919        DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
4920                         I915_READ(PFIT_CONTROL));
4921        I915_WRITE(PFIT_CONTROL, 0);
4922}
4923
4924static void i9xx_crtc_disable(struct drm_crtc *crtc)
4925{
4926        struct drm_device *dev = crtc->dev;
4927        struct drm_i915_private *dev_priv = dev->dev_private;
4928        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4929        struct intel_encoder *encoder;
4930        int pipe = intel_crtc->pipe;
4931
4932        if (!intel_crtc->active)
4933                return;
4934
4935        /*
4936         * Gen2 reports pipe underruns whenever all planes are disabled.
4937         * So diasble underrun reporting before all the planes get disabled.
4938         * FIXME: Need to fix the logic to work when we turn off all planes
4939         * but leave the pipe running.
4940         */
4941        if (IS_GEN2(dev))
4942                intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
4943
4944        /*
4945         * Vblank time updates from the shadow to live plane control register
4946         * are blocked if the memory self-refresh mode is active at that
4947         * moment. So to make sure the plane gets truly disabled, disable
4948         * first the self-refresh mode. The self-refresh enable bit in turn
4949         * will be checked/applied by the HW only at the next frame start
4950         * event which is after the vblank start event, so we need to have a
4951         * wait-for-vblank between disabling the plane and the pipe.
4952         */
4953        intel_set_memory_cxsr(dev_priv, false);
4954        intel_crtc_disable_planes(crtc);
4955
4956        for_each_encoder_on_crtc(dev, crtc, encoder)
4957                encoder->disable(encoder);
4958
4959        /*
4960         * On gen2 planes are double buffered but the pipe isn't, so we must
4961         * wait for planes to fully turn off before disabling the pipe.
4962         * We also need to wait on all gmch platforms because of the
4963         * self-refresh mode constraint explained above.
4964         */
4965        intel_wait_for_vblank(dev, pipe);
4966
4967        intel_disable_pipe(intel_crtc);
4968
4969        i9xx_pfit_disable(intel_crtc);
4970
4971        for_each_encoder_on_crtc(dev, crtc, encoder)
4972                if (encoder->post_disable)
4973                        encoder->post_disable(encoder);
4974
4975        if (!intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI)) {
4976                if (IS_CHERRYVIEW(dev))
4977                        chv_disable_pll(dev_priv, pipe);
4978                else if (IS_VALLEYVIEW(dev))
4979                        vlv_disable_pll(dev_priv, pipe);
4980                else
4981                        i9xx_disable_pll(intel_crtc);
4982        }
4983
4984        if (!IS_GEN2(dev))
4985                intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
4986
4987        intel_crtc->active = false;
4988        intel_update_watermarks(crtc);
4989
4990        mutex_lock(&dev->struct_mutex);
4991        intel_update_fbc(dev);
4992        mutex_unlock(&dev->struct_mutex);
4993}
4994
4995static void i9xx_crtc_off(struct drm_crtc *crtc)
4996{
4997}
4998
4999static void intel_crtc_update_sarea(struct drm_crtc *crtc,
5000                                    bool enabled)
5001{
5002        struct drm_device *dev = crtc->dev;
5003        struct drm_i915_master_private *master_priv;
5004        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5005        int pipe = intel_crtc->pipe;
5006
5007        if (!dev->primary->master)
5008                return;
5009
5010        master_priv = dev->primary->master->driver_priv;
5011        if (!master_priv->sarea_priv)
5012                return;
5013
5014        switch (pipe) {
5015        case 0:
5016                master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
5017                master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
5018                break;
5019        case 1:
5020                master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
5021                master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
5022                break;
5023        default:
5024                DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
5025                break;
5026        }
5027}
5028
5029/* Master function to enable/disable CRTC and corresponding power wells */
5030void intel_crtc_control(struct drm_crtc *crtc, bool enable)
5031{
5032        struct drm_device *dev = crtc->dev;
5033        struct drm_i915_private *dev_priv = dev->dev_private;
5034        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5035        enum intel_display_power_domain domain;
5036        unsigned long domains;
5037
5038        if (enable) {
5039                if (!intel_crtc->active) {
5040                        domains = get_crtc_power_domains(crtc);
5041                        for_each_power_domain(domain, domains)
5042                                intel_display_power_get(dev_priv, domain);
5043                        intel_crtc->enabled_power_domains = domains;
5044
5045                        dev_priv->display.crtc_enable(crtc);
5046                }
5047        } else {
5048                if (intel_crtc->active) {
5049                        dev_priv->display.crtc_disable(crtc);
5050
5051                        domains = intel_crtc->enabled_power_domains;
5052                        for_each_power_domain(domain, domains)
5053                                intel_display_power_put(dev_priv, domain);
5054                        intel_crtc->enabled_power_domains = 0;
5055                }
5056        }
5057}
5058
5059/**
5060 * Sets the power management mode of the pipe and plane.
5061 */
5062void intel_crtc_update_dpms(struct drm_crtc *crtc)
5063{
5064        struct drm_device *dev = crtc->dev;
5065        struct intel_encoder *intel_encoder;
5066        bool enable = false;
5067
5068        for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5069                enable |= intel_encoder->connectors_active;
5070
5071        intel_crtc_control(crtc, enable);
5072
5073        intel_crtc_update_sarea(crtc, enable);
5074}
5075
5076static void intel_crtc_disable(struct drm_crtc *crtc)
5077{
5078        struct drm_device *dev = crtc->dev;
5079        struct drm_connector *connector;
5080        struct drm_i915_private *dev_priv = dev->dev_private;
5081        struct drm_i915_gem_object *old_obj = intel_fb_obj(crtc->primary->fb);
5082        enum pipe pipe = to_intel_crtc(crtc)->pipe;
5083
5084        /* crtc should still be enabled when we disable it. */
5085        WARN_ON(!crtc->enabled);
5086
5087        dev_priv->display.crtc_disable(crtc);
5088        intel_crtc_update_sarea(crtc, false);
5089        dev_priv->display.off(crtc);
5090
5091        if (crtc->primary->fb) {
5092                mutex_lock(&dev->struct_mutex);
5093                intel_unpin_fb_obj(old_obj);
5094                i915_gem_track_fb(old_obj, NULL,
5095                                  INTEL_FRONTBUFFER_PRIMARY(pipe));
5096                mutex_unlock(&dev->struct_mutex);
5097                crtc->primary->fb = NULL;
5098        }
5099
5100        /* Update computed state. */
5101        list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
5102                if (!connector->encoder || !connector->encoder->crtc)
5103                        continue;
5104
5105                if (connector->encoder->crtc != crtc)
5106                        continue;
5107
5108                connector->dpms = DRM_MODE_DPMS_OFF;
5109                to_intel_encoder(connector->encoder)->connectors_active = false;
5110        }
5111}
5112
5113void intel_encoder_destroy(struct drm_encoder *encoder)
5114{
5115        struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5116
5117        drm_encoder_cleanup(encoder);
5118        kfree(intel_encoder);
5119}
5120
5121/* Simple dpms helper for encoders with just one connector, no cloning and only
5122 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
5123 * state of the entire output pipe. */
5124static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
5125{
5126        if (mode == DRM_MODE_DPMS_ON) {
5127                encoder->connectors_active = true;
5128
5129                intel_crtc_update_dpms(encoder->base.crtc);
5130        } else {
5131                encoder->connectors_active = false;
5132
5133                intel_crtc_update_dpms(encoder->base.crtc);
5134        }
5135}
5136
5137/* Cross check the actual hw state with our own modeset state tracking (and it's
5138 * internal consistency). */
5139static void intel_connector_check_state(struct intel_connector *connector)
5140{
5141        if (connector->get_hw_state(connector)) {
5142                struct intel_encoder *encoder = connector->encoder;
5143                struct drm_crtc *crtc;
5144                bool encoder_enabled;
5145                enum pipe pipe;
5146
5147                DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5148                              connector->base.base.id,
5149                              connector->base.name);
5150
5151                /* there is no real hw state for MST connectors */
5152                if (connector->mst_port)
5153                        return;
5154
5155                WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
5156                     "wrong connector dpms state\n");
5157                WARN(connector->base.encoder != &encoder->base,
5158                     "active connector not linked to encoder\n");
5159
5160                if (encoder) {
5161                        WARN(!encoder->connectors_active,
5162                             "encoder->connectors_active not set\n");
5163
5164                        encoder_enabled = encoder->get_hw_state(encoder, &pipe);
5165                        WARN(!encoder_enabled, "encoder not enabled\n");
5166                        if (WARN_ON(!encoder->base.crtc))
5167                                return;
5168
5169                        crtc = encoder->base.crtc;
5170
5171                        WARN(!crtc->enabled, "crtc not enabled\n");
5172                        WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
5173                        WARN(pipe != to_intel_crtc(crtc)->pipe,
5174                             "encoder active on the wrong pipe\n");
5175                }
5176        }
5177}
5178
5179/* Even simpler default implementation, if there's really no special case to
5180 * consider. */
5181void intel_connector_dpms(struct drm_connector *connector, int mode)
5182{
5183        /* All the simple cases only support two dpms states. */
5184        if (mode != DRM_MODE_DPMS_ON)
5185                mode = DRM_MODE_DPMS_OFF;
5186
5187        if (mode == connector->dpms)
5188                return;
5189
5190        connector->dpms = mode;
5191
5192        /* Only need to change hw state when actually enabled */
5193        if (connector->encoder)
5194                intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
5195
5196        intel_modeset_check_state(connector->dev);
5197}
5198
5199/* Simple connector->get_hw_state implementation for encoders that support only
5200 * one connector and no cloning and hence the encoder state determines the state
5201 * of the connector. */
5202bool intel_connector_get_hw_state(struct intel_connector *connector)
5203{
5204        enum pipe pipe = 0;
5205        struct intel_encoder *encoder = connector->encoder;
5206
5207        return encoder->get_hw_state(encoder, &pipe);
5208}
5209
5210static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5211                                     struct intel_crtc_config *pipe_config)
5212{
5213        struct drm_i915_private *dev_priv = dev->dev_private;
5214        struct intel_crtc *pipe_B_crtc =
5215                to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5216
5217        DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
5218                      pipe_name(pipe), pipe_config->fdi_lanes);
5219        if (pipe_config->fdi_lanes > 4) {
5220                DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
5221                              pipe_name(pipe), pipe_config->fdi_lanes);
5222                return false;
5223        }
5224
5225        if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
5226                if (pipe_config->fdi_lanes > 2) {
5227                        DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
5228                                      pipe_config->fdi_lanes);
5229                        return false;
5230                } else {
5231                        return true;
5232                }
5233        }
5234
5235        if (INTEL_INFO(dev)->num_pipes == 2)
5236                return true;
5237
5238        /* Ivybridge 3 pipe is really complicated */
5239        switch (pipe) {
5240        case PIPE_A:
5241                return true;
5242        case PIPE_B:
5243                if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5244                    pipe_config->fdi_lanes > 2) {
5245                        DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5246                                      pipe_name(pipe), pipe_config->fdi_lanes);
5247                        return false;
5248                }
5249                return true;
5250        case PIPE_C:
5251                if (!pipe_has_enabled_pch(pipe_B_crtc) ||
5252                    pipe_B_crtc->config.fdi_lanes <= 2) {
5253                        if (pipe_config->fdi_lanes > 2) {
5254                                DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5255                                              pipe_name(pipe), pipe_config->fdi_lanes);
5256                                return false;
5257                        }
5258                } else {
5259                        DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5260                        return false;
5261                }
5262                return true;
5263        default:
5264                BUG();
5265        }
5266}
5267
5268#define RETRY 1
5269static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5270                                       struct intel_crtc_config *pipe_config)
5271{
5272        struct drm_device *dev = intel_crtc->base.dev;
5273        struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
5274        int lane, link_bw, fdi_dotclock;
5275        bool setup_ok, needs_recompute = false;
5276
5277retry:
5278        /* FDI is a binary signal running at ~2.7GHz, encoding
5279         * each output octet as 10 bits. The actual frequency
5280         * is stored as a divider into a 100MHz clock, and the
5281         * mode pixel clock is stored in units of 1KHz.
5282         * Hence the bw of each lane in terms of the mode signal
5283         * is:
5284         */
5285        link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5286
5287        fdi_dotclock = adjusted_mode->crtc_clock;
5288
5289        lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
5290                                           pipe_config->pipe_bpp);
5291
5292        pipe_config->fdi_lanes = lane;
5293
5294        intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
5295                               link_bw, &pipe_config->fdi_m_n);
5296
5297        setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
5298                                            intel_crtc->pipe, pipe_config);
5299        if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
5300                pipe_config->pipe_bpp -= 2*3;
5301                DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
5302                              pipe_config->pipe_bpp);
5303                needs_recompute = true;
5304                pipe_config->bw_constrained = true;
5305
5306                goto retry;
5307        }
5308
5309        if (needs_recompute)
5310                return RETRY;
5311
5312        return setup_ok ? 0 : -EINVAL;
5313}
5314
5315static void hsw_compute_ips_config(struct intel_crtc *crtc,
5316                                   struct intel_crtc_config *pipe_config)
5317{
5318        pipe_config->ips_enabled = i915.enable_ips &&
5319                                   hsw_crtc_supports_ips(crtc) &&
5320                                   pipe_config->pipe_bpp <= 24;
5321}
5322
5323static int intel_crtc_compute_config(struct intel_crtc *crtc,
5324                                     struct intel_crtc_config *pipe_config)
5325{
5326        struct drm_device *dev = crtc->base.dev;
5327        struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
5328
5329        /* FIXME should check pixel clock limits on all platforms */
5330        if (INTEL_INFO(dev)->gen < 4) {
5331                struct drm_i915_private *dev_priv = dev->dev_private;
5332                int clock_limit =
5333                        dev_priv->display.get_display_clock_speed(dev);
5334
5335                /*
5336                 * Enable pixel doubling when the dot clock
5337                 * is > 90% of the (display) core speed.
5338                 *
5339                 * GDG double wide on either pipe,
5340                 * otherwise pipe A only.
5341                 */
5342                if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
5343                    adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
5344                        clock_limit *= 2;
5345                        pipe_config->double_wide = true;
5346                }
5347
5348                if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
5349                        return -EINVAL;
5350        }
5351
5352        /*
5353         * Pipe horizontal size must be even in:
5354         * - DVO ganged mode
5355         * - LVDS dual channel mode
5356         * - Double wide pipe
5357         */
5358        if ((intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5359             intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
5360                pipe_config->pipe_src_w &= ~1;
5361
5362        /* Cantiga+ cannot handle modes with a hsync front porch of 0.
5363         * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
5364         */
5365        if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
5366                adjusted_mode->hsync_start == adjusted_mode->hdisplay)
5367                return -EINVAL;
5368
5369        if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
5370                pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
5371        } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
5372                /* only a 8bpc pipe, with 6bpc dither through the panel fitter
5373                 * for lvds. */
5374                pipe_config->pipe_bpp = 8*3;
5375        }
5376
5377        if (HAS_IPS(dev))
5378                hsw_compute_ips_config(crtc, pipe_config);
5379
5380        /*
5381         * XXX: PCH/WRPLL clock sharing is done in ->mode_set, so make sure the
5382         * old clock survives for now.
5383         */
5384        if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev) || HAS_DDI(dev))
5385                pipe_config->shared_dpll = crtc->config.shared_dpll;
5386
5387        if (pipe_config->has_pch_encoder)
5388                return ironlake_fdi_compute_config(crtc, pipe_config);
5389
5390        return 0;
5391}
5392
5393static int valleyview_get_display_clock_speed(struct drm_device *dev)
5394{
5395        struct drm_i915_private *dev_priv = dev->dev_private;
5396        int vco = valleyview_get_vco(dev_priv);
5397        u32 val;
5398        int divider;
5399
5400        /* FIXME: Punit isn't quite ready yet */
5401        if (IS_CHERRYVIEW(dev))
5402                return 400000;
5403
5404        mutex_lock(&dev_priv->dpio_lock);
5405        val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5406        mutex_unlock(&dev_priv->dpio_lock);
5407
5408        divider = val & DISPLAY_FREQUENCY_VALUES;
5409
5410        WARN((val & DISPLAY_FREQUENCY_STATUS) !=
5411             (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5412             "cdclk change in progress\n");
5413
5414        return DIV_ROUND_CLOSEST(vco << 1, divider + 1);
5415}
5416
5417static int i945_get_display_clock_speed(struct drm_device *dev)
5418{
5419        return 400000;
5420}
5421
5422static int i915_get_display_clock_speed(struct drm_device *dev)
5423{
5424        return 333000;
5425}
5426
5427static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
5428{
5429        return 200000;
5430}
5431
5432static int pnv_get_display_clock_speed(struct drm_device *dev)
5433{
5434        u16 gcfgc = 0;
5435
5436        pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5437
5438        switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5439        case GC_DISPLAY_CLOCK_267_MHZ_PNV:
5440                return 267000;
5441        case GC_DISPLAY_CLOCK_333_MHZ_PNV:
5442                return 333000;
5443        case GC_DISPLAY_CLOCK_444_MHZ_PNV:
5444                return 444000;
5445        case GC_DISPLAY_CLOCK_200_MHZ_PNV:
5446                return 200000;
5447        default:
5448                DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
5449        case GC_DISPLAY_CLOCK_133_MHZ_PNV:
5450                return 133000;
5451        case GC_DISPLAY_CLOCK_167_MHZ_PNV:
5452                return 167000;
5453        }
5454}
5455
5456static int i915gm_get_display_clock_speed(struct drm_device *dev)
5457{
5458        u16 gcfgc = 0;
5459
5460        pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5461
5462        if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
5463                return 133000;
5464        else {
5465                switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5466                case GC_DISPLAY_CLOCK_333_MHZ:
5467                        return 333000;
5468                default:
5469                case GC_DISPLAY_CLOCK_190_200_MHZ:
5470                        return 190000;
5471                }
5472        }
5473}
5474
5475static int i865_get_display_clock_speed(struct drm_device *dev)
5476{
5477        return 266000;
5478}
5479
5480static int i855_get_display_clock_speed(struct drm_device *dev)
5481{
5482        u16 hpllcc = 0;
5483        /* Assume that the hardware is in the high speed state.  This
5484         * should be the default.
5485         */
5486        switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
5487        case GC_CLOCK_133_200:
5488        case GC_CLOCK_100_200:
5489                return 200000;
5490        case GC_CLOCK_166_250:
5491                return 250000;
5492        case GC_CLOCK_100_133:
5493                return 133000;
5494        }
5495
5496        /* Shouldn't happen */
5497        return 0;
5498}
5499
5500static int i830_get_display_clock_speed(struct drm_device *dev)
5501{
5502        return 133000;
5503}
5504
5505static void
5506intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
5507{
5508        while (*num > DATA_LINK_M_N_MASK ||
5509               *den > DATA_LINK_M_N_MASK) {
5510                *num >>= 1;
5511                *den >>= 1;
5512        }
5513}
5514
5515static void compute_m_n(unsigned int m, unsigned int n,
5516                        uint32_t *ret_m, uint32_t *ret_n)
5517{
5518        *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
5519        *ret_m = div_u64((uint64_t) m * *ret_n, n);
5520        intel_reduce_m_n_ratio(ret_m, ret_n);
5521}
5522
5523void
5524intel_link_compute_m_n(int bits_per_pixel, int nlanes,
5525                       int pixel_clock, int link_clock,
5526                       struct intel_link_m_n *m_n)
5527{
5528        m_n->tu = 64;
5529
5530        compute_m_n(bits_per_pixel * pixel_clock,
5531                    link_clock * nlanes * 8,
5532                    &m_n->gmch_m, &m_n->gmch_n);
5533
5534        compute_m_n(pixel_clock, link_clock,
5535                    &m_n->link_m, &m_n->link_n);
5536}
5537
5538static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5539{
5540        if (i915.panel_use_ssc >= 0)
5541                return i915.panel_use_ssc != 0;
5542        return dev_priv->vbt.lvds_use_ssc
5543                && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
5544}
5545
5546static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
5547{
5548        struct drm_device *dev = crtc->dev;
5549        struct drm_i915_private *dev_priv = dev->dev_private;
5550        int refclk;
5551
5552        if (IS_VALLEYVIEW(dev)) {
5553                refclk = 100000;
5554        } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
5555            intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5556                refclk = dev_priv->vbt.lvds_ssc_freq;
5557                DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
5558        } else if (!IS_GEN2(dev)) {
5559                refclk = 96000;
5560        } else {
5561                refclk = 48000;
5562        }
5563
5564        return refclk;
5565}
5566
5567static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
5568{
5569        return (1 << dpll->n) << 16 | dpll->m2;
5570}
5571
5572static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
5573{
5574        return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
5575}
5576
5577static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
5578                                     intel_clock_t *reduced_clock)
5579{
5580        struct drm_device *dev = crtc->base.dev;
5581        u32 fp, fp2 = 0;
5582
5583        if (IS_PINEVIEW(dev)) {
5584                fp = pnv_dpll_compute_fp(&crtc->config.dpll);
5585                if (reduced_clock)
5586                        fp2 = pnv_dpll_compute_fp(reduced_clock);
5587        } else {
5588                fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
5589                if (reduced_clock)
5590                        fp2 = i9xx_dpll_compute_fp(reduced_clock);
5591        }
5592
5593        crtc->config.dpll_hw_state.fp0 = fp;
5594
5595        crtc->lowfreq_avail = false;
5596        if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5597            reduced_clock && i915.powersave) {
5598                crtc->config.dpll_hw_state.fp1 = fp2;
5599                crtc->lowfreq_avail = true;
5600        } else {
5601                crtc->config.dpll_hw_state.fp1 = fp;
5602        }
5603}
5604
5605static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
5606                pipe)
5607{
5608        u32 reg_val;
5609
5610        /*
5611         * PLLB opamp always calibrates to max value of 0x3f, force enable it
5612         * and set it to a reasonable value instead.
5613         */
5614        reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5615        reg_val &= 0xffffff00;
5616        reg_val |= 0x00000030;
5617        vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5618
5619        reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5620        reg_val &= 0x8cffffff;
5621        reg_val = 0x8c000000;
5622        vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5623
5624        reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5625        reg_val &= 0xffffff00;
5626        vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5627
5628        reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5629        reg_val &= 0x00ffffff;
5630        reg_val |= 0xb0000000;
5631        vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5632}
5633
5634static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5635                                         struct intel_link_m_n *m_n)
5636{
5637        struct drm_device *dev = crtc->base.dev;
5638        struct drm_i915_private *dev_priv = dev->dev_private;
5639        int pipe = crtc->pipe;
5640
5641        I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5642        I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
5643        I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
5644        I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
5645}
5646
5647static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
5648                                         struct intel_link_m_n *m_n,
5649                                         struct intel_link_m_n *m2_n2)
5650{
5651        struct drm_device *dev = crtc->base.dev;
5652        struct drm_i915_private *dev_priv = dev->dev_private;
5653        int pipe = crtc->pipe;
5654        enum transcoder transcoder = crtc->config.cpu_transcoder;
5655
5656        if (INTEL_INFO(dev)->gen >= 5) {
5657                I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5658                I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5659                I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5660                I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
5661                /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
5662                 * for gen < 8) and if DRRS is supported (to make sure the
5663                 * registers are not unnecessarily accessed).
5664                 */
5665                if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
5666                        crtc->config.has_drrs) {
5667                        I915_WRITE(PIPE_DATA_M2(transcoder),
5668                                        TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
5669                        I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
5670                        I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
5671                        I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
5672                }
5673        } else {
5674                I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5675                I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
5676                I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
5677                I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
5678        }
5679}
5680
5681void intel_dp_set_m_n(struct intel_crtc *crtc)
5682{
5683        if (crtc->config.has_pch_encoder)
5684                intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5685        else
5686                intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n,
5687                                                   &crtc->config.dp_m2_n2);
5688}
5689
5690static void vlv_update_pll(struct intel_crtc *crtc)
5691{
5692        u32 dpll, dpll_md;
5693
5694        /*
5695         * Enable DPIO clock input. We should never disable the reference
5696         * clock for pipe B, since VGA hotplug / manual detection depends
5697         * on it.
5698         */
5699        dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
5700                DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
5701        /* We should never disable this, set it here for state tracking */
5702        if (crtc->pipe == PIPE_B)
5703                dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5704        dpll |= DPLL_VCO_ENABLE;
5705        crtc->config.dpll_hw_state.dpll = dpll;
5706
5707        dpll_md = (crtc->config.pixel_multiplier - 1)
5708                << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5709        crtc->config.dpll_hw_state.dpll_md = dpll_md;
5710}
5711
5712static void vlv_prepare_pll(struct intel_crtc *crtc)
5713{
5714        struct drm_device *dev = crtc->base.dev;
5715        struct drm_i915_private *dev_priv = dev->dev_private;
5716        int pipe = crtc->pipe;
5717        u32 mdiv;
5718        u32 bestn, bestm1, bestm2, bestp1, bestp2;
5719        u32 coreclk, reg_val;
5720
5721        mutex_lock(&dev_priv->dpio_lock);
5722
5723        bestn = crtc->config.dpll.n;
5724        bestm1 = crtc->config.dpll.m1;
5725        bestm2 = crtc->config.dpll.m2;
5726        bestp1 = crtc->config.dpll.p1;
5727        bestp2 = crtc->config.dpll.p2;
5728
5729        /* See eDP HDMI DPIO driver vbios notes doc */
5730
5731        /* PLL B needs special handling */
5732        if (pipe == PIPE_B)
5733                vlv_pllb_recal_opamp(dev_priv, pipe);
5734
5735        /* Set up Tx target for periodic Rcomp update */
5736        vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
5737
5738        /* Disable target IRef on PLL */
5739        reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
5740        reg_val &= 0x00ffffff;
5741        vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
5742
5743        /* Disable fast lock */
5744        vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
5745
5746        /* Set idtafcrecal before PLL is enabled */
5747        mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
5748        mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
5749        mdiv |= ((bestn << DPIO_N_SHIFT));
5750        mdiv |= (1 << DPIO_K_SHIFT);
5751
5752        /*
5753         * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
5754         * but we don't support that).
5755         * Note: don't use the DAC post divider as it seems unstable.
5756         */
5757        mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
5758        vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5759
5760        mdiv |= DPIO_ENABLE_CALIBRATION;
5761        vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5762
5763        /* Set HBR and RBR LPF coefficients */
5764        if (crtc->config.port_clock == 162000 ||
5765            intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
5766            intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
5767                vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5768                                 0x009f0003);
5769        else
5770                vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5771                                 0x00d0000f);
5772
5773        if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
5774            intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
5775                /* Use SSC source */
5776                if (pipe == PIPE_A)
5777                        vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5778                                         0x0df40000);
5779                else
5780                        vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5781                                         0x0df70000);
5782        } else { /* HDMI or VGA */
5783                /* Use bend source */
5784                if (pipe == PIPE_A)
5785                        vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5786                                         0x0df70000);
5787                else
5788                        vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5789                                         0x0df40000);
5790        }
5791
5792        coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
5793        coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
5794        if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
5795            intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
5796                coreclk |= 0x01000000;
5797        vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
5798
5799        vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
5800        mutex_unlock(&dev_priv->dpio_lock);
5801}
5802
5803static void chv_update_pll(struct intel_crtc *crtc)
5804{
5805        crtc->config.dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
5806                DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
5807                DPLL_VCO_ENABLE;
5808        if (crtc->pipe != PIPE_A)
5809                crtc->config.dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5810
5811        crtc->config.dpll_hw_state.dpll_md =
5812                (crtc->config.pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5813}
5814
5815static void chv_prepare_pll(struct intel_crtc *crtc)
5816{
5817        struct drm_device *dev = crtc->base.dev;
5818        struct drm_i915_private *dev_priv = dev->dev_private;
5819        int pipe = crtc->pipe;
5820        int dpll_reg = DPLL(crtc->pipe);
5821        enum dpio_channel port = vlv_pipe_to_channel(pipe);
5822        u32 loopfilter, intcoeff;
5823        u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
5824        int refclk;
5825
5826        bestn = crtc->config.dpll.n;
5827        bestm2_frac = crtc->config.dpll.m2 & 0x3fffff;
5828        bestm1 = crtc->config.dpll.m1;
5829        bestm2 = crtc->config.dpll.m2 >> 22;
5830        bestp1 = crtc->config.dpll.p1;
5831        bestp2 = crtc->config.dpll.p2;
5832
5833        /*
5834         * Enable Refclk and SSC
5835         */
5836        I915_WRITE(dpll_reg,
5837                   crtc->config.dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
5838
5839        mutex_lock(&dev_priv->dpio_lock);
5840
5841        /* p1 and p2 divider */
5842        vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
5843                        5 << DPIO_CHV_S1_DIV_SHIFT |
5844                        bestp1 << DPIO_CHV_P1_DIV_SHIFT |
5845                        bestp2 << DPIO_CHV_P2_DIV_SHIFT |
5846                        1 << DPIO_CHV_K_DIV_SHIFT);
5847
5848        /* Feedback post-divider - m2 */
5849        vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
5850
5851        /* Feedback refclk divider - n and m1 */
5852        vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
5853                        DPIO_CHV_M1_DIV_BY_2 |
5854                        1 << DPIO_CHV_N_DIV_SHIFT);
5855
5856        /* M2 fraction division */
5857        vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
5858
5859        /* M2 fraction division enable */
5860        vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port),
5861                       DPIO_CHV_FRAC_DIV_EN |
5862                       (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT));
5863
5864        /* Loop filter */
5865        refclk = i9xx_get_refclk(&crtc->base, 0);
5866        loopfilter = 5 << DPIO_CHV_PROP_COEFF_SHIFT |
5867                2 << DPIO_CHV_GAIN_CTRL_SHIFT;
5868        if (refclk == 100000)
5869                intcoeff = 11;
5870        else if (refclk == 38400)
5871                intcoeff = 10;
5872        else
5873                intcoeff = 9;
5874        loopfilter |= intcoeff << DPIO_CHV_INT_COEFF_SHIFT;
5875        vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
5876
5877        /* AFC Recal */
5878        vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
5879                        vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
5880                        DPIO_AFC_RECAL);
5881
5882        mutex_unlock(&dev_priv->dpio_lock);
5883}
5884
5885static void i9xx_update_pll(struct intel_crtc *crtc,
5886                            intel_clock_t *reduced_clock,
5887                            int num_connectors)
5888{
5889        struct drm_device *dev = crtc->base.dev;
5890        struct drm_i915_private *dev_priv = dev->dev_private;
5891        u32 dpll;
5892        bool is_sdvo;
5893        struct dpll *clock = &crtc->config.dpll;
5894
5895        i9xx_update_pll_dividers(crtc, reduced_clock);
5896
5897        is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
5898                intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
5899
5900        dpll = DPLL_VGA_MODE_DIS;
5901
5902        if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
5903                dpll |= DPLLB_MODE_LVDS;
5904        else
5905                dpll |= DPLLB_MODE_DAC_SERIAL;
5906
5907        if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
5908                dpll |= (crtc->config.pixel_multiplier - 1)
5909                        << SDVO_MULTIPLIER_SHIFT_HIRES;
5910        }
5911
5912        if (is_sdvo)
5913                dpll |= DPLL_SDVO_HIGH_SPEED;
5914
5915        if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
5916                dpll |= DPLL_SDVO_HIGH_SPEED;
5917
5918        /* compute bitmask from p1 value */
5919        if (IS_PINEVIEW(dev))
5920                dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
5921        else {
5922                dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5923                if (IS_G4X(dev) && reduced_clock)
5924                        dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5925        }
5926        switch (clock->p2) {
5927        case 5:
5928                dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5929                break;
5930        case 7:
5931                dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5932                break;
5933        case 10:
5934                dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5935                break;
5936        case 14:
5937                dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5938                break;
5939        }
5940        if (INTEL_INFO(dev)->gen >= 4)
5941                dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
5942
5943        if (crtc->config.sdvo_tv_clock)
5944                dpll |= PLL_REF_INPUT_TVCLKINBC;
5945        else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5946                 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5947                dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5948        else
5949                dpll |= PLL_REF_INPUT_DREFCLK;
5950
5951        dpll |= DPLL_VCO_ENABLE;
5952        crtc->config.dpll_hw_state.dpll = dpll;
5953
5954        if (INTEL_INFO(dev)->gen >= 4) {
5955                u32 dpll_md = (crtc->config.pixel_multiplier - 1)
5956                        << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5957                crtc->config.dpll_hw_state.dpll_md = dpll_md;
5958        }
5959}
5960
5961static void i8xx_update_pll(struct intel_crtc *crtc,
5962                            intel_clock_t *reduced_clock,
5963                            int num_connectors)
5964{
5965        struct drm_device *dev = crtc->base.dev;
5966        struct drm_i915_private *dev_priv = dev->dev_private;
5967        u32 dpll;
5968        struct dpll *clock = &crtc->config.dpll;
5969
5970        i9xx_update_pll_dividers(crtc, reduced_clock);
5971
5972        dpll = DPLL_VGA_MODE_DIS;
5973
5974        if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
5975                dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5976        } else {
5977                if (clock->p1 == 2)
5978                        dpll |= PLL_P1_DIVIDE_BY_TWO;
5979                else
5980                        dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5981                if (clock->p2 == 4)
5982                        dpll |= PLL_P2_DIVIDE_BY_4;
5983        }
5984
5985        if (!IS_I830(dev) && intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
5986                dpll |= DPLL_DVO_2X_MODE;
5987
5988        if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5989                 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5990                dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5991        else
5992                dpll |= PLL_REF_INPUT_DREFCLK;
5993
5994        dpll |= DPLL_VCO_ENABLE;
5995        crtc->config.dpll_hw_state.dpll = dpll;
5996}
5997
5998static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
5999{
6000        struct drm_device *dev = intel_crtc->base.dev;
6001        struct drm_i915_private *dev_priv = dev->dev_private;
6002        enum pipe pipe = intel_crtc->pipe;
6003        enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
6004        struct drm_display_mode *adjusted_mode =
6005                &intel_crtc->config.adjusted_mode;
6006        uint32_t crtc_vtotal, crtc_vblank_end;
6007        int vsyncshift = 0;
6008
6009        /* We need to be careful not to changed the adjusted mode, for otherwise
6010         * the hw state checker will get angry at the mismatch. */
6011        crtc_vtotal = adjusted_mode->crtc_vtotal;
6012        crtc_vblank_end = adjusted_mode->crtc_vblank_end;
6013
6014        if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
6015                /* the chip adds 2 halflines automatically */
6016                crtc_vtotal -= 1;
6017                crtc_vblank_end -= 1;
6018
6019                if (intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
6020                        vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
6021                else
6022                        vsyncshift = adjusted_mode->crtc_hsync_start -
6023                                adjusted_mode->crtc_htotal / 2;
6024                if (vsyncshift < 0)
6025                        vsyncshift += adjusted_mode->crtc_htotal;
6026        }
6027
6028        if (INTEL_INFO(dev)->gen > 3)
6029                I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
6030
6031        I915_WRITE(HTOTAL(cpu_transcoder),
6032                   (adjusted_mode->crtc_hdisplay - 1) |
6033                   ((adjusted_mode->crtc_htotal - 1) << 16));
6034        I915_WRITE(HBLANK(cpu_transcoder),
6035                   (adjusted_mode->crtc_hblank_start - 1) |
6036                   ((adjusted_mode->crtc_hblank_end - 1) << 16));
6037        I915_WRITE(HSYNC(cpu_transcoder),
6038                   (adjusted_mode->crtc_hsync_start - 1) |
6039                   ((adjusted_mode->crtc_hsync_end - 1) << 16));
6040
6041        I915_WRITE(VTOTAL(cpu_transcoder),
6042                   (adjusted_mode->crtc_vdisplay - 1) |
6043                   ((crtc_vtotal - 1) << 16));
6044        I915_WRITE(VBLANK(cpu_transcoder),
6045                   (adjusted_mode->crtc_vblank_start - 1) |
6046                   ((crtc_vblank_end - 1) << 16));
6047        I915_WRITE(VSYNC(cpu_transcoder),
6048                   (adjusted_mode->crtc_vsync_start - 1) |
6049                   ((adjusted_mode->crtc_vsync_end - 1) << 16));
6050
6051        /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
6052         * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
6053         * documented on the DDI_FUNC_CTL register description, EDP Input Select
6054         * bits. */
6055        if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
6056            (pipe == PIPE_B || pipe == PIPE_C))
6057                I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
6058
6059        /* pipesrc controls the size that is scaled from, which should
6060         * always be the user's requested size.
