linux/drivers/iommu/arm-smmu.c
<<
>>
Prefs
   1/*
   2 * IOMMU API for ARM architected SMMU implementations.
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License version 2 as
   6 * published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  11 * GNU General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public License
  14 * along with this program; if not, write to the Free Software
  15 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  16 *
  17 * Copyright (C) 2013 ARM Limited
  18 *
  19 * Author: Will Deacon <will.deacon@arm.com>
  20 *
  21 * This driver currently supports:
  22 *      - SMMUv1 and v2 implementations
  23 *      - Stream-matching and stream-indexing
  24 *      - v7/v8 long-descriptor format
  25 *      - Non-secure access to the SMMU
  26 *      - 4k and 64k pages, with contiguous pte hints.
  27 *      - Up to 48-bit addressing (dependent on VA_BITS)
  28 *      - Context fault reporting
  29 */
  30
  31#define pr_fmt(fmt) "arm-smmu: " fmt
  32
  33#include <linux/delay.h>
  34#include <linux/dma-mapping.h>
  35#include <linux/err.h>
  36#include <linux/interrupt.h>
  37#include <linux/io.h>
  38#include <linux/iommu.h>
  39#include <linux/mm.h>
  40#include <linux/module.h>
  41#include <linux/of.h>
  42#include <linux/pci.h>
  43#include <linux/platform_device.h>
  44#include <linux/slab.h>
  45#include <linux/spinlock.h>
  46
  47#include <linux/amba/bus.h>
  48
  49#include <asm/pgalloc.h>
  50
  51/* Maximum number of stream IDs assigned to a single device */
  52#define MAX_MASTER_STREAMIDS            MAX_PHANDLE_ARGS
  53
  54/* Maximum number of context banks per SMMU */
  55#define ARM_SMMU_MAX_CBS                128
  56
  57/* Maximum number of mapping groups per SMMU */
  58#define ARM_SMMU_MAX_SMRS               128
  59
  60/* SMMU global address space */
  61#define ARM_SMMU_GR0(smmu)              ((smmu)->base)
  62#define ARM_SMMU_GR1(smmu)              ((smmu)->base + (1 << (smmu)->pgshift))
  63
  64/*
  65 * SMMU global address space with conditional offset to access secure
  66 * aliases of non-secure registers (e.g. nsCR0: 0x400, nsGFSR: 0x448,
  67 * nsGFSYNR0: 0x450)
  68 */
  69#define ARM_SMMU_GR0_NS(smmu)                                           \
  70        ((smmu)->base +                                                 \
  71                ((smmu->options & ARM_SMMU_OPT_SECURE_CFG_ACCESS)       \
  72                        ? 0x400 : 0))
  73
  74/* Page table bits */
  75#define ARM_SMMU_PTE_XN                 (((pteval_t)3) << 53)
  76#define ARM_SMMU_PTE_CONT               (((pteval_t)1) << 52)
  77#define ARM_SMMU_PTE_AF                 (((pteval_t)1) << 10)
  78#define ARM_SMMU_PTE_SH_NS              (((pteval_t)0) << 8)
  79#define ARM_SMMU_PTE_SH_OS              (((pteval_t)2) << 8)
  80#define ARM_SMMU_PTE_SH_IS              (((pteval_t)3) << 8)
  81#define ARM_SMMU_PTE_PAGE               (((pteval_t)3) << 0)
  82
  83#if PAGE_SIZE == SZ_4K
  84#define ARM_SMMU_PTE_CONT_ENTRIES       16
  85#elif PAGE_SIZE == SZ_64K
  86#define ARM_SMMU_PTE_CONT_ENTRIES       32
  87#else
  88#define ARM_SMMU_PTE_CONT_ENTRIES       1
  89#endif
  90
  91#define ARM_SMMU_PTE_CONT_SIZE          (PAGE_SIZE * ARM_SMMU_PTE_CONT_ENTRIES)
  92#define ARM_SMMU_PTE_CONT_MASK          (~(ARM_SMMU_PTE_CONT_SIZE - 1))
  93
  94/* Stage-1 PTE */
  95#define ARM_SMMU_PTE_AP_UNPRIV          (((pteval_t)1) << 6)
  96#define ARM_SMMU_PTE_AP_RDONLY          (((pteval_t)2) << 6)
  97#define ARM_SMMU_PTE_ATTRINDX_SHIFT     2
  98#define ARM_SMMU_PTE_nG                 (((pteval_t)1) << 11)
  99
 100/* Stage-2 PTE */
 101#define ARM_SMMU_PTE_HAP_FAULT          (((pteval_t)0) << 6)
 102#define ARM_SMMU_PTE_HAP_READ           (((pteval_t)1) << 6)
 103#define ARM_SMMU_PTE_HAP_WRITE          (((pteval_t)2) << 6)
 104#define ARM_SMMU_PTE_MEMATTR_OIWB       (((pteval_t)0xf) << 2)
 105#define ARM_SMMU_PTE_MEMATTR_NC         (((pteval_t)0x5) << 2)
 106#define ARM_SMMU_PTE_MEMATTR_DEV        (((pteval_t)0x1) << 2)
 107
 108/* Configuration registers */
 109#define ARM_SMMU_GR0_sCR0               0x0
 110#define sCR0_CLIENTPD                   (1 << 0)
 111#define sCR0_GFRE                       (1 << 1)
 112#define sCR0_GFIE                       (1 << 2)
 113#define sCR0_GCFGFRE                    (1 << 4)
 114#define sCR0_GCFGFIE                    (1 << 5)
 115#define sCR0_USFCFG                     (1 << 10)
 116#define sCR0_VMIDPNE                    (1 << 11)
 117#define sCR0_PTM                        (1 << 12)
 118#define sCR0_FB                         (1 << 13)
 119#define sCR0_BSU_SHIFT                  14
 120#define sCR0_BSU_MASK                   0x3
 121
 122/* Identification registers */
 123#define ARM_SMMU_GR0_ID0                0x20
 124#define ARM_SMMU_GR0_ID1                0x24
 125#define ARM_SMMU_GR0_ID2                0x28
 126#define ARM_SMMU_GR0_ID3                0x2c
 127#define ARM_SMMU_GR0_ID4                0x30
 128#define ARM_SMMU_GR0_ID5                0x34
 129#define ARM_SMMU_GR0_ID6                0x38
 130#define ARM_SMMU_GR0_ID7                0x3c
 131#define ARM_SMMU_GR0_sGFSR              0x48
 132#define ARM_SMMU_GR0_sGFSYNR0           0x50
 133#define ARM_SMMU_GR0_sGFSYNR1           0x54
 134#define ARM_SMMU_GR0_sGFSYNR2           0x58
 135#define ARM_SMMU_GR0_PIDR0              0xfe0
 136#define ARM_SMMU_GR0_PIDR1              0xfe4
 137#define ARM_SMMU_GR0_PIDR2              0xfe8
 138
 139#define ID0_S1TS                        (1 << 30)
 140#define ID0_S2TS                        (1 << 29)
 141#define ID0_NTS                         (1 << 28)
 142#define ID0_SMS                         (1 << 27)
 143#define ID0_PTFS_SHIFT                  24
 144#define ID0_PTFS_MASK                   0x2
 145#define ID0_PTFS_V8_ONLY                0x2
 146#define ID0_CTTW                        (1 << 14)
 147#define ID0_NUMIRPT_SHIFT               16
 148#define ID0_NUMIRPT_MASK                0xff
 149#define ID0_NUMSIDB_SHIFT               9
 150#define ID0_NUMSIDB_MASK                0xf
 151#define ID0_NUMSMRG_SHIFT               0
 152#define ID0_NUMSMRG_MASK                0xff
 153
 154#define ID1_PAGESIZE                    (1 << 31)
 155#define ID1_NUMPAGENDXB_SHIFT           28
 156#define ID1_NUMPAGENDXB_MASK            7
 157#define ID1_NUMS2CB_SHIFT               16
 158#define ID1_NUMS2CB_MASK                0xff
 159#define ID1_NUMCB_SHIFT                 0
 160#define ID1_NUMCB_MASK                  0xff
 161
 162#define ID2_OAS_SHIFT                   4
 163#define ID2_OAS_MASK                    0xf
 164#define ID2_IAS_SHIFT                   0
 165#define ID2_IAS_MASK                    0xf
 166#define ID2_UBS_SHIFT                   8
 167#define ID2_UBS_MASK                    0xf
 168#define ID2_PTFS_4K                     (1 << 12)
 169#define ID2_PTFS_16K                    (1 << 13)
 170#define ID2_PTFS_64K                    (1 << 14)
 171
 172#define PIDR2_ARCH_SHIFT                4
 173#define PIDR2_ARCH_MASK                 0xf
 174
 175/* Global TLB invalidation */
 176#define ARM_SMMU_GR0_STLBIALL           0x60
 177#define ARM_SMMU_GR0_TLBIVMID           0x64
 178#define ARM_SMMU_GR0_TLBIALLNSNH        0x68
 179#define ARM_SMMU_GR0_TLBIALLH           0x6c
 180#define ARM_SMMU_GR0_sTLBGSYNC          0x70
 181#define ARM_SMMU_GR0_sTLBGSTATUS        0x74
 182#define sTLBGSTATUS_GSACTIVE            (1 << 0)
 183#define TLB_LOOP_TIMEOUT                1000000 /* 1s! */
 184
 185/* Stream mapping registers */
 186#define ARM_SMMU_GR0_SMR(n)             (0x800 + ((n) << 2))
 187#define SMR_VALID                       (1 << 31)
 188#define SMR_MASK_SHIFT                  16
 189#define SMR_MASK_MASK                   0x7fff
 190#define SMR_ID_SHIFT                    0
 191#define SMR_ID_MASK                     0x7fff
 192
 193#define ARM_SMMU_GR0_S2CR(n)            (0xc00 + ((n) << 2))
 194#define S2CR_CBNDX_SHIFT                0
 195#define S2CR_CBNDX_MASK                 0xff
 196#define S2CR_TYPE_SHIFT                 16
 197#define S2CR_TYPE_MASK                  0x3
 198#define S2CR_TYPE_TRANS                 (0 << S2CR_TYPE_SHIFT)
 199#define S2CR_TYPE_BYPASS                (1 << S2CR_TYPE_SHIFT)
 200#define S2CR_TYPE_FAULT                 (2 << S2CR_TYPE_SHIFT)
 201
 202/* Context bank attribute registers */
 203#define ARM_SMMU_GR1_CBAR(n)            (0x0 + ((n) << 2))
 204#define CBAR_VMID_SHIFT                 0
 205#define CBAR_VMID_MASK                  0xff
 206#define CBAR_S1_BPSHCFG_SHIFT           8
 207#define CBAR_S1_BPSHCFG_MASK            3
 208#define CBAR_S1_BPSHCFG_NSH             3
 209#define CBAR_S1_MEMATTR_SHIFT           12
 210#define CBAR_S1_MEMATTR_MASK            0xf
 211#define CBAR_S1_MEMATTR_WB              0xf
 212#define CBAR_TYPE_SHIFT                 16
 213#define CBAR_TYPE_MASK                  0x3
 214#define CBAR_TYPE_S2_TRANS              (0 << CBAR_TYPE_SHIFT)
 215#define CBAR_TYPE_S1_TRANS_S2_BYPASS    (1 << CBAR_TYPE_SHIFT)
 216#define CBAR_TYPE_S1_TRANS_S2_FAULT     (2 << CBAR_TYPE_SHIFT)
 217#define CBAR_TYPE_S1_TRANS_S2_TRANS     (3 << CBAR_TYPE_SHIFT)
 218#define CBAR_IRPTNDX_SHIFT              24
 219#define CBAR_IRPTNDX_MASK               0xff
 220
 221#define ARM_SMMU_GR1_CBA2R(n)           (0x800 + ((n) << 2))
 222#define CBA2R_RW64_32BIT                (0 << 0)
 223#define CBA2R_RW64_64BIT                (1 << 0)
 224
 225/* Translation context bank */
 226#define ARM_SMMU_CB_BASE(smmu)          ((smmu)->base + ((smmu)->size >> 1))
 227#define ARM_SMMU_CB(smmu, n)            ((n) * (1 << (smmu)->pgshift))
 228
 229#define ARM_SMMU_CB_SCTLR               0x0
