linux/drivers/md/raid1.c
<<
>>
Prefs
   1/*
   2 * raid1.c : Multiple Devices driver for Linux
   3 *
   4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
   5 *
   6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
   7 *
   8 * RAID-1 management functions.
   9 *
  10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
  11 *
  12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
  13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
  14 *
  15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
  16 * bitmapped intelligence in resync:
  17 *
  18 *      - bitmap marked during normal i/o
  19 *      - bitmap used to skip nondirty blocks during sync
  20 *
  21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
  22 * - persistent bitmap code
  23 *
  24 * This program is free software; you can redistribute it and/or modify
  25 * it under the terms of the GNU General Public License as published by
  26 * the Free Software Foundation; either version 2, or (at your option)
  27 * any later version.
  28 *
  29 * You should have received a copy of the GNU General Public License
  30 * (for example /usr/src/linux/COPYING); if not, write to the Free
  31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  32 */
  33
  34#include <linux/slab.h>
  35#include <linux/delay.h>
  36#include <linux/blkdev.h>
  37#include <linux/module.h>
  38#include <linux/seq_file.h>
  39#include <linux/ratelimit.h>
  40#include "md.h"
  41#include "raid1.h"
  42#include "bitmap.h"
  43
  44/*
  45 * Number of guaranteed r1bios in case of extreme VM load:
  46 */
  47#define NR_RAID1_BIOS 256
  48
  49/* when we get a read error on a read-only array, we redirect to another
  50 * device without failing the first device, or trying to over-write to
  51 * correct the read error.  To keep track of bad blocks on a per-bio
  52 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
  53 */
  54#define IO_BLOCKED ((struct bio *)1)
  55/* When we successfully write to a known bad-block, we need to remove the
  56 * bad-block marking which must be done from process context.  So we record
  57 * the success by setting devs[n].bio to IO_MADE_GOOD
  58 */
  59#define IO_MADE_GOOD ((struct bio *)2)
  60
  61#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
  62
  63/* When there are this many requests queue to be written by
  64 * the raid1 thread, we become 'congested' to provide back-pressure
  65 * for writeback.
  66 */
  67static int max_queued_requests = 1024;
  68
  69static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
  70                          sector_t bi_sector);
  71static void lower_barrier(struct r1conf *conf);
  72
  73static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
  74{
  75        struct pool_info *pi = data;
  76        int size = offsetof(struct r1bio, bios[pi->raid_disks]);
  77
  78        /* allocate a r1bio with room for raid_disks entries in the bios array */
  79        return kzalloc(size, gfp_flags);
  80}
  81
  82static void r1bio_pool_free(void *r1_bio, void *data)
  83{
  84        kfree(r1_bio);
  85}
  86
  87#define RESYNC_BLOCK_SIZE (64*1024)
  88#define RESYNC_DEPTH 32
  89#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
  90#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
  91#define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
  92#define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
  93#define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
  94
  95static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
  96{
  97        struct pool_info *pi = data;
  98        struct r1bio *r1_bio;
  99        struct bio *bio;
 100        int need_pages;
 101        int i, j;
 102
 103        r1_bio = r1bio_pool_alloc(gfp_flags, pi);
 104        if (!r1_bio)
 105                return NULL;
 106
 107        /*
 108         * Allocate bios : 1 for reading, n-1 for writing
 109         */
 110        for (j = pi->raid_disks ; j-- ; ) {
 111                bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
 112                if (!bio)
 113                        goto out_free_bio;
 114                r1_bio->bios[j] = bio;
 115        }
 116        /*
 117         * Allocate RESYNC_PAGES data pages and attach them to
 118         * the first bio.
 119         * If this is a user-requested check/repair, allocate
 120         * RESYNC_PAGES for each bio.
 121         */
 122        if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
 123                need_pages = pi->raid_disks;
 124        else
 125                need_pages = 1;
 126        for (j = 0; j < need_pages; j++) {
 127                bio = r1_bio->bios[j];
 128                bio->bi_vcnt = RESYNC_PAGES;
 129
 130                if (bio_alloc_pages(bio, gfp_flags))
 131                        goto out_free_pages;
 132        }
 133        /* If not user-requests, copy the page pointers to all bios */
 134        if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
 135                for (i=0; i<RESYNC_PAGES ; i++)
 136                        for (j=1; j<pi->raid_disks; j++)
 137                                r1_bio->bios[j]->bi_io_vec[i].bv_page =
 138                                        r1_bio->bios[0]->bi_io_vec[i].bv_page;
 139        }
 140
 141        r1_bio->master_bio = NULL;
 142
 143        return r1_bio;
 144
 145out_free_pages:
 146        while (--j >= 0) {
 147                struct bio_vec *bv;
 148
 149                bio_for_each_segment_all(bv, r1_bio->bios[j], i)
 150                        __free_page(bv->bv_page);
 151        }
 152
 153out_free_bio:
 154        while (++j < pi->raid_disks)
 155                bio_put(r1_bio->bios[j]);
 156        r1bio_pool_free(r1_bio, data);
 157        return NULL;
 158}
 159
 160static void r1buf_pool_free(void *__r1_bio, void *data)
 161{
 162        struct pool_info *pi = data;
 163        int i,j;
 164        struct r1bio *r1bio = __r1_bio;
 165
 166        for (i = 0; i < RESYNC_PAGES; i++)
 167                for (j = pi->raid_disks; j-- ;) {
 168                        if (j == 0 ||
 169                            r1bio->bios[j]->bi_io_vec[i].bv_page !=
 170                            r1bio->bios[0]->bi_io_vec[i].bv_page)
 171                                safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
 172                }
 173        for (i=0 ; i < pi->raid_disks; i++)
 174                bio_put(r1bio->bios[i]);
 175
 176        r1bio_pool_free(r1bio, data);
 177}
 178
 179static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
 180{
 181        int i;
 182
 183        for (i = 0; i < conf->raid_disks * 2; i++) {
 184                struct bio **bio = r1_bio->bios + i;
 185                if (!BIO_SPECIAL(*bio))
 186                        bio_put(*bio);
 187                *bio = NULL;
 188        }
 189}
 190
 191static void free_r1bio(struct r1bio *r1_bio)
 192{
 193        struct r1conf *conf = r1_bio->mddev->private;
 194
 195        put_all_bios(conf, r1_bio);
 196        mempool_free(r1_bio, conf->r1bio_pool);
 197}
 198
 199static void put_buf(struct r1bio *r1_bio)
 200{
 201        struct r1conf *conf = r1_bio->mddev->private;
 202        int i;
 203
 204        for (i = 0; i < conf->raid_disks * 2; i++) {
 205                struct bio *bio = r1_bio->bios[i];
 206                if (bio->bi_end_io)
 207                        rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
 208        }
 209
 210        mempool_free(r1_bio, conf->r1buf_pool);
 211
 212        lower_barrier(conf);
 213}
 214
 215static void reschedule_retry(struct r1bio *r1_bio)
 216{
 217        unsigned long flags;
 218        struct mddev *mddev = r1_bio->mddev;
 219        struct r1conf *conf = mddev->private;
 220
 221        spin_lock_irqsave(&conf->device_lock, flags);
 222        list_add(&r1_bio->retry_list, &conf->retry_list);
 223        conf->nr_queued ++;
 224        spin_unlock_irqrestore(&conf->device_lock, flags);
 225
 226        wake_up(&conf->wait_barrier);
 227        md_wakeup_thread(mddev->thread);
 228}
 229
 230/*
 231 * raid_end_bio_io() is called when we have finished servicing a mirrored
 232 * operation and are ready to return a success/failure code to the buffer
 233 * cache layer.
 234 */
 235static void call_bio_endio(struct r1bio *r1_bio)
 236{
 237        struct bio *bio = r1_bio->master_bio;
 238        int done;
 239        struct r1conf *conf = r1_bio->mddev->private;
 240        sector_t start_next_window = r1_bio->start_next_window;
 241        sector_t bi_sector = bio->bi_iter.bi_sector;
 242
 243        if (bio->bi_phys_segments) {
 244                unsigned long flags;
 245                spin_lock_irqsave(&conf->device_lock, flags);
 246                bio->bi_phys_segments--;
 247                done = (bio->bi_phys_segments == 0);
 248                spin_unlock_irqrestore(&conf->device_lock, flags);
 249                /*
 250                 * make_request() might be waiting for
 251                 * bi_phys_segments to decrease
 252                 */
 253                wake_up(&conf->wait_barrier);
 254        } else
 255                done = 1;
 256
 257        if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
 258                clear_bit(BIO_UPTODATE, &bio->bi_flags);
 259        if (done) {
 260                bio_endio(bio, 0);
 261                /*
 262                 * Wake up any possible resync thread that waits for the device
 263                 * to go idle.
 264                 */
 265                allow_barrier(conf, start_next_window, bi_sector);
 266        }
 267}
 268
 269static void raid_end_bio_io(struct r1bio *r1_bio)
 270{
 271        struct bio *bio = r1_bio->master_bio;
 272
 273        /* if nobody has done the final endio yet, do it now */
 274        if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
 275                pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
 276                         (bio_data_dir(bio) == WRITE) ? "write" : "read",
 277                         (unsigned long long) bio->bi_iter.bi_sector,
 278                         (unsigned long long) bio_end_sector(bio) - 1);
 279
 280                call_bio_endio(r1_bio);
 281        }
 282        free_r1bio(r1_bio);
 283}
 284
 285/*
 286 * Update disk head position estimator based on IRQ completion info.
 287 */
 288static inline void update_head_pos(int disk, struct r1bio *r1_bio)
 289{
 290        struct r1conf *conf = r1_bio->mddev->private;
 291
 292        conf->mirrors[disk].head_position =
 293                r1_bio->sector + (r1_bio->sectors);
 294}
 295
 296/*
 297 * Find the disk number which triggered given bio
 298 */
 299static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
 300{
 301        int mirror;
 302        struct r1conf *conf = r1_bio->mddev->private;
 303        int raid_disks = conf->raid_disks;
 304
 305        for (mirror = 0; mirror < raid_disks * 2; mirror++)
 306                if (r1_bio->bios[mirror] == bio)
 307                        break;
 308
 309        BUG_ON(mirror == raid_disks * 2);
 310        update_head_pos(mirror, r1_bio);
 311
 312        return mirror;
 313}
 314
 315static void raid1_end_read_request(struct bio *bio, int error)
 316{
 317        int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
 318        struct r1bio *r1_bio = bio->bi_private;
 319        int mirror;
 320        struct r1conf *conf = r1_bio->mddev->private;
 321
 322        mirror = r1_bio->read_disk;
 323        /*
 324         * this branch is our 'one mirror IO has finished' event handler:
 325         */
 326        update_head_pos(mirror, r1_bio);
 327
 328        if (uptodate)
 329                set_bit(R1BIO_Uptodate, &r1_bio->state);
 330        else {
 331                /* If all other devices have failed, we want to return
 332                 * the error upwards rather than fail the last device.
 333                 * Here we redefine "uptodate" to mean "Don't want to retry"
 334                 */
 335                unsigned long flags;
 336                spin_lock_irqsave(&conf->device_lock, flags);
 337                if (r1_bio->mddev->degraded == conf->raid_disks ||
 338                    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
 339                     !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
 340                        uptodate = 1;
 341                spin_unlock_irqrestore(&conf->device_lock, flags);
 342        }
 343
 344        if (uptodate) {
 345                raid_end_bio_io(r1_bio);
 346                rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
 347        } else {
 348                /*
 349                 * oops, read error:
 350                 */
 351                char b[BDEVNAME_SIZE];
 352                printk_ratelimited(
 353                        KERN_ERR "md/raid1:%s: %s: "
 354                        "rescheduling sector %llu\n",
 355                        mdname(conf->mddev),
 356                        bdevname(conf->mirrors[mirror].rdev->bdev,
 357                                 b),
 358                        (unsigned long long)r1_bio->sector);
 359                set_bit(R1BIO_ReadError, &r1_bio->state);
 360                reschedule_retry(r1_bio);
 361                /* don't drop the reference on read_disk yet */
 362        }
 363}
 364
 365static void close_write(struct r1bio *r1_bio)
 366{
 367        /* it really is the end of this request */
 368        if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
 369                /* free extra copy of the data pages */
 370                int i = r1_bio->behind_page_count;
 371                while (i--)
 372                        safe_put_page(r1_bio->behind_bvecs[i].bv_page);
 373                kfree(r1_bio->behind_bvecs);
 374                r1_bio->behind_bvecs = NULL;
 375        }
 376        /* clear the bitmap if all writes complete successfully */
 377        bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
 378                        r1_bio->sectors,
 379                        !test_bit(R1BIO_Degraded, &r1_bio->state),
 380                        test_bit(R1BIO_BehindIO, &r1_bio->state));
 381        md_write_end(r1_bio->mddev);
 382}
 383
 384static void r1_bio_write_done(struct r1bio *r1_bio)
 385{
 386        if (!atomic_dec_and_test(&r1_bio->remaining))
 387                return;
 388
 389        if (test_bit(R1BIO_WriteError, &r1_bio->state))
 390                reschedule_retry(r1_bio);
 391        else {
 392                close_write(r1_bio);
 393                if (test_bit(R1BIO_MadeGood, &r1_bio->state))
 394                        reschedule_retry(r1_bio);
 395                else
 396                        raid_end_bio_io(r1_bio);
 397        }
 398}
 399
 400static void raid1_end_write_request(struct bio *bio, int error)
 401{
 402        int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
 403        struct r1bio *r1_bio = bio->bi_private;
 404        int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
 405        struct r1conf *conf = r1_bio->mddev->private;
 406        struct bio *to_put = NULL;
 407
 408        mirror = find_bio_disk(r1_bio, bio);
 409
 410        /*
 411         * 'one mirror IO has finished' event handler:
 412         */
 413        if (!uptodate) {
 414                set_bit(WriteErrorSeen,
 415                        &conf->mirrors[mirror].rdev->flags);
 416                if (!test_and_set_bit(WantReplacement,
 417                                      &conf->mirrors[mirror].rdev->flags))
 418                        set_bit(MD_RECOVERY_NEEDED, &
 419                                conf->mddev->recovery);
 420
 421                set_bit(R1BIO_WriteError, &r1_bio->state);
 422        } else {
 423                /*
 424                 * Set R1BIO_Uptodate in our master bio, so that we
 425                 * will return a good error code for to the higher
 426                 * levels even if IO on some other mirrored buffer
 427                 * fails.