6061         */
6062        I915_WRITE(PIPESRC(pipe),
6063                   ((intel_crtc->config.pipe_src_w - 1) << 16) |
6064                   (intel_crtc->config.pipe_src_h - 1));
6065}
6066
6067static void intel_get_pipe_timings(struct intel_crtc *crtc,
6068                                   struct intel_crtc_config *pipe_config)
6069{
6070        struct drm_device *dev = crtc->base.dev;
6071        struct drm_i915_private *dev_priv = dev->dev_private;
6072        enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
6073        uint32_t tmp;
6074
6075        tmp = I915_READ(HTOTAL(cpu_transcoder));
6076        pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
6077        pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
6078        tmp = I915_READ(HBLANK(cpu_transcoder));
6079        pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
6080        pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
6081        tmp = I915_READ(HSYNC(cpu_transcoder));
6082        pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
6083        pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
6084
6085        tmp = I915_READ(VTOTAL(cpu_transcoder));
6086        pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
6087        pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
6088        tmp = I915_READ(VBLANK(cpu_transcoder));
6089        pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
6090        pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
6091        tmp = I915_READ(VSYNC(cpu_transcoder));
6092        pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
6093        pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
6094
6095        if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
6096                pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
6097                pipe_config->adjusted_mode.crtc_vtotal += 1;
6098                pipe_config->adjusted_mode.crtc_vblank_end += 1;
6099        }
6100
6101        tmp = I915_READ(PIPESRC(crtc->pipe));
6102        pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
6103        pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
6104
6105        pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
6106        pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
6107}
6108
6109void intel_mode_from_pipe_config(struct drm_display_mode *mode,
6110                                 struct intel_crtc_config *pipe_config)
6111{
6112        mode->hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
6113        mode->htotal = pipe_config->adjusted_mode.crtc_htotal;
6114        mode->hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
6115        mode->hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
6116
6117        mode->vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
6118        mode->vtotal = pipe_config->adjusted_mode.crtc_vtotal;
6119        mode->vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
6120        mode->vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
6121
6122        mode->flags = pipe_config->adjusted_mode.flags;
6123
6124        mode->clock = pipe_config->adjusted_mode.crtc_clock;
6125        mode->flags |= pipe_config->adjusted_mode.flags;
6126}
6127
6128static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
6129{
6130        struct drm_device *dev = intel_crtc->base.dev;
6131        struct drm_i915_private *dev_priv = dev->dev_private;
6132        uint32_t pipeconf;
6133
6134        pipeconf = 0;
6135
6136        if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
6137            (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
6138                pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
6139
6140        if (intel_crtc->config.double_wide)
6141                pipeconf |= PIPECONF_DOUBLE_WIDE;
6142
6143        /* only g4x and later have fancy bpc/dither controls */
6144        if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6145                /* Bspec claims that we can't use dithering for 30bpp pipes. */
6146                if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
6147                        pipeconf |= PIPECONF_DITHER_EN |
6148                                    PIPECONF_DITHER_TYPE_SP;
6149
6150                switch (intel_crtc->config.pipe_bpp) {
6151                case 18:
6152                        pipeconf |= PIPECONF_6BPC;
6153                        break;
6154                case 24:
6155                        pipeconf |= PIPECONF_8BPC;
6156                        break;
6157                case 30:
6158                        pipeconf |= PIPECONF_10BPC;
6159                        break;
6160                default:
6161                        /* Case prevented by intel_choose_pipe_bpp_dither. */
6162                        BUG();
6163                }
6164        }
6165
6166        if (HAS_PIPE_CXSR(dev)) {
6167                if (intel_crtc->lowfreq_avail) {
6168                        DRM_DEBUG_KMS("enabling CxSR downclocking\n");
6169                        pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
6170                } else {
6171                        DRM_DEBUG_KMS("disabling CxSR downclocking\n");
6172                }
6173        }
6174
6175        if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
6176                if (INTEL_INFO(dev)->gen < 4 ||
6177                    intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
6178                        pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
6179                else
6180                        pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
6181        } else
6182                pipeconf |= PIPECONF_PROGRESSIVE;
6183
6184        if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
6185                pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
6186
6187        I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
6188        POSTING_READ(PIPECONF(intel_crtc->pipe));
6189}
6190
6191static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
6192                              int x, int y,
6193                              struct drm_framebuffer *fb)
6194{
6195        struct drm_device *dev = crtc->dev;
6196        struct drm_i915_private *dev_priv = dev->dev_private;
6197        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6198        int refclk, num_connectors = 0;
6199        intel_clock_t clock, reduced_clock;
6200        bool ok, has_reduced_clock = false;
6201        bool is_lvds = false, is_dsi = false;
6202        struct intel_encoder *encoder;
6203        const intel_limit_t *limit;
6204
6205        for_each_encoder_on_crtc(dev, crtc, encoder) {
6206                switch (encoder->type) {
6207                case INTEL_OUTPUT_LVDS:
6208                        is_lvds = true;
6209                        break;
6210                case INTEL_OUTPUT_DSI:
6211                        is_dsi = true;
6212                        break;
6213                }
6214
6215                num_connectors++;
6216        }
6217
6218        if (is_dsi)
6219                return 0;
6220
6221        if (!intel_crtc->config.clock_set) {
6222                refclk = i9xx_get_refclk(crtc, num_connectors);
6223
6224                /*
6225                 * Returns a set of divisors for the desired target clock with
6226                 * the given refclk, or FALSE.  The returned values represent
6227                 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
6228                 * 2) / p1 / p2.
6229                 */
6230                limit = intel_limit(crtc, refclk);
6231                ok = dev_priv->display.find_dpll(limit, crtc,
6232                                                 intel_crtc->config.port_clock,
6233                                                 refclk, NULL, &clock);
6234                if (!ok) {
6235                        DRM_ERROR("Couldn't find PLL settings for mode!\n");
6236                        return -EINVAL;
6237                }
6238
6239                if (is_lvds && dev_priv->lvds_downclock_avail) {
6240                        /*
6241                         * Ensure we match the reduced clock's P to the target
6242                         * clock.  If the clocks don't match, we can't switch
6243                         * the display clock by using the FP0/FP1. In such case
6244                         * we will disable the LVDS downclock feature.
6245                         */
6246                        has_reduced_clock =
6247                                dev_priv->display.find_dpll(limit, crtc,
6248                                                            dev_priv->lvds_downclock,
6249                                                            refclk, &clock,
6250                                                            &reduced_clock);
6251                }
6252                /* Compat-code for transition, will disappear. */
6253                intel_crtc->config.dpll.n = clock.n;
6254                intel_crtc->config.dpll.m1 = clock.m1;
6255                intel_crtc->config.dpll.m2 = clock.m2;
6256                intel_crtc->config.dpll.p1 = clock.p1;
6257                intel_crtc->config.dpll.p2 = clock.p2;
6258        }
6259
6260        if (IS_GEN2(dev)) {
6261                i8xx_update_pll(intel_crtc,
6262                                has_reduced_clock ? &reduced_clock : NULL,
6263                                num_connectors);
6264        } else if (IS_CHERRYVIEW(dev)) {
6265                chv_update_pll(intel_crtc);
6266        } else if (IS_VALLEYVIEW(dev)) {
6267                vlv_update_pll(intel_crtc);
6268        } else {
6269                i9xx_update_pll(intel_crtc,
6270                                has_reduced_clock ? &reduced_clock : NULL,
6271                                num_connectors);
6272        }
6273
6274        return 0;
6275}
6276
6277static void i9xx_get_pfit_config(struct intel_crtc *crtc,
6278                                 struct intel_crtc_config *pipe_config)
6279{
6280        struct drm_device *dev = crtc->base.dev;
6281        struct drm_i915_private *dev_priv = dev->dev_private;
6282        uint32_t tmp;
6283
6284        if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
6285                return;
6286
6287        tmp = I915_READ(PFIT_CONTROL);
6288        if (!(tmp & PFIT_ENABLE))
6289                return;
6290
6291        /* Check whether the pfit is attached to our pipe. */
6292        if (INTEL_INFO(dev)->gen < 4) {
6293                if (crtc->pipe != PIPE_B)
6294                        return;
6295        } else {
6296                if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
6297                        return;
6298        }
6299
6300        pipe_config->gmch_pfit.control = tmp;
6301        pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
6302        if (INTEL_INFO(dev)->gen < 5)
6303                pipe_config->gmch_pfit.lvds_border_bits =
6304                        I915_READ(LVDS) & LVDS_BORDER_ENABLE;
6305}
6306
6307static void vlv_crtc_clock_get(struct intel_crtc *crtc,
6308                               struct intel_crtc_config *pipe_config)
6309{
6310        struct drm_device *dev = crtc->base.dev;
6311        struct drm_i915_private *dev_priv = dev->dev_private;
6312        int pipe = pipe_config->cpu_transcoder;
6313        intel_clock_t clock;
6314        u32 mdiv;
6315        int refclk = 100000;
6316
6317        /* In case of MIPI DPLL will not even be used */
6318        if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
6319                return;
6320
6321        mutex_lock(&dev_priv->dpio_lock);
6322        mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
6323        mutex_unlock(&dev_priv->dpio_lock);
6324
6325        clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
6326        clock.m2 = mdiv & DPIO_M2DIV_MASK;
6327        clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
6328        clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
6329        clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
6330
6331        vlv_clock(refclk, &clock);
6332
6333        /* clock.dot is the fast clock */
6334        pipe_config->port_clock = clock.dot / 5;
6335}
6336
6337static void i9xx_get_plane_config(struct intel_crtc *crtc,
6338                                  struct intel_plane_config *plane_config)
6339{
6340        struct drm_device *dev = crtc->base.dev;
6341        struct drm_i915_private *dev_priv = dev->dev_private;
6342        u32 val, base, offset;
6343        int pipe = crtc->pipe, plane = crtc->plane;
6344        int fourcc, pixel_format;
6345        int aligned_height;
6346
6347        crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
6348        if (!crtc->base.primary->fb) {
6349                DRM_DEBUG_KMS("failed to alloc fb\n");
6350                return;
6351        }
6352
6353        val = I915_READ(DSPCNTR(plane));
6354
6355        if (INTEL_INFO(dev)->gen >= 4)
6356                if (val & DISPPLANE_TILED)
6357                        plane_config->tiled = true;
6358
6359        pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
6360        fourcc = intel_format_to_fourcc(pixel_format);
6361        crtc->base.primary->fb->pixel_format = fourcc;
6362        crtc->base.primary->fb->bits_per_pixel =
6363                drm_format_plane_cpp(fourcc, 0) * 8;
6364
6365        if (INTEL_INFO(dev)->gen >= 4) {
6366                if (plane_config->tiled)
6367                        offset = I915_READ(DSPTILEOFF(plane));
6368                else
6369                        offset = I915_READ(DSPLINOFF(plane));
6370                base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6371        } else {
6372                base = I915_READ(DSPADDR(plane));
6373        }
6374        plane_config->base = base;
6375
6376        val = I915_READ(PIPESRC(pipe));
6377        crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
6378        crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
6379
6380        val = I915_READ(DSPSTRIDE(pipe));
6381        crtc->base.primary->fb->pitches[0] = val & 0xffffffc0;
6382
6383        aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
6384                                            plane_config->tiled);
6385
6386        plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
6387                                        aligned_height);
6388
6389        DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
6390                      pipe, plane, crtc->base.primary->fb->width,
6391                      crtc->base.primary->fb->height,
6392                      crtc->base.primary->fb->bits_per_pixel, base,
6393                      crtc->base.primary->fb->pitches[0],
6394                      plane_config->size);
6395
6396}
6397
6398static void chv_crtc_clock_get(struct intel_crtc *crtc,
6399                               struct intel_crtc_config *pipe_config)
6400{
6401        struct drm_device *dev = crtc->base.dev;
6402        struct drm_i915_private *dev_priv = dev->dev_private;
6403        int pipe = pipe_config->cpu_transcoder;
6404        enum dpio_channel port = vlv_pipe_to_channel(pipe);
6405        intel_clock_t clock;
6406        u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
6407        int refclk = 100000;
6408
6409        mutex_lock(&dev_priv->dpio_lock);
6410        cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
6411        pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
6412        pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
6413        pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
6414        mutex_unlock(&dev_priv->dpio_lock);
6415
6416        clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
6417        clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
6418        clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
6419        clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
6420        clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
6421
6422        chv_clock(refclk, &clock);
6423
6424        /* clock.dot is the fast clock */
6425        pipe_config->port_clock = clock.dot / 5;
6426}
6427
6428static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
6429                                 struct intel_crtc_config *pipe_config)
6430{
6431        struct drm_device *dev = crtc->base.dev;
6432        struct drm_i915_private *dev_priv = dev->dev_private;
6433        uint32_t tmp;
6434
6435        if (!intel_display_power_enabled(dev_priv,
6436                                         POWER_DOMAIN_PIPE(crtc->pipe)))
6437                return false;
6438
6439        pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6440        pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6441
6442        tmp = I915_READ(PIPECONF(crtc->pipe));
6443        if (!(tmp & PIPECONF_ENABLE))
6444                return false;
6445
6446        if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6447                switch (tmp & PIPECONF_BPC_MASK) {
6448                case PIPECONF_6BPC:
6449                        pipe_config->pipe_bpp = 18;
6450                        break;
6451                case PIPECONF_8BPC:
6452                        pipe_config->pipe_bpp = 24;
6453                        break;
6454                case PIPECONF_10BPC:
6455                        pipe_config->pipe_bpp = 30;
6456                        break;
6457                default:
6458                        break;
6459                }
6460        }
6461
6462        if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
6463                pipe_config->limited_color_range = true;
6464
6465        if (INTEL_INFO(dev)->gen < 4)
6466                pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
6467
6468        intel_get_pipe_timings(crtc, pipe_config);
6469
6470        i9xx_get_pfit_config(crtc, pipe_config);
6471
6472        if (INTEL_INFO(dev)->gen >= 4) {
6473                tmp = I915_READ(DPLL_MD(crtc->pipe));
6474                pipe_config->pixel_multiplier =
6475                        ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
6476                         >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
6477                pipe_config->dpll_hw_state.dpll_md = tmp;
6478        } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6479                tmp = I915_READ(DPLL(crtc->pipe));
6480                pipe_config->pixel_multiplier =
6481                        ((tmp & SDVO_MULTIPLIER_MASK)
6482                         >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
6483        } else {
6484                /* Note that on i915G/GM the pixel multiplier is in the sdvo
6485                 * port and will be fixed up in the encoder->get_config
6486                 * function. */
6487                pipe_config->pixel_multiplier = 1;
6488        }
6489        pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
6490        if (!IS_VALLEYVIEW(dev)) {
6491                /*
6492                 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
6493                 * on 830. Filter it out here so that we don't
6494                 * report errors due to that.
6495                 */
6496                if (IS_I830(dev))
6497                        pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
6498
6499                pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
6500                pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
6501        } else {
6502                /* Mask out read-only status bits. */
6503                pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
6504                                                     DPLL_PORTC_READY_MASK |
6505                                                     DPLL_PORTB_READY_MASK);
6506        }
6507
6508        if (IS_CHERRYVIEW(dev))
6509                chv_crtc_clock_get(crtc, pipe_config);
6510        else if (IS_VALLEYVIEW(dev))
6511                vlv_crtc_clock_get(crtc, pipe_config);
6512        else
6513                i9xx_crtc_clock_get(crtc, pipe_config);
6514
6515        return true;
6516}
6517
6518static void ironlake_init_pch_refclk(struct drm_device *dev)
6519{
6520        struct drm_i915_private *dev_priv = dev->dev_private;
6521        struct intel_encoder *encoder;
6522        u32 val, final;
6523        bool has_lvds = false;
6524        bool has_cpu_edp = false;
6525        bool has_panel = false;
6526        bool has_ck505 = false;
6527        bool can_ssc = false;
6528
6529        /* We need to take the global config into account */
6530        for_each_intel_encoder(dev, encoder) {
6531                switch (encoder->type) {
6532                case INTEL_OUTPUT_LVDS:
6533                        has_panel = true;
6534                        has_lvds = true;
6535                        break;
6536                case INTEL_OUTPUT_EDP:
6537                        has_panel = true;
6538                        if (enc_to_dig_port(&encoder->base)->port == PORT_A)
6539                                has_cpu_edp = true;
6540                        break;
6541                }
6542        }
6543
6544        if (HAS_PCH_IBX(dev)) {
6545                has_ck505 = dev_priv->vbt.display_clock_mode;
6546                can_ssc = has_ck505;
6547        } else {
6548                has_ck505 = false;
6549                can_ssc = true;
6550        }
6551
6552        DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
6553                      has_panel, has_lvds, has_ck505);
6554
6555        /* Ironlake: try to setup display ref clock before DPLL
6556         * enabling. This is only under driver's control after
6557         * PCH B stepping, previous chipset stepping should be
6558         * ignoring this setting.
6559         */
6560        val = I915_READ(PCH_DREF_CONTROL);
6561
6562        /* As we must carefully and slowly disable/enable each source in turn,
6563         * compute the final state we want first and check if we need to
6564         * make any changes at all.
6565         */
6566        final = val;
6567        final &= ~DREF_NONSPREAD_SOURCE_MASK;
6568        if (has_ck505)
6569                final |= DREF_NONSPREAD_CK505_ENABLE;
6570        else
6571                final |= DREF_NONSPREAD_SOURCE_ENABLE;
6572
6573        final &= ~DREF_SSC_SOURCE_MASK;
6574        final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6575        final &= ~DREF_SSC1_ENABLE;
6576
6577        if (has_panel) {
6578                final |= DREF_SSC_SOURCE_ENABLE;
6579
6580                if (intel_panel_use_ssc(dev_priv) && can_ssc)
6581                        final |= DREF_SSC1_ENABLE;
6582
6583                if (has_cpu_edp) {
6584                        if (intel_panel_use_ssc(dev_priv) && can_ssc)
6585                                final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6586                        else
6587                                final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6588                } else
6589                        final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6590        } else {
6591                final |= DREF_SSC_SOURCE_DISABLE;
6592                final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6593        }
6594
6595        if (final == val)
6596                return;
6597
6598        /* Always enable nonspread source */
6599        val &= ~DREF_NONSPREAD_SOURCE_MASK;
6600
6601        if (has_ck505)
6602                val |= DREF_NONSPREAD_CK505_ENABLE;
6603        else
6604                val |= DREF_NONSPREAD_SOURCE_ENABLE;
6605
6606        if (has_panel) {
6607                val &= ~DREF_SSC_SOURCE_MASK;
6608                val |= DREF_SSC_SOURCE_ENABLE;
6609
6610                /* SSC must be turned on before enabling the CPU output  */
6611                if (intel_panel_use_ssc(dev_priv) && can_ssc) {
6612                        DRM_DEBUG_KMS("Using SSC on panel\n");
6613                        val |= DREF_SSC1_ENABLE;
6614                } else
6615                        val &= ~DREF_SSC1_ENABLE;
6616
6617                /* Get SSC going before enabling the outputs */
6618                I915_WRITE(PCH_DREF_CONTROL, val);
6619                POSTING_READ(PCH_DREF_CONTROL);
6620                udelay(200);
6621
6622                val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6623
6624                /* Enable CPU source on CPU attached eDP */
6625                if (has_cpu_edp) {
6626                        if (intel_panel_use_ssc(dev_priv) && can_ssc) {
6627                                DRM_DEBUG_KMS("Using SSC on eDP\n");
6628                                val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6629                        } else
6630                                val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6631                } else
6632                        val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6633
6634                I915_WRITE(PCH_DREF_CONTROL, val);
6635                POSTING_READ(PCH_DREF_CONTROL);
6636                udelay(200);
6637        } else {
6638                DRM_DEBUG_KMS("Disabling SSC entirely\n");
6639
6640                val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6641
6642                /* Turn off CPU output */
6643                val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6644
6645                I915_WRITE(PCH_DREF_CONTROL, val);
6646                POSTING_READ(PCH_DREF_CONTROL);
6647                udelay(200);
6648
6649                /* Turn off the SSC source */
6650                val &= ~DREF_SSC_SOURCE_MASK;
6651                val |= DREF_SSC_SOURCE_DISABLE;
6652
6653                /* Turn off SSC1 */
6654                val &= ~DREF_SSC1_ENABLE;
6655
6656                I915_WRITE(PCH_DREF_CONTROL, val);
6657                POSTING_READ(PCH_DREF_CONTROL);
6658                udelay(200);
6659        }
6660
6661        BUG_ON(val != final);
6662}
6663
6664static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
6665{
6666        uint32_t tmp;
6667
6668        tmp = I915_READ(SOUTH_CHICKEN2);
6669        tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
6670        I915_WRITE(SOUTH_CHICKEN2, tmp);
6671
6672        if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
6673                               FDI_MPHY_IOSFSB_RESET_STATUS, 100))
6674                DRM_ERROR("FDI mPHY reset assert timeout\n");
6675
6676        tmp = I915_READ(SOUTH_CHICKEN2);
6677        tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
6678        I915_WRITE(SOUTH_CHICKEN2, tmp);
6679
6680        if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
6681                                FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
6682                DRM_ERROR("FDI mPHY reset de-assert timeout\n");
6683}
6684
6685/* WaMPhyProgramming:hsw */
6686static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
6687{
6688        uint32_t tmp;
6689
6690        tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
6691        tmp &= ~(0xFF << 24);
6692        tmp |= (0x12 << 24);
6693        intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
6694
6695        tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
6696        tmp |= (1 << 11);
6697        intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
6698
6699        tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
6700        tmp |= (1 << 11);
6701        intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
6702
6703        tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
6704        tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6705        intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
6706
6707        tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
6708        tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6709        intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
6710
6711        tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
6712        tmp &= ~(7 << 13);
6713        tmp |= (5 << 13);
6714        intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
6715
6716        tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
6717        tmp &= ~(7 << 13);
6718        tmp |= (5 << 13);
6719        intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
6720
6721        tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
6722        tmp &= ~0xFF;
6723        tmp |= 0x1C;
6724        intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
6725
6726        tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
6727        tmp &= ~0xFF;
6728        tmp |= 0x1C;
6729        intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
6730
6731        tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
6732        tmp &= ~(0xFF << 16);
6733        tmp |= (0x1C << 16);
6734        intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
6735
6736        tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
6737        tmp &= ~(0xFF << 16);
6738        tmp |= (0x1C << 16);
6739        intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
6740
6741        tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
6742        tmp |= (1 << 27);
6743        intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
6744
6745        tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
6746        tmp |= (1 << 27);
6747        intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
6748
6749        tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
6750        tmp &= ~(0xF << 28);
6751        tmp |= (4 << 28);
6752        intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
6753
6754        tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
6755        tmp &= ~(0xF << 28);
6756        tmp |= (4 << 28);
6757        intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
6758}
6759
6760/* Implements 3 different sequences from BSpec chapter "Display iCLK
6761 * Programming" based on the parameters passed:
6762 * - Sequence to enable CLKOUT_DP
6763 * - Sequence to enable CLKOUT_DP without spread
6764 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
6765 */
6766static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
6767                                 bool with_fdi)
6768{
6769        struct drm_i915_private *dev_priv = dev->dev_private;
6770        uint32_t reg, tmp;
6771
6772        if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
6773                with_spread = true;
6774        if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
6775                 with_fdi, "LP PCH doesn't have FDI\n"))
6776                with_fdi = false;
6777
6778        mutex_lock(&dev_priv->dpio_lock);
6779
6780        tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6781        tmp &= ~SBI_SSCCTL_DISABLE;
6782        tmp |= SBI_SSCCTL_PATHALT;
6783        intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6784
6785        udelay(24);
6786
6787        if (with_spread) {
6788                tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6789                tmp &= ~SBI_SSCCTL_PATHALT;
6790                intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6791
6792                if (with_fdi) {
6793                        lpt_reset_fdi_mphy(dev_priv);
6794                        lpt_program_fdi_mphy(dev_priv);
6795                }
6796        }
6797
6798        reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6799               SBI_GEN0 : SBI_DBUFF0;
6800        tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6801        tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6802        intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
6803
6804        mutex_unlock(&dev_priv->dpio_lock);
6805}
6806
6807/* Sequence to disable CLKOUT_DP */
6808static void lpt_disable_clkout_dp(struct drm_device *dev)
6809{
6810        struct drm_i915_private *dev_priv = dev->dev_private;
6811        uint32_t reg, tmp;
6812
6813        mutex_lock(&dev_priv->dpio_lock);
6814
6815        reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6816               SBI_GEN0 : SBI_DBUFF0;
6817        tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6818        tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6819        intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
6820
6821        tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6822        if (!(tmp & SBI_SSCCTL_DISABLE)) {
6823                if (!(tmp & SBI_SSCCTL_PATHALT)) {
6824                        tmp |= SBI_SSCCTL_PATHALT;
6825                        intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6826                        udelay(32);
6827                }
6828                tmp |= SBI_SSCCTL_DISABLE;
6829                intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6830        }
6831
6832        mutex_unlock(&dev_priv->dpio_lock);
6833}
6834
6835static void lpt_init_pch_refclk(struct drm_device *dev)
6836{
6837        struct intel_encoder *encoder;
6838        bool has_vga = false;
6839
6840        for_each_intel_encoder(dev, encoder) {
6841                switch (encoder->type) {
6842                case INTEL_OUTPUT_ANALOG:
6843                        has_vga = true;
6844                        break;
6845                }
6846        }
6847
6848        if (has_vga)
6849                lpt_enable_clkout_dp(dev, true, true);
6850        else
6851                lpt_disable_clkout_dp(dev);
6852}
6853
6854/*
6855 * Initialize reference clocks when the driver loads
6856 */
6857void intel_init_pch_refclk(struct drm_device *dev)
6858{
6859        if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
6860                ironlake_init_pch_refclk(dev);
6861        else if (HAS_PCH_LPT(dev))
6862                lpt_init_pch_refclk(dev);
6863}
6864
6865static int ironlake_get_refclk(struct drm_crtc *crtc)
6866{
6867        struct drm_device *dev = crtc->dev;
6868        struct drm_i915_private *dev_priv = dev->dev_private;
6869        struct intel_encoder *encoder;
6870        int num_connectors = 0;
6871        bool is_lvds = false;
6872
6873        for_each_encoder_on_crtc(dev, crtc, encoder) {
6874                switch (encoder->type) {
6875                case INTEL_OUTPUT_LVDS:
6876                        is_lvds = true;
6877                        break;
6878                }
6879                num_connectors++;
6880        }
6881
6882        if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
6883                DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
6884                              dev_priv->vbt.lvds_ssc_freq);
6885                return dev_priv->vbt.lvds_ssc_freq;
6886        }
6887
6888        return 120000;
6889}
6890
6891static void ironlake_set_pipeconf(struct drm_crtc *crtc)
6892{
6893        struct drm_i915_private *dev_priv = crtc->dev->dev_private;
6894        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6895        int pipe = intel_crtc->pipe;
6896        uint32_t val;
6897
6898        val = 0;
6899
6900        switch (intel_crtc->config.pipe_bpp) {
6901        case 18:
6902                val |= PIPECONF_6BPC;
6903                break;
6904        case 24:
6905                val |= PIPECONF_8BPC;
6906                break;
6907        case 30:
6908                val |= PIPECONF_10BPC;
6909                break;
6910        case 36:
6911                val |= PIPECONF_12BPC;
6912                break;
6913        default:
6914                /* Case prevented by intel_choose_pipe_bpp_dither. */
6915                BUG();
6916        }
6917
6918        if (intel_crtc->config.dither)
6919                val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6920
6921        if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
6922                val |= PIPECONF_INTERLACED_ILK;
6923        else
6924                val |= PIPECONF_PROGRESSIVE;
6925
6926        if (intel_crtc->config.limited_color_range)
6927                val |= PIPECONF_COLOR_RANGE_SELECT;
6928
6929        I915_WRITE(PIPECONF(pipe), val);
6930        POSTING_READ(PIPECONF(pipe));
6931}
6932
6933/*
6934 * Set up the pipe CSC unit.
6935 *
6936 * Currently only full range RGB to limited range RGB conversion
6937 * is supported, but eventually this should handle various
6938 * RGB<->YCbCr scenarios as well.
6939 */
6940static void intel_set_pipe_csc(struct drm_crtc *crtc)
6941{
6942        struct drm_device *dev = crtc->dev;
6943        struct drm_i915_private *dev_priv = dev->dev_private;
6944        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6945        int pipe = intel_crtc->pipe;
6946        uint16_t coeff = 0x7800; /* 1.0 */
6947
6948        /*
6949         * TODO: Check what kind of values actually come out of the pipe
6950         * with these coeff/postoff values and adjust to get the best
6951         * accuracy. Perhaps we even need to take the bpc value into
6952         * consideration.
6953         */
6954
6955        if (intel_crtc->config.limited_color_range)
6956                coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
6957
6958        /*
6959         * GY/GU and RY/RU should be the other way around according
6960         * to BSpec, but reality doesn't agree. Just set them up in
6961         * a way that results in the correct picture.
6962         */
6963        I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
6964        I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
6965
6966        I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
6967        I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
6968
6969        I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
6970        I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
6971
6972        I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
6973        I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
6974        I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
6975
6976        if (INTEL_INFO(dev)->gen > 6) {
6977                uint16_t postoff = 0;
6978
6979                if (intel_crtc->config.limited_color_range)
6980                        postoff = (16 * (1 << 12) / 255) & 0x1fff;
6981
6982                I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
6983                I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
6984                I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
6985
6986                I915_WRITE(PIPE_CSC_MODE(pipe), 0);
6987        } else {
6988                uint32_t mode = CSC_MODE_YUV_TO_RGB;
6989
6990                if (intel_crtc->config.limited_color_range)
6991                        mode |= CSC_BLACK_SCREEN_OFFSET;
6992
6993                I915_WRITE(PIPE_CSC_MODE(pipe), mode);
6994        }
6995}
6996
6997static void haswell_set_pipeconf(struct drm_crtc *crtc)
6998{
6999        struct drm_device *dev = crtc->dev;
7000        struct drm_i915_private *dev_priv = dev->dev_private;
7001        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7002        enum pipe pipe = intel_crtc->pipe;
7003        enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
7004        uint32_t val;
7005
7006        val = 0;
7007
7008        if (IS_HASWELL(dev) && intel_crtc->config.dither)
7009                val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7010
7011        if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
7012                val |= PIPECONF_INTERLACED_ILK;
7013        else
7014                val |= PIPECONF_PROGRESSIVE;
7015
7016        I915_WRITE(PIPECONF(cpu_transcoder), val);
7017        POSTING_READ(PIPECONF(cpu_transcoder));
7018
7019        I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
7020        POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
7021
7022        if (IS_BROADWELL(dev)) {
7023                val = 0;
7024
7025                switch (intel_crtc->config.pipe_bpp) {
7026                case 18:
7027                        val |= PIPEMISC_DITHER_6_BPC;
7028                        break;
7029                case 24:
7030                        val |= PIPEMISC_DITHER_8_BPC;
7031                        break;
7032                case 30:
7033                        val |= PIPEMISC_DITHER_10_BPC;
7034                        break;
7035                case 36:
7036                        val |= PIPEMISC_DITHER_12_BPC;
7037                        break;
7038                default:
7039                        /* Case prevented by pipe_config_set_bpp. */
7040                        BUG();
7041                }
7042
7043                if (intel_crtc->config.dither)
7044                        val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
7045
7046                I915_WRITE(PIPEMISC(pipe), val);
7047        }
7048}
7049
7050static bool ironlake_compute_clocks(struct drm_crtc *crtc,
7051                                    intel_clock_t *clock,
7052                                    bool *has_reduced_clock,
7053                                    intel_clock_t *reduced_clock)
7054{
7055        struct drm_device *dev = crtc->dev;
7056        struct drm_i915_private *dev_priv = dev->dev_private;
7057        struct intel_encoder *intel_encoder;
7058        int refclk;
7059        const intel_limit_t *limit;
7060        bool ret, is_lvds = false;
7061
7062        for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
7063                switch (intel_encoder->type) {
7064                case INTEL_OUTPUT_LVDS:
7065                        is_lvds = true;
7066                        break;
7067                }
7068        }
7069
7070        refclk = ironlake_get_refclk(crtc);
7071
7072        /*
7073         * Returns a set of divisors for the desired target clock with the given
7074         * refclk, or FALSE.  The returned values represent the clock equation:
7075         * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
7076         */
7077        limit = intel_limit(crtc, refclk);
7078        ret = dev_priv->display.find_dpll(limit, crtc,
7079                                          to_intel_crtc(crtc)->config.port_clock,
7080                                          refclk, NULL, clock);
7081        if (!ret)
7082                return false;
7083
7084        if (is_lvds && dev_priv->lvds_downclock_avail) {
7085                /*
7086                 * Ensure we match the reduced clock's P to the target clock.
7087                 * If the clocks don't match, we can't switch the display clock
7088                 * by using the FP0/FP1. In such case we will disable the LVDS
7089                 * downclock feature.
7090                */
7091                *has_reduced_clock =
7092                        dev_priv->display.find_dpll(limit, crtc,
7093                                                    dev_priv->lvds_downclock,
7094                                                    refclk, clock,
7095                                                    reduced_clock);
7096        }
7097
7098        return true;
7099}
7100
7101int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
7102{
7103        /*
7104         * Account for spread spectrum to avoid
7105         * oversubscribing the link. Max center spread
7106         * is 2.5%; use 5% for safety's sake.
7107         */
7108        u32 bps = target_clock * bpp * 21 / 20;
7109        return DIV_ROUND_UP(bps, link_bw * 8);
7110}
7111
7112static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
7113{
7114        return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
7115}
7116
7117static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
7118                                      u32 *fp,
7119                                      intel_clock_t *reduced_clock, u32 *fp2)
7120{
7121        struct drm_crtc *crtc = &intel_crtc->base;
7122        struct drm_device *dev = crtc->dev;
7123        struct drm_i915_private *dev_priv = dev->dev_private;
7124        struct intel_encoder *intel_encoder;
7125        uint32_t dpll;
7126        int factor, num_connectors = 0;
7127        bool is_lvds = false, is_sdvo = false;
7128
7129        for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
7130                switch (intel_encoder->type) {
7131                case INTEL_OUTPUT_LVDS:
7132                        is_lvds = true;
7133                        break;
7134                case INTEL_OUTPUT_SDVO:
7135                case INTEL_OUTPUT_HDMI:
7136                        is_sdvo = true;
7137                        break;
7138                }
7139
7140                num_connectors++;
7141        }
7142
7143        /* Enable autotuning of the PLL clock (if permissible) */
7144        factor = 21;
7145        if (is_lvds) {
7146                if ((intel_panel_use_ssc(dev_priv) &&
7147                     dev_priv->vbt.lvds_ssc_freq == 100000) ||
7148                    (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
7149                        factor = 25;
7150        } else if (intel_crtc->config.sdvo_tv_clock)
7151                factor = 20;
7152
7153        if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
7154                *fp |= FP_CB_TUNE;
7155
7156        if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
7157                *fp2 |= FP_CB_TUNE;
7158
7159        dpll = 0;
7160
7161        if (is_lvds)
7162                dpll |= DPLLB_MODE_LVDS;
7163        else
7164                dpll |= DPLLB_MODE_DAC_SERIAL;
7165
7166        dpll |= (intel_crtc->config.pixel_multiplier - 1)
7167                << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
7168
7169        if (is_sdvo)
7170                dpll |= DPLL_SDVO_HIGH_SPEED;
7171        if (intel_crtc->config.has_dp_encoder)
7172                dpll |= DPLL_SDVO_HIGH_SPEED;
7173
7174        /* compute bitmask from p1 value */
7175        dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7176        /* also FPA1 */
7177        dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7178
7179        switch (intel_crtc->config.dpll.p2) {
7180        case 5:
7181                dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7182                break;
7183        case 7:
7184                dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7185                break;
7186        case 10:
7187                dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7188                break;
7189        case 14:
7190                dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7191                break;
7192        }
7193
7194        if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7195                dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7196        else
7197                dpll |= PLL_REF_INPUT_DREFCLK;
7198
7199        return dpll | DPLL_VCO_ENABLE;
7200}
7201
7202static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
7203                                  int x, int y,
7204                                  struct drm_framebuffer *fb)
7205{
7206        struct drm_device *dev = crtc->dev;
7207        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7208        int num_connectors = 0;
7209        intel_clock_t clock, reduced_clock;
7210        u32 dpll = 0, fp = 0, fp2 = 0;
7211        bool ok, has_reduced_clock = false;
7212        bool is_lvds = false;
7213        struct intel_encoder *encoder;
7214        struct intel_shared_dpll *pll;
7215
7216        for_each_encoder_on_crtc(dev, crtc, encoder) {
7217                switch (encoder->type) {
7218                case INTEL_OUTPUT_LVDS:
7219                        is_lvds = true;
7220                        break;
7221                }
7222
7223                num_connectors++;
7224        }
7225
7226        WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
7227             "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
7228
7229        ok = ironlake_compute_clocks(crtc, &clock,
7230                                     &has_reduced_clock, &reduced_clock);
7231        if (!ok && !intel_crtc->config.clock_set) {
7232                DRM_ERROR("Couldn't find PLL settings for mode!\n");
7233                return -EINVAL;
7234        }
7235        /* Compat-code for transition, will disappear. */
7236        if (!intel_crtc->config.clock_set) {
7237                intel_crtc->config.dpll.n = clock.n;
7238                intel_crtc->config.dpll.m1 = clock.m1;
7239                intel_crtc->config.dpll.m2 = clock.m2;
7240                intel_crtc->config.dpll.p1 = clock.p1;
7241                intel_crtc->config.dpll.p2 = clock.p2;
7242        }
7243
7244        /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
7245        if (intel_crtc->config.has_pch_encoder) {
7246                fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
7247                if (has_reduced_clock)
7248                        fp2 = i9xx_dpll_compute_fp(&reduced_clock);
7249
7250                dpll = ironlake_compute_dpll(intel_crtc,
7251                                             &fp, &reduced_clock,
7252                                             has_reduced_clock ? &fp2 : NULL);
7253
7254                intel_crtc->config.dpll_hw_state.dpll = dpll;
7255                intel_crtc->config.dpll_hw_state.fp0 = fp;
7256                if (has_reduced_clock)
7257                        intel_crtc->config.dpll_hw_state.fp1 = fp2;
7258                else
7259                        intel_crtc->config.dpll_hw_state.fp1 = fp;
7260
7261                pll = intel_get_shared_dpll(intel_crtc);
7262                if (pll == NULL) {
7263                        DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
7264                                         pipe_name(intel_crtc->pipe));
7265                        return -EINVAL;
7266                }
7267        } else
7268                intel_put_shared_dpll(intel_crtc);
7269
7270        if (is_lvds && has_reduced_clock && i915.powersave)
7271                intel_crtc->lowfreq_avail = true;
7272        else
7273                intel_crtc->lowfreq_avail = false;
7274
7275        return 0;
7276}
7277
7278static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
7279                                         struct intel_link_m_n *m_n)
7280{
7281        struct drm_device *dev = crtc->base.dev;
7282        struct drm_i915_private *dev_priv = dev->dev_private;
7283        enum pipe pipe = crtc->pipe;
7284
7285        m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
7286        m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
7287        m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
7288                & ~TU_SIZE_MASK;
7289        m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
7290        m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
7291                    & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7292}
7293
7294static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
7295                                         enum transcoder transcoder,
7296                                         struct intel_link_m_n *m_n,
7297                                         struct intel_link_m_n *m2_n2)
7298{
7299        struct drm_device *dev = crtc->base.dev;
7300        struct drm_i915_private *dev_priv = dev->dev_private;
7301        enum pipe pipe = crtc->pipe;
7302
7303        if (INTEL_INFO(dev)->gen >= 5) {
7304                m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
7305                m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
7306                m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
7307                        & ~TU_SIZE_MASK;
7308                m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
7309                m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
7310                            & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7311                /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
7312                 * gen < 8) and if DRRS is supported (to make sure the
7313                 * registers are not unnecessarily read).
