linux/drivers/mtd/nand/fsmc_nand.c
<<
>>
Prefs
   1/*
   2 * drivers/mtd/nand/fsmc_nand.c
   3 *
   4 * ST Microelectronics
   5 * Flexible Static Memory Controller (FSMC)
   6 * Driver for NAND portions
   7 *
   8 * Copyright © 2010 ST Microelectronics
   9 * Vipin Kumar <vipin.kumar@st.com>
  10 * Ashish Priyadarshi
  11 *
  12 * Based on drivers/mtd/nand/nomadik_nand.c
  13 *
  14 * This file is licensed under the terms of the GNU General Public
  15 * License version 2. This program is licensed "as is" without any
  16 * warranty of any kind, whether express or implied.
  17 */
  18
  19#include <linux/clk.h>
  20#include <linux/completion.h>
  21#include <linux/dmaengine.h>
  22#include <linux/dma-direction.h>
  23#include <linux/dma-mapping.h>
  24#include <linux/err.h>
  25#include <linux/init.h>
  26#include <linux/module.h>
  27#include <linux/resource.h>
  28#include <linux/sched.h>
  29#include <linux/types.h>
  30#include <linux/mtd/mtd.h>
  31#include <linux/mtd/nand.h>
  32#include <linux/mtd/nand_ecc.h>
  33#include <linux/platform_device.h>
  34#include <linux/of.h>
  35#include <linux/mtd/partitions.h>
  36#include <linux/io.h>
  37#include <linux/slab.h>
  38#include <linux/mtd/fsmc.h>
  39#include <linux/amba/bus.h>
  40#include <mtd/mtd-abi.h>
  41
  42static struct nand_ecclayout fsmc_ecc1_128_layout = {
  43        .eccbytes = 24,
  44        .eccpos = {2, 3, 4, 18, 19, 20, 34, 35, 36, 50, 51, 52,
  45                66, 67, 68, 82, 83, 84, 98, 99, 100, 114, 115, 116},
  46        .oobfree = {
  47                {.offset = 8, .length = 8},
  48                {.offset = 24, .length = 8},
  49                {.offset = 40, .length = 8},
  50                {.offset = 56, .length = 8},
  51                {.offset = 72, .length = 8},
  52                {.offset = 88, .length = 8},
  53                {.offset = 104, .length = 8},
  54                {.offset = 120, .length = 8}
  55        }
  56};
  57
  58static struct nand_ecclayout fsmc_ecc1_64_layout = {
  59        .eccbytes = 12,
  60        .eccpos = {2, 3, 4, 18, 19, 20, 34, 35, 36, 50, 51, 52},
  61        .oobfree = {
  62                {.offset = 8, .length = 8},
  63                {.offset = 24, .length = 8},
  64                {.offset = 40, .length = 8},
  65                {.offset = 56, .length = 8},
  66        }
  67};
  68
  69static struct nand_ecclayout fsmc_ecc1_16_layout = {
  70        .eccbytes = 3,
  71        .eccpos = {2, 3, 4},
  72        .oobfree = {
  73                {.offset = 8, .length = 8},
  74        }
  75};
  76
  77/*
  78 * ECC4 layout for NAND of pagesize 8192 bytes & OOBsize 256 bytes. 13*16 bytes
  79 * of OB size is reserved for ECC, Byte no. 0 & 1 reserved for bad block and 46
  80 * bytes are free for use.
  81 */
  82static struct nand_ecclayout fsmc_ecc4_256_layout = {
  83        .eccbytes = 208,
  84        .eccpos = {  2,   3,   4,   5,   6,   7,   8,
  85                9,  10,  11,  12,  13,  14,
  86                18,  19,  20,  21,  22,  23,  24,
  87                25,  26,  27,  28,  29,  30,
  88                34,  35,  36,  37,  38,  39,  40,
  89                41,  42,  43,  44,  45,  46,
  90                50,  51,  52,  53,  54,  55,  56,
  91                57,  58,  59,  60,  61,  62,
  92                66,  67,  68,  69,  70,  71,  72,
  93                73,  74,  75,  76,  77,  78,
  94                82,  83,  84,  85,  86,  87,  88,
  95                89,  90,  91,  92,  93,  94,
  96                98,  99, 100, 101, 102, 103, 104,
  97                105, 106, 107, 108, 109, 110,
  98                114, 115, 116, 117, 118, 119, 120,
  99                121, 122, 123, 124, 125, 126,
 100                130, 131, 132, 133, 134, 135, 136,
 101                137, 138, 139, 140, 141, 142,
 102                146, 147, 148, 149, 150, 151, 152,
 103                153, 154, 155, 156, 157, 158,
 104                162, 163, 164, 165, 166, 167, 168,
 105                169, 170, 171, 172, 173, 174,
 106                178, 179, 180, 181, 182, 183, 184,
 107                185, 186, 187, 188, 189, 190,
 108                194, 195, 196, 197, 198, 199, 200,
 109                201, 202, 203, 204, 205, 206,
 110                210, 211, 212, 213, 214, 215, 216,
 111                217, 218, 219, 220, 221, 222,
 112                226, 227, 228, 229, 230, 231, 232,
 113                233, 234, 235, 236, 237, 238,
 114                242, 243, 244, 245, 246, 247, 248,
 115                249, 250, 251, 252, 253, 254
 116        },
 117        .oobfree = {
 118                {.offset = 15, .length = 3},
 119                {.offset = 31, .length = 3},
 120                {.offset = 47, .length = 3},
 121                {.offset = 63, .length = 3},
 122                {.offset = 79, .length = 3},
 123                {.offset = 95, .length = 3},
 124                {.offset = 111, .length = 3},
 125                {.offset = 127, .length = 3},
 126                {.offset = 143, .length = 3},
 127                {.offset = 159, .length = 3},
 128                {.offset = 175, .length = 3},
 129                {.offset = 191, .length = 3},
 130                {.offset = 207, .length = 3},
 131                {.offset = 223, .length = 3},
 132                {.offset = 239, .length = 3},
 133                {.offset = 255, .length = 1}
 134        }
 135};
 136
 137/*
 138 * ECC4 layout for NAND of pagesize 4096 bytes & OOBsize 224 bytes. 13*8 bytes
 139 * of OOB size is reserved for ECC, Byte no. 0 & 1 reserved for bad block & 118
 140 * bytes are free for use.