 428                 *
 429                 * The 'master' represents the composite IO operation
 430                 * to user-side. So if something waits for IO, then it
 431                 * will wait for the 'master' bio.
 432                 */
 433                sector_t first_bad;
 434                int bad_sectors;
 435
 436                r1_bio->bios[mirror] = NULL;
 437                to_put = bio;
 438                /*
 439                 * Do not set R1BIO_Uptodate if the current device is
 440                 * rebuilding or Faulty. This is because we cannot use
 441                 * such device for properly reading the data back (we could
 442                 * potentially use it, if the current write would have felt
 443                 * before rdev->recovery_offset, but for simplicity we don't
 444                 * check this here.
 445                 */
 446                if (test_bit(In_sync, &conf->mirrors[mirror].rdev->flags) &&
 447                    !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))
 448                        set_bit(R1BIO_Uptodate, &r1_bio->state);
 449
 450                /* Maybe we can clear some bad blocks. */
 451                if (is_badblock(conf->mirrors[mirror].rdev,
 452                                r1_bio->sector, r1_bio->sectors,
 453                                &first_bad, &bad_sectors)) {
 454                        r1_bio->bios[mirror] = IO_MADE_GOOD;
 455                        set_bit(R1BIO_MadeGood, &r1_bio->state);
 456                }
 457        }
 458
 459        if (behind) {
 460                if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
 461                        atomic_dec(&r1_bio->behind_remaining);
 462
 463                /*
 464                 * In behind mode, we ACK the master bio once the I/O
 465                 * has safely reached all non-writemostly
 466                 * disks. Setting the Returned bit ensures that this
 467                 * gets done only once -- we don't ever want to return
 468                 * -EIO here, instead we'll wait
 469                 */
 470                if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
 471                    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
 472                        /* Maybe we can return now */
 473                        if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
 474                                struct bio *mbio = r1_bio->master_bio;
 475                                pr_debug("raid1: behind end write sectors"
 476                                         " %llu-%llu\n",
 477                                         (unsigned long long) mbio->bi_iter.bi_sector,
 478                                         (unsigned long long) bio_end_sector(mbio) - 1);
 479                                call_bio_endio(r1_bio);
 480                        }
 481                }
 482        }
 483        if (r1_bio->bios[mirror] == NULL)
 484                rdev_dec_pending(conf->mirrors[mirror].rdev,
 485                                 conf->mddev);
 486
 487        /*
 488         * Let's see if all mirrored write operations have finished
 489         * already.
 490         */
 491        r1_bio_write_done(r1_bio);
 492
 493        if (to_put)
 494                bio_put(to_put);
 495}
 496
 497/*
 498 * This routine returns the disk from which the requested read should
 499 * be done. There is a per-array 'next expected sequential IO' sector
 500 * number - if this matches on the next IO then we use the last disk.
 501 * There is also a per-disk 'last know head position' sector that is
 502 * maintained from IRQ contexts, both the normal and the resync IO
 503 * completion handlers update this position correctly. If there is no
 504 * perfect sequential match then we pick the disk whose head is closest.
 505 *
 506 * If there are 2 mirrors in the same 2 devices, performance degrades
 507 * because position is mirror, not device based.
 508 *
 509 * The rdev for the device selected will have nr_pending incremented.
 510 */
 511static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
 512{
 513        const sector_t this_sector = r1_bio->sector;
 514        int sectors;
 515        int best_good_sectors;
 516        int best_disk, best_dist_disk, best_pending_disk;
 517        int has_nonrot_disk;
 518        int disk;
 519        sector_t best_dist;
 520        unsigned int min_pending;
 521        struct md_rdev *rdev;
 522        int choose_first;
 523        int choose_next_idle;
 524
 525        rcu_read_lock();
 526        /*
 527         * Check if we can balance. We can balance on the whole
 528         * device if no resync is going on, or below the resync window.
 529         * We take the first readable disk when above the resync window.
 530         */
 531 retry:
 532        sectors = r1_bio->sectors;
 533        best_disk = -1;
 534        best_dist_disk = -1;
 535        best_dist = MaxSector;
 536        best_pending_disk = -1;
 537        min_pending = UINT_MAX;
 538        best_good_sectors = 0;
 539        has_nonrot_disk = 0;
 540        choose_next_idle = 0;
 541
 542        choose_first = (conf->mddev->recovery_cp < this_sector + sectors);
 543
 544        for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
 545                sector_t dist;
 546                sector_t first_bad;
 547                int bad_sectors;
 548                unsigned int pending;
 549                bool nonrot;
 550
 551                rdev = rcu_dereference(conf->mirrors[disk].rdev);
 552                if (r1_bio->bios[disk] == IO_BLOCKED
 553                    || rdev == NULL
 554                    || test_bit(Unmerged, &rdev->flags)
 555                    || test_bit(Faulty, &rdev->flags))
 556                        continue;
 557                if (!test_bit(In_sync, &rdev->flags) &&
 558                    rdev->recovery_offset < this_sector + sectors)
 559                        continue;
 560                if (test_bit(WriteMostly, &rdev->flags)) {
 561                        /* Don't balance among write-mostly, just
 562                         * use the first as a last resort */
 563                        if (best_disk < 0) {
 564                                if (is_badblock(rdev, this_sector, sectors,
 565                                                &first_bad, &bad_sectors)) {
 566                                        if (first_bad < this_sector)
 567                                                /* Cannot use this */
 568                                                continue;
 569                                        best_good_sectors = first_bad - this_sector;
 570                                } else
 571                                        best_good_sectors = sectors;
 572                                best_disk = disk;
 573                        }
 574                        continue;
 575                }
 576                /* This is a reasonable device to use.  It might
 577                 * even be best.
 578                 */
 579                if (is_badblock(rdev, this_sector, sectors,
 580                                &first_bad, &bad_sectors)) {
 581                        if (best_dist < MaxSector)
 582                                /* already have a better device */
 583                                continue;
 584                        if (first_bad <= this_sector) {
 585                                /* cannot read here. If this is the 'primary'
 586                                 * device, then we must not read beyond
 587                                 * bad_sectors from another device..
 588                                 */
 589                                bad_sectors -= (this_sector - first_bad);
 590                                if (choose_first && sectors > bad_sectors)
 591                                        sectors = bad_sectors;
 592                                if (best_good_sectors > sectors)
 593                                        best_good_sectors = sectors;
 594
 595                        } else {
 596                                sector_t good_sectors = first_bad - this_sector;
 597                                if (good_sectors > best_good_sectors) {
 598                                        best_good_sectors = good_sectors;
 599                                        best_disk = disk;
 600                                }
 601                                if (choose_first)
 602                                        break;
 603                        }
 604                        continue;
 605                } else
 606                        best_good_sectors = sectors;
 607
 608                nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
 609                has_nonrot_disk |= nonrot;
 610                pending = atomic_read(&rdev->nr_pending);
 611                dist = abs(this_sector - conf->mirrors[disk].head_position);
 612                if (choose_first) {
 613                        best_disk = disk;
 614                        break;
 615                }
 616                /* Don't change to another disk for sequential reads */
 617                if (conf->mirrors[disk].next_seq_sect == this_sector
 618                    || dist == 0) {
 619                        int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
 620                        struct raid1_info *mirror = &conf->mirrors[disk];
 621
 622                        best_disk = disk;
 623                        /*
 624                         * If buffered sequential IO size exceeds optimal
 625                         * iosize, check if there is idle disk. If yes, choose
 626                         * the idle disk. read_balance could already choose an
 627                         * idle disk before noticing it's a sequential IO in
 628                         * this disk. This doesn't matter because this disk
 629                         * will idle, next time it will be utilized after the
 630                         * first disk has IO size exceeds optimal iosize. In
 631                         * this way, iosize of the first disk will be optimal
 632                         * iosize at least. iosize of the second disk might be
 633                         * small, but not a big deal since when the second disk
 634                         * starts IO, the first disk is likely still busy.
 635                         */
 636                        if (nonrot && opt_iosize > 0 &&
 637                            mirror->seq_start != MaxSector &&
 638                            mirror->next_seq_sect > opt_iosize &&
 639                            mirror->next_seq_sect - opt_iosize >=
 640                            mirror->seq_start) {
 641                                choose_next_idle = 1;
 642                                continue;
 643                        }
 644                        break;
 645                }
 646                /* If device is idle, use it */
 647                if (pending == 0) {
 648                        best_disk = disk;
 649                        break;
 650                }
 651
 652                if (choose_next_idle)
 653                        continue;
 654
 655                if (min_pending > pending) {
 656                        min_pending = pending;
 657                        best_pending_disk = disk;
 658                }
 659
 660                if (dist < best_dist) {
 661                        best_dist = dist;
 662                        best_dist_disk = disk;
 663                }
 664        }
 665
 666        /*
 667         * If all disks are rotational, choose the closest disk. If any disk is
 668         * non-rotational, choose the disk with less pending request even the
 669         * disk is rotational, which might/might not be optimal for raids with
 670         * mixed ratation/non-rotational disks depending on workload.
 671         */
 672        if (best_disk == -1) {
 673                if (has_nonrot_disk)
 674                        best_disk = best_pending_disk;
 675                else
 676                        best_disk = best_dist_disk;
 677        }
 678
 679        if (best_disk >= 0) {
 680                rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
 681                if (!rdev)
 682                        goto retry;
 683                atomic_inc(&rdev->nr_pending);
 684                if (test_bit(Faulty, &rdev->flags)) {
 685                        /* cannot risk returning a device that failed
 686                         * before we inc'ed nr_pending
 687                         */
 688                        rdev_dec_pending(rdev, conf->mddev);
 689                        goto retry;
 690                }
 691                sectors = best_good_sectors;
 692
 693                if (conf->mirrors[best_disk].next_seq_sect != this_sector)
 694                        conf->mirrors[best_disk].seq_start = this_sector;
 695
 696                conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
 697        }
 698        rcu_read_unlock();
 699        *max_sectors = sectors;
 700
 701        return best_disk;
 702}
 703
 704static int raid1_mergeable_bvec(struct request_queue *q,
 705                                struct bvec_merge_data *bvm,
 706                                struct bio_vec *biovec)
 707{
 708        struct mddev *mddev = q->queuedata;
 709        struct r1conf *conf = mddev->private;
 710        sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
 711        int max = biovec->bv_len;
 712
 713        if (mddev->merge_check_needed) {
 714                int disk;
 715                rcu_read_lock();
 716                for (disk = 0; disk < conf->raid_disks * 2; disk++) {
 717                        struct md_rdev *rdev = rcu_dereference(
 718                                conf->mirrors[disk].rdev);
 719                        if (rdev && !test_bit(Faulty, &rdev->flags)) {
 720                                struct request_queue *q =
 721                                        bdev_get_queue(rdev->bdev);
 722                                if (q->merge_bvec_fn) {
 723                                        bvm->bi_sector = sector +
 724                                                rdev->data_offset;
 725                                        bvm->bi_bdev = rdev->bdev;
 726                                        max = min(max, q->merge_bvec_fn(
 727                                                          q, bvm, biovec));
 728                                }
 729                        }
 730                }
 731                rcu_read_unlock();
 732        }
 733        return max;
 734
 735}
 736
 737int md_raid1_congested(struct mddev *mddev, int bits)
 738{
 739        struct r1conf *conf = mddev->private;
 740        int i, ret = 0;
 741
 742        if ((bits & (1 << BDI_async_congested)) &&
 743            conf->pending_count >= max_queued_requests)
 744                return 1;
 745
 746        rcu_read_lock();
 747        for (i = 0; i < conf->raid_disks * 2; i++) {
 748                struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
 749                if (rdev && !test_bit(Faulty, &rdev->flags)) {
 750                        struct request_queue *q = bdev_get_queue(rdev->bdev);
 751
 752                        BUG_ON(!q);
 753
 754                        /* Note the '|| 1' - when read_balance prefers
 755                         * non-congested targets, it can be removed
 756                         */
 757                        if ((bits & (1<<BDI_async_congested)) || 1)
 758                                ret |= bdi_congested(&q->backing_dev_info, bits);
 759                        else
 760                                ret &= bdi_congested(&q->backing_dev_info, bits);
 761                }
 762        }
 763        rcu_read_unlock();
 764        return ret;
 765}
 766EXPORT_SYMBOL_GPL(md_raid1_congested);
 767
 768static int raid1_congested(void *data, int bits)
 769{
 770        struct mddev *mddev = data;
 771
 772        return mddev_congested(mddev, bits) ||
 773                md_raid1_congested(mddev, bits);
 774}
 775
 776static void flush_pending_writes(struct r1conf *conf)
 777{
 778        /* Any writes that have been queued but are awaiting
 779         * bitmap updates get flushed here.
 780         */
 781        spin_lock_irq(&conf->device_lock);
 782
 783        if (conf->pending_bio_list.head) {
 784                struct bio *bio;
 785                bio = bio_list_get(&conf->pending_bio_list);
 786                conf->pending_count = 0;
 787                spin_unlock_irq(&conf->device_lock);
 788                /* flush any pending bitmap writes to
 789                 * disk before proceeding w/ I/O */
 790                bitmap_unplug(conf->mddev->bitmap);
 791                wake_up(&conf->wait_barrier);
 792
 793                while (bio) { /* submit pending writes */
 794                        struct bio *next = bio->bi_next;
 795                        bio->bi_next = NULL;
 796                        if (unlikely((bio->bi_rw & REQ_DISCARD) &&
 797                            !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
 798                                /* Just ignore it */
 799                                bio_endio(bio, 0);
 800                        else
 801                                generic_make_request(bio);
 802                        bio = next;
 803                }
 804        } else
 805                spin_unlock_irq(&conf->device_lock);
 806}
 807
 808/* Barriers....
 809 * Sometimes we need to suspend IO while we do something else,
 810 * either some resync/recovery, or reconfigure the array.