 230#define ARM_SMMU_CB_RESUME              0x8
 231#define ARM_SMMU_CB_TTBCR2              0x10
 232#define ARM_SMMU_CB_TTBR0_LO            0x20
 233#define ARM_SMMU_CB_TTBR0_HI            0x24
 234#define ARM_SMMU_CB_TTBCR               0x30
 235#define ARM_SMMU_CB_S1_MAIR0            0x38
 236#define ARM_SMMU_CB_FSR                 0x58
 237#define ARM_SMMU_CB_FAR_LO              0x60
 238#define ARM_SMMU_CB_FAR_HI              0x64
 239#define ARM_SMMU_CB_FSYNR0              0x68
 240#define ARM_SMMU_CB_S1_TLBIASID         0x610
 241
 242#define SCTLR_S1_ASIDPNE                (1 << 12)
 243#define SCTLR_CFCFG                     (1 << 7)
 244#define SCTLR_CFIE                      (1 << 6)
 245#define SCTLR_CFRE                      (1 << 5)
 246#define SCTLR_E                         (1 << 4)
 247#define SCTLR_AFE                       (1 << 2)
 248#define SCTLR_TRE                       (1 << 1)
 249#define SCTLR_M                         (1 << 0)
 250#define SCTLR_EAE_SBOP                  (SCTLR_AFE | SCTLR_TRE)
 251
 252#define RESUME_RETRY                    (0 << 0)
 253#define RESUME_TERMINATE                (1 << 0)
 254
 255#define TTBCR_EAE                       (1 << 31)
 256
 257#define TTBCR_PASIZE_SHIFT              16
 258#define TTBCR_PASIZE_MASK               0x7
 259
 260#define TTBCR_TG0_4K                    (0 << 14)
 261#define TTBCR_TG0_64K                   (1 << 14)
 262
 263#define TTBCR_SH0_SHIFT                 12
 264#define TTBCR_SH0_MASK                  0x3
 265#define TTBCR_SH_NS                     0
 266#define TTBCR_SH_OS                     2
 267#define TTBCR_SH_IS                     3
 268
 269#define TTBCR_ORGN0_SHIFT               10
 270#define TTBCR_IRGN0_SHIFT               8
 271#define TTBCR_RGN_MASK                  0x3
 272#define TTBCR_RGN_NC                    0
 273#define TTBCR_RGN_WBWA                  1
 274#define TTBCR_RGN_WT                    2
 275#define TTBCR_RGN_WB                    3
 276
 277#define TTBCR_SL0_SHIFT                 6
 278#define TTBCR_SL0_MASK                  0x3
 279#define TTBCR_SL0_LVL_2                 0
 280#define TTBCR_SL0_LVL_1                 1
 281
 282#define TTBCR_T1SZ_SHIFT                16
 283#define TTBCR_T0SZ_SHIFT                0
 284#define TTBCR_SZ_MASK                   0xf
 285
 286#define TTBCR2_SEP_SHIFT                15
 287#define TTBCR2_SEP_MASK                 0x7
 288
 289#define TTBCR2_PASIZE_SHIFT             0
 290#define TTBCR2_PASIZE_MASK              0x7
 291
 292/* Common definitions for PASize and SEP fields */
 293#define TTBCR2_ADDR_32                  0
 294#define TTBCR2_ADDR_36                  1
 295#define TTBCR2_ADDR_40                  2
 296#define TTBCR2_ADDR_42                  3
 297#define TTBCR2_ADDR_44                  4
 298#define TTBCR2_ADDR_48                  5
 299
 300#define TTBRn_HI_ASID_SHIFT             16
 301
 302#define MAIR_ATTR_SHIFT(n)              ((n) << 3)
 303#define MAIR_ATTR_MASK                  0xff
 304#define MAIR_ATTR_DEVICE                0x04
 305#define MAIR_ATTR_NC                    0x44
 306#define MAIR_ATTR_WBRWA                 0xff
 307#define MAIR_ATTR_IDX_NC                0
 308#define MAIR_ATTR_IDX_CACHE             1
 309#define MAIR_ATTR_IDX_DEV               2
 310
 311#define FSR_MULTI                       (1 << 31)
 312#define FSR_SS                          (1 << 30)
 313#define FSR_UUT                         (1 << 8)
 314#define FSR_ASF                         (1 << 7)
 315#define FSR_TLBLKF                      (1 << 6)
 316#define FSR_TLBMCF                      (1 << 5)
 317#define FSR_EF                          (1 << 4)
 318#define FSR_PF                          (1 << 3)
 319#define FSR_AFF                         (1 << 2)
 320#define FSR_TF                          (1 << 1)
 321
 322#define FSR_IGN                         (FSR_AFF | FSR_ASF | \
 323                                         FSR_TLBMCF | FSR_TLBLKF)
 324#define FSR_FAULT                       (FSR_MULTI | FSR_SS | FSR_UUT | \
 325                                         FSR_EF | FSR_PF | FSR_TF | FSR_IGN)
 326
 327#define FSYNR0_WNR                      (1 << 4)
 328
 329static int force_stage;
 330module_param_named(force_stage, force_stage, int, S_IRUGO | S_IWUSR);
 331MODULE_PARM_DESC(force_stage,
 332        "Force SMMU mappings to be installed at a particular stage of translation. A value of '1' or '2' forces the corresponding stage. All other values are ignored (i.e. no stage is forced). Note that selecting a specific stage will disable support for nested translation.");
 333
 334enum arm_smmu_arch_version {
 335        ARM_SMMU_V1 = 1,
 336        ARM_SMMU_V2,
 337};
 338
 339struct arm_smmu_smr {
 340        u8                              idx;
 341        u16                             mask;
 342        u16                             id;
 343};
 344
 345struct arm_smmu_master_cfg {
 346        int                             num_streamids;
 347        u16                             streamids[MAX_MASTER_STREAMIDS];
 348        struct arm_smmu_smr             *smrs;
 349};
 350
 351struct arm_smmu_master {
 352        struct device_node              *of_node;
 353        struct rb_node                  node;
 354        struct arm_smmu_master_cfg      cfg;
 355};
 356
 357struct arm_smmu_device {
 358        struct device                   *dev;
 359
 360        void __iomem                    *base;
 361        unsigned long                   size;
 362        unsigned long                   pgshift;
 363
 364#define ARM_SMMU_FEAT_COHERENT_WALK     (1 << 0)
 365#define ARM_SMMU_FEAT_STREAM_MATCH      (1 << 1)
 366#define ARM_SMMU_FEAT_TRANS_S1          (1 << 2)
 367#define ARM_SMMU_FEAT_TRANS_S2          (1 << 3)
 368#define ARM_SMMU_FEAT_TRANS_NESTED      (1 << 4)
 369        u32                             features;
 370
 371#define ARM_SMMU_OPT_SECURE_CFG_ACCESS (1 << 0)
 372        u32                             options;
 373        enum arm_smmu_arch_version      version;
 374
 375        u32                             num_context_banks;
 376        u32                             num_s2_context_banks;
 377        DECLARE_BITMAP(context_map, ARM_SMMU_MAX_CBS);
 378        atomic_t                        irptndx;
 379
 380        u32                             num_mapping_groups;
 381        DECLARE_BITMAP(smr_map, ARM_SMMU_MAX_SMRS);
 382
 383        unsigned long                   s1_input_size;
 384        unsigned long                   s1_output_size;
 385        unsigned long                   s2_input_size;
 386        unsigned long                   s2_output_size;
 387
 388        u32                             num_global_irqs;
 389        u32                             num_context_irqs;
 390        unsigned int                    *irqs;
 391
 392        struct list_head                list;
 393        struct rb_root                  masters;
 394};
 395
 396struct arm_smmu_cfg {
 397        u8                              cbndx;
 398        u8                              irptndx;
 399        u32                             cbar;
 400        pgd_t                           *pgd;
 401};
 402#define INVALID_IRPTNDX                 0xff
 403
 404#define ARM_SMMU_CB_ASID(cfg)           ((cfg)->cbndx)
 405#define ARM_SMMU_CB_VMID(cfg)           ((cfg)->cbndx + 1)
 406
 407struct arm_smmu_domain {
 408        struct arm_smmu_device          *smmu;
 409        struct arm_smmu_cfg             cfg;
 410        spinlock_t                      lock;
 411};
 412
 413static DEFINE_SPINLOCK(arm_smmu_devices_lock);
 414static LIST_HEAD(arm_smmu_devices);
 415
 416struct arm_smmu_option_prop {
 417        u32 opt;
 418        const char *prop;
 419};
 420
 421static struct arm_smmu_option_prop arm_smmu_options[] = {
 422        { ARM_SMMU_OPT_SECURE_CFG_ACCESS, "calxeda,smmu-secure-config-access" },
 423        { 0, NULL},
 424};
 425
 426static void parse_driver_options(struct arm_smmu_device *smmu)
 427{
 428        int i = 0;
 429
 430        do {
 431                if (of_property_read_bool(smmu->dev->of_node,
 432                                                arm_smmu_options[i].prop)) {
 433                        smmu->options |= arm_smmu_options[i].opt;
 434                        dev_notice(smmu->dev, "option %s\n",
 435                                arm_smmu_options[i].prop);
 436                }
 437        } while (arm_smmu_options[++i].opt);
 438}
 439
 440static struct device_node *dev_get_dev_node(struct device *dev)
 441{
 442        if (dev_is_pci(dev)) {
 443                struct pci_bus *bus = to_pci_dev(dev)->bus;
 444
 445                while (!pci_is_root_bus(bus))
 446                        bus = bus->parent;
 447                return bus->bridge->parent->of_node;
 448        }
 449
 450        return dev->of_node;
 451}
 452
 453static struct arm_smmu_master *find_smmu_master(struct arm_smmu_device *smmu,
 454                                                struct device_node *dev_node)
 455{
 456        struct rb_node *node = smmu->masters.rb_node;
 457
 458        while (node) {
 459                struct arm_smmu_master *master;
 460
 461                master = container_of(node, struct arm_smmu_master, node);
 462
 463                if (dev_node < master->of_node)
 464                        node = node->rb_left;
 465                else if (dev_node > master->of_node)
 466                        node = node->rb_right;
 467                else
 468                        return master;
 469        }
 470
 471        return NULL;
 472}
 473
 474static struct arm_smmu_master_cfg *