7314                 */
7315                if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
7316                        crtc->config.has_drrs) {
7317                        m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
7318                        m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
7319                        m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
7320                                        & ~TU_SIZE_MASK;
7321                        m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
7322                        m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
7323                                        & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7324                }
7325        } else {
7326                m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
7327                m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
7328                m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
7329                        & ~TU_SIZE_MASK;
7330                m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
7331                m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
7332                            & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7333        }
7334}
7335
7336void intel_dp_get_m_n(struct intel_crtc *crtc,
7337                      struct intel_crtc_config *pipe_config)
7338{
7339        if (crtc->config.has_pch_encoder)
7340                intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
7341        else
7342                intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7343                                             &pipe_config->dp_m_n,
7344                                             &pipe_config->dp_m2_n2);
7345}
7346
7347static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
7348                                        struct intel_crtc_config *pipe_config)
7349{
7350        intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7351                                     &pipe_config->fdi_m_n, NULL);
7352}
7353
7354static void ironlake_get_pfit_config(struct intel_crtc *crtc,
7355                                     struct intel_crtc_config *pipe_config)
7356{
7357        struct drm_device *dev = crtc->base.dev;
7358        struct drm_i915_private *dev_priv = dev->dev_private;
7359        uint32_t tmp;
7360
7361        tmp = I915_READ(PF_CTL(crtc->pipe));
7362
7363        if (tmp & PF_ENABLE) {
7364                pipe_config->pch_pfit.enabled = true;
7365                pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
7366                pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
7367
7368                /* We currently do not free assignements of panel fitters on
7369                 * ivb/hsw (since we don't use the higher upscaling modes which
7370                 * differentiates them) so just WARN about this case for now. */
7371                if (IS_GEN7(dev)) {
7372                        WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
7373                                PF_PIPE_SEL_IVB(crtc->pipe));
7374                }
7375        }
7376}
7377
7378static void ironlake_get_plane_config(struct intel_crtc *crtc,
7379                                      struct intel_plane_config *plane_config)
7380{
7381        struct drm_device *dev = crtc->base.dev;
7382        struct drm_i915_private *dev_priv = dev->dev_private;
7383        u32 val, base, offset;
7384        int pipe = crtc->pipe, plane = crtc->plane;
7385        int fourcc, pixel_format;
7386        int aligned_height;
7387
7388        crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
7389        if (!crtc->base.primary->fb) {
7390                DRM_DEBUG_KMS("failed to alloc fb\n");
7391                return;
7392        }
7393
7394        val = I915_READ(DSPCNTR(plane));
7395
7396        if (INTEL_INFO(dev)->gen >= 4)
7397                if (val & DISPPLANE_TILED)
7398                        plane_config->tiled = true;
7399
7400        pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7401        fourcc = intel_format_to_fourcc(pixel_format);
7402        crtc->base.primary->fb->pixel_format = fourcc;
7403        crtc->base.primary->fb->bits_per_pixel =
7404                drm_format_plane_cpp(fourcc, 0) * 8;
7405
7406        base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7407        if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7408                offset = I915_READ(DSPOFFSET(plane));
7409        } else {
7410                if (plane_config->tiled)
7411                        offset = I915_READ(DSPTILEOFF(plane));
7412                else
7413                        offset = I915_READ(DSPLINOFF(plane));
7414        }
7415        plane_config->base = base;
7416
7417        val = I915_READ(PIPESRC(pipe));
7418        crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
7419        crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
7420
7421        val = I915_READ(DSPSTRIDE(pipe));
7422        crtc->base.primary->fb->pitches[0] = val & 0xffffffc0;
7423
7424        aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
7425                                            plane_config->tiled);
7426
7427        plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
7428                                        aligned_height);
7429
7430        DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7431                      pipe, plane, crtc->base.primary->fb->width,
7432                      crtc->base.primary->fb->height,
7433                      crtc->base.primary->fb->bits_per_pixel, base,
7434                      crtc->base.primary->fb->pitches[0],
7435                      plane_config->size);
7436}
7437
7438static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
7439                                     struct intel_crtc_config *pipe_config)
7440{
7441        struct drm_device *dev = crtc->base.dev;
7442        struct drm_i915_private *dev_priv = dev->dev_private;
7443        uint32_t tmp;
7444
7445        if (!intel_display_power_enabled(dev_priv,
7446                                         POWER_DOMAIN_PIPE(crtc->pipe)))
7447                return false;
7448
7449        pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7450        pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7451
7452        tmp = I915_READ(PIPECONF(crtc->pipe));
7453        if (!(tmp & PIPECONF_ENABLE))
7454                return false;
7455
7456        switch (tmp & PIPECONF_BPC_MASK) {
7457        case PIPECONF_6BPC:
7458                pipe_config->pipe_bpp = 18;
7459                break;
7460        case PIPECONF_8BPC:
7461                pipe_config->pipe_bpp = 24;
7462                break;
7463        case PIPECONF_10BPC:
7464                pipe_config->pipe_bpp = 30;
7465                break;
7466        case PIPECONF_12BPC:
7467                pipe_config->pipe_bpp = 36;
7468                break;
7469        default:
7470                break;
7471        }
7472
7473        if (tmp & PIPECONF_COLOR_RANGE_SELECT)
7474                pipe_config->limited_color_range = true;
7475
7476        if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
7477                struct intel_shared_dpll *pll;
7478
7479                pipe_config->has_pch_encoder = true;
7480
7481                tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
7482                pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7483                                          FDI_DP_PORT_WIDTH_SHIFT) + 1;
7484
7485                ironlake_get_fdi_m_n_config(crtc, pipe_config);
7486
7487                if (HAS_PCH_IBX(dev_priv->dev)) {
7488                        pipe_config->shared_dpll =
7489                                (enum intel_dpll_id) crtc->pipe;
7490                } else {
7491                        tmp = I915_READ(PCH_DPLL_SEL);
7492                        if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
7493                                pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
7494                        else
7495                                pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
7496                }
7497
7498                pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7499
7500                WARN_ON(!pll->get_hw_state(dev_priv, pll,
7501                                           &pipe_config->dpll_hw_state));
7502
7503                tmp = pipe_config->dpll_hw_state.dpll;
7504                pipe_config->pixel_multiplier =
7505                        ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
7506                         >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
7507
7508                ironlake_pch_clock_get(crtc, pipe_config);
7509        } else {
7510                pipe_config->pixel_multiplier = 1;
7511        }
7512
7513        intel_get_pipe_timings(crtc, pipe_config);
7514
7515        ironlake_get_pfit_config(crtc, pipe_config);
7516
7517        return true;
7518}
7519
7520static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
7521{
7522        struct drm_device *dev = dev_priv->dev;
7523        struct intel_crtc *crtc;
7524
7525        for_each_intel_crtc(dev, crtc)
7526                WARN(crtc->active, "CRTC for pipe %c enabled\n",
7527                     pipe_name(crtc->pipe));
7528
7529        WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
7530        WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
7531        WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
7532        WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
7533        WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
7534        WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
7535             "CPU PWM1 enabled\n");
7536        if (IS_HASWELL(dev))
7537                WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
7538                     "CPU PWM2 enabled\n");
7539        WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
7540             "PCH PWM1 enabled\n");
7541        WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
7542             "Utility pin enabled\n");
7543        WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
7544
7545        /*
7546         * In theory we can still leave IRQs enabled, as long as only the HPD
7547         * interrupts remain enabled. We used to check for that, but since it's
7548         * gen-specific and since we only disable LCPLL after we fully disable
7549         * the interrupts, the check below should be enough.
7550         */
7551        WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
7552}
7553
7554static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
7555{
7556        struct drm_device *dev = dev_priv->dev;
7557
7558        if (IS_HASWELL(dev))
7559                return I915_READ(D_COMP_HSW);
7560        else
7561                return I915_READ(D_COMP_BDW);
7562}
7563
7564static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
7565{
7566        struct drm_device *dev = dev_priv->dev;
7567
7568        if (IS_HASWELL(dev)) {
7569                mutex_lock(&dev_priv->rps.hw_lock);
7570                if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
7571                                            val))
7572                        DRM_ERROR("Failed to write to D_COMP\n");
7573                mutex_unlock(&dev_priv->rps.hw_lock);
7574        } else {
7575                I915_WRITE(D_COMP_BDW, val);
7576                POSTING_READ(D_COMP_BDW);
7577        }
7578}
7579
7580/*
7581 * This function implements pieces of two sequences from BSpec:
7582 * - Sequence for display software to disable LCPLL
7583 * - Sequence for display software to allow package C8+
7584 * The steps implemented here are just the steps that actually touch the LCPLL
7585 * register. Callers should take care of disabling all the display engine
7586 * functions, doing the mode unset, fixing interrupts, etc.
7587 */
7588static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
7589                              bool switch_to_fclk, bool allow_power_down)
7590{
7591        uint32_t val;
7592
7593        assert_can_disable_lcpll(dev_priv);
7594
7595        val = I915_READ(LCPLL_CTL);
7596
7597        if (switch_to_fclk) {
7598                val |= LCPLL_CD_SOURCE_FCLK;
7599                I915_WRITE(LCPLL_CTL, val);
7600
7601                if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
7602                                       LCPLL_CD_SOURCE_FCLK_DONE, 1))
7603                        DRM_ERROR("Switching to FCLK failed\n");
7604
7605                val = I915_READ(LCPLL_CTL);
7606        }
7607
7608        val |= LCPLL_PLL_DISABLE;
7609        I915_WRITE(LCPLL_CTL, val);
7610        POSTING_READ(LCPLL_CTL);
7611
7612        if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
7613                DRM_ERROR("LCPLL still locked\n");
7614
7615        val = hsw_read_dcomp(dev_priv);
7616        val |= D_COMP_COMP_DISABLE;
7617        hsw_write_dcomp(dev_priv, val);
7618        ndelay(100);
7619
7620        if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
7621                     1))
7622                DRM_ERROR("D_COMP RCOMP still in progress\n");
7623
7624        if (allow_power_down) {
7625                val = I915_READ(LCPLL_CTL);
7626                val |= LCPLL_POWER_DOWN_ALLOW;
7627                I915_WRITE(LCPLL_CTL, val);
7628                POSTING_READ(LCPLL_CTL);
7629        }
7630}
7631
7632/*
7633 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
7634 * source.
7635 */
7636static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
7637{
7638        uint32_t val;
7639        unsigned long irqflags;
7640
7641        val = I915_READ(LCPLL_CTL);
7642
7643        if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
7644                    LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
7645                return;
7646
7647        /*
7648         * Make sure we're not on PC8 state before disabling PC8, otherwise
7649         * we'll hang the machine. To prevent PC8 state, just enable force_wake.
7650         *
7651         * The other problem is that hsw_restore_lcpll() is called as part of
7652         * the runtime PM resume sequence, so we can't just call
7653         * gen6_gt_force_wake_get() because that function calls
7654         * intel_runtime_pm_get(), and we can't change the runtime PM refcount
7655         * while we are on the resume sequence. So to solve this problem we have
7656         * to call special forcewake code that doesn't touch runtime PM and
7657         * doesn't enable the forcewake delayed work.
7658         */
7659        spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7660        if (dev_priv->uncore.forcewake_count++ == 0)
7661                dev_priv->uncore.funcs.force_wake_get(dev_priv, FORCEWAKE_ALL);
7662        spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
7663
7664        if (val & LCPLL_POWER_DOWN_ALLOW) {
7665                val &= ~LCPLL_POWER_DOWN_ALLOW;
7666                I915_WRITE(LCPLL_CTL, val);
7667                POSTING_READ(LCPLL_CTL);
7668        }
7669
7670        val = hsw_read_dcomp(dev_priv);
7671        val |= D_COMP_COMP_FORCE;
7672        val &= ~D_COMP_COMP_DISABLE;
7673        hsw_write_dcomp(dev_priv, val);
7674
7675        val = I915_READ(LCPLL_CTL);
7676        val &= ~LCPLL_PLL_DISABLE;
7677        I915_WRITE(LCPLL_CTL, val);
7678
7679        if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
7680                DRM_ERROR("LCPLL not locked yet\n");
7681
7682        if (val & LCPLL_CD_SOURCE_FCLK) {
7683                val = I915_READ(LCPLL_CTL);
7684                val &= ~LCPLL_CD_SOURCE_FCLK;
7685                I915_WRITE(LCPLL_CTL, val);
7686
7687                if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
7688                                        LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
7689                        DRM_ERROR("Switching back to LCPLL failed\n");
7690        }
7691
7692        /* See the big comment above. */
7693        spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7694        if (--dev_priv->uncore.forcewake_count == 0)
7695                dev_priv->uncore.funcs.force_wake_put(dev_priv, FORCEWAKE_ALL);
7696        spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
7697}
7698
7699/*
7700 * Package states C8 and deeper are really deep PC states that can only be
7701 * reached when all the devices on the system allow it, so even if the graphics
7702 * device allows PC8+, it doesn't mean the system will actually get to these
7703 * states. Our driver only allows PC8+ when going into runtime PM.
7704 *
7705 * The requirements for PC8+ are that all the outputs are disabled, the power
7706 * well is disabled and most interrupts are disabled, and these are also
7707 * requirements for runtime PM. When these conditions are met, we manually do
7708 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
7709 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
7710 * hang the machine.
7711 *
7712 * When we really reach PC8 or deeper states (not just when we allow it) we lose
7713 * the state of some registers, so when we come back from PC8+ we need to
7714 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
7715 * need to take care of the registers kept by RC6. Notice that this happens even
7716 * if we don't put the device in PCI D3 state (which is what currently happens
7717 * because of the runtime PM support).
7718 *
7719 * For more, read "Display Sequences for Package C8" on the hardware
7720 * documentation.
7721 */
7722void hsw_enable_pc8(struct drm_i915_private *dev_priv)
7723{
7724        struct drm_device *dev = dev_priv->dev;
7725        uint32_t val;
7726
7727        DRM_DEBUG_KMS("Enabling package C8+\n");
7728
7729        if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7730                val = I915_READ(SOUTH_DSPCLK_GATE_D);
7731                val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7732                I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7733        }
7734
7735        lpt_disable_clkout_dp(dev);
7736        hsw_disable_lcpll(dev_priv, true, true);
7737}
7738
7739void hsw_disable_pc8(struct drm_i915_private *dev_priv)
7740{
7741        struct drm_device *dev = dev_priv->dev;
7742        uint32_t val;
7743
7744        DRM_DEBUG_KMS("Disabling package C8+\n");
7745
7746        hsw_restore_lcpll(dev_priv);
7747        lpt_init_pch_refclk(dev);
7748
7749        if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7750                val = I915_READ(SOUTH_DSPCLK_GATE_D);
7751                val |= PCH_LP_PARTITION_LEVEL_DISABLE;
7752                I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7753        }
7754
7755        intel_prepare_ddi(dev);
7756}
7757
7758static void snb_modeset_global_resources(struct drm_device *dev)
7759{
7760        modeset_update_crtc_power_domains(dev);
7761}
7762
7763static void haswell_modeset_global_resources(struct drm_device *dev)
7764{
7765        modeset_update_crtc_power_domains(dev);
7766}
7767
7768static int haswell_crtc_mode_set(struct drm_crtc *crtc,
7769                                 int x, int y,
7770                                 struct drm_framebuffer *fb)
7771{
7772        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7773
7774        if (!intel_ddi_pll_select(intel_crtc))
7775                return -EINVAL;
7776
7777        intel_crtc->lowfreq_avail = false;
7778
7779        return 0;
7780}
7781
7782static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
7783                                enum port port,
7784                                struct intel_crtc_config *pipe_config)
7785{
7786        pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
7787
7788        switch (pipe_config->ddi_pll_sel) {
7789        case PORT_CLK_SEL_WRPLL1:
7790                pipe_config->shared_dpll = DPLL_ID_WRPLL1;
7791                break;
7792        case PORT_CLK_SEL_WRPLL2:
7793                pipe_config->shared_dpll = DPLL_ID_WRPLL2;
7794                break;
7795        }
7796}
7797
7798static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
7799                                       struct intel_crtc_config *pipe_config)
7800{
7801        struct drm_device *dev = crtc->base.dev;
7802        struct drm_i915_private *dev_priv = dev->dev_private;
7803        struct intel_shared_dpll *pll;
7804        enum port port;
7805        uint32_t tmp;
7806
7807        tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
7808
7809        port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
7810
7811        haswell_get_ddi_pll(dev_priv, port, pipe_config);
7812
7813        if (pipe_config->shared_dpll >= 0) {
7814                pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7815
7816                WARN_ON(!pll->get_hw_state(dev_priv, pll,
7817                                           &pipe_config->dpll_hw_state));
7818        }
7819
7820        /*
7821         * Haswell has only FDI/PCH transcoder A. It is which is connected to
7822         * DDI E. So just check whether this pipe is wired to DDI E and whether
7823         * the PCH transcoder is on.
7824         */
7825        if ((port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
7826                pipe_config->has_pch_encoder = true;
7827
7828                tmp = I915_READ(FDI_RX_CTL(PIPE_A));
7829                pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7830                                          FDI_DP_PORT_WIDTH_SHIFT) + 1;
7831
7832                ironlake_get_fdi_m_n_config(crtc, pipe_config);
7833        }
7834}
7835
7836static bool haswell_get_pipe_config(struct intel_crtc *crtc,
7837                                    struct intel_crtc_config *pipe_config)
7838{
7839        struct drm_device *dev = crtc->base.dev;
7840        struct drm_i915_private *dev_priv = dev->dev_private;
7841        enum intel_display_power_domain pfit_domain;
7842        uint32_t tmp;
7843
7844        if (!intel_display_power_enabled(dev_priv,
7845                                         POWER_DOMAIN_PIPE(crtc->pipe)))
7846                return false;
7847
7848        pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7849        pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7850
7851        tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
7852        if (tmp & TRANS_DDI_FUNC_ENABLE) {
7853                enum pipe trans_edp_pipe;
7854                switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
7855                default:
7856                        WARN(1, "unknown pipe linked to edp transcoder\n");
7857                case TRANS_DDI_EDP_INPUT_A_ONOFF:
7858                case TRANS_DDI_EDP_INPUT_A_ON:
7859                        trans_edp_pipe = PIPE_A;
7860                        break;
7861                case TRANS_DDI_EDP_INPUT_B_ONOFF:
7862                        trans_edp_pipe = PIPE_B;
7863                        break;
7864                case TRANS_DDI_EDP_INPUT_C_ONOFF:
7865                        trans_edp_pipe = PIPE_C;
7866                        break;
7867                }
7868
7869                if (trans_edp_pipe == crtc->pipe)
7870                        pipe_config->cpu_transcoder = TRANSCODER_EDP;
7871        }
7872
7873        if (!intel_display_power_enabled(dev_priv,
7874                        POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
7875                return false;
7876
7877        tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
7878        if (!(tmp & PIPECONF_ENABLE))
7879                return false;
7880
7881        haswell_get_ddi_port_state(crtc, pipe_config);
7882
7883        intel_get_pipe_timings(crtc, pipe_config);
7884
7885        pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
7886        if (intel_display_power_enabled(dev_priv, pfit_domain))
7887                ironlake_get_pfit_config(crtc, pipe_config);
7888
7889        if (IS_HASWELL(dev))
7890                pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
7891                        (I915_READ(IPS_CTL) & IPS_ENABLE);
7892
7893        if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
7894                pipe_config->pixel_multiplier =
7895                        I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
7896        } else {
7897                pipe_config->pixel_multiplier = 1;
7898        }
7899
7900        return true;
7901}
7902
7903static struct {
7904        int clock;
7905        u32 config;
7906} hdmi_audio_clock[] = {
7907        { DIV_ROUND_UP(25200 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_25175 },
7908        { 25200, AUD_CONFIG_PIXEL_CLOCK_HDMI_25200 }, /* default per bspec */
7909        { 27000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27000 },
7910        { 27000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27027 },
7911        { 54000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54000 },
7912        { 54000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54054 },
7913        { DIV_ROUND_UP(74250 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_74176 },
7914        { 74250, AUD_CONFIG_PIXEL_CLOCK_HDMI_74250 },
7915        { DIV_ROUND_UP(148500 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_148352 },
7916        { 148500, AUD_CONFIG_PIXEL_CLOCK_HDMI_148500 },
7917};
7918
7919/* get AUD_CONFIG_PIXEL_CLOCK_HDMI_* value for mode */
7920static u32 audio_config_hdmi_pixel_clock(struct drm_display_mode *mode)
7921{
7922        int i;
7923
7924        for (i = 0; i < ARRAY_SIZE(hdmi_audio_clock); i++) {
7925                if (mode->clock == hdmi_audio_clock[i].clock)
7926                        break;
7927        }
7928
7929        if (i == ARRAY_SIZE(hdmi_audio_clock)) {
7930                DRM_DEBUG_KMS("HDMI audio pixel clock setting for %d not found, falling back to defaults\n", mode->clock);
7931                i = 1;
7932        }
7933
7934        DRM_DEBUG_KMS("Configuring HDMI audio for pixel clock %d (0x%08x)\n",
7935                      hdmi_audio_clock[i].clock,
7936                      hdmi_audio_clock[i].config);
7937
7938        return hdmi_audio_clock[i].config;
7939}
7940
7941static bool intel_eld_uptodate(struct drm_connector *connector,
7942                               int reg_eldv, uint32_t bits_eldv,
7943                               int reg_elda, uint32_t bits_elda,
7944                               int reg_edid)
7945{
7946        struct drm_i915_private *dev_priv = connector->dev->dev_private;
7947        uint8_t *eld = connector->eld;
7948        uint32_t i;
7949
7950        i = I915_READ(reg_eldv);
7951        i &= bits_eldv;
7952
7953        if (!eld[0])
7954                return !i;
7955
7956        if (!i)
7957                return false;
7958
7959        i = I915_READ(reg_elda);
7960        i &= ~bits_elda;
7961        I915_WRITE(reg_elda, i);
7962
7963        for (i = 0; i < eld[2]; i++)
7964                if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
7965                        return false;
7966
7967        return true;
7968}
7969
7970static void g4x_write_eld(struct drm_connector *connector,
7971                          struct drm_crtc *crtc,
7972                          struct drm_display_mode *mode)
7973{
7974        struct drm_i915_private *dev_priv = connector->dev->dev_private;
7975        uint8_t *eld = connector->eld;
7976        uint32_t eldv;
7977        uint32_t len;
7978        uint32_t i;
7979
7980        i = I915_READ(G4X_AUD_VID_DID);
7981
7982        if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
7983                eldv = G4X_ELDV_DEVCL_DEVBLC;
7984        else
7985                eldv = G4X_ELDV_DEVCTG;
7986
7987        if (intel_eld_uptodate(connector,
7988                               G4X_AUD_CNTL_ST, eldv,
7989                               G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
7990                               G4X_HDMIW_HDMIEDID))
7991                return;
7992
7993        i = I915_READ(G4X_AUD_CNTL_ST);
7994        i &= ~(eldv | G4X_ELD_ADDR);
7995        len = (i >> 9) & 0x1f;          /* ELD buffer size */
7996        I915_WRITE(G4X_AUD_CNTL_ST, i);
7997
7998        if (!eld[0])
7999                return;
8000
8001        len = min_t(uint8_t, eld[2], len);
8002        DRM_DEBUG_DRIVER("ELD size %d\n", len);
8003        for (i = 0; i < len; i++)
8004                I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
8005
8006        i = I915_READ(G4X_AUD_CNTL_ST);
8007        i |= eldv;
8008        I915_WRITE(G4X_AUD_CNTL_ST, i);
8009}
8010
8011static void haswell_write_eld(struct drm_connector *connector,
8012                              struct drm_crtc *crtc,
8013                              struct drm_display_mode *mode)
8014{
8015        struct drm_i915_private *dev_priv = connector->dev->dev_private;
8016        uint8_t *eld = connector->eld;
8017        uint32_t eldv;
8018        uint32_t i;
8019        int len;
8020        int pipe = to_intel_crtc(crtc)->pipe;
8021        int tmp;
8022
8023        int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
8024        int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
8025        int aud_config = HSW_AUD_CFG(pipe);
8026        int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
8027
8028        /* Audio output enable */
8029        DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
8030        tmp = I915_READ(aud_cntrl_st2);
8031        tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
8032        I915_WRITE(aud_cntrl_st2, tmp);
8033        POSTING_READ(aud_cntrl_st2);
8034
8035        assert_pipe_disabled(dev_priv, to_intel_crtc(crtc)->pipe);
8036
8037        /* Set ELD valid state */
8038        tmp = I915_READ(aud_cntrl_st2);
8039        DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%08x\n", tmp);
8040        tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
8041        I915_WRITE(aud_cntrl_st2, tmp);
8042        tmp = I915_READ(aud_cntrl_st2);
8043        DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%08x\n", tmp);
8044
8045        /* Enable HDMI mode */
8046        tmp = I915_READ(aud_config);
8047        DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%08x\n", tmp);
8048        /* clear N_programing_enable and N_value_index */
8049        tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
8050        I915_WRITE(aud_config, tmp);
8051
8052        DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
8053
8054        eldv = AUDIO_ELD_VALID_A << (pipe * 4);
8055
8056        if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
8057                DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
8058                eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
8059                I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
8060        } else {
8061                I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
8062        }
8063
8064        if (intel_eld_uptodate(connector,
8065                               aud_cntrl_st2, eldv,
8066                               aud_cntl_st, IBX_ELD_ADDRESS,
8067                               hdmiw_hdmiedid))
8068                return;
8069
8070        i = I915_READ(aud_cntrl_st2);
8071        i &= ~eldv;
8072        I915_WRITE(aud_cntrl_st2, i);
8073
8074        if (!eld[0])
8075                return;
8076
8077        i = I915_READ(aud_cntl_st);
8078        i &= ~IBX_ELD_ADDRESS;
8079        I915_WRITE(aud_cntl_st, i);
8080        i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
8081        DRM_DEBUG_DRIVER("port num:%d\n", i);
8082
8083        len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
8084        DRM_DEBUG_DRIVER("ELD size %d\n", len);
8085        for (i = 0; i < len; i++)
8086                I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
8087
8088        i = I915_READ(aud_cntrl_st2);
8089        i |= eldv;
8090        I915_WRITE(aud_cntrl_st2, i);
8091
8092}
8093
8094static void ironlake_write_eld(struct drm_connector *connector,
8095                               struct drm_crtc *crtc,
8096                               struct drm_display_mode *mode)
8097{
8098        struct drm_i915_private *dev_priv = connector->dev->dev_private;
8099        uint8_t *eld = connector->eld;
8100        uint32_t eldv;
8101        uint32_t i;
8102        int len;
8103        int hdmiw_hdmiedid;
8104        int aud_config;
8105        int aud_cntl_st;
8106        int aud_cntrl_st2;
8107        int pipe = to_intel_crtc(crtc)->pipe;
8108
8109        if (HAS_PCH_IBX(connector->dev)) {
8110                hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
8111                aud_config = IBX_AUD_CFG(pipe);
8112                aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
8113                aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
8114        } else if (IS_VALLEYVIEW(connector->dev)) {
8115                hdmiw_hdmiedid = VLV_HDMIW_HDMIEDID(pipe);
8116                aud_config = VLV_AUD_CFG(pipe);
8117                aud_cntl_st = VLV_AUD_CNTL_ST(pipe);
8118                aud_cntrl_st2 = VLV_AUD_CNTL_ST2;
8119        } else {
8120                hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
8121                aud_config = CPT_AUD_CFG(pipe);
8122                aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
8123                aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
8124        }
8125
8126        DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
8127
8128        if (IS_VALLEYVIEW(connector->dev))  {
8129                struct intel_encoder *intel_encoder;
8130                struct intel_digital_port *intel_dig_port;
8131
8132                intel_encoder = intel_attached_encoder(connector);
8133                intel_dig_port = enc_to_dig_port(&intel_encoder->base);
8134                i = intel_dig_port->port;
8135        } else {
8136                i = I915_READ(aud_cntl_st);
8137                i = (i >> 29) & DIP_PORT_SEL_MASK;
8138                /* DIP_Port_Select, 0x1 = PortB */
8139        }
8140
8141        if (!i) {
8142                DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
8143                /* operate blindly on all ports */
8144                eldv = IBX_ELD_VALIDB;
8145                eldv |= IBX_ELD_VALIDB << 4;
8146                eldv |= IBX_ELD_VALIDB << 8;
8147        } else {
8148                DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
8149                eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
8150        }
8151
8152        if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
8153                DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
8154                eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
8155                I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
8156        } else {
8157                I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
8158        }
8159
8160        if (intel_eld_uptodate(connector,
8161                               aud_cntrl_st2, eldv,
8162                               aud_cntl_st, IBX_ELD_ADDRESS,
8163                               hdmiw_hdmiedid))
8164                return;
8165
8166        i = I915_READ(aud_cntrl_st2);
8167        i &= ~eldv;
8168        I915_WRITE(aud_cntrl_st2, i);
8169
8170        if (!eld[0])
8171                return;
8172
8173        i = I915_READ(aud_cntl_st);
8174        i &= ~IBX_ELD_ADDRESS;
8175        I915_WRITE(aud_cntl_st, i);
8176
8177        len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
8178        DRM_DEBUG_DRIVER("ELD size %d\n", len);
8179        for (i = 0; i < len; i++)
8180                I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
8181
8182        i = I915_READ(aud_cntrl_st2);
8183        i |= eldv;
8184        I915_WRITE(aud_cntrl_st2, i);
8185}
8186
8187void intel_write_eld(struct drm_encoder *encoder,
8188                     struct drm_display_mode *mode)
8189{
8190        struct drm_crtc *crtc = encoder->crtc;
8191        struct drm_connector *connector;
8192        struct drm_device *dev = encoder->dev;
8193        struct drm_i915_private *dev_priv = dev->dev_private;
8194
8195        connector = drm_select_eld(encoder, mode);
8196        if (!connector)
8197                return;
8198
8199        DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8200                         connector->base.id,
8201                         connector->name,
8202                         connector->encoder->base.id,
8203                         connector->encoder->name);
8204
8205        connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
8206
8207        if (dev_priv->display.write_eld)
8208                dev_priv->display.write_eld(connector, crtc, mode);
8209}
8210
8211static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
8212{
8213        struct drm_device *dev = crtc->dev;
8214        struct drm_i915_private *dev_priv = dev->dev_private;
8215        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8216        uint32_t cntl = 0, size = 0;
8217
8218        if (base) {
8219                unsigned int width = intel_crtc->cursor_width;
8220                unsigned int height = intel_crtc->cursor_height;
8221                unsigned int stride = roundup_pow_of_two(width) * 4;
8222
8223                switch (stride) {
8224                default:
8225                        WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
8226                                  width, stride);
8227                        stride = 256;
8228                        /* fallthrough */
8229                case 256:
8230                case 512:
8231                case 1024:
8232                case 2048:
8233                        break;
8234                }
8235
8236                cntl |= CURSOR_ENABLE |
8237                        CURSOR_GAMMA_ENABLE |
8238                        CURSOR_FORMAT_ARGB |
8239                        CURSOR_STRIDE(stride);
8240
8241                size = (height << 12) | width;
8242        }
8243
8244        if (intel_crtc->cursor_cntl != 0 &&
8245            (intel_crtc->cursor_base != base ||
8246             intel_crtc->cursor_size != size ||
8247             intel_crtc->cursor_cntl != cntl)) {
8248                /* On these chipsets we can only modify the base/size/stride
8249                 * whilst the cursor is disabled.
8250                 */
8251                I915_WRITE(_CURACNTR, 0);
8252                POSTING_READ(_CURACNTR);
8253                intel_crtc->cursor_cntl = 0;
8254        }
8255
8256        if (intel_crtc->cursor_base != base)
8257                I915_WRITE(_CURABASE, base);
8258
8259        if (intel_crtc->cursor_size != size) {
8260                I915_WRITE(CURSIZE, size);
8261                intel_crtc->cursor_size = size;
8262        }
8263
8264        if (intel_crtc->cursor_cntl != cntl) {
8265                I915_WRITE(_CURACNTR, cntl);
8266                POSTING_READ(_CURACNTR);
8267                intel_crtc->cursor_cntl = cntl;
8268        }
8269}
8270
8271static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
8272{
8273        struct drm_device *dev = crtc->dev;
8274        struct drm_i915_private *dev_priv = dev->dev_private;
8275        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8276        int pipe = intel_crtc->pipe;
8277        uint32_t cntl;
8278
8279        cntl = 0;
8280        if (base) {
8281                cntl = MCURSOR_GAMMA_ENABLE;
8282                switch (intel_crtc->cursor_width) {
8283                        case 64:
8284                                cntl |= CURSOR_MODE_64_ARGB_AX;
8285                                break;
8286                        case 128:
8287                                cntl |= CURSOR_MODE_128_ARGB_AX;
8288                                break;
8289                        case 256:
8290                                cntl |= CURSOR_MODE_256_ARGB_AX;
8291                                break;
8292                        default:
8293                                WARN_ON(1);
8294                                return;
8295                }
8296                cntl |= pipe << 28; /* Connect to correct pipe */
8297        }
8298        if (IS_HASWELL(dev) || IS_BROADWELL(dev))
8299                cntl |= CURSOR_PIPE_CSC_ENABLE;
8300
8301        if (intel_crtc->cursor_cntl != cntl) {
8302                I915_WRITE(CURCNTR(pipe), cntl);
8303                POSTING_READ(CURCNTR(pipe));
8304                intel_crtc->cursor_cntl = cntl;
8305        }
8306
8307        /* and commit changes on next vblank */
8308        I915_WRITE(CURBASE(pipe), base);
8309        POSTING_READ(CURBASE(pipe));
8310}
8311
8312/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
8313static void intel_crtc_update_cursor(struct drm_crtc *crtc,
8314                                     bool on)
8315{
8316        struct drm_device *dev = crtc->dev;
8317        struct drm_i915_private *dev_priv = dev->dev_private;
8318        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8319        int pipe = intel_crtc->pipe;
8320        int x = crtc->cursor_x;
8321        int y = crtc->cursor_y;
8322        u32 base = 0, pos = 0;
8323
8324        if (on)
8325                base = intel_crtc->cursor_addr;
8326
8327        if (x >= intel_crtc->config.pipe_src_w)
8328                base = 0;
8329
8330        if (y >= intel_crtc->config.pipe_src_h)
8331                base = 0;
8332
8333        if (x < 0) {
8334                if (x + intel_crtc->cursor_width <= 0)
8335                        base = 0;
8336
8337                pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
8338                x = -x;
8339        }
8340        pos |= x << CURSOR_X_SHIFT;
8341
8342        if (y < 0) {
8343                if (y + intel_crtc->cursor_height <= 0)
8344                        base = 0;
8345
8346                pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
8347                y = -y;
8348        }
8349        pos |= y << CURSOR_Y_SHIFT;
8350
8351        if (base == 0 && intel_crtc->cursor_base == 0)
8352                return;
8353
8354        I915_WRITE(CURPOS(pipe), pos);
8355
8356        if (IS_845G(dev) || IS_I865G(dev))
8357                i845_update_cursor(crtc, base);
8358        else
8359                i9xx_update_cursor(crtc, base);
8360        intel_crtc->cursor_base = base;
8361}
8362
8363static bool cursor_size_ok(struct drm_device *dev,
8364                           uint32_t width, uint32_t height)
8365{
8366        if (width == 0 || height == 0)
8367                return false;
8368
8369        /*
8370         * 845g/865g are special in that they are only limited by
8371         * the width of their cursors, the height is arbitrary up to
8372         * the precision of the register. Everything else requires
8373         * square cursors, limited to a few power-of-two sizes.