 811 * To do this we raise a 'barrier'.
 812 * The 'barrier' is a counter that can be raised multiple times
 813 * to count how many activities are happening which preclude
 814 * normal IO.
 815 * We can only raise the barrier if there is no pending IO.
 816 * i.e. if nr_pending == 0.
 817 * We choose only to raise the barrier if no-one is waiting for the
 818 * barrier to go down.  This means that as soon as an IO request
 819 * is ready, no other operations which require a barrier will start
 820 * until the IO request has had a chance.
 821 *
 822 * So: regular IO calls 'wait_barrier'.  When that returns there
 823 *    is no backgroup IO happening,  It must arrange to call
 824 *    allow_barrier when it has finished its IO.
 825 * backgroup IO calls must call raise_barrier.  Once that returns
 826 *    there is no normal IO happeing.  It must arrange to call
 827 *    lower_barrier when the particular background IO completes.
 828 */
 829static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
 830{
 831        spin_lock_irq(&conf->resync_lock);
 832
 833        /* Wait until no block IO is waiting */
 834        wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
 835                            conf->resync_lock);
 836
 837        /* block any new IO from starting */
 838        conf->barrier++;
 839        conf->next_resync = sector_nr;
 840
 841        /* For these conditions we must wait:
 842         * A: while the array is in frozen state
 843         * B: while barrier >= RESYNC_DEPTH, meaning resync reach
 844         *    the max count which allowed.
 845         * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
 846         *    next resync will reach to the window which normal bios are
 847         *    handling.
 848         * D: while there are any active requests in the current window.
 849         */
 850        wait_event_lock_irq(conf->wait_barrier,
 851                            !conf->array_frozen &&
 852                            conf->barrier < RESYNC_DEPTH &&
 853                            conf->current_window_requests == 0 &&
 854                            (conf->start_next_window >=
 855                             conf->next_resync + RESYNC_SECTORS),
 856                            conf->resync_lock);
 857
 858        conf->nr_pending++;
 859        spin_unlock_irq(&conf->resync_lock);
 860}
 861
 862static void lower_barrier(struct r1conf *conf)
 863{
 864        unsigned long flags;
 865        BUG_ON(conf->barrier <= 0);
 866        spin_lock_irqsave(&conf->resync_lock, flags);
 867        conf->barrier--;
 868        conf->nr_pending--;
 869        spin_unlock_irqrestore(&conf->resync_lock, flags);
 870        wake_up(&conf->wait_barrier);
 871}
 872
 873static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio)
 874{
 875        bool wait = false;
 876
 877        if (conf->array_frozen || !bio)
 878                wait = true;
 879        else if (conf->barrier && bio_data_dir(bio) == WRITE) {
 880                if ((conf->mddev->curr_resync_completed
 881                     >= bio_end_sector(bio)) ||
 882                    (conf->next_resync + NEXT_NORMALIO_DISTANCE
 883                     <= bio->bi_iter.bi_sector))
 884                        wait = false;
 885                else
 886                        wait = true;
 887        }
 888
 889        return wait;
 890}
 891
 892static sector_t wait_barrier(struct r1conf *conf, struct bio *bio)
 893{
 894        sector_t sector = 0;
 895
 896        spin_lock_irq(&conf->resync_lock);
 897        if (need_to_wait_for_sync(conf, bio)) {
 898                conf->nr_waiting++;
 899                /* Wait for the barrier to drop.
 900                 * However if there are already pending
 901                 * requests (preventing the barrier from
 902                 * rising completely), and the
 903                 * per-process bio queue isn't empty,
 904                 * then don't wait, as we need to empty
 905                 * that queue to allow conf->start_next_window
 906                 * to increase.
 907                 */
 908                wait_event_lock_irq(conf->wait_barrier,
 909                                    !conf->array_frozen &&
 910                                    (!conf->barrier ||
 911                                     ((conf->start_next_window <
 912                                       conf->next_resync + RESYNC_SECTORS) &&
 913                                      current->bio_list &&
 914                                      !bio_list_empty(current->bio_list))),
 915                                    conf->resync_lock);
 916                conf->nr_waiting--;
 917        }
 918
 919        if (bio && bio_data_dir(bio) == WRITE) {
 920                if (bio->bi_iter.bi_sector >=
 921                    conf->mddev->curr_resync_completed) {
 922                        if (conf->start_next_window == MaxSector)
 923                                conf->start_next_window =
 924                                        conf->next_resync +
 925                                        NEXT_NORMALIO_DISTANCE;
 926
 927                        if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE)
 928                            <= bio->bi_iter.bi_sector)
 929                                conf->next_window_requests++;
 930                        else
 931                                conf->current_window_requests++;
 932                        sector = conf->start_next_window;
 933                }
 934        }
 935
 936        conf->nr_pending++;
 937        spin_unlock_irq(&conf->resync_lock);
 938        return sector;
 939}
 940
 941static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
 942                          sector_t bi_sector)
 943{
 944        unsigned long flags;
 945
 946        spin_lock_irqsave(&conf->resync_lock, flags);
 947        conf->nr_pending--;
 948        if (start_next_window) {
 949                if (start_next_window == conf->start_next_window) {
 950                        if (conf->start_next_window + NEXT_NORMALIO_DISTANCE
 951                            <= bi_sector)
 952                                conf->next_window_requests--;
 953                        else
 954                                conf->current_window_requests--;
 955                } else
 956                        conf->current_window_requests--;
 957
 958                if (!conf->current_window_requests) {
 959                        if (conf->next_window_requests) {
 960                                conf->current_window_requests =
 961                                        conf->next_window_requests;
 962                                conf->next_window_requests = 0;
 963                                conf->start_next_window +=
 964                                        NEXT_NORMALIO_DISTANCE;
 965                        } else
 966                                conf->start_next_window = MaxSector;
 967                }
 968        }
 969        spin_unlock_irqrestore(&conf->resync_lock, flags);
 970        wake_up(&conf->wait_barrier);
 971}
 972
 973static void freeze_array(struct r1conf *conf, int extra)
 974{
 975        /* stop syncio and normal IO and wait for everything to
 976         * go quite.
 977         * We wait until nr_pending match nr_queued+extra
 978         * This is called in the context of one normal IO request
 979         * that has failed. Thus any sync request that might be pending
 980         * will be blocked by nr_pending, and we need to wait for
 981         * pending IO requests to complete or be queued for re-try.
 982         * Thus the number queued (nr_queued) plus this request (extra)
 983         * must match the number of pending IOs (nr_pending) before
 984         * we continue.
 985         */
 986        spin_lock_irq(&conf->resync_lock);
 987        conf->array_frozen = 1;
 988        wait_event_lock_irq_cmd(conf->wait_barrier,
 989                                conf->nr_pending == conf->nr_queued+extra,
 990                                conf->resync_lock,
 991                                flush_pending_writes(conf));
 992        spin_unlock_irq(&conf->resync_lock);
 993}
 994static void unfreeze_array(struct r1conf *conf)
 995{
 996        /* reverse the effect of the freeze */
 997        spin_lock_irq(&conf->resync_lock);
 998        conf->array_frozen = 0;
 999        wake_up(&conf->wait_barrier);
1000        spin_unlock_irq(&conf->resync_lock);
1001}
1002
1003/* duplicate the data pages for behind I/O
1004 */
1005static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
1006{
1007        int i;
1008        struct bio_vec *bvec;
1009        struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
1010                                        GFP_NOIO);
1011        if (unlikely(!bvecs))
1012                return;
1013
1014        bio_for_each_segment_all(bvec, bio, i) {
1015                bvecs[i] = *bvec;
1016                bvecs[i].bv_page = alloc_page(GFP_NOIO);
1017                if (unlikely(!bvecs[i].bv_page))
1018                        goto do_sync_io;
1019                memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
1020                       kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
1021                kunmap(bvecs[i].bv_page);
1022                kunmap(bvec->bv_page);
1023        }
1024        r1_bio->behind_bvecs = bvecs;
1025        r1_bio->behind_page_count = bio->bi_vcnt;
1026        set_bit(R1BIO_BehindIO, &r1_bio->state);
1027        return;
1028
1029do_sync_io:
1030        for (i = 0; i < bio->bi_vcnt; i++)
1031                if (bvecs[i].bv_page)
1032                        put_page(bvecs[i].bv_page);
1033        kfree(bvecs);
1034        pr_debug("%dB behind alloc failed, doing sync I/O\n",
1035                 bio->bi_iter.bi_size);
1036}
1037
1038struct raid1_plug_cb {
1039        struct blk_plug_cb      cb;
1040        struct bio_list         pending;
1041        int                     pending_cnt;
1042};
1043
1044static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1045{
1046        struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1047                                                  cb);
1048        struct mddev *mddev = plug->cb.data;
1049        struct r1conf *conf = mddev->private;
1050        struct bio *bio;
1051
1052        if (from_schedule || current->bio_list) {
1053                spin_lock_irq(&conf->device_lock);
1054                bio_list_merge(&conf->pending_bio_list, &plug->pending);
1055                conf->pending_count += plug->pending_cnt;
1056                spin_unlock_irq(&conf->device_lock);
1057                wake_up(&conf->wait_barrier);
1058                md_wakeup_thread(mddev->thread);
1059                kfree(plug);
1060                return;
1061        }
1062
1063        /* we aren't scheduling, so we can do the write-out directly. */
1064        bio = bio_list_get(&plug->pending);
1065        bitmap_unplug(mddev->bitmap);
1066        wake_up(&conf->wait_barrier);
1067
1068        while (bio) { /* submit pending writes */
1069                struct bio *next = bio->bi_next;
1070                bio->bi_next = NULL;
1071                if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1072                    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1073                        /* Just ignore it */
1074                        bio_endio(bio, 0);
1075                else
1076                        generic_make_request(bio);
1077                bio = next;
1078        }
1079        kfree(plug);
1080}
1081
1082static void make_request(struct mddev *mddev, struct bio * bio)
1083{
1084        struct r1conf *conf = mddev->private;
1085        struct raid1_info *mirror;
1086        struct r1bio *r1_bio;
1087        struct bio *read_bio;
1088        int i, disks;
1089        struct bitmap *bitmap;
1090        unsigned long flags;
1091        const int rw = bio_data_dir(bio);
1092        const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1093        const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
1094        const unsigned long do_discard = (bio->bi_rw
1095                                          & (REQ_DISCARD | REQ_SECURE));
1096        const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1097        struct md_rdev *blocked_rdev;
1098        struct blk_plug_cb *cb;
1099        struct raid1_plug_cb *plug = NULL;
1100        int first_clone;
1101        int sectors_handled;
1102        int max_sectors;
1103        sector_t start_next_window;
1104
1105        /*
1106         * Register the new request and wait if the reconstruction
1107         * thread has put up a bar for new requests.
1108         * Continue immediately if no resync is active currently.
1109         */
1110
1111        md_write_start(mddev, bio); /* wait on superblock update early */
1112
1113        if (bio_data_dir(bio) == WRITE &&
1114            bio_end_sector(bio) > mddev->suspend_lo &&
1115            bio->bi_iter.bi_sector < mddev->suspend_hi) {
1116                /* As the suspend_* range is controlled by
1117                 * userspace, we want an interruptible
1118                 * wait.
1119                 */
1120                DEFINE_WAIT(w);
1121                for (;;) {
1122                        flush_signals(current);
1123                        prepare_to_wait(&conf->wait_barrier,
1124                                        &w, TASK_INTERRUPTIBLE);
1125                        if (bio_end_sector(bio) <= mddev->suspend_lo ||
1126                            bio->bi_iter.bi_sector >= mddev->suspend_hi)
1127                                break;
1128                        schedule();
1129                }
1130                finish_wait(&conf->wait_barrier, &w);
1131        }
1132
1133        start_next_window = wait_barrier(conf, bio);
1134
1135        bitmap = mddev->bitmap;
1136
1137        /*
1138         * make_request() can abort the operation when READA is being
1139         * used and no empty request is available.
1140         *
1141         */
1142        r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1143
1144        r1_bio->master_bio = bio;
1145        r1_bio->sectors = bio_sectors(bio);
1146        r1_bio->state = 0;
1147        r1_bio->mddev = mddev;
1148        r1_bio->sector = bio->bi_iter.bi_sector;
1149
1150        /* We might need to issue multiple reads to different
1151         * devices if there are bad blocks around, so we keep
1152         * track of the number of reads in bio->bi_phys_segments.
1153         * If this is 0, there is only one r1_bio and no locking
1154         * will be needed when requests complete.  If it is
1155         * non-zero, then it is the number of not-completed requests.
1156         */
1157        bio->bi_phys_segments = 0;
1158        clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1159
1160        if (rw == READ) {
1161                /*
1162                 * read balancing logic:
1163                 */
1164                int rdisk;
1165
1166read_again:
1167                rdisk = read_balance(conf, r1_bio, &max_sectors);
1168
1169                if (rdisk < 0) {
1170                        /* couldn't find anywhere to read from */
1171                        raid_end_bio_io(r1_bio);
1172                        return;
1173                }
1174                mirror = conf->mirrors + rdisk;
1175
1176                if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1177                    bitmap) {
1178                        /* Reading from a write-mostly device must
1179                         * take care not to over-take any writes
1180                         * that are 'behind'
1181                         */
1182                        wait_event(bitmap->behind_wait,
1183                                   atomic_read(&bitmap->behind_writes) == 0);
1184                }
1185                r1_bio->read_disk = rdisk;
1186                r1_bio->start_next_window = 0;
1187
1188                read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1189                bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
1190                         max_sectors);
1191
1192                r1_bio->bios[rdisk] = read_bio;
1193
1194                read_bio->bi_iter.bi_sector = r1_bio->sector +
1195                        mirror->rdev->data_offset;
1196                read_bio->bi_bdev = mirror->rdev->bdev;
1197                read_bio->bi_end_io = raid1_end_read_request;
1198                read_bio->bi_rw = READ | do_sync;
1199                read_bio->bi_private = r1_bio;
1200
1201                if (max_sectors < r1_bio->sectors) {
1202                        /* could not read all from this device, so we will
1203                         * need another r1_bio.