 475find_smmu_master_cfg(struct device *dev)
 476{
 477        struct arm_smmu_master_cfg *cfg = NULL;
 478        struct iommu_group *group = iommu_group_get(dev);
 479
 480        if (group) {
 481                cfg = iommu_group_get_iommudata(group);
 482                iommu_group_put(group);
 483        }
 484
 485        return cfg;
 486}
 487
 488static int insert_smmu_master(struct arm_smmu_device *smmu,
 489                              struct arm_smmu_master *master)
 490{
 491        struct rb_node **new, *parent;
 492
 493        new = &smmu->masters.rb_node;
 494        parent = NULL;
 495        while (*new) {
 496                struct arm_smmu_master *this
 497                        = container_of(*new, struct arm_smmu_master, node);
 498
 499                parent = *new;
 500                if (master->of_node < this->of_node)
 501                        new = &((*new)->rb_left);
 502                else if (master->of_node > this->of_node)
 503                        new = &((*new)->rb_right);
 504                else
 505                        return -EEXIST;
 506        }
 507
 508        rb_link_node(&master->node, parent, new);
 509        rb_insert_color(&master->node, &smmu->masters);
 510        return 0;
 511}
 512
 513static int register_smmu_master(struct arm_smmu_device *smmu,
 514                                struct device *dev,
 515                                struct of_phandle_args *masterspec)
 516{
 517        int i;
 518        struct arm_smmu_master *master;
 519
 520        master = find_smmu_master(smmu, masterspec->np);
 521        if (master) {
 522                dev_err(dev,
 523                        "rejecting multiple registrations for master device %s\n",
 524                        masterspec->np->name);
 525                return -EBUSY;
 526        }
 527
 528        if (masterspec->args_count > MAX_MASTER_STREAMIDS) {
 529                dev_err(dev,
 530                        "reached maximum number (%d) of stream IDs for master device %s\n",
 531                        MAX_MASTER_STREAMIDS, masterspec->np->name);
 532                return -ENOSPC;
 533        }
 534
 535        master = devm_kzalloc(dev, sizeof(*master), GFP_KERNEL);
 536        if (!master)
 537                return -ENOMEM;
 538
 539        master->of_node                 = masterspec->np;
 540        master->cfg.num_streamids       = masterspec->args_count;
 541
 542        for (i = 0; i < master->cfg.num_streamids; ++i) {
 543                u16 streamid = masterspec->args[i];
 544
 545                if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH) &&
 546                     (streamid >= smmu->num_mapping_groups)) {
 547                        dev_err(dev,
 548                                "stream ID for master device %s greater than maximum allowed (%d)\n",
 549                                masterspec->np->name, smmu->num_mapping_groups);
 550                        return -ERANGE;
 551                }
 552                master->cfg.streamids[i] = streamid;
 553        }
 554        return insert_smmu_master(smmu, master);
 555}
 556
 557static struct arm_smmu_device *find_smmu_for_device(struct device *dev)
 558{
 559        struct arm_smmu_device *smmu;
 560        struct arm_smmu_master *master = NULL;
 561        struct device_node *dev_node = dev_get_dev_node(dev);
 562
 563        spin_lock(&arm_smmu_devices_lock);
 564        list_for_each_entry(smmu, &arm_smmu_devices, list) {
 565                master = find_smmu_master(smmu, dev_node);
 566                if (master)
 567                        break;
 568        }
 569        spin_unlock(&arm_smmu_devices_lock);
 570
 571        return master ? smmu : NULL;
 572}
 573
 574static int __arm_smmu_alloc_bitmap(unsigned long *map, int start, int end)
 575{
 576        int idx;
 577
 578        do {
 579                idx = find_next_zero_bit(map, end, start);
 580                if (idx == end)
 581                        return -ENOSPC;
 582        } while (test_and_set_bit(idx, map));
 583
 584        return idx;
 585}
 586
 587static void __arm_smmu_free_bitmap(unsigned long *map, int idx)
 588{
 589        clear_bit(idx, map);
 590}
 591
 592/* Wait for any pending TLB invalidations to complete */
 593static void arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
 594{
 595        int count = 0;
 596        void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
 597
 598        writel_relaxed(0, gr0_base + ARM_SMMU_GR0_sTLBGSYNC);
 599        while (readl_relaxed(gr0_base + ARM_SMMU_GR0_sTLBGSTATUS)
 600               & sTLBGSTATUS_GSACTIVE) {
 601                cpu_relax();
 602                if (++count == TLB_LOOP_TIMEOUT) {
 603                        dev_err_ratelimited(smmu->dev,
 604                        "TLB sync timed out -- SMMU may be deadlocked\n");
 605                        return;
 606                }
 607                udelay(1);
 608        }
 609}
 610
 611static void arm_smmu_tlb_inv_context(struct arm_smmu_domain *smmu_domain)
 612{
 613        struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
 614        struct arm_smmu_device *smmu = smmu_domain->smmu;
 615        void __iomem *base = ARM_SMMU_GR0(smmu);
 616        bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
 617
 618        if (stage1) {
 619                base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
 620                writel_relaxed(ARM_SMMU_CB_ASID(cfg),
 621                               base + ARM_SMMU_CB_S1_TLBIASID);
 622        } else {
 623                base = ARM_SMMU_GR0(smmu);
 624                writel_relaxed(ARM_SMMU_CB_VMID(cfg),
 625                               base + ARM_SMMU_GR0_TLBIVMID);
 626        }
 627
 628        arm_smmu_tlb_sync(smmu);
 629}
 630
 631static irqreturn_t arm_smmu_context_fault(int irq, void *dev)
 632{
 633        int flags, ret;
 634        u32 fsr, far, fsynr, resume;
 635        unsigned long iova;
 636        struct iommu_domain *domain = dev;
 637        struct arm_smmu_domain *smmu_domain = domain->priv;
 638        struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
 639        struct arm_smmu_device *smmu = smmu_domain->smmu;
 640        void __iomem *cb_base;
 641
 642        cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
 643        fsr = readl_relaxed(cb_base + ARM_SMMU_CB_FSR);
 644
 645        if (!(fsr & FSR_FAULT))
 646                return IRQ_NONE;
 647
 648        if (fsr & FSR_IGN)
 649                dev_err_ratelimited(smmu->dev,
 650                                    "Unexpected context fault (fsr 0x%x)\n",
 651                                    fsr);
 652
 653        fsynr = readl_relaxed(cb_base + ARM_SMMU_CB_FSYNR0);
 654        flags = fsynr & FSYNR0_WNR ? IOMMU_FAULT_WRITE : IOMMU_FAULT_READ;
 655
 656        far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_LO);
 657        iova = far;
 658#ifdef CONFIG_64BIT
 659        far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_HI);
 660        iova |= ((unsigned long)far << 32);
 661#endif
 662
 663        if (!report_iommu_fault(domain, smmu->dev, iova, flags)) {
 664                ret = IRQ_HANDLED;
 665                resume = RESUME_RETRY;
 666        } else {
 667                dev_err_ratelimited(smmu->dev,
 668                    "Unhandled context fault: iova=0x%08lx, fsynr=0x%x, cb=%d\n",
 669                    iova, fsynr, cfg->cbndx);
 670                ret = IRQ_NONE;
 671                resume = RESUME_TERMINATE;
 672        }
 673
 674        /* Clear the faulting FSR */
 675        writel(fsr, cb_base + ARM_SMMU_CB_FSR);
 676
 677        /* Retry or terminate any stalled transactions */
 678        if (fsr & FSR_SS)
 679                writel_relaxed(resume, cb_base + ARM_SMMU_CB_RESUME);
 680
 681        return ret;
 682}
 683
 684static irqreturn_t arm_smmu_global_fault(int irq, void *dev)
 685{
 686        u32 gfsr, gfsynr0, gfsynr1, gfsynr2;
 687        struct arm_smmu_device *smmu = dev;
 688        void __iomem *gr0_base = ARM_SMMU_GR0_NS(smmu);
 689
 690        gfsr = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSR);
 691        gfsynr0 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR0);
 692        gfsynr1 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR1);
 693        gfsynr2 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR2);
 694
 695        if (!gfsr)
 696                return IRQ_NONE;
 697
 698        dev_err_ratelimited(smmu->dev,
 699                "Unexpected global fault, this could be serious\n");
 700        dev_err_ratelimited(smmu->dev,
 701                "\tGFSR 0x%08x, GFSYNR0 0x%08x, GFSYNR1 0x%08x, GFSYNR2 0x%08x\n",
 702                gfsr, gfsynr0, gfsynr1, gfsynr2);
 703
 704        writel(gfsr, gr0_base + ARM_SMMU_GR0_sGFSR);
 705        return IRQ_HANDLED;
 706}
 707
 708static void arm_smmu_flush_pgtable(struct arm_smmu_device *smmu, void *addr,
 709                                   size_t size)
 710{
 711        unsigned long offset = (unsigned long)addr & ~PAGE_MASK;
 712
 713
 714        /* Ensure new page tables are visible to the hardware walker */
 715        if (smmu->features & ARM_SMMU_FEAT_COHERENT_WALK) {
 716                dsb(ishst);
 717        } else {
 718                /*
 719                 * If the SMMU can't walk tables in the CPU caches, treat them
 720                 * like non-coherent DMA since we need to flush the new entries
 721                 * all the way out to memory. There's no possibility of
 722                 * recursion here as the SMMU table walker will not be wired
 723                 * through another SMMU.