8374         */
8375        if (IS_845G(dev) || IS_I865G(dev)) {
8376                if ((width & 63) != 0)
8377                        return false;
8378
8379                if (width > (IS_845G(dev) ? 64 : 512))
8380                        return false;
8381
8382                if (height > 1023)
8383                        return false;
8384        } else {
8385                switch (width | height) {
8386                case 256:
8387                case 128:
8388                        if (IS_GEN2(dev))
8389                                return false;
8390                case 64:
8391                        break;
8392                default:
8393                        return false;
8394                }
8395        }
8396
8397        return true;
8398}
8399
8400/*
8401 * intel_crtc_cursor_set_obj - Set cursor to specified GEM object
8402 *
8403 * Note that the object's reference will be consumed if the update fails.  If
8404 * the update succeeds, the reference of the old object (if any) will be
8405 * consumed.
8406 */
8407static int intel_crtc_cursor_set_obj(struct drm_crtc *crtc,
8408                                     struct drm_i915_gem_object *obj,
8409                                     uint32_t width, uint32_t height)
8410{
8411        struct drm_device *dev = crtc->dev;
8412        struct drm_i915_private *dev_priv = dev->dev_private;
8413        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8414        enum pipe pipe = intel_crtc->pipe;
8415        unsigned old_width, stride;
8416        uint32_t addr;
8417        int ret;
8418
8419        /* if we want to turn off the cursor ignore width and height */
8420        if (!obj) {
8421                DRM_DEBUG_KMS("cursor off\n");
8422                addr = 0;
8423                mutex_lock(&dev->struct_mutex);
8424                goto finish;
8425        }
8426
8427        /* Check for which cursor types we support */
8428        if (!cursor_size_ok(dev, width, height)) {
8429                DRM_DEBUG("Cursor dimension not supported\n");
8430                return -EINVAL;
8431        }
8432
8433        stride = roundup_pow_of_two(width) * 4;
8434        if (obj->base.size < stride * height) {
8435                DRM_DEBUG_KMS("buffer is too small\n");
8436                ret = -ENOMEM;
8437                goto fail;
8438        }
8439
8440        /* we only need to pin inside GTT if cursor is non-phy */
8441        mutex_lock(&dev->struct_mutex);
8442        if (!INTEL_INFO(dev)->cursor_needs_physical) {
8443                unsigned alignment;
8444
8445                if (obj->tiling_mode) {
8446                        DRM_DEBUG_KMS("cursor cannot be tiled\n");
8447                        ret = -EINVAL;
8448                        goto fail_locked;
8449                }
8450
8451                /*
8452                 * Global gtt pte registers are special registers which actually
8453                 * forward writes to a chunk of system memory. Which means that
8454                 * there is no risk that the register values disappear as soon
8455                 * as we call intel_runtime_pm_put(), so it is correct to wrap
8456                 * only the pin/unpin/fence and not more.
8457                 */
8458                intel_runtime_pm_get(dev_priv);
8459
8460                /* Note that the w/a also requires 2 PTE of padding following
8461                 * the bo. We currently fill all unused PTE with the shadow
8462                 * page and so we should always have valid PTE following the
8463                 * cursor preventing the VT-d warning.
8464                 */
8465                alignment = 0;
8466                if (need_vtd_wa(dev))
8467                        alignment = 64*1024;
8468
8469                ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
8470                if (ret) {
8471                        DRM_DEBUG_KMS("failed to move cursor bo into the GTT\n");
8472                        intel_runtime_pm_put(dev_priv);
8473                        goto fail_locked;
8474                }
8475
8476                ret = i915_gem_object_put_fence(obj);
8477                if (ret) {
8478                        DRM_DEBUG_KMS("failed to release fence for cursor");
8479                        intel_runtime_pm_put(dev_priv);
8480                        goto fail_unpin;
8481                }
8482
8483                addr = i915_gem_obj_ggtt_offset(obj);
8484
8485                intel_runtime_pm_put(dev_priv);
8486        } else {
8487                int align = IS_I830(dev) ? 16 * 1024 : 256;
8488                ret = i915_gem_object_attach_phys(obj, align);
8489                if (ret) {
8490                        DRM_DEBUG_KMS("failed to attach phys object\n");
8491                        goto fail_locked;
8492                }
8493                addr = obj->phys_handle->busaddr;
8494        }
8495
8496 finish:
8497        if (intel_crtc->cursor_bo) {
8498                if (!INTEL_INFO(dev)->cursor_needs_physical)
8499                        i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
8500        }
8501
8502        i915_gem_track_fb(intel_crtc->cursor_bo, obj,
8503                          INTEL_FRONTBUFFER_CURSOR(pipe));
8504        mutex_unlock(&dev->struct_mutex);
8505
8506        old_width = intel_crtc->cursor_width;
8507
8508        intel_crtc->cursor_addr = addr;
8509        intel_crtc->cursor_bo = obj;
8510        intel_crtc->cursor_width = width;
8511        intel_crtc->cursor_height = height;
8512
8513        if (intel_crtc->active) {
8514                if (old_width != width)
8515                        intel_update_watermarks(crtc);
8516                intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
8517        }
8518
8519        intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_CURSOR(pipe));
8520
8521        return 0;
8522fail_unpin:
8523        i915_gem_object_unpin_from_display_plane(obj);
8524fail_locked:
8525        mutex_unlock(&dev->struct_mutex);
8526fail:
8527        drm_gem_object_unreference_unlocked(&obj->base);
8528        return ret;
8529}
8530
8531static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
8532                                 u16 *blue, uint32_t start, uint32_t size)
8533{
8534        int end = (start + size > 256) ? 256 : start + size, i;
8535        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8536
8537        for (i = start; i < end; i++) {
8538                intel_crtc->lut_r[i] = red[i] >> 8;
8539                intel_crtc->lut_g[i] = green[i] >> 8;
8540                intel_crtc->lut_b[i] = blue[i] >> 8;
8541        }
8542
8543        intel_crtc_load_lut(crtc);
8544}
8545
8546/* VESA 640x480x72Hz mode to set on the pipe */
8547static struct drm_display_mode load_detect_mode = {
8548        DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
8549                 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
8550};
8551
8552struct drm_framebuffer *
8553__intel_framebuffer_create(struct drm_device *dev,
8554                           struct drm_mode_fb_cmd2 *mode_cmd,
8555                           struct drm_i915_gem_object *obj)
8556{
8557        struct intel_framebuffer *intel_fb;
8558        int ret;
8559
8560        intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8561        if (!intel_fb) {
8562                drm_gem_object_unreference_unlocked(&obj->base);
8563                return ERR_PTR(-ENOMEM);
8564        }
8565
8566        ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
8567        if (ret)
8568                goto err;
8569
8570        return &intel_fb->base;
8571err:
8572        drm_gem_object_unreference_unlocked(&obj->base);
8573        kfree(intel_fb);
8574
8575        return ERR_PTR(ret);
8576}
8577
8578static struct drm_framebuffer *
8579intel_framebuffer_create(struct drm_device *dev,
8580                         struct drm_mode_fb_cmd2 *mode_cmd,
8581                         struct drm_i915_gem_object *obj)
8582{
8583        struct drm_framebuffer *fb;
8584        int ret;
8585
8586        ret = i915_mutex_lock_interruptible(dev);
8587        if (ret)
8588                return ERR_PTR(ret);
8589        fb = __intel_framebuffer_create(dev, mode_cmd, obj);
8590        mutex_unlock(&dev->struct_mutex);
8591
8592        return fb;
8593}
8594
8595static u32
8596intel_framebuffer_pitch_for_width(int width, int bpp)
8597{
8598        u32 pitch = DIV_ROUND_UP(width * bpp, 8);
8599        return ALIGN(pitch, 64);
8600}
8601
8602static u32
8603intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
8604{
8605        u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
8606        return PAGE_ALIGN(pitch * mode->vdisplay);
8607}
8608
8609static struct drm_framebuffer *
8610intel_framebuffer_create_for_mode(struct drm_device *dev,
8611                                  struct drm_display_mode *mode,
8612                                  int depth, int bpp)
8613{
8614        struct drm_i915_gem_object *obj;
8615        struct drm_mode_fb_cmd2 mode_cmd = { 0 };
8616
8617        obj = i915_gem_alloc_object(dev,
8618                                    intel_framebuffer_size_for_mode(mode, bpp));
8619        if (obj == NULL)
8620                return ERR_PTR(-ENOMEM);
8621
8622        mode_cmd.width = mode->hdisplay;
8623        mode_cmd.height = mode->vdisplay;
8624        mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
8625                                                                bpp);
8626        mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
8627
8628        return intel_framebuffer_create(dev, &mode_cmd, obj);
8629}
8630
8631static struct drm_framebuffer *
8632mode_fits_in_fbdev(struct drm_device *dev,
8633                   struct drm_display_mode *mode)
8634{
8635#ifdef CONFIG_DRM_I915_FBDEV
8636        struct drm_i915_private *dev_priv = dev->dev_private;
8637        struct drm_i915_gem_object *obj;
8638        struct drm_framebuffer *fb;
8639
8640        if (!dev_priv->fbdev)
8641                return NULL;
8642
8643        if (!dev_priv->fbdev->fb)
8644                return NULL;
8645
8646        obj = dev_priv->fbdev->fb->obj;
8647        BUG_ON(!obj);
8648
8649        fb = &dev_priv->fbdev->fb->base;
8650        if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
8651                                                               fb->bits_per_pixel))
8652                return NULL;
8653
8654        if (obj->base.size < mode->vdisplay * fb->pitches[0])
8655                return NULL;
8656
8657        return fb;
8658#else
8659        return NULL;
8660#endif
8661}
8662
8663bool intel_get_load_detect_pipe(struct drm_connector *connector,
8664                                struct drm_display_mode *mode,
8665                                struct intel_load_detect_pipe *old,
8666                                struct drm_modeset_acquire_ctx *ctx)
8667{
8668        struct intel_crtc *intel_crtc;
8669        struct intel_encoder *intel_encoder =
8670                intel_attached_encoder(connector);
8671        struct drm_crtc *possible_crtc;
8672        struct drm_encoder *encoder = &intel_encoder->base;
8673        struct drm_crtc *crtc = NULL;
8674        struct drm_device *dev = encoder->dev;
8675        struct drm_framebuffer *fb;
8676        struct drm_mode_config *config = &dev->mode_config;
8677        int ret, i = -1;
8678
8679        DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8680                      connector->base.id, connector->name,
8681                      encoder->base.id, encoder->name);
8682
8683retry:
8684        ret = drm_modeset_lock(&config->connection_mutex, ctx);
8685        if (ret)
8686                goto fail_unlock;
8687
8688        /*
8689         * Algorithm gets a little messy:
8690         *
8691         *   - if the connector already has an assigned crtc, use it (but make
8692         *     sure it's on first)
8693         *
8694         *   - try to find the first unused crtc that can drive this connector,
8695         *     and use that if we find one
8696         */
8697
8698        /* See if we already have a CRTC for this connector */
8699        if (encoder->crtc) {
8700                crtc = encoder->crtc;
8701
8702                ret = drm_modeset_lock(&crtc->mutex, ctx);
8703                if (ret)
8704                        goto fail_unlock;
8705
8706                old->dpms_mode = connector->dpms;
8707                old->load_detect_temp = false;
8708
8709                /* Make sure the crtc and connector are running */
8710                if (connector->dpms != DRM_MODE_DPMS_ON)
8711                        connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8712
8713                return true;
8714        }
8715
8716        /* Find an unused one (if possible) */
8717        for_each_crtc(dev, possible_crtc) {
8718                i++;
8719                if (!(encoder->possible_crtcs & (1 << i)))
8720                        continue;
8721                if (possible_crtc->enabled)
8722                        continue;
8723                /* This can occur when applying the pipe A quirk on resume. */
8724                if (to_intel_crtc(possible_crtc)->new_enabled)
8725                        continue;
8726
8727                crtc = possible_crtc;
8728                break;
8729        }
8730
8731        /*
8732         * If we didn't find an unused CRTC, don't use any.
8733         */
8734        if (!crtc) {
8735                DRM_DEBUG_KMS("no pipe available for load-detect\n");
8736                goto fail_unlock;
8737        }
8738
8739        ret = drm_modeset_lock(&crtc->mutex, ctx);
8740        if (ret)
8741                goto fail_unlock;
8742        intel_encoder->new_crtc = to_intel_crtc(crtc);
8743        to_intel_connector(connector)->new_encoder = intel_encoder;
8744
8745        intel_crtc = to_intel_crtc(crtc);
8746        intel_crtc->new_enabled = true;
8747        intel_crtc->new_config = &intel_crtc->config;
8748        old->dpms_mode = connector->dpms;
8749        old->load_detect_temp = true;
8750        old->release_fb = NULL;
8751
8752        if (!mode)
8753                mode = &load_detect_mode;
8754
8755        /* We need a framebuffer large enough to accommodate all accesses
8756         * that the plane may generate whilst we perform load detection.
8757         * We can not rely on the fbcon either being present (we get called
8758         * during its initialisation to detect all boot displays, or it may
8759         * not even exist) or that it is large enough to satisfy the
8760         * requested mode.
8761         */
8762        fb = mode_fits_in_fbdev(dev, mode);
8763        if (fb == NULL) {
8764                DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
8765                fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
8766                old->release_fb = fb;
8767        } else
8768                DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
8769        if (IS_ERR(fb)) {
8770                DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
8771                goto fail;
8772        }
8773
8774        if (intel_set_mode(crtc, mode, 0, 0, fb)) {
8775                DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
8776                if (old->release_fb)
8777                        old->release_fb->funcs->destroy(old->release_fb);
8778                goto fail;
8779        }
8780
8781        /* let the connector get through one full cycle before testing */
8782        intel_wait_for_vblank(dev, intel_crtc->pipe);
8783        return true;
8784
8785 fail:
8786        intel_crtc->new_enabled = crtc->enabled;
8787        if (intel_crtc->new_enabled)
8788                intel_crtc->new_config = &intel_crtc->config;
8789        else
8790                intel_crtc->new_config = NULL;
8791fail_unlock:
8792        if (ret == -EDEADLK) {
8793                drm_modeset_backoff(ctx);
8794                goto retry;
8795        }
8796
8797        return false;
8798}
8799
8800void intel_release_load_detect_pipe(struct drm_connector *connector,
8801                                    struct intel_load_detect_pipe *old)
8802{
8803        struct intel_encoder *intel_encoder =
8804                intel_attached_encoder(connector);
8805        struct drm_encoder *encoder = &intel_encoder->base;
8806        struct drm_crtc *crtc = encoder->crtc;
8807        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8808
8809        DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8810                      connector->base.id, connector->name,
8811                      encoder->base.id, encoder->name);
8812
8813        if (old->load_detect_temp) {
8814                to_intel_connector(connector)->new_encoder = NULL;
8815                intel_encoder->new_crtc = NULL;
8816                intel_crtc->new_enabled = false;
8817                intel_crtc->new_config = NULL;
8818                intel_set_mode(crtc, NULL, 0, 0, NULL);
8819
8820                if (old->release_fb) {
8821                        drm_framebuffer_unregister_private(old->release_fb);
8822                        drm_framebuffer_unreference(old->release_fb);
8823                }
8824
8825                return;
8826        }
8827
8828        /* Switch crtc and encoder back off if necessary */
8829        if (old->dpms_mode != DRM_MODE_DPMS_ON)
8830                connector->funcs->dpms(connector, old->dpms_mode);
8831}
8832
8833static int i9xx_pll_refclk(struct drm_device *dev,
8834                           const struct intel_crtc_config *pipe_config)
8835{
8836        struct drm_i915_private *dev_priv = dev->dev_private;
8837        u32 dpll = pipe_config->dpll_hw_state.dpll;
8838
8839        if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
8840                return dev_priv->vbt.lvds_ssc_freq;
8841        else if (HAS_PCH_SPLIT(dev))
8842                return 120000;
8843        else if (!IS_GEN2(dev))
8844                return 96000;
8845        else
8846                return 48000;
8847}
8848
8849/* Returns the clock of the currently programmed mode of the given pipe. */
8850static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
8851                                struct intel_crtc_config *pipe_config)
8852{
8853        struct drm_device *dev = crtc->base.dev;
8854        struct drm_i915_private *dev_priv = dev->dev_private;
8855        int pipe = pipe_config->cpu_transcoder;
8856        u32 dpll = pipe_config->dpll_hw_state.dpll;
8857        u32 fp;
8858        intel_clock_t clock;
8859        int refclk = i9xx_pll_refclk(dev, pipe_config);
8860
8861        if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
8862                fp = pipe_config->dpll_hw_state.fp0;
8863        else
8864                fp = pipe_config->dpll_hw_state.fp1;
8865
8866        clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
8867        if (IS_PINEVIEW(dev)) {
8868                clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
8869                clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
8870        } else {
8871                clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
8872                clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
8873        }
8874
8875        if (!IS_GEN2(dev)) {
8876                if (IS_PINEVIEW(dev))
8877                        clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
8878                                DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
8879                else
8880                        clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
8881                               DPLL_FPA01_P1_POST_DIV_SHIFT);
8882
8883                switch (dpll & DPLL_MODE_MASK) {
8884                case DPLLB_MODE_DAC_SERIAL:
8885                        clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
8886                                5 : 10;
8887                        break;
8888                case DPLLB_MODE_LVDS:
8889                        clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
8890                                7 : 14;
8891                        break;
8892                default:
8893                        DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
8894                                  "mode\n", (int)(dpll & DPLL_MODE_MASK));
8895                        return;
8896                }
8897
8898                if (IS_PINEVIEW(dev))
8899                        pineview_clock(refclk, &clock);
8900                else
8901                        i9xx_clock(refclk, &clock);
8902        } else {
8903                u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
8904                bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
8905
8906                if (is_lvds) {
8907                        clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
8908                                       DPLL_FPA01_P1_POST_DIV_SHIFT);
8909
8910                        if (lvds & LVDS_CLKB_POWER_UP)
8911                                clock.p2 = 7;
8912                        else
8913                                clock.p2 = 14;
8914                } else {
8915                        if (dpll & PLL_P1_DIVIDE_BY_TWO)
8916                                clock.p1 = 2;
8917                        else {
8918                                clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
8919                                            DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
8920                        }
8921                        if (dpll & PLL_P2_DIVIDE_BY_4)
8922                                clock.p2 = 4;
8923                        else
8924                                clock.p2 = 2;
8925                }
8926
8927                i9xx_clock(refclk, &clock);
8928        }
8929
8930        /*
8931         * This value includes pixel_multiplier. We will use
8932         * port_clock to compute adjusted_mode.crtc_clock in the
8933         * encoder's get_config() function.
8934         */
8935        pipe_config->port_clock = clock.dot;
8936}
8937
8938int intel_dotclock_calculate(int link_freq,
8939                             const struct intel_link_m_n *m_n)
8940{
8941        /*
8942         * The calculation for the data clock is:
8943         * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
8944         * But we want to avoid losing precison if possible, so:
8945         * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
8946         *
8947         * and the link clock is simpler:
8948         * link_clock = (m * link_clock) / n
8949         */
8950
8951        if (!m_n->link_n)
8952                return 0;
8953
8954        return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
8955}
8956
8957static void ironlake_pch_clock_get(struct intel_crtc *crtc,
8958                                   struct intel_crtc_config *pipe_config)
8959{
8960        struct drm_device *dev = crtc->base.dev;
8961
8962        /* read out port_clock from the DPLL */
8963        i9xx_crtc_clock_get(crtc, pipe_config);
8964
8965        /*
8966         * This value does not include pixel_multiplier.
8967         * We will check that port_clock and adjusted_mode.crtc_clock
8968         * agree once we know their relationship in the encoder's
8969         * get_config() function.
8970         */
8971        pipe_config->adjusted_mode.crtc_clock =
8972                intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
8973                                         &pipe_config->fdi_m_n);
8974}
8975
8976/** Returns the currently programmed mode of the given pipe. */
8977struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
8978                                             struct drm_crtc *crtc)
8979{
8980        struct drm_i915_private *dev_priv = dev->dev_private;
8981        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8982        enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
8983        struct drm_display_mode *mode;
8984        struct intel_crtc_config pipe_config;
8985        int htot = I915_READ(HTOTAL(cpu_transcoder));
8986        int hsync = I915_READ(HSYNC(cpu_transcoder));
8987        int vtot = I915_READ(VTOTAL(cpu_transcoder));
8988        int vsync = I915_READ(VSYNC(cpu_transcoder));
8989        enum pipe pipe = intel_crtc->pipe;
8990
8991        mode = kzalloc(sizeof(*mode), GFP_KERNEL);
8992        if (!mode)
8993                return NULL;
8994
8995        /*
8996         * Construct a pipe_config sufficient for getting the clock info
8997         * back out of crtc_clock_get.
8998         *
8999         * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
9000         * to use a real value here instead.
9001         */
9002        pipe_config.cpu_transcoder = (enum transcoder) pipe;
9003        pipe_config.pixel_multiplier = 1;
9004        pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
9005        pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
9006        pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
9007        i9xx_crtc_clock_get(intel_crtc, &pipe_config);
9008
9009        mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
9010        mode->hdisplay = (htot & 0xffff) + 1;
9011        mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
9012        mode->hsync_start = (hsync & 0xffff) + 1;
9013        mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
9014        mode->vdisplay = (vtot & 0xffff) + 1;
9015        mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
9016        mode->vsync_start = (vsync & 0xffff) + 1;
9017        mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
9018
9019        drm_mode_set_name(mode);
9020
9021        return mode;
9022}
9023
9024static void intel_increase_pllclock(struct drm_device *dev,
9025                                    enum pipe pipe)
9026{
9027        struct drm_i915_private *dev_priv = dev->dev_private;
9028        int dpll_reg = DPLL(pipe);
9029        int dpll;
9030
9031        if (!HAS_GMCH_DISPLAY(dev))
9032                return;
9033
9034        if (!dev_priv->lvds_downclock_avail)
9035                return;
9036
9037        dpll = I915_READ(dpll_reg);
9038        if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
9039                DRM_DEBUG_DRIVER("upclocking LVDS\n");
9040
9041                assert_panel_unlocked(dev_priv, pipe);
9042
9043                dpll &= ~DISPLAY_RATE_SELECT_FPA1;
9044                I915_WRITE(dpll_reg, dpll);
9045                intel_wait_for_vblank(dev, pipe);
9046
9047                dpll = I915_READ(dpll_reg);
9048                if (dpll & DISPLAY_RATE_SELECT_FPA1)
9049                        DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
9050        }
9051}
9052
9053static void intel_decrease_pllclock(struct drm_crtc *crtc)
9054{
9055        struct drm_device *dev = crtc->dev;
9056        struct drm_i915_private *dev_priv = dev->dev_private;
9057        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9058
9059        if (!HAS_GMCH_DISPLAY(dev))
9060                return;
9061
9062        if (!dev_priv->lvds_downclock_avail)
9063                return;
9064
9065        /*
9066         * Since this is called by a timer, we should never get here in
9067         * the manual case.
9068         */
9069        if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
9070                int pipe = intel_crtc->pipe;
9071                int dpll_reg = DPLL(pipe);
9072                int dpll;
9073
9074                DRM_DEBUG_DRIVER("downclocking LVDS\n");
9075
9076                assert_panel_unlocked(dev_priv, pipe);
9077
9078                dpll = I915_READ(dpll_reg);
9079                dpll |= DISPLAY_RATE_SELECT_FPA1;
9080                I915_WRITE(dpll_reg, dpll);
9081                intel_wait_for_vblank(dev, pipe);
9082                dpll = I915_READ(dpll_reg);
9083                if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
9084                        DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
9085        }
9086
9087}
9088
9089void intel_mark_busy(struct drm_device *dev)
9090{
9091        struct drm_i915_private *dev_priv = dev->dev_private;
9092
9093        if (dev_priv->mm.busy)
9094                return;
9095
9096        intel_runtime_pm_get(dev_priv);
9097        i915_update_gfx_val(dev_priv);
9098        dev_priv->mm.busy = true;
9099}
9100
9101void intel_mark_idle(struct drm_device *dev)
9102{
9103        struct drm_i915_private *dev_priv = dev->dev_private;
9104        struct drm_crtc *crtc;
9105
9106        if (!dev_priv->mm.busy)
9107                return;
9108
9109        dev_priv->mm.busy = false;
9110
9111        if (!i915.powersave)
9112                goto out;
9113
9114        for_each_crtc(dev, crtc) {
9115                if (!crtc->primary->fb)
9116                        continue;
9117
9118                intel_decrease_pllclock(crtc);
9119        }
9120
9121        if (INTEL_INFO(dev)->gen >= 6)
9122                gen6_rps_idle(dev->dev_private);
9123
9124out:
9125        intel_runtime_pm_put(dev_priv);
9126}
9127
9128
9129/**
9130 * intel_mark_fb_busy - mark given planes as busy
9131 * @dev: DRM device
9132 * @frontbuffer_bits: bits for the affected planes
9133 * @ring: optional ring for asynchronous commands
9134 *
9135 * This function gets called every time the screen contents change. It can be
9136 * used to keep e.g. the update rate at the nominal refresh rate with DRRS.
9137 */
9138static void intel_mark_fb_busy(struct drm_device *dev,
9139                               unsigned frontbuffer_bits,
9140                               struct intel_engine_cs *ring)
9141{
9142        struct drm_i915_private *dev_priv = dev->dev_private;
9143        enum pipe pipe;
9144
9145        if (!i915.powersave)
9146                return;
9147
9148        for_each_pipe(dev_priv, pipe) {
9149                if (!(frontbuffer_bits & INTEL_FRONTBUFFER_ALL_MASK(pipe)))
9150                        continue;
9151
9152                intel_increase_pllclock(dev, pipe);
9153                if (ring && intel_fbc_enabled(dev))
9154                        ring->fbc_dirty = true;
9155        }
9156}
9157
9158/**
9159 * intel_fb_obj_invalidate - invalidate frontbuffer object
9160 * @obj: GEM object to invalidate
9161 * @ring: set for asynchronous rendering
9162 *
9163 * This function gets called every time rendering on the given object starts and
9164 * frontbuffer caching (fbc, low refresh rate for DRRS, panel self refresh) must
9165 * be invalidated. If @ring is non-NULL any subsequent invalidation will be delayed
9166 * until the rendering completes or a flip on this frontbuffer plane is
9167 * scheduled.
9168 */
9169void intel_fb_obj_invalidate(struct drm_i915_gem_object *obj,
9170                             struct intel_engine_cs *ring)
9171{
9172        struct drm_device *dev = obj->base.dev;
9173        struct drm_i915_private *dev_priv = dev->dev_private;
9174
9175        WARN_ON(!mutex_is_locked(&dev->struct_mutex));
9176
9177        if (!obj->frontbuffer_bits)
9178                return;
9179
9180        if (ring) {
9181                mutex_lock(&dev_priv->fb_tracking.lock);
9182                dev_priv->fb_tracking.busy_bits
9183                        |= obj->frontbuffer_bits;
9184                dev_priv->fb_tracking.flip_bits
9185                        &= ~obj->frontbuffer_bits;
9186                mutex_unlock(&dev_priv->fb_tracking.lock);
9187        }
9188
9189        intel_mark_fb_busy(dev, obj->frontbuffer_bits, ring);
9190
9191        intel_edp_psr_invalidate(dev, obj->frontbuffer_bits);
9192}
9193
9194/**
9195 * intel_frontbuffer_flush - flush frontbuffer
9196 * @dev: DRM device
9197 * @frontbuffer_bits: frontbuffer plane tracking bits
9198 *
9199 * This function gets called every time rendering on the given planes has
9200 * completed and frontbuffer caching can be started again. Flushes will get
9201 * delayed if they're blocked by some oustanding asynchronous rendering.
9202 *
9203 * Can be called without any locks held.
9204 */
9205void intel_frontbuffer_flush(struct drm_device *dev,
9206                             unsigned frontbuffer_bits)
9207{
9208        struct drm_i915_private *dev_priv = dev->dev_private;
9209
9210        /* Delay flushing when rings are still busy.*/
9211        mutex_lock(&dev_priv->fb_tracking.lock);
9212        frontbuffer_bits &= ~dev_priv->fb_tracking.busy_bits;
9213        mutex_unlock(&dev_priv->fb_tracking.lock);
9214
9215        intel_mark_fb_busy(dev, frontbuffer_bits, NULL);
9216
9217        intel_edp_psr_flush(dev, frontbuffer_bits);
9218
9219        /*
9220         * FIXME: Unconditional fbc flushing here is a rather gross hack and
9221         * needs to be reworked into a proper frontbuffer tracking scheme like
9222         * psr employs.
9223         */
9224        if (IS_BROADWELL(dev))
9225                gen8_fbc_sw_flush(dev, FBC_REND_CACHE_CLEAN);
9226}
9227
9228/**
9229 * intel_fb_obj_flush - flush frontbuffer object
9230 * @obj: GEM object to flush
9231 * @retire: set when retiring asynchronous rendering
9232 *
9233 * This function gets called every time rendering on the given object has
9234 * completed and frontbuffer caching can be started again. If @retire is true
9235 * then any delayed flushes will be unblocked.
9236 */
9237void intel_fb_obj_flush(struct drm_i915_gem_object *obj,
9238                        bool retire)
9239{
9240        struct drm_device *dev = obj->base.dev;
9241        struct drm_i915_private *dev_priv = dev->dev_private;
9242        unsigned frontbuffer_bits;
9243
9244        WARN_ON(!mutex_is_locked(&dev->struct_mutex));
9245
9246        if (!obj->frontbuffer_bits)
9247                return;
9248
9249        frontbuffer_bits = obj->frontbuffer_bits;
9250
9251        if (retire) {
9252                mutex_lock(&dev_priv->fb_tracking.lock);
9253                /* Filter out new bits since rendering started. */
9254                frontbuffer_bits &= dev_priv->fb_tracking.busy_bits;
9255
9256                dev_priv->fb_tracking.busy_bits &= ~frontbuffer_bits;
9257                mutex_unlock(&dev_priv->fb_tracking.lock);
9258        }
9259
9260        intel_frontbuffer_flush(dev, frontbuffer_bits);
9261}
9262
9263/**
9264 * intel_frontbuffer_flip_prepare - prepare asnychronous frontbuffer flip
9265 * @dev: DRM device
9266 * @frontbuffer_bits: frontbuffer plane tracking bits
9267 *
9268 * This function gets called after scheduling a flip on @obj. The actual
9269 * frontbuffer flushing will be delayed until completion is signalled with
9270 * intel_frontbuffer_flip_complete. If an invalidate happens in between this
9271 * flush will be cancelled.
9272 *
9273 * Can be called without any locks held.
9274 */
9275void intel_frontbuffer_flip_prepare(struct drm_device *dev,
9276                                    unsigned frontbuffer_bits)
9277{
9278        struct drm_i915_private *dev_priv = dev->dev_private;
9279
9280        mutex_lock(&dev_priv->fb_tracking.lock);
9281        dev_priv->fb_tracking.flip_bits
9282                |= frontbuffer_bits;
9283        mutex_unlock(&dev_priv->fb_tracking.lock);
9284}
9285
9286/**
9287 * intel_frontbuffer_flip_complete - complete asynchronous frontbuffer flush
9288 * @dev: DRM device
9289 * @frontbuffer_bits: frontbuffer plane tracking bits
9290 *
9291 * This function gets called after the flip has been latched and will complete
9292 * on the next vblank. It will execute the fush if it hasn't been cancalled yet.
9293 *
9294 * Can be called without any locks held.
9295 */
9296void intel_frontbuffer_flip_complete(struct drm_device *dev,
9297                                     unsigned frontbuffer_bits)
9298{
9299        struct drm_i915_private *dev_priv = dev->dev_private;
9300
9301        mutex_lock(&dev_priv->fb_tracking.lock);
9302        /* Mask any cancelled flips. */
9303        frontbuffer_bits &= dev_priv->fb_tracking.flip_bits;
9304        dev_priv->fb_tracking.flip_bits &= ~frontbuffer_bits;
9305        mutex_unlock(&dev_priv->fb_tracking.lock);
9306
9307        intel_frontbuffer_flush(dev, frontbuffer_bits);
9308}
9309
9310static void intel_crtc_destroy(struct drm_crtc *crtc)
9311{
9312        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9313        struct drm_device *dev = crtc->dev;
9314        struct intel_unpin_work *work;
9315        unsigned long flags;
9316
9317        spin_lock_irqsave(&dev->event_lock, flags);
9318        work = intel_crtc->unpin_work;
9319        intel_crtc->unpin_work = NULL;
9320        spin_unlock_irqrestore(&dev->event_lock, flags);
9321
9322        if (work) {
9323                cancel_work_sync(&work->work);
9324                kfree(work);
9325        }
9326
9327        drm_crtc_cleanup(crtc);
9328
9329        kfree(intel_crtc);
9330}
9331
9332static void intel_unpin_work_fn(struct work_struct *__work)
9333{
9334        struct intel_unpin_work *work =
9335                container_of(__work, struct intel_unpin_work, work);
9336        struct drm_device *dev = work->crtc->dev;
9337        enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
9338
9339        mutex_lock(&dev->struct_mutex);
9340        intel_unpin_fb_obj(work->old_fb_obj);
9341        drm_gem_object_unreference(&work->pending_flip_obj->base);
9342        drm_gem_object_unreference(&work->old_fb_obj->base);
9343
9344        intel_update_fbc(dev);
9345        mutex_unlock(&dev->struct_mutex);
9346
9347        intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9348
9349        BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
9350        atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
9351
9352        kfree(work);
9353}
9354
9355static void do_intel_finish_page_flip(struct drm_device *dev,
9356                                      struct drm_crtc *crtc)
9357{
9358        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9359        struct intel_unpin_work *work;
9360        unsigned long flags;
9361
9362        /* Ignore early vblank irqs */
9363        if (intel_crtc == NULL)
9364                return;
9365
9366        spin_lock_irqsave(&dev->event_lock, flags);
9367        work = intel_crtc->unpin_work;
9368
9369        /* Ensure we don't miss a work->pending update ... */
9370        smp_rmb();
9371
9372        if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
9373                spin_unlock_irqrestore(&dev->event_lock, flags);
9374                return;
9375        }
9376
9377        page_flip_completed(intel_crtc);
9378
9379        spin_unlock_irqrestore(&dev->event_lock, flags);
9380}
9381
9382void intel_finish_page_flip(struct drm_device *dev, int pipe)
9383{
9384        struct drm_i915_private *dev_priv = dev->dev_private;
9385        struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9386
9387        do_intel_finish_page_flip(dev, crtc);
9388}
9389
9390void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
9391{
9392        struct drm_i915_private *dev_priv = dev->dev_private;
9393        struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
9394
9395        do_intel_finish_page_flip(dev, crtc);
9396}
9397
9398/* Is 'a' after or equal to 'b'? */
9399static bool g4x_flip_count_after_eq(u32 a, u32 b)
9400{
9401        return !((a - b) & 0x80000000);
9402}
9403
9404static bool page_flip_finished(struct intel_crtc *crtc)
9405{
9406        struct drm_device *dev = crtc->base.dev;
9407        struct drm_i915_private *dev_priv = dev->dev_private;
9408
9409        if (i915_reset_in_progress(&dev_priv->gpu_error) ||
9410            crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
9411                return true;
9412
9413        /*
9414         * The relevant registers doen't exist on pre-ctg.
9415         * As the flip done interrupt doesn't trigger for mmio
9416         * flips on gmch platforms, a flip count check isn't
9417         * really needed there. But since ctg has the registers,
9418         * include it in the check anyway.
9419         */
9420        if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
9421                return true;
9422
9423        /*
9424         * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
9425         * used the same base address. In that case the mmio flip might
9426         * have completed, but the CS hasn't even executed the flip yet.
9427         *
9428         * A flip count check isn't enough as the CS might have updated
9429         * the base address just after start of vblank, but before we
9430         * managed to process the interrupt. This means we'd complete the
9431         * CS flip too soon.
9432         *
9433         * Combining both checks should get us a good enough result. It may
9434         * still happen that the CS flip has been executed, but has not
9435         * yet actually completed. But in case the base address is the same
9436         * anyway, we don't really care.
9437         */
9438        return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
9439                crtc->unpin_work->gtt_offset &&
9440                g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
9441                                    crtc->unpin_work->flip_count);
9442}
9443
9444void intel_prepare_page_flip(struct drm_device *dev, int plane)
9445{
9446        struct drm_i915_private *dev_priv = dev->dev_private;
9447        struct intel_crtc *intel_crtc =
9448                to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
9449        unsigned long flags;
9450
9451        /* NB: An MMIO update of the plane base pointer will also
9452         * generate a page-flip completion irq, i.e. every modeset
9453         * is also accompanied by a spurious intel_prepare_page_flip().
