linux/drivers/gpu/drm/nouveau/core/subdev/clock/nvaa.c
<<
>>
Prefs
   1/*
   2 * Copyright 2012 Red Hat Inc.
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice shall be included in
  12 * all copies or substantial portions of the Software.
  13 *
  14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20 * OTHER DEALINGS IN THE SOFTWARE.
  21 *
  22 * Authors: Ben Skeggs
  23 */
  24
  25#include <engine/fifo.h>
  26#include <subdev/bios.h>
  27#include <subdev/bios/pll.h>
  28#include <subdev/timer.h>
  29#include <subdev/clock.h>
  30
  31#include "nva3.h"
  32#include "pll.h"
  33
  34struct nvaa_clock_priv {
  35        struct nouveau_clock base;
  36        enum nv_clk_src csrc, ssrc, vsrc;
  37        u32 cctrl, sctrl;
  38        u32 ccoef, scoef;
  39        u32 cpost, spost;
  40        u32 vdiv;
  41};
  42
  43static u32
  44read_div(struct nouveau_clock *clk)
  45{
  46        return nv_rd32(clk, 0x004600);
  47}
  48
  49static u32
  50read_pll(struct nouveau_clock *clk, u32 base)
  51{
  52        u32 ctrl = nv_rd32(clk, base + 0);
  53        u32 coef = nv_rd32(clk, base + 4);
  54        u32 ref = clk->read(clk, nv_clk_src_href);
  55        u32 post_div = 0;
  56        u32 clock = 0;
  57        int N1, M1;
  58
  59        switch (base){
  60        case 0x4020:
  61                post_div = 1 << ((nv_rd32(clk, 0x4070) & 0x000f0000) >> 16);
  62                break;
  63        case 0x4028:
  64                post_div = (nv_rd32(clk, 0x4040) & 0x000f0000) >> 16;
  65                break;
  66        default:
  67                break;
  68        }
  69
  70        N1 = (coef & 0x0000ff00) >> 8;
  71        M1 = (coef & 0x000000ff);
  72        if ((ctrl & 0x80000000) && M1) {
  73                clock = ref * N1 / M1;
  74                clock = clock / post_div;
  75        }
  76
  77        return clock;
  78}
  79
  80static int
  81nvaa_clock_read(struct nouveau_clock *clk, enum nv_clk_src src)
  82{
  83        struct nvaa_clock_priv *priv = (void *)clk;
  84        u32 mast = nv_rd32(clk, 0x00c054);
  85        u32 P = 0;
  86
  87        switch (src) {
  88        case nv_clk_src_crystal:
  89                return nv_device(priv)->crystal;
  90        case nv_clk_src_href:
  91                return 100000; /* PCIE reference clock */
  92        case nv_clk_src_hclkm4:
  93                return clk->read(clk, nv_clk_src_href) * 4;
  94        case nv_clk_src_hclkm2d3:
  95                return clk->read(clk, nv_clk_src_href) * 2 / 3;
  96        case nv_clk_src_host:
  97                switch (mast & 0x000c0000) {
  98                case 0x00000000: return clk->read(clk, nv_clk_src_hclkm2d3);
  99                case 0x00040000: break;
 100                case 0x00080000: return clk->read(clk, nv_clk_src_hclkm4);
 101                case 0x000c0000: return clk->read(clk, nv_clk_src_cclk);
 102                }
 103                break;
 104        case nv_clk_src_core:
 105                P = (nv_rd32(clk, 0x004028) & 0x00070000) >> 16;
 106
 107                switch (mast & 0x00000003) {
 108                case 0x00000000: return clk->read(clk, nv_clk_src_crystal) >> P;
 109                case 0x00000001: return 0;
 110                case 0x00000002: return clk->read(clk, nv_clk_src_hclkm4) >> P;
 111                case 0x00000003: return read_pll(clk, 0x004028) >> P;
 112                }
 113                break;
 114        case nv_clk_src_cclk:
 115                if ((mast & 0x03000000) != 0x03000000)
 116                        return clk->read(clk, nv_clk_src_core);
 117
 118                if ((mast & 0x00000200) == 0x00000000)
 119                        return clk->read(clk, nv_clk_src_core);
 120
 121                switch (mast & 0x00000c00) {