 724                 */
 725                dma_map_page(smmu->dev, virt_to_page(addr), offset, size,
 726                                DMA_TO_DEVICE);
 727        }
 728}
 729
 730static void arm_smmu_init_context_bank(struct arm_smmu_domain *smmu_domain)
 731{
 732        u32 reg;
 733        bool stage1;
 734        struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
 735        struct arm_smmu_device *smmu = smmu_domain->smmu;
 736        void __iomem *cb_base, *gr0_base, *gr1_base;
 737
 738        gr0_base = ARM_SMMU_GR0(smmu);
 739        gr1_base = ARM_SMMU_GR1(smmu);
 740        stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
 741        cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
 742
 743        /* CBAR */
 744        reg = cfg->cbar;
 745        if (smmu->version == ARM_SMMU_V1)
 746                reg |= cfg->irptndx << CBAR_IRPTNDX_SHIFT;
 747
 748        /*
 749         * Use the weakest shareability/memory types, so they are
 750         * overridden by the ttbcr/pte.
 751         */
 752        if (stage1) {
 753                reg |= (CBAR_S1_BPSHCFG_NSH << CBAR_S1_BPSHCFG_SHIFT) |
 754                        (CBAR_S1_MEMATTR_WB << CBAR_S1_MEMATTR_SHIFT);
 755        } else {
 756                reg |= ARM_SMMU_CB_VMID(cfg) << CBAR_VMID_SHIFT;
 757        }
 758        writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBAR(cfg->cbndx));
 759
 760        if (smmu->version > ARM_SMMU_V1) {
 761                /* CBA2R */
 762#ifdef CONFIG_64BIT
 763                reg = CBA2R_RW64_64BIT;
 764#else
 765                reg = CBA2R_RW64_32BIT;
 766#endif
 767                writel_relaxed(reg,
 768                               gr1_base + ARM_SMMU_GR1_CBA2R(cfg->cbndx));
 769
 770                /* TTBCR2 */
 771                switch (smmu->s1_input_size) {
 772                case 32:
 773                        reg = (TTBCR2_ADDR_32 << TTBCR2_SEP_SHIFT);
 774                        break;
 775                case 36:
 776                        reg = (TTBCR2_ADDR_36 << TTBCR2_SEP_SHIFT);
 777                        break;
 778                case 39:
 779                case 40:
 780                        reg = (TTBCR2_ADDR_40 << TTBCR2_SEP_SHIFT);
 781                        break;
 782                case 42:
 783                        reg = (TTBCR2_ADDR_42 << TTBCR2_SEP_SHIFT);
 784                        break;
 785                case 44:
 786                        reg = (TTBCR2_ADDR_44 << TTBCR2_SEP_SHIFT);
 787                        break;
 788                case 48:
 789                        reg = (TTBCR2_ADDR_48 << TTBCR2_SEP_SHIFT);
 790                        break;
 791                }
 792
 793                switch (smmu->s1_output_size) {
 794                case 32:
 795                        reg |= (TTBCR2_ADDR_32 << TTBCR2_PASIZE_SHIFT);
 796                        break;
 797                case 36:
 798                        reg |= (TTBCR2_ADDR_36 << TTBCR2_PASIZE_SHIFT);
 799                        break;
 800                case 39:
 801                case 40:
 802                        reg |= (TTBCR2_ADDR_40 << TTBCR2_PASIZE_SHIFT);
 803                        break;
 804                case 42:
 805                        reg |= (TTBCR2_ADDR_42 << TTBCR2_PASIZE_SHIFT);
 806                        break;
 807                case 44:
 808                        reg |= (TTBCR2_ADDR_44 << TTBCR2_PASIZE_SHIFT);
 809                        break;
 810                case 48:
 811                        reg |= (TTBCR2_ADDR_48 << TTBCR2_PASIZE_SHIFT);
 812                        break;
 813                }
 814
 815                if (stage1)
 816                        writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR2);
 817        }
 818
 819        /* TTBR0 */
 820        arm_smmu_flush_pgtable(smmu, cfg->pgd,
 821                               PTRS_PER_PGD * sizeof(pgd_t));
 822        reg = __pa(cfg->pgd);
 823        writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_LO);
 824        reg = (phys_addr_t)__pa(cfg->pgd) >> 32;
 825        if (stage1)
 826                reg |= ARM_SMMU_CB_ASID(cfg) << TTBRn_HI_ASID_SHIFT;
 827        writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_HI);
 828
 829        /*
 830         * TTBCR
 831         * We use long descriptor, with inner-shareable WBWA tables in TTBR0.
 832         */
 833        if (smmu->version > ARM_SMMU_V1) {
 834                if (PAGE_SIZE == SZ_4K)
 835                        reg = TTBCR_TG0_4K;
 836                else
 837                        reg = TTBCR_TG0_64K;
 838
 839                if (!stage1) {
 840                        reg |= (64 - smmu->s2_input_size) << TTBCR_T0SZ_SHIFT;
 841
 842                        switch (smmu->s2_output_size) {
 843                        case 32:
 844                                reg |= (TTBCR2_ADDR_32 << TTBCR_PASIZE_SHIFT);
 845                                break;
 846                        case 36:
 847                                reg |= (TTBCR2_ADDR_36 << TTBCR_PASIZE_SHIFT);
 848                                break;
 849                        case 40:
 850                                reg |= (TTBCR2_ADDR_40 << TTBCR_PASIZE_SHIFT);
 851                                break;
 852                        case 42:
 853                                reg |= (TTBCR2_ADDR_42 << TTBCR_PASIZE_SHIFT);
 854                                break;
 855                        case 44:
 856                                reg |= (TTBCR2_ADDR_44 << TTBCR_PASIZE_SHIFT);
 857                                break;
 858                        case 48:
 859                                reg |= (TTBCR2_ADDR_48 << TTBCR_PASIZE_SHIFT);
 860                                break;
 861                        }
 862                } else {
 863                        reg |= (64 - smmu->s1_input_size) << TTBCR_T0SZ_SHIFT;
 864                }
 865        } else {
 866                reg = 0;
 867        }
 868
 869        reg |= TTBCR_EAE |
 870              (TTBCR_SH_IS << TTBCR_SH0_SHIFT) |
 871              (TTBCR_RGN_WBWA << TTBCR_ORGN0_SHIFT) |
 872              (TTBCR_RGN_WBWA << TTBCR_IRGN0_SHIFT);
 873
 874        if (!stage1)
 875                reg |= (TTBCR_SL0_LVL_1 << TTBCR_SL0_SHIFT);
 876
 877        writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
 878
 879        /* MAIR0 (stage-1 only) */
 880        if (stage1) {
 881                reg = (MAIR_ATTR_NC << MAIR_ATTR_SHIFT(MAIR_ATTR_IDX_NC)) |
 882                      (MAIR_ATTR_WBRWA << MAIR_ATTR_SHIFT(MAIR_ATTR_IDX_CACHE)) |
 883                      (MAIR_ATTR_DEVICE << MAIR_ATTR_SHIFT(MAIR_ATTR_IDX_DEV));
 884                writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR0);
 885        }
 886
 887        /* SCTLR */
 888        reg = SCTLR_CFCFG | SCTLR_CFIE | SCTLR_CFRE | SCTLR_M | SCTLR_EAE_SBOP;
 889        if (stage1)
 890                reg |= SCTLR_S1_ASIDPNE;
 891#ifdef __BIG_ENDIAN
 892        reg |= SCTLR_E;
 893#endif
 894        writel_relaxed(reg, cb_base + ARM_SMMU_CB_SCTLR);
 895}
 896
 897static int arm_smmu_init_domain_context(struct iommu_domain *domain,
 898                                        struct arm_smmu_device *smmu)
 899{
 900        int irq, start, ret = 0;
 901        unsigned long flags;
 902        struct arm_smmu_domain *smmu_domain = domain->priv;
 903        struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
 904
 905        spin_lock_irqsave(&smmu_domain->lock, flags);
 906        if (smmu_domain->smmu)
 907                goto out_unlock;
 908
 909        if (smmu->features & ARM_SMMU_FEAT_TRANS_NESTED) {
 910                /*
 911                 * We will likely want to change this if/when KVM gets
 912                 * involved.
 913                 */
 914                cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
 915                start = smmu->num_s2_context_banks;
 916        } else if (smmu->features & ARM_SMMU_FEAT_TRANS_S1) {
 917                cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
 918                start = smmu->num_s2_context_banks;
 919        } else {
 920                cfg->cbar = CBAR_TYPE_S2_TRANS;
 921                start = 0;
 922        }
 923
 924        ret = __arm_smmu_alloc_bitmap(smmu->context_map, start,
 925                                      smmu->num_context_banks);
 926        if (IS_ERR_VALUE(ret))
 927                goto out_unlock;
 928
 929        cfg->cbndx = ret;
 930        if (smmu->version == ARM_SMMU_V1) {
 931                cfg->irptndx = atomic_inc_return(&smmu->irptndx);
 932                cfg->irptndx %= smmu->num_context_irqs;
 933        } else {
 934                cfg->irptndx = cfg->cbndx;
 935        }
 936
 937        ACCESS_ONCE(smmu_domain->smmu) = smmu;
 938        arm_smmu_init_context_bank(smmu_domain);
 939        spin_unlock_irqrestore(&smmu_domain->lock, flags);
 940
 941        irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
 942        ret = request_irq(irq, arm_smmu_context_fault, IRQF_SHARED,
 943                          "arm-smmu-context-fault", domain);
 944        if (IS_ERR_VALUE(ret)) {
 945                dev_err(smmu->dev, "failed to request context IRQ %d (%u)\n",
 946                        cfg->irptndx, irq);
 947                cfg->irptndx = INVALID_IRPTNDX;
 948        }
 949
 950        return 0;
 951
 952out_unlock:
 953        spin_unlock_irqrestore(&smmu_domain->lock, flags);
 954        return ret;
 955}
 956
 957static void arm_smmu_destroy_domain_context(struct iommu_domain *domain)
 958{
 959        struct arm_smmu_domain *smmu_domain = domain->priv;
 960        struct arm_smmu_device *smmu = smmu_domain->smmu;
 961        struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
 962        void __iomem *cb_base;
 963        int irq;
 964
 965        if (!smmu)
 966                return;
 967
 968        /* Disable the context bank and nuke the TLB before freeing it. */
 969        cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
 970        writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
 971        arm_smmu_tlb_inv_context(smmu_domain);
 972
 973        if (cfg->irptndx != INVALID_IRPTNDX) {
 974                irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
 975                free_irq(irq, domain);
 976        }
 977
 978        __arm_smmu_free_bitmap(smmu->context_map, cfg->cbndx);
 979}
 980
 981static int arm_smmu_domain_init(struct iommu_domain *domain)
 982{
 983        struct arm_smmu_domain *smmu_domain;
 984        pgd_t *pgd;
 985
 986        /*
 987         * Allocate the domain and initialise some of its data structures.
 988         * We can't really do anything meaningful until we've added a
 989         * master.