1204                         */
1205
1206                        sectors_handled = (r1_bio->sector + max_sectors
1207                                           - bio->bi_iter.bi_sector);
1208                        r1_bio->sectors = max_sectors;
1209                        spin_lock_irq(&conf->device_lock);
1210                        if (bio->bi_phys_segments == 0)
1211                                bio->bi_phys_segments = 2;
1212                        else
1213                                bio->bi_phys_segments++;
1214                        spin_unlock_irq(&conf->device_lock);
1215                        /* Cannot call generic_make_request directly
1216                         * as that will be queued in __make_request
1217                         * and subsequent mempool_alloc might block waiting
1218                         * for it.  So hand bio over to raid1d.
1219                         */
1220                        reschedule_retry(r1_bio);
1221
1222                        r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1223
1224                        r1_bio->master_bio = bio;
1225                        r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1226                        r1_bio->state = 0;
1227                        r1_bio->mddev = mddev;
1228                        r1_bio->sector = bio->bi_iter.bi_sector +
1229                                sectors_handled;
1230                        goto read_again;
1231                } else
1232                        generic_make_request(read_bio);
1233                return;
1234        }
1235
1236        /*
1237         * WRITE:
1238         */
1239        if (conf->pending_count >= max_queued_requests) {
1240                md_wakeup_thread(mddev->thread);
1241                wait_event(conf->wait_barrier,
1242                           conf->pending_count < max_queued_requests);
1243        }
1244        /* first select target devices under rcu_lock and
1245         * inc refcount on their rdev.  Record them by setting
1246         * bios[x] to bio
1247         * If there are known/acknowledged bad blocks on any device on
1248         * which we have seen a write error, we want to avoid writing those
1249         * blocks.
1250         * This potentially requires several writes to write around
1251         * the bad blocks.  Each set of writes gets it's own r1bio
1252         * with a set of bios attached.
1253         */
1254
1255        disks = conf->raid_disks * 2;
1256 retry_write:
1257        r1_bio->start_next_window = start_next_window;
1258        blocked_rdev = NULL;
1259        rcu_read_lock();
1260        max_sectors = r1_bio->sectors;
1261        for (i = 0;  i < disks; i++) {
1262                struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1263                if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1264                        atomic_inc(&rdev->nr_pending);
1265                        blocked_rdev = rdev;
1266                        break;
1267                }
1268                r1_bio->bios[i] = NULL;
1269                if (!rdev || test_bit(Faulty, &rdev->flags)
1270                    || test_bit(Unmerged, &rdev->flags)) {
1271                        if (i < conf->raid_disks)
1272                                set_bit(R1BIO_Degraded, &r1_bio->state);
1273                        continue;
1274                }
1275
1276                atomic_inc(&rdev->nr_pending);
1277                if (test_bit(WriteErrorSeen, &rdev->flags)) {
1278                        sector_t first_bad;
1279                        int bad_sectors;
1280                        int is_bad;
1281
1282                        is_bad = is_badblock(rdev, r1_bio->sector,
1283                                             max_sectors,
1284                                             &first_bad, &bad_sectors);
1285                        if (is_bad < 0) {
1286                                /* mustn't write here until the bad block is
1287                                 * acknowledged*/
1288                                set_bit(BlockedBadBlocks, &rdev->flags);
1289                                blocked_rdev = rdev;
1290                                break;
1291                        }
1292                        if (is_bad && first_bad <= r1_bio->sector) {
1293                                /* Cannot write here at all */
1294                                bad_sectors -= (r1_bio->sector - first_bad);
1295                                if (bad_sectors < max_sectors)
1296                                        /* mustn't write more than bad_sectors
1297                                         * to other devices yet
1298                                         */
1299                                        max_sectors = bad_sectors;
1300                                rdev_dec_pending(rdev, mddev);
1301                                /* We don't set R1BIO_Degraded as that
1302                                 * only applies if the disk is
1303                                 * missing, so it might be re-added,
1304                                 * and we want to know to recover this
1305                                 * chunk.
1306                                 * In this case the device is here,
1307                                 * and the fact that this chunk is not
1308                                 * in-sync is recorded in the bad
1309                                 * block log
1310                                 */
1311                                continue;
1312                        }
1313                        if (is_bad) {
1314                                int good_sectors = first_bad - r1_bio->sector;
1315                                if (good_sectors < max_sectors)
1316                                        max_sectors = good_sectors;
1317                        }
1318                }
1319                r1_bio->bios[i] = bio;
1320        }
1321        rcu_read_unlock();
1322
1323        if (unlikely(blocked_rdev)) {
1324                /* Wait for this device to become unblocked */
1325                int j;
1326                sector_t old = start_next_window;
1327
1328                for (j = 0; j < i; j++)
1329                        if (r1_bio->bios[j])
1330                                rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1331                r1_bio->state = 0;
1332                allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector);
1333                md_wait_for_blocked_rdev(blocked_rdev, mddev);
1334                start_next_window = wait_barrier(conf, bio);
1335                /*
1336                 * We must make sure the multi r1bios of bio have
1337                 * the same value of bi_phys_segments
1338                 */
1339                if (bio->bi_phys_segments && old &&
1340                    old != start_next_window)
1341                        /* Wait for the former r1bio(s) to complete */
1342                        wait_event(conf->wait_barrier,
1343                                   bio->bi_phys_segments == 1);
1344                goto retry_write;
1345        }
1346
1347        if (max_sectors < r1_bio->sectors) {
1348                /* We are splitting this write into multiple parts, so
1349                 * we need to prepare for allocating another r1_bio.
1350                 */
1351                r1_bio->sectors = max_sectors;
1352                spin_lock_irq(&conf->device_lock);
1353                if (bio->bi_phys_segments == 0)
1354                        bio->bi_phys_segments = 2;
1355                else
1356                        bio->bi_phys_segments++;
1357                spin_unlock_irq(&conf->device_lock);
1358        }
1359        sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
1360
1361        atomic_set(&r1_bio->remaining, 1);
1362        atomic_set(&r1_bio->behind_remaining, 0);
1363
1364        first_clone = 1;
1365        for (i = 0; i < disks; i++) {
1366                struct bio *mbio;
1367                if (!r1_bio->bios[i])
1368                        continue;
1369
1370                mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1371                bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector, max_sectors);
1372
1373                if (first_clone) {
1374                        /* do behind I/O ?
1375                         * Not if there are too many, or cannot
1376                         * allocate memory, or a reader on WriteMostly
1377                         * is waiting for behind writes to flush */
1378                        if (bitmap &&
1379                            (atomic_read(&bitmap->behind_writes)
1380                             < mddev->bitmap_info.max_write_behind) &&
1381                            !waitqueue_active(&bitmap->behind_wait))
1382                                alloc_behind_pages(mbio, r1_bio);
1383
1384                        bitmap_startwrite(bitmap, r1_bio->sector,
1385                                          r1_bio->sectors,
1386                                          test_bit(R1BIO_BehindIO,
1387                                                   &r1_bio->state));
1388                        first_clone = 0;
1389                }
1390                if (r1_bio->behind_bvecs) {
1391                        struct bio_vec *bvec;
1392                        int j;
1393
1394                        /*
1395                         * We trimmed the bio, so _all is legit
1396                         */
1397                        bio_for_each_segment_all(bvec, mbio, j)
1398                                bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1399                        if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1400                                atomic_inc(&r1_bio->behind_remaining);
1401                }
1402
1403                r1_bio->bios[i] = mbio;
1404
1405                mbio->bi_iter.bi_sector = (r1_bio->sector +
1406                                   conf->mirrors[i].rdev->data_offset);
1407                mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1408                mbio->bi_end_io = raid1_end_write_request;
1409                mbio->bi_rw =
1410                        WRITE | do_flush_fua | do_sync | do_discard | do_same;
1411                mbio->bi_private = r1_bio;
1412
1413                atomic_inc(&r1_bio->remaining);
1414
1415                cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1416                if (cb)
1417                        plug = container_of(cb, struct raid1_plug_cb, cb);
1418                else
1419                        plug = NULL;
1420                spin_lock_irqsave(&conf->device_lock, flags);
1421                if (plug) {
1422                        bio_list_add(&plug->pending, mbio);
1423                        plug->pending_cnt++;
1424                } else {
1425                        bio_list_add(&conf->pending_bio_list, mbio);
1426                        conf->pending_count++;
1427                }
1428                spin_unlock_irqrestore(&conf->device_lock, flags);
1429                if (!plug)
1430                        md_wakeup_thread(mddev->thread);
1431        }
1432        /* Mustn't call r1_bio_write_done before this next test,
1433         * as it could result in the bio being freed.
1434         */
1435        if (sectors_handled < bio_sectors(bio)) {
1436                r1_bio_write_done(r1_bio);
1437                /* We need another r1_bio.  It has already been counted
1438                 * in bio->bi_phys_segments
1439                 */
1440                r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1441                r1_bio->master_bio = bio;
1442                r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1443                r1_bio->state = 0;
1444                r1_bio->mddev = mddev;
1445                r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1446                goto retry_write;
1447        }
1448
1449        r1_bio_write_done(r1_bio);
1450
1451        /* In case raid1d snuck in to freeze_array */
1452        wake_up(&conf->wait_barrier);
1453}
1454
1455static void status(struct seq_file *seq, struct mddev *mddev)
1456{
1457        struct r1conf *conf = mddev->private;
1458        int i;
1459
1460        seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1461                   conf->raid_disks - mddev->degraded);
1462        rcu_read_lock();
1463        for (i = 0; i < conf->raid_disks; i++) {
1464                struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1465                seq_printf(seq, "%s",
1466                           rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1467        }
1468        rcu_read_unlock();
1469        seq_printf(seq, "]");
1470}
1471
1472static void error(struct mddev *mddev, struct md_rdev *rdev)
1473{
1474        char b[BDEVNAME_SIZE];
1475        struct r1conf *conf = mddev->private;
1476
1477        /*
1478         * If it is not operational, then we have already marked it as dead
1479         * else if it is the last working disks, ignore the error, let the
1480         * next level up know.
1481         * else mark the drive as failed
1482         */
1483        if (test_bit(In_sync, &rdev->flags)
1484            && (conf->raid_disks - mddev->degraded) == 1) {
1485                /*
1486                 * Don't fail the drive, act as though we were just a
1487                 * normal single drive.
1488                 * However don't try a recovery from this drive as
1489                 * it is very likely to fail.
1490                 */
1491                conf->recovery_disabled = mddev->recovery_disabled;
1492                return;
1493        }
1494        set_bit(Blocked, &rdev->flags);
1495        if (test_and_clear_bit(In_sync, &rdev->flags)) {
1496                unsigned long flags;
1497                spin_lock_irqsave(&conf->device_lock, flags);
1498                mddev->degraded++;
1499                set_bit(Faulty, &rdev->flags);
1500                spin_unlock_irqrestore(&conf->device_lock, flags);
1501        } else
1502                set_bit(Faulty, &rdev->flags);
1503        /*
1504         * if recovery is running, make sure it aborts.
1505         */
1506        set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1507        set_bit(MD_CHANGE_DEVS, &mddev->flags);
1508        printk(KERN_ALERT
1509               "md/raid1:%s: Disk failure on %s, disabling device.\n"
1510               "md/raid1:%s: Operation continuing on %d devices.\n",
1511               mdname(mddev), bdevname(rdev->bdev, b),
1512               mdname(mddev), conf->raid_disks - mddev->degraded);
1513}
1514
1515static void print_conf(struct r1conf *conf)
1516{
1517        int i;
1518
1519        printk(KERN_DEBUG "RAID1 conf printout:\n");
1520        if (!conf) {
1521                printk(KERN_DEBUG "(!conf)\n");
1522                return;
1523        }
1524        printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1525                conf->raid_disks);
1526
1527        rcu_read_lock();
1528        for (i = 0; i < conf->raid_disks; i++) {
1529                char b[BDEVNAME_SIZE];
1530                struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1531                if (rdev)
1532                        printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1533                               i, !test_bit(In_sync, &rdev->flags),
1534                               !test_bit(Faulty, &rdev->flags),
1535                               bdevname(rdev->bdev,b));
1536        }
1537        rcu_read_unlock();
1538}
1539
1540static void close_sync(struct r1conf *conf)
1541{
1542        wait_barrier(conf, NULL);
1543        allow_barrier(conf, 0, 0);
1544
1545        mempool_destroy(conf->r1buf_pool);
1546        conf->r1buf_pool = NULL;
1547
1548        spin_lock_irq(&conf->resync_lock);
1549        conf->next_resync = 0;
1550        conf->start_next_window = MaxSector;
1551        conf->current_window_requests +=
1552                conf->next_window_requests;
1553        conf->next_window_requests = 0;
1554        spin_unlock_irq(&conf->resync_lock);
1555}
1556
1557static int raid1_spare_active(struct mddev *mddev)
1558{
1559        int i;
1560        struct r1conf *conf = mddev->private;
1561        int count = 0;
1562        unsigned long flags;
1563
1564        /*
1565         * Find all failed disks within the RAID1 configuration
1566         * and mark them readable.
1567         * Called under mddev lock, so rcu protection not needed.