 122                case 0x00000000: return clk->read(clk, nv_clk_src_href);
 123                case 0x00000400: return clk->read(clk, nv_clk_src_hclkm4);
 124                case 0x00000800: return clk->read(clk, nv_clk_src_hclkm2d3);
 125                default: return 0;
 126                }
 127        case nv_clk_src_shader:
 128                P = (nv_rd32(clk, 0x004020) & 0x00070000) >> 16;
 129                switch (mast & 0x00000030) {
 130                case 0x00000000:
 131                        if (mast & 0x00000040)
 132                                return clk->read(clk, nv_clk_src_href) >> P;
 133                        return clk->read(clk, nv_clk_src_crystal) >> P;
 134                case 0x00000010: break;
 135                case 0x00000020: return read_pll(clk, 0x004028) >> P;
 136                case 0x00000030: return read_pll(clk, 0x004020) >> P;
 137                }
 138                break;
 139        case nv_clk_src_mem:
 140                return 0;
 141                break;
 142        case nv_clk_src_vdec:
 143                P = (read_div(clk) & 0x00000700) >> 8;
 144
 145                switch (mast & 0x00400000) {
 146                case 0x00400000:
 147                        return clk->read(clk, nv_clk_src_core) >> P;
 148                        break;
 149                default:
 150                        return 500000 >> P;
 151                        break;
 152                }
 153                break;
 154        default:
 155                break;
 156        }
 157
 158        nv_debug(priv, "unknown clock source %d 0x%08x\n", src, mast);
 159        return 0;
 160}
 161
 162static u32
 163calc_pll(struct nvaa_clock_priv *priv, u32 reg,
 164         u32 clock, int *N, int *M, int *P)
 165{
 166        struct nouveau_bios *bios = nouveau_bios(priv);
 167        struct nvbios_pll pll;
 168        struct nouveau_clock *clk = &priv->base;
 169        int ret;
 170
 171        ret = nvbios_pll_parse(bios, reg, &pll);
 172        if (ret)
 173                return 0;
 174
 175        pll.vco2.max_freq = 0;
 176        pll.refclk = clk->read(clk, nv_clk_src_href);
 177        if (!pll.refclk)
 178                return 0;
 179
 180        return nv04_pll_calc(nv_subdev(priv), &pll, clock, N, M, NULL, NULL, P);
 181}
 182
 183static inline u32
 184calc_P(u32 src, u32 target, int *div)
 185{
 186        u32 clk0 = src, clk1 = src;
 187        for (*div = 0; *div <= 7; (*div)++) {
 188                if (clk0 <= target) {
 189                        clk1 = clk0 << (*div ? 1 : 0);
 190                        break;
 191                }
 192                clk0 >>= 1;
 193        }
 194
 195        if (target - clk0 <= clk1 - target)
 196                return clk0;
 197        (*div)--;
 198        return clk1;
 199}
 200
 201static int
 202nvaa_clock_calc(struct nouveau_clock *clk, struct nouveau_cstate *cstate)
 203{
 204        struct nvaa_clock_priv *priv = (void *)clk;
 205        const int shader = cstate->domain[nv_clk_src_shader];
 206        const int core = cstate->domain[nv_clk_src_core];
 207        const int vdec = cstate->domain[nv_clk_src_vdec];
 208        u32 out = 0, clock = 0;
 209        int N, M, P1, P2 = 0;
 210        int divs = 0;
 211
 212        /* cclk: find suitable source, disable PLL if we can */
 213        if (core < clk->read(clk, nv_clk_src_hclkm4))
 214                out = calc_P(clk->read(clk, nv_clk_src_hclkm4), core, &divs);
 215
 216        /* Calculate clock * 2, so shader clock can use it too */
 217        clock = calc_pll(priv, 0x4028, (core << 1), &N, &M, &P1);
 218
 219        if (abs(core - out) <=
 220            abs(core - (clock >> 1))) {
 221                priv->csrc = nv_clk_src_hclkm4;
 222                priv->cctrl = divs << 16;
 223        } else {