 141 */
 142static struct nand_ecclayout fsmc_ecc4_224_layout = {
 143        .eccbytes = 104,
 144        .eccpos = {  2,   3,   4,   5,   6,   7,   8,
 145                9,  10,  11,  12,  13,  14,
 146                18,  19,  20,  21,  22,  23,  24,
 147                25,  26,  27,  28,  29,  30,
 148                34,  35,  36,  37,  38,  39,  40,
 149                41,  42,  43,  44,  45,  46,
 150                50,  51,  52,  53,  54,  55,  56,
 151                57,  58,  59,  60,  61,  62,
 152                66,  67,  68,  69,  70,  71,  72,
 153                73,  74,  75,  76,  77,  78,
 154                82,  83,  84,  85,  86,  87,  88,
 155                89,  90,  91,  92,  93,  94,
 156                98,  99, 100, 101, 102, 103, 104,
 157                105, 106, 107, 108, 109, 110,
 158                114, 115, 116, 117, 118, 119, 120,
 159                121, 122, 123, 124, 125, 126
 160        },
 161        .oobfree = {
 162                {.offset = 15, .length = 3},
 163                {.offset = 31, .length = 3},
 164                {.offset = 47, .length = 3},
 165                {.offset = 63, .length = 3},
 166                {.offset = 79, .length = 3},
 167                {.offset = 95, .length = 3},
 168                {.offset = 111, .length = 3},
 169                {.offset = 127, .length = 97}
 170        }
 171};
 172
 173/*
 174 * ECC4 layout for NAND of pagesize 4096 bytes & OOBsize 128 bytes. 13*8 bytes
 175 * of OOB size is reserved for ECC, Byte no. 0 & 1 reserved for bad block & 22
 176 * bytes are free for use.
 177 */
 178static struct nand_ecclayout fsmc_ecc4_128_layout = {
 179        .eccbytes = 104,
 180        .eccpos = {  2,   3,   4,   5,   6,   7,   8,
 181                9,  10,  11,  12,  13,  14,
 182                18,  19,  20,  21,  22,  23,  24,
 183                25,  26,  27,  28,  29,  30,
 184                34,  35,  36,  37,  38,  39,  40,
 185                41,  42,  43,  44,  45,  46,
 186                50,  51,  52,  53,  54,  55,  56,
 187                57,  58,  59,  60,  61,  62,
 188                66,  67,  68,  69,  70,  71,  72,
 189                73,  74,  75,  76,  77,  78,
 190                82,  83,  84,  85,  86,  87,  88,
 191                89,  90,  91,  92,  93,  94,
 192                98,  99, 100, 101, 102, 103, 104,
 193                105, 106, 107, 108, 109, 110,
 194                114, 115, 116, 117, 118, 119, 120,
 195                121, 122, 123, 124, 125, 126
 196        },
 197        .oobfree = {
 198                {.offset = 15, .length = 3},
 199                {.offset = 31, .length = 3},
 200                {.offset = 47, .length = 3},
 201                {.offset = 63, .length = 3},
 202                {.offset = 79, .length = 3},
 203                {.offset = 95, .length = 3},
 204                {.offset = 111, .length = 3},
 205                {.offset = 127, .length = 1}
 206        }
 207};
 208
 209/*
 210 * ECC4 layout for NAND of pagesize 2048 bytes & OOBsize 64 bytes. 13*4 bytes of
 211 * OOB size is reserved for ECC, Byte no. 0 & 1 reserved for bad block and 10
 212 * bytes are free for use.
 213 */
 214static struct nand_ecclayout fsmc_ecc4_64_layout = {
 215        .eccbytes = 52,
 216        .eccpos = {  2,   3,   4,   5,   6,   7,   8,
 217                9,  10,  11,  12,  13,  14,
 218                18,  19,  20,  21,  22,  23,  24,
 219                25,  26,  27,  28,  29,  30,
 220                34,  35,  36,  37,  38,  39,  40,
 221                41,  42,  43,  44,  45,  46,
 222                50,  51,  52,  53,  54,  55,  56,
 223                57,  58,  59,  60,  61,  62,
 224        },
 225        .oobfree = {
 226                {.offset = 15, .length = 3},
 227                {.offset = 31, .length = 3},
 228                {.offset = 47, .length = 3},
 229                {.offset = 63, .length = 1},
 230        }
 231};
 232
 233/*
 234 * ECC4 layout for NAND of pagesize 512 bytes & OOBsize 16 bytes. 13 bytes of
 235 * OOB size is reserved for ECC, Byte no. 4 & 5 reserved for bad block and One
 236 * byte is free for use.
 237 */
 238static struct nand_ecclayout fsmc_ecc4_16_layout = {
 239        .eccbytes = 13,
 240        .eccpos = { 0,  1,  2,  3,  6,  7, 8,
 241                9, 10, 11, 12, 13, 14
 242        },
 243        .oobfree = {
 244                {.offset = 15, .length = 1},
 245        }
 246};
 247
 248/*
 249 * ECC placement definitions in oobfree type format.
 250 * There are 13 bytes of ecc for every 512 byte block and it has to be read
 251 * consecutively and immediately after the 512 byte data block for hardware to
 252 * generate the error bit offsets in 512 byte data.
 253 * Managing the ecc bytes in the following way makes it easier for software to
 254 * read ecc bytes consecutive to data bytes. This way is similar to
 255 * oobfree structure maintained already in generic nand driver
 256 */
 257static struct fsmc_eccplace fsmc_ecc4_lp_place = {
 258        .eccplace = {
 259                {.offset = 2, .length = 13},
 260                {.offset = 18, .length = 13},
 261                {.offset = 34, .length = 13},
 262                {.offset = 50, .length = 13},
 263                {.offset = 66, .length = 13},
 264                {.offset = 82, .length = 13},
 265                {.offset = 98, .length = 13},
 266                {.offset = 114, .length = 13}
 267        }
 268};
 269
 270static struct fsmc_eccplace fsmc_ecc4_sp_place = {
 271        .eccplace = {
 272                {.offset = 0, .length = 4},
 273                {.offset = 6, .length = 9}
 274        }
 275};
 276
 277/**
 278 * struct fsmc_nand_data - structure for FSMC NAND device state
 279 *
 280 * @pid:                Part ID on the AMBA PrimeCell format
 281 * @mtd:                MTD info for a NAND flash.
 282 * @nand:               Chip related info for a NAND flash.
 283 * @partitions:         Partition info for a NAND Flash.