1568         */
1569        for (i = 0; i < conf->raid_disks; i++) {
1570                struct md_rdev *rdev = conf->mirrors[i].rdev;
1571                struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1572                if (repl
1573                    && repl->recovery_offset == MaxSector
1574                    && !test_bit(Faulty, &repl->flags)
1575                    && !test_and_set_bit(In_sync, &repl->flags)) {
1576                        /* replacement has just become active */
1577                        if (!rdev ||
1578                            !test_and_clear_bit(In_sync, &rdev->flags))
1579                                count++;
1580                        if (rdev) {
1581                                /* Replaced device not technically
1582                                 * faulty, but we need to be sure
1583                                 * it gets removed and never re-added
1584                                 */
1585                                set_bit(Faulty, &rdev->flags);
1586                                sysfs_notify_dirent_safe(
1587                                        rdev->sysfs_state);
1588                        }
1589                }
1590                if (rdev
1591                    && rdev->recovery_offset == MaxSector
1592                    && !test_bit(Faulty, &rdev->flags)
1593                    && !test_and_set_bit(In_sync, &rdev->flags)) {
1594                        count++;
1595                        sysfs_notify_dirent_safe(rdev->sysfs_state);
1596                }
1597        }
1598        spin_lock_irqsave(&conf->device_lock, flags);
1599        mddev->degraded -= count;
1600        spin_unlock_irqrestore(&conf->device_lock, flags);
1601
1602        print_conf(conf);
1603        return count;
1604}
1605
1606static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1607{
1608        struct r1conf *conf = mddev->private;
1609        int err = -EEXIST;
1610        int mirror = 0;
1611        struct raid1_info *p;
1612        int first = 0;
1613        int last = conf->raid_disks - 1;
1614        struct request_queue *q = bdev_get_queue(rdev->bdev);
1615
1616        if (mddev->recovery_disabled == conf->recovery_disabled)
1617                return -EBUSY;
1618
1619        if (rdev->raid_disk >= 0)
1620                first = last = rdev->raid_disk;
1621
1622        if (q->merge_bvec_fn) {
1623                set_bit(Unmerged, &rdev->flags);
1624                mddev->merge_check_needed = 1;
1625        }
1626
1627        for (mirror = first; mirror <= last; mirror++) {
1628                p = conf->mirrors+mirror;
1629                if (!p->rdev) {
1630
1631                        if (mddev->gendisk)
1632                                disk_stack_limits(mddev->gendisk, rdev->bdev,
1633                                                  rdev->data_offset << 9);
1634
1635                        p->head_position = 0;
1636                        rdev->raid_disk = mirror;
1637                        err = 0;
1638                        /* As all devices are equivalent, we don't need a full recovery
1639                         * if this was recently any drive of the array
1640                         */
1641                        if (rdev->saved_raid_disk < 0)
1642                                conf->fullsync = 1;
1643                        rcu_assign_pointer(p->rdev, rdev);
1644                        break;
1645                }
1646                if (test_bit(WantReplacement, &p->rdev->flags) &&
1647                    p[conf->raid_disks].rdev == NULL) {
1648                        /* Add this device as a replacement */
1649                        clear_bit(In_sync, &rdev->flags);
1650                        set_bit(Replacement, &rdev->flags);
1651                        rdev->raid_disk = mirror;
1652                        err = 0;
1653                        conf->fullsync = 1;
1654                        rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1655                        break;
1656                }
1657        }
1658        if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1659                /* Some requests might not have seen this new
1660                 * merge_bvec_fn.  We must wait for them to complete
1661                 * before merging the device fully.
1662                 * First we make sure any code which has tested
1663                 * our function has submitted the request, then
1664                 * we wait for all outstanding requests to complete.
1665                 */
1666                synchronize_sched();
1667                freeze_array(conf, 0);
1668                unfreeze_array(conf);
1669                clear_bit(Unmerged, &rdev->flags);
1670        }
1671        md_integrity_add_rdev(rdev, mddev);
1672        if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1673                queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1674        print_conf(conf);
1675        return err;
1676}
1677
1678static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1679{
1680        struct r1conf *conf = mddev->private;
1681        int err = 0;
1682        int number = rdev->raid_disk;
1683        struct raid1_info *p = conf->mirrors + number;
1684
1685        if (rdev != p->rdev)
1686                p = conf->mirrors + conf->raid_disks + number;
1687
1688        print_conf(conf);
1689        if (rdev == p->rdev) {
1690                if (test_bit(In_sync, &rdev->flags) ||
1691                    atomic_read(&rdev->nr_pending)) {
1692                        err = -EBUSY;
1693                        goto abort;
1694                }
1695                /* Only remove non-faulty devices if recovery
1696                 * is not possible.
1697                 */
1698                if (!test_bit(Faulty, &rdev->flags) &&
1699                    mddev->recovery_disabled != conf->recovery_disabled &&
1700                    mddev->degraded < conf->raid_disks) {
1701                        err = -EBUSY;
1702                        goto abort;
1703                }
1704                p->rdev = NULL;
1705                synchronize_rcu();
1706                if (atomic_read(&rdev->nr_pending)) {
1707                        /* lost the race, try later */
1708                        err = -EBUSY;
1709                        p->rdev = rdev;
1710                        goto abort;
1711                } else if (conf->mirrors[conf->raid_disks + number].rdev) {
1712                        /* We just removed a device that is being replaced.
1713                         * Move down the replacement.  We drain all IO before
1714                         * doing this to avoid confusion.
1715                         */
1716                        struct md_rdev *repl =
1717                                conf->mirrors[conf->raid_disks + number].rdev;
1718                        freeze_array(conf, 0);
1719                        clear_bit(Replacement, &repl->flags);
1720                        p->rdev = repl;
1721                        conf->mirrors[conf->raid_disks + number].rdev = NULL;
1722                        unfreeze_array(conf);
1723                        clear_bit(WantReplacement, &rdev->flags);
1724                } else
1725                        clear_bit(WantReplacement, &rdev->flags);
1726                err = md_integrity_register(mddev);
1727        }
1728abort:
1729
1730        print_conf(conf);
1731        return err;
1732}
1733
1734static void end_sync_read(struct bio *bio, int error)
1735{
1736        struct r1bio *r1_bio = bio->bi_private;
1737
1738        update_head_pos(r1_bio->read_disk, r1_bio);
1739
1740        /*
1741         * we have read a block, now it needs to be re-written,
1742         * or re-read if the read failed.
1743         * We don't do much here, just schedule handling by raid1d
1744         */
1745        if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1746                set_bit(R1BIO_Uptodate, &r1_bio->state);
1747
1748        if (atomic_dec_and_test(&r1_bio->remaining))
1749                reschedule_retry(r1_bio);
1750}
1751
1752static void end_sync_write(struct bio *bio, int error)
1753{
1754        int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1755        struct r1bio *r1_bio = bio->bi_private;
1756        struct mddev *mddev = r1_bio->mddev;
1757        struct r1conf *conf = mddev->private;
1758        int mirror=0;
1759        sector_t first_bad;
1760        int bad_sectors;
1761
1762        mirror = find_bio_disk(r1_bio, bio);
1763
1764        if (!uptodate) {
1765                sector_t sync_blocks = 0;
1766                sector_t s = r1_bio->sector;
1767                long sectors_to_go = r1_bio->sectors;
1768                /* make sure these bits doesn't get cleared. */
1769                do {
1770                        bitmap_end_sync(mddev->bitmap, s,
1771                                        &sync_blocks, 1);
1772                        s += sync_blocks;
1773                        sectors_to_go -= sync_blocks;
1774                } while (sectors_to_go > 0);
1775                set_bit(WriteErrorSeen,
1776                        &conf->mirrors[mirror].rdev->flags);
1777                if (!test_and_set_bit(WantReplacement,
1778                                      &conf->mirrors[mirror].rdev->flags))
1779                        set_bit(MD_RECOVERY_NEEDED, &
1780                                mddev->recovery);
1781                set_bit(R1BIO_WriteError, &r1_bio->state);
1782        } else if (is_badblock(conf->mirrors[mirror].rdev,
1783                               r1_bio->sector,
1784                               r1_bio->sectors,
1785                               &first_bad, &bad_sectors) &&
1786                   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1787                                r1_bio->sector,
1788                                r1_bio->sectors,
1789                                &first_bad, &bad_sectors)
1790                )
1791                set_bit(R1BIO_MadeGood, &r1_bio->state);
1792
1793        if (atomic_dec_and_test(&r1_bio->remaining)) {
1794                int s = r1_bio->sectors;
1795                if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1796                    test_bit(R1BIO_WriteError, &r1_bio->state))
1797                        reschedule_retry(r1_bio);
1798                else {
1799                        put_buf(r1_bio);
1800                        md_done_sync(mddev, s, uptodate);
1801                }
1802        }
1803}
1804
1805static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1806                            int sectors, struct page *page, int rw)
1807{
1808        if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1809                /* success */
1810                return 1;
1811        if (rw == WRITE) {
1812                set_bit(WriteErrorSeen, &rdev->flags);
1813                if (!test_and_set_bit(WantReplacement,
1814                                      &rdev->flags))
1815                        set_bit(MD_RECOVERY_NEEDED, &
1816                                rdev->mddev->recovery);
1817        }
1818        /* need to record an error - either for the block or the device */
1819        if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1820                md_error(rdev->mddev, rdev);
1821        return 0;
1822}
1823
1824static int fix_sync_read_error(struct r1bio *r1_bio)
1825{
1826        /* Try some synchronous reads of other devices to get
1827         * good data, much like with normal read errors.  Only
1828         * read into the pages we already have so we don't
1829         * need to re-issue the read request.
1830         * We don't need to freeze the array, because being in an
1831         * active sync request, there is no normal IO, and
1832         * no overlapping syncs.
1833         * We don't need to check is_badblock() again as we
1834         * made sure that anything with a bad block in range
1835         * will have bi_end_io clear.
1836         */
1837        struct mddev *mddev = r1_bio->mddev;
1838        struct r1conf *conf = mddev->private;
1839        struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1840        sector_t sect = r1_bio->sector;
1841        int sectors = r1_bio->sectors;
1842        int idx = 0;
1843
1844        while(sectors) {
1845                int s = sectors;
1846                int d = r1_bio->read_disk;
1847                int success = 0;
1848                struct md_rdev *rdev;
1849                int start;
1850
1851                if (s > (PAGE_SIZE>>9))
1852                        s = PAGE_SIZE >> 9;
1853                do {
1854                        if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1855                                /* No rcu protection needed here devices
1856                                 * can only be removed when no resync is
1857                                 * active, and resync is currently active
1858                                 */
1859                                rdev = conf->mirrors[d].rdev;
1860                                if (sync_page_io(rdev, sect, s<<9,
1861                                                 bio->bi_io_vec[idx].bv_page,
1862                                                 READ, false)) {
1863                                        success = 1;
1864                                        break;
1865                                }
1866                        }
1867                        d++;
1868                        if (d == conf->raid_disks * 2)
1869                                d = 0;
1870                } while (!success && d != r1_bio->read_disk);
1871
1872                if (!success) {
1873                        char b[BDEVNAME_SIZE];
1874                        int abort = 0;
1875                        /* Cannot read from anywhere, this block is lost.
1876                         * Record a bad block on each device.  If that doesn't
1877                         * work just disable and interrupt the recovery.
1878                         * Don't fail devices as that won't really help.
1879                         */
1880                        printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1881                               " for block %llu\n",
1882                               mdname(mddev),
1883                               bdevname(bio->bi_bdev, b),
1884                               (unsigned long long)r1_bio->sector);
1885                        for (d = 0; d < conf->raid_disks * 2; d++) {
1886                                rdev = conf->mirrors[d].rdev;
1887                                if (!rdev || test_bit(Faulty, &rdev->flags))
1888                                        continue;
1889                                if (!rdev_set_badblocks(rdev, sect, s, 0))
1890                                        abort = 1;
1891                        }
1892                        if (abort) {
1893                                conf->recovery_disabled =
1894                                        mddev->recovery_disabled;
1895                                set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1896                                md_done_sync(mddev, r1_bio->sectors, 0);
1897                                put_buf(r1_bio);
1898                                return 0;
1899                        }
1900                        /* Try next page */
1901                        sectors -= s;
1902                        sect += s;
1903                        idx++;
1904                        continue;
1905                }
1906
1907                start = d;
1908                /* write it back and re-read */
1909                while (d != r1_bio->read_disk) {
1910                        if (d == 0)
1911                                d = conf->raid_disks * 2;
1912                        d--;
1913                        if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1914                                continue;
1915                        rdev = conf->mirrors[d].rdev;
1916                        if (r1_sync_page_io(rdev, sect, s,
1917                                            bio->bi_io_vec[idx].bv_page,
1918                                            WRITE) == 0) {
1919                                r1_bio->bios[d]->bi_end_io = NULL;
1920                                rdev_dec_pending(rdev, mddev);
1921                        }
1922                }
1923                d = start;
1924                while (d != r1_bio->read_disk) {
1925                        if (d == 0)
1926                                d = conf->raid_disks * 2;
1927                        d--;
1928                        if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1929                                continue;
1930                        rdev = conf->mirrors[d].rdev;
1931                        if (r1_sync_page_io(rdev, sect, s,
1932                                            bio->bi_io_vec[idx].bv_page,
1933                                            READ) != 0)
1934                                atomic_add(s, &rdev->corrected_errors);
1935                }
1936                sectors -= s;
1937                sect += s;
1938                idx ++;
1939        }
1940        set_bit(R1BIO_Uptodate, &r1_bio->state);
1941        set_bit(BIO_UPTODATE, &bio->bi_flags);
1942        return 1;
1943}
1944
1945static void process_checks(struct r1bio *r1_bio)
1946{
1947        /* We have read all readable devices.  If we haven't
1948         * got the block, then there is no hope left.
1949         * If we have, then we want to do a comparison
1950         * and skip the write if everything is the same.