 990         */
 991        smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
 992        if (!smmu_domain)
 993                return -ENOMEM;
 994
 995        pgd = kcalloc(PTRS_PER_PGD, sizeof(pgd_t), GFP_KERNEL);
 996        if (!pgd)
 997                goto out_free_domain;
 998        smmu_domain->cfg.pgd = pgd;
 999
1000        spin_lock_init(&smmu_domain->lock);
1001        domain->priv = smmu_domain;
1002        return 0;
1003
1004out_free_domain:
1005        kfree(smmu_domain);
1006        return -ENOMEM;
1007}
1008
1009static void arm_smmu_free_ptes(pmd_t *pmd)
1010{
1011        pgtable_t table = pmd_pgtable(*pmd);
1012
1013        __free_page(table);
1014}
1015
1016static void arm_smmu_free_pmds(pud_t *pud)
1017{
1018        int i;
1019        pmd_t *pmd, *pmd_base = pmd_offset(pud, 0);
1020
1021        pmd = pmd_base;
1022        for (i = 0; i < PTRS_PER_PMD; ++i) {
1023                if (pmd_none(*pmd))
1024                        continue;
1025
1026                arm_smmu_free_ptes(pmd);
1027                pmd++;
1028        }
1029
1030        pmd_free(NULL, pmd_base);
1031}
1032
1033static void arm_smmu_free_puds(pgd_t *pgd)
1034{
1035        int i;
1036        pud_t *pud, *pud_base = pud_offset(pgd, 0);
1037
1038        pud = pud_base;
1039        for (i = 0; i < PTRS_PER_PUD; ++i) {
1040                if (pud_none(*pud))
1041                        continue;
1042
1043                arm_smmu_free_pmds(pud);
1044                pud++;
1045        }
1046
1047        pud_free(NULL, pud_base);
1048}
1049
1050static void arm_smmu_free_pgtables(struct arm_smmu_domain *smmu_domain)
1051{
1052        int i;
1053        struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
1054        pgd_t *pgd, *pgd_base = cfg->pgd;
1055
1056        /*
1057         * Recursively free the page tables for this domain. We don't
1058         * care about speculative TLB filling because the tables should
1059         * not be active in any context bank at this point (SCTLR.M is 0).
1060         */
1061        pgd = pgd_base;
1062        for (i = 0; i < PTRS_PER_PGD; ++i) {
1063                if (pgd_none(*pgd))
1064                        continue;
1065                arm_smmu_free_puds(pgd);
1066                pgd++;
1067        }
1068
1069        kfree(pgd_base);
1070}
1071
1072static void arm_smmu_domain_destroy(struct iommu_domain *domain)
1073{
1074        struct arm_smmu_domain *smmu_domain = domain->priv;
1075
1076        /*
1077         * Free the domain resources. We assume that all devices have
1078         * already been detached.
1079         */
1080        arm_smmu_destroy_domain_context(domain);
1081        arm_smmu_free_pgtables(smmu_domain);
1082        kfree(smmu_domain);
1083}
1084
1085static int arm_smmu_master_configure_smrs(struct arm_smmu_device *smmu,
1086                                          struct arm_smmu_master_cfg *cfg)
1087{
1088        int i;
1089        struct arm_smmu_smr *smrs;
1090        void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1091
1092        if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH))
1093                return 0;
1094
1095        if (cfg->smrs)
1096                return -EEXIST;
1097
1098        smrs = kmalloc_array(cfg->num_streamids, sizeof(*smrs), GFP_KERNEL);
1099        if (!smrs) {
1100                dev_err(smmu->dev, "failed to allocate %d SMRs\n",
1101                        cfg->num_streamids);
1102                return -ENOMEM;
1103        }
1104
1105        /* Allocate the SMRs on the SMMU */
1106        for (i = 0; i < cfg->num_streamids; ++i) {
1107                int idx = __arm_smmu_alloc_bitmap(smmu->smr_map, 0,
1108                                                  smmu->num_mapping_groups);
1109                if (IS_ERR_VALUE(idx)) {
1110                        dev_err(smmu->dev, "failed to allocate free SMR\n");
1111                        goto err_free_smrs;
1112                }
1113
1114                smrs[i] = (struct arm_smmu_smr) {
1115                        .idx    = idx,
1116                        .mask   = 0, /* We don't currently share SMRs */
1117                        .id     = cfg->streamids[i],
1118                };
1119        }
1120
1121        /* It worked! Now, poke the actual hardware */
1122        for (i = 0; i < cfg->num_streamids; ++i) {
1123                u32 reg = SMR_VALID | smrs[i].id << SMR_ID_SHIFT |
1124                          smrs[i].mask << SMR_MASK_SHIFT;
1125                writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_SMR(smrs[i].idx));
1126        }
1127
1128        cfg->smrs = smrs;
1129        return 0;
1130
1131err_free_smrs:
1132        while (--i >= 0)
1133                __arm_smmu_free_bitmap(smmu->smr_map, smrs[i].idx);
1134        kfree(smrs);
1135        return -ENOSPC;
1136}
1137
1138static void arm_smmu_master_free_smrs(struct arm_smmu_device *smmu,
1139                                      struct arm_smmu_master_cfg *cfg)
1140{
1141        int i;
1142        void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1143        struct arm_smmu_smr *smrs = cfg->smrs;
1144
1145        if (!smrs)
1146                return;
1147
1148        /* Invalidate the SMRs before freeing back to the allocator */
1149        for (i = 0; i < cfg->num_streamids; ++i) {
1150                u8 idx = smrs[i].idx;
1151
1152                writel_relaxed(~SMR_VALID, gr0_base + ARM_SMMU_GR0_SMR(idx));
1153                __arm_smmu_free_bitmap(smmu->smr_map, idx);
1154        }
1155
1156        cfg->smrs = NULL;
1157        kfree(smrs);
1158}
1159
1160static int arm_smmu_domain_add_master(struct arm_smmu_domain *smmu_domain,
1161                                      struct arm_smmu_master_cfg *cfg)
1162{
1163        int i, ret;
1164        struct arm_smmu_device *smmu = smmu_domain->smmu;
1165        void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1166
1167        /* Devices in an IOMMU group may already be configured */
1168        ret = arm_smmu_master_configure_smrs(smmu, cfg);
1169        if (ret)
1170                return ret == -EEXIST ? 0 : ret;
1171
1172        for (i = 0; i < cfg->num_streamids; ++i) {
1173                u32 idx, s2cr;
1174
1175                idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];
1176                s2cr = S2CR_TYPE_TRANS |
1177                       (smmu_domain->cfg.cbndx << S2CR_CBNDX_SHIFT);
1178                writel_relaxed(s2cr, gr0_base + ARM_SMMU_GR0_S2CR(idx));
1179        }
1180
1181        return 0;
1182}
1183
1184static void arm_smmu_domain_remove_master(struct arm_smmu_domain *smmu_domain,
1185                                          struct arm_smmu_master_cfg *cfg)
1186{
1187        int i;
1188        struct arm_smmu_device *smmu = smmu_domain->smmu;
1189        void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1190
1191        /* An IOMMU group is torn down by the first device to be removed */
1192        if ((smmu->features & ARM_SMMU_FEAT_STREAM_MATCH) && !cfg->smrs)
1193                return;
1194
1195        /*
1196         * We *must* clear the S2CR first, because freeing the SMR means
1197         * that it can be re-allocated immediately.
1198         */
1199        for (i = 0; i < cfg->num_streamids; ++i) {
1200                u32 idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];
1201
1202                writel_relaxed(S2CR_TYPE_BYPASS,
1203                               gr0_base + ARM_SMMU_GR0_S2CR(idx));
1204        }
1205
1206        arm_smmu_master_free_smrs(smmu, cfg);
1207}
1208
1209static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
1210{
1211        int ret;
1212        struct arm_smmu_domain *smmu_domain = domain->priv;
1213        struct arm_smmu_device *smmu, *dom_smmu;
1214        struct arm_smmu_master_cfg *cfg;
1215
1216        smmu = find_smmu_for_device(dev);
1217        if (!smmu) {
1218                dev_err(dev, "cannot attach to SMMU, is it on the same bus?\n");
1219                return -ENXIO;
1220        }
1221
1222        if (dev->archdata.iommu) {
1223                dev_err(dev, "already attached to IOMMU domain\n");
1224                return -EEXIST;
1225        }
1226
1227        /*
1228         * Sanity check the domain. We don't support domains across
1229         * different SMMUs.