 284 * @nr_partitions:      Total number of partition of a NAND flash.
 285 *
 286 * @ecc_place:          ECC placing locations in oobfree type format.
 287 * @bank:               Bank number for probed device.
 288 * @clk:                Clock structure for FSMC.
 289 *
 290 * @read_dma_chan:      DMA channel for read access
 291 * @write_dma_chan:     DMA channel for write access to NAND
 292 * @dma_access_complete: Completion structure
 293 *
 294 * @data_pa:            NAND Physical port for Data.
 295 * @data_va:            NAND port for Data.
 296 * @cmd_va:             NAND port for Command.
 297 * @addr_va:            NAND port for Address.
 298 * @regs_va:            FSMC regs base address.
 299 */
 300struct fsmc_nand_data {
 301        u32                     pid;
 302        struct mtd_info         mtd;
 303        struct nand_chip        nand;
 304        struct mtd_partition    *partitions;
 305        unsigned int            nr_partitions;
 306
 307        struct fsmc_eccplace    *ecc_place;
 308        unsigned int            bank;
 309        struct device           *dev;
 310        enum access_mode        mode;
 311        struct clk              *clk;
 312
 313        /* DMA related objects */
 314        struct dma_chan         *read_dma_chan;
 315        struct dma_chan         *write_dma_chan;
 316        struct completion       dma_access_complete;
 317
 318        struct fsmc_nand_timings *dev_timings;
 319
 320        dma_addr_t              data_pa;
 321        void __iomem            *data_va;
 322        void __iomem            *cmd_va;
 323        void __iomem            *addr_va;
 324        void __iomem            *regs_va;
 325
 326        void                    (*select_chip)(uint32_t bank, uint32_t busw);
 327};
 328
 329/* Assert CS signal based on chipnr */
 330static void fsmc_select_chip(struct mtd_info *mtd, int chipnr)
 331{
 332        struct nand_chip *chip = mtd->priv;
 333        struct fsmc_nand_data *host;
 334
 335        host = container_of(mtd, struct fsmc_nand_data, mtd);
 336
 337        switch (chipnr) {
 338        case -1:
 339                chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
 340                break;
 341        case 0:
 342        case 1:
 343        case 2:
 344        case 3:
 345                if (host->select_chip)
 346                        host->select_chip(chipnr,
 347                                        chip->options & NAND_BUSWIDTH_16);
 348                break;
 349
 350        default:
 351                BUG();
 352        }
 353}
 354
 355/*
 356 * fsmc_cmd_ctrl - For facilitaing Hardware access
 357 * This routine allows hardware specific access to control-lines(ALE,CLE)
 358 */
 359static void fsmc_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
 360{
 361        struct nand_chip *this = mtd->priv;
 362        struct fsmc_nand_data *host = container_of(mtd,
 363                                        struct fsmc_nand_data, mtd);
 364        void __iomem *regs = host->regs_va;
 365        unsigned int bank = host->bank;
 366
 367        if (ctrl & NAND_CTRL_CHANGE) {
 368                u32 pc;
 369
 370                if (ctrl & NAND_CLE) {
 371                        this->IO_ADDR_R = host->cmd_va;
 372                        this->IO_ADDR_W = host->cmd_va;
 373                } else if (ctrl & NAND_ALE) {
 374                        this->IO_ADDR_R = host->addr_va;
 375                        this->IO_ADDR_W = host->addr_va;
 376                } else {
 377                        this->IO_ADDR_R = host->data_va;
 378                        this->IO_ADDR_W = host->data_va;
 379                }
 380
 381                pc = readl(FSMC_NAND_REG(regs, bank, PC));
 382                if (ctrl & NAND_NCE)
 383                        pc |= FSMC_ENABLE;
 384                else
 385                        pc &= ~FSMC_ENABLE;
 386                writel_relaxed(pc, FSMC_NAND_REG(regs, bank, PC));
 387        }
 388
 389        mb();
 390
 391        if (cmd != NAND_CMD_NONE)
 392                writeb_relaxed(cmd, this->IO_ADDR_W);
 393}
 394
 395/*
 396 * fsmc_nand_setup - FSMC (Flexible Static Memory Controller) init routine
 397 *
 398 * This routine initializes timing parameters related to NAND memory access in
 399 * FSMC registers
 400 */
 401static void fsmc_nand_setup(void __iomem *regs, uint32_t bank,
 402                           uint32_t busw, struct fsmc_nand_timings *timings)
 403{
 404        uint32_t value = FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON;
 405        uint32_t tclr, tar, thiz, thold, twait, tset;
 406        struct fsmc_nand_timings *tims;
 407        struct fsmc_nand_timings default_timings = {
 408                .tclr   = FSMC_TCLR_1,
 409                .tar    = FSMC_TAR_1,
 410                .thiz   = FSMC_THIZ_1,
 411                .thold  = FSMC_THOLD_4,
 412                .twait  = FSMC_TWAIT_6,
 413                .tset   = FSMC_TSET_0,
 414        };
 415
 416        if (timings)
 417                tims = timings;
 418        else
 419                tims = &default_timings;
 420
 421        tclr = (tims->tclr & FSMC_TCLR_MASK) << FSMC_TCLR_SHIFT;
 422        tar = (tims->tar & FSMC_TAR_MASK) << FSMC_TAR_SHIFT;
 423        thiz = (tims->thiz & FSMC_THIZ_MASK) << FSMC_THIZ_SHIFT;
 424        thold = (tims->thold & FSMC_THOLD_MASK) << FSMC_THOLD_SHIFT;
 425        twait = (tims->twait & FSMC_TWAIT_MASK) << FSMC_TWAIT_SHIFT;
 426        tset = (tims->tset & FSMC_TSET_MASK) << FSMC_TSET_SHIFT;
 427
 428        if (busw)
 429                writel_relaxed(value | FSMC_DEVWID_16,
 430                                FSMC_NAND_REG(regs, bank, PC));
 431        else
 432                writel_relaxed(value | FSMC_DEVWID_8,
 433                                FSMC_NAND_REG(regs, bank, PC));
 434
 435        writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) | tclr | tar,
 436                        FSMC_NAND_REG(regs, bank, PC));
 437        writel_relaxed(thiz | thold | twait | tset,
 438                        FSMC_NAND_REG(regs, bank, COMM));
 439        writel_relaxed(thiz | thold | twait | tset,
 440                        FSMC_NAND_REG(regs, bank, ATTRIB));
 441}
 442
 443/*
 444 * fsmc_enable_hwecc - Enables Hardware ECC through FSMC registers
 445 */
 446static void fsmc_enable_hwecc(struct mtd_info *mtd, int mode)