1951         * If any blocks failed to read, then we need to
1952         * attempt an over-write
1953         */
1954        struct mddev *mddev = r1_bio->mddev;
1955        struct r1conf *conf = mddev->private;
1956        int primary;
1957        int i;
1958        int vcnt;
1959
1960        /* Fix variable parts of all bios */
1961        vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1962        for (i = 0; i < conf->raid_disks * 2; i++) {
1963                int j;
1964                int size;
1965                int uptodate;
1966                struct bio *b = r1_bio->bios[i];
1967                if (b->bi_end_io != end_sync_read)
1968                        continue;
1969                /* fixup the bio for reuse, but preserve BIO_UPTODATE */
1970                uptodate = test_bit(BIO_UPTODATE, &b->bi_flags);
1971                bio_reset(b);
1972                if (!uptodate)
1973                        clear_bit(BIO_UPTODATE, &b->bi_flags);
1974                b->bi_vcnt = vcnt;
1975                b->bi_iter.bi_size = r1_bio->sectors << 9;
1976                b->bi_iter.bi_sector = r1_bio->sector +
1977                        conf->mirrors[i].rdev->data_offset;
1978                b->bi_bdev = conf->mirrors[i].rdev->bdev;
1979                b->bi_end_io = end_sync_read;
1980                b->bi_private = r1_bio;
1981
1982                size = b->bi_iter.bi_size;
1983                for (j = 0; j < vcnt ; j++) {
1984                        struct bio_vec *bi;
1985                        bi = &b->bi_io_vec[j];
1986                        bi->bv_offset = 0;
1987                        if (size > PAGE_SIZE)
1988                                bi->bv_len = PAGE_SIZE;
1989                        else
1990                                bi->bv_len = size;
1991                        size -= PAGE_SIZE;
1992                }
1993        }
1994        for (primary = 0; primary < conf->raid_disks * 2; primary++)
1995                if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1996                    test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1997                        r1_bio->bios[primary]->bi_end_io = NULL;
1998                        rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1999                        break;
2000                }
2001        r1_bio->read_disk = primary;
2002        for (i = 0; i < conf->raid_disks * 2; i++) {
2003                int j;
2004                struct bio *pbio = r1_bio->bios[primary];
2005                struct bio *sbio = r1_bio->bios[i];
2006                int uptodate = test_bit(BIO_UPTODATE, &sbio->bi_flags);
2007
2008                if (sbio->bi_end_io != end_sync_read)
2009                        continue;
2010                /* Now we can 'fixup' the BIO_UPTODATE flag */
2011                set_bit(BIO_UPTODATE, &sbio->bi_flags);
2012
2013                if (uptodate) {
2014                        for (j = vcnt; j-- ; ) {
2015                                struct page *p, *s;
2016                                p = pbio->bi_io_vec[j].bv_page;
2017                                s = sbio->bi_io_vec[j].bv_page;
2018                                if (memcmp(page_address(p),
2019                                           page_address(s),
2020                                           sbio->bi_io_vec[j].bv_len))
2021                                        break;
2022                        }
2023                } else
2024                        j = 0;
2025                if (j >= 0)
2026                        atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2027                if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2028                              && uptodate)) {
2029                        /* No need to write to this device. */
2030                        sbio->bi_end_io = NULL;
2031                        rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2032                        continue;
2033                }
2034
2035                bio_copy_data(sbio, pbio);
2036        }
2037}
2038
2039static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2040{
2041        struct r1conf *conf = mddev->private;
2042        int i;
2043        int disks = conf->raid_disks * 2;
2044        struct bio *bio, *wbio;
2045
2046        bio = r1_bio->bios[r1_bio->read_disk];
2047
2048        if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2049                /* ouch - failed to read all of that. */
2050                if (!fix_sync_read_error(r1_bio))
2051                        return;
2052
2053        if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2054                process_checks(r1_bio);
2055
2056        /*
2057         * schedule writes
2058         */
2059        atomic_set(&r1_bio->remaining, 1);
2060        for (i = 0; i < disks ; i++) {
2061                wbio = r1_bio->bios[i];
2062                if (wbio->bi_end_io == NULL ||
2063                    (wbio->bi_end_io == end_sync_read &&
2064                     (i == r1_bio->read_disk ||
2065                      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2066                        continue;
2067
2068                wbio->bi_rw = WRITE;
2069                wbio->bi_end_io = end_sync_write;
2070                atomic_inc(&r1_bio->remaining);
2071                md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2072
2073                generic_make_request(wbio);
2074        }
2075
2076        if (atomic_dec_and_test(&r1_bio->remaining)) {
2077                /* if we're here, all write(s) have completed, so clean up */
2078                int s = r1_bio->sectors;
2079                if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2080                    test_bit(R1BIO_WriteError, &r1_bio->state))
2081                        reschedule_retry(r1_bio);
2082                else {
2083                        put_buf(r1_bio);
2084                        md_done_sync(mddev, s, 1);
2085                }
2086        }
2087}
2088
2089/*
2090 * This is a kernel thread which:
2091 *
2092 *      1.      Retries failed read operations on working mirrors.
2093 *      2.      Updates the raid superblock when problems encounter.
2094 *      3.      Performs writes following reads for array synchronising.
2095 */
2096
2097static void fix_read_error(struct r1conf *conf, int read_disk,
2098                           sector_t sect, int sectors)
2099{
2100        struct mddev *mddev = conf->mddev;
2101        while(sectors) {
2102                int s = sectors;
2103                int d = read_disk;
2104                int success = 0;
2105                int start;
2106                struct md_rdev *rdev;
2107
2108                if (s > (PAGE_SIZE>>9))
2109                        s = PAGE_SIZE >> 9;
2110
2111                do {
2112                        /* Note: no rcu protection needed here
2113                         * as this is synchronous in the raid1d thread
2114                         * which is the thread that might remove
2115                         * a device.  If raid1d ever becomes multi-threaded....
2116                         */
2117                        sector_t first_bad;
2118                        int bad_sectors;
2119
2120                        rdev = conf->mirrors[d].rdev;
2121                        if (rdev &&
2122                            (test_bit(In_sync, &rdev->flags) ||
2123                             (!test_bit(Faulty, &rdev->flags) &&
2124                              rdev->recovery_offset >= sect + s)) &&
2125                            is_badblock(rdev, sect, s,
2126                                        &first_bad, &bad_sectors) == 0 &&
2127                            sync_page_io(rdev, sect, s<<9,
2128                                         conf->tmppage, READ, false))
2129                                success = 1;
2130                        else {
2131                                d++;
2132                                if (d == conf->raid_disks * 2)
2133                                        d = 0;
2134                        }
2135                } while (!success && d != read_disk);
2136
2137                if (!success) {
2138                        /* Cannot read from anywhere - mark it bad */
2139                        struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2140                        if (!rdev_set_badblocks(rdev, sect, s, 0))
2141                                md_error(mddev, rdev);
2142                        break;
2143                }
2144                /* write it back and re-read */
2145                start = d;
2146                while (d != read_disk) {
2147                        if (d==0)
2148                                d = conf->raid_disks * 2;
2149                        d--;
2150                        rdev = conf->mirrors[d].rdev;
2151                        if (rdev &&
2152                            !test_bit(Faulty, &rdev->flags))
2153                                r1_sync_page_io(rdev, sect, s,
2154                                                conf->tmppage, WRITE);
2155                }
2156                d = start;
2157                while (d != read_disk) {
2158                        char b[BDEVNAME_SIZE];
2159                        if (d==0)
2160                                d = conf->raid_disks * 2;
2161                        d--;
2162                        rdev = conf->mirrors[d].rdev;
2163                        if (rdev &&
2164                            !test_bit(Faulty, &rdev->flags)) {
2165                                if (r1_sync_page_io(rdev, sect, s,
2166                                                    conf->tmppage, READ)) {
2167                                        atomic_add(s, &rdev->corrected_errors);
2168                                        printk(KERN_INFO
2169                                               "md/raid1:%s: read error corrected "
2170                                               "(%d sectors at %llu on %s)\n",
2171                                               mdname(mddev), s,
2172                                               (unsigned long long)(sect +
2173                                                   rdev->data_offset),
2174                                               bdevname(rdev->bdev, b));
2175                                }
2176                        }
2177                }
2178                sectors -= s;
2179                sect += s;
2180        }
2181}
2182
2183static int narrow_write_error(struct r1bio *r1_bio, int i)
2184{
2185        struct mddev *mddev = r1_bio->mddev;
2186        struct r1conf *conf = mddev->private;
2187        struct md_rdev *rdev = conf->mirrors[i].rdev;
2188
2189        /* bio has the data to be written to device 'i' where
2190         * we just recently had a write error.
2191         * We repeatedly clone the bio and trim down to one block,
2192         * then try the write.  Where the write fails we record
2193         * a bad block.
2194         * It is conceivable that the bio doesn't exactly align with
2195         * blocks.  We must handle this somehow.
2196         *
2197         * We currently own a reference on the rdev.
2198         */
2199
2200        int block_sectors;
2201        sector_t sector;
2202        int sectors;
2203        int sect_to_write = r1_bio->sectors;
2204        int ok = 1;
2205
2206        if (rdev->badblocks.shift < 0)
2207                return 0;
2208
2209        block_sectors = 1 << rdev->badblocks.shift;
2210        sector = r1_bio->sector;
2211        sectors = ((sector + block_sectors)
2212                   & ~(sector_t)(block_sectors - 1))
2213                - sector;
2214
2215        while (sect_to_write) {
2216                struct bio *wbio;
2217                if (sectors > sect_to_write)
2218                        sectors = sect_to_write;
2219                /* Write at 'sector' for 'sectors'*/
2220
2221                if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2222                        unsigned vcnt = r1_bio->behind_page_count;
2223                        struct bio_vec *vec = r1_bio->behind_bvecs;
2224
2225                        while (!vec->bv_page) {
2226                                vec++;
2227                                vcnt--;
2228                        }
2229
2230                        wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2231                        memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2232
2233                        wbio->bi_vcnt = vcnt;
2234                } else {
2235                        wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2236                }
2237
2238                wbio->bi_rw = WRITE;
2239                wbio->bi_iter.bi_sector = r1_bio->sector;
2240                wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2241
2242                bio_trim(wbio, sector - r1_bio->sector, sectors);
2243                wbio->bi_iter.bi_sector += rdev->data_offset;
2244                wbio->bi_bdev = rdev->bdev;
2245                if (submit_bio_wait(WRITE, wbio) == 0)
2246                        /* failure! */
2247                        ok = rdev_set_badblocks(rdev, sector,
2248                                                sectors, 0)
2249                                && ok;
2250
2251                bio_put(wbio);
2252                sect_to_write -= sectors;
2253                sector += sectors;
2254                sectors = block_sectors;
2255        }
2256        return ok;
2257}
2258
2259static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2260{
2261        int m;
2262        int s = r1_bio->sectors;
2263        for (m = 0; m < conf->raid_disks * 2 ; m++) {
2264                struct md_rdev *rdev = conf->mirrors[m].rdev;
2265                struct bio *bio = r1_bio->bios[m];
2266                if (bio->bi_end_io == NULL)
2267                        continue;
2268                if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2269                    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2270                        rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2271                }
2272                if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2273                    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2274                        if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2275                                md_error(conf->mddev, rdev);
2276                }
2277        }
2278        put_buf(r1_bio);
2279        md_done_sync(conf->mddev, s, 1);
2280}
2281
2282static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2283{
2284        int m;
2285        for (m = 0; m < conf->raid_disks * 2 ; m++)
2286                if (r1_bio->bios[m] == IO_MADE_GOOD) {
2287                        struct md_rdev *rdev = conf->mirrors[m].rdev;
2288                        rdev_clear_badblocks(rdev,
2289                                             r1_bio->sector,
2290                                             r1_bio->sectors, 0);
2291                        rdev_dec_pending(rdev, conf->mddev);
2292                } else if (r1_bio->bios[m] != NULL) {
2293                        /* This drive got a write error.  We need to
2294                         * narrow down and record precise write
2295                         * errors.
2296                         */
2297                        if (!narrow_write_error(r1_bio, m)) {
2298                                md_error(conf->mddev,
2299                                         conf->mirrors[m].rdev);
2300                                /* an I/O failed, we can't clear the bitmap */
2301                                set_bit(R1BIO_Degraded, &r1_bio->state);
2302                        }
2303                        rdev_dec_pending(conf->mirrors[m].rdev,
2304                                         conf->mddev);
2305                }
2306        if (test_bit(R1BIO_WriteError, &r1_bio->state))
2307                close_write(r1_bio);
2308        raid_end_bio_io(r1_bio);
2309}
2310
2311static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2312{
2313        int disk;
2314        int max_sectors;
2315        struct mddev *mddev = conf->mddev;
2316        struct bio *bio;
2317        char b[BDEVNAME_SIZE];
2318        struct md_rdev *rdev;
2319
2320        clear_bit(R1BIO_ReadError, &r1_bio->state);
2321        /* we got a read error. Maybe the drive is bad.  Maybe just
2322         * the block and we can fix it.
2323         * We freeze all other IO, and try reading the block from
2324         * other devices.  When we find one, we re-write
2325         * and check it that fixes the read error.