1230         */
1231        dom_smmu = ACCESS_ONCE(smmu_domain->smmu);
1232        if (!dom_smmu) {
1233                /* Now that we have a master, we can finalise the domain */
1234                ret = arm_smmu_init_domain_context(domain, smmu);
1235                if (IS_ERR_VALUE(ret))
1236                        return ret;
1237
1238                dom_smmu = smmu_domain->smmu;
1239        }
1240
1241        if (dom_smmu != smmu) {
1242                dev_err(dev,
1243                        "cannot attach to SMMU %s whilst already attached to domain on SMMU %s\n",
1244                        dev_name(smmu_domain->smmu->dev), dev_name(smmu->dev));
1245                return -EINVAL;
1246        }
1247
1248        /* Looks ok, so add the device to the domain */
1249        cfg = find_smmu_master_cfg(dev);
1250        if (!cfg)
1251                return -ENODEV;
1252
1253        ret = arm_smmu_domain_add_master(smmu_domain, cfg);
1254        if (!ret)
1255                dev->archdata.iommu = domain;
1256        return ret;
1257}
1258
1259static void arm_smmu_detach_dev(struct iommu_domain *domain, struct device *dev)
1260{
1261        struct arm_smmu_domain *smmu_domain = domain->priv;
1262        struct arm_smmu_master_cfg *cfg;
1263
1264        cfg = find_smmu_master_cfg(dev);
1265        if (!cfg)
1266                return;
1267
1268        dev->archdata.iommu = NULL;
1269        arm_smmu_domain_remove_master(smmu_domain, cfg);
1270}
1271
1272static bool arm_smmu_pte_is_contiguous_range(unsigned long addr,
1273                                             unsigned long end)
1274{
1275        return !(addr & ~ARM_SMMU_PTE_CONT_MASK) &&
1276                (addr + ARM_SMMU_PTE_CONT_SIZE <= end);
1277}
1278
1279static int arm_smmu_alloc_init_pte(struct arm_smmu_device *smmu, pmd_t *pmd,
1280                                   unsigned long addr, unsigned long end,
1281                                   unsigned long pfn, int prot, int stage)
1282{
1283        pte_t *pte, *start;
1284        pteval_t pteval = ARM_SMMU_PTE_PAGE | ARM_SMMU_PTE_AF | ARM_SMMU_PTE_XN;
1285
1286        if (pmd_none(*pmd)) {
1287                /* Allocate a new set of tables */
1288                pgtable_t table = alloc_page(GFP_ATOMIC|__GFP_ZERO);
1289
1290                if (!table)
1291                        return -ENOMEM;
1292
1293                arm_smmu_flush_pgtable(smmu, page_address(table), PAGE_SIZE);
1294                pmd_populate(NULL, pmd, table);
1295                arm_smmu_flush_pgtable(smmu, pmd, sizeof(*pmd));
1296        }
1297
1298        if (stage == 1) {
1299                pteval |= ARM_SMMU_PTE_AP_UNPRIV | ARM_SMMU_PTE_nG;
1300                if (!(prot & IOMMU_WRITE) && (prot & IOMMU_READ))
1301                        pteval |= ARM_SMMU_PTE_AP_RDONLY;
1302
1303                if (prot & IOMMU_CACHE)
1304                        pteval |= (MAIR_ATTR_IDX_CACHE <<
1305                                   ARM_SMMU_PTE_ATTRINDX_SHIFT);
1306        } else {
1307                pteval |= ARM_SMMU_PTE_HAP_FAULT;
1308                if (prot & IOMMU_READ)
1309                        pteval |= ARM_SMMU_PTE_HAP_READ;
1310                if (prot & IOMMU_WRITE)
1311                        pteval |= ARM_SMMU_PTE_HAP_WRITE;
1312                if (prot & IOMMU_CACHE)
1313                        pteval |= ARM_SMMU_PTE_MEMATTR_OIWB;
1314                else
1315                        pteval |= ARM_SMMU_PTE_MEMATTR_NC;
1316        }
1317
1318        /* If no access, create a faulting entry to avoid TLB fills */
1319        if (prot & IOMMU_EXEC)
1320                pteval &= ~ARM_SMMU_PTE_XN;
1321        else if (!(prot & (IOMMU_READ | IOMMU_WRITE)))
1322                pteval &= ~ARM_SMMU_PTE_PAGE;
1323
1324        pteval |= ARM_SMMU_PTE_SH_IS;
1325        start = pmd_page_vaddr(*pmd) + pte_index(addr);
1326        pte = start;
1327
1328        /*
1329         * Install the page table entries. This is fairly complicated
1330         * since we attempt to make use of the contiguous hint in the
1331         * ptes where possible. The contiguous hint indicates a series
1332         * of ARM_SMMU_PTE_CONT_ENTRIES ptes mapping a physically
1333         * contiguous region with the following constraints:
1334         *
1335         *   - The region start is aligned to ARM_SMMU_PTE_CONT_SIZE
1336         *   - Each pte in the region has the contiguous hint bit set
1337         *
1338         * This complicates unmapping (also handled by this code, when
1339         * neither IOMMU_READ or IOMMU_WRITE are set) because it is
1340         * possible, yet highly unlikely, that a client may unmap only
1341         * part of a contiguous range. This requires clearing of the
1342         * contiguous hint bits in the range before installing the new
1343         * faulting entries.
1344         *
1345         * Note that re-mapping an address range without first unmapping
1346         * it is not supported, so TLB invalidation is not required here
1347         * and is instead performed at unmap and domain-init time.
1348         */
1349        do {
1350                int i = 1;
1351
1352                pteval &= ~ARM_SMMU_PTE_CONT;
1353
1354                if (arm_smmu_pte_is_contiguous_range(addr, end)) {
1355                        i = ARM_SMMU_PTE_CONT_ENTRIES;
1356                        pteval |= ARM_SMMU_PTE_CONT;
1357                } else if (pte_val(*pte) &
1358                           (ARM_SMMU_PTE_CONT | ARM_SMMU_PTE_PAGE)) {
1359                        int j;
1360                        pte_t *cont_start;
1361                        unsigned long idx = pte_index(addr);
1362
1363                        idx &= ~(ARM_SMMU_PTE_CONT_ENTRIES - 1);
1364                        cont_start = pmd_page_vaddr(*pmd) + idx;
1365                        for (j = 0; j < ARM_SMMU_PTE_CONT_ENTRIES; ++j)
1366                                pte_val(*(cont_start + j)) &=
1367                                        ~ARM_SMMU_PTE_CONT;
1368
1369                        arm_smmu_flush_pgtable(smmu, cont_start,
1370                                               sizeof(*pte) *
1371                                               ARM_SMMU_PTE_CONT_ENTRIES);
1372                }
1373
1374                do {
1375                        *pte = pfn_pte(pfn, __pgprot(pteval));
1376                } while (pte++, pfn++, addr += PAGE_SIZE, --i);
1377        } while (addr != end);
1378
1379        arm_smmu_flush_pgtable(smmu, start, sizeof(*pte) * (pte - start));
1380        return 0;
1381}
1382
1383static int arm_smmu_alloc_init_pmd(struct arm_smmu_device *smmu, pud_t *pud,
1384                                   unsigned long addr, unsigned long end,
1385                                   phys_addr_t phys, int prot, int stage)
1386{
1387        int ret;
1388        pmd_t *pmd;
1389        unsigned long next, pfn = __phys_to_pfn(phys);
1390
1391#ifndef __PAGETABLE_PMD_FOLDED
1392        if (pud_none(*pud)) {
1393                pmd = (pmd_t *)get_zeroed_page(GFP_ATOMIC);
1394                if (!pmd)
1395                        return -ENOMEM;
1396
1397                arm_smmu_flush_pgtable(smmu, pmd, PAGE_SIZE);
1398                pud_populate(NULL, pud, pmd);
1399                arm_smmu_flush_pgtable(smmu, pud, sizeof(*pud));
1400
1401                pmd += pmd_index(addr);
1402        } else
1403#endif
1404                pmd = pmd_offset(pud, addr);
1405
1406        do {
1407                next = pmd_addr_end(addr, end);
1408                ret = arm_smmu_alloc_init_pte(smmu, pmd, addr, next, pfn,
1409                                              prot, stage);
1410                phys += next - addr;
1411                pfn = __phys_to_pfn(phys);
1412        } while (pmd++, addr = next, addr < end);
1413
1414        return ret;
1415}
1416
1417static int arm_smmu_alloc_init_pud(struct arm_smmu_device *smmu, pgd_t *pgd,
1418                                   unsigned long addr, unsigned long end,
1419                                   phys_addr_t phys, int prot, int stage)
1420{
1421        int ret = 0;
1422        pud_t *pud;
1423        unsigned long next;
1424
1425#ifndef __PAGETABLE_PUD_FOLDED
1426        if (pgd_none(*pgd)) {
1427                pud = (pud_t *)get_zeroed_page(GFP_ATOMIC);
1428                if (!pud)
1429                        return -ENOMEM;
1430
1431                arm_smmu_flush_pgtable(smmu, pud, PAGE_SIZE);
1432                pgd_populate(NULL, pgd, pud);
1433                arm_smmu_flush_pgtable(smmu, pgd, sizeof(*pgd));
1434
1435                pud += pud_index(addr);
1436        } else
1437#endif
1438                pud = pud_offset(pgd, addr);
1439
1440        do {
1441                next = pud_addr_end(addr, end);
1442                ret = arm_smmu_alloc_init_pmd(smmu, pud, addr, next, phys,
1443                                              prot, stage);
1444                phys += next - addr;
1445        } while (pud++, addr = next, addr < end);
1446
1447        return ret;
1448}
1449
1450static int arm_smmu_handle_mapping(struct arm_smmu_domain *smmu_domain,
1451                                   unsigned long iova, phys_addr_t paddr,
1452                                   size_t size, int prot)
1453{
1454        int ret, stage;
1455        unsigned long end;
1456        phys_addr_t input_mask, output_mask;
1457        struct arm_smmu_device *smmu = smmu_domain->smmu;
1458        struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
1459        pgd_t *pgd = cfg->pgd;
1460        unsigned long flags;
1461
1462        if (cfg->cbar == CBAR_TYPE_S2_TRANS) {
1463                stage = 2;
1464                input_mask = (1ULL << smmu->s2_input_size) - 1;
1465                output_mask = (1ULL << smmu->s2_output_size) - 1;
1466        } else {
1467                stage = 1;
1468                input_mask = (1ULL << smmu->s1_input_size) - 1;
1469                output_mask = (1ULL << smmu->s1_output_size) - 1;
1470        }
1471
1472        if (!pgd)
1473                return -EINVAL;
1474
1475        if (size & ~PAGE_MASK)
1476                return -EINVAL;
1477
1478        if ((phys_addr_t)iova & ~input_mask)
1479                return -ERANGE;
1480
1481        if (paddr & ~output_mask)
1482                return -ERANGE;
1483
1484        spin_lock_irqsave(&smmu_domain->lock, flags);
1485        pgd += pgd_index(iova);
1486        end = iova + size;
1487        do {
1488                unsigned long next = pgd_addr_end(iova, end);
1489
1490                ret = arm_smmu_alloc_init_pud(smmu, pgd, iova, next, paddr,
1491                                              prot, stage);
1492                if (ret)
1493                        goto out_unlock;
1494
1495                paddr += next - iova;
1496                iova = next;
1497        } while (pgd++, iova != end);
1498
1499out_unlock:
1500        spin_unlock_irqrestore(&smmu_domain->lock, flags);
1501
1502        return ret;
1503}
1504
1505static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1506                        phys_addr_t paddr, size_t size, int prot)
1507{
1508        struct arm_smmu_domain *smmu_domain = domain->priv;
1509
1510        if (!smmu_domain)
1511                return -ENODEV;
1512
1513        return arm_smmu_handle_mapping(smmu_domain, iova, paddr, size, prot);
1514}
1515
1516static size_t arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova,
1517                             size_t size)
1518{
1519        int ret;
1520        struct arm_smmu_domain *smmu_domain = domain->priv;
1521
1522        ret = arm_smmu_handle_mapping(smmu_domain, iova, 0, size, 0);
1523        arm_smmu_tlb_inv_context(smmu_domain);
1524        return ret ? 0 : size;
1525}
1526
1527static phys_addr_t arm_smmu_iova_to_phys(struct iommu_domain *domain,
1528                                         dma_addr_t iova)
1529{
1530        pgd_t *pgdp, pgd;
1531        pud_t pud;
1532        pmd_t pmd;
1533        pte_t pte;
1534        struct arm_smmu_domain *smmu_domain = domain->priv;
1535        struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
1536
1537        pgdp = cfg->pgd;
1538        if (!pgdp)
1539                return 0;
1540
1541        pgd = *(pgdp + pgd_index(iova));
1542        if (pgd_none(pgd))
1543                return 0;
1544
1545        pud = *pud_offset(&pgd, iova);
1546        if (pud_none(pud))
1547                return 0;
1548
1549        pmd = *pmd_offset(&pud, iova);
1550        if (pmd_none(pmd))
1551                return 0;
1552
1553        pte = *(pmd_page_vaddr(pmd) + pte_index(iova));
1554        if (pte_none(pte))
1555                return 0;
1556
1557        return __pfn_to_phys(pte_pfn(pte)) | (iova & ~PAGE_MASK);
1558}
1559
1560static bool arm_smmu_capable(enum iommu_cap cap)
1561{
1562        switch (cap) {
1563        case IOMMU_CAP_CACHE_COHERENCY:
1564                /*
1565                 * Return true here as the SMMU can always send out coherent
1566                 * requests.