 447{
 448        struct fsmc_nand_data *host = container_of(mtd,
 449                                        struct fsmc_nand_data, mtd);
 450        void __iomem *regs = host->regs_va;
 451        uint32_t bank = host->bank;
 452
 453        writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) & ~FSMC_ECCPLEN_256,
 454                        FSMC_NAND_REG(regs, bank, PC));
 455        writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) & ~FSMC_ECCEN,
 456                        FSMC_NAND_REG(regs, bank, PC));
 457        writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) | FSMC_ECCEN,
 458                        FSMC_NAND_REG(regs, bank, PC));
 459}
 460
 461/*
 462 * fsmc_read_hwecc_ecc4 - Hardware ECC calculator for ecc4 option supported by
 463 * FSMC. ECC is 13 bytes for 512 bytes of data (supports error correction up to
 464 * max of 8-bits)
 465 */
 466static int fsmc_read_hwecc_ecc4(struct mtd_info *mtd, const uint8_t *data,
 467                                uint8_t *ecc)
 468{
 469        struct fsmc_nand_data *host = container_of(mtd,
 470                                        struct fsmc_nand_data, mtd);
 471        void __iomem *regs = host->regs_va;
 472        uint32_t bank = host->bank;
 473        uint32_t ecc_tmp;
 474        unsigned long deadline = jiffies + FSMC_BUSY_WAIT_TIMEOUT;
 475
 476        do {
 477                if (readl_relaxed(FSMC_NAND_REG(regs, bank, STS)) & FSMC_CODE_RDY)
 478                        break;
 479                else
 480                        cond_resched();
 481        } while (!time_after_eq(jiffies, deadline));
 482
 483        if (time_after_eq(jiffies, deadline)) {
 484                dev_err(host->dev, "calculate ecc timed out\n");
 485                return -ETIMEDOUT;
 486        }
 487
 488        ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1));
 489        ecc[0] = (uint8_t) (ecc_tmp >> 0);
 490        ecc[1] = (uint8_t) (ecc_tmp >> 8);
 491        ecc[2] = (uint8_t) (ecc_tmp >> 16);
 492        ecc[3] = (uint8_t) (ecc_tmp >> 24);
 493
 494        ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC2));
 495        ecc[4] = (uint8_t) (ecc_tmp >> 0);
 496        ecc[5] = (uint8_t) (ecc_tmp >> 8);
 497        ecc[6] = (uint8_t) (ecc_tmp >> 16);
 498        ecc[7] = (uint8_t) (ecc_tmp >> 24);
 499
 500        ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC3));
 501        ecc[8] = (uint8_t) (ecc_tmp >> 0);
 502        ecc[9] = (uint8_t) (ecc_tmp >> 8);
 503        ecc[10] = (uint8_t) (ecc_tmp >> 16);
 504        ecc[11] = (uint8_t) (ecc_tmp >> 24);
 505
 506        ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, STS));
 507        ecc[12] = (uint8_t) (ecc_tmp >> 16);
 508
 509        return 0;
 510}
 511
 512/*
 513 * fsmc_read_hwecc_ecc1 - Hardware ECC calculator for ecc1 option supported by
 514 * FSMC. ECC is 3 bytes for 512 bytes of data (supports error correction up to
 515 * max of 1-bit)
 516 */
 517static int fsmc_read_hwecc_ecc1(struct mtd_info *mtd, const uint8_t *data,
 518                                uint8_t *ecc)
 519{
 520        struct fsmc_nand_data *host = container_of(mtd,
 521                                        struct fsmc_nand_data, mtd);
 522        void __iomem *regs = host->regs_va;
 523        uint32_t bank = host->bank;
 524        uint32_t ecc_tmp;
 525
 526        ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1));
 527        ecc[0] = (uint8_t) (ecc_tmp >> 0);
 528        ecc[1] = (uint8_t) (ecc_tmp >> 8);
 529        ecc[2] = (uint8_t) (ecc_tmp >> 16);
 530
 531        return 0;
 532}
 533
 534/* Count the number of 0's in buff upto a max of max_bits */
 535static int count_written_bits(uint8_t *buff, int size, int max_bits)
 536{
 537        int k, written_bits = 0;
 538
 539        for (k = 0; k < size; k++) {
 540                written_bits += hweight8(~buff[k]);
 541                if (written_bits > max_bits)
 542                        break;
 543        }
 544
 545        return written_bits;
 546}
 547
 548static void dma_complete(void *param)
 549{
 550        struct fsmc_nand_data *host = param;
 551
 552        complete(&host->dma_access_complete);
 553}
 554
 555static int dma_xfer(struct fsmc_nand_data *host, void *buffer, int len,
 556                enum dma_data_direction direction)
 557{
 558        struct dma_chan *chan;
 559        struct dma_device *dma_dev;
 560        struct dma_async_tx_descriptor *tx;
 561        dma_addr_t dma_dst, dma_src, dma_addr;
 562        dma_cookie_t cookie;
 563        unsigned long flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
 564        int ret;
 565
 566        if (direction == DMA_TO_DEVICE)
 567                chan = host->write_dma_chan;
 568        else if (direction == DMA_FROM_DEVICE)
 569                chan = host->read_dma_chan;
 570        else
 571                return -EINVAL;
 572
 573        dma_dev = chan->device;
 574        dma_addr = dma_map_single(dma_dev->dev, buffer, len, direction);
 575
 576        if (direction == DMA_TO_DEVICE) {
 577                dma_src = dma_addr;
 578                dma_dst = host->data_pa;
 579        } else {
 580                dma_src = host->data_pa;
 581                dma_dst = dma_addr;
 582        }
 583
 584        tx = dma_dev->device_prep_dma_memcpy(chan, dma_dst, dma_src,
 585                        len, flags);
 586        if (!tx) {
 587                dev_err(host->dev, "device_prep_dma_memcpy error\n");
 588                ret = -EIO;
 589                goto unmap_dma;
 590        }
 591
 592        tx->callback = dma_complete;
 593        tx->callback_param = host;
 594        cookie = tx->tx_submit(tx);
 595
 596        ret = dma_submit_error(cookie);
 597        if (ret) {
 598                dev_err(host->dev, "dma_submit_error %d\n", cookie);
 599                goto unmap_dma;
 600        }
 601
 602        dma_async_issue_pending(chan);
 603
 604        ret =
 605        wait_for_completion_timeout(&host->dma_access_complete,
 606                                msecs_to_jiffies(3000));
 607        if (ret <= 0) {
 608                dmaengine_terminate_all(chan);
 609                dev_err(host->dev, "wait_for_completion_timeout\n");
 610                if (!ret)
 611                        ret = -ETIMEDOUT;
 612                goto unmap_dma;
 613        }
 614