9454         */
9455        spin_lock_irqsave(&dev->event_lock, flags);
9456        if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
9457                atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
9458        spin_unlock_irqrestore(&dev->event_lock, flags);
9459}
9460
9461static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
9462{
9463        /* Ensure that the work item is consistent when activating it ... */
9464        smp_wmb();
9465        atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
9466        /* and that it is marked active as soon as the irq could fire. */
9467        smp_wmb();
9468}
9469
9470static int intel_gen2_queue_flip(struct drm_device *dev,
9471                                 struct drm_crtc *crtc,
9472                                 struct drm_framebuffer *fb,
9473                                 struct drm_i915_gem_object *obj,
9474                                 struct intel_engine_cs *ring,
9475                                 uint32_t flags)
9476{
9477        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9478        u32 flip_mask;
9479        int ret;
9480
9481        ret = intel_ring_begin(ring, 6);
9482        if (ret)
9483                return ret;
9484
9485        /* Can't queue multiple flips, so wait for the previous
9486         * one to finish before executing the next.
9487         */
9488        if (intel_crtc->plane)
9489                flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9490        else
9491                flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9492        intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9493        intel_ring_emit(ring, MI_NOOP);
9494        intel_ring_emit(ring, MI_DISPLAY_FLIP |
9495                        MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9496        intel_ring_emit(ring, fb->pitches[0]);
9497        intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9498        intel_ring_emit(ring, 0); /* aux display base address, unused */
9499
9500        intel_mark_page_flip_active(intel_crtc);
9501        __intel_ring_advance(ring);
9502        return 0;
9503}
9504
9505static int intel_gen3_queue_flip(struct drm_device *dev,
9506                                 struct drm_crtc *crtc,
9507                                 struct drm_framebuffer *fb,
9508                                 struct drm_i915_gem_object *obj,
9509                                 struct intel_engine_cs *ring,
9510                                 uint32_t flags)
9511{
9512        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9513        u32 flip_mask;
9514        int ret;
9515
9516        ret = intel_ring_begin(ring, 6);
9517        if (ret)
9518                return ret;
9519
9520        if (intel_crtc->plane)
9521                flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9522        else
9523                flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9524        intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9525        intel_ring_emit(ring, MI_NOOP);
9526        intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
9527                        MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9528        intel_ring_emit(ring, fb->pitches[0]);
9529        intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9530        intel_ring_emit(ring, MI_NOOP);
9531
9532        intel_mark_page_flip_active(intel_crtc);
9533        __intel_ring_advance(ring);
9534        return 0;
9535}
9536
9537static int intel_gen4_queue_flip(struct drm_device *dev,
9538                                 struct drm_crtc *crtc,
9539                                 struct drm_framebuffer *fb,
9540                                 struct drm_i915_gem_object *obj,
9541                                 struct intel_engine_cs *ring,
9542                                 uint32_t flags)
9543{
9544        struct drm_i915_private *dev_priv = dev->dev_private;
9545        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9546        uint32_t pf, pipesrc;
9547        int ret;
9548
9549        ret = intel_ring_begin(ring, 4);
9550        if (ret)
9551                return ret;
9552
9553        /* i965+ uses the linear or tiled offsets from the
9554         * Display Registers (which do not change across a page-flip)
9555         * so we need only reprogram the base address.
9556         */
9557        intel_ring_emit(ring, MI_DISPLAY_FLIP |
9558                        MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9559        intel_ring_emit(ring, fb->pitches[0]);
9560        intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
9561                        obj->tiling_mode);
9562
9563        /* XXX Enabling the panel-fitter across page-flip is so far
9564         * untested on non-native modes, so ignore it for now.
9565         * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
9566         */
9567        pf = 0;
9568        pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9569        intel_ring_emit(ring, pf | pipesrc);
9570
9571        intel_mark_page_flip_active(intel_crtc);
9572        __intel_ring_advance(ring);
9573        return 0;
9574}
9575
9576static int intel_gen6_queue_flip(struct drm_device *dev,
9577                                 struct drm_crtc *crtc,
9578                                 struct drm_framebuffer *fb,
9579                                 struct drm_i915_gem_object *obj,
9580                                 struct intel_engine_cs *ring,
9581                                 uint32_t flags)
9582{
9583        struct drm_i915_private *dev_priv = dev->dev_private;
9584        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9585        uint32_t pf, pipesrc;
9586        int ret;
9587
9588        ret = intel_ring_begin(ring, 4);
9589        if (ret)
9590                return ret;
9591
9592        intel_ring_emit(ring, MI_DISPLAY_FLIP |
9593                        MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9594        intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
9595        intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9596
9597        /* Contrary to the suggestions in the documentation,
9598         * "Enable Panel Fitter" does not seem to be required when page
9599         * flipping with a non-native mode, and worse causes a normal
9600         * modeset to fail.
9601         * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
9602         */
9603        pf = 0;
9604        pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9605        intel_ring_emit(ring, pf | pipesrc);
9606
9607        intel_mark_page_flip_active(intel_crtc);
9608        __intel_ring_advance(ring);
9609        return 0;
9610}
9611
9612static int intel_gen7_queue_flip(struct drm_device *dev,
9613                                 struct drm_crtc *crtc,
9614                                 struct drm_framebuffer *fb,
9615                                 struct drm_i915_gem_object *obj,
9616                                 struct intel_engine_cs *ring,
9617                                 uint32_t flags)
9618{
9619        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9620        uint32_t plane_bit = 0;
9621        int len, ret;
9622
9623        switch (intel_crtc->plane) {
9624        case PLANE_A:
9625                plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
9626                break;
9627        case PLANE_B:
9628                plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
9629                break;
9630        case PLANE_C:
9631                plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
9632                break;
9633        default:
9634                WARN_ONCE(1, "unknown plane in flip command\n");
9635                return -ENODEV;
9636        }
9637
9638        len = 4;
9639        if (ring->id == RCS) {
9640                len += 6;
9641                /*
9642                 * On Gen 8, SRM is now taking an extra dword to accommodate
9643                 * 48bits addresses, and we need a NOOP for the batch size to
9644                 * stay even.
9645                 */
9646                if (IS_GEN8(dev))
9647                        len += 2;
9648        }
9649
9650        /*
9651         * BSpec MI_DISPLAY_FLIP for IVB:
9652         * "The full packet must be contained within the same cache line."
9653         *
9654         * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
9655         * cacheline, if we ever start emitting more commands before
9656         * the MI_DISPLAY_FLIP we may need to first emit everything else,
9657         * then do the cacheline alignment, and finally emit the
9658         * MI_DISPLAY_FLIP.
9659         */
9660        ret = intel_ring_cacheline_align(ring);
9661        if (ret)
9662                return ret;
9663
9664        ret = intel_ring_begin(ring, len);
9665        if (ret)
9666                return ret;
9667
9668        /* Unmask the flip-done completion message. Note that the bspec says that
9669         * we should do this for both the BCS and RCS, and that we must not unmask
9670         * more than one flip event at any time (or ensure that one flip message
9671         * can be sent by waiting for flip-done prior to queueing new flips).
9672         * Experimentation says that BCS works despite DERRMR masking all
9673         * flip-done completion events and that unmasking all planes at once
9674         * for the RCS also doesn't appear to drop events. Setting the DERRMR
9675         * to zero does lead to lockups within MI_DISPLAY_FLIP.
9676         */
9677        if (ring->id == RCS) {
9678                intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9679                intel_ring_emit(ring, DERRMR);
9680                intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9681                                        DERRMR_PIPEB_PRI_FLIP_DONE |
9682                                        DERRMR_PIPEC_PRI_FLIP_DONE));
9683                if (IS_GEN8(dev))
9684                        intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9685                                              MI_SRM_LRM_GLOBAL_GTT);
9686                else
9687                        intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
9688                                              MI_SRM_LRM_GLOBAL_GTT);
9689                intel_ring_emit(ring, DERRMR);
9690                intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
9691                if (IS_GEN8(dev)) {
9692                        intel_ring_emit(ring, 0);
9693                        intel_ring_emit(ring, MI_NOOP);
9694                }
9695        }
9696
9697        intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
9698        intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
9699        intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9700        intel_ring_emit(ring, (MI_NOOP));
9701
9702        intel_mark_page_flip_active(intel_crtc);
9703        __intel_ring_advance(ring);
9704        return 0;
9705}
9706
9707static bool use_mmio_flip(struct intel_engine_cs *ring,
9708                          struct drm_i915_gem_object *obj)
9709{
9710        /*
9711         * This is not being used for older platforms, because
9712         * non-availability of flip done interrupt forces us to use
9713         * CS flips. Older platforms derive flip done using some clever
9714         * tricks involving the flip_pending status bits and vblank irqs.
9715         * So using MMIO flips there would disrupt this mechanism.
9716         */
9717
9718        if (ring == NULL)
9719                return true;
9720
9721        if (INTEL_INFO(ring->dev)->gen < 5)
9722                return false;
9723
9724        if (i915.use_mmio_flip < 0)
9725                return false;
9726        else if (i915.use_mmio_flip > 0)
9727                return true;
9728        else if (i915.enable_execlists)
9729                return true;
9730        else
9731                return ring != obj->ring;
9732}
9733
9734static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
9735{
9736        struct drm_device *dev = intel_crtc->base.dev;
9737        struct drm_i915_private *dev_priv = dev->dev_private;
9738        struct intel_framebuffer *intel_fb =
9739                to_intel_framebuffer(intel_crtc->base.primary->fb);
9740        struct drm_i915_gem_object *obj = intel_fb->obj;
9741        u32 dspcntr;
9742        u32 reg;
9743
9744        intel_mark_page_flip_active(intel_crtc);
9745
9746        reg = DSPCNTR(intel_crtc->plane);
9747        dspcntr = I915_READ(reg);
9748
9749        if (INTEL_INFO(dev)->gen >= 4) {
9750                if (obj->tiling_mode != I915_TILING_NONE)
9751                        dspcntr |= DISPPLANE_TILED;
9752                else
9753                        dspcntr &= ~DISPPLANE_TILED;
9754        }
9755        I915_WRITE(reg, dspcntr);
9756
9757        I915_WRITE(DSPSURF(intel_crtc->plane),
9758                   intel_crtc->unpin_work->gtt_offset);
9759        POSTING_READ(DSPSURF(intel_crtc->plane));
9760}
9761
9762static int intel_postpone_flip(struct drm_i915_gem_object *obj)
9763{
9764        struct intel_engine_cs *ring;
9765        int ret;
9766
9767        lockdep_assert_held(&obj->base.dev->struct_mutex);
9768
9769        if (!obj->last_write_seqno)
9770                return 0;
9771
9772        ring = obj->ring;
9773
9774        if (i915_seqno_passed(ring->get_seqno(ring, true),
9775                              obj->last_write_seqno))
9776                return 0;
9777
9778        ret = i915_gem_check_olr(ring, obj->last_write_seqno);
9779        if (ret)
9780                return ret;
9781
9782        if (WARN_ON(!ring->irq_get(ring)))
9783                return 0;
9784
9785        return 1;
9786}
9787
9788void intel_notify_mmio_flip(struct intel_engine_cs *ring)
9789{
9790        struct drm_i915_private *dev_priv = to_i915(ring->dev);
9791        struct intel_crtc *intel_crtc;
9792        unsigned long irq_flags;
9793        u32 seqno;
9794
9795        seqno = ring->get_seqno(ring, false);
9796
9797        spin_lock_irqsave(&dev_priv->mmio_flip_lock, irq_flags);
9798        for_each_intel_crtc(ring->dev, intel_crtc) {
9799                struct intel_mmio_flip *mmio_flip;
9800
9801                mmio_flip = &intel_crtc->mmio_flip;
9802                if (mmio_flip->seqno == 0)
9803                        continue;
9804
9805                if (ring->id != mmio_flip->ring_id)
9806                        continue;
9807
9808                if (i915_seqno_passed(seqno, mmio_flip->seqno)) {
9809                        intel_do_mmio_flip(intel_crtc);
9810                        mmio_flip->seqno = 0;
9811                        ring->irq_put(ring);
9812                }
9813        }
9814        spin_unlock_irqrestore(&dev_priv->mmio_flip_lock, irq_flags);
9815}
9816
9817static int intel_queue_mmio_flip(struct drm_device *dev,
9818                                 struct drm_crtc *crtc,
9819                                 struct drm_framebuffer *fb,
9820                                 struct drm_i915_gem_object *obj,
9821                                 struct intel_engine_cs *ring,
9822                                 uint32_t flags)
9823{
9824        struct drm_i915_private *dev_priv = dev->dev_private;
9825        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9826        unsigned long irq_flags;
9827        int ret;
9828
9829        if (WARN_ON(intel_crtc->mmio_flip.seqno))
9830                return -EBUSY;
9831
9832        ret = intel_postpone_flip(obj);
9833        if (ret < 0)
9834                return ret;
9835        if (ret == 0) {
9836                intel_do_mmio_flip(intel_crtc);
9837                return 0;
9838        }
9839
9840        spin_lock_irqsave(&dev_priv->mmio_flip_lock, irq_flags);
9841        intel_crtc->mmio_flip.seqno = obj->last_write_seqno;
9842        intel_crtc->mmio_flip.ring_id = obj->ring->id;
9843        spin_unlock_irqrestore(&dev_priv->mmio_flip_lock, irq_flags);
9844
9845        /*
9846         * Double check to catch cases where irq fired before
9847         * mmio flip data was ready
9848         */
9849        intel_notify_mmio_flip(obj->ring);
9850        return 0;
9851}
9852
9853static int intel_default_queue_flip(struct drm_device *dev,
9854                                    struct drm_crtc *crtc,
9855                                    struct drm_framebuffer *fb,
9856                                    struct drm_i915_gem_object *obj,
9857                                    struct intel_engine_cs *ring,
9858                                    uint32_t flags)
9859{
9860        return -ENODEV;
9861}
9862
9863static bool __intel_pageflip_stall_check(struct drm_device *dev,
9864                                         struct drm_crtc *crtc)
9865{
9866        struct drm_i915_private *dev_priv = dev->dev_private;
9867        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9868        struct intel_unpin_work *work = intel_crtc->unpin_work;
9869        u32 addr;
9870
9871        if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
9872                return true;
9873
9874        if (!work->enable_stall_check)
9875                return false;
9876
9877        if (work->flip_ready_vblank == 0) {
9878                if (work->flip_queued_ring &&
9879                    !i915_seqno_passed(work->flip_queued_ring->get_seqno(work->flip_queued_ring, true),
9880                                       work->flip_queued_seqno))
9881                        return false;
9882
9883                work->flip_ready_vblank = drm_vblank_count(dev, intel_crtc->pipe);
9884        }
9885
9886        if (drm_vblank_count(dev, intel_crtc->pipe) - work->flip_ready_vblank < 3)
9887                return false;
9888
9889        /* Potential stall - if we see that the flip has happened,
9890         * assume a missed interrupt. */
9891        if (INTEL_INFO(dev)->gen >= 4)
9892                addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
9893        else
9894                addr = I915_READ(DSPADDR(intel_crtc->plane));
9895
9896        /* There is a potential issue here with a false positive after a flip
9897         * to the same address. We could address this by checking for a
9898         * non-incrementing frame counter.
9899         */
9900        return addr == work->gtt_offset;
9901}
9902
9903void intel_check_page_flip(struct drm_device *dev, int pipe)
9904{
9905        struct drm_i915_private *dev_priv = dev->dev_private;
9906        struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9907        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9908        unsigned long flags;
9909
9910        if (crtc == NULL)
9911                return;
9912
9913        spin_lock_irqsave(&dev->event_lock, flags);
9914        if (intel_crtc->unpin_work && __intel_pageflip_stall_check(dev, crtc)) {
9915                WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
9916                         intel_crtc->unpin_work->flip_queued_vblank, drm_vblank_count(dev, pipe));
9917                page_flip_completed(intel_crtc);
9918        }
9919        spin_unlock_irqrestore(&dev->event_lock, flags);
9920}
9921
9922static int intel_crtc_page_flip(struct drm_crtc *crtc,
9923                                struct drm_framebuffer *fb,
9924                                struct drm_pending_vblank_event *event,
9925                                uint32_t page_flip_flags)
9926{
9927        struct drm_device *dev = crtc->dev;
9928        struct drm_i915_private *dev_priv = dev->dev_private;
9929        struct drm_framebuffer *old_fb = crtc->primary->fb;
9930        struct drm_i915_gem_object *obj = intel_fb_obj(fb);
9931        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9932        enum pipe pipe = intel_crtc->pipe;
9933        struct intel_unpin_work *work;
9934        struct intel_engine_cs *ring;
9935        unsigned long flags;
9936        int ret;
9937
9938        /*
9939         * drm_mode_page_flip_ioctl() should already catch this, but double
9940         * check to be safe.  In the future we may enable pageflipping from
9941         * a disabled primary plane.
9942         */
9943        if (WARN_ON(intel_fb_obj(old_fb) == NULL))
9944                return -EBUSY;
9945
9946        /* Can't change pixel format via MI display flips. */
9947        if (fb->pixel_format != crtc->primary->fb->pixel_format)
9948                return -EINVAL;
9949
9950        /*
9951         * TILEOFF/LINOFF registers can't be changed via MI display flips.
9952         * Note that pitch changes could also affect these register.
9953         */
9954        if (INTEL_INFO(dev)->gen > 3 &&
9955            (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
9956             fb->pitches[0] != crtc->primary->fb->pitches[0]))
9957                return -EINVAL;
9958
9959        if (i915_terminally_wedged(&dev_priv->gpu_error))
9960                goto out_hang;
9961
9962        work = kzalloc(sizeof(*work), GFP_KERNEL);
9963        if (work == NULL)
9964                return -ENOMEM;
9965
9966        work->event = event;
9967        work->crtc = crtc;
9968        work->old_fb_obj = intel_fb_obj(old_fb);
9969        INIT_WORK(&work->work, intel_unpin_work_fn);
9970
9971        ret = drm_crtc_vblank_get(crtc);
9972        if (ret)
9973                goto free_work;
9974
9975        /* We borrow the event spin lock for protecting unpin_work */
9976        spin_lock_irqsave(&dev->event_lock, flags);
9977        if (intel_crtc->unpin_work) {
9978                /* Before declaring the flip queue wedged, check if
9979                 * the hardware completed the operation behind our backs.
9980                 */
9981                if (__intel_pageflip_stall_check(dev, crtc)) {
9982                        DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
9983                        page_flip_completed(intel_crtc);
9984                } else {
9985                        DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
9986                        spin_unlock_irqrestore(&dev->event_lock, flags);
9987
9988                        drm_crtc_vblank_put(crtc);
9989                        kfree(work);
9990                        return -EBUSY;
9991                }
9992        }
9993        intel_crtc->unpin_work = work;
9994        spin_unlock_irqrestore(&dev->event_lock, flags);
9995
9996        if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
9997                flush_workqueue(dev_priv->wq);
9998
9999        ret = i915_mutex_lock_interruptible(dev);
10000        if (ret)
10001                goto cleanup;
10002
10003        /* Reference the objects for the scheduled work. */
10004        drm_gem_object_reference(&work->old_fb_obj->base);
10005        drm_gem_object_reference(&obj->base);
10006
10007        crtc->primary->fb = fb;
10008
10009        work->pending_flip_obj = obj;
10010
10011        atomic_inc(&intel_crtc->unpin_work_count);
10012        intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
10013
10014        if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
10015                work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
10016
10017        if (IS_VALLEYVIEW(dev)) {
10018                ring = &dev_priv->ring[BCS];
10019                if (obj->tiling_mode != work->old_fb_obj->tiling_mode)
10020                        /* vlv: DISPLAY_FLIP fails to change tiling */
10021                        ring = NULL;
10022        } else if (IS_IVYBRIDGE(dev)) {
10023                ring = &dev_priv->ring[BCS];
10024        } else if (INTEL_INFO(dev)->gen >= 7) {
10025                ring = obj->ring;
10026                if (ring == NULL || ring->id != RCS)
10027                        ring = &dev_priv->ring[BCS];
10028        } else {
10029                ring = &dev_priv->ring[RCS];
10030        }
10031
10032        ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
10033        if (ret)
10034                goto cleanup_pending;
10035
10036        work->gtt_offset =
10037                i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset;
10038
10039        if (use_mmio_flip(ring, obj)) {
10040                ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
10041                                            page_flip_flags);
10042                if (ret)
10043                        goto cleanup_unpin;
10044
10045                work->flip_queued_seqno = obj->last_write_seqno;
10046                work->flip_queued_ring = obj->ring;
10047        } else {
10048                ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
10049                                                   page_flip_flags);
10050                if (ret)
10051                        goto cleanup_unpin;
10052
10053                work->flip_queued_seqno = intel_ring_get_seqno(ring);
10054                work->flip_queued_ring = ring;
10055        }
10056
10057        work->flip_queued_vblank = drm_vblank_count(dev, intel_crtc->pipe);
10058        work->enable_stall_check = true;
10059
10060        i915_gem_track_fb(work->old_fb_obj, obj,
10061                          INTEL_FRONTBUFFER_PRIMARY(pipe));
10062
10063        intel_disable_fbc(dev);
10064        intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
10065        mutex_unlock(&dev->struct_mutex);
10066
10067        trace_i915_flip_request(intel_crtc->plane, obj);
10068
10069        return 0;
10070
10071cleanup_unpin:
10072        intel_unpin_fb_obj(obj);
10073cleanup_pending:
10074        atomic_dec(&intel_crtc->unpin_work_count);
10075        crtc->primary->fb = old_fb;
10076        drm_gem_object_unreference(&work->old_fb_obj->base);
10077        drm_gem_object_unreference(&obj->base);
10078        mutex_unlock(&dev->struct_mutex);
10079
10080cleanup:
10081        spin_lock_irqsave(&dev->event_lock, flags);
10082        intel_crtc->unpin_work = NULL;
10083        spin_unlock_irqrestore(&dev->event_lock, flags);
10084
10085        drm_crtc_vblank_put(crtc);
10086free_work:
10087        kfree(work);
10088
10089        if (ret == -EIO) {
10090out_hang:
10091                intel_crtc_wait_for_pending_flips(crtc);
10092                ret = intel_pipe_set_base(crtc, crtc->x, crtc->y, fb);
10093                if (ret == 0 && event) {
10094                        spin_lock_irqsave(&dev->event_lock, flags);
10095                        drm_send_vblank_event(dev, pipe, event);
10096                        spin_unlock_irqrestore(&dev->event_lock, flags);
10097                }
10098        }
10099        return ret;
10100}
10101
10102static struct drm_crtc_helper_funcs intel_helper_funcs = {
10103        .mode_set_base_atomic = intel_pipe_set_base_atomic,
10104        .load_lut = intel_crtc_load_lut,
10105};
10106
10107/**
10108 * intel_modeset_update_staged_output_state
10109 *
10110 * Updates the staged output configuration state, e.g. after we've read out the
10111 * current hw state.
10112 */
10113static void intel_modeset_update_staged_output_state(struct drm_device *dev)
10114{
10115        struct intel_crtc *crtc;
10116        struct intel_encoder *encoder;
10117        struct intel_connector *connector;
10118
10119        list_for_each_entry(connector, &dev->mode_config.connector_list,
10120                            base.head) {
10121                connector->new_encoder =
10122                        to_intel_encoder(connector->base.encoder);
10123        }
10124
10125        for_each_intel_encoder(dev, encoder) {
10126                encoder->new_crtc =
10127                        to_intel_crtc(encoder->base.crtc);
10128        }
10129
10130        for_each_intel_crtc(dev, crtc) {
10131                crtc->new_enabled = crtc->base.enabled;
10132
10133                if (crtc->new_enabled)
10134                        crtc->new_config = &crtc->config;
10135                else
10136                        crtc->new_config = NULL;
10137        }
10138}
10139
10140/**
10141 * intel_modeset_commit_output_state
10142 *
10143 * This function copies the stage display pipe configuration to the real one.
10144 */
10145static void intel_modeset_commit_output_state(struct drm_device *dev)
10146{
10147        struct intel_crtc *crtc;
10148        struct intel_encoder *encoder;
10149        struct intel_connector *connector;
10150
10151        list_for_each_entry(connector, &dev->mode_config.connector_list,
10152                            base.head) {
10153                connector->base.encoder = &connector->new_encoder->base;
10154        }
10155
10156        for_each_intel_encoder(dev, encoder) {
10157                encoder->base.crtc = &encoder->new_crtc->base;
10158        }
10159
10160        for_each_intel_crtc(dev, crtc) {
10161                crtc->base.enabled = crtc->new_enabled;
10162        }
10163}
10164
10165static void
10166connected_sink_compute_bpp(struct intel_connector *connector,
10167                           struct intel_crtc_config *pipe_config)
10168{
10169        int bpp = pipe_config->pipe_bpp;
10170
10171        DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
10172                connector->base.base.id,
10173                connector->base.name);
10174
10175        /* Don't use an invalid EDID bpc value */
10176        if (connector->base.display_info.bpc &&
10177            connector->base.display_info.bpc * 3 < bpp) {
10178                DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
10179                              bpp, connector->base.display_info.bpc*3);
10180                pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
10181        }
10182
10183        /* Clamp bpp to 8 on screens without EDID 1.4 */
10184        if (connector->base.display_info.bpc == 0 && bpp > 24) {
10185                DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
10186                              bpp);
10187                pipe_config->pipe_bpp = 24;
10188        }
10189}
10190
10191static int
10192compute_baseline_pipe_bpp(struct intel_crtc *crtc,
10193                          struct drm_framebuffer *fb,
10194                          struct intel_crtc_config *pipe_config)
10195{
10196        struct drm_device *dev = crtc->base.dev;
10197        struct intel_connector *connector;
10198        int bpp;
10199
10200        switch (fb->pixel_format) {
10201        case DRM_FORMAT_C8:
10202                bpp = 8*3; /* since we go through a colormap */
10203                break;
10204        case DRM_FORMAT_XRGB1555:
10205        case DRM_FORMAT_ARGB1555:
10206                /* checked in intel_framebuffer_init already */
10207                if (WARN_ON(INTEL_INFO(dev)->gen > 3))
10208                        return -EINVAL;
10209        case DRM_FORMAT_RGB565:
10210                bpp = 6*3; /* min is 18bpp */
10211                break;
10212        case DRM_FORMAT_XBGR8888:
10213        case DRM_FORMAT_ABGR8888:
10214                /* checked in intel_framebuffer_init already */
10215                if (WARN_ON(INTEL_INFO(dev)->gen < 4))
10216                        return -EINVAL;
10217        case DRM_FORMAT_XRGB8888:
10218        case DRM_FORMAT_ARGB8888:
10219                bpp = 8*3;
10220                break;
10221        case DRM_FORMAT_XRGB2101010:
10222        case DRM_FORMAT_ARGB2101010:
10223        case DRM_FORMAT_XBGR2101010:
10224        case DRM_FORMAT_ABGR2101010:
10225                /* checked in intel_framebuffer_init already */
10226                if (WARN_ON(INTEL_INFO(dev)->gen < 4))
10227                        return -EINVAL;
10228                bpp = 10*3;
10229                break;
10230        /* TODO: gen4+ supports 16 bpc floating point, too. */
10231        default:
10232                DRM_DEBUG_KMS("unsupported depth\n");
10233                return -EINVAL;
10234        }
10235
10236        pipe_config->pipe_bpp = bpp;
10237
10238        /* Clamp display bpp to EDID value */
10239        list_for_each_entry(connector, &dev->mode_config.connector_list,
10240                            base.head) {
10241                if (!connector->new_encoder ||
10242                    connector->new_encoder->new_crtc != crtc)
10243                        continue;
10244
10245                connected_sink_compute_bpp(connector, pipe_config);
10246        }
10247
10248        return bpp;
10249}
10250
10251static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
10252{
10253        DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
10254                        "type: 0x%x flags: 0x%x\n",
10255                mode->crtc_clock,
10256                mode->crtc_hdisplay, mode->crtc_hsync_start,
10257                mode->crtc_hsync_end, mode->crtc_htotal,
10258                mode->crtc_vdisplay, mode->crtc_vsync_start,
10259                mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
10260}
10261
10262static void intel_dump_pipe_config(struct intel_crtc *crtc,
10263                                   struct intel_crtc_config *pipe_config,
10264                                   const char *context)
10265{
10266        DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
10267                      context, pipe_name(crtc->pipe));
10268
10269        DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
10270        DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
10271                      pipe_config->pipe_bpp, pipe_config->dither);
10272        DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10273                      pipe_config->has_pch_encoder,
10274                      pipe_config->fdi_lanes,
10275                      pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
10276                      pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
10277                      pipe_config->fdi_m_n.tu);
10278        DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10279                      pipe_config->has_dp_encoder,
10280                      pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
10281                      pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
10282                      pipe_config->dp_m_n.tu);
10283
10284        DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
10285                      pipe_config->has_dp_encoder,
10286                      pipe_config->dp_m2_n2.gmch_m,
10287                      pipe_config->dp_m2_n2.gmch_n,
10288                      pipe_config->dp_m2_n2.link_m,
10289                      pipe_config->dp_m2_n2.link_n,
10290                      pipe_config->dp_m2_n2.tu);
10291
10292        DRM_DEBUG_KMS("requested mode:\n");
10293        drm_mode_debug_printmodeline(&pipe_config->requested_mode);
10294        DRM_DEBUG_KMS("adjusted mode:\n");
10295        drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
10296        intel_dump_crtc_timings(&pipe_config->adjusted_mode);
10297        DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
10298        DRM_DEBUG_KMS("pipe src size: %dx%d\n",
10299                      pipe_config->pipe_src_w, pipe_config->pipe_src_h);
10300        DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
10301                      pipe_config->gmch_pfit.control,
10302                      pipe_config->gmch_pfit.pgm_ratios,
10303                      pipe_config->gmch_pfit.lvds_border_bits);
10304        DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
10305                      pipe_config->pch_pfit.pos,
10306                      pipe_config->pch_pfit.size,
10307                      pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
10308        DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
10309        DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
10310}
10311
10312static bool encoders_cloneable(const struct intel_encoder *a,
10313                               const struct intel_encoder *b)
10314{
10315        /* masks could be asymmetric, so check both ways */
10316        return a == b || (a->cloneable & (1 << b->type) &&
10317                          b->cloneable & (1 << a->type));
10318}
10319
10320static bool check_single_encoder_cloning(struct intel_crtc *crtc,
10321                                         struct intel_encoder *encoder)
10322{
10323        struct drm_device *dev = crtc->base.dev;
10324        struct intel_encoder *source_encoder;
10325
10326        for_each_intel_encoder(dev, source_encoder) {
10327                if (source_encoder->new_crtc != crtc)
10328                        continue;
10329
10330                if (!encoders_cloneable(encoder, source_encoder))
10331                        return false;
10332        }
10333
10334        return true;
10335}
10336
10337static bool check_encoder_cloning(struct intel_crtc *crtc)
10338{
10339        struct drm_device *dev = crtc->base.dev;
10340        struct intel_encoder *encoder;
10341
10342        for_each_intel_encoder(dev, encoder) {
10343                if (encoder->new_crtc != crtc)
10344                        continue;
10345
10346                if (!check_single_encoder_cloning(crtc, encoder))
10347                        return false;
10348        }
10349
10350        return true;
10351}
10352
10353static struct intel_crtc_config *
10354intel_modeset_pipe_config(struct drm_crtc *crtc,
10355                          struct drm_framebuffer *fb,
10356                          struct drm_display_mode *mode)
10357{
10358        struct drm_device *dev = crtc->dev;
10359        struct intel_encoder *encoder;
10360        struct intel_crtc_config *pipe_config;
10361        int plane_bpp, ret = -EINVAL;
10362        bool retry = true;
10363
10364        if (!check_encoder_cloning(to_intel_crtc(crtc))) {
10365                DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
10366                return ERR_PTR(-EINVAL);
10367        }
10368
10369        pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10370        if (!pipe_config)
10371                return ERR_PTR(-ENOMEM);
10372
10373        drm_mode_copy(&pipe_config->adjusted_mode, mode);
10374        drm_mode_copy(&pipe_config->requested_mode, mode);
10375
10376        pipe_config->cpu_transcoder =
10377                (enum transcoder) to_intel_crtc(crtc)->pipe;
10378        pipe_config->shared_dpll = DPLL_ID_PRIVATE;
10379
10380        /*
10381         * Sanitize sync polarity flags based on requested ones. If neither
10382         * positive or negative polarity is requested, treat this as meaning
10383         * negative polarity.
10384         */
10385        if (!(pipe_config->adjusted_mode.flags &
10386              (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
10387                pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
10388
10389        if (!(pipe_config->adjusted_mode.flags &
10390              (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
10391                pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
10392
10393        /* Compute a starting value for pipe_config->pipe_bpp taking the source
10394         * plane pixel format and any sink constraints into account. Returns the
10395         * source plane bpp so that dithering can be selected on mismatches
10396         * after encoders and crtc also have had their say. */
10397        plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
10398                                              fb, pipe_config);
10399        if (plane_bpp < 0)
10400                goto fail;
10401
10402        /*
10403         * Determine the real pipe dimensions. Note that stereo modes can
10404         * increase the actual pipe size due to the frame doubling and
10405         * insertion of additional space for blanks between the frame. This
10406         * is stored in the crtc timings. We use the requested mode to do this
10407         * computation to clearly distinguish it from the adjusted mode, which
10408         * can be changed by the connectors in the below retry loop.
10409         */
10410        drm_mode_set_crtcinfo(&pipe_config->requested_mode, CRTC_STEREO_DOUBLE);
10411        pipe_config->pipe_src_w = pipe_config->requested_mode.crtc_hdisplay;
10412        pipe_config->pipe_src_h = pipe_config->requested_mode.crtc_vdisplay;
10413
10414encoder_retry:
10415        /* Ensure the port clock defaults are reset when retrying. */
10416        pipe_config->port_clock = 0;
10417        pipe_config->pixel_multiplier = 1;
10418
10419        /* Fill in default crtc timings, allow encoders to overwrite them. */
10420        drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE);
10421
10422        /* Pass our mode to the connectors and the CRTC to give them a chance to
10423         * adjust it according to limitations or connector properties, and also
10424         * a chance to reject the mode entirely.
10425         */
10426        for_each_intel_encoder(dev, encoder) {
10427
10428                if (&encoder->new_crtc->base != crtc)
10429                        continue;
10430
10431                if (!(encoder->compute_config(encoder, pipe_config))) {
10432                        DRM_DEBUG_KMS("Encoder config failure\n");
10433                        goto fail;
10434                }
10435        }
10436
10437        /* Set default port clock if not overwritten by the encoder. Needs to be
10438         * done afterwards in case the encoder adjusts the mode. */
10439        if (!pipe_config->port_clock)
10440                pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock
10441                        * pipe_config->pixel_multiplier;
10442
10443        ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
10444        if (ret < 0) {
10445                DRM_DEBUG_KMS("CRTC fixup failed\n");
10446                goto fail;
10447        }
10448
10449        if (ret == RETRY) {
10450                if (WARN(!retry, "loop in pipe configuration computation\n")) {
10451                        ret = -EINVAL;
10452                        goto fail;
10453                }
10454
10455                DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
10456                retry = false;
10457                goto encoder_retry;
10458        }
10459
10460        pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
10461        DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
10462                      plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
10463
10464        return pipe_config;
10465fail:
10466        kfree(pipe_config);
10467        return ERR_PTR(ret);
10468}
10469
10470/* Computes which crtcs are affected and sets the relevant bits in the mask. For
10471 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
10472static void
10473intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
10474                             unsigned *prepare_pipes, unsigned *disable_pipes)
10475{
10476        struct intel_crtc *intel_crtc;
10477        struct drm_device *dev = crtc->dev;
10478        struct intel_encoder *encoder;
10479        struct intel_connector *connector;
10480        struct drm_crtc *tmp_crtc;
10481
10482        *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
10483
10484        /* Check which crtcs have changed outputs connected to them, these need
10485         * to be part of the prepare_pipes mask. We don't (yet) support global
10486         * modeset across multiple crtcs, so modeset_pipes will only have one
10487         * bit set at most. */
10488        list_for_each_entry(connector, &dev->mode_config.connector_list,
10489                            base.head) {
10490                if (connector->base.encoder == &connector->new_encoder->base)
10491                        continue;
10492
10493                if (connector->base.encoder) {
10494                        tmp_crtc = connector->base.encoder->crtc;
10495
10496                        *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10497                }
10498
10499                if (connector->new_encoder)
10500                        *prepare_pipes |=
10501                                1 << connector->new_encoder->new_crtc->pipe;
10502        }
10503
10504        for_each_intel_encoder(dev, encoder) {
10505                if (encoder->base.crtc == &encoder->new_crtc->base)
10506                        continue;
10507
10508                if (encoder->base.crtc) {
10509                        tmp_crtc = encoder->base.crtc;
10510
10511                        *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10512                }
10513
10514                if (encoder->new_crtc)
10515                        *prepare_pipes |= 1 << encoder->new_crtc->pipe;
10516        }
10517
10518        /* Check for pipes that will be enabled/disabled ... */
10519        for_each_intel_crtc(dev, intel_crtc) {
10520                if (intel_crtc->base.enabled == intel_crtc->new_enabled)
10521                        continue;
10522
10523                if (!intel_crtc->new_enabled)
10524                        *disable_pipes |= 1 << intel_crtc->pipe;
10525                else
10526                        *prepare_pipes |= 1 << intel_crtc->pipe;
10527        }
10528
10529
10530        /* set_mode is also used to update properties on life display pipes. */
10531        intel_crtc = to_intel_crtc(crtc);
10532        if (intel_crtc->new_enabled)
10533                *prepare_pipes |= 1 << intel_crtc->pipe;
10534
10535        /*
10536         * For simplicity do a full modeset on any pipe where the output routing
10537         * changed. We could be more clever, but that would require us to be
10538         * more careful with calling the relevant encoder->mode_set functions.