2326         * This is all done synchronously while the array is
2327         * frozen
2328         */
2329        if (mddev->ro == 0) {
2330                freeze_array(conf, 1);
2331                fix_read_error(conf, r1_bio->read_disk,
2332                               r1_bio->sector, r1_bio->sectors);
2333                unfreeze_array(conf);
2334        } else
2335                md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2336        rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
2337
2338        bio = r1_bio->bios[r1_bio->read_disk];
2339        bdevname(bio->bi_bdev, b);
2340read_more:
2341        disk = read_balance(conf, r1_bio, &max_sectors);
2342        if (disk == -1) {
2343                printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2344                       " read error for block %llu\n",
2345                       mdname(mddev), b, (unsigned long long)r1_bio->sector);
2346                raid_end_bio_io(r1_bio);
2347        } else {
2348                const unsigned long do_sync
2349                        = r1_bio->master_bio->bi_rw & REQ_SYNC;
2350                if (bio) {
2351                        r1_bio->bios[r1_bio->read_disk] =
2352                                mddev->ro ? IO_BLOCKED : NULL;
2353                        bio_put(bio);
2354                }
2355                r1_bio->read_disk = disk;
2356                bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2357                bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2358                         max_sectors);
2359                r1_bio->bios[r1_bio->read_disk] = bio;
2360                rdev = conf->mirrors[disk].rdev;
2361                printk_ratelimited(KERN_ERR
2362                                   "md/raid1:%s: redirecting sector %llu"
2363                                   " to other mirror: %s\n",
2364                                   mdname(mddev),
2365                                   (unsigned long long)r1_bio->sector,
2366                                   bdevname(rdev->bdev, b));
2367                bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
2368                bio->bi_bdev = rdev->bdev;
2369                bio->bi_end_io = raid1_end_read_request;
2370                bio->bi_rw = READ | do_sync;
2371                bio->bi_private = r1_bio;
2372                if (max_sectors < r1_bio->sectors) {
2373                        /* Drat - have to split this up more */
2374                        struct bio *mbio = r1_bio->master_bio;
2375                        int sectors_handled = (r1_bio->sector + max_sectors
2376                                               - mbio->bi_iter.bi_sector);
2377                        r1_bio->sectors = max_sectors;
2378                        spin_lock_irq(&conf->device_lock);
2379                        if (mbio->bi_phys_segments == 0)
2380                                mbio->bi_phys_segments = 2;
2381                        else
2382                                mbio->bi_phys_segments++;
2383                        spin_unlock_irq(&conf->device_lock);
2384                        generic_make_request(bio);
2385                        bio = NULL;
2386
2387                        r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2388
2389                        r1_bio->master_bio = mbio;
2390                        r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
2391                        r1_bio->state = 0;
2392                        set_bit(R1BIO_ReadError, &r1_bio->state);
2393                        r1_bio->mddev = mddev;
2394                        r1_bio->sector = mbio->bi_iter.bi_sector +
2395                                sectors_handled;
2396
2397                        goto read_more;
2398                } else
2399                        generic_make_request(bio);
2400        }
2401}
2402
2403static void raid1d(struct md_thread *thread)
2404{
2405        struct mddev *mddev = thread->mddev;
2406        struct r1bio *r1_bio;
2407        unsigned long flags;
2408        struct r1conf *conf = mddev->private;
2409        struct list_head *head = &conf->retry_list;
2410        struct blk_plug plug;
2411
2412        md_check_recovery(mddev);
2413
2414        blk_start_plug(&plug);
2415        for (;;) {
2416
2417                flush_pending_writes(conf);
2418
2419                spin_lock_irqsave(&conf->device_lock, flags);
2420                if (list_empty(head)) {
2421                        spin_unlock_irqrestore(&conf->device_lock, flags);
2422                        break;
2423                }
2424                r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2425                list_del(head->prev);
2426                conf->nr_queued--;
2427                spin_unlock_irqrestore(&conf->device_lock, flags);
2428
2429                mddev = r1_bio->mddev;
2430                conf = mddev->private;
2431                if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2432                        if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2433                            test_bit(R1BIO_WriteError, &r1_bio->state))
2434                                handle_sync_write_finished(conf, r1_bio);
2435                        else
2436                                sync_request_write(mddev, r1_bio);
2437                } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2438                           test_bit(R1BIO_WriteError, &r1_bio->state))
2439                        handle_write_finished(conf, r1_bio);
2440                else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2441                        handle_read_error(conf, r1_bio);
2442                else
2443                        /* just a partial read to be scheduled from separate
2444                         * context
2445                         */
2446                        generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2447
2448                cond_resched();
2449                if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2450                        md_check_recovery(mddev);
2451        }
2452        blk_finish_plug(&plug);
2453}
2454
2455static int init_resync(struct r1conf *conf)
2456{
2457        int buffs;
2458
2459        buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2460        BUG_ON(conf->r1buf_pool);
2461        conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2462                                          conf->poolinfo);
2463        if (!conf->r1buf_pool)
2464                return -ENOMEM;
2465        conf->next_resync = 0;
2466        return 0;
2467}
2468
2469/*
2470 * perform a "sync" on one "block"
2471 *
2472 * We need to make sure that no normal I/O request - particularly write
2473 * requests - conflict with active sync requests.
2474 *
2475 * This is achieved by tracking pending requests and a 'barrier' concept
2476 * that can be installed to exclude normal IO requests.
2477 */
2478
2479static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
2480{
2481        struct r1conf *conf = mddev->private;
2482        struct r1bio *r1_bio;
2483        struct bio *bio;
2484        sector_t max_sector, nr_sectors;
2485        int disk = -1;
2486        int i;
2487        int wonly = -1;
2488        int write_targets = 0, read_targets = 0;
2489        sector_t sync_blocks;
2490        int still_degraded = 0;
2491        int good_sectors = RESYNC_SECTORS;
2492        int min_bad = 0; /* number of sectors that are bad in all devices */
2493
2494        if (!conf->r1buf_pool)
2495                if (init_resync(conf))
2496                        return 0;
2497
2498        max_sector = mddev->dev_sectors;
2499        if (sector_nr >= max_sector) {
2500                /* If we aborted, we need to abort the
2501                 * sync on the 'current' bitmap chunk (there will
2502                 * only be one in raid1 resync.
2503                 * We can find the current addess in mddev->curr_resync
2504                 */
2505                if (mddev->curr_resync < max_sector) /* aborted */
2506                        bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2507                                                &sync_blocks, 1);
2508                else /* completed sync */
2509                        conf->fullsync = 0;
2510
2511                bitmap_close_sync(mddev->bitmap);
2512                close_sync(conf);
2513                return 0;
2514        }
2515
2516        if (mddev->bitmap == NULL &&
2517            mddev->recovery_cp == MaxSector &&
2518            !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2519            conf->fullsync == 0) {
2520                *skipped = 1;
2521                return max_sector - sector_nr;
2522        }
2523        /* before building a request, check if we can skip these blocks..
2524         * This call the bitmap_start_sync doesn't actually record anything
2525         */
2526        if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2527            !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2528                /* We can skip this block, and probably several more */
2529                *skipped = 1;
2530                return sync_blocks;
2531        }
2532        /*
2533         * If there is non-resync activity waiting for a turn,
2534         * and resync is going fast enough,
2535         * then let it though before starting on this new sync request.
2536         */
2537        if (!go_faster && conf->nr_waiting)
2538                msleep_interruptible(1000);
2539
2540        bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2541        r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2542
2543        raise_barrier(conf, sector_nr);
2544
2545        rcu_read_lock();
2546        /*
2547         * If we get a correctably read error during resync or recovery,
2548         * we might want to read from a different device.  So we
2549         * flag all drives that could conceivably be read from for READ,
2550         * and any others (which will be non-In_sync devices) for WRITE.
2551         * If a read fails, we try reading from something else for which READ
2552         * is OK.
2553         */
2554
2555        r1_bio->mddev = mddev;
2556        r1_bio->sector = sector_nr;
2557        r1_bio->state = 0;
2558        set_bit(R1BIO_IsSync, &r1_bio->state);
2559
2560        for (i = 0; i < conf->raid_disks * 2; i++) {
2561                struct md_rdev *rdev;
2562                bio = r1_bio->bios[i];
2563                bio_reset(bio);
2564
2565                rdev = rcu_dereference(conf->mirrors[i].rdev);
2566                if (rdev == NULL ||
2567                    test_bit(Faulty, &rdev->flags)) {
2568                        if (i < conf->raid_disks)
2569                                still_degraded = 1;
2570                } else if (!test_bit(In_sync, &rdev->flags)) {
2571                        bio->bi_rw = WRITE;
2572                        bio->bi_end_io = end_sync_write;
2573                        write_targets ++;
2574                } else {
2575                        /* may need to read from here */
2576                        sector_t first_bad = MaxSector;
2577                        int bad_sectors;
2578
2579                        if (is_badblock(rdev, sector_nr, good_sectors,
2580                                        &first_bad, &bad_sectors)) {
2581                                if (first_bad > sector_nr)
2582                                        good_sectors = first_bad - sector_nr;
2583                                else {
2584                                        bad_sectors -= (sector_nr - first_bad);
2585                                        if (min_bad == 0 ||
2586                                            min_bad > bad_sectors)
2587                                                min_bad = bad_sectors;
2588                                }
2589                        }
2590                        if (sector_nr < first_bad) {
2591                                if (test_bit(WriteMostly, &rdev->flags)) {
2592                                        if (wonly < 0)
2593                                                wonly = i;
2594                                } else {
2595                                        if (disk < 0)
2596                                                disk = i;
2597                                }
2598                                bio->bi_rw = READ;
2599                                bio->bi_end_io = end_sync_read;
2600                                read_targets++;
2601                        } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2602                                test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2603                                !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2604                                /*
2605                                 * The device is suitable for reading (InSync),
2606                                 * but has bad block(s) here. Let's try to correct them,
2607                                 * if we are doing resync or repair. Otherwise, leave
2608                                 * this device alone for this sync request.
2609                                 */
2610                                bio->bi_rw = WRITE;
2611                                bio->bi_end_io = end_sync_write;
2612                                write_targets++;
2613                        }
2614                }
2615                if (bio->bi_end_io) {
2616                        atomic_inc(&rdev->nr_pending);
2617                        bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2618                        bio->bi_bdev = rdev->bdev;
2619                        bio->bi_private = r1_bio;
2620                }
2621        }
2622        rcu_read_unlock();
2623        if (disk < 0)
2624                disk = wonly;
2625        r1_bio->read_disk = disk;
2626
2627        if (read_targets == 0 && min_bad > 0) {
2628                /* These sectors are bad on all InSync devices, so we
2629                 * need to mark them bad on all write targets
2630                 */
2631                int ok = 1;
2632                for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2633                        if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2634                                struct md_rdev *rdev = conf->mirrors[i].rdev;
2635                                ok = rdev_set_badblocks(rdev, sector_nr,
2636                                                        min_bad, 0
2637                                        ) && ok;
2638                        }
2639                set_bit(MD_CHANGE_DEVS, &mddev->flags);
2640                *skipped = 1;
2641                put_buf(r1_bio);
2642
2643                if (!ok) {
2644                        /* Cannot record the badblocks, so need to
2645                         * abort the resync.
2646                         * If there are multiple read targets, could just
2647                         * fail the really bad ones ???
2648                         */
2649                        conf->recovery_disabled = mddev->recovery_disabled;
2650                        set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2651                        return 0;
2652                } else
2653                        return min_bad;
2654
2655        }
2656        if (min_bad > 0 && min_bad < good_sectors) {
2657                /* only resync enough to reach the next bad->good
2658                 * transition */
2659                good_sectors = min_bad;
2660        }
2661
2662        if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2663                /* extra read targets are also write targets */
2664                write_targets += read_targets-1;
2665
2666        if (write_targets == 0 || read_targets == 0) {
2667                /* There is nowhere to write, so all non-sync
2668                 * drives must be failed - so we are finished
2669                 */
2670                sector_t rv;
2671                if (min_bad > 0)
2672                        max_sector = sector_nr + min_bad;
2673                rv = max_sector - sector_nr;
2674                *skipped = 1;
2675                put_buf(r1_bio);
2676                return rv;
2677        }
2678
2679        if (max_sector > mddev->resync_max)
2680                max_sector = mddev->resync_max; /* Don't do IO beyond here */
2681        if (max_sector > sector_nr + good_sectors)
2682                max_sector = sector_nr + good_sectors;
2683        nr_sectors = 0;
2684        sync_blocks = 0;
2685        do {
2686                struct page *page;
2687                int len = PAGE_SIZE;
2688                if (sector_nr + (len>>9) > max_sector)
2689                        len = (max_sector - sector_nr) << 9;
2690                if (len == 0)
2691                        break;
2692                if (sync_blocks == 0) {
2693                        if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2694                                               &sync_blocks, still_degraded) &&
2695                            !conf->fullsync &&
2696                            !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2697                                break;
2698                        BUG_ON(sync_blocks < (PAGE_SIZE>>9));
2699                        if ((len >> 9) > sync_blocks)
2700                                len = sync_blocks<<9;
2701                }
2702
2703                for (i = 0 ; i < conf->raid_disks * 2; i++) {
2704                        bio = r1_bio->bios[i];
2705                        if (bio->bi_end_io) {
2706                                page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2707                                if (bio_add_page(bio, page, len, 0) == 0) {
2708                                        /* stop here */
2709                                        bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2710                                        while (i > 0) {
2711                                                i--;
2712                                                bio = r1_bio->bios[i];
2713                                                if (bio->bi_end_io==NULL)
2714                                                        continue;
2715                                                /* remove last page from this bio */
2716                                                bio->bi_vcnt--;
2717                                                bio->bi_iter.bi_size -= len;
2718                                                __clear_bit(BIO_SEG_VALID, &bio->bi_flags);
2719                                        }
2720                                        goto bio_full;
2721                                }