 615        ret = 0;
 616
 617unmap_dma:
 618        dma_unmap_single(dma_dev->dev, dma_addr, len, direction);
 619
 620        return ret;
 621}
 622
 623/*
 624 * fsmc_write_buf - write buffer to chip
 625 * @mtd:        MTD device structure
 626 * @buf:        data buffer
 627 * @len:        number of bytes to write
 628 */
 629static void fsmc_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
 630{
 631        int i;
 632        struct nand_chip *chip = mtd->priv;
 633
 634        if (IS_ALIGNED((uint32_t)buf, sizeof(uint32_t)) &&
 635                        IS_ALIGNED(len, sizeof(uint32_t))) {
 636                uint32_t *p = (uint32_t *)buf;
 637                len = len >> 2;
 638                for (i = 0; i < len; i++)
 639                        writel_relaxed(p[i], chip->IO_ADDR_W);
 640        } else {
 641                for (i = 0; i < len; i++)
 642                        writeb_relaxed(buf[i], chip->IO_ADDR_W);
 643        }
 644}
 645
 646/*
 647 * fsmc_read_buf - read chip data into buffer
 648 * @mtd:        MTD device structure
 649 * @buf:        buffer to store date
 650 * @len:        number of bytes to read
 651 */
 652static void fsmc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
 653{
 654        int i;
 655        struct nand_chip *chip = mtd->priv;
 656
 657        if (IS_ALIGNED((uint32_t)buf, sizeof(uint32_t)) &&
 658                        IS_ALIGNED(len, sizeof(uint32_t))) {
 659                uint32_t *p = (uint32_t *)buf;
 660                len = len >> 2;
 661                for (i = 0; i < len; i++)
 662                        p[i] = readl_relaxed(chip->IO_ADDR_R);
 663        } else {
 664                for (i = 0; i < len; i++)
 665                        buf[i] = readb_relaxed(chip->IO_ADDR_R);
 666        }
 667}
 668
 669/*
 670 * fsmc_read_buf_dma - read chip data into buffer
 671 * @mtd:        MTD device structure
 672 * @buf:        buffer to store date
 673 * @len:        number of bytes to read
 674 */
 675static void fsmc_read_buf_dma(struct mtd_info *mtd, uint8_t *buf, int len)
 676{
 677        struct fsmc_nand_data *host;
 678
 679        host = container_of(mtd, struct fsmc_nand_data, mtd);
 680        dma_xfer(host, buf, len, DMA_FROM_DEVICE);
 681}
 682
 683/*
 684 * fsmc_write_buf_dma - write buffer to chip
 685 * @mtd:        MTD device structure
 686 * @buf:        data buffer
 687 * @len:        number of bytes to write
 688 */
 689static void fsmc_write_buf_dma(struct mtd_info *mtd, const uint8_t *buf,
 690                int len)
 691{
 692        struct fsmc_nand_data *host;
 693
 694        host = container_of(mtd, struct fsmc_nand_data, mtd);
 695        dma_xfer(host, (void *)buf, len, DMA_TO_DEVICE);
 696}
 697
 698/*
 699 * fsmc_read_page_hwecc
 700 * @mtd:        mtd info structure
 701 * @chip:       nand chip info structure
 702 * @buf:        buffer to store read data
 703 * @oob_required:       caller expects OOB data read to chip->oob_poi
 704 * @page:       page number to read
 705 *
 706 * This routine is needed for fsmc version 8 as reading from NAND chip has to be
 707 * performed in a strict sequence as follows:
 708 * data(512 byte) -> ecc(13 byte)
 709 * After this read, fsmc hardware generates and reports error data bits(up to a
 710 * max of 8 bits)
 711 */
 712static int fsmc_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
 713                                 uint8_t *buf, int oob_required, int page)
 714{
 715        struct fsmc_nand_data *host = container_of(mtd,
 716                                        struct fsmc_nand_data, mtd);
 717        struct fsmc_eccplace *ecc_place = host->ecc_place;
 718        int i, j, s, stat, eccsize = chip->ecc.size;
 719        int eccbytes = chip->ecc.bytes;
 720        int eccsteps = chip->ecc.steps;
 721        uint8_t *p = buf;
 722        uint8_t *ecc_calc = chip->buffers->ecccalc;
 723        uint8_t *ecc_code = chip->buffers->ecccode;
 724        int off, len, group = 0;
 725        /*
 726         * ecc_oob is intentionally taken as uint16_t. In 16bit devices, we
 727         * end up reading 14 bytes (7 words) from oob. The local array is
 728         * to maintain word alignment
 729         */
 730        uint16_t ecc_oob[7];
 731        uint8_t *oob = (uint8_t *)&ecc_oob[0];
 732        unsigned int max_bitflips = 0;
 733
 734        for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, p += eccsize) {
 735                chip->cmdfunc(mtd, NAND_CMD_READ0, s * eccsize, page);
 736                chip->ecc.hwctl(mtd, NAND_ECC_READ);
 737                chip->read_buf(mtd, p, eccsize);
 738
 739                for (j = 0; j < eccbytes;) {
 740                        off = ecc_place->eccplace[group].offset;
 741                        len = ecc_place->eccplace[group].length;
 742                        group++;
 743
 744                        /*
 745                         * length is intentionally kept a higher multiple of 2
 746                         * to read at least 13 bytes even in case of 16 bit NAND
 747                         * devices
 748                         */
 749                        if (chip->options & NAND_BUSWIDTH_16)
 750                                len = roundup(len, 2);
 751
 752                        chip->cmdfunc(mtd, NAND_CMD_READOOB, off, page);
 753                        chip->read_buf(mtd, oob + j, len);
 754                        j += len;
 755                }
 756
 757                memcpy(&ecc_code[i], oob, chip->ecc.bytes);
 758                chip->ecc.calculate(mtd, p, &ecc_calc[i]);
 759
 760                stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
 761                if (stat < 0) {
 762                        mtd->ecc_stats.failed++;
 763                } else {
 764                        mtd->ecc_stats.corrected += stat;
 765                        max_bitflips = max_t(unsigned int, max_bitflips, stat);
 766                }
 767        }
 768
 769        return max_bitflips;
 770}
 771
 772/*
 773 * fsmc_bch8_correct_data
 774 * @mtd:        mtd info structure
 775 * @dat:        buffer of read data
 776 * @read_ecc:   ecc read from device spare area
 777 * @calc_ecc:   ecc calculated from read data
 778 *
 779 * calc_ecc is a 104 bit information containing maximum of 8 error
 780 * offset informations of 13 bits each in 512 bytes of read data.