10539         */
10540        if (*prepare_pipes)
10541                *modeset_pipes = *prepare_pipes;
10542
10543        /* ... and mask these out. */
10544        *modeset_pipes &= ~(*disable_pipes);
10545        *prepare_pipes &= ~(*disable_pipes);
10546
10547        /*
10548         * HACK: We don't (yet) fully support global modesets. intel_set_config
10549         * obies this rule, but the modeset restore mode of
10550         * intel_modeset_setup_hw_state does not.
10551         */
10552        *modeset_pipes &= 1 << intel_crtc->pipe;
10553        *prepare_pipes &= 1 << intel_crtc->pipe;
10554
10555        DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
10556                      *modeset_pipes, *prepare_pipes, *disable_pipes);
10557}
10558
10559static bool intel_crtc_in_use(struct drm_crtc *crtc)
10560{
10561        struct drm_encoder *encoder;
10562        struct drm_device *dev = crtc->dev;
10563
10564        list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
10565                if (encoder->crtc == crtc)
10566                        return true;
10567
10568        return false;
10569}
10570
10571static void
10572intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
10573{
10574        struct intel_encoder *intel_encoder;
10575        struct intel_crtc *intel_crtc;
10576        struct drm_connector *connector;
10577
10578        for_each_intel_encoder(dev, intel_encoder) {
10579                if (!intel_encoder->base.crtc)
10580                        continue;
10581
10582                intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
10583
10584                if (prepare_pipes & (1 << intel_crtc->pipe))
10585                        intel_encoder->connectors_active = false;
10586        }
10587
10588        intel_modeset_commit_output_state(dev);
10589
10590        /* Double check state. */
10591        for_each_intel_crtc(dev, intel_crtc) {
10592                WARN_ON(intel_crtc->base.enabled != intel_crtc_in_use(&intel_crtc->base));
10593                WARN_ON(intel_crtc->new_config &&
10594                        intel_crtc->new_config != &intel_crtc->config);
10595                WARN_ON(intel_crtc->base.enabled != !!intel_crtc->new_config);
10596        }
10597
10598        list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10599                if (!connector->encoder || !connector->encoder->crtc)
10600                        continue;
10601
10602                intel_crtc = to_intel_crtc(connector->encoder->crtc);
10603
10604                if (prepare_pipes & (1 << intel_crtc->pipe)) {
10605                        struct drm_property *dpms_property =
10606                                dev->mode_config.dpms_property;
10607
10608                        connector->dpms = DRM_MODE_DPMS_ON;
10609                        drm_object_property_set_value(&connector->base,
10610                                                         dpms_property,
10611                                                         DRM_MODE_DPMS_ON);
10612
10613                        intel_encoder = to_intel_encoder(connector->encoder);
10614                        intel_encoder->connectors_active = true;
10615                }
10616        }
10617
10618}
10619
10620static bool intel_fuzzy_clock_check(int clock1, int clock2)
10621{
10622        int diff;
10623
10624        if (clock1 == clock2)
10625                return true;
10626
10627        if (!clock1 || !clock2)
10628                return false;
10629
10630        diff = abs(clock1 - clock2);
10631
10632        if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
10633                return true;
10634
10635        return false;
10636}
10637
10638#define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
10639        list_for_each_entry((intel_crtc), \
10640                            &(dev)->mode_config.crtc_list, \
10641                            base.head) \
10642                if (mask & (1 <<(intel_crtc)->pipe))
10643
10644static bool
10645intel_pipe_config_compare(struct drm_device *dev,
10646                          struct intel_crtc_config *current_config,
10647                          struct intel_crtc_config *pipe_config)
10648{
10649#define PIPE_CONF_CHECK_X(name) \
10650        if (current_config->name != pipe_config->name) { \
10651                DRM_ERROR("mismatch in " #name " " \
10652                          "(expected 0x%08x, found 0x%08x)\n", \
10653                          current_config->name, \
10654                          pipe_config->name); \
10655                return false; \
10656        }
10657
10658#define PIPE_CONF_CHECK_I(name) \
10659        if (current_config->name != pipe_config->name) { \
10660                DRM_ERROR("mismatch in " #name " " \
10661                          "(expected %i, found %i)\n", \
10662                          current_config->name, \
10663                          pipe_config->name); \
10664                return false; \
10665        }
10666
10667/* This is required for BDW+ where there is only one set of registers for
10668 * switching between high and low RR.
10669 * This macro can be used whenever a comparison has to be made between one
10670 * hw state and multiple sw state variables.
10671 */
10672#define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
10673        if ((current_config->name != pipe_config->name) && \
10674                (current_config->alt_name != pipe_config->name)) { \
10675                        DRM_ERROR("mismatch in " #name " " \
10676                                  "(expected %i or %i, found %i)\n", \
10677                                  current_config->name, \
10678                                  current_config->alt_name, \
10679                                  pipe_config->name); \
10680                        return false; \
10681        }
10682
10683#define PIPE_CONF_CHECK_FLAGS(name, mask)       \
10684        if ((current_config->name ^ pipe_config->name) & (mask)) { \
10685                DRM_ERROR("mismatch in " #name "(" #mask ") "      \
10686                          "(expected %i, found %i)\n", \
10687                          current_config->name & (mask), \
10688                          pipe_config->name & (mask)); \
10689                return false; \
10690        }
10691
10692#define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
10693        if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
10694                DRM_ERROR("mismatch in " #name " " \
10695                          "(expected %i, found %i)\n", \
10696                          current_config->name, \
10697                          pipe_config->name); \
10698                return false; \
10699        }
10700
10701#define PIPE_CONF_QUIRK(quirk)  \
10702        ((current_config->quirks | pipe_config->quirks) & (quirk))
10703
10704        PIPE_CONF_CHECK_I(cpu_transcoder);
10705
10706        PIPE_CONF_CHECK_I(has_pch_encoder);
10707        PIPE_CONF_CHECK_I(fdi_lanes);
10708        PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
10709        PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
10710        PIPE_CONF_CHECK_I(fdi_m_n.link_m);
10711        PIPE_CONF_CHECK_I(fdi_m_n.link_n);
10712        PIPE_CONF_CHECK_I(fdi_m_n.tu);
10713
10714        PIPE_CONF_CHECK_I(has_dp_encoder);
10715
10716        if (INTEL_INFO(dev)->gen < 8) {
10717                PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
10718                PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
10719                PIPE_CONF_CHECK_I(dp_m_n.link_m);
10720                PIPE_CONF_CHECK_I(dp_m_n.link_n);
10721                PIPE_CONF_CHECK_I(dp_m_n.tu);
10722
10723                if (current_config->has_drrs) {
10724                        PIPE_CONF_CHECK_I(dp_m2_n2.gmch_m);
10725                        PIPE_CONF_CHECK_I(dp_m2_n2.gmch_n);
10726                        PIPE_CONF_CHECK_I(dp_m2_n2.link_m);
10727                        PIPE_CONF_CHECK_I(dp_m2_n2.link_n);
10728                        PIPE_CONF_CHECK_I(dp_m2_n2.tu);
10729                }
10730        } else {
10731                PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_m, dp_m2_n2.gmch_m);
10732                PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_n, dp_m2_n2.gmch_n);
10733                PIPE_CONF_CHECK_I_ALT(dp_m_n.link_m, dp_m2_n2.link_m);
10734                PIPE_CONF_CHECK_I_ALT(dp_m_n.link_n, dp_m2_n2.link_n);
10735                PIPE_CONF_CHECK_I_ALT(dp_m_n.tu, dp_m2_n2.tu);
10736        }
10737
10738        PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
10739        PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
10740        PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
10741        PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
10742        PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
10743        PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
10744
10745        PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
10746        PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
10747        PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
10748        PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
10749        PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
10750        PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
10751
10752        PIPE_CONF_CHECK_I(pixel_multiplier);
10753        PIPE_CONF_CHECK_I(has_hdmi_sink);
10754        if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
10755            IS_VALLEYVIEW(dev))
10756                PIPE_CONF_CHECK_I(limited_color_range);
10757
10758        PIPE_CONF_CHECK_I(has_audio);
10759
10760        PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10761                              DRM_MODE_FLAG_INTERLACE);
10762
10763        if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
10764                PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10765                                      DRM_MODE_FLAG_PHSYNC);
10766                PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10767                                      DRM_MODE_FLAG_NHSYNC);
10768                PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10769                                      DRM_MODE_FLAG_PVSYNC);
10770                PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10771                                      DRM_MODE_FLAG_NVSYNC);
10772        }
10773
10774        PIPE_CONF_CHECK_I(pipe_src_w);
10775        PIPE_CONF_CHECK_I(pipe_src_h);
10776
10777        /*
10778         * FIXME: BIOS likes to set up a cloned config with lvds+external
10779         * screen. Since we don't yet re-compute the pipe config when moving
10780         * just the lvds port away to another pipe the sw tracking won't match.
10781         *
10782         * Proper atomic modesets with recomputed global state will fix this.
10783         * Until then just don't check gmch state for inherited modes.
10784         */
10785        if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
10786                PIPE_CONF_CHECK_I(gmch_pfit.control);
10787                /* pfit ratios are autocomputed by the hw on gen4+ */
10788                if (INTEL_INFO(dev)->gen < 4)
10789                        PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
10790                PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
10791        }
10792
10793        PIPE_CONF_CHECK_I(pch_pfit.enabled);
10794        if (current_config->pch_pfit.enabled) {
10795                PIPE_CONF_CHECK_I(pch_pfit.pos);
10796                PIPE_CONF_CHECK_I(pch_pfit.size);
10797        }
10798
10799        /* BDW+ don't expose a synchronous way to read the state */
10800        if (IS_HASWELL(dev))
10801                PIPE_CONF_CHECK_I(ips_enabled);
10802
10803        PIPE_CONF_CHECK_I(double_wide);
10804
10805        PIPE_CONF_CHECK_X(ddi_pll_sel);
10806
10807        PIPE_CONF_CHECK_I(shared_dpll);
10808        PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
10809        PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
10810        PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
10811        PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
10812        PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
10813
10814        if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
10815                PIPE_CONF_CHECK_I(pipe_bpp);
10816
10817        PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock);
10818        PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
10819
10820#undef PIPE_CONF_CHECK_X
10821#undef PIPE_CONF_CHECK_I
10822#undef PIPE_CONF_CHECK_I_ALT
10823#undef PIPE_CONF_CHECK_FLAGS
10824#undef PIPE_CONF_CHECK_CLOCK_FUZZY
10825#undef PIPE_CONF_QUIRK
10826
10827        return true;
10828}
10829
10830static void
10831check_connector_state(struct drm_device *dev)
10832{
10833        struct intel_connector *connector;
10834
10835        list_for_each_entry(connector, &dev->mode_config.connector_list,
10836                            base.head) {
10837                /* This also checks the encoder/connector hw state with the
10838                 * ->get_hw_state callbacks. */
10839                intel_connector_check_state(connector);
10840
10841                WARN(&connector->new_encoder->base != connector->base.encoder,
10842                     "connector's staged encoder doesn't match current encoder\n");
10843        }
10844}
10845
10846static void
10847check_encoder_state(struct drm_device *dev)
10848{
10849        struct intel_encoder *encoder;
10850        struct intel_connector *connector;
10851
10852        for_each_intel_encoder(dev, encoder) {
10853                bool enabled = false;
10854                bool active = false;
10855                enum pipe pipe, tracked_pipe;
10856
10857                DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
10858                              encoder->base.base.id,
10859                              encoder->base.name);
10860
10861                WARN(&encoder->new_crtc->base != encoder->base.crtc,
10862                     "encoder's stage crtc doesn't match current crtc\n");
10863                WARN(encoder->connectors_active && !encoder->base.crtc,
10864                     "encoder's active_connectors set, but no crtc\n");
10865
10866                list_for_each_entry(connector, &dev->mode_config.connector_list,
10867                                    base.head) {
10868                        if (connector->base.encoder != &encoder->base)
10869                                continue;
10870                        enabled = true;
10871                        if (connector->base.dpms != DRM_MODE_DPMS_OFF)
10872                                active = true;
10873                }
10874                /*
10875                 * for MST connectors if we unplug the connector is gone
10876                 * away but the encoder is still connected to a crtc
10877                 * until a modeset happens in response to the hotplug.
10878                 */
10879                if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
10880                        continue;
10881
10882                WARN(!!encoder->base.crtc != enabled,
10883                     "encoder's enabled state mismatch "
10884                     "(expected %i, found %i)\n",
10885                     !!encoder->base.crtc, enabled);
10886                WARN(active && !encoder->base.crtc,
10887                     "active encoder with no crtc\n");
10888
10889                WARN(encoder->connectors_active != active,
10890                     "encoder's computed active state doesn't match tracked active state "
10891                     "(expected %i, found %i)\n", active, encoder->connectors_active);
10892
10893                active = encoder->get_hw_state(encoder, &pipe);
10894                WARN(active != encoder->connectors_active,
10895                     "encoder's hw state doesn't match sw tracking "
10896                     "(expected %i, found %i)\n",
10897                     encoder->connectors_active, active);
10898
10899                if (!encoder->base.crtc)
10900                        continue;
10901
10902                tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
10903                WARN(active && pipe != tracked_pipe,
10904                     "active encoder's pipe doesn't match"
10905                     "(expected %i, found %i)\n",
10906                     tracked_pipe, pipe);
10907
10908        }
10909}
10910
10911static void
10912check_crtc_state(struct drm_device *dev)
10913{
10914        struct drm_i915_private *dev_priv = dev->dev_private;
10915        struct intel_crtc *crtc;
10916        struct intel_encoder *encoder;
10917        struct intel_crtc_config pipe_config;
10918
10919        for_each_intel_crtc(dev, crtc) {
10920                bool enabled = false;
10921                bool active = false;
10922
10923                memset(&pipe_config, 0, sizeof(pipe_config));
10924
10925                DRM_DEBUG_KMS("[CRTC:%d]\n",
10926                              crtc->base.base.id);
10927
10928                WARN(crtc->active && !crtc->base.enabled,
10929                     "active crtc, but not enabled in sw tracking\n");
10930
10931                for_each_intel_encoder(dev, encoder) {
10932                        if (encoder->base.crtc != &crtc->base)
10933                                continue;
10934                        enabled = true;
10935                        if (encoder->connectors_active)
10936                                active = true;
10937                }
10938
10939                WARN(active != crtc->active,
10940                     "crtc's computed active state doesn't match tracked active state "
10941                     "(expected %i, found %i)\n", active, crtc->active);
10942                WARN(enabled != crtc->base.enabled,
10943                     "crtc's computed enabled state doesn't match tracked enabled state "
10944                     "(expected %i, found %i)\n", enabled, crtc->base.enabled);
10945
10946                active = dev_priv->display.get_pipe_config(crtc,
10947                                                           &pipe_config);
10948
10949                /* hw state is inconsistent with the pipe quirk */
10950                if ((crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
10951                    (crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
10952                        active = crtc->active;
10953
10954                for_each_intel_encoder(dev, encoder) {
10955                        enum pipe pipe;
10956                        if (encoder->base.crtc != &crtc->base)
10957                                continue;
10958                        if (encoder->get_hw_state(encoder, &pipe))
10959                                encoder->get_config(encoder, &pipe_config);
10960                }
10961
10962                WARN(crtc->active != active,
10963                     "crtc active state doesn't match with hw state "
10964                     "(expected %i, found %i)\n", crtc->active, active);
10965
10966                if (active &&
10967                    !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
10968                        WARN(1, "pipe state doesn't match!\n");
10969                        intel_dump_pipe_config(crtc, &pipe_config,
10970                                               "[hw state]");
10971                        intel_dump_pipe_config(crtc, &crtc->config,
10972                                               "[sw state]");
10973                }
10974        }
10975}
10976
10977static void
10978check_shared_dpll_state(struct drm_device *dev)
10979{
10980        struct drm_i915_private *dev_priv = dev->dev_private;
10981        struct intel_crtc *crtc;
10982        struct intel_dpll_hw_state dpll_hw_state;
10983        int i;
10984
10985        for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10986                struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10987                int enabled_crtcs = 0, active_crtcs = 0;
10988                bool active;
10989
10990                memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
10991
10992                DRM_DEBUG_KMS("%s\n", pll->name);
10993
10994                active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
10995
10996                WARN(pll->active > pll->refcount,
10997                     "more active pll users than references: %i vs %i\n",
10998                     pll->active, pll->refcount);
10999                WARN(pll->active && !pll->on,
11000                     "pll in active use but not on in sw tracking\n");
11001                WARN(pll->on && !pll->active,
11002                     "pll in on but not on in use in sw tracking\n");
11003                WARN(pll->on != active,
11004                     "pll on state mismatch (expected %i, found %i)\n",
11005                     pll->on, active);
11006
11007                for_each_intel_crtc(dev, crtc) {
11008                        if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
11009                                enabled_crtcs++;
11010                        if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
11011                                active_crtcs++;
11012                }
11013                WARN(pll->active != active_crtcs,
11014                     "pll active crtcs mismatch (expected %i, found %i)\n",
11015                     pll->active, active_crtcs);
11016                WARN(pll->refcount != enabled_crtcs,
11017                     "pll enabled crtcs mismatch (expected %i, found %i)\n",
11018                     pll->refcount, enabled_crtcs);
11019
11020                WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
11021                                       sizeof(dpll_hw_state)),
11022                     "pll hw state mismatch\n");
11023        }
11024}
11025
11026void
11027intel_modeset_check_state(struct drm_device *dev)
11028{
11029        check_connector_state(dev);
11030        check_encoder_state(dev);
11031        check_crtc_state(dev);
11032        check_shared_dpll_state(dev);
11033}
11034
11035void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
11036                                     int dotclock)
11037{
11038        /*
11039         * FDI already provided one idea for the dotclock.
11040         * Yell if the encoder disagrees.
11041         */
11042        WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock),
11043             "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
11044             pipe_config->adjusted_mode.crtc_clock, dotclock);
11045}
11046
11047static void update_scanline_offset(struct intel_crtc *crtc)
11048{
11049        struct drm_device *dev = crtc->base.dev;
11050
11051        /*
11052         * The scanline counter increments at the leading edge of hsync.
11053         *
11054         * On most platforms it starts counting from vtotal-1 on the
11055         * first active line. That means the scanline counter value is
11056         * always one less than what we would expect. Ie. just after
11057         * start of vblank, which also occurs at start of hsync (on the
11058         * last active line), the scanline counter will read vblank_start-1.
11059         *
11060         * On gen2 the scanline counter starts counting from 1 instead
11061         * of vtotal-1, so we have to subtract one (or rather add vtotal-1
11062         * to keep the value positive), instead of adding one.
11063         *
11064         * On HSW+ the behaviour of the scanline counter depends on the output
11065         * type. For DP ports it behaves like most other platforms, but on HDMI
11066         * there's an extra 1 line difference. So we need to add two instead of
11067         * one to the value.
11068         */
11069        if (IS_GEN2(dev)) {
11070                const struct drm_display_mode *mode = &crtc->config.adjusted_mode;
11071                int vtotal;
11072
11073                vtotal = mode->crtc_vtotal;
11074                if (mode->flags & DRM_MODE_FLAG_INTERLACE)
11075                        vtotal /= 2;
11076
11077                crtc->scanline_offset = vtotal - 1;
11078        } else if (HAS_DDI(dev) &&
11079                   intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI)) {
11080                crtc->scanline_offset = 2;
11081        } else
11082                crtc->scanline_offset = 1;
11083}
11084
11085static int __intel_set_mode(struct drm_crtc *crtc,
11086                            struct drm_display_mode *mode,
11087                            int x, int y, struct drm_framebuffer *fb)
11088{
11089        struct drm_device *dev = crtc->dev;
11090        struct drm_i915_private *dev_priv = dev->dev_private;
11091        struct drm_display_mode *saved_mode;
11092        struct intel_crtc_config *pipe_config = NULL;
11093        struct intel_crtc *intel_crtc;
11094        unsigned disable_pipes, prepare_pipes, modeset_pipes;
11095        int ret = 0;
11096
11097        saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
11098        if (!saved_mode)
11099                return -ENOMEM;
11100
11101        intel_modeset_affected_pipes(crtc, &modeset_pipes,
11102                                     &prepare_pipes, &disable_pipes);
11103
11104        *saved_mode = crtc->mode;
11105
11106        /* Hack: Because we don't (yet) support global modeset on multiple
11107         * crtcs, we don't keep track of the new mode for more than one crtc.
11108         * Hence simply check whether any bit is set in modeset_pipes in all the
11109         * pieces of code that are not yet converted to deal with mutliple crtcs
11110         * changing their mode at the same time. */
11111        if (modeset_pipes) {
11112                pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
11113                if (IS_ERR(pipe_config)) {
11114                        ret = PTR_ERR(pipe_config);
11115                        pipe_config = NULL;
11116
11117                        goto out;
11118                }
11119                intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
11120                                       "[modeset]");
11121                to_intel_crtc(crtc)->new_config = pipe_config;
11122        }
11123
11124        /*
11125         * See if the config requires any additional preparation, e.g.
11126         * to adjust global state with pipes off.  We need to do this
11127         * here so we can get the modeset_pipe updated config for the new
11128         * mode set on this crtc.  For other crtcs we need to use the
11129         * adjusted_mode bits in the crtc directly.
11130         */
11131        if (IS_VALLEYVIEW(dev)) {
11132                valleyview_modeset_global_pipes(dev, &prepare_pipes);
11133
11134                /* may have added more to prepare_pipes than we should */
11135                prepare_pipes &= ~disable_pipes;
11136        }
11137
11138        for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
11139                intel_crtc_disable(&intel_crtc->base);
11140
11141        for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
11142                if (intel_crtc->base.enabled)
11143                        dev_priv->display.crtc_disable(&intel_crtc->base);
11144        }
11145
11146        /* crtc->mode is already used by the ->mode_set callbacks, hence we need
11147         * to set it here already despite that we pass it down the callchain.
11148         */
11149        if (modeset_pipes) {
11150                crtc->mode = *mode;
11151                /* mode_set/enable/disable functions rely on a correct pipe
11152                 * config. */
11153                to_intel_crtc(crtc)->config = *pipe_config;
11154                to_intel_crtc(crtc)->new_config = &to_intel_crtc(crtc)->config;
11155
11156                /*
11157                 * Calculate and store various constants which
11158                 * are later needed by vblank and swap-completion
11159                 * timestamping. They are derived from true hwmode.
11160                 */
11161                drm_calc_timestamping_constants(crtc,
11162                                                &pipe_config->adjusted_mode);
11163        }
11164
11165        /* Only after disabling all output pipelines that will be changed can we
11166         * update the the output configuration. */
11167        intel_modeset_update_state(dev, prepare_pipes);
11168
11169        if (dev_priv->display.modeset_global_resources)
11170                dev_priv->display.modeset_global_resources(dev);
11171
11172        /* Set up the DPLL and any encoders state that needs to adjust or depend
11173         * on the DPLL.
11174         */
11175        for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
11176                struct drm_framebuffer *old_fb = crtc->primary->fb;
11177                struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
11178                struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11179
11180                mutex_lock(&dev->struct_mutex);
11181                ret = intel_pin_and_fence_fb_obj(dev,
11182                                                 obj,
11183                                                 NULL);
11184                if (ret != 0) {
11185                        DRM_ERROR("pin & fence failed\n");
11186                        mutex_unlock(&dev->struct_mutex);
11187                        goto done;
11188                }
11189                if (old_fb)
11190                        intel_unpin_fb_obj(old_obj);
11191                i915_gem_track_fb(old_obj, obj,
11192                                  INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
11193                mutex_unlock(&dev->struct_mutex);
11194
11195                crtc->primary->fb = fb;
11196                crtc->x = x;
11197                crtc->y = y;
11198
11199                ret = dev_priv->display.crtc_mode_set(&intel_crtc->base,
11200                                                      x, y, fb);
11201                if (ret)
11202                        goto done;
11203        }
11204
11205        /* Now enable the clocks, plane, pipe, and connectors that we set up. */
11206        for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
11207                update_scanline_offset(intel_crtc);
11208
11209                dev_priv->display.crtc_enable(&intel_crtc->base);
11210        }
11211
11212        /* FIXME: add subpixel order */
11213done:
11214        if (ret && crtc->enabled)
11215                crtc->mode = *saved_mode;
11216
11217out:
11218        kfree(pipe_config);
11219        kfree(saved_mode);
11220        return ret;
11221}
11222
11223static int intel_set_mode(struct drm_crtc *crtc,
11224                          struct drm_display_mode *mode,
11225                          int x, int y, struct drm_framebuffer *fb)
11226{
11227        int ret;
11228
11229        ret = __intel_set_mode(crtc, mode, x, y, fb);
11230
11231        if (ret == 0)
11232                intel_modeset_check_state(crtc->dev);
11233
11234        return ret;
11235}
11236
11237void intel_crtc_restore_mode(struct drm_crtc *crtc)
11238{
11239        intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb);
11240}
11241
11242#undef for_each_intel_crtc_masked
11243
11244static void intel_set_config_free(struct intel_set_config *config)
11245{
11246        if (!config)
11247                return;
11248
11249        kfree(config->save_connector_encoders);
11250        kfree(config->save_encoder_crtcs);
11251        kfree(config->save_crtc_enabled);
11252        kfree(config);
11253}
11254
11255static int intel_set_config_save_state(struct drm_device *dev,
11256                                       struct intel_set_config *config)
11257{
11258        struct drm_crtc *crtc;
11259        struct drm_encoder *encoder;
11260        struct drm_connector *connector;
11261        int count;
11262
11263        config->save_crtc_enabled =
11264                kcalloc(dev->mode_config.num_crtc,
11265                        sizeof(bool), GFP_KERNEL);
11266        if (!config->save_crtc_enabled)
11267                return -ENOMEM;
11268
11269        config->save_encoder_crtcs =
11270                kcalloc(dev->mode_config.num_encoder,
11271                        sizeof(struct drm_crtc *), GFP_KERNEL);
11272        if (!config->save_encoder_crtcs)
11273                return -ENOMEM;
11274
11275        config->save_connector_encoders =
11276                kcalloc(dev->mode_config.num_connector,
11277                        sizeof(struct drm_encoder *), GFP_KERNEL);
11278        if (!config->save_connector_encoders)
11279                return -ENOMEM;
11280
11281        /* Copy data. Note that driver private data is not affected.
11282         * Should anything bad happen only the expected state is
11283         * restored, not the drivers personal bookkeeping.
11284         */
11285        count = 0;
11286        for_each_crtc(dev, crtc) {
11287                config->save_crtc_enabled[count++] = crtc->enabled;
11288        }
11289
11290        count = 0;
11291        list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
11292                config->save_encoder_crtcs[count++] = encoder->crtc;
11293        }
11294
11295        count = 0;
11296        list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
11297                config->save_connector_encoders[count++] = connector->encoder;
11298        }
11299
11300        return 0;
11301}
11302
11303static void intel_set_config_restore_state(struct drm_device *dev,
11304                                           struct intel_set_config *config)
11305{
11306        struct intel_crtc *crtc;
11307        struct intel_encoder *encoder;
11308        struct intel_connector *connector;
11309        int count;
11310
11311        count = 0;
11312        for_each_intel_crtc(dev, crtc) {
11313                crtc->new_enabled = config->save_crtc_enabled[count++];
11314
11315                if (crtc->new_enabled)
11316                        crtc->new_config = &crtc->config;
11317                else
11318                        crtc->new_config = NULL;
11319        }
11320
11321        count = 0;
11322        for_each_intel_encoder(dev, encoder) {
11323                encoder->new_crtc =
11324                        to_intel_crtc(config->save_encoder_crtcs[count++]);
11325        }
11326
11327        count = 0;
11328        list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11329                connector->new_encoder =
11330                        to_intel_encoder(config->save_connector_encoders[count++]);
11331        }
11332}
11333
11334static bool
11335is_crtc_connector_off(struct drm_mode_set *set)
11336{
11337        int i;
11338
11339        if (set->num_connectors == 0)
11340                return false;
11341
11342        if (WARN_ON(set->connectors == NULL))
11343                return false;
11344
11345        for (i = 0; i < set->num_connectors; i++)
11346                if (set->connectors[i]->encoder &&
11347                    set->connectors[i]->encoder->crtc == set->crtc &&
11348                    set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
11349                        return true;
11350
11351        return false;
11352}
11353
11354static void
11355intel_set_config_compute_mode_changes(struct drm_mode_set *set,
11356                                      struct intel_set_config *config)
11357{
11358
11359        /* We should be able to check here if the fb has the same properties
11360         * and then just flip_or_move it */
11361        if (is_crtc_connector_off(set)) {
11362                config->mode_changed = true;
11363        } else if (set->crtc->primary->fb != set->fb) {
11364                /*
11365                 * If we have no fb, we can only flip as long as the crtc is
11366                 * active, otherwise we need a full mode set.  The crtc may
11367                 * be active if we've only disabled the primary plane, or
11368                 * in fastboot situations.
11369                 */
11370                if (set->crtc->primary->fb == NULL) {
11371                        struct intel_crtc *intel_crtc =
11372                                to_intel_crtc(set->crtc);
11373
11374                        if (intel_crtc->active) {
11375                                DRM_DEBUG_KMS("crtc has no fb, will flip\n");
11376                                config->fb_changed = true;
11377                        } else {
11378                                DRM_DEBUG_KMS("inactive crtc, full mode set\n");
11379                                config->mode_changed = true;
11380                        }
11381                } else if (set->fb == NULL) {
11382                        config->mode_changed = true;
11383                } else if (set->fb->pixel_format !=
11384                           set->crtc->primary->fb->pixel_format) {
11385                        config->mode_changed = true;
11386                } else {
11387                        config->fb_changed = true;
11388                }
11389        }
11390
11391        if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
11392                config->fb_changed = true;
11393
11394        if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
11395                DRM_DEBUG_KMS("modes are different, full mode set\n");
11396                drm_mode_debug_printmodeline(&set->crtc->mode);
11397                drm_mode_debug_printmodeline(set->mode);
11398                config->mode_changed = true;
11399        }
11400
11401        DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
11402                        set->crtc->base.id, config->mode_changed, config->fb_changed);
11403}
11404
11405static int
11406intel_modeset_stage_output_state(struct drm_device *dev,
11407                                 struct drm_mode_set *set,
11408                                 struct intel_set_config *config)
11409{
11410        struct intel_connector *connector;
11411        struct intel_encoder *encoder;
11412        struct intel_crtc *crtc;
11413        int ro;
11414
11415        /* The upper layers ensure that we either disable a crtc or have a list
11416         * of connectors. For paranoia, double-check this. */
11417        WARN_ON(!set->fb && (set->num_connectors != 0));
11418        WARN_ON(set->fb && (set->num_connectors == 0));
11419
11420        list_for_each_entry(connector, &dev->mode_config.connector_list,
11421                            base.head) {
11422                /* Otherwise traverse passed in connector list and get encoders
11423                 * for them. */
11424                for (ro = 0; ro < set->num_connectors; ro++) {
11425                        if (set->connectors[ro] == &connector->base) {
11426                                connector->new_encoder = intel_find_encoder(connector, to_intel_crtc(set->crtc)->pipe);
11427                                break;
11428                        }
11429                }
11430
11431                /* If we disable the crtc, disable all its connectors. Also, if
11432                 * the connector is on the changing crtc but not on the new
11433                 * connector list, disable it. */
11434                if ((!set->fb || ro == set->num_connectors) &&
11435                    connector->base.encoder &&
11436                    connector->base.encoder->crtc == set->crtc) {
11437                        connector->new_encoder = NULL;
11438
11439                        DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
11440                                connector->base.base.id,
11441                                connector->base.name);
11442                }
11443
11444
11445                if (&connector->new_encoder->base != connector->base.encoder) {
11446                        DRM_DEBUG_KMS("encoder changed, full mode switch\n");
11447                        config->mode_changed = true;
11448                }
11449        }
11450        /* connector->new_encoder is now updated for all connectors. */
11451
11452        /* Update crtc of enabled connectors. */
11453        list_for_each_entry(connector, &dev->mode_config.connector_list,
11454                            base.head) {
11455                struct drm_crtc *new_crtc;
11456
11457                if (!connector->new_encoder)
11458                        continue;
11459
11460                new_crtc = connector->new_encoder->base.crtc;
11461
11462                for (ro = 0; ro < set->num_connectors; ro++) {
11463                        if (set->connectors[ro] == &connector->base)
11464                                new_crtc = set->crtc;
11465                }
11466
11467                /* Make sure the new CRTC will work with the encoder */
11468                if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
11469                                         new_crtc)) {
11470                        return -EINVAL;
11471                }
11472                connector->new_encoder->new_crtc = to_intel_crtc(new_crtc);
11473
11474                DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
11475                        connector->base.base.id,
11476                        connector->base.name,
11477                        new_crtc->base.id);
11478        }
11479
11480        /* Check for any encoders that needs to be disabled. */
11481        for_each_intel_encoder(dev, encoder) {
11482                int num_connectors = 0;
11483                list_for_each_entry(connector,
11484                                    &dev->mode_config.connector_list,
11485                                    base.head) {
11486                        if (connector->new_encoder == encoder) {
11487                                WARN_ON(!connector->new_encoder->new_crtc);
11488                                num_connectors++;
11489                        }
11490                }
11491
11492                if (num_connectors == 0)
11493                        encoder->new_crtc = NULL;
11494                else if (num_connectors > 1)
11495                        return -EINVAL;
11496
11497                /* Only now check for crtc changes so we don't miss encoders
11498                 * that will be disabled. */
11499                if (&encoder->new_crtc->base != encoder->base.crtc) {
11500                        DRM_DEBUG_KMS("crtc changed, full mode switch\n");
11501                        config->mode_changed = true;
11502                }
11503        }
11504        /* Now we've also updated encoder->new_crtc for all encoders. */
11505        list_for_each_entry(connector, &dev->mode_config.connector_list,
11506                            base.head) {
11507                if (connector->new_encoder)
11508                        if (connector->new_encoder != connector->encoder)
11509                                connector->encoder = connector->new_encoder;
11510        }
11511        for_each_intel_crtc(dev, crtc) {
11512                crtc->new_enabled = false;
11513
11514                for_each_intel_encoder(dev, encoder) {
11515                        if (encoder->new_crtc == crtc) {
11516                                crtc->new_enabled = true;
11517                                break;
11518                        }
11519                }
11520
11521                if (crtc->new_enabled != crtc->base.enabled) {
11522                        DRM_DEBUG_KMS("crtc %sabled, full mode switch\n",
11523                                      crtc->new_enabled ? "en" : "dis");
11524                        config->mode_changed = true;
11525                }
11526
11527                if (crtc->new_enabled)
11528                        crtc->new_config = &crtc->config;
11529                else
11530                        crtc->new_config = NULL;
11531        }
11532
11533        return 0;
11534}
11535
11536static void disable_crtc_nofb(struct intel_crtc *crtc)
11537{
11538        struct drm_device *dev = crtc->base.dev;
11539        struct intel_encoder *encoder;
11540        struct intel_connector *connector;
11541
11542        DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
11543                      pipe_name(crtc->pipe));
11544
11545        list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11546                if (connector->new_encoder &&
11547                    connector->new_encoder->new_crtc == crtc)
11548                        connector->new_encoder = NULL;
11549        }
11550
11551        for_each_intel_encoder(dev, encoder) {
11552                if (encoder->new_crtc == crtc)
11553                        encoder->new_crtc = NULL;
11554        }
11555
11556        crtc->new_enabled = false;
11557        crtc->new_config = NULL;
11558}
11559
11560static int intel_crtc_set_config(struct drm_mode_set *set)
11561{
11562        struct drm_device *dev;
11563        struct drm_mode_set save_set;
11564        struct intel_set_config *config;
11565        int ret;
11566
11567        BUG_ON(!set);
11568        BUG_ON(!set->crtc);
11569        BUG_ON(!set->crtc->helper_private);
11570
11571        /* Enforce sane interface api - has been abused by the fb helper. */
11572        BUG_ON(!set->mode && set->fb);
11573        BUG_ON(set->fb && set->num_connectors == 0);
11574
11575        if (set->fb) {
11576                DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
11577                                set->crtc->base.id, set->fb->base.id,
11578                                (int)set->num_connectors, set->x, set->y);
11579        } else {
11580                DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
11581        }
11582
11583        dev = set->crtc->dev;
11584
11585        ret = -ENOMEM;
11586        config = kzalloc(sizeof(*config), GFP_KERNEL);
11587        if (!config)
11588                goto out_config;
11589
11590        ret = intel_set_config_save_state(dev, config);
11591        if (ret)
11592                goto out_config;
11593
11594        save_set.crtc = set->crtc;
11595        save_set.mode = &set->crtc->mode;
11596        save_set.x = set->crtc->x;
11597        save_set.y = set->crtc->y;
11598        save_set.fb = set->crtc->primary->fb;
11599
11600        /* Compute whether we need a full modeset, only an fb base update or no
11601         * change at all. In the future we might also check whether only the
11602         * mode changed, e.g. for LVDS where we only change the panel fitter in
11603         * such cases. */
11604        intel_set_config_compute_mode_changes(set, config);
11605
11606        ret = intel_modeset_stage_output_state(dev, set, config);
11607        if (ret)
11608                goto fail;
11609
11610        if (config->mode_changed) {
11611                ret = intel_set_mode(set->crtc, set->mode,
11612                                     set->x, set->y, set->fb);
11613        } else if (config->fb_changed) {
11614                struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
11615
11616                intel_crtc_wait_for_pending_flips(set->crtc);
11617
11618                ret = intel_pipe_set_base(set->crtc,
11619                                          set->x, set->y, set->fb);
11620
11621                /*
11622                 * We need to make sure the primary plane is re-enabled if it
11623                 * has previously been turned off.