 224                /* NVCTRL is actually used _after_ NVPOST, and after what we
 225                 * call NVPLL. To make matters worse, NVPOST is an integer
 226                 * divider instead of a right-shift number. */
 227                if(P1 > 2) {
 228                        P2 = P1 - 2;
 229                        P1 = 2;
 230                }
 231
 232                priv->csrc = nv_clk_src_core;
 233                priv->ccoef = (N << 8) | M;
 234
 235                priv->cctrl = (P2 + 1) << 16;
 236                priv->cpost = (1 << P1) << 16;
 237        }
 238
 239        /* sclk: nvpll + divisor, href or spll */
 240        out = 0;
 241        if (shader == clk->read(clk, nv_clk_src_href)) {
 242                priv->ssrc = nv_clk_src_href;
 243        } else {
 244                clock = calc_pll(priv, 0x4020, shader, &N, &M, &P1);
 245                if (priv->csrc == nv_clk_src_core) {
 246                        out = calc_P((core << 1), shader, &divs);
 247                }
 248
 249                if (abs(shader - out) <=
 250                    abs(shader - clock) &&
 251                   (divs + P2) <= 7) {
 252                        priv->ssrc = nv_clk_src_core;
 253                        priv->sctrl = (divs + P2) << 16;
 254                } else {
 255                        priv->ssrc = nv_clk_src_shader;
 256                        priv->scoef = (N << 8) | M;
 257                        priv->sctrl = P1 << 16;
 258                }
 259        }
 260
 261        /* vclk */
 262        out = calc_P(core, vdec, &divs);
 263        clock = calc_P(500000, vdec, &P1);
 264        if(abs(vdec - out) <=
 265           abs(vdec - clock)) {
 266                priv->vsrc = nv_clk_src_cclk;
 267                priv->vdiv = divs << 16;
 268        } else {
 269                priv->vsrc = nv_clk_src_vdec;
 270                priv->vdiv = P1 << 16;
 271        }
 272
 273        /* Print strategy! */
 274        nv_debug(priv, "nvpll: %08x %08x %08x\n",
 275                        priv->ccoef, priv->cpost, priv->cctrl);
 276        nv_debug(priv, " spll: %08x %08x %08x\n",
 277                        priv->scoef, priv->spost, priv->sctrl);
 278        nv_debug(priv, " vdiv: %08x\n", priv->vdiv);
 279        if (priv->csrc == nv_clk_src_hclkm4)
 280                nv_debug(priv, "core: hrefm4\n");
 281        else
 282                nv_debug(priv, "core: nvpll\n");
 283
 284        if (priv->ssrc == nv_clk_src_hclkm4)
 285                nv_debug(priv, "shader: hrefm4\n");
 286        else if (priv->ssrc == nv_clk_src_core)
 287                nv_debug(priv, "shader: nvpll\n");
 288        else
 289                nv_debug(priv, "shader: spll\n");
 290
 291        if (priv->vsrc == nv_clk_src_hclkm4)
 292                nv_debug(priv, "vdec: 500MHz\n");
 293        else
 294                nv_debug(priv, "vdec: core\n");
 295
 296        return 0;
 297}
 298
 299static int
 300nvaa_clock_prog(struct nouveau_clock *clk)
 301{
 302        struct nvaa_clock_priv *priv = (void *)clk;
 303        u32 pllmask = 0, mast;
 304        unsigned long flags;
 305        unsigned long *f = &flags;
 306        int ret = 0;
 307
 308        ret = nva3_clock_pre(clk, f);
 309        if (ret)
 310                goto out;
 311
 312        /* First switch to safe clocks: href */
 313        mast = nv_mask(clk, 0xc054, 0x03400e70, 0x03400640);
 314        mast &= ~0x00400e73;
 315        mast |= 0x03000000;
 316
 317        switch (priv->csrc) {
 318        case nv_clk_src_hclkm4:
 319                nv_mask(clk, 0x4028, 0x00070000, priv->cctrl);
 320                mast |= 0x00000002;
 321                break;
 322        case nv_clk_src_core:
 323                nv_wr32(clk, 0x402c, priv->ccoef);
 324                nv_wr32(clk, 0x4028, 0x80000000 | priv->cctrl);