 781 */
 782static int fsmc_bch8_correct_data(struct mtd_info *mtd, uint8_t *dat,
 783                             uint8_t *read_ecc, uint8_t *calc_ecc)
 784{
 785        struct fsmc_nand_data *host = container_of(mtd,
 786                                        struct fsmc_nand_data, mtd);
 787        struct nand_chip *chip = mtd->priv;
 788        void __iomem *regs = host->regs_va;
 789        unsigned int bank = host->bank;
 790        uint32_t err_idx[8];
 791        uint32_t num_err, i;
 792        uint32_t ecc1, ecc2, ecc3, ecc4;
 793
 794        num_err = (readl_relaxed(FSMC_NAND_REG(regs, bank, STS)) >> 10) & 0xF;
 795
 796        /* no bit flipping */
 797        if (likely(num_err == 0))
 798                return 0;
 799
 800        /* too many errors */
 801        if (unlikely(num_err > 8)) {
 802                /*
 803                 * This is a temporary erase check. A newly erased page read
 804                 * would result in an ecc error because the oob data is also
 805                 * erased to FF and the calculated ecc for an FF data is not
 806                 * FF..FF.
 807                 * This is a workaround to skip performing correction in case
 808                 * data is FF..FF
 809                 *
 810                 * Logic:
 811                 * For every page, each bit written as 0 is counted until these
 812                 * number of bits are greater than 8 (the maximum correction
 813                 * capability of FSMC for each 512 + 13 bytes)
 814                 */
 815
 816                int bits_ecc = count_written_bits(read_ecc, chip->ecc.bytes, 8);
 817                int bits_data = count_written_bits(dat, chip->ecc.size, 8);
 818
 819                if ((bits_ecc + bits_data) <= 8) {
 820                        if (bits_data)
 821                                memset(dat, 0xff, chip->ecc.size);
 822                        return bits_data;
 823                }
 824
 825                return -EBADMSG;
 826        }
 827
 828        /*
 829         * ------------------- calc_ecc[] bit wise -----------|--13 bits--|
 830         * |---idx[7]--|--.....-----|---idx[2]--||---idx[1]--||---idx[0]--|
 831         *
 832         * calc_ecc is a 104 bit information containing maximum of 8 error
 833         * offset informations of 13 bits each. calc_ecc is copied into a
 834         * uint64_t array and error offset indexes are populated in err_idx
 835         * array
 836         */
 837        ecc1 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1));
 838        ecc2 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC2));
 839        ecc3 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC3));
 840        ecc4 = readl_relaxed(FSMC_NAND_REG(regs, bank, STS));
 841
 842        err_idx[0] = (ecc1 >> 0) & 0x1FFF;
 843        err_idx[1] = (ecc1 >> 13) & 0x1FFF;
 844        err_idx[2] = (((ecc2 >> 0) & 0x7F) << 6) | ((ecc1 >> 26) & 0x3F);
 845        err_idx[3] = (ecc2 >> 7) & 0x1FFF;
 846        err_idx[4] = (((ecc3 >> 0) & 0x1) << 12) | ((ecc2 >> 20) & 0xFFF);
 847        err_idx[5] = (ecc3 >> 1) & 0x1FFF;
 848        err_idx[6] = (ecc3 >> 14) & 0x1FFF;
 849        err_idx[7] = (((ecc4 >> 16) & 0xFF) << 5) | ((ecc3 >> 27) & 0x1F);
 850
 851        i = 0;
 852        while (num_err--) {
 853                change_bit(0, (unsigned long *)&err_idx[i]);
 854                change_bit(1, (unsigned long *)&err_idx[i]);
 855
 856                if (err_idx[i] < chip->ecc.size * 8) {
 857                        change_bit(err_idx[i], (unsigned long *)dat);
 858                        i++;
 859                }
 860        }
 861        return i;
 862}
 863
 864static bool filter(struct dma_chan *chan, void *slave)
 865{
 866        chan->private = slave;
 867        return true;
 868}
 869
 870#ifdef CONFIG_OF
 871static int fsmc_nand_probe_config_dt(struct platform_device *pdev,
 872                                     struct device_node *np)
 873{
 874        struct fsmc_nand_platform_data *pdata = dev_get_platdata(&pdev->dev);
 875        u32 val;
 876
 877        /* Set default NAND width to 8 bits */
 878        pdata->width = 8;
 879        if (!of_property_read_u32(np, "bank-width", &val)) {
 880                if (val == 2) {
 881                        pdata->width = 16;
 882                } else if (val != 1) {
 883                        dev_err(&pdev->dev, "invalid bank-width %u\n", val);
 884                        return -EINVAL;
 885                }
 886        }
 887        if (of_get_property(np, "nand-skip-bbtscan", NULL))
 888                pdata->options = NAND_SKIP_BBTSCAN;
 889
 890        pdata->nand_timings = devm_kzalloc(&pdev->dev,
 891                                sizeof(*pdata->nand_timings), GFP_KERNEL);
 892        if (!pdata->nand_timings)
 893                return -ENOMEM;
 894        of_property_read_u8_array(np, "timings", (u8 *)pdata->nand_timings,
 895                                                sizeof(*pdata->nand_timings));
 896
 897        /* Set default NAND bank to 0 */
 898        pdata->bank = 0;
 899        if (!of_property_read_u32(np, "bank", &val)) {
 900                if (val > 3) {
 901                        dev_err(&pdev->dev, "invalid bank %u\n", val);
 902                        return -EINVAL;
 903                }
 904                pdata->bank = val;
 905        }
 906        return 0;
 907}
 908#else
 909static int fsmc_nand_probe_config_dt(struct platform_device *pdev,
 910                                     struct device_node *np)
 911{
 912        return -ENOSYS;
 913}
 914#endif
 915
 916/*
 917 * fsmc_nand_probe - Probe function
 918 * @pdev:       platform device structure
 919 */
 920static int __init fsmc_nand_probe(struct platform_device *pdev)
 921{
 922        struct fsmc_nand_platform_data *pdata = dev_get_platdata(&pdev->dev);
 923        struct device_node __maybe_unused *np = pdev->dev.of_node;
 924        struct mtd_part_parser_data ppdata = {};
 925        struct fsmc_nand_data *host;
 926        struct mtd_info *mtd;