1567                 */
1568                return true;
1569        case IOMMU_CAP_INTR_REMAP:
1570                return true; /* MSIs are just memory writes */
1571        default:
1572                return false;
1573        }
1574}
1575
1576static int __arm_smmu_get_pci_sid(struct pci_dev *pdev, u16 alias, void *data)
1577{
1578        *((u16 *)data) = alias;
1579        return 0; /* Continue walking */
1580}
1581
1582static void __arm_smmu_release_pci_iommudata(void *data)
1583{
1584        kfree(data);
1585}
1586
1587static int arm_smmu_add_device(struct device *dev)
1588{
1589        struct arm_smmu_device *smmu;
1590        struct arm_smmu_master_cfg *cfg;
1591        struct iommu_group *group;
1592        void (*releasefn)(void *) = NULL;
1593        int ret;
1594
1595        smmu = find_smmu_for_device(dev);
1596        if (!smmu)
1597                return -ENODEV;
1598
1599        group = iommu_group_alloc();
1600        if (IS_ERR(group)) {
1601                dev_err(dev, "Failed to allocate IOMMU group\n");
1602                return PTR_ERR(group);
1603        }
1604
1605        if (dev_is_pci(dev)) {
1606                struct pci_dev *pdev = to_pci_dev(dev);
1607
1608                cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
1609                if (!cfg) {
1610                        ret = -ENOMEM;
1611                        goto out_put_group;
1612                }
1613
1614                cfg->num_streamids = 1;
1615                /*
1616                 * Assume Stream ID == Requester ID for now.
1617                 * We need a way to describe the ID mappings in FDT.
1618                 */
1619                pci_for_each_dma_alias(pdev, __arm_smmu_get_pci_sid,
1620                                       &cfg->streamids[0]);
1621                releasefn = __arm_smmu_release_pci_iommudata;
1622        } else {
1623                struct arm_smmu_master *master;
1624
1625                master = find_smmu_master(smmu, dev->of_node);
1626                if (!master) {
1627                        ret = -ENODEV;
1628                        goto out_put_group;
1629                }
1630
1631                cfg = &master->cfg;
1632        }
1633
1634        iommu_group_set_iommudata(group, cfg, releasefn);
1635        ret = iommu_group_add_device(group, dev);
1636
1637out_put_group:
1638        iommu_group_put(group);
1639        return ret;
1640}
1641
1642static void arm_smmu_remove_device(struct device *dev)
1643{
1644        iommu_group_remove_device(dev);
1645}
1646
1647static const struct iommu_ops arm_smmu_ops = {
1648        .capable        = arm_smmu_capable,
1649        .domain_init    = arm_smmu_domain_init,
1650        .domain_destroy = arm_smmu_domain_destroy,
1651        .attach_dev     = arm_smmu_attach_dev,
1652        .detach_dev     = arm_smmu_detach_dev,
1653        .map            = arm_smmu_map,
1654        .unmap          = arm_smmu_unmap,
1655        .iova_to_phys   = arm_smmu_iova_to_phys,
1656        .add_device     = arm_smmu_add_device,
1657        .remove_device  = arm_smmu_remove_device,
1658        .pgsize_bitmap  = (SECTION_SIZE |
1659                           ARM_SMMU_PTE_CONT_SIZE |
1660                           PAGE_SIZE),
1661};
1662
1663static void arm_smmu_device_reset(struct arm_smmu_device *smmu)
1664{
1665        void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1666        void __iomem *cb_base;
1667        int i = 0;
1668        u32 reg;
1669
1670        /* clear global FSR */
1671        reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
1672        writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
1673
1674        /* Mark all SMRn as invalid and all S2CRn as bypass */
1675        for (i = 0; i < smmu->num_mapping_groups; ++i) {
1676                writel_relaxed(0, gr0_base + ARM_SMMU_GR0_SMR(i));
1677                writel_relaxed(S2CR_TYPE_BYPASS,
1678                        gr0_base + ARM_SMMU_GR0_S2CR(i));
1679        }
1680
1681        /* Make sure all context banks are disabled and clear CB_FSR  */
1682        for (i = 0; i < smmu->num_context_banks; ++i) {
1683                cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, i);
1684                writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
1685                writel_relaxed(FSR_FAULT, cb_base + ARM_SMMU_CB_FSR);
1686        }
1687
1688        /* Invalidate the TLB, just in case */
1689        writel_relaxed(0, gr0_base + ARM_SMMU_GR0_STLBIALL);
1690        writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLH);
1691        writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLNSNH);
1692
1693        reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1694
1695        /* Enable fault reporting */
1696        reg |= (sCR0_GFRE | sCR0_GFIE | sCR0_GCFGFRE | sCR0_GCFGFIE);
1697
1698        /* Disable TLB broadcasting. */
1699        reg |= (sCR0_VMIDPNE | sCR0_PTM);
1700
1701        /* Enable client access, but bypass when no mapping is found */
1702        reg &= ~(sCR0_CLIENTPD | sCR0_USFCFG);
1703
1704        /* Disable forced broadcasting */
1705        reg &= ~sCR0_FB;
1706
1707        /* Don't upgrade barriers */
1708        reg &= ~(sCR0_BSU_MASK << sCR0_BSU_SHIFT);
1709
1710        /* Push the button */
1711        arm_smmu_tlb_sync(smmu);
1712        writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1713}
1714
1715static int arm_smmu_id_size_to_bits(int size)
1716{
1717        switch (size) {
1718        case 0:
1719                return 32;
1720        case 1:
1721                return 36;
1722        case 2:
1723                return 40;
1724        case 3:
1725                return 42;
1726        case 4:
1727                return 44;
1728        case 5:
1729        default:
1730                return 48;
1731        }
1732}
1733
1734static int arm_smmu_device_cfg_probe(struct arm_smmu_device *smmu)
1735{
1736        unsigned long size;
1737        void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1738        u32 id;
1739
1740        dev_notice(smmu->dev, "probing hardware configuration...\n");
1741        dev_notice(smmu->dev, "SMMUv%d with:\n", smmu->version);
1742
1743        /* ID0 */
1744        id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID0);
1745#ifndef CONFIG_64BIT
1746        if (((id >> ID0_PTFS_SHIFT) & ID0_PTFS_MASK) == ID0_PTFS_V8_ONLY) {
1747                dev_err(smmu->dev, "\tno v7 descriptor support!\n");
1748                return -ENODEV;
1749        }
1750#endif
1751
1752        /* Restrict available stages based on module parameter */
1753        if (force_stage == 1)
1754                id &= ~(ID0_S2TS | ID0_NTS);
1755        else if (force_stage == 2)
1756                id &= ~(ID0_S1TS | ID0_NTS);
1757
1758        if (id & ID0_S1TS) {
1759                smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
1760                dev_notice(smmu->dev, "\tstage 1 translation\n");
1761        }
1762
1763        if (id & ID0_S2TS) {
1764                smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
1765                dev_notice(smmu->dev, "\tstage 2 translation\n");
1766        }
1767
1768        if (id & ID0_NTS) {
1769                smmu->features |= ARM_SMMU_FEAT_TRANS_NESTED;
1770                dev_notice(smmu->dev, "\tnested translation\n");
1771        }
1772
1773        if (!(smmu->features &
1774                (ARM_SMMU_FEAT_TRANS_S1 | ARM_SMMU_FEAT_TRANS_S2))) {
1775                dev_err(smmu->dev, "\tno translation support!\n");
1776                return -ENODEV;
1777        }
1778
1779        if (id & ID0_CTTW) {
1780                smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK;
1781                dev_notice(smmu->dev, "\tcoherent table walk\n");
1782        }
1783
1784        if (id & ID0_SMS) {
1785                u32 smr, sid, mask;
1786
1787                smmu->features |= ARM_SMMU_FEAT_STREAM_MATCH;
1788                smmu->num_mapping_groups = (id >> ID0_NUMSMRG_SHIFT) &
1789                                           ID0_NUMSMRG_MASK;
1790                if (smmu->num_mapping_groups == 0) {
1791                        dev_err(smmu->dev,
1792                                "stream-matching supported, but no SMRs present!\n");
1793                        return -ENODEV;
1794                }
1795
1796                smr = SMR_MASK_MASK << SMR_MASK_SHIFT;
1797                smr |= (SMR_ID_MASK << SMR_ID_SHIFT);
1798                writel_relaxed(smr, gr0_base + ARM_SMMU_GR0_SMR(0));
1799                smr = readl_relaxed(gr0_base + ARM_SMMU_GR0_SMR(0));
1800
1801                mask = (smr >> SMR_MASK_SHIFT) & SMR_MASK_MASK;
1802                sid = (smr >> SMR_ID_SHIFT) & SMR_ID_MASK;
1803                if ((mask & sid) != sid) {
1804                        dev_err(smmu->dev,
1805                                "SMR mask bits (0x%x) insufficient for ID field (0x%x)\n",
1806                                mask, sid);
1807                        return -ENODEV;
1808                }
1809
1810                dev_notice(smmu->dev,
1811                           "\tstream matching with %u register groups, mask 0x%x",
1812                           smmu->num_mapping_groups, mask);
1813        } else {
1814                smmu->num_mapping_groups = (id >> ID0_NUMSIDB_SHIFT) &
1815                                           ID0_NUMSIDB_MASK;
1816        }
1817
1818        /* ID1 */
1819        id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID1);
1820        smmu->pgshift = (id & ID1_PAGESIZE) ? 16 : 12;
1821
1822        /* Check for size mismatch of SMMU address space from mapped region */
1823        size = 1 <<
1824                (((id >> ID1_NUMPAGENDXB_SHIFT) & ID1_NUMPAGENDXB_MASK) + 1);
1825        size *= 2 << smmu->pgshift;
1826        if (smmu->size != size)
1827                dev_warn(smmu->dev,
1828                        "SMMU address space size (0x%lx) differs from mapped region size (0x%lx)!\n",
1829                        size, smmu->size);
1830
1831        smmu->num_s2_context_banks = (id >> ID1_NUMS2CB_SHIFT) &
1832                                      ID1_NUMS2CB_MASK;
1833        smmu->num_context_banks = (id >> ID1_NUMCB_SHIFT) & ID1_NUMCB_MASK;
1834        if (smmu->num_s2_context_banks > smmu->num_context_banks) {
1835                dev_err(smmu->dev, "impossible number of S2 context banks!\n");
1836                return -ENODEV;
1837        }