11624                 */
11625                if (!intel_crtc->primary_enabled && ret == 0) {
11626                        WARN_ON(!intel_crtc->active);
11627                        intel_enable_primary_hw_plane(set->crtc->primary, set->crtc);
11628                }
11629
11630                /*
11631                 * In the fastboot case this may be our only check of the
11632                 * state after boot.  It would be better to only do it on
11633                 * the first update, but we don't have a nice way of doing that
11634                 * (and really, set_config isn't used much for high freq page
11635                 * flipping, so increasing its cost here shouldn't be a big
11636                 * deal).
11637                 */
11638                if (i915.fastboot && ret == 0)
11639                        intel_modeset_check_state(set->crtc->dev);
11640        }
11641
11642        if (ret) {
11643                DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
11644                              set->crtc->base.id, ret);
11645fail:
11646                intel_set_config_restore_state(dev, config);
11647
11648                /*
11649                 * HACK: if the pipe was on, but we didn't have a framebuffer,
11650                 * force the pipe off to avoid oopsing in the modeset code
11651                 * due to fb==NULL. This should only happen during boot since
11652                 * we don't yet reconstruct the FB from the hardware state.
11653                 */
11654                if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
11655                        disable_crtc_nofb(to_intel_crtc(save_set.crtc));
11656
11657                /* Try to restore the config */
11658                if (config->mode_changed &&
11659                    intel_set_mode(save_set.crtc, save_set.mode,
11660                                   save_set.x, save_set.y, save_set.fb))
11661                        DRM_ERROR("failed to restore config after modeset failure\n");
11662        }
11663
11664out_config:
11665        intel_set_config_free(config);
11666        return ret;
11667}
11668
11669static const struct drm_crtc_funcs intel_crtc_funcs = {
11670        .gamma_set = intel_crtc_gamma_set,
11671        .set_config = intel_crtc_set_config,
11672        .destroy = intel_crtc_destroy,
11673        .page_flip = intel_crtc_page_flip,
11674};
11675
11676static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
11677                                      struct intel_shared_dpll *pll,
11678                                      struct intel_dpll_hw_state *hw_state)
11679{
11680        uint32_t val;
11681
11682        if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_PLLS))
11683                return false;
11684
11685        val = I915_READ(PCH_DPLL(pll->id));
11686        hw_state->dpll = val;
11687        hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
11688        hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
11689
11690        return val & DPLL_VCO_ENABLE;
11691}
11692
11693static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
11694                                  struct intel_shared_dpll *pll)
11695{
11696        I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
11697        I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
11698}
11699
11700static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
11701                                struct intel_shared_dpll *pll)
11702{
11703        /* PCH refclock must be enabled first */
11704        ibx_assert_pch_refclk_enabled(dev_priv);
11705
11706        I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
11707
11708        /* Wait for the clocks to stabilize. */
11709        POSTING_READ(PCH_DPLL(pll->id));
11710        udelay(150);
11711
11712        /* The pixel multiplier can only be updated once the
11713         * DPLL is enabled and the clocks are stable.
11714         *
11715         * So write it again.
11716         */
11717        I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
11718        POSTING_READ(PCH_DPLL(pll->id));
11719        udelay(200);
11720}
11721
11722static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
11723                                 struct intel_shared_dpll *pll)
11724{
11725        struct drm_device *dev = dev_priv->dev;
11726        struct intel_crtc *crtc;
11727
11728        /* Make sure no transcoder isn't still depending on us. */
11729        for_each_intel_crtc(dev, crtc) {
11730                if (intel_crtc_to_shared_dpll(crtc) == pll)
11731                        assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
11732        }
11733
11734        I915_WRITE(PCH_DPLL(pll->id), 0);
11735        POSTING_READ(PCH_DPLL(pll->id));
11736        udelay(200);
11737}
11738
11739static char *ibx_pch_dpll_names[] = {
11740        "PCH DPLL A",
11741        "PCH DPLL B",
11742};
11743
11744static void ibx_pch_dpll_init(struct drm_device *dev)
11745{
11746        struct drm_i915_private *dev_priv = dev->dev_private;
11747        int i;
11748
11749        dev_priv->num_shared_dpll = 2;
11750
11751        for (i = 0; i < dev_priv->num_shared_dpll; i++) {
11752                dev_priv->shared_dplls[i].id = i;
11753                dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
11754                dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
11755                dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
11756                dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
11757                dev_priv->shared_dplls[i].get_hw_state =
11758                        ibx_pch_dpll_get_hw_state;
11759        }
11760}
11761
11762static void intel_shared_dpll_init(struct drm_device *dev)
11763{
11764        struct drm_i915_private *dev_priv = dev->dev_private;
11765
11766        if (HAS_DDI(dev))
11767                intel_ddi_pll_init(dev);
11768        else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
11769                ibx_pch_dpll_init(dev);
11770        else
11771                dev_priv->num_shared_dpll = 0;
11772
11773        BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
11774}
11775
11776static int
11777intel_primary_plane_disable(struct drm_plane *plane)
11778{
11779        struct drm_device *dev = plane->dev;
11780        struct intel_crtc *intel_crtc;
11781
11782        if (!plane->fb)
11783                return 0;
11784
11785        BUG_ON(!plane->crtc);
11786
11787        intel_crtc = to_intel_crtc(plane->crtc);
11788
11789        /*
11790         * Even though we checked plane->fb above, it's still possible that
11791         * the primary plane has been implicitly disabled because the crtc
11792         * coordinates given weren't visible, or because we detected
11793         * that it was 100% covered by a sprite plane.  Or, the CRTC may be
11794         * off and we've set a fb, but haven't actually turned on the CRTC yet.
11795         * In either case, we need to unpin the FB and let the fb pointer get
11796         * updated, but otherwise we don't need to touch the hardware.
11797         */
11798        if (!intel_crtc->primary_enabled)
11799                goto disable_unpin;
11800
11801        intel_crtc_wait_for_pending_flips(plane->crtc);
11802        intel_disable_primary_hw_plane(plane, plane->crtc);
11803
11804disable_unpin:
11805        mutex_lock(&dev->struct_mutex);
11806        i915_gem_track_fb(intel_fb_obj(plane->fb), NULL,
11807                          INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
11808        intel_unpin_fb_obj(intel_fb_obj(plane->fb));
11809        mutex_unlock(&dev->struct_mutex);
11810        plane->fb = NULL;
11811
11812        return 0;
11813}
11814
11815static int
11816intel_primary_plane_setplane(struct drm_plane *plane, struct drm_crtc *crtc,
11817                             struct drm_framebuffer *fb, int crtc_x, int crtc_y,
11818                             unsigned int crtc_w, unsigned int crtc_h,
11819                             uint32_t src_x, uint32_t src_y,
11820                             uint32_t src_w, uint32_t src_h)
11821{
11822        struct drm_device *dev = crtc->dev;
11823        struct drm_i915_private *dev_priv = dev->dev_private;
11824        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11825        struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11826        struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
11827        struct drm_rect dest = {
11828                /* integer pixels */
11829                .x1 = crtc_x,
11830                .y1 = crtc_y,
11831                .x2 = crtc_x + crtc_w,
11832                .y2 = crtc_y + crtc_h,
11833        };
11834        struct drm_rect src = {
11835                /* 16.16 fixed point */
11836                .x1 = src_x,
11837                .y1 = src_y,
11838                .x2 = src_x + src_w,
11839                .y2 = src_y + src_h,
11840        };
11841        const struct drm_rect clip = {
11842                /* integer pixels */
11843                .x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0,
11844                .y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0,
11845        };
11846        const struct {
11847                int crtc_x, crtc_y;
11848                unsigned int crtc_w, crtc_h;
11849                uint32_t src_x, src_y, src_w, src_h;
11850        } orig = {
11851                .crtc_x = crtc_x,
11852                .crtc_y = crtc_y,
11853                .crtc_w = crtc_w,
11854                .crtc_h = crtc_h,
11855                .src_x = src_x,
11856                .src_y = src_y,
11857                .src_w = src_w,
11858                .src_h = src_h,
11859        };
11860        struct intel_plane *intel_plane = to_intel_plane(plane);
11861        bool visible;
11862        int ret;
11863
11864        ret = drm_plane_helper_check_update(plane, crtc, fb,
11865                                            &src, &dest, &clip,
11866                                            DRM_PLANE_HELPER_NO_SCALING,
11867                                            DRM_PLANE_HELPER_NO_SCALING,
11868                                            false, true, &visible);
11869
11870        if (ret)
11871                return ret;
11872
11873        /*
11874         * If the CRTC isn't enabled, we're just pinning the framebuffer,
11875         * updating the fb pointer, and returning without touching the
11876         * hardware.  This allows us to later do a drmModeSetCrtc with fb=-1 to
11877         * turn on the display with all planes setup as desired.
11878         */
11879        if (!crtc->enabled) {
11880                mutex_lock(&dev->struct_mutex);
11881
11882                /*
11883                 * If we already called setplane while the crtc was disabled,
11884                 * we may have an fb pinned; unpin it.
11885                 */
11886                if (plane->fb)
11887                        intel_unpin_fb_obj(old_obj);
11888
11889                i915_gem_track_fb(old_obj, obj,
11890                                  INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
11891
11892                /* Pin and return without programming hardware */
11893                ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
11894                mutex_unlock(&dev->struct_mutex);
11895
11896                return ret;
11897        }
11898
11899        intel_crtc_wait_for_pending_flips(crtc);
11900
11901        /*
11902         * If clipping results in a non-visible primary plane, we'll disable
11903         * the primary plane.  Note that this is a bit different than what
11904         * happens if userspace explicitly disables the plane by passing fb=0
11905         * because plane->fb still gets set and pinned.
11906         */
11907        if (!visible) {
11908                mutex_lock(&dev->struct_mutex);
11909
11910                /*
11911                 * Try to pin the new fb first so that we can bail out if we
11912                 * fail.
11913                 */
11914                if (plane->fb != fb) {
11915                        ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
11916                        if (ret) {
11917                                mutex_unlock(&dev->struct_mutex);
11918                                return ret;
11919                        }
11920                }
11921
11922                i915_gem_track_fb(old_obj, obj,
11923                                  INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
11924
11925                if (intel_crtc->primary_enabled)
11926                        intel_disable_primary_hw_plane(plane, crtc);
11927
11928
11929                if (plane->fb != fb)
11930                        if (plane->fb)
11931                                intel_unpin_fb_obj(old_obj);
11932
11933                mutex_unlock(&dev->struct_mutex);
11934
11935        } else {
11936                if (intel_crtc && intel_crtc->active &&
11937                    intel_crtc->primary_enabled) {
11938                        /*
11939                         * FBC does not work on some platforms for rotated
11940                         * planes, so disable it when rotation is not 0 and
11941                         * update it when rotation is set back to 0.
11942                         *
11943                         * FIXME: This is redundant with the fbc update done in
11944                         * the primary plane enable function except that that
11945                         * one is done too late. We eventually need to unify
11946                         * this.
11947                         */
11948                        if (INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
11949                            dev_priv->fbc.plane == intel_crtc->plane &&
11950                            intel_plane->rotation != BIT(DRM_ROTATE_0)) {
11951                                intel_disable_fbc(dev);
11952                        }
11953                }
11954                ret = intel_pipe_set_base(crtc, src.x1, src.y1, fb);
11955                if (ret)
11956                        return ret;
11957
11958                if (!intel_crtc->primary_enabled)
11959                        intel_enable_primary_hw_plane(plane, crtc);
11960        }
11961
11962        intel_plane->crtc_x = orig.crtc_x;
11963        intel_plane->crtc_y = orig.crtc_y;
11964        intel_plane->crtc_w = orig.crtc_w;
11965        intel_plane->crtc_h = orig.crtc_h;
11966        intel_plane->src_x = orig.src_x;
11967        intel_plane->src_y = orig.src_y;
11968        intel_plane->src_w = orig.src_w;
11969        intel_plane->src_h = orig.src_h;
11970        intel_plane->obj = obj;
11971
11972        return 0;
11973}
11974
11975/* Common destruction function for both primary and cursor planes */
11976static void intel_plane_destroy(struct drm_plane *plane)
11977{
11978        struct intel_plane *intel_plane = to_intel_plane(plane);
11979        drm_plane_cleanup(plane);
11980        kfree(intel_plane);
11981}
11982
11983static const struct drm_plane_funcs intel_primary_plane_funcs = {
11984        .update_plane = intel_primary_plane_setplane,
11985        .disable_plane = intel_primary_plane_disable,
11986        .destroy = intel_plane_destroy,
11987        .set_property = intel_plane_set_property
11988};
11989
11990static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
11991                                                    int pipe)
11992{
11993        struct intel_plane *primary;
11994        const uint32_t *intel_primary_formats;
11995        int num_formats;
11996
11997        primary = kzalloc(sizeof(*primary), GFP_KERNEL);
11998        if (primary == NULL)
11999                return NULL;
12000
12001        primary->can_scale = false;
12002        primary->max_downscale = 1;
12003        primary->pipe = pipe;
12004        primary->plane = pipe;
12005        primary->rotation = BIT(DRM_ROTATE_0);
12006        if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
12007                primary->plane = !pipe;
12008
12009        if (INTEL_INFO(dev)->gen <= 3) {
12010                intel_primary_formats = intel_primary_formats_gen2;
12011                num_formats = ARRAY_SIZE(intel_primary_formats_gen2);
12012        } else {
12013                intel_primary_formats = intel_primary_formats_gen4;
12014                num_formats = ARRAY_SIZE(intel_primary_formats_gen4);
12015        }
12016
12017        drm_universal_plane_init(dev, &primary->base, 0,
12018                                 &intel_primary_plane_funcs,
12019                                 intel_primary_formats, num_formats,
12020                                 DRM_PLANE_TYPE_PRIMARY);
12021
12022        if (INTEL_INFO(dev)->gen >= 4) {
12023                if (!dev->mode_config.rotation_property)
12024                        dev->mode_config.rotation_property =
12025                                drm_mode_create_rotation_property(dev,
12026                                                        BIT(DRM_ROTATE_0) |
12027                                                        BIT(DRM_ROTATE_180));
12028                if (dev->mode_config.rotation_property)
12029                        drm_object_attach_property(&primary->base.base,
12030                                dev->mode_config.rotation_property,
12031                                primary->rotation);
12032        }
12033
12034        return &primary->base;
12035}
12036
12037static int
12038intel_cursor_plane_disable(struct drm_plane *plane)
12039{
12040        if (!plane->fb)
12041                return 0;
12042
12043        BUG_ON(!plane->crtc);
12044
12045        return intel_crtc_cursor_set_obj(plane->crtc, NULL, 0, 0);
12046}
12047
12048static int
12049intel_cursor_plane_update(struct drm_plane *plane, struct drm_crtc *crtc,
12050                          struct drm_framebuffer *fb, int crtc_x, int crtc_y,
12051                          unsigned int crtc_w, unsigned int crtc_h,
12052                          uint32_t src_x, uint32_t src_y,
12053                          uint32_t src_w, uint32_t src_h)
12054{
12055        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12056        struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
12057        struct drm_i915_gem_object *obj = intel_fb->obj;
12058        struct drm_rect dest = {
12059                /* integer pixels */
12060                .x1 = crtc_x,
12061                .y1 = crtc_y,
12062                .x2 = crtc_x + crtc_w,
12063                .y2 = crtc_y + crtc_h,
12064        };
12065        struct drm_rect src = {
12066                /* 16.16 fixed point */
12067                .x1 = src_x,
12068                .y1 = src_y,
12069                .x2 = src_x + src_w,
12070                .y2 = src_y + src_h,
12071        };
12072        const struct drm_rect clip = {
12073                /* integer pixels */
12074                .x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0,
12075                .y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0,
12076        };
12077        bool visible;
12078        int ret;
12079
12080        ret = drm_plane_helper_check_update(plane, crtc, fb,
12081                                            &src, &dest, &clip,
12082                                            DRM_PLANE_HELPER_NO_SCALING,
12083                                            DRM_PLANE_HELPER_NO_SCALING,
12084                                            true, true, &visible);
12085        if (ret)
12086                return ret;
12087
12088        crtc->cursor_x = crtc_x;
12089        crtc->cursor_y = crtc_y;
12090        if (fb != crtc->cursor->fb) {
12091                return intel_crtc_cursor_set_obj(crtc, obj, crtc_w, crtc_h);
12092        } else {
12093                intel_crtc_update_cursor(crtc, visible);
12094
12095                intel_frontbuffer_flip(crtc->dev,
12096                                       INTEL_FRONTBUFFER_CURSOR(intel_crtc->pipe));
12097
12098                return 0;
12099        }
12100}
12101static const struct drm_plane_funcs intel_cursor_plane_funcs = {
12102        .update_plane = intel_cursor_plane_update,
12103        .disable_plane = intel_cursor_plane_disable,
12104        .destroy = intel_plane_destroy,
12105};
12106
12107static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
12108                                                   int pipe)
12109{
12110        struct intel_plane *cursor;
12111
12112        cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
12113        if (cursor == NULL)
12114                return NULL;
12115
12116        cursor->can_scale = false;
12117        cursor->max_downscale = 1;
12118        cursor->pipe = pipe;
12119        cursor->plane = pipe;
12120
12121        drm_universal_plane_init(dev, &cursor->base, 0,
12122                                 &intel_cursor_plane_funcs,
12123                                 intel_cursor_formats,
12124                                 ARRAY_SIZE(intel_cursor_formats),
12125                                 DRM_PLANE_TYPE_CURSOR);
12126        return &cursor->base;
12127}
12128
12129static void intel_crtc_init(struct drm_device *dev, int pipe)
12130{
12131        struct drm_i915_private *dev_priv = dev->dev_private;
12132        struct intel_crtc *intel_crtc;
12133        struct drm_plane *primary = NULL;
12134        struct drm_plane *cursor = NULL;
12135        int i, ret;
12136
12137        intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
12138        if (intel_crtc == NULL)
12139                return;
12140
12141        primary = intel_primary_plane_create(dev, pipe);
12142        if (!primary)
12143                goto fail;
12144
12145        cursor = intel_cursor_plane_create(dev, pipe);
12146        if (!cursor)
12147                goto fail;
12148
12149        ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
12150                                        cursor, &intel_crtc_funcs);
12151        if (ret)
12152                goto fail;
12153
12154        drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
12155        for (i = 0; i < 256; i++) {
12156                intel_crtc->lut_r[i] = i;
12157                intel_crtc->lut_g[i] = i;
12158                intel_crtc->lut_b[i] = i;
12159        }
12160
12161        /*
12162         * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
12163         * is hooked to pipe B. Hence we want plane A feeding pipe B.
12164         */
12165        intel_crtc->pipe = pipe;
12166        intel_crtc->plane = pipe;
12167        if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
12168                DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
12169                intel_crtc->plane = !pipe;
12170        }
12171
12172        intel_crtc->cursor_base = ~0;
12173        intel_crtc->cursor_cntl = ~0;
12174        intel_crtc->cursor_size = ~0;
12175
12176        BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
12177               dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
12178        dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
12179        dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
12180
12181        drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
12182
12183        WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
12184        return;
12185
12186fail:
12187        if (primary)
12188                drm_plane_cleanup(primary);
12189        if (cursor)
12190                drm_plane_cleanup(cursor);
12191        kfree(intel_crtc);
12192}
12193
12194enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
12195{
12196        struct drm_encoder *encoder = connector->base.encoder;
12197        struct drm_device *dev = connector->base.dev;
12198
12199        WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
12200
12201        if (!encoder)
12202                return INVALID_PIPE;
12203
12204        return to_intel_crtc(encoder->crtc)->pipe;
12205}
12206
12207int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
12208                                struct drm_file *file)
12209{
12210        struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
12211        struct drm_crtc *drmmode_crtc;
12212        struct intel_crtc *crtc;
12213
12214        if (!drm_core_check_feature(dev, DRIVER_MODESET))
12215                return -ENODEV;
12216
12217        drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
12218
12219        if (!drmmode_crtc) {
12220                DRM_ERROR("no such CRTC id\n");
12221                return -ENOENT;
12222        }
12223
12224        crtc = to_intel_crtc(drmmode_crtc);
12225        pipe_from_crtc_id->pipe = crtc->pipe;
12226
12227        return 0;
12228}
12229
12230static int intel_encoder_clones(struct intel_encoder *encoder)
12231{
12232        struct drm_device *dev = encoder->base.dev;
12233        struct intel_encoder *source_encoder;
12234        int index_mask = 0;
12235        int entry = 0;
12236
12237        for_each_intel_encoder(dev, source_encoder) {
12238                if (encoders_cloneable(encoder, source_encoder))
12239                        index_mask |= (1 << entry);
12240
12241                entry++;
12242        }
12243
12244        return index_mask;
12245}
12246
12247static bool has_edp_a(struct drm_device *dev)
12248{
12249        struct drm_i915_private *dev_priv = dev->dev_private;
12250
12251        if (!IS_MOBILE(dev))
12252                return false;
12253
12254        if ((I915_READ(DP_A) & DP_DETECTED) == 0)
12255                return false;
12256
12257        if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
12258                return false;
12259
12260        return true;
12261}
12262
12263const char *intel_output_name(int output)
12264{
12265        static const char *names[] = {
12266                [INTEL_OUTPUT_UNUSED] = "Unused",
12267                [INTEL_OUTPUT_ANALOG] = "Analog",
12268                [INTEL_OUTPUT_DVO] = "DVO",
12269                [INTEL_OUTPUT_SDVO] = "SDVO",
12270                [INTEL_OUTPUT_LVDS] = "LVDS",
12271                [INTEL_OUTPUT_TVOUT] = "TV",
12272                [INTEL_OUTPUT_HDMI] = "HDMI",
12273                [INTEL_OUTPUT_DISPLAYPORT] = "DisplayPort",
12274                [INTEL_OUTPUT_EDP] = "eDP",
12275                [INTEL_OUTPUT_DSI] = "DSI",
12276                [INTEL_OUTPUT_UNKNOWN] = "Unknown",
12277        };
12278
12279        if (output < 0 || output >= ARRAY_SIZE(names) || !names[output])
12280                return "Invalid";
12281
12282        return names[output];
12283}
12284
12285static bool intel_crt_present(struct drm_device *dev)
12286{
12287        struct drm_i915_private *dev_priv = dev->dev_private;
12288
12289        if (IS_ULT(dev))
12290                return false;
12291
12292        if (IS_CHERRYVIEW(dev))
12293                return false;
12294
12295        if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
12296                return false;
12297
12298        return true;
12299}
12300
12301static void intel_setup_outputs(struct drm_device *dev)
12302{
12303        struct drm_i915_private *dev_priv = dev->dev_private;
12304        struct intel_encoder *encoder;
12305        bool dpd_is_edp = false;
12306
12307        intel_lvds_init(dev);
12308
12309        if (intel_crt_present(dev))
12310                intel_crt_init(dev);
12311
12312        if (HAS_DDI(dev)) {
12313                int found;
12314
12315                /* Haswell uses DDI functions to detect digital outputs */
12316                found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
12317                /* DDI A only supports eDP */
12318                if (found)
12319                        intel_ddi_init(dev, PORT_A);
12320
12321                /* DDI B, C and D detection is indicated by the SFUSE_STRAP
12322                 * register */
12323                found = I915_READ(SFUSE_STRAP);
12324
12325                if (found & SFUSE_STRAP_DDIB_DETECTED)
12326                        intel_ddi_init(dev, PORT_B);
12327                if (found & SFUSE_STRAP_DDIC_DETECTED)
12328                        intel_ddi_init(dev, PORT_C);
12329                if (found & SFUSE_STRAP_DDID_DETECTED)
12330                        intel_ddi_init(dev, PORT_D);
12331        } else if (HAS_PCH_SPLIT(dev)) {
12332                int found;
12333                dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
12334
12335                if (has_edp_a(dev))
12336                        intel_dp_init(dev, DP_A, PORT_A);
12337
12338                if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
12339                        /* PCH SDVOB multiplex with HDMIB */
12340                        found = intel_sdvo_init(dev, PCH_SDVOB, true);
12341                        if (!found)
12342                                intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
12343                        if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
12344                                intel_dp_init(dev, PCH_DP_B, PORT_B);
12345                }
12346
12347                if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
12348                        intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
12349
12350                if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
12351                        intel_hdmi_init(dev, PCH_HDMID, PORT_D);
12352
12353                if (I915_READ(PCH_DP_C) & DP_DETECTED)
12354                        intel_dp_init(dev, PCH_DP_C, PORT_C);
12355
12356                if (I915_READ(PCH_DP_D) & DP_DETECTED)
12357                        intel_dp_init(dev, PCH_DP_D, PORT_D);
12358        } else if (IS_VALLEYVIEW(dev)) {
12359                /*
12360                 * The DP_DETECTED bit is the latched state of the DDC
12361                 * SDA pin at boot. However since eDP doesn't require DDC
12362                 * (no way to plug in a DP->HDMI dongle) the DDC pins for
12363                 * eDP ports may have been muxed to an alternate function.
12364                 * Thus we can't rely on the DP_DETECTED bit alone to detect
12365                 * eDP ports. Consult the VBT as well as DP_DETECTED to
12366                 * detect eDP ports.
12367                 */
12368                if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED)
12369                        intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
12370                                        PORT_B);
12371                if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED ||
12372                    intel_dp_is_edp(dev, PORT_B))
12373                        intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
12374
12375                if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED)
12376                        intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
12377                                        PORT_C);
12378                if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED ||
12379                    intel_dp_is_edp(dev, PORT_C))
12380                        intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
12381
12382                if (IS_CHERRYVIEW(dev)) {
12383                        if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED)
12384                                intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
12385                                                PORT_D);
12386                        /* eDP not supported on port D, so don't check VBT */
12387                        if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
12388                                intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
12389                }
12390
12391                intel_dsi_init(dev);
12392        } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
12393                bool found = false;
12394
12395                if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
12396                        DRM_DEBUG_KMS("probing SDVOB\n");
12397                        found = intel_sdvo_init(dev, GEN3_SDVOB, true);
12398                        if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
12399                                DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
12400                                intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
12401                        }
12402
12403                        if (!found && SUPPORTS_INTEGRATED_DP(dev))
12404                                intel_dp_init(dev, DP_B, PORT_B);
12405                }
12406
12407                /* Before G4X SDVOC doesn't have its own detect register */
12408
12409                if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
12410                        DRM_DEBUG_KMS("probing SDVOC\n");
12411                        found = intel_sdvo_init(dev, GEN3_SDVOC, false);
12412                }
12413
12414                if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
12415
12416                        if (SUPPORTS_INTEGRATED_HDMI(dev)) {
12417                                DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
12418                                intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
12419                        }
12420                        if (SUPPORTS_INTEGRATED_DP(dev))
12421                                intel_dp_init(dev, DP_C, PORT_C);
12422                }
12423
12424                if (SUPPORTS_INTEGRATED_DP(dev) &&
12425                    (I915_READ(DP_D) & DP_DETECTED))
12426                        intel_dp_init(dev, DP_D, PORT_D);
12427        } else if (IS_GEN2(dev))
12428                intel_dvo_init(dev);
12429
12430        if (SUPPORTS_TV(dev))
12431                intel_tv_init(dev);
12432
12433        intel_edp_psr_init(dev);
12434
12435        for_each_intel_encoder(dev, encoder) {
12436                encoder->base.possible_crtcs = encoder->crtc_mask;
12437                encoder->base.possible_clones =
12438                        intel_encoder_clones(encoder);
12439        }
12440
12441        intel_init_pch_refclk(dev);
12442
12443        drm_helper_move_panel_connectors_to_head(dev);
12444}
12445
12446static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
12447{
12448        struct drm_device *dev = fb->dev;
12449        struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
12450
12451        drm_framebuffer_cleanup(fb);
12452        mutex_lock(&dev->struct_mutex);
12453        WARN_ON(!intel_fb->obj->framebuffer_references--);
12454        drm_gem_object_unreference(&intel_fb->obj->base);
12455        mutex_unlock(&dev->struct_mutex);
12456        kfree(intel_fb);
12457}
12458
12459static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
12460                                                struct drm_file *file,
12461                                                unsigned int *handle)
12462{
12463        struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
12464        struct drm_i915_gem_object *obj = intel_fb->obj;
12465
12466        return drm_gem_handle_create(file, &obj->base, handle);
12467}
12468
12469static const struct drm_framebuffer_funcs intel_fb_funcs = {
12470        .destroy = intel_user_framebuffer_destroy,
12471        .create_handle = intel_user_framebuffer_create_handle,
12472};
12473
12474static int intel_framebuffer_init(struct drm_device *dev,
12475                                  struct intel_framebuffer *intel_fb,
12476                                  struct drm_mode_fb_cmd2 *mode_cmd,
12477                                  struct drm_i915_gem_object *obj)
12478{
12479        int aligned_height;
12480        int pitch_limit;
12481        int ret;
12482
12483        WARN_ON(!mutex_is_locked(&dev->struct_mutex));
12484
12485        if (obj->tiling_mode == I915_TILING_Y) {
12486                DRM_DEBUG("hardware does not support tiling Y\n");
12487                return -EINVAL;
12488        }
12489
12490        if (mode_cmd->pitches[0] & 63) {
12491                DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
12492                          mode_cmd->pitches[0]);
12493                return -EINVAL;
12494        }
12495
12496        if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
12497                pitch_limit = 32*1024;
12498        } else if (INTEL_INFO(dev)->gen >= 4) {
12499                if (obj->tiling_mode)
12500                        pitch_limit = 16*1024;
12501                else
12502                        pitch_limit = 32*1024;
12503        } else if (INTEL_INFO(dev)->gen >= 3) {
12504                if (obj->tiling_mode)
12505                        pitch_limit = 8*1024;
12506                else
12507                        pitch_limit = 16*1024;
12508        } else
12509                /* XXX DSPC is limited to 4k tiled */
12510                pitch_limit = 8*1024;
12511
12512        if (mode_cmd->pitches[0] > pitch_limit) {
12513                DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
12514                          obj->tiling_mode ? "tiled" : "linear",
12515                          mode_cmd->pitches[0], pitch_limit);
12516                return -EINVAL;
12517        }
12518
12519        if (obj->tiling_mode != I915_TILING_NONE &&
12520            mode_cmd->pitches[0] != obj->stride) {
12521                DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
12522                          mode_cmd->pitches[0], obj->stride);
12523                return -EINVAL;
12524        }
12525
12526        /* Reject formats not supported by any plane early. */
12527        switch (mode_cmd->pixel_format) {
12528        case DRM_FORMAT_C8:
12529        case DRM_FORMAT_RGB565:
12530        case DRM_FORMAT_XRGB8888:
12531        case DRM_FORMAT_ARGB8888:
12532                break;
12533        case DRM_FORMAT_XRGB1555:
12534        case DRM_FORMAT_ARGB1555:
12535                if (INTEL_INFO(dev)->gen > 3) {
12536                        DRM_DEBUG("unsupported pixel format: %s\n",
12537                                  drm_get_format_name(mode_cmd->pixel_format));
12538                        return -EINVAL;
12539                }
12540                break;
12541        case DRM_FORMAT_XBGR8888:
12542        case DRM_FORMAT_ABGR8888:
12543        case DRM_FORMAT_XRGB2101010:
12544        case DRM_FORMAT_ARGB2101010:
12545        case DRM_FORMAT_XBGR2101010:
12546        case DRM_FORMAT_ABGR2101010:
12547                if (INTEL_INFO(dev)->gen < 4) {
12548                        DRM_DEBUG("unsupported pixel format: %s\n",
12549                                  drm_get_format_name(mode_cmd->pixel_format));
12550                        return -EINVAL;
12551                }
12552                break;
12553        case DRM_FORMAT_YUYV:
12554        case DRM_FORMAT_UYVY:
12555        case DRM_FORMAT_YVYU:
12556        case DRM_FORMAT_VYUY:
12557                if (INTEL_INFO(dev)->gen < 5) {
12558                        DRM_DEBUG("unsupported pixel format: %s\n",
12559                                  drm_get_format_name(mode_cmd->pixel_format));
12560                        return -EINVAL;
12561                }
12562                break;
12563        default:
12564                DRM_DEBUG("unsupported pixel format: %s\n",
12565                          drm_get_format_name(mode_cmd->pixel_format));
12566                return -EINVAL;
12567        }
12568
12569        /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
12570        if (mode_cmd->offsets[0] != 0)
12571                return -EINVAL;
12572
12573        aligned_height = intel_align_height(dev, mode_cmd->height,
12574                                            obj->tiling_mode);
12575        /* FIXME drm helper for size checks (especially planar formats)? */
12576        if (obj->base.size < aligned_height * mode_cmd->pitches[0])
12577                return -EINVAL;
12578
12579        drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
12580        intel_fb->obj = obj;
12581        intel_fb->obj->framebuffer_references++;
12582
12583        ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
12584        if (ret) {
12585                DRM_ERROR("framebuffer init failed %d\n", ret);
12586                return ret;
12587        }
12588
12589        return 0;
12590}
12591
12592static struct drm_framebuffer *
12593intel_user_framebuffer_create(struct drm_device *dev,
12594                              struct drm_file *filp,
12595                              struct drm_mode_fb_cmd2 *mode_cmd)
12596{
12597        struct drm_i915_gem_object *obj;
12598
12599        obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
12600                                                mode_cmd->handles[0]));
12601        if (&obj->base == NULL)
12602                return ERR_PTR(-ENOENT);
12603
12604        return intel_framebuffer_create(dev, mode_cmd, obj);
12605}
12606
12607#ifndef CONFIG_DRM_I915_FBDEV
12608static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
12609{
12610}
12611#endif
12612
12613static const struct drm_mode_config_funcs intel_mode_funcs = {
12614        .fb_create = intel_user_framebuffer_create,
12615        .output_poll_changed = intel_fbdev_output_poll_changed,
12616};
12617
12618/* Set up chip specific display functions */
12619static void intel_init_display(struct drm_device *dev)
12620{
12621        struct drm_i915_private *dev_priv = dev->dev_private;
12622
12623        if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
12624                dev_priv->display.find_dpll = g4x_find_best_dpll;
12625        else if (IS_CHERRYVIEW(dev))
12626                dev_priv->display.find_dpll = chv_find_best_dpll;
12627        else if (IS_VALLEYVIEW(dev))
12628                dev_priv->display.find_dpll = vlv_find_best_dpll;
12629        else if (IS_PINEVIEW(dev))
12630                dev_priv->display.find_dpll = pnv_find_best_dpll;
12631        else
12632                dev_priv->display.find_dpll = i9xx_find_best_dpll;
12633
12634        if (HAS_DDI(dev)) {
12635                dev_priv->display.get_pipe_config = haswell_get_pipe_config;
12636                dev_priv->display.get_plane_config = ironlake_get_plane_config;
12637                dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
12638                dev_priv->display.crtc_enable = haswell_crtc_enable;
12639                dev_priv->display.crtc_disable = haswell_crtc_disable;
12640                dev_priv->display.off = ironlake_crtc_off;
12641                dev_priv->display.update_primary_plane =
12642                        ironlake_update_primary_plane;
12643        } else if (HAS_PCH_SPLIT(dev)) {
12644                dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
12645                dev_priv->display.get_plane_config = ironlake_get_plane_config;
12646                dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
12647                dev_priv->display.crtc_enable = ironlake_crtc_enable;
12648                dev_priv->display.crtc_disable = ironlake_crtc_disable;
12649                dev_priv->display.off = ironlake_crtc_off;
12650                dev_priv->display.update_primary_plane =
12651                        ironlake_update_primary_plane;
12652        } else if (IS_VALLEYVIEW(dev)) {
12653                dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
12654                dev_priv->display.get_plane_config = i9xx_get_plane_config;
12655                dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
12656                dev_priv->display.crtc_enable = valleyview_crtc_enable;
12657                dev_priv->display.crtc_disable = i9xx_crtc_disable;
12658                dev_priv->display.off = i9xx_crtc_off;
12659                dev_priv->display.update_primary_plane =
12660                        i9xx_update_primary_plane;
12661        } else {
12662                dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
12663                dev_priv->display.get_plane_config = i9xx_get_plane_config;
12664                dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
12665                dev_priv->display.crtc_enable = i9xx_crtc_enable;
12666                dev_priv->display.crtc_disable = i9xx_crtc_disable;
12667                dev_priv->display.off = i9xx_crtc_off;
12668                dev_priv->display.update_primary_plane =
12669                        i9xx_update_primary_plane;
12670        }
12671
12672        /* Returns the core display clock speed */
12673        if (IS_VALLEYVIEW(dev))
12674                dev_priv->display.get_display_clock_speed =
12675                        valleyview_get_display_clock_speed;
12676        else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
12677                dev_priv->display.get_display_clock_speed =
12678                        i945_get_display_clock_speed;
12679        else if (IS_I915G(dev))
12680                dev_priv->display.get_display_clock_speed =
12681                        i915_get_display_clock_speed;
12682        else if (IS_I945GM(dev) || IS_845G(dev))
12683                dev_priv->display.get_display_clock_speed =
12684                        i9xx_misc_get_display_clock_speed;
12685        else if (IS_PINEVIEW(dev))
12686                dev_priv->display.get_display_clock_speed =
12687                        pnv_get_display_clock_speed;
12688        else if (IS_I915GM(dev))
12689                dev_priv->display.get_display_clock_speed =
12690                        i915gm_get_display_clock_speed;
12691        else if (IS_I865G(dev))
12692                dev_priv->display.get_display_clock_speed =
12693                        i865_get_display_clock_speed;
12694        else if (IS_I85X(dev))
12695                dev_priv->display.get_display_clock_speed =
12696                        i855_get_display_clock_speed;
12697        else /* 852, 830 */
12698                dev_priv->display.get_display_clock_speed =
12699                        i830_get_display_clock_speed;
12700
12701        if (IS_G4X(dev)) {
12702                dev_priv->display.write_eld = g4x_write_eld;
12703        } else if (IS_GEN5(dev)) {
12704                dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
12705                dev_priv->display.write_eld = ironlake_write_eld;
12706        } else if (IS_GEN6(dev)) {
12707                dev_priv->display.fdi_link_train = gen6_fdi_link_train;
12708                dev_priv->display.write_eld = ironlake_write_eld;
12709                dev_priv->display.modeset_global_resources =
12710                        snb_modeset_global_resources;
12711        } else if (IS_IVYBRIDGE(dev)) {
12712                /* FIXME: detect B0+ stepping and use auto training */
12713                dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
12714                dev_priv->display.write_eld = ironlake_write_eld;
12715                dev_priv->display.modeset_global_resources =
12716                        ivb_modeset_global_resources;
12717        } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
12718                dev_priv->display.fdi_link_train = hsw_fdi_link_train;
12719                dev_priv->display.write_eld = haswell_write_eld;
12720                dev_priv->display.modeset_global_resources =
12721                        haswell_modeset_global_resources;
12722        } else if (IS_VALLEYVIEW(dev)) {
12723                dev_priv->display.modeset_global_resources =
12724                        valleyview_modeset_global_resources;
12725                dev_priv->display.write_eld = ironlake_write_eld;
12726        }
12727
12728        /* Default just returns -ENODEV to indicate unsupported */
12729        dev_priv->display.queue_flip = intel_default_queue_flip;
12730
12731        switch (INTEL_INFO(dev)->gen) {
12732        case 2:
12733                dev_priv->display.queue_flip = intel_gen2_queue_flip;
12734                break;
12735
12736        case 3:
12737                dev_priv->display.queue_flip = intel_gen3_queue_flip;
12738                break;
12739
12740        case 4:
12741        case 5:
12742                dev_priv->display.queue_flip = intel_gen4_queue_flip;
12743                break;
12744
12745        case 6:
12746                dev_priv->display.queue_flip = intel_gen6_queue_flip;
12747                break;
12748        case 7:
12749        case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
12750                dev_priv->display.queue_flip = intel_gen7_queue_flip;
12751                break;
12752        }
12753
12754        intel_panel_init_backlight_funcs(dev);
12755
12756        mutex_init(&dev_priv->pps_mutex);
12757}
12758
12759/*
12760 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
12761 * resume, or other times.  This quirk makes sure that's the case for
12762 * affected systems.