 325                nv_wr32(clk, 0x4040, priv->cpost);
 326                pllmask |= (0x3 << 8);
 327                mast |= 0x00000003;
 328                break;
 329        default:
 330                nv_warn(priv,"Reclocking failed: unknown core clock\n");
 331                goto resume;
 332        }
 333
 334        switch (priv->ssrc) {
 335        case nv_clk_src_href:
 336                nv_mask(clk, 0x4020, 0x00070000, 0x00000000);
 337                /* mast |= 0x00000000; */
 338                break;
 339        case nv_clk_src_core:
 340                nv_mask(clk, 0x4020, 0x00070000, priv->sctrl);
 341                mast |= 0x00000020;
 342                break;
 343        case nv_clk_src_shader:
 344                nv_wr32(clk, 0x4024, priv->scoef);
 345                nv_wr32(clk, 0x4020, 0x80000000 | priv->sctrl);
 346                nv_wr32(clk, 0x4070, priv->spost);
 347                pllmask |= (0x3 << 12);
 348                mast |= 0x00000030;
 349                break;
 350        default:
 351                nv_warn(priv,"Reclocking failed: unknown sclk clock\n");
 352                goto resume;
 353        }
 354
 355        if (!nv_wait(clk, 0x004080, pllmask, pllmask)) {
 356                nv_warn(priv,"Reclocking failed: unstable PLLs\n");
 357                goto resume;
 358        }
 359
 360        switch (priv->vsrc) {
 361        case nv_clk_src_cclk:
 362                mast |= 0x00400000;
 363        default:
 364                nv_wr32(clk, 0x4600, priv->vdiv);
 365        }
 366
 367        nv_wr32(clk, 0xc054, mast);
 368
 369resume:
 370        /* Disable some PLLs and dividers when unused */
 371        if (priv->csrc != nv_clk_src_core) {
 372                nv_wr32(clk, 0x4040, 0x00000000);
 373                nv_mask(clk, 0x4028, 0x80000000, 0x00000000);
 374        }
 375
 376        if (priv->ssrc != nv_clk_src_shader) {
 377                nv_wr32(clk, 0x4070, 0x00000000);
 378                nv_mask(clk, 0x4020, 0x80000000, 0x00000000);
 379        }
 380
 381out:
 382        if (ret == -EBUSY)
 383                f = NULL;
 384
 385        nva3_clock_post(clk, f);
 386
 387        return ret;
 388}
 389
 390static void
 391nvaa_clock_tidy(struct nouveau_clock *clk)
 392{
 393}
 394
 395static struct nouveau_clocks
 396nvaa_domains[] = {
 397        { nv_clk_src_crystal, 0xff },
 398        { nv_clk_src_href   , 0xff },
 399        { nv_clk_src_core   , 0xff, 0, "core", 1000 },
 400        { nv_clk_src_shader , 0xff, 0, "shader", 1000 },
 401        { nv_clk_src_vdec   , 0xff, 0, "vdec", 1000 },
 402        { nv_clk_src_max }
 403};
 404
 405static int
 406nvaa_clock_ctor(struct nouveau_object *parent, struct nouveau_object *engine,
 407                struct nouveau_oclass *oclass, void *data, u32 size,
 408                struct nouveau_object **pobject)
 409{
 410        struct nvaa_clock_priv *priv;
 411        int ret;
 412
 413        ret = nouveau_clock_create(parent, engine, oclass, nvaa_domains, NULL,
 414                                   0, true, &priv);
 415        *pobject = nv_object(priv);
 416        if (ret)
 417                return ret;
 418
 419        priv->base.read = nvaa_clock_read;
 420        priv->base.calc = nvaa_clock_calc;
 421        priv->base.prog = nvaa_clock_prog;
 422        priv->base.tidy = nvaa_clock_tidy;
 423        return 0;
 424}
 425
 426struct nouveau_oclass *
 427nvaa_clock_oclass = &(struct nouveau_oclass) {
 428        .handle = NV_SUBDEV(CLOCK, 0xaa),
 429        .ofuncs = &(struct nouveau_ofuncs) {
 430                .ctor = nvaa_clock_ctor,
 431                .dtor = _nouveau_clock_dtor,
 432                .init = _nouveau_clock_init,
 433                .fini = _nouveau_clock_fini,
 434        },
 435};
 436