2722                        }
2723                }
2724                nr_sectors += len>>9;
2725                sector_nr += len>>9;
2726                sync_blocks -= (len>>9);
2727        } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2728 bio_full:
2729        r1_bio->sectors = nr_sectors;
2730
2731        /* For a user-requested sync, we read all readable devices and do a
2732         * compare
2733         */
2734        if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2735                atomic_set(&r1_bio->remaining, read_targets);
2736                for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2737                        bio = r1_bio->bios[i];
2738                        if (bio->bi_end_io == end_sync_read) {
2739                                read_targets--;
2740                                md_sync_acct(bio->bi_bdev, nr_sectors);
2741                                generic_make_request(bio);
2742                        }
2743                }
2744        } else {
2745                atomic_set(&r1_bio->remaining, 1);
2746                bio = r1_bio->bios[r1_bio->read_disk];
2747                md_sync_acct(bio->bi_bdev, nr_sectors);
2748                generic_make_request(bio);
2749
2750        }
2751        return nr_sectors;
2752}
2753
2754static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2755{
2756        if (sectors)
2757                return sectors;
2758
2759        return mddev->dev_sectors;
2760}
2761
2762static struct r1conf *setup_conf(struct mddev *mddev)
2763{
2764        struct r1conf *conf;
2765        int i;
2766        struct raid1_info *disk;
2767        struct md_rdev *rdev;
2768        int err = -ENOMEM;
2769
2770        conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2771        if (!conf)
2772                goto abort;
2773
2774        conf->mirrors = kzalloc(sizeof(struct raid1_info)
2775                                * mddev->raid_disks * 2,
2776                                 GFP_KERNEL);
2777        if (!conf->mirrors)
2778                goto abort;
2779
2780        conf->tmppage = alloc_page(GFP_KERNEL);
2781        if (!conf->tmppage)
2782                goto abort;
2783
2784        conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2785        if (!conf->poolinfo)
2786                goto abort;
2787        conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2788        conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2789                                          r1bio_pool_free,
2790                                          conf->poolinfo);
2791        if (!conf->r1bio_pool)
2792                goto abort;
2793
2794        conf->poolinfo->mddev = mddev;
2795
2796        err = -EINVAL;
2797        spin_lock_init(&conf->device_lock);
2798        rdev_for_each(rdev, mddev) {
2799                struct request_queue *q;
2800                int disk_idx = rdev->raid_disk;
2801                if (disk_idx >= mddev->raid_disks
2802                    || disk_idx < 0)
2803                        continue;
2804                if (test_bit(Replacement, &rdev->flags))
2805                        disk = conf->mirrors + mddev->raid_disks + disk_idx;
2806                else
2807                        disk = conf->mirrors + disk_idx;
2808
2809                if (disk->rdev)
2810                        goto abort;
2811                disk->rdev = rdev;
2812                q = bdev_get_queue(rdev->bdev);
2813                if (q->merge_bvec_fn)
2814                        mddev->merge_check_needed = 1;
2815
2816                disk->head_position = 0;
2817                disk->seq_start = MaxSector;
2818        }
2819        conf->raid_disks = mddev->raid_disks;
2820        conf->mddev = mddev;
2821        INIT_LIST_HEAD(&conf->retry_list);
2822
2823        spin_lock_init(&conf->resync_lock);
2824        init_waitqueue_head(&conf->wait_barrier);
2825
2826        bio_list_init(&conf->pending_bio_list);
2827        conf->pending_count = 0;
2828        conf->recovery_disabled = mddev->recovery_disabled - 1;
2829
2830        conf->start_next_window = MaxSector;
2831        conf->current_window_requests = conf->next_window_requests = 0;
2832
2833        err = -EIO;
2834        for (i = 0; i < conf->raid_disks * 2; i++) {
2835
2836                disk = conf->mirrors + i;
2837
2838                if (i < conf->raid_disks &&
2839                    disk[conf->raid_disks].rdev) {
2840                        /* This slot has a replacement. */
2841                        if (!disk->rdev) {
2842                                /* No original, just make the replacement
2843                                 * a recovering spare
2844                                 */
2845                                disk->rdev =
2846                                        disk[conf->raid_disks].rdev;
2847                                disk[conf->raid_disks].rdev = NULL;
2848                        } else if (!test_bit(In_sync, &disk->rdev->flags))
2849                                /* Original is not in_sync - bad */
2850                                goto abort;
2851                }
2852
2853                if (!disk->rdev ||
2854                    !test_bit(In_sync, &disk->rdev->flags)) {
2855                        disk->head_position = 0;
2856                        if (disk->rdev &&
2857                            (disk->rdev->saved_raid_disk < 0))
2858                                conf->fullsync = 1;
2859                }
2860        }
2861
2862        err = -ENOMEM;
2863        conf->thread = md_register_thread(raid1d, mddev, "raid1");
2864        if (!conf->thread) {
2865                printk(KERN_ERR
2866                       "md/raid1:%s: couldn't allocate thread\n",
2867                       mdname(mddev));
2868                goto abort;
2869        }
2870
2871        return conf;
2872
2873 abort:
2874        if (conf) {
2875                if (conf->r1bio_pool)
2876                        mempool_destroy(conf->r1bio_pool);
2877                kfree(conf->mirrors);
2878                safe_put_page(conf->tmppage);
2879                kfree(conf->poolinfo);
2880                kfree(conf);
2881        }
2882        return ERR_PTR(err);
2883}
2884
2885static int stop(struct mddev *mddev);
2886static int run(struct mddev *mddev)
2887{
2888        struct r1conf *conf;
2889        int i;
2890        struct md_rdev *rdev;
2891        int ret;
2892        bool discard_supported = false;
2893
2894        if (mddev->level != 1) {
2895                printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2896                       mdname(mddev), mddev->level);
2897                return -EIO;
2898        }
2899        if (mddev->reshape_position != MaxSector) {
2900                printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2901                       mdname(mddev));
2902                return -EIO;
2903        }
2904        /*
2905         * copy the already verified devices into our private RAID1
2906         * bookkeeping area. [whatever we allocate in run(),
2907         * should be freed in stop()]
2908         */
2909        if (mddev->private == NULL)
2910                conf = setup_conf(mddev);
2911        else
2912                conf = mddev->private;
2913
2914        if (IS_ERR(conf))
2915                return PTR_ERR(conf);
2916
2917        if (mddev->queue)
2918                blk_queue_max_write_same_sectors(mddev->queue, 0);
2919
2920        rdev_for_each(rdev, mddev) {
2921                if (!mddev->gendisk)
2922                        continue;
2923                disk_stack_limits(mddev->gendisk, rdev->bdev,
2924                                  rdev->data_offset << 9);
2925                if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2926                        discard_supported = true;
2927        }
2928
2929        mddev->degraded = 0;
2930        for (i=0; i < conf->raid_disks; i++)
2931                if (conf->mirrors[i].rdev == NULL ||
2932                    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2933                    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2934                        mddev->degraded++;
2935
2936        if (conf->raid_disks - mddev->degraded == 1)
2937                mddev->recovery_cp = MaxSector;
2938
2939        if (mddev->recovery_cp != MaxSector)
2940                printk(KERN_NOTICE "md/raid1:%s: not clean"
2941                       " -- starting background reconstruction\n",
2942                       mdname(mddev));
2943        printk(KERN_INFO
2944                "md/raid1:%s: active with %d out of %d mirrors\n",
2945                mdname(mddev), mddev->raid_disks - mddev->degraded,
2946                mddev->raid_disks);
2947
2948        /*
2949         * Ok, everything is just fine now
2950         */
2951        mddev->thread = conf->thread;
2952        conf->thread = NULL;
2953        mddev->private = conf;
2954
2955        md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2956
2957        if (mddev->queue) {
2958                mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2959                mddev->queue->backing_dev_info.congested_data = mddev;
2960                blk_queue_merge_bvec(mddev->queue, raid1_mergeable_bvec);
2961
2962                if (discard_supported)
2963                        queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2964                                                mddev->queue);
2965                else
2966                        queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2967                                                  mddev->queue);
2968        }
2969
2970        ret =  md_integrity_register(mddev);
2971        if (ret)
2972                stop(mddev);
2973        return ret;
2974}
2975
2976static int stop(struct mddev *mddev)
2977{
2978        struct r1conf *conf = mddev->private;
2979        struct bitmap *bitmap = mddev->bitmap;
2980
2981        /* wait for behind writes to complete */
2982        if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2983                printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2984                       mdname(mddev));
2985                /* need to kick something here to make sure I/O goes? */
2986                wait_event(bitmap->behind_wait,
2987                           atomic_read(&bitmap->behind_writes) == 0);
2988        }
2989
2990        freeze_array(conf, 0);
2991        unfreeze_array(conf);
2992
2993        md_unregister_thread(&mddev->thread);
2994        if (conf->r1bio_pool)
2995                mempool_destroy(conf->r1bio_pool);
2996        kfree(conf->mirrors);
2997        safe_put_page(conf->tmppage);
2998        kfree(conf->poolinfo);
2999        kfree(conf);
3000        mddev->private = NULL;
3001        return 0;
3002}
3003
3004static int raid1_resize(struct mddev *mddev, sector_t sectors)
3005{
3006        /* no resync is happening, and there is enough space
3007         * on all devices, so we can resize.
3008         * We need to make sure resync covers any new space.
3009         * If the array is shrinking we should possibly wait until
3010         * any io in the removed space completes, but it hardly seems
3011         * worth it.
3012         */
3013        sector_t newsize = raid1_size(mddev, sectors, 0);
3014        if (mddev->external_size &&
3015            mddev->array_sectors > newsize)
3016                return -EINVAL;
3017        if (mddev->bitmap) {
3018                int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3019                if (ret)
3020                        return ret;
3021        }
3022        md_set_array_sectors(mddev, newsize);
3023        set_capacity(mddev->gendisk, mddev->array_sectors);
3024        revalidate_disk(mddev->gendisk);
3025        if (sectors > mddev->dev_sectors &&
3026            mddev->recovery_cp > mddev->dev_sectors) {
3027                mddev->recovery_cp = mddev->dev_sectors;
3028                set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3029        }
3030        mddev->dev_sectors = sectors;
3031        mddev->resync_max_sectors = sectors;
3032        return 0;
3033}
3034
3035static int raid1_reshape(struct mddev *mddev)
3036{
3037        /* We need to:
3038         * 1/ resize the r1bio_pool
3039         * 2/ resize conf->mirrors
3040         *
3041         * We allocate a new r1bio_pool if we can.
3042         * Then raise a device barrier and wait until all IO stops.
3043         * Then resize conf->mirrors and swap in the new r1bio pool.
3044         *
3045         * At the same time, we "pack" the devices so that all the missing
3046         * devices have the higher raid_disk numbers.
3047         */
3048        mempool_t *newpool, *oldpool;
3049        struct pool_info *newpoolinfo;
3050        struct raid1_info *newmirrors;
3051        struct r1conf *conf = mddev->private;
3052        int cnt, raid_disks;
3053        unsigned long flags;
3054        int d, d2, err;
3055
3056        /* Cannot change chunk_size, layout, or level */
3057        if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3058            mddev->layout != mddev->new_layout ||
3059            mddev->level != mddev->new_level) {
3060                mddev->new_chunk_sectors = mddev->chunk_sectors;
3061                mddev->new_layout = mddev->layout;
3062                mddev->new_level = mddev->level;
3063                return -EINVAL;
3064        }
3065
3066        err = md_allow_write(mddev);
3067        if (err)
3068                return err;
3069
3070        raid_disks = mddev->raid_disks + mddev->delta_disks;
3071
3072        if (raid_disks < conf->raid_disks) {
3073                cnt=0;
3074                for (d= 0; d < conf->raid_disks; d++)
3075                        if (conf->mirrors[d].rdev)
3076                                cnt++;
3077                if (cnt > raid_disks)
3078                        return -EBUSY;
3079        }
3080
3081        newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3082        if (!newpoolinfo)
3083                return -ENOMEM;
3084        newpoolinfo->mddev = mddev;
3085        newpoolinfo->raid_disks = raid_disks * 2;
3086
3087        newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3088                                 r1bio_pool_free, newpoolinfo);
3089        if (!newpool) {
3090                kfree(newpoolinfo);
3091                return -ENOMEM;
3092        }
3093        newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3094                             GFP_KERNEL);
3095        if (!newmirrors) {
3096                kfree(newpoolinfo);
3097                mempool_destroy(newpool);
3098                return -ENOMEM;
3099        }
3100
3101        freeze_array(conf, 0);
3102
3103        /* ok, everything is stopped */
3104        oldpool = conf->r1bio_pool;
3105        conf->r1bio_pool = newpool;
3106
3107        for (d = d2 = 0; d < conf->raid_disks; d++) {
3108                struct md_rdev *rdev = conf->mirrors[d].rdev;
3109                if (rdev && rdev->raid_disk != d2) {
3110                        sysfs_unlink_rdev(mddev, rdev);
3111                        rdev->raid_disk = d2;
3112                        sysfs_unlink_rdev(mddev, rdev);
3113                        if (sysfs_link_rdev(mddev, rdev))
3114                                printk(KERN_WARNING
3115                                       "md/raid1:%s: cannot register rd%d\n",
3116                                       mdname(mddev), rdev->raid_disk);
3117                }
3118                if (rdev)
3119                        newmirrors[d2++].rdev = rdev;
3120        }
3121        kfree(conf->mirrors);
3122        conf->mirrors = newmirrors;
3123        kfree(conf->poolinfo);
3124        conf->poolinfo = newpoolinfo;
3125
3126        spin_lock_irqsave(&conf->device_lock, flags);
3127        mddev->degraded += (raid_disks - conf->raid_disks);
3128        spin_unlock_irqrestore(&conf->device_lock, flags);
3129        conf->raid_disks = mddev->raid_disks = raid_disks;
3130        mddev->delta_disks = 0;
3131
3132        unfreeze_array(conf);
3133
3134        set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3135        md_wakeup_thread(mddev->thread);
3136
3137        mempool_destroy(oldpool);
3138        return 0;
3139}
3140
3141static void raid1_quiesce(struct mddev *mddev, int state)
3142{
3143        struct r1conf *conf = mddev->private;
3144
3145        switch(state) {
3146        case 2: /* wake for suspend */
3147                wake_up(&conf->wait_barrier);
3148                break;
3149        case 1:
3150                freeze_array(conf, 0);
3151                break;
3152        case 0:
3153                unfreeze_array(conf);
3154                break;
3155        }
3156}
3157
3158static void *raid1_takeover(struct mddev *mddev)
3159{
3160        /* raid1 can take over:
3161         *  raid5 with 2 devices, any layout or chunk size
3162         */
3163        if (mddev->level == 5 && mddev->raid_disks == 2) {
3164                struct r1conf *conf;
3165                mddev->new_level = 1;
3166                mddev->new_layout = 0;
3167                mddev->new_chunk_sectors = 0;
3168                conf = setup_conf(mddev);
3169                if (!IS_ERR(conf))
3170                        /* Array must appear to be quiesced */
3171                        conf->array_frozen = 1;
3172                return conf;
3173        }
3174        return ERR_PTR(-EINVAL);
3175}
3176
3177static struct md_personality raid1_personality =
3178{
3179        .name           = "raid1",
3180        .level          = 1,
3181        .owner          = THIS_MODULE,
3182        .make_request   = make_request,
3183        .run            = run,
3184        .stop           = stop,
3185        .status         = status,
3186        .error_handler  = error,
3187        .hot_add_disk   = raid1_add_disk,
3188        .hot_remove_disk= raid1_remove_disk,
3189        .spare_active   = raid1_spare_active,
3190        .sync_request   = sync_request,
3191        .resize         = raid1_resize,
3192        .size           = raid1_size,
3193        .check_reshape  = raid1_reshape,
3194        .quiesce        = raid1_quiesce,
3195        .takeover       = raid1_takeover,
3196};
3197
3198static int __init raid_init(void)
3199{
3200        return register_md_personality(&raid1_personality);
3201}
3202
3203static void raid_exit(void)
3204{
3205        unregister_md_personality(&raid1_personality);
3206}
3207
3208module_init(raid_init);
3209module_exit(raid_exit);
3210MODULE_LICENSE("GPL");
3211MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3212MODULE_ALIAS("md-personality-3"); /* RAID1 */
3213MODULE_ALIAS("md-raid1");
3214MODULE_ALIAS("md-level-1");
3215
3216module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
3217