 927        struct nand_chip *nand;
 928        struct resource *res;
 929        dma_cap_mask_t mask;
 930        int ret = 0;
 931        u32 pid;
 932        int i;
 933
 934        if (np) {
 935                pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
 936                pdev->dev.platform_data = pdata;
 937                ret = fsmc_nand_probe_config_dt(pdev, np);
 938                if (ret) {
 939                        dev_err(&pdev->dev, "no platform data\n");
 940                        return -ENODEV;
 941                }
 942        }
 943
 944        if (!pdata) {
 945                dev_err(&pdev->dev, "platform data is NULL\n");
 946                return -EINVAL;
 947        }
 948
 949        /* Allocate memory for the device structure (and zero it) */
 950        host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
 951        if (!host)
 952                return -ENOMEM;
 953
 954        res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_data");
 955        host->data_va = devm_ioremap_resource(&pdev->dev, res);
 956        if (IS_ERR(host->data_va))
 957                return PTR_ERR(host->data_va);
 958        
 959        host->data_pa = (dma_addr_t)res->start;
 960
 961        res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_addr");
 962        host->addr_va = devm_ioremap_resource(&pdev->dev, res);
 963        if (IS_ERR(host->addr_va))
 964                return PTR_ERR(host->addr_va);
 965
 966        res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_cmd");
 967        host->cmd_va = devm_ioremap_resource(&pdev->dev, res);
 968        if (IS_ERR(host->cmd_va))
 969                return PTR_ERR(host->cmd_va);
 970
 971        res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fsmc_regs");
 972        host->regs_va = devm_ioremap_resource(&pdev->dev, res);
 973        if (IS_ERR(host->regs_va))
 974                return PTR_ERR(host->regs_va);
 975
 976        host->clk = clk_get(&pdev->dev, NULL);
 977        if (IS_ERR(host->clk)) {
 978                dev_err(&pdev->dev, "failed to fetch block clock\n");
 979                return PTR_ERR(host->clk);
 980        }
 981
 982        ret = clk_prepare_enable(host->clk);
 983        if (ret)
 984                goto err_clk_prepare_enable;
 985
 986        /*
 987         * This device ID is actually a common AMBA ID as used on the
 988         * AMBA PrimeCell bus. However it is not a PrimeCell.
 989         */
 990        for (pid = 0, i = 0; i < 4; i++)
 991                pid |= (readl(host->regs_va + resource_size(res) - 0x20 + 4 * i) & 255) << (i * 8);
 992        host->pid = pid;
 993        dev_info(&pdev->dev, "FSMC device partno %03x, manufacturer %02x, "
 994                 "revision %02x, config %02x\n",
 995                 AMBA_PART_BITS(pid), AMBA_MANF_BITS(pid),
 996                 AMBA_REV_BITS(pid), AMBA_CONFIG_BITS(pid));
 997
 998        host->bank = pdata->bank;
 999        host->select_chip = pdata->select_bank;
1000        host->partitions = pdata->partitions;
1001        host->nr_partitions = pdata->nr_partitions;
1002        host->dev = &pdev->dev;
1003        host->dev_timings = pdata->nand_timings;
1004        host->mode = pdata->mode;
1005
1006        if (host->mode == USE_DMA_ACCESS)
1007                init_completion(&host->dma_access_complete);
1008
1009        /* Link all private pointers */
1010        mtd = &host->mtd;
1011        nand = &host->nand;
1012        mtd->priv = nand;
1013        nand->priv = host;
1014
1015        host->mtd.owner = THIS_MODULE;
1016        nand->IO_ADDR_R = host->data_va;
1017        nand->IO_ADDR_W = host->data_va;
1018        nand->cmd_ctrl = fsmc_cmd_ctrl;
1019        nand->chip_delay = 30;
1020
1021        nand->ecc.mode = NAND_ECC_HW;
1022        nand->ecc.hwctl = fsmc_enable_hwecc;
1023        nand->ecc.size = 512;
1024        nand->options = pdata->options;
1025        nand->select_chip = fsmc_select_chip;
1026        nand->badblockbits = 7;
1027
1028        if (pdata->width == FSMC_NAND_BW16)
1029                nand->options |= NAND_BUSWIDTH_16;
1030
1031        switch (host->mode) {
1032        case USE_DMA_ACCESS:
1033                dma_cap_zero(mask);
1034                dma_cap_set(DMA_MEMCPY, mask);
1035                host->read_dma_chan = dma_request_channel(mask, filter,
1036                                pdata->read_dma_priv);
1037                if (!host->read_dma_chan) {
1038                        dev_err(&pdev->dev, "Unable to get read dma channel\n");
1039                        goto err_req_read_chnl;
1040                }
1041                host->write_dma_chan = dma_request_channel(mask, filter,
1042                                pdata->write_dma_priv);
1043                if (!host->write_dma_chan) {
1044                        dev_err(&pdev->dev, "Unable to get write dma channel\n");
1045                        goto err_req_write_chnl;
1046                }
1047                nand->read_buf = fsmc_read_buf_dma;
1048                nand->write_buf = fsmc_write_buf_dma;
1049                break;
1050
1051        default:
1052        case USE_WORD_ACCESS:
1053                nand->read_buf = fsmc_read_buf;
1054                nand->write_buf = fsmc_write_buf;
1055                break;
1056        }
1057
1058        fsmc_nand_setup(host->regs_va, host->bank,
1059                        nand->options & NAND_BUSWIDTH_16,
1060                        host->dev_timings);
1061
1062        if (AMBA_REV_BITS(host->pid) >= 8) {
1063                nand->ecc.read_page = fsmc_read_page_hwecc;
1064                nand->ecc.calculate = fsmc_read_hwecc_ecc4;
1065                nand->ecc.correct = fsmc_bch8_correct_data;
1066                nand->ecc.bytes = 13;
1067                nand->ecc.strength = 8;
1068        } else {
1069                nand->ecc.calculate = fsmc_read_hwecc_ecc1;
1070                nand->ecc.correct = nand_correct_data;
1071                nand->ecc.bytes = 3;
1072                nand->ecc.strength = 1;
1073        }
1074