12763 */
12764static void quirk_pipea_force(struct drm_device *dev)
12765{
12766        struct drm_i915_private *dev_priv = dev->dev_private;
12767
12768        dev_priv->quirks |= QUIRK_PIPEA_FORCE;
12769        DRM_INFO("applying pipe a force quirk\n");
12770}
12771
12772static void quirk_pipeb_force(struct drm_device *dev)
12773{
12774        struct drm_i915_private *dev_priv = dev->dev_private;
12775
12776        dev_priv->quirks |= QUIRK_PIPEB_FORCE;
12777        DRM_INFO("applying pipe b force quirk\n");
12778}
12779
12780/*
12781 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
12782 */
12783static void quirk_ssc_force_disable(struct drm_device *dev)
12784{
12785        struct drm_i915_private *dev_priv = dev->dev_private;
12786        dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
12787        DRM_INFO("applying lvds SSC disable quirk\n");
12788}
12789
12790/*
12791 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
12792 * brightness value
12793 */
12794static void quirk_invert_brightness(struct drm_device *dev)
12795{
12796        struct drm_i915_private *dev_priv = dev->dev_private;
12797        dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
12798        DRM_INFO("applying inverted panel brightness quirk\n");
12799}
12800
12801/* Some VBT's incorrectly indicate no backlight is present */
12802static void quirk_backlight_present(struct drm_device *dev)
12803{
12804        struct drm_i915_private *dev_priv = dev->dev_private;
12805        dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
12806        DRM_INFO("applying backlight present quirk\n");
12807}
12808
12809struct intel_quirk {
12810        int device;
12811        int subsystem_vendor;
12812        int subsystem_device;
12813        void (*hook)(struct drm_device *dev);
12814};
12815
12816/* For systems that don't have a meaningful PCI subdevice/subvendor ID */
12817struct intel_dmi_quirk {
12818        void (*hook)(struct drm_device *dev);
12819        const struct dmi_system_id (*dmi_id_list)[];
12820};
12821
12822static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
12823{
12824        DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
12825        return 1;
12826}
12827
12828static const struct intel_dmi_quirk intel_dmi_quirks[] = {
12829        {
12830                .dmi_id_list = &(const struct dmi_system_id[]) {
12831                        {
12832                                .callback = intel_dmi_reverse_brightness,
12833                                .ident = "NCR Corporation",
12834                                .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
12835                                            DMI_MATCH(DMI_PRODUCT_NAME, ""),
12836                                },
12837                        },
12838                        { }  /* terminating entry */
12839                },
12840                .hook = quirk_invert_brightness,
12841        },
12842};
12843
12844static struct intel_quirk intel_quirks[] = {
12845        /* HP Mini needs pipe A force quirk (LP: #322104) */
12846        { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
12847
12848        /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
12849        { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
12850
12851        /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
12852        { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
12853
12854        /* 830 needs to leave pipe A & dpll A up */
12855        { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
12856
12857        /* 830 needs to leave pipe B & dpll B up */
12858        { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
12859
12860        /* Lenovo U160 cannot use SSC on LVDS */
12861        { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
12862
12863        /* Sony Vaio Y cannot use SSC on LVDS */
12864        { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
12865
12866        /* Acer Aspire 5734Z must invert backlight brightness */
12867        { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
12868
12869        /* Acer/eMachines G725 */
12870        { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
12871
12872        /* Acer/eMachines e725 */
12873        { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
12874
12875        /* Acer/Packard Bell NCL20 */
12876        { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
12877
12878        /* Acer Aspire 4736Z */
12879        { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
12880
12881        /* Acer Aspire 5336 */
12882        { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
12883
12884        /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
12885        { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
12886
12887        /* Acer C720 Chromebook (Core i3 4005U) */
12888        { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
12889
12890        /* Apple Macbook 2,1 (Core 2 T7400) */
12891        { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
12892
12893        /* Toshiba CB35 Chromebook (Celeron 2955U) */
12894        { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
12895
12896        /* HP Chromebook 14 (Celeron 2955U) */
12897        { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
12898};
12899
12900static void intel_init_quirks(struct drm_device *dev)
12901{
12902        struct pci_dev *d = dev->pdev;
12903        int i;
12904
12905        for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
12906                struct intel_quirk *q = &intel_quirks[i];
12907
12908                if (d->device == q->device &&
12909                    (d->subsystem_vendor == q->subsystem_vendor ||
12910                     q->subsystem_vendor == PCI_ANY_ID) &&
12911                    (d->subsystem_device == q->subsystem_device ||
12912                     q->subsystem_device == PCI_ANY_ID))
12913                        q->hook(dev);
12914        }
12915        for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
12916                if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
12917                        intel_dmi_quirks[i].hook(dev);
12918        }
12919}
12920
12921/* Disable the VGA plane that we never use */
12922static void i915_disable_vga(struct drm_device *dev)
12923{
12924        struct drm_i915_private *dev_priv = dev->dev_private;
12925        u8 sr1;
12926        u32 vga_reg = i915_vgacntrl_reg(dev);
12927
12928        /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
12929        vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
12930        outb(SR01, VGA_SR_INDEX);
12931        sr1 = inb(VGA_SR_DATA);
12932        outb(sr1 | 1<<5, VGA_SR_DATA);
12933        vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
12934        udelay(300);
12935
12936        /*
12937         * Fujitsu-Siemens Lifebook S6010 (830) has problems resuming
12938         * from S3 without preserving (some of?) the other bits.
12939         */
12940        I915_WRITE(vga_reg, dev_priv->bios_vgacntr | VGA_DISP_DISABLE);
12941        POSTING_READ(vga_reg);
12942}
12943
12944void intel_modeset_init_hw(struct drm_device *dev)
12945{
12946        intel_prepare_ddi(dev);
12947
12948        if (IS_VALLEYVIEW(dev))
12949                vlv_update_cdclk(dev);
12950
12951        intel_init_clock_gating(dev);
12952
12953        intel_enable_gt_powersave(dev);
12954}
12955
12956void intel_modeset_suspend_hw(struct drm_device *dev)
12957{
12958        intel_suspend_hw(dev);
12959}
12960
12961void intel_modeset_init(struct drm_device *dev)
12962{
12963        struct drm_i915_private *dev_priv = dev->dev_private;
12964        int sprite, ret;
12965        enum pipe pipe;
12966        struct intel_crtc *crtc;
12967
12968        drm_mode_config_init(dev);
12969
12970        dev->mode_config.min_width = 0;
12971        dev->mode_config.min_height = 0;
12972
12973        dev->mode_config.preferred_depth = 24;
12974        dev->mode_config.prefer_shadow = 1;
12975
12976        dev->mode_config.funcs = &intel_mode_funcs;
12977
12978        intel_init_quirks(dev);
12979
12980        intel_init_pm(dev);
12981
12982        if (INTEL_INFO(dev)->num_pipes == 0)
12983                return;
12984
12985        intel_init_display(dev);
12986
12987        if (IS_GEN2(dev)) {
12988                dev->mode_config.max_width = 2048;
12989                dev->mode_config.max_height = 2048;
12990        } else if (IS_GEN3(dev)) {
12991                dev->mode_config.max_width = 4096;
12992                dev->mode_config.max_height = 4096;
12993        } else {
12994                dev->mode_config.max_width = 8192;
12995                dev->mode_config.max_height = 8192;
12996        }
12997
12998        if (IS_845G(dev) || IS_I865G(dev)) {
12999                dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
13000                dev->mode_config.cursor_height = 1023;
13001        } else if (IS_GEN2(dev)) {
13002                dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
13003                dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
13004        } else {
13005                dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
13006                dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
13007        }
13008
13009        dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
13010
13011        DRM_DEBUG_KMS("%d display pipe%s available.\n",
13012                      INTEL_INFO(dev)->num_pipes,
13013                      INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
13014
13015        for_each_pipe(dev_priv, pipe) {
13016                intel_crtc_init(dev, pipe);
13017                for_each_sprite(pipe, sprite) {
13018                        ret = intel_plane_init(dev, pipe, sprite);
13019                        if (ret)
13020                                DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
13021                                              pipe_name(pipe), sprite_name(pipe, sprite), ret);
13022                }
13023        }
13024
13025        intel_init_dpio(dev);
13026
13027        intel_shared_dpll_init(dev);
13028
13029        /* save the BIOS value before clobbering it */
13030        dev_priv->bios_vgacntr = I915_READ(i915_vgacntrl_reg(dev));
13031        /* Just disable it once at startup */
13032        i915_disable_vga(dev);
13033        intel_setup_outputs(dev);
13034
13035        /* Just in case the BIOS is doing something questionable. */
13036        intel_disable_fbc(dev);
13037
13038        drm_modeset_lock_all(dev);
13039        intel_modeset_setup_hw_state(dev, false);
13040        drm_modeset_unlock_all(dev);
13041
13042        for_each_intel_crtc(dev, crtc) {
13043                if (!crtc->active)
13044                        continue;
13045
13046                /*
13047                 * Note that reserving the BIOS fb up front prevents us
13048                 * from stuffing other stolen allocations like the ring
13049                 * on top.  This prevents some ugliness at boot time, and
13050                 * can even allow for smooth boot transitions if the BIOS
13051                 * fb is large enough for the active pipe configuration.
13052                 */
13053                if (dev_priv->display.get_plane_config) {
13054                        dev_priv->display.get_plane_config(crtc,
13055                                                           &crtc->plane_config);
13056                        /*
13057                         * If the fb is shared between multiple heads, we'll
13058                         * just get the first one.
13059                         */
13060                        intel_find_plane_obj(crtc, &crtc->plane_config);
13061                }
13062        }
13063}
13064
13065static void intel_enable_pipe_a(struct drm_device *dev)
13066{
13067        struct intel_connector *connector;
13068        struct drm_connector *crt = NULL;
13069        struct intel_load_detect_pipe load_detect_temp;
13070        struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
13071
13072        /* We can't just switch on the pipe A, we need to set things up with a
13073         * proper mode and output configuration. As a gross hack, enable pipe A
13074         * by enabling the load detect pipe once. */
13075        list_for_each_entry(connector,
13076                            &dev->mode_config.connector_list,
13077                            base.head) {
13078                if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
13079                        crt = &connector->base;
13080                        break;
13081                }
13082        }
13083
13084        if (!crt)
13085                return;
13086
13087        if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
13088                intel_release_load_detect_pipe(crt, &load_detect_temp);
13089}
13090
13091static bool
13092intel_check_plane_mapping(struct intel_crtc *crtc)
13093{
13094        struct drm_device *dev = crtc->base.dev;
13095        struct drm_i915_private *dev_priv = dev->dev_private;
13096        u32 reg, val;
13097
13098        if (INTEL_INFO(dev)->num_pipes == 1)
13099                return true;
13100
13101        reg = DSPCNTR(!crtc->plane);
13102        val = I915_READ(reg);
13103
13104        if ((val & DISPLAY_PLANE_ENABLE) &&
13105            (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
13106                return false;
13107
13108        return true;
13109}
13110
13111static void intel_sanitize_crtc(struct intel_crtc *crtc)
13112{
13113        struct drm_device *dev = crtc->base.dev;
13114        struct drm_i915_private *dev_priv = dev->dev_private;
13115        u32 reg;
13116
13117        /* Clear any frame start delays used for debugging left by the BIOS */
13118        reg = PIPECONF(crtc->config.cpu_transcoder);
13119        I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
13120
13121        /* restore vblank interrupts to correct state */
13122        if (crtc->active) {
13123                update_scanline_offset(crtc);
13124                drm_vblank_on(dev, crtc->pipe);
13125        } else
13126                drm_vblank_off(dev, crtc->pipe);
13127
13128        /* We need to sanitize the plane -> pipe mapping first because this will
13129         * disable the crtc (and hence change the state) if it is wrong. Note
13130         * that gen4+ has a fixed plane -> pipe mapping.  */
13131        if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
13132                struct intel_connector *connector;
13133                bool plane;
13134
13135                DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
13136                              crtc->base.base.id);
13137
13138                /* Pipe has the wrong plane attached and the plane is active.
13139                 * Temporarily change the plane mapping and disable everything
13140                 * ...  */
13141                plane = crtc->plane;
13142                crtc->plane = !plane;
13143                crtc->primary_enabled = true;
13144                dev_priv->display.crtc_disable(&crtc->base);
13145                crtc->plane = plane;
13146
13147                /* ... and break all links. */
13148                list_for_each_entry(connector, &dev->mode_config.connector_list,
13149                                    base.head) {
13150                        if (connector->encoder->base.crtc != &crtc->base)
13151                                continue;
13152
13153                        connector->base.dpms = DRM_MODE_DPMS_OFF;
13154                        connector->base.encoder = NULL;
13155                }
13156                /* multiple connectors may have the same encoder:
13157                 *  handle them and break crtc link separately */
13158                list_for_each_entry(connector, &dev->mode_config.connector_list,
13159                                    base.head)
13160                        if (connector->encoder->base.crtc == &crtc->base) {
13161                                connector->encoder->base.crtc = NULL;
13162                                connector->encoder->connectors_active = false;
13163                        }
13164
13165                WARN_ON(crtc->active);
13166                crtc->base.enabled = false;
13167        }
13168
13169        if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
13170            crtc->pipe == PIPE_A && !crtc->active) {
13171                /* BIOS forgot to enable pipe A, this mostly happens after
13172                 * resume. Force-enable the pipe to fix this, the update_dpms
13173                 * call below we restore the pipe to the right state, but leave
13174                 * the required bits on. */
13175                intel_enable_pipe_a(dev);
13176        }
13177
13178        /* Adjust the state of the output pipe according to whether we
13179         * have active connectors/encoders. */
13180        intel_crtc_update_dpms(&crtc->base);
13181
13182        if (crtc->active != crtc->base.enabled) {
13183                struct intel_encoder *encoder;
13184
13185                /* This can happen either due to bugs in the get_hw_state
13186                 * functions or because the pipe is force-enabled due to the
13187                 * pipe A quirk. */
13188                DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
13189                              crtc->base.base.id,
13190                              crtc->base.enabled ? "enabled" : "disabled",
13191                              crtc->active ? "enabled" : "disabled");
13192
13193                crtc->base.enabled = crtc->active;
13194
13195                /* Because we only establish the connector -> encoder ->
13196                 * crtc links if something is active, this means the
13197                 * crtc is now deactivated. Break the links. connector
13198                 * -> encoder links are only establish when things are
13199                 *  actually up, hence no need to break them. */
13200                WARN_ON(crtc->active);
13201
13202                for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
13203                        WARN_ON(encoder->connectors_active);
13204                        encoder->base.crtc = NULL;
13205                }
13206        }
13207
13208        if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
13209                /*
13210                 * We start out with underrun reporting disabled to avoid races.
13211                 * For correct bookkeeping mark this on active crtcs.
13212                 *
13213                 * Also on gmch platforms we dont have any hardware bits to
13214                 * disable the underrun reporting. Which means we need to start
13215                 * out with underrun reporting disabled also on inactive pipes,
13216                 * since otherwise we'll complain about the garbage we read when
13217                 * e.g. coming up after runtime pm.
13218                 *
13219                 * No protection against concurrent access is required - at
13220                 * worst a fifo underrun happens which also sets this to false.
13221                 */
13222                crtc->cpu_fifo_underrun_disabled = true;
13223                crtc->pch_fifo_underrun_disabled = true;
13224        }
13225}
13226
13227static void intel_sanitize_encoder(struct intel_encoder *encoder)
13228{
13229        struct intel_connector *connector;
13230        struct drm_device *dev = encoder->base.dev;
13231
13232        /* We need to check both for a crtc link (meaning that the
13233         * encoder is active and trying to read from a pipe) and the
13234         * pipe itself being active. */
13235        bool has_active_crtc = encoder->base.crtc &&
13236                to_intel_crtc(encoder->base.crtc)->active;
13237
13238        if (encoder->connectors_active && !has_active_crtc) {
13239                DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
13240                              encoder->base.base.id,
13241                              encoder->base.name);
13242
13243                /* Connector is active, but has no active pipe. This is
13244                 * fallout from our resume register restoring. Disable
13245                 * the encoder manually again. */
13246                if (encoder->base.crtc) {
13247                        DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
13248                                      encoder->base.base.id,
13249                                      encoder->base.name);
13250                        encoder->disable(encoder);
13251                        if (encoder->post_disable)
13252                                encoder->post_disable(encoder);
13253                }
13254                encoder->base.crtc = NULL;
13255                encoder->connectors_active = false;
13256
13257                /* Inconsistent output/port/pipe state happens presumably due to
13258                 * a bug in one of the get_hw_state functions. Or someplace else
13259                 * in our code, like the register restore mess on resume. Clamp
13260                 * things to off as a safer default. */
13261                list_for_each_entry(connector,
13262                                    &dev->mode_config.connector_list,
13263                                    base.head) {
13264                        if (connector->encoder != encoder)
13265                                continue;
13266                        connector->base.dpms = DRM_MODE_DPMS_OFF;
13267                        connector->base.encoder = NULL;
13268                }
13269        }
13270        /* Enabled encoders without active connectors will be fixed in
13271         * the crtc fixup. */
13272}
13273
13274void i915_redisable_vga_power_on(struct drm_device *dev)
13275{
13276        struct drm_i915_private *dev_priv = dev->dev_private;
13277        u32 vga_reg = i915_vgacntrl_reg(dev);
13278
13279        if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
13280                DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
13281                i915_disable_vga(dev);
13282        }
13283}
13284
13285void i915_redisable_vga(struct drm_device *dev)
13286{
13287        struct drm_i915_private *dev_priv = dev->dev_private;
13288
13289        /* This function can be called both from intel_modeset_setup_hw_state or
13290         * at a very early point in our resume sequence, where the power well
13291         * structures are not yet restored. Since this function is at a very
13292         * paranoid "someone might have enabled VGA while we were not looking"
13293         * level, just check if the power well is enabled instead of trying to
13294         * follow the "don't touch the power well if we don't need it" policy
13295         * the rest of the driver uses. */
13296        if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_VGA))
13297                return;
13298
13299        i915_redisable_vga_power_on(dev);
13300}
13301
13302static bool primary_get_hw_state(struct intel_crtc *crtc)
13303{
13304        struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
13305
13306        if (!crtc->active)
13307                return false;
13308
13309        return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
13310}
13311
13312static void intel_modeset_readout_hw_state(struct drm_device *dev)
13313{
13314        struct drm_i915_private *dev_priv = dev->dev_private;
13315        enum pipe pipe;
13316        struct intel_crtc *crtc;
13317        struct intel_encoder *encoder;
13318        struct intel_connector *connector;
13319        int i;
13320
13321        for_each_intel_crtc(dev, crtc) {
13322                memset(&crtc->config, 0, sizeof(crtc->config));
13323
13324                crtc->config.quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
13325
13326                crtc->active = dev_priv->display.get_pipe_config(crtc,
13327                                                                 &crtc->config);
13328
13329                crtc->base.enabled = crtc->active;
13330                crtc->primary_enabled = primary_get_hw_state(crtc);
13331
13332                DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
13333                              crtc->base.base.id,
13334                              crtc->active ? "enabled" : "disabled");
13335        }
13336
13337        for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13338                struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13339
13340                pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
13341                pll->active = 0;
13342                for_each_intel_crtc(dev, crtc) {
13343                        if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
13344                                pll->active++;
13345                }
13346                pll->refcount = pll->active;
13347
13348                DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
13349                              pll->name, pll->refcount, pll->on);
13350
13351                if (pll->refcount)
13352                        intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
13353        }
13354
13355        for_each_intel_encoder(dev, encoder) {
13356                pipe = 0;
13357
13358                if (encoder->get_hw_state(encoder, &pipe)) {
13359                        crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13360                        encoder->base.crtc = &crtc->base;
13361                        encoder->get_config(encoder, &crtc->config);
13362                } else {
13363                        encoder->base.crtc = NULL;
13364                }
13365
13366                encoder->connectors_active = false;
13367                DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
13368                              encoder->base.base.id,
13369                              encoder->base.name,
13370                              encoder->base.crtc ? "enabled" : "disabled",
13371                              pipe_name(pipe));
13372        }
13373
13374        list_for_each_entry(connector, &dev->mode_config.connector_list,
13375                            base.head) {
13376                if (connector->get_hw_state(connector)) {
13377                        connector->base.dpms = DRM_MODE_DPMS_ON;
13378                        connector->encoder->connectors_active = true;
13379                        connector->base.encoder = &connector->encoder->base;
13380                } else {
13381                        connector->base.dpms = DRM_MODE_DPMS_OFF;
13382                        connector->base.encoder = NULL;
13383                }
13384                DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
13385                              connector->base.base.id,
13386                              connector->base.name,
13387                              connector->base.encoder ? "enabled" : "disabled");
13388        }
13389}
13390
13391/* Scan out the current hw modeset state, sanitizes it and maps it into the drm
13392 * and i915 state tracking structures. */
13393void intel_modeset_setup_hw_state(struct drm_device *dev,
13394                                  bool force_restore)
13395{
13396        struct drm_i915_private *dev_priv = dev->dev_private;
13397        enum pipe pipe;
13398        struct intel_crtc *crtc;
13399        struct intel_encoder *encoder;
13400        int i;
13401
13402        intel_modeset_readout_hw_state(dev);
13403
13404        /*
13405         * Now that we have the config, copy it to each CRTC struct
13406         * Note that this could go away if we move to using crtc_config
13407         * checking everywhere.
13408         */
13409        for_each_intel_crtc(dev, crtc) {
13410                if (crtc->active && i915.fastboot) {
13411                        intel_mode_from_pipe_config(&crtc->base.mode, &crtc->config);
13412                        DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
13413                                      crtc->base.base.id);
13414                        drm_mode_debug_printmodeline(&crtc->base.mode);
13415                }
13416        }
13417
13418        /* HW state is read out, now we need to sanitize this mess. */
13419        for_each_intel_encoder(dev, encoder) {
13420                intel_sanitize_encoder(encoder);
13421        }
13422
13423        for_each_pipe(dev_priv, pipe) {
13424                crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13425                intel_sanitize_crtc(crtc);
13426                intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
13427        }
13428
13429        for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13430                struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13431
13432                if (!pll->on || pll->active)
13433                        continue;
13434
13435                DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
13436
13437                pll->disable(dev_priv, pll);
13438                pll->on = false;
13439        }
13440
13441        if (HAS_PCH_SPLIT(dev))
13442                ilk_wm_get_hw_state(dev);
13443
13444        if (force_restore) {
13445                i915_redisable_vga(dev);
13446
13447                /*
13448                 * We need to use raw interfaces for restoring state to avoid
13449                 * checking (bogus) intermediate states.
13450                 */
13451                for_each_pipe(dev_priv, pipe) {
13452                        struct drm_crtc *crtc =
13453                                dev_priv->pipe_to_crtc_mapping[pipe];
13454
13455                        __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
13456                                         crtc->primary->fb);
13457                }
13458        } else {
13459                intel_modeset_update_staged_output_state(dev);
13460        }
13461
13462        intel_modeset_check_state(dev);
13463}
13464
13465void intel_modeset_gem_init(struct drm_device *dev)
13466{
13467        struct drm_crtc *c;
13468        struct drm_i915_gem_object *obj;
13469
13470        mutex_lock(&dev->struct_mutex);
13471        intel_init_gt_powersave(dev);
13472        mutex_unlock(&dev->struct_mutex);
13473
13474        intel_modeset_init_hw(dev);
13475
13476        intel_setup_overlay(dev);
13477
13478        /*
13479         * Make sure any fbs we allocated at startup are properly
13480         * pinned & fenced.  When we do the allocation it's too early
13481         * for this.
13482         */
13483        mutex_lock(&dev->struct_mutex);
13484        for_each_crtc(dev, c) {
13485                obj = intel_fb_obj(c->primary->fb);
13486                if (obj == NULL)
13487                        continue;
13488
13489                if (intel_pin_and_fence_fb_obj(dev, obj, NULL)) {
13490                        DRM_ERROR("failed to pin boot fb on pipe %d\n",
13491                                  to_intel_crtc(c)->pipe);
13492                        drm_framebuffer_unreference(c->primary->fb);
13493                        c->primary->fb = NULL;
13494                }
13495        }
13496        mutex_unlock(&dev->struct_mutex);
13497}
13498
13499void intel_connector_unregister(struct intel_connector *intel_connector)
13500{
13501        struct drm_connector *connector = &intel_connector->base;
13502
13503        intel_panel_destroy_backlight(connector);
13504        drm_connector_unregister(connector);
13505}
13506
13507void intel_modeset_cleanup(struct drm_device *dev)
13508{
13509        struct drm_i915_private *dev_priv = dev->dev_private;
13510        struct drm_connector *connector;
13511
13512        /*
13513         * Interrupts and polling as the first thing to avoid creating havoc.
13514         * Too much stuff here (turning of rps, connectors, ...) would
13515         * experience fancy races otherwise.
13516         */
13517        drm_irq_uninstall(dev);
13518        intel_hpd_cancel_work(dev_priv);
13519        dev_priv->pm._irqs_disabled = true;
13520
13521        /*
13522         * Due to the hpd irq storm handling the hotplug work can re-arm the
13523         * poll handlers. Hence disable polling after hpd handling is shut down.
13524         */
13525        drm_kms_helper_poll_fini(dev);
13526
13527        mutex_lock(&dev->struct_mutex);
13528
13529        intel_unregister_dsm_handler();
13530
13531        intel_disable_fbc(dev);
13532
13533        intel_disable_gt_powersave(dev);
13534
13535        ironlake_teardown_rc6(dev);
13536
13537        mutex_unlock(&dev->struct_mutex);
13538
13539        /* flush any delayed tasks or pending work */
13540        flush_scheduled_work();
13541
13542        /* destroy the backlight and sysfs files before encoders/connectors */
13543        list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
13544                struct intel_connector *intel_connector;
13545
13546                intel_connector = to_intel_connector(connector);
13547                intel_connector->unregister(intel_connector);
13548        }
13549
13550        drm_mode_config_cleanup(dev);
13551
13552        intel_cleanup_overlay(dev);
13553
13554        mutex_lock(&dev->struct_mutex);
13555        intel_cleanup_gt_powersave(dev);
13556        mutex_unlock(&dev->struct_mutex);
13557}
13558
13559/*
13560 * Return which encoder is currently attached for connector.
13561 */
13562struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
13563{
13564        return &intel_attached_encoder(connector)->base;
13565}
13566
13567void intel_connector_attach_encoder(struct intel_connector *connector,
13568                                    struct intel_encoder *encoder)
13569{
13570        connector->encoder = encoder;
13571        drm_mode_connector_attach_encoder(&connector->base,
13572                                          &encoder->base);
13573}
13574
13575/*
13576 * set vga decode state - true == enable VGA decode
13577 */
13578int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
13579{
13580        struct drm_i915_private *dev_priv = dev->dev_private;
13581        unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
13582        u16 gmch_ctrl;
13583
13584        if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
13585                DRM_ERROR("failed to read control word\n");
13586                return -EIO;
13587        }
13588
13589        if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
13590                return 0;
13591
13592        if (state)
13593                gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
13594        else
13595                gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
13596
13597        if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
13598                DRM_ERROR("failed to write control word\n");
13599                return -EIO;
13600        }
13601
13602        return 0;
13603}
13604
13605struct intel_display_error_state {
13606
13607        u32 power_well_driver;
13608
13609        int num_transcoders;
13610
13611        struct intel_cursor_error_state {
13612                u32 control;
13613                u32 position;
13614                u32 base;
13615                u32 size;
13616        } cursor[I915_MAX_PIPES];
13617
13618        struct intel_pipe_error_state {
13619                bool power_domain_on;
13620                u32 source;
13621                u32 stat;
13622        } pipe[I915_MAX_PIPES];
13623
13624        struct intel_plane_error_state {
13625                u32 control;
13626                u32 stride;
13627                u32 size;
13628                u32 pos;
13629                u32 addr;
13630                u32 surface;
13631                u32 tile_offset;
13632        } plane[I915_MAX_PIPES];
13633
13634        struct intel_transcoder_error_state {
13635                bool power_domain_on;
13636                enum transcoder cpu_transcoder;
13637
13638                u32 conf;
13639
13640                u32 htotal;
13641                u32 hblank;
13642                u32 hsync;
13643                u32 vtotal;
13644                u32 vblank;
13645                u32 vsync;
13646        } transcoder[4];
13647};
13648
13649struct intel_display_error_state *
13650intel_display_capture_error_state(struct drm_device *dev)
13651{
13652        struct drm_i915_private *dev_priv = dev->dev_private;
13653        struct intel_display_error_state *error;
13654        int transcoders[] = {
13655                TRANSCODER_A,
13656                TRANSCODER_B,
13657                TRANSCODER_C,
13658                TRANSCODER_EDP,
13659        };
13660        int i;
13661
13662        if (INTEL_INFO(dev)->num_pipes == 0)
13663                return NULL;
13664
13665        error = kzalloc(sizeof(*error), GFP_ATOMIC);
13666        if (error == NULL)
13667                return NULL;
13668
13669        if (IS_HASWELL(dev) || IS_BROADWELL(dev))
13670                error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
13671
13672        for_each_pipe(dev_priv, i) {
13673                error->pipe[i].power_domain_on =
13674                        intel_display_power_enabled_unlocked(dev_priv,
13675                                                           POWER_DOMAIN_PIPE(i));
13676                if (!error->pipe[i].power_domain_on)
13677                        continue;
13678
13679                error->cursor[i].control = I915_READ(CURCNTR(i));
13680                error->cursor[i].position = I915_READ(CURPOS(i));
13681                error->cursor[i].base = I915_READ(CURBASE(i));
13682
13683                error->plane[i].control = I915_READ(DSPCNTR(i));
13684                error->plane[i].stride = I915_READ(DSPSTRIDE(i));
13685                if (INTEL_INFO(dev)->gen <= 3) {
13686                        error->plane[i].size = I915_READ(DSPSIZE(i));
13687                        error->plane[i].pos = I915_READ(DSPPOS(i));
13688                }
13689                if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13690                        error->plane[i].addr = I915_READ(DSPADDR(i));
13691                if (INTEL_INFO(dev)->gen >= 4) {
13692                        error->plane[i].surface = I915_READ(DSPSURF(i));
13693                        error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
13694                }
13695
13696                error->pipe[i].source = I915_READ(PIPESRC(i));
13697
13698                if (HAS_GMCH_DISPLAY(dev))
13699                        error->pipe[i].stat = I915_READ(PIPESTAT(i));
13700        }
13701
13702        error->num_transcoders = INTEL_INFO(dev)->num_pipes;
13703        if (HAS_DDI(dev_priv->dev))
13704                error->num_transcoders++; /* Account for eDP. */
13705
13706        for (i = 0; i < error->num_transcoders; i++) {
13707                enum transcoder cpu_transcoder = transcoders[i];
13708
13709                error->transcoder[i].power_domain_on =
13710                        intel_display_power_enabled_unlocked(dev_priv,
13711                                POWER_DOMAIN_TRANSCODER(cpu_transcoder));
13712                if (!error->transcoder[i].power_domain_on)
13713                        continue;
13714
13715                error->transcoder[i].cpu_transcoder = cpu_transcoder;
13716
13717                error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
13718                error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
13719                error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
13720                error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
13721                error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
13722                error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
13723                error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
13724        }
13725
13726        return error;
13727}
13728
13729#define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
13730
13731void
13732intel_display_print_error_state(struct drm_i915_error_state_buf *m,
13733                                struct drm_device *dev,
13734                                struct intel_display_error_state *error)
13735{
13736        struct drm_i915_private *dev_priv = dev->dev_private;
13737        int i;
13738
13739        if (!error)
13740                return;
13741
13742        err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
13743        if (IS_HASWELL(dev) || IS_BROADWELL(dev))
13744                err_printf(m, "PWR_WELL_CTL2: %08x\n",
13745                           error->power_well_driver);
13746        for_each_pipe(dev_priv, i) {
13747                err_printf(m, "Pipe [%d]:\n", i);
13748                err_printf(m, "  Power: %s\n",
13749                           error->pipe[i].power_domain_on ? "on" : "off");
13750                err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
13751                err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
13752
13753                err_printf(m, "Plane [%d]:\n", i);
13754                err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
13755                err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
13756                if (INTEL_INFO(dev)->gen <= 3) {
13757                        err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
13758                        err_printf(m, "  POS: %08x\n", error->plane[i].pos);
13759                }
13760                if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13761                        err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
13762                if (INTEL_INFO(dev)->gen >= 4) {
13763                        err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
13764                        err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
13765                }
13766
13767                err_printf(m, "Cursor [%d]:\n", i);
13768                err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
13769                err_printf(m, "  POS: %08x\n", error->cursor[i].position);
13770                err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
13771        }
13772
13773        for (i = 0; i < error->num_transcoders; i++) {
13774                err_printf(m, "CPU transcoder: %c\n",
13775                           transcoder_name(error->transcoder[i].cpu_transcoder));
13776                err_printf(m, "  Power: %s\n",
13777                           error->transcoder[i].power_domain_on ? "on" : "off");
13778                err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
13779                err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
13780                err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
13781                err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
13782                err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
13783                err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
13784                err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
13785        }
13786}
13787
13788void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
13789{
13790        struct intel_crtc *crtc;
13791
13792        for_each_intel_crtc(dev, crtc) {
13793                struct intel_unpin_work *work;
13794                unsigned long irqflags;
13795
13796                spin_lock_irqsave(&dev->event_lock, irqflags);
13797
13798                work = crtc->unpin_work;
13799
13800                if (work && work->event &&
13801                    work->event->base.file_priv == file) {
13802                        kfree(work->event);
13803                        work->event = NULL;
13804                }
13805
13806                spin_unlock_irqrestore(&dev->event_lock, irqflags);
13807        }
13808}
13809