1838        dev_notice(smmu->dev, "\t%u context banks (%u stage-2 only)\n",
1839                   smmu->num_context_banks, smmu->num_s2_context_banks);
1840
1841        /* ID2 */
1842        id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID2);
1843        size = arm_smmu_id_size_to_bits((id >> ID2_IAS_SHIFT) & ID2_IAS_MASK);
1844        smmu->s1_output_size = min_t(unsigned long, PHYS_MASK_SHIFT, size);
1845
1846        /* Stage-2 input size limited due to pgd allocation (PTRS_PER_PGD) */
1847#ifdef CONFIG_64BIT
1848        smmu->s2_input_size = min_t(unsigned long, VA_BITS, size);
1849#else
1850        smmu->s2_input_size = min(32UL, size);
1851#endif
1852
1853        /* The stage-2 output mask is also applied for bypass */
1854        size = arm_smmu_id_size_to_bits((id >> ID2_OAS_SHIFT) & ID2_OAS_MASK);
1855        smmu->s2_output_size = min_t(unsigned long, PHYS_MASK_SHIFT, size);
1856
1857        if (smmu->version == ARM_SMMU_V1) {
1858                smmu->s1_input_size = 32;
1859        } else {
1860#ifdef CONFIG_64BIT
1861                size = (id >> ID2_UBS_SHIFT) & ID2_UBS_MASK;
1862                size = min(VA_BITS, arm_smmu_id_size_to_bits(size));
1863#else
1864                size = 32;
1865#endif
1866                smmu->s1_input_size = size;
1867
1868                if ((PAGE_SIZE == SZ_4K && !(id & ID2_PTFS_4K)) ||
1869                    (PAGE_SIZE == SZ_64K && !(id & ID2_PTFS_64K)) ||
1870                    (PAGE_SIZE != SZ_4K && PAGE_SIZE != SZ_64K)) {
1871                        dev_err(smmu->dev, "CPU page size 0x%lx unsupported\n",
1872                                PAGE_SIZE);
1873                        return -ENODEV;
1874                }
1875        }
1876
1877        if (smmu->features & ARM_SMMU_FEAT_TRANS_S1)
1878                dev_notice(smmu->dev, "\tStage-1: %lu-bit VA -> %lu-bit IPA\n",
1879                           smmu->s1_input_size, smmu->s1_output_size);
1880
1881        if (smmu->features & ARM_SMMU_FEAT_TRANS_S2)
1882                dev_notice(smmu->dev, "\tStage-2: %lu-bit IPA -> %lu-bit PA\n",
1883                           smmu->s2_input_size, smmu->s2_output_size);
1884
1885        return 0;
1886}
1887
1888static const struct of_device_id arm_smmu_of_match[] = {
1889        { .compatible = "arm,smmu-v1", .data = (void *)ARM_SMMU_V1 },
1890        { .compatible = "arm,smmu-v2", .data = (void *)ARM_SMMU_V2 },
1891        { .compatible = "arm,mmu-400", .data = (void *)ARM_SMMU_V1 },
1892        { .compatible = "arm,mmu-401", .data = (void *)ARM_SMMU_V1 },
1893        { .compatible = "arm,mmu-500", .data = (void *)ARM_SMMU_V2 },
1894        { },
1895};
1896MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
1897
1898static int arm_smmu_device_dt_probe(struct platform_device *pdev)
1899{
1900        const struct of_device_id *of_id;
1901        struct resource *res;
1902        struct arm_smmu_device *smmu;
1903        struct device *dev = &pdev->dev;
1904        struct rb_node *node;
1905        struct of_phandle_args masterspec;
1906        int num_irqs, i, err;
1907
1908        smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
1909        if (!smmu) {
1910                dev_err(dev, "failed to allocate arm_smmu_device\n");
1911                return -ENOMEM;
1912        }
1913        smmu->dev = dev;
1914
1915        of_id = of_match_node(arm_smmu_of_match, dev->of_node);
1916        smmu->version = (enum arm_smmu_arch_version)of_id->data;
1917
1918        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1919        smmu->base = devm_ioremap_resource(dev, res);
1920        if (IS_ERR(smmu->base))
1921                return PTR_ERR(smmu->base);
1922        smmu->size = resource_size(res);
1923
1924        if (of_property_read_u32(dev->of_node, "#global-interrupts",
1925                                 &smmu->num_global_irqs)) {
1926                dev_err(dev, "missing #global-interrupts property\n");
1927                return -ENODEV;
1928        }
1929
1930        num_irqs = 0;
1931        while ((res = platform_get_resource(pdev, IORESOURCE_IRQ, num_irqs))) {
1932                num_irqs++;
1933                if (num_irqs > smmu->num_global_irqs)
1934                        smmu->num_context_irqs++;
1935        }
1936
1937        if (!smmu->num_context_irqs) {
1938                dev_err(dev, "found %d interrupts but expected at least %d\n",
1939                        num_irqs, smmu->num_global_irqs + 1);
1940                return -ENODEV;
1941        }
1942
1943        smmu->irqs = devm_kzalloc(dev, sizeof(*smmu->irqs) * num_irqs,
1944                                  GFP_KERNEL);
1945        if (!smmu->irqs) {
1946                dev_err(dev, "failed to allocate %d irqs\n", num_irqs);
1947                return -ENOMEM;
1948        }
1949
1950        for (i = 0; i < num_irqs; ++i) {
1951                int irq = platform_get_irq(pdev, i);
1952
1953                if (irq < 0) {
1954                        dev_err(dev, "failed to get irq index %d\n", i);
1955                        return -ENODEV;
1956                }
1957                smmu->irqs[i] = irq;
1958        }
1959
1960        err = arm_smmu_device_cfg_probe(smmu);
1961        if (err)
1962                return err;
1963
1964        i = 0;
1965        smmu->masters = RB_ROOT;
1966        while (!of_parse_phandle_with_args(dev->of_node, "mmu-masters",
1967                                           "#stream-id-cells", i,
1968                                           &masterspec)) {
1969                err = register_smmu_master(smmu, dev, &masterspec);
1970                if (err) {
1971                        dev_err(dev, "failed to add master %s\n",
1972                                masterspec.np->name);
1973                        goto out_put_masters;
1974                }
1975
1976                i++;
1977        }
1978        dev_notice(dev, "registered %d master devices\n", i);
1979
1980        parse_driver_options(smmu);
1981
1982        if (smmu->version > ARM_SMMU_V1 &&
1983            smmu->num_context_banks != smmu->num_context_irqs) {
1984                dev_err(dev,
1985                        "found only %d context interrupt(s) but %d required\n",
1986                        smmu->num_context_irqs, smmu->num_context_banks);
1987                err = -ENODEV;
1988                goto out_put_masters;
1989        }
1990
1991        for (i = 0; i < smmu->num_global_irqs; ++i) {
1992                err = request_irq(smmu->irqs[i],
1993                                  arm_smmu_global_fault,
1994                                  IRQF_SHARED,
1995                                  "arm-smmu global fault",
1996                                  smmu);
1997                if (err) {
1998                        dev_err(dev, "failed to request global IRQ %d (%u)\n",
1999                                i, smmu->irqs[i]);
2000                        goto out_free_irqs;
2001                }
2002        }
2003
2004        INIT_LIST_HEAD(&smmu->list);
2005        spin_lock(&arm_smmu_devices_lock);
2006        list_add(&smmu->list, &arm_smmu_devices);
2007        spin_unlock(&arm_smmu_devices_lock);
2008
2009        arm_smmu_device_reset(smmu);
2010        return 0;
2011
2012out_free_irqs:
2013        while (i--)
2014                free_irq(smmu->irqs[i], smmu);
2015
2016out_put_masters:
2017        for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
2018                struct arm_smmu_master *master
2019                        = container_of(node, struct arm_smmu_master, node);
2020                of_node_put(master->of_node);
2021        }
2022
2023        return err;
2024}
2025
2026static int arm_smmu_device_remove(struct platform_device *pdev)
2027{
2028        int i;
2029        struct device *dev = &pdev->dev;
2030        struct arm_smmu_device *curr, *smmu = NULL;
2031        struct rb_node *node;
2032
2033        spin_lock(&arm_smmu_devices_lock);
2034        list_for_each_entry(curr, &arm_smmu_devices, list) {
2035                if (curr->dev == dev) {
2036                        smmu = curr;
2037                        list_del(&smmu->list);
2038                        break;
2039                }
2040        }
2041        spin_unlock(&arm_smmu_devices_lock);
2042
2043        if (!smmu)
2044                return -ENODEV;
2045
2046        for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
2047                struct arm_smmu_master *master
2048                        = container_of(node, struct arm_smmu_master, node);
2049                of_node_put(master->of_node);
2050        }
2051
2052        if (!bitmap_empty(smmu->context_map, ARM_SMMU_MAX_CBS))
2053                dev_err(dev, "removing device with active domains!\n");
2054
2055        for (i = 0; i < smmu->num_global_irqs; ++i)
2056                free_irq(smmu->irqs[i], smmu);
2057
2058        /* Turn the thing off */
2059        writel(sCR0_CLIENTPD, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
2060        return 0;
2061}
2062
2063static struct platform_driver arm_smmu_driver = {
2064        .driver = {
2065                .owner          = THIS_MODULE,
2066                .name           = "arm-smmu",
2067                .of_match_table = of_match_ptr(arm_smmu_of_match),
2068        },
2069        .probe  = arm_smmu_device_dt_probe,
2070        .remove = arm_smmu_device_remove,
2071};
2072
2073static int __init arm_smmu_init(void)
2074{
2075        int ret;
2076
2077        ret = platform_driver_register(&arm_smmu_driver);
2078        if (ret)
2079                return ret;
2080
2081        /* Oh, for a proper bus abstraction */
2082        if (!iommu_present(&platform_bus_type))
2083                bus_set_iommu(&platform_bus_type, &arm_smmu_ops);
2084
2085#ifdef CONFIG_ARM_AMBA
2086        if (!iommu_present(&amba_bustype))
2087                bus_set_iommu(&amba_bustype, &arm_smmu_ops);
2088#endif
2089
2090#ifdef CONFIG_PCI
2091        if (!iommu_present(&pci_bus_type))
2092                bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
2093#endif
2094
2095        return 0;
2096}
2097
2098static void __exit arm_smmu_exit(void)
2099{
2100        return platform_driver_unregister(&arm_smmu_driver);
2101}
2102
2103subsys_initcall(arm_smmu_init);
2104module_exit(arm_smmu_exit);
2105
2106MODULE_DESCRIPTION("IOMMU API for ARM architected SMMU implementations");
2107MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
2108MODULE_LICENSE("GPL v2");
2109