1075        /*
1076         * Scan to find existence of the device
1077         */
1078        if (nand_scan_ident(&host->mtd, 1, NULL)) {
1079                ret = -ENXIO;
1080                dev_err(&pdev->dev, "No NAND Device found!\n");
1081                goto err_scan_ident;
1082        }
1083
1084        if (AMBA_REV_BITS(host->pid) >= 8) {
1085                switch (host->mtd.oobsize) {
1086                case 16:
1087                        nand->ecc.layout = &fsmc_ecc4_16_layout;
1088                        host->ecc_place = &fsmc_ecc4_sp_place;
1089                        break;
1090                case 64:
1091                        nand->ecc.layout = &fsmc_ecc4_64_layout;
1092                        host->ecc_place = &fsmc_ecc4_lp_place;
1093                        break;
1094                case 128:
1095                        nand->ecc.layout = &fsmc_ecc4_128_layout;
1096                        host->ecc_place = &fsmc_ecc4_lp_place;
1097                        break;
1098                case 224:
1099                        nand->ecc.layout = &fsmc_ecc4_224_layout;
1100                        host->ecc_place = &fsmc_ecc4_lp_place;
1101                        break;
1102                case 256:
1103                        nand->ecc.layout = &fsmc_ecc4_256_layout;
1104                        host->ecc_place = &fsmc_ecc4_lp_place;
1105                        break;
1106                default:
1107                        dev_warn(&pdev->dev, "No oob scheme defined for oobsize %d\n",
1108                                 mtd->oobsize);
1109                        BUG();
1110                }
1111        } else {
1112                switch (host->mtd.oobsize) {
1113                case 16:
1114                        nand->ecc.layout = &fsmc_ecc1_16_layout;
1115                        break;
1116                case 64:
1117                        nand->ecc.layout = &fsmc_ecc1_64_layout;
1118                        break;
1119                case 128:
1120                        nand->ecc.layout = &fsmc_ecc1_128_layout;
1121                        break;
1122                default:
1123                        dev_warn(&pdev->dev, "No oob scheme defined for oobsize %d\n",
1124                                 mtd->oobsize);
1125                        BUG();
1126                }
1127        }
1128
1129        /* Second stage of scan to fill MTD data-structures */
1130        if (nand_scan_tail(&host->mtd)) {
1131                ret = -ENXIO;
1132                goto err_probe;
1133        }
1134
1135        /*
1136         * The partition information can is accessed by (in the same precedence)
1137         *
1138         * command line through Bootloader,
1139         * platform data,
1140         * default partition information present in driver.
1141         */
1142        /*
1143         * Check for partition info passed
1144         */
1145        host->mtd.name = "nand";
1146        ppdata.of_node = np;
1147        ret = mtd_device_parse_register(&host->mtd, NULL, &ppdata,
1148                                        host->partitions, host->nr_partitions);
1149        if (ret)
1150                goto err_probe;
1151
1152        platform_set_drvdata(pdev, host);
1153        dev_info(&pdev->dev, "FSMC NAND driver registration successful\n");
1154        return 0;
1155
1156err_probe:
1157err_scan_ident:
1158        if (host->mode == USE_DMA_ACCESS)
1159                dma_release_channel(host->write_dma_chan);
1160err_req_write_chnl:
1161        if (host->mode == USE_DMA_ACCESS)
1162                dma_release_channel(host->read_dma_chan);
1163err_req_read_chnl:
1164        clk_disable_unprepare(host->clk);
1165err_clk_prepare_enable:
1166        clk_put(host->clk);
1167        return ret;
1168}
1169
1170/*
1171 * Clean up routine
1172 */
1173static int fsmc_nand_remove(struct platform_device *pdev)
1174{
1175        struct fsmc_nand_data *host = platform_get_drvdata(pdev);
1176
1177        if (host) {
1178                nand_release(&host->mtd);
1179
1180                if (host->mode == USE_DMA_ACCESS) {
1181                        dma_release_channel(host->write_dma_chan);
1182                        dma_release_channel(host->read_dma_chan);
1183                }
1184                clk_disable_unprepare(host->clk);
1185                clk_put(host->clk);
1186        }
1187
1188        return 0;
1189}
1190
1191#ifdef CONFIG_PM_SLEEP
1192static int fsmc_nand_suspend(struct device *dev)
1193{
1194        struct fsmc_nand_data *host = dev_get_drvdata(dev);
1195        if (host)
1196                clk_disable_unprepare(host->clk);
1197        return 0;
1198}
1199
1200static int fsmc_nand_resume(struct device *dev)
1201{
1202        struct fsmc_nand_data *host = dev_get_drvdata(dev);
1203        if (host) {
1204                clk_prepare_enable(host->clk);
1205                fsmc_nand_setup(host->regs_va, host->bank,
1206                                host->nand.options & NAND_BUSWIDTH_16,
1207                                host->dev_timings);
1208        }
1209        return 0;
1210}
1211#endif
1212
1213static SIMPLE_DEV_PM_OPS(fsmc_nand_pm_ops, fsmc_nand_suspend, fsmc_nand_resume);
1214
1215#ifdef CONFIG_OF
1216static const struct of_device_id fsmc_nand_id_table[] = {
1217        { .compatible = "st,spear600-fsmc-nand" },
1218        { .compatible = "stericsson,fsmc-nand" },
1219        {}
1220};
1221MODULE_DEVICE_TABLE(of, fsmc_nand_id_table);
1222#endif
1223
1224static struct platform_driver fsmc_nand_driver = {
1225        .remove = fsmc_nand_remove,
1226        .driver = {
1227                .owner = THIS_MODULE,
1228                .name = "fsmc-nand",
1229                .of_match_table = of_match_ptr(fsmc_nand_id_table),
1230                .pm = &fsmc_nand_pm_ops,
1231        },
1232};
1233
1234module_platform_driver_probe(fsmc_nand_driver, fsmc_nand_probe);
1235
1236MODULE_LICENSE("GPL");
1237MODULE_AUTHOR("Vipin Kumar <vipin.kumar@st.com>, Ashish Priyadarshi");
1238MODULE_DESCRIPTION("NAND driver for SPEAr Platforms